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Abstract of the Dissertation

Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories

by

Michael Spillane

Doctor of Philosophy

in

Physics and Astronomy Department

Stony Brook University

2016

In this dissertation we consider physical consequences of adding a finite
temperature to quantum field theories. At small length scales entanglement is
a critically important feature. It is therefore unsurprising that entanglement
entropy and Rényi entropy are useful tools in studying quantum phase tran-
sition, and quantum information. In this thesis we consider the corrections
to entanglement and Rényi entropies due to addition of a finite temperature.

More specifically, we investigate the entanglement entropy of a massive
scalar field in 1+1 dimensions at nonzero temperature. In the small mass
(m) and temperature (T ) limit, we put upper and lower bounds on the two
largest eigenvalues of the covariance matrix used to compute the entangle-
ment entropy. We argue that the entanglement entropy has e�m/T scaling in
the limit T ⌧ m.

Additionally, we calculate thermal corrections to Rényi entropies for free
massless fermions on R⇥ Sd�1. By expanding the density matrix in a Boltz-
mann sum, the problem of finding the Rényi entropies can be mapped to
the problem of calculating a two point function on an n-sheeted cover of the
sphere. We map the problem on the sphere to a conical region in Euclidean
space. By using the method of images, we calculate the two point function
and recover the Rényi entropies.
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At large length scales hydrodynamics is a useful way to study quantum
field theories. We review recent interest in the Riemann problem as a method
for generating a non-equilibrium steady state. The initial conditions consist
of a planar interface between two halves of a system held at di↵erent tem-
peratures in a hydrodynamic regime. The resulting fluid flow contains a
fixed temperature region with a nonzero flux. We briefly discuss the e↵ects
of a conserved charge. Next we discuss deforming the relativistic equations
with a nonlinear term and how that deformation a↵ects the temperature and
velocity in the region connecting the asymptotic fluids.

Finally, we study properties of a non-equilibrium steady state generated
when two heat baths are initially in contact with one another. The dynamics
of the system in question are governed by holographic duality to a blackhole.
We discuss the “phase diagram” associated with the steady state of the dual,
dynamical black hole and its relation to the fluid/gravity correspondence.

iv



To my family.

v



Contents

1 Introduction 1
1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Entanglement entropy in QFTs . . . . . . . . . . . . . 8
1.3.2 Holographic Entanglement Entropy . . . . . . . . . . . 10
1.3.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Entanglement at Finite Temperature 12

2 Scalar Entanglement on a Circle 12
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 From the Harmonic Chain to the Scalar Field . . . . . . . . . 15
2.3 Taking Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Raising the Temperature . . . . . . . . . . . . . . . . . . . . . 21
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1 Introduction

The 20th century was a tumultuous time for physics. Old ideas were dis-
carded as new experiments disproved them and new theories superseded
them. It took decades for these new theories to be solidified out and for
their implications to be discovered. In some cases, it took just as long for
the new consequences to be accepted. In this chapter we will discuss some
of the discovery and acceptance of these new ideas.

1.1 General Relativity

In the late 19th century the theory of aether was under attack. Experi-
ments by Arago, Airy and Michelson-Morley cast doubt on the existence of
the aether and why its e↵ects remained undetected. Einstein resolved this
problem by discarding aether entirely as well as Galilean addition of velocity
and the rigid notion of time. Special relativity also allowed for a covariant
Lagrangian of Maxwell’s electromagnetic field [1]. Using the mostly positive
metric (–,+,+,+), the electromagnetic Lagrangian

Fµ⌫ = @µA⌫ � @⌫Aµ,

L = �1

4
F µ⌫Fµ⌫ ,

(1.1)

was invariant under transformations of the new space-time.
The next step in the restructuring was a covariant theory of gravity, which

Einstein understood to be indistinguishable from acceleration. Within two
years all the conceptual pieces for this theory and some consequences were
in place including gravitational redshift and light bending. However, the
correct mathematical framework would be another 8 years in the making. In
November of 1915 Einstein and Hilbert identified the field equations

Gµ⌫ ⌘ Rµ⌫ �
1

2
Rgµ⌫ = Tµ⌫ . (1.2)

It is worth noting that the Bianchi identities imply that

rµGµ⌫ = 0. (1.3)
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The Einstein field equations arise from the minimization of the Einstein-
Hilbert action

S =
1

2

Z
d~x

p
�gR. (1.4)

In both cosmological and theoretical analysis it is common to add an
additional term to the metric 2⇤

p�g. Known as the cosmological constant,
⇤, the measured value in our universe is 1.7⇥10�121[2] as measured in Planck
units.

1.1.1 Black Holes

One of the first solutions found was the spherically symmetric solution equiv-
alent to a point mass at the origin. The metric corresponding to this in four
space time dimensions is given by

ds2 = �(1� rs/r)dt
2 + (1� rs/r)

�1dr2 + r2d⌦2, (1.5)

where rs is the radius of the blackhole and d⌦ is the metric on S2. In 1923 it
was proved, by Birko↵, that this is the unique spherically symmetric solution
in 4-spacetime dimensions1. This has the immediate implication that just like
electromagnetism, monopoles cannot radiate. That is not to say, however,
that gravity cannot produce radiation; Einstein had already predicted the
existence of a quadrupole wave which was finally experimentally observed in
2016 [3].

We can also look at black holes when there is a cosmological constant.
In doing so an interesting result occurs, a 3d black hole. There is no allowed
3-dimensional black hole that is asymptotically flat. In general the black hole
metric is given by

ds2 = �
✓
1 +

r2

L2

� C

rd�3

◆
dt2 +

✓
1 +

r2

L2

� C

rd�3

◆�1

dr2 + r2d⌦2, (1.6)

where L is the radius of curvature.
If we take the massless limit (C ! 0) we obtain the metric for global anti

de Sitter space(AdS). AdS is a maximally symmetric Lorentzian manifold

1This theorem applies to spacetimes in 4-dimensions with cosmological constants as
well.
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with symmetry group SO(d � 1, 2). Shockingly, this is the same symmetry
group as a conformal field theory (CFT) in d�1 dimensions. This observation
in part lead to the conjecture that string theories in AdS space are equivalent
to conformal field theories in one smaller spacetime dimension, known as the
AdS/CFT correspondence. This is a rich and wide ranging field of study, of
which this dissertation will only touch the edges. As we will see below the
study of asymptotically AdS manifolds yields insight into both entanglement
entropy and fluid dynamics.

1.1.2 Outlook

General relativity is classical theory of gravity and has long resisted e↵orts
of quantization. Adding supersymmetry has o↵ered some insights into a
possible quantum nature of gravity. String theory provides a possible com-
plete description of quantum gravity, however there are many complications
which are being actively investigated. In an interesting twist the discovery of
AdS/CFT correspondence allowed for classical gravity solutions to be applied
to solutions of quantum mechanical problems. Solutions in classical gravity
now provide insight into quantum systems from low energy condensed matter
systems, to high energy quark gluon plasmas.

1.2 Hydrodynamics

Hydrodynamics is the study of macroscopic features of liquids and gases. As
such it can be obtained as the continuum limit of the Boltzmann equation
or from an analysis Newton’s second law applied to fluid elements, (see Ap-
pendix A). These simple equations then govern physical systems ranging in
size from small collisions of heavy ions to red giant stars.

Early attempts did not include the modern view of considering forces on
infinitesimal elements of the fluids, but instead made analogies between fluids
and the better understood dynamics of rigid bodies. The first attempt at a
dynamical model of fluids was carried out by Bernoulli in 1738 [4].

The result was the one-dimensional Euler equation, relating to the fluid
flow in a vessel known as Bernoulli’s law. By 1749 D’Alembert had found
a special case of the two dimensional Euler equation, in his explanation of
winds as caused by the tidal forces of the moon. This is now known to
be false. Nevertheless his analysis pushed forward the study of fluid flows.
Finally in 1752, considering internal pressures as well as external forces acting

3



on a infinitesimal element of a fluid Euler derived

@tu+ (u ·r)u = F�rP, (1.7)

r · u = 0, (1.8)

where u is the velocity, F is the force and P is the pressure. Three years
later Euler would extend this to compressible fluids

@tu+ (u ·r)u =
1

⇢
(F�rP ), (1.9)

@t⇢+r · (⇢u) = 0, (1.10)

where ⇢ is the density.
While this model of perfect fluids was mathematically sound it did little

to help with the real world problems of the drag on ships or flow through
pipes. This was remedied by Navier in 1821 who translated his work on elas-
tic bodies into hydrodynamics thereby adding viscous corrections to Euler’s
perfect fluid equations. His result would be rediscovered by Cauchy, Poisson,
Saint–Venant and Stokes.

From this point on a plethora of new subfields sprung out. Helmholtz
embarked on a study of vortices, dovetailed into an analysis of instabilities
of surface discontinuities, the Kelvin–Helmholtz instability. A half century
later in 1880 Reynolds would explore the instability of laminar flows and
their transition to a turbulent flow. These phenomena are made possible
by the nonlinear terms in the equations governing fluids. The complications
imposed by these terms ensure that it will continue to be a vibrant area of
research going into the future. This interest is exemplified by the inclusion
of fluids in the Millennium Prize Problems.

After the discovery of relativity a covariant description of fluids was nec-
essary. From the Einstein equation and the Bianchi identity it is clear that
the fluid should be described by a conserved stress tensor

rµT
µ⌫ = 0. (1.11)

A perfect fluid should be described by a vector uµ. In the rest frame the T 00

component should be the energy and the other diagonal elements should be
the pressure. The unique symmetric stress tensor is then given by

T µ⌫ = (✏+ P )uµu⌫ + Pgµ⌫ , (1.12)
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where ✏ is the energy density and p is the pressure. The conservation equa-
tions associated with this stress tensor are equivalent to Euler’s equations in
the non-relativistic limit.2

To add viscosity an expansion in derivatives is formed. At first order in
derivatives there are many possible combinations and the appropriate com-
bination needs to be found for the application in mind. One example is a
conformal fluid. This case forces the stress tensor to be traceless and the
gradient corrections to be orthogonal to the velocity

�µ⌫ = 2rhµu⌫i, (1.13)

where

Ahµ⌫i ⌘ 1

2
�µ↵�⌫�(A↵� + A�↵)�

1

d
�µ⌫�↵�A↵�, (1.14)

�µ⌫ ⌘ gµ⌫ + uµu⌫ . (1.15)

At next order in the derivative expansion a plethora of new terms appear
including terms coupling to the curvature.

As mentioned before there is a relationship between gravity and CFTs
and this relationship is true for fluids as well. If we consider an extended
object, black brane, producing a black hole instead of a point like object
considered above, we obtain a metric of the form

ds2 = �2uµdx
µdr � r2f(br)uµu⌫dx

µdx⌫ + r2�µ⌫dx
µdx⌫ , (1.16)

where the suggestively written uµ is the uniform velocity of the brane and r
is the new holographic direction measured from the boundary. This metric is
a solution to the vacuum Einstein equations provided that b and uµ are con-
stants. However, if we allow b and uµ to vary as a function of the boundary
coordinates then provided that they satisfy the perfect fluid equations the
metric is still an approximate solution to vacuum Einstein equations. Per-
turbative corrections to the metric are matched by the derivative expansion
in the relativistic fluid.

1.2.1 Outlook

Research in hydrodynamics has receive interest in phenomenological com-
munities since the discovery that the result of high energy collisions of large

2The ideal fluid also has a conserved entropy current rµsuµ = 0.
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atomic nuclei creates a near perfect fluid. Another recent avenue of research
involves Hall viscosity which is a term added to the gradient expansion in
2+1 dimensions which violates parity. This term does not lead to dissipation
as normal viscosity does. This thesis follows along the path of field theories
out of equilibrium.

1.3 Entanglement

In the early 20th century classical physics dating back to Newton was in
trouble. A new particle, the electron, had been found in cathode rays and
emitted in the photoelectric e↵ect. They were 2000 times lighter than the
lightest known atom and were negatively charged. The electrons however
emitted in the photoelectric e↵ect had curious correlation with the light
causing the emission. Rather than their energy increasing as the intensity of
the light was increased the number of electrons increased. Even more curious
was the observation that their energy increased as the frequency of light
increased. Einstein solved this mystery by proposing that the electrons were
excited by discrete packets of light, later called photons 3. The photoelectric
e↵ect, along with Bohr’s model of the hydrogen atom, sparked the quantum
revolution.

The next two decades sharpened the understanding of the e↵ects of this
new quantum theory of physics. However, by the 30’s some of the giants
of the field, particularly Einstein, were concerned by the implications of the
field they had helped start. In 1935 Einstein, Podolsky and Rosen published
a paper questioning whether quantum mechanics was complete. In response
Schrodinger coined the term entanglement in his paper as well as his famous
cat. The Einstein-Podolsky-Rosen (EPR) paradox remained largely ignored
until the 1950s when it was resurrected by David Bohm who formulated the
problem in terms of a finite dimensional system, the electron spin. Bohm’s
work was followed by John Bell’s investigations which lead to experimental
verification[5] .

Simultaneous to the conversation about whether entanglement was real,
von Neumann was laying down the mathematical framework underlying quan-
tum mechanics. He proposed that physical states were vectors in a Hilbert
space and measurable quantities were Hermitian operators on the Hilbert

3This was immediately tied with Planck’s explanation of the spectrum of blackbody
radiation.
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space. As part of his work he defined the density matrix, ⇢ of a pure state
| i, as

⇢ = | ih |. (1.17)

More generally, given a system with probabilities pi of being in a state | ii
the density matrix is

⇢ =
X

i

| iih i|. (1.18)

Pure states are defined as those states for which ⇢2 = ⇢. The density matrix
formalism implies the expectation value of an operator is then

hOi = tr(⇢O). (1.19)

Von Neumann then turned his interest to quantum thermodynamics and
determined the quantum analogue, for thermal states with Hamiltonian H,
of entropy to be

S = �kB tr(⇢ log ⇢), (1.20)

⇢ = exp(�H/kT ). (1.21)

This von Neumann entropy is also used in determining the entanglement of
a quantum state. If we can split the Hilbert space of a quantum system
into two parts (A,B) such that the Hilbert space of the whole system is a
tensor product of the Hilbert spaces of the separate parts, H = HA ⌦ HB,
the reduced density matrix on A is defined as

⇢A = trB ⇢. (1.22)

For pure states the entanglement entropy,

SA = � tr(⇢A log ⇢A), (1.23)

is a good measure of the entanglement between subsystems A and B.4

4In fact, Shannon proved that S(p1, ..pn) = �K
P

i pi log pi is the unique function
satisfying the the following assumptions

1. Continous in all variables

2. Symmetric in all variables

3. Satisfies the recursion relation
S(p1, ...,�pn, (1� �)pn) = S(p1, ..., pn) + pnS(�, (1� �))

7



Schmidt decomposition tells us that for any pure state

| i =
X

i

�i|iAi|iBi. (1.24)

It is clear the eigenvalues of ⇢A and ⇢B are equal and therefore SA = SB.
A more involved derivation [6] shows that entanglement entropy obeys the
triangle inequality and subadditivity

|SA � SB|  SAB  SA + SB. (1.25)

In fact, entanglement entropy satisfies the strong-subadditivity condition

SA + SB  SAC + SBC , (1.26)

SABC + SB  SAB + SBC . (1.27)

While entanglement entropy has many nice qualities, it is di�cult to
calculate. For this reason a di↵erent measure of entanglement is often calcu-
lated, the Rényi entropy

Sn(A) =
1

1� n
log tr ⇢nA. (1.28)

The pre-factor is specially chosen so that the entanglement entropy is the
n ! 1 limit of the Rényi entropy. Therefore if we are able to find a general
form for the Rényi entropies it is often possible to analytically continue in
n and obtain the entanglement entropy. This is often easier because the
partition function and the density matrix are related as

tr ⇢nA =
Zn(A)

Zn
1

, (1.29)

where Zn is the partition function on an n-sheeted cover stitched together
along A.

1.3.1 Entanglement entropy in QFTs

For a randomly selected state in the Hilbert space the corresponding en-
tanglement entropy for a subsystem will be proportional to the volume of
the subsystem. However, when it comes to more physically relevant states
the entanglement entropy is no longer extensive. This is obvious for pure

8



states because for pure states SA = SB. Even for non pure states this seems
reasonable as the majority of entanglement is local and so the majority of
the entanglement occurs at the boundary separating the two regions. For
gapped systems, the lowest energy state has a finite di↵erence in energy
from the ground state and this scaling is known as the area law[7, 8]. For
gapless systems the fallo↵ of the two point function is no longer exponen-
tial, but rather is a power law. It is therefore unsurprising that for gapless
systems the area law does not necessarily apply.

In 1+1 dimensions there are two simple systems we can study, a massive
scalar and a CFT[9]. The simplest subsystem A is a single interval of length
`. First consider the massive scalar

L =
1

2

�
@µ�@

µ�+m2�2

�
. (1.30)

For non-interacting QFTs the following identity holds

@m2 logZn = �1

2

Z
d2rGn(~r,~r). (1.31)

The Greens function Gn of the Helmholtz equation can be found by the use
of an expansion in Bessel functions. The result is

Gn(~r,~r) = I
0

(mr)K
0

(mr) + 2
1X

k=1

Ik/n(mr)Kk/n(mr). (1.32)

The integral over the plane can be done simply and the result is

@m2 logZn = � 1

2nm2

X

k

k. (1.33)

If we interpret the sum5 as ⇣(�1) = �1/12 and integrate we obtain the
entanglement entropy

SA = � 1

12
log(ma) (1.34)

where a is the UV cuto↵. This result is independent of the area of A, and
proportional to its boundary.

5A more careful analysis in which the sum is done first using the Euler-MacLaurin
formula yields the same result.
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An analogous derivation yields the entanglement entropy for a 2d CFT

SA =
c

3
log(`/a). (1.35)

This result is not independent of the area of A, but neither is it proportional
as we would expect of thermal entropy. Rather because of the power law
decay of the two point function it is a mix of the two.

1.3.2 Holographic Entanglement Entropy

As one with passing familiarity with AdS
3

might recognize, log(`/a) is the
length of a geodesic attached to the conformal boundary. Noting our previous
observation of a relationship between CFTs in two dimensions and gravity
in AdS

3

along with the relationship between thermal entropy of a blackhole
and its area, one may be left to wonder if there is some relationship. This
lead to the conjecture that for holographic duals of QFTs, the entanglement
entropy in the CFT could be calculated as

SA =
Area(�A)

4GN

, (1.36)

where �A is the minimal surface deformable to the region A on the boundary
and GN is the Newton constant[10]. This conjecture passes many important
tests including SA = SB for pure states and strong-subaddativity. It also
naturally leads to an area law. This conjecture has since been proved for 2
dimensional theories.

The simplest case to consider is a single interval of length ` in AdS
3

/CFT
2

.
We can use the Poincaré upper half plane for our calculation. The metric for
a constant time slice is

ds2 = R2

dz2 + dx2

z2
, (1.37)

where R is the AdS radius of curvature. Geodesics for this metric are given
by circles in the xz-plane. To find the length of the geodesic we need to do
the integral

Area(�A) = 2R

Z z⇤

✏

dz

z

1p
z2⇤ � z2

, (1.38)

= log(2z⇤/✏) , (1.39)
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where ✏ is the UV cuto↵ of the theory and z⇤ is the radius of the circle.
Writing every thing in terms of CFT variable using the relation between the
central charge c and Newton’s constant c = 3R/2G

SA =
c

3
log(`/✏). (1.40)

1.3.3 Outlook

Modern scholarship has spread in a variety of directions from the initial
works. The Ryu-Takayanagi opened the door to a wide range of calculations
for known holographic duals as well as renewing interest in entropy of black-
holes. Other research investigates the e↵ects of boundaries on entanglement.
The path that this thesis follows is the addition of temperature to field the-
ories. This dovetails with research in entanglement negativity which is an
alternate measure of entanglement for bipartite subsystems.

1.4 Outline

This dissertation is organized into two parts. The first part analyzes the
e↵ects of temperature on gapped QFTs. Specifically it focuses on the correc-
tions to the entanglement and Rényi entropies at finite temperature. Chapter
1 lays out the first evidence of the scaling at small temperatures of correc-
tions to the zero temperature result for a scalar field. This result arises from
a Boltzmann expansion of the density matrix. Chapter 2 presents studies
fermions on an n-sphere. Corrections to Rényi entropies are calculated ana-
lytically for even dimensions and the entanglement entropy is calculated in
all dimensions.

The second part looks at various versions of the Riemann problem. Re-
cently, the Riemann problem has received recent interest because at late times
a non-equilibrium steady state appears (NESS) in fluids. The first chapter
considers a relativistic charged fluid. Various features are observed including
contact discontinuities. We also consider corrections to the pressure and cur-
rent in the NESS region as a result of nonlinear deformations. The second
chapter considers the Riemann problem for AdS blackholes. Specifically, by
taking the number of spacetime dimensions to be large we arrive at simple
equations governing the dynamics of the blackhole.

11



Part I

Entanglement at Finite
Temperature

2 Scalar Entanglement on a Circle

2.1 Background

The notion of entanglement entropy (and more generally quantum entangle-
ment) looms large in theoretical physics today. Entanglement entropy may
be a good order parameter for topological phase transitions in condensed
matter systems. For conformal field theories in 1+1 dimensions, numerical
computation of the entanglement entropy provides a rapid way to calculate
the central charge c. In relativistic field theories more generally, certain
special kinds of entanglement entropy show monotonicity properties under
renormalization group flow [11, 12]. See [13] and [14] for reviews.

To compute the entanglement entropy for a quantum mechanical system,
we must first divide the associated Hilbert space up into two pieces. Usually,
the division is made with respect to spatial regions A and complement Ā = B.
We find the reduced density matrix ⇢A ⌘ trB ⇢ by tracing over the degrees
of freedom in B. Finally, the entanglement entropy is defined to be

S ⌘ � tr ⇢A log ⇢A . (2.1)

It is surprising that even for what many consider to be the simplest field
theoretic system – a massive scalar field in 1+1 dimensions – the entangle-
ment entropy has thus far been computed analytically only in certain limits.
In the limit m = 0, one can use results from conformal field theory [15, 16].
In particular, for the massless scalar field on the cylinder R⇥ S1 where R is
interpreted as the time direction, one has

S =
1

3
log

✓
L

⇡✏
sin

⇡`

L

◆
+ c

0

, (2.2)

where L is the circumference of the S1, ` is the length of the interval, ✏ is
a UV regulator and c

0

is a constant that depends on the regulation scheme.
(In fact, for the massless scalar, there is an additional IR divergence, and
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c
0

depends also on an IR cuto↵.) Reinterpreting S1 as a Euclidean time
direction, one obtains a result at nonzero temperature T = 1/� for the
scalar on R.

S =
1

3
log

✓
�

⇡✏
sinh

⇡`

�

◆
+ c

0

. (2.3)

When m 6= 0 for the scalar field on R2, Huerta and Casini [9] have shown
that the entanglement entropy can be computed from the solution to a certain
Painlevé equation. Their work allows analytic access to the small and large
mass limits. For m`⌧ 1, one obtains

S ⇠ 1

3
log

`

✏
+

1

2
log

✓
log(m✏)

log(m`)

◆
, (2.4)

while for m`� 1, one finds instead exponential suppression6

S ⇠ 1

16

r
⇡

m`
e�2m` . (2.5)

Ideally, one would like to understand the case where m, T , and 1/L are
all nonzero. Numerically, the entanglement entropy can be computed with
ease using a generalization [17] of the procedure introduced by Srednicki [7].
One realizes the scalar field as the continuum limit of an N -site harmonic
chain. For such a chain, one introduces two point functions h�i�ji and h⇡i⇡ji
of the oscillator positions and conjugate momenta respectively. Restricting
now to an interval n✏ = ` < L where 1  i, j, k  n, one constructs the n⇥n
matrix

(C2)ij ⌘
nX

k=1

h�i�kih⇡k⇡ji . (2.6)

The entanglement entropy is then

S = tr [(C + 1/2) ln(C + 1/2)� (C � 1/2) ln(C � 1/2)] . (2.7)

To our knowledge, this quantity has not been computed analytically for the
real scalar field with two or more of the quantities m, T , and 1/L nonzero.
Happily, with today’s desktop computers, it is relatively quick to diagonalize
C numerically for N ⇠ 103. Ref. [20] provides a numerical analysis of the
harmonic chain using this approach.

6A generalization was obtained by Doyon and collaborators [18] and [19] allowing for
multiple masses.
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In this chapter, we take some steps toward an analytic understanding
of the eigenvalues of C. As noted in [20], the parity operator P commutes
with C where parity here is a reflection of the circle S1 with respect to the
midpoint of the interval. Thus, one may divide C into even and odd parity
blocks Ce and Co. We compute the two partial traces trC2

e and trC2

o in the
limit m,T ⌧ 1/L. As the spectrum of C2 is bounded below by 1/4, these
traces give us upper bounds on the two largest eigenvalues of C. A variational
approach gives a lower bound to the largest (parity even) eigenvalue. These
bounds in turn give us some intuition for the m, T , and L dependence of the
entanglement entropy in the limit m,T ⌧ 1/L.

The original motivation for this project came from our interest in the
Ryu-Takayanagi proposal [10] for computing the entanglement entropy of
field theories with dual holographic classical gravity descriptions. Given two
complementary regions A and B in the field theory, the Ryu-Takayanagi
proposal associates a nonzero SA � SB to gravity descriptions with black
holes, while in the absence of such defects SA = SB. In the dual field theory,
the existence of a black hole typically implies deconfined gauge theory degrees
of freedom [21, 22].

We may contrast this result with the quantum mechanical point of view
where at T = 0, the density matrix is constructed from a pure state. (We are
assuming the existence of a unique ground state.) It follows from a Schmidt
decomposition of the Hilbert space that for pure states SA = SB (see for ex-
ample [14]). However, at any nonzero temperature, regardless of the presence
of deconfined degrees of freedom, the density matrix is not constructed from
a pure state and one would generically expect SA 6= SB. As gauge theories
are more di�cult to study than the free scalar field and as the entanglement
entropy of the free scalar field has not yet been completely understood, our
toy model of confinement in this chapter is a 1+1 dimensional massive scalar
field on a circle at T > 0. Morally, the regime T ⌧ m can be thought of
as “confining”.7 One of our results is that in this regime, the entanglement
entropy di↵erence does not vanish but rather scales as8

SA � SB ⇠ e�m/T .
7Klebanov et. al. [23] were the first to consider the entanglement entropy of confining

theories from a holographic perspective. Their work at zero temperature was later followed
up by lattice computations [24, 25, 26].

8After finishing this work, we became aware of ref. [27] where the same exponential
behavior was found for a “renormalized thermal entropy” similar in some respects to the
entanglement entropy we study here.
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2.2 From the Harmonic Chain to the Scalar Field

Consider the Hamiltonian for a real free massive scalar field on a circle of
circumference L at T > 0:

H =
1

2

Z
dx
⇥
⇡(x)2 + (@x�(x))

2 +m2�(x)2
⇤
. (2.8)

We discretize the circle into N points where L = N✏:

H =
1

2✏

NX

j=1

⇥
⇡2

j + (�j+1

� �j)
2 +m2✏2�2

j

⇤
, (2.9)

where ⇡(j✏) = ⇡j/✏ but �(j✏) = �j. The thermal density matrix can be
written in terms of H in the standard way:

⇢ =
e�H/T

tr(e�H/T )
, (2.10)

and expectation values are defined via hXi ⌘ tr(⇢X). A short calculation
yields the two point functions of the oscillator positions �j and their conjugate
momenta ⇡j:

h�j�ki =
1

2N

N�1X

a=0

1

✏!a

coth
⇣ !a

2T

⌘
cos

✓
2⇡(j � k)a

N

◆
, (2.11)

h⇡j⇡ki =
1

2N

N�1X

a=0

✏!a coth
⇣ !a

2T

⌘
cos

✓
2⇡(j � k)a

N

◆
, (2.12)

where

!2

a = m2 +
4

✏2
sin2

⇡a

N
.

From eqs. (2.6) and (2.7), we may compute the entanglement entropy from
the matrix C2 = h⇡⇡i · h��i where the two point functions are now restricted
to the interval A: �s  j, k  s. In terms of n, we have 2s + 1 = n. For
simplicity, we choose n to be an odd number. Any dependence on the parity
of n should disappear in the large N limit.

The Hamiltonian H is a set of N coupled harmonic oscillators. Diag-
onalizing the Hamiltonian, one finds H =

P
a !ab†aba where [ba, b

†
b] = �ab.

Surprisingly for a free scalar field, the reduced density matrix ⇢A ⇠ e�H
A can
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be written in terms of a similar entanglement Hamiltonian HA =
P

k ✏kb
†
kbk

(see for example [14]). Moreover, there is a one-to-one correspondence be-
tween eigenvalues �k of C2 and the energies ✏k:

�k =
1

4
coth2

✏k
2

. (2.13)

As the ✏k are real, we conclude that �k � 1/4.

2.3 Taking Traces

For a region �s  k  s, the matrix C2 commutes with the parity operator9

which sends k ! �k. Thus, we can decompose C2 into even and odd parity
pieces, C2 = C2

e + C2

o . The matrices C2

o and C2

e are then given by

C2

e =
1

4N2

X

a,b

!a

!b

coth
⇣ !a

2T

⌘
coth

⇣ !b

2T

⌘ sin ⇡n(a�b)
N

sin ⇡(a�b)
N

cos
2⇡ja

N
cos

2⇡kb

N
,(2.14)

C2

o =
1

4N2

X

a,b

!a

!b

coth
⇣ !a

2T

⌘
coth

⇣ !b

2T

⌘ sin ⇡n(a�b)
N

sin ⇡(a�b)
N

sin
2⇡ja

N
sin

2⇡kb

N
,(2.15)

While our main interest is a circle with periodic boundary conditions, the
eigenvalues of Ce and Co also allow us to compute the entanglement entropy
for an interval of length s sitting at one end of a strip of length N/2. The
matrix Co gives the two point function of a strip with Dirichlet boundary
conditions, while Ce corresponds to Neumann boundary conditions.

The numerics suggest that for small masses (mL ⌧ 1) and low tempera-
tures (TL ⌧ 1), the matrix C2 has only a handful of eigenvalues which are
significantly di↵erent from 1/4. The largest of these eigenvalues corresponds
to an eigenvector with even parity, while the second largest has odd parity.
We approximate these eigenvalues by computing trC2

e and trC2

o . We find in

9Note that C2 commutes with the parity operator for both odd and even n. For
example, if we indexed C2 from 1  k  n, parity would send k ! n� k + 1.
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the even sector that

trC2

e =
1

2⇡mL
coth

⇣ m

2T

⌘
� + ln

✓
4N sin(⇡r)

⇡

◆�
+

r2

4
csch2

⇣ m

2T

⌘

+
1

4

"
s+

11

12
� 1

⇡2

+
1

2⇡2

✓
�2 + � + 4 ln

2N

⇡
� 3 ln

4N sin(⇡r)

⇡

◆✓
� + ln

4N sin(⇡r)

⇡

◆#

�3mL

32⇡3

coth
⇣ m

2T

⌘ ⇥
Li

3

(e2⇡ir) + Li
3

(e�2⇡ir)� 2⇣(3)
⇤

+O((mL)2, e�2⇡/TL, logN/N) , (2.16)

and that in the odd sector

trC2

o =
1

4

h
s+

1

12
� 3

2⇡2

+
1

2⇡2

✓
� � 1 + ln

4N sin(⇡r)

⇡

◆
2 i

+O((mL)2, e�2⇡/TL, logN/N) , (2.17)

where r = `/L and 2s+1 is the number of lattice sites. We make some brief
remarks about how these traces were computed below.

Because of the relation �k = 1

4

coth2(✏k/2) between the entanglement
spectrum and the eigenvalues of C2, we know that the eigenvalues of C2 are
bounded below by 1/4. The largest even eigenvalue �e and odd eigenvalue
�o are thus bounded above by

�e  trC2

e �
s

4
, (2.18)

�o  trC2

o �
s� 1

4
. (2.19)

We can also put a lower bound on �e by using the variational principle and
a “trial wave function”. In this case, we use a constant trial wave function,

17



a)
0 200 400 600 800 1000

9

10

11

12

n

l

b)
0 200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

0.8

n

l

Figure 1: The largest (a) and second largest (b) eigenvalue of C2 plotted
against the interval length for mL = 1/10, T = 0, and N = 1000. The points
are numerically computed. The curves above the points are the analytic
upper bounds (2.18) and (2.19) computed from the traces. The solid curve
below the points on the left is the lower bound (2.20) computed from the
variational principle.

 e = (1, 1, . . . , 1)/
p
n. The expectation value then provides a lower bound:

�e � h e|C2

e | ei (2.20)

=
1

2⇡mL
coth

⇣ m

2T

⌘
� + ln

✓
4N sin(⇡r)

⇡

◆�
+

1

12

� i

8⇡3r


� + ln

✓
4N sin(⇡r)

⇡

◆� ⇥
Li

2

(e2⇡ir)� Li
2

(e�2⇡ir)
⇤

�r2

4


1

3
� coth2

⇣ m

2T

⌘�
+O(mL, e�2⇡/TL, logN/N) .

Figure 1 demonstrates that our upper and lower bounds provide relatively
good estimates of the two largest eigenvalues at T = 0. We could try to
produce an analytic lower bound on �o by similar methods. However, simple
trial wave functions such as ( o)j ⇠ sin(⇡j/N) or ( o)j ⇠ j do not seem to
give strong lower bounds numerically and are harder to work with analytically
than the constant trial wave function used above in the even case.

The zero mode a = 0 terms in h��i and h⇡⇡i have a large influence on
the structure of these traces in our m,T ⌧ 1/L limit. As these zero modes
have even parity, they do not contribute to C2

o . For example, note that
trC2

e = O(1/mL) is much larger than trC2

o = O(1) because the zero mode
a = 0 term in h��i is O(1/mL) but only contributes to the even sector of C2.

18



a)

0.0 0.5 1.0 1.5 2.0
0

50

100

150

T
m

l

b)

0.0 0.5 1.0 1.5 2.0
0

50

100

150

T
m

l

c)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

T
m

dl

Figure 2: The largest eigenvalue of C2 as a function of temperature for
mL = 1/50: a) `/L = 1/5; b) `/L = 4/5; c) the di↵erence between the two
for a lattice with N = 200. The points are numerical while the curve is the
upper bound computed from trC2

e .

Also note that only trC2

e depends on T . The reason is that coth(!a/2T ) ⇡ 1
up to exponentially suppressed terms except when a = 0.

Another interesting feature of these traces is their behavior under the
exchange of the interval A with its complement B. By translation invariance,
this exchange can be implemented by sending r ! 1 � r. At T = 0, both
trC2

o and trC2

e are invariant under this transformation. This invariance is
expected in order to guarantee that SA = SB. For T 6= 0, the breaking
of this symmetry is due entirely to the r2 csch2(m/2T ) term in trC2

e . This
symmetry breaking term comes from multiplying the a = 0 zero modes in
h��i and h⇡⇡i together. Figure 2 demonstrates that trC2

e gives a remarkably
good estimate of the temperature dependence of the largest eigenvalues for
regions A and B, and also for their di↵erence.
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We should say a few words about the lengthy computation performed to
obtain (2.16), (2.17), and (2.20). Consider first the O(1/mL) contribution
to trC2

e :

trC2

e =
1

2mL
coth

⇣ m

2T

⌘
f(n,N) +O(mL)0 +O(e�2⇡/TL) , (2.21)

where

f(n,N) ⌘ 1

N

NX

a=1

sin2(⇡an/N)

sin(⇡a/N)
=

1

N

nX

j=1

cot
⇡

N
(j � 1/2) . (2.22)

We want to evaluate this sum in the continuum limit where n and N are
both large but r = n/N is held fixed between zero and one. Replacing the
sum over j by an integral introduces unacceptably large errors because of the
divergence at j = 1/2. Instead, we compute a related integral that does not
have this divergence:

f(n,N) ⇡
Z r

1/N

✓
cot ⇡(x� 1/2N)� 1

⇡(x� 1/2N)

◆
dx

+
1

N

nX

j=1

N

⇡(j � 1/2)
(2.23)

=
1

⇡


ln

✓
4N sin(⇡r)

⇡

◆
+ �

�
+O(1/N2) . (2.24)

Calculating the O(mL)0 and O(mL) terms is a more complicated enter-
prise. As mentioned already above, one contribution to C2

e comes from mul-
tiplying the zero modes in h��i and h⇡⇡i together and yields r2 csch2(m/2T ).
The remaining order one pieces can be computed from the matrix C2

e with
the zero modes removed in the limit m = 0 = T :

(C̃2

e )jk =
1

4N2

N�1X

a,b=1

sX

l=�s

sin ⇡a
N

sin ⇡b
N

cos
2⇡la

N
cos

2⇡lb

N
cos

2⇡ja

N
cos

2⇡kb

N
.(2.25)

Similarly, the O(mL)0 contribution to trC2

o can be calculated from the m =
T = 0 limit of the matrix Co:

(C̃2

o )jk =
1

N2

N�1X

a,b=1

sX

l=1

sin ⇡a
N

sin ⇡b
N

sin
2⇡la

N
sin

2⇡lb

N
sin

2⇡ja

N
sin

2⇡kb

N
.(2.26)
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The O(mL) term of (C2

e )jk comes from zero modes pieces of C2 where either
a = 0 in the h��i sum or a = 0 in the h⇡⇡i sum:

3mL

16N3

coth
⇣ m

2T

⌘N�1X

b=1

sX

l=�s

cos 2⇡lb
N

cos 2⇡kb
N

sin ⇡b
N

. (2.27)

(For (Ce)jk, the indices have the range �s  j, k  s, while for (Co)jk, we
restrict to 1  j, k  s.) In the appendix B, we describe how to perform
the sums (2.25), (2.26), and (2.27) along with (2.20) in the the large N limit
with s/N held fixed.

2.4 Raising the Temperature

We present three arguments that the entanglement entropy depends expo-
nentially on the ratio m/T in the limit T ⌧ m. The first argument is
heuristic and relies on the structure of the matrix C2. The second argument
is based on our earlier calculation of trC2

e . The third argument is based on
numerical evidence. We would like to show two things. The first is that for
a fixed interval A,

S(T )� S(0) ⇠ e�m/T . (2.28)

The second is that for two complementary intervals A and Ā = B,

SA � SB ⇠ e�m/T . (2.29)

The first argument relies on the fact that the temperature dependence of
C2 comes entirely from the factors of coth(!a/2T ) in h��i and h⇡⇡i. The
frequency !a is bounded below by m. Thus we conclude that

coth
⇣ !a

2T

⌘
 coth

⇣ m

2T

⌘
= 1 + 2e�m/T +O(e�2m/T ) . (2.30)

In other words, the matrix C has a low temperature expansion of the form

C(T ) = C(0) + e�m/T �C + . . . (2.31)

where the ellipsis denotes terms that are more exponentially suppressed.
Now if C(T ) has such an expansion, then the eigenvalues ⌫k(T ) = ⌫k(0) +
e�m/T �⌫k + . . . will as well. Assuming ⌫k(0) � 1/2 � e�m/T , expanding eq.
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(2.7) in the small T limit, one concludes that the entanglement entropy for
a single interval shifts by an amount

�S = 2
X

k

[ln(⌫k(0) + 1/2)� ln(⌫k(0)� 1/2)]�⌫ke
�m/T + . . . , (2.32)

implying the scaling (2.28). Assuming �S is di↵erent for an interval and its
complement, one also concludes the scaling (2.29).

While, the numerical evidence we present below suggests both scalings
(2.28) and (2.29) are correct, there are some loop holes in our argument. An
obvious problem is that the e�m/T term in the small T expansion may vanish;
the temperature dependence may be of the form eM/T for some M > m. A
more subtle loop hole involves the fact that many of the ⌫k(0) are close to
1/2. In this case, the correction to the entanglement entropy �S can scale as
(m/T )e�m/T instead of just e�m/T . Numerically, we see no evidence for this
behavior. Instead, in these cases we find that the logarithmic enhancement is
not enough to make up for the smallness of �⌫k; these eigenvalues contribute
negligibly to the entanglement entropy.

The second argument for the scalings (2.28) and (2.29) is based on using
trC2

e as an estimate of the largest eigenvalue �e. Using trC2

e , we estimate
the contribution of �e to S and infer the scalings from this contribution.
The temperature dependence of a single interval comes principally from the
leading coth(m/2T )/mL term in (2.16). One finds agreement with (2.28):

[S(T )� S(0)]|�
e

⇠ e�m/T . (2.33)

Next we consider the entanglement di↵erence SB �SA. This type of temper-
ature dependence comes from the r2 csch2(m/2T ) piece of (2.16). One finds
agreement with (2.29):

[SB(T )� SA(T )]|�
e,A

,�
e,B

⇠ ⇡

2

mL

logN
(1� 2r) e�m/T . (2.34)

We should emphasize that using trC2

e and the largest eigenvalue �e to
estimate the temperature scalings is flawed. An obvious limitation is that
we only have a result for trC2

e in the limit mL ⌧ 1 while we expect the
temperature scalings to hold more generally. A less obvious limitation is
that despite the fact that �e is much larger than the other eigenvalues in the
small mass limit, the logarithms in (2.7) play a democratizing role and let
smaller eigenvalues contribute substantially to the entanglement entropy. For
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Figure 3: The contribution to �S = SA � SB for the ten largest pairs of
eigenvalues �j,A and �j,B, arranged from largest to smallest. In this plot
mL = 0.02, m/T = 1 and `/L = 1/5 for region B. Note that the odd parity
eigenvalues do not contribute. (N = 200 was used for this plot.)

example, in this small mass limit numerical analysis shows that the dominant
contribution to SA � SB comes from the second largest even eigenvalue (see
figure 3).

Our most convincing evidence for the scalings (2.28) and (2.29) is numer-
ical and is presented in figures 4 and 5. Figure 4 demonstrates unambiguous
evidence for (2.28), not only for mL ⌧ 1 but also for mL > 1. Figure 5a dis-
plays unambiguous evidence for (2.29), again both for small and large values
of mL. More ambitiously, we can try to investigate numerically whether the
mL(1�2r)/ logN behavior of eq. (2.34) is correct as well. Figure 5a provides
evidence for the mL scaling. Figure 5b provides some limited evidence for
the 1 � 2r behavior for large values of mL and for intervals with r ⇠ 1/2.
However, we find no evidence for the logN behavior of (2.34).

2.5 Discussion

As mentioned in the introduction, the original motivation for this chapter
came from the Ryu-Takayanagi proposal [10] for computing the entanglement
entropy of field theories with holographic dual classical gravity descriptions.
In their proposal, the field theory lives on the boundary of the space-time in
the dual description. Let C be the curve that separates region A from region
B in the field theory. Let C also be the boundary of a minimal surface M
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Figure 4: A log plot of the entanglement entropy �S = S(T )�S(0) vs. m/T
with an interval size `/L = 3/10. The points are numerically computed,
and the line log(�S) = �m/T is a guide to the eye: a) mL = 5 ⇥ 10�3; b)
mL = 5. (For both plots, the points were computed with N = 50, 100, 200,
and 400. The data points for di↵erent values of N all lie roughly on top of
each other.)
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Figure 5: a) A log plot of the entanglement entropy di↵erence �S = SA�SB

vs. m/T for mL = 5 and 5 ⇥ 10�3, and an interval B of size `/L = 1/5.
At fixed m/T , the larger mass points lie below the smaller ones. The line
log(�S/mL) = �m/T is a guide to the eye. (The lattice was taken to have
size N = 200, but there is no noticeable di↵erence between this graph and
a graph with N = 100.) b) The entanglement entropy di↵erence �S vs. `/L
for (from bottom to top) mL = 5⇥10�3, 2, and 5. The mass to temperature
ratio is m/T = 10. The line em/T �S/mL = 3m/T �3/2 is a guide to the eye.
(The lattice was taken to have N = 400, but there is no di↵erence between
this graph and a graph with N = 200.)
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Figure 6: The two minimal surfaces MA and MB corresponding to a region A
and its complement B when the dual space time contains a black hole (BH).

that falls into the space-time. The proposal is that the entanglement entropy
is proportional to the area of M :

SA =
Area(M)

4GN

, (2.35)

where GN is Newton’s constant. Assuming a unique such M , the entangle-
ment entropy of a region and its complement are always equal, SA = SB.

When the space-time contains a black hole, Ryu-Takayanagi modified
their proposal to account for the existence of two minimal surfaces MA and
MB. The entanglement entropy for A must be computed from the surface
MA that is deformable into A. Correspondingly, for region B, we must use
MB. For large black holes, Area(MA)�Area(MB) will come mostly from the
di↵ering amount of black hole horizon area that the two surfaces wrap (see
figure 6). The Hawking temperature of the black hole corresponds to the
temperature of the field theory, and thus this modification of the proposal
provides a way for SA � SB to be nonzero for certain thermal field theories.
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However, there are instances where field theories at T > 0 have dual
gravity descriptions without a black hole. A classic example is the large
N , strong coupling limit of maximally supersymmetric SU(N) Yang-Mills
theory on S3 ⇥ S1 [21]. At temperatures small compared to the inverse
radius of the S3, the dual description is thermal AdS

5

⇥ S5. At a critical
temperature Tc, the gravity description undergoes a first order Hawking-Page
phase transition to a state with a large black hole. For the field theory, this
transition is understood as a deconfinement phase transition.

On the one hand, their proposal implies that the entanglement entropy
will serve as an order parameter for the phase transition: for T < Tc, SA �
SB = 0, while for T > Tc, SA�SB 6= 0. On the other, at any finite N , we have
a system at finite volume for which there can be no phase transitions. The
transition from SA = SB at T = 0 to SA 6= SB at T > Tc must be smooth.
We conclude that the Ryu-Takayanagi formula is only valid in the strict large
N limit, but it would be nice to understand the form of the 1/N corrections.
In principle, one should be able to compute the entanglement entropy for
maximally supersymmetric Yang-Mills at weak coupling. In practice, such a
computation is substantially more di�cult, and we instead considered a 1+1
dimensional massive scalar field on a circle at T > 0. Morally, the regime
T < m should correspond to the confining regime of the Yang-Mills theory
where the fields get a mass through their coupling to the curvature of the S3.
For our scalar field, we argued that in the regime T ⌧ m, the entanglement
entropy di↵erence scales as

SB � SA ⇠ e�m/T .

We conjecture that this type of scaling should be a generic feature of all
gapped systems.

3 Thermal Corrections to Rényi entropies for
Free Fermions

3.1 Background

In this chapter, we use the conventional definition of entanglement entropy.
We assume that the Hilbert space factors nicely with respect to two comple-
mentary spatial regions, A and Ā. The reduced density matrix and Rényi
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entropies are then defined as

⇢A ⌘ tr
¯A ⇢, (3.1)

Sn ⌘ 1

1� n
log tr(⇢A)

n. (3.2)

The factor of 1/(1�n) in the the definition of the Rényi entropy is convenient
for taking a n ! 1 limit and recovering the entanglement entropy:

SEE ⌘ � tr [⇢A log(⇢A)] = lim
n!1

Sn . (3.3)

It was argued in the previous chapter that for gapped systems at small
temperature, thermal corrections to the entanglement entropy are Boltzmann
suppressed. Further evidence in d = 1 + 1 can be found in Refs. [30, 31, 32,
33, 34]. For general conformal field theories with temperature 1/� on a circle
of perimeter L, the coe�cient of the Boltzman factor was calculated [35]:

�Sn ⌘ Sn(T )� Sn(0) =
g

1� n

"
1

n2��1

sin2�

�
⇡`
L

�

sin2�

�
⇡`
nL

� � n

#
e�2⇡��/L + o(e�2⇡��/L),

(3.4)

�SEE ⌘ SEE(T )� SEE(0) = 2g�


1� ⇡`

L
cot

✓
⇡`

L

◆�
e�2⇡��/L + o(e�2⇡��/L),

(3.5)

where g is the degeneracy of the first excited state, � is the smallest scaling
dimension among the operators, and ` is the interval length. (In order for
these formulae to hold, the conformal field theory on the circle has to have
a unique ground state and a mass gap.)

For higher dimensional conformal field theories on S1⇥Sd�1, an analogous
thermal correction to entanglement entropy is also known [36]. The result
for the entanglement entropy for a cap on a sphere with polar angle ✓ and
radius R is given in general by the following integral:

�SEE = g�Id(✓)e
���/R + o

�
e���/R

�
, (3.6)

Id(✓) = 2⇡
Vol(Sd�2)

Vol(Sd�1)

Z ✓

0

d✓0
cos(✓0)� cos(✓)

sin(✓)
sind�2(✓0) . (3.7)

The derivation of this result relies on a conformal transformation from the
sphere to hyperbolic space. The conformal transformation allows one to
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identify the reduced density matrix for the ground state as a unitary trans-
formation of the thermal density matrix on hyperbolic space. There is a
corresponding identification between the logarithm of the reduced density
matrix (or modular Hamiltonian) and the Hamiltonian for the conformal
field theory on hyperbolic space. Unfortunately, there can be subtleties asso-
ciated with boundary terms for the modular Hamiltonian when this transfor-
mation is invoked. In the case of conformally coupled scalars [36, 37], these
boundary terms mean the result (3.6) should be corrected; one replaces Id
in the result above with Id�2

. The issue is that the conformal coupling re-
quires a Gibbons-Hawking like term on the boundary. The natural constant
✓ boundary is di↵erent from the boundary of hyperbolic space, and this dif-
ference contaminates the entanglement entropy. In this chapter we study free
fermions which have no such Gibbons-Hawking like term and consequently
no subtleties associated with the boundary. Thus we expect and indeed find
that the result (3.6) holds for massless free fermions. As an added benefit,
we also compute thermal corrections to Rényi entropies for fermions.

This chapter is organized as follows. First we briefly review the mapping
used in Ref. [37] that maps from the multi-sheeted cover of the sphere to
a wedge in flat space. We then calculate the two point function using the
method of images, from which we can read o↵ the thermal corrections to
Rényi entropies. Finally, we compare these calculations of entanglement and
Rényi entropies with numerical results for fermions in d = 2+1 and d = 3+1.

3.2 Rényi’s for a General CFT

A main result from Ref. [37] was a general equation for the thermal correction
to the Rényi entropy for a conformal field theory. We assume that when the
conformal field theory is placed on a Sd�1⇥R, there is a unique ground state
|0i and a set of degenerate first excited states | ii with energy E . We divide
the Sd�1 into a spatial region A and complement Ā and consider instead of
Sd�1⇥R, an n-sheeted branched cover of this spacetime where the branching
is over the region A. The result from Ref. [37] is

�Sn =
n

1� n

X

i

✓
h i(z) i(z0)in
h i(z) i(z0)i1

� 1

◆
e��E + o(e��E ) (3.8)

where  i is an operator that creates one of the first excited states. The
point z is in the far Euclidean future and the point z0 in the far Euclidean
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past. The subscript n indicates the two-point function is to be evaluated on
this n-sheeted branched cover. (Note that the result (3.8) could have been
anticipated from a very similar result in 1+1 dimensional conformal field
theories [35].)

In general, it is not clear how to evaluate h i(z) i(z0)in. However, if we
restrict to the case where A is a cap on a sphere of opening angle 2✓, then we
can take advantage of a conformal transformation that maps the n-sheeted
branched cover of Sd�1 ⇥ R to Cn ⇥ Rd�2 where Cn is an n-sheeted cover of
the complex plane, branched over the negative real axis. It is convenient to
make the transformation in a couple of steps, as was outlined in Ref. [37].
The first step takes the cap on Sd�1 to a ball in Rd�1 (see the appendix of
Ref. [38]):

ds2 = �dt2 + dr2 + r2d⌦2 (3.9)

= ⌦2

�
�d⌧ 2 + d✓2 + sin2(✓)d⌦2

�
, (3.10)

where

t± r = tan

✓
t± ✓

2

◆
, (3.11)

⌦ =
1

2
sec

✓
⌧ + ✓

2

◆
sec

✓
⌧ � ✓

2

◆
, (3.12)

and d⌦2 is the line element on Sd�2. If the cap has opening angle 2✓
0

, then the
ball has radius r

0

= tan(✓
0

/2). A further special conformal transformation
maps the ball to a half space:

yµ =
xµ � bµx2

1� 2b · x+ b2x2

, (3.13)

ds2 = dyµdy⌫�µ⌫ = (1� 2b · x+ b2x2)�2dxµdx⌫�µ⌫ . (3.14)

We let x0 and y0 correspond to Euclidean times, and take b1 = 1/r
0

to be
the only non-vanishing value of the vector b. After further rescaling and
rotations, the inserted operators can be placed at y0 = (1,2✓

0

,~0) and y =
(1,0,~0), where we are using polar coordinates (r, ✓) on the Cn. (For further
details, see Ref. [37].)

We will employ a method of images strategy for computing h i(y) i(y0)in
on Cn ⇥ Rd�2. This strategy was already used successfully for the scalar in
Refs. [37, 39]. The idea is to compute the two-point function using the
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method of images on the orbifold C/Zm for general m and then to obtain
h i(y) i(y0)in by analytic continuation, setting n = 1/m. As the method of
images relies on the fact that the underlying equations of motion are linear,
we do not expect this method will be useful for interacting field theories.

In the fermionic case, there are issues associated with nontrivial phases,
signs and a choice of spin structure which we must address. One issue, which
we now review, is that rotations act nontrivially on spinor wave functions.

3.2.1 Rotation on Fermions

For a Dirac fermion we know the e↵ect of a rotation on the components of
the spinor [40]. A general Lorentz transformation in Euclidean signature, ⇤,
is given by

 (x) ! ⇤
1/2 (⇤

�1x), (3.15)

⇤
1/2 = exp

✓
1

8
!µ⌫ [�

µ, �⌫ ]

◆
, (3.16)

{�µ, �⌫} = 2�µ⌫ , (3.17)

where !µ⌫ parameterizes the rotations and Lorentz boosts. For the case of
interest we are only interested in rotations in (0,1) plane, for which the only
non-vanishing components are !

01

= �!
10

= �. The matrix exponential can
be done simply and is given by

⇤
1/2(�) = cos(�/2) + sin(�/2)�0�1. (3.18)

If we then define

�z = �0 + i�1 and � z̄ = �0 � i�1, (3.19)

then equation (3.18) simplifies to

⇤
1/2(�) =

1

2
�0(e�i�/2�z + ei�/2� z̄). (3.20)

A fact that we will rely on heavily moving forward is that �0�z and �0� z̄

are projectors:

(�0�z)2 = 2(�0�z) , (�0� z̄)2 = 2(�0� z̄) , (3.21)

(�0�z)(�0� z̄) = 0 , (�0� z̄)(�0�z) = 0 . (3.22)
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3.3 Analytic calculation of Rényi Entropies

In flat space the fermion 2-point function is, up to normalization,

h ̄(y0) (y)i = �0�µ(y � y0)µ
|y � y0|d (3.23)

= � 1

d� 2
�0�µ

@

@xµ

1

|y � y0|d�2

. (3.24)

Following Ref. [37], the Green’s function on a wedge C/Zm⇥Rd�2 can be
calculated via the method of images. The Green’s function via the method of
images is given by rotating one of the fermions by 2⇡k/m where k indexes the
wedges and m is the number of wedges. In going between adjacent wedges
an extra factor of (-1) is added due to the spin structure (for example see
Ref. [41]). The result is then

h ̄(y0) (y)i
1/m = ��

0�µ@µ
d� 2

m�1X

k=0

(�1)k⇤
1/2(2⇡k/m)

[|z � e2⇡ik/mz0|2 + (y � y0)2](d�2)/2
. (3.25)

(Curiously, this expression only makes sense for m an odd integer. Never-
theless, we find that knowing the two-point function for odd integers is in
general su�cient to make the analytic continuation to n = 1/m.) In the case
of interest y = y0 = 0, z0 = e2i✓ and z ! 1, the two-point function can be
rewritten

GF
(1/m,d)(2✓) = � �0

d� 2
lim
z!1

m�1X

k=0

⇣
e

�⇡ik(m�1)
m �z@z + e

⇡ik(m�1)
m � z̄@z̄

⌘ 1

|z � e2i(⇡k/m+✓)|d�2

(3.26)

=
�0

4(d� 2)

"
�z ((d� 2)� i@✓)

m�1X

k=0

e
�⇡ik(m�1)

m

|1� e2i(⇡k/m+✓)|d�2

+ � z̄c.c.

#
.

(3.27)

From this expression, we can deduce the following recursion relation for the
two-point function:

GF
(1/m,d+2)

(2✓) =
�
(@2✓ + d(d� 2))�0(�z + � z̄) + 2i(�0�z � �0� z̄)@✓

� GF
(1/m,d)(2✓)

8d(d� 1)
.

(3.28)
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To obtain the Rényi entropy we make the replacement n = 1/m in the
two point function and we use that E = d�1

2R
for free fermions on a sphere

of radius R:

�Sn(✓) =
n

1� n

X

i

✓
h i iin
h i ii1

� 1

◆
e�(d�1)�/(2R) + o

�
e�(d�1)�/(2R)

�
, (3.29)

=
n

1� n
tr(GF

(n,d)(2✓)G
F
(1,d)(2✓)

�1 � 1)e�(d�1)�/(2R) + o(e�(d�1)�/(2R)).

(3.30)

3.3.1 d=2

In d = 1+1 we can choose gamma matrices (�0 = �3 and �1 = �1) such that

�0�z =

✓
2 0
0 0

◆
and �0� z̄ =

✓
0 0
0 2

◆
.

It is worth noting that it is convenient to have �0�z diagonal, but is not
necessary. Then the 2-point function is given by

GF
(1/m,2)(2✓) =

1

2

m�1X

k=0

�0
 
�z

exp(�ik⇡(m�1)

m
)

1� exp (2i(k⇡/m+ ✓))
+ � z̄

exp( ik⇡(m�1)

m
)

1� exp (�2i(k⇡/m+ ✓))

!

= �0
✓
�z

mi

4
e�i✓ csc(m✓)� � z̄

mi

4
ei✓ csc(m✓)

◆
.

(3.31)

We can then calculate the Rényi entropies (and entanglement).

�Sn(✓) =
n

1� n
tr(GF

(n,2)(2✓)G
F
(1,2)(2✓)

�1 � 1)e��/(2R) + o(e��/(2R))

=
2

1� n
(sin(✓) csc(✓/n)� n) e��/(2R) + o(e��/(2R)) ,

(3.32)

�SEE = 2(1� ✓ cot(✓))e��/(2R) + o(e��/(2R)) . (3.33)

These agree with the known results for 2d CFTs [35] in general and for 2d
fermions [30, 34] in particular.
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3.3.2 d=4

In d = 3 + 1 we choose gamma matrices

�0 =

✓
�2 0
0 ��2

◆
and �1 =

✓
�1 0
0 ��1

◆
.

In this case the 2-point function is given by

GF
(1/m,4)(2✓) =

im

8
(1 + 3m2 + (m2 � 1) cos(2m✓)) csc3(m✓)�0

�
�ze�i✓ � � z̄ei✓

�
.

(3.34)

Repeating the calculation in d = 2 we get

�Sn(✓) =
n

1� n
tr(GF

(n,4)(2✓)G
F
(1,4)(2✓)

�1 � 1)e�3�/(2R) + o(e�3�/(2R))

=
4

(1� n)n2

�
(3 + n2 � (n2 � 1) cos(2✓/n)) csc3(✓/n) sin3(✓)� 4n3

�
e�3�/(2R)

+ o(e�3�/(2R)) ,
(3.35)

�SEE(✓) = lim
n!1

n

1� n
tr(GF

(n,4)(2✓)G
F
(1,4)(2✓)

�1 � 1)e�3�/(2R) + o(e�3�/(2R))

= 2(5 + cos(2✓)� 6✓ cot(✓))e�3�/(2R) + o(e�3�/(2R)) .
(3.36)

The second result correctly reproduces the entanglement entropy correction
found for general conformal field theories on the sphere [36]. The result for
�Sn(✓) is new.

3.3.3 d=3

In odd dimensions we can choose the same �z as we would use in one smaller
dimension. Namely,

�0�z =

✓
2 0
0 0

◆
and �0� z̄ =

✓
0 0
0 2

◆
.

Following previous work [37, 39], we may try to convert the denominator
of the Green’s function (3.27) to an integral in order to perform the sum
over k. In the case of the scalar, the resulting expression can be analytically
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continued to all m and thus in particular to n = 1/m. However, in the case
of the fermion, some extra phases appear to spoil the analytic continuation.
We are able to extract thermal corrections to entanglement entropy from
an n ! 1 limit of the integral successfully. Thermal corrections to Rényi
entropies remain out of reach however.

The first step in converting the sum to an integral is an integral repre-
sentation of the cosecant used successfully in the analogous calculation for
the scalars [37, 39]:

Z 1

0

dx
x✓/⇡+k/m�1

1 + x
= ⇡ csc(✓ + k⇡/m) . (3.37)

From this integral representation, it directly follows that
m�1X

k=0

e�i⇡k(m�1)/m

sin(⇡k/m+ ✓)
=

1

⇡

Z 1

0

dx
x✓/⇡�1

1 + x

m�1X

k=0

xk/me�i⇡k(m�1)/m (3.38)

=
1

⇡

Z 1

0

dx
x✓/⇡�1

1 + x

(1 + e�i⇡mx)

1 + ei⇡/mx1/m
. (3.39)

Using the representation (3.39) in the Green’s function (3.27) for d = 3, we
obtain

GF
(1/m,3) =

1

8
(1� i@✓)�

0�z
1

⇡

Z 1

0

dx
x✓/⇡�1

1 + x

e�i⇡m(eim⇡ + x)

1 + ei⇡/mx1/m
+ �0� z̄cc .

(3.40)

To get the entanglement entropy, we expand around m = 1:

GF
(1/m,3) = (1� i@✓)

�0�z

⇡

Z 1

0

dx
x
✓

⇡

1 + x

✓
1

x
� log(x)

1� x
(m� 1) +O(m� 1)2

◆
+ cc

(3.41)

= �0�z
✓
ie�i✓ csc2(✓)� 2ei✓⇡

(1 + ei✓)3
(m� 1) +O(m� 1)2)

◆
+ cc .

(3.42)

The entanglement entropy correction is then constructed from a ratio of
Green’s functions

�SEE(✓) = lim
m!1

1

m� 1
tr(GF

(1/m,3)(2✓)G
F
(1,3)(2✓)

�1 � 1)e��/R + o(e��/R)

(3.43)

= 4⇡ csc(✓) sin4(✓/2)e��/R + o(e��/R) . (3.44)
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This result matches the general case derived in Ref. [34].
While this integral representation gives the correct thermal corrections

to the entanglement entropy, it appears to fail for the Rényi entropies. We
suspect a reason is that the integral representation grows too quickly as a
function of complex m to satisfy the assumptions of Carlson’s Theorem. In
other words, there will not be a unique analytic continuation. We can break
the integral up into two pieces, one from 0 < x < 1 and a second from
1 < x < 1, and then replace the two integrals with double sums:
m�1X

k=0

e�i⇡k(m�1)/m

sin(⇡k/m+ ✓)
=

1X

p,q=0

(�1)p+qm

✓
e�im⇡e�i⇡(q+1)/m

⇡(1 +mp+ q)�m✓
+

e�i⇡(q+1)/m

⇡(1 +m+mp+ q)�m✓

+
ei⇡q/m

⇡(mp+ q) +m✓
+

e�im⇡ei⇡q/m

⇡(m+mp+ q) +m✓

◆
.

In the case of the scalar, the phases in the numerator of this expression
vanish, and the sum has better convergence properties. Here instead, for
m = iy pure imaginary, the sum has the same kind of growth as sin(⇡m),
which vanishes for all integer m.10

3.3.4 Recursion relation for Entanglement entropy

We would also like to show that our recursion relation (3.28) is compatible
with the recursion relation for the entanglement entropy found in Ref. [34].
We start by Taylor expanding the two-point function and relating it to the
entanglement entropy11

Gn,d(2✓) = Gd(2✓) + �Gd(2✓)(n� 1) +O(n� 1)2, (3.45)

Gd(2✓) = �0(�ze�i✓ � � z̄ei✓)
i cscd�1(✓)

2d
, (3.46)

�SEE(✓) = g
�Gd(2✓)

Gd(2✓)
e��E + o(e��E ). (3.47)

We will proceed by induction and assume equation (3.6) in d dimensions.
Equation (3.7) has the following recursion relation

Id(✓)� Id�2

(✓) = �2⇡
Vol(Sd�2)

Vol(Sd�1)

sind�2(✓)

(d� 1)(d� 2)
. (3.48)

10See appendix C for an alternate integral representation of the sum.
11Here we are taking the case where �0�z is diagonal so that the inverse is particularly

simple.
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Then using equation (3.6) and recalling that � = (d� 1)/2,

�Gd(2✓) =
d� 1

2
Id(✓)Gd(2✓) (3.49)

=
d� 1

2
Gd(2✓)

✓
Id+2

+ 2⇡
Vol(Sd)

Vol(Sd+1)

sind(✓)

(d+ 1)d

◆
. (3.50)

Acting on both sides with the operator in equation (3.28) and simplifying
yields

�Gd+2

(2✓) =
d+ 1

2
Id+2

(✓)Gd+2

(2✓). (3.51)

We checked the entanglement entropy for both d = 1+1 and d = 2+1. Thus
by induction the two recursion relations are in agreement for both even and
odd dimensions.

3.4 Numerical Check

We are interested in numerically checking our results. As mentioned earlier
a free fermion on a sphere does not su↵er from the same boundary term
ambiguities as the conformally coupled scalar [36]. The numerics for a free
fermion should then directly give the general conformal field theory results.
Using the convention  ̄ =  †�0 the Hamiltonian and Lagrangian densities
for a fermion in curved space are given by �

L =
p
�g ̄(i��D�) , (3.52)

H =
p
�g ̄(i�jDj) , (3.53)

{ ↵(x), †
�(x

0)}
p
�g = i�↵��(x� x0) (3.54)

Where D� is the covariant derivative on the manifold. This can be written
explicitly in terms of the vierbein (e�I ) and spin connection (!�IJ).12 We have
defined the curved space gamma matrices and covariant spinor derivative

�µ = �IeµI , (3.55)

Dµ = @µ +
1

8
!µIJ [�

I , �J ] , (3.56)

12We use capital Roman letters I, J,K, . . . for flat space-time indices, lower case Greek
�, µ, ⌫, . . . for curved space-time indices, lower case Greek ↵,�, �, . . . for spinor indices,
and lower case Roman i, j, k, . . . for curved spatial indices.
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where !µIJ is the spin connection. Using the torsion free Maurer-Cartan
equation, dei + ej ^ !j

i = 0, we can extract the spin connection, the nonva-
nishing elements of which are

!j
i = cos(✓i)

 
j�1Y

k=i+1

sin ✓k

!
d✓j (3.57)

The general Hamiltonian in d+ 1 dimensions is then

H = i
p
�g ̄

dX

`=1

�`
 
`�1Y

j=1

csc(✓j)

!✓
@✓

`

+
d� `

2
cot(✓`)

◆
 (3.58)

where ` is a flat spatial index.
We can remove the cotangents and the volume factor in the commutation

relation with the following definition  =
⇣Qd

j=1

csc(d�j)/2(✓j)
⌘
 :

{ ↵(x), �(x0)} = i�↵��(x� x0) , (3.59)

H =
dX

i=1

i�1Y

j=1

csc(✓j) ̄�
i@✓

i

 ⌘  ̄

✓
�
1

@✓1 +
1

sin(✓
1

)
Od

◆
 . (3.60)

To obtain a numerical result e�ciently, we turn this Hamiltonian density into
a d = 1+1 Hamiltonian. To this end, we integrate over ✓i for i > 1. We then
calculate the spectrum of O where the lowest energy, smallest eigenvalue,
gives the lowest order thermal correction to the Rényi entropies. For general
d the result is

Hd =

Z ⇡

0

d✓
1

 †
✓
�
0

�
1

@✓1 +
(d� 2)�

0

2 sin(✓
1

)

◆
 (3.61)

as can be found in Ref. [42].
We discretize these Hamiltonians, turning the integral into a sum and

the derivative into a finite di↵erence. We then numerically calculate the
entanglement and Rényi entropies in the same way as previous papers [14,
34, 37]. We find agreement with our analytical results for the entanglement
entropy in both d = 2 + 1 and d = 3 + 1 (see Figure 7), and for the Rényi
entropy in d = 3 + 1 (see Figure 8).
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Figure 7: �SEE in d = 2 + 1 (left), 3 + 1 (right) with 200 grid points.
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Figure 8: For d = 3 + 1, �S
2

(left) and �S
4

(right) with 200 grid points.

3.5 Discussion

In this chapter we extended to include massless free fermions the work in
Ref. [37], which considered thermal corrections to Rényi and entanglement
entropies for the conformally coupled scalar. This extension allowed a direct
and successful comparison with Ref. [36] – which provided general results for
thermal corrections to entanglement entropy for conformal field theories –
without additional complications caused by boundary terms present for the
conformally coupled scalar. We also were able to calculate thermal correc-
tions to the Rényi entropies for the free fermion in even dimensions. We give
the analytic result in d = 1+1 (3.32) and d = 3+1 (3.35) along with a recur-
sion relation (3.28) which allows for computations of all even dimensions. In
odd dimensions, we were unable to find an analytic continuation that would
allow us to calculate thermal corrections to Rényi entropies, but we were able
to reproduce the thermal corrections to entanglement entropy. Amusingly,
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the situation is usually reversed, where one can compute Rényi entropies but
the analytic continuation to entanglement entropy is not feasible.

It is possible that the methods used in this chapter and those in Ref. [37]
could allow for corrections to be calculated for other free higher spin theories
and possibly more generally for conformal field theories.

Part II

Fluids and the Riemann
Problem

4 Relativistic Hydrodynamics and Non-Equilibrium
Steady States

4.1 Background

The Riemann problem in hydrodynamics is an initial value problem where
two equilibrium fluids are joined by a discontinuity. The solution for the case
of relativistic fluids was first solved in 1948 [43]. It has since been studied in
papers including [44, 45]. The key feature of these solutions is a rarefaction
(adiabatic) region joined to a constant temperature region and then a shock
discontinuity.13

The problem has seen renewed interest recently as an example of a steady
state system which is not in thermal equilibrium (NESS). This type of NESS
was first studied in 1+1 dimensional CFT’s [47] and later extended to hy-
drodynamical descriptions of higher dimensional CFT’s [48, 49]. Finally, it
was considered for a CFT deformed by a relevant operator [50]. The papers
[48, 50], however, miss the important rarefaction region and as a result their
values for the NESS temperature as well as the rate of growth of the NESS
are incorrect.14

13For a discussion of these issues in the context of the quark-gluon plasma, see for
example ref. [46].

14The paper [49] restricts to a regime where the temperature di↵erence is very small,
and the di↵erence between the two shock solution and the solution involving a rarefaction
region correspondingly minuscule.
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In this chapter we review both the older solution with the rarefaction
region as well as the more recent solution which we call the two shock solution.
Using a numerical simulation of relativistic hydrodynamics we show that the
rarefaction solution matches the numerical simulation better than the two
shock solution. We also consider a CFT deformed by a relevant operator.
We calculate a phase diagram for the temperature of the NESS. The phase
diagram we present di↵ers from the two shock solution.

4.2 Ideal Hydrodynamics

We begin with the stress tensor of a perfect fluid and conserved currents

T µ⌫ = (e+ p)uµu⌫ + p⌘µ⌫ , (4.1)

Jµ
i = qiu

µ. (4.2)

We mean perfect in the sense of having no dissipation. Here e is the energy
density, qi a charge density, and p the pressure. We have introduced a four
velocity uµ such that u2 = uµu⌫⌘µ⌫ = �1. At rest the fluid is described
by uµ = (1,~0). We work in mostly plus signature with the Minkowski met-
ric tensor ⌘µ⌫ = (�,+, . . . ,+). The conservation equations of energy and
momentum are given by

@µT
µ⌫ = 0, (4.3)

@µJ
µ
i = 0. (4.4)

The conservation equations are combined with an equation of state e = e(p).
In this chapter we will largely focus on a linear equation of state

p = c2se, (4.5)

where cs is the speed of sound. One important example for us is a conformal
fluid in d spatial dimensions, where c2s = 1/d.

We are interested in flows depending only on a single spatial variable,
arbitrarily chosen to be x, and time. We will perform a change of variables
to the local fluid velocity vi = ui/ut. In these variables the stress tensor
conservation equations become

@t
⇥
(e+ p)�2 � p

⇤
+ @x

⇥
(e+ p)�2vx

⇤
= 0, (4.6)

@t
⇥
(e+ p)�2vx

⇤
+ @x

⇥
(e+ p)�2v2x + p

⇤
= 0, (4.7)

@t
⇥
(e+ p)�2~vT

⇤
+ @x

⇥
(e+ p)�2vx~vT

⇤
= 0. (4.8)
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We have introduced � = 1/
p

1� v2x � v2T and also ~vT , the fluid velocity in
the spatial directions perpendicular to x.

When there is a shock discontinuity we use the Rankine-Hugoniot jump
condition to determine the relationship between conserved quantities on al-
ternate sides of the shock [50, 51]. For a conservation law of the form

@tQ(t, x) + @xF (t, x) = 0, (4.9)

us[Q] = [F ], (4.10)

[Q] = QL �QR, (4.11)

[F ] = FL � FR, (4.12)

where QL (QR) and FL (FR) is the value of Q and F to the left (right) of
the shock and us is the velocity of the shock. For the case of a perfect fluid,
the jump conditions are given by

us[T
tt] = [T tx], (4.13)

us[T
xt] = [T xx], (4.14)

us[J
t
i ] = [Jx

i ]. (4.15)

Equations like (4.15) can exhibit what are known as contact discontinuities.
These have a jump in the conserved quantities. However, there is no trans-
portation of particles across the discontinuity. In the case of (4.15), such a
contact discontinuity can occur when ux/ut = us. The jump condition is
trivially satisfied and the change in the conserved quantity can be arbitrary
across the shock.

4.3 Double Shock solution

We are interested in solving the Riemann problem, where two semi-infinite
fluids of di↵erent temperatures are brought into contact. An interesting fea-
ture of the resulting fluid flow is a non equilibrium steady state (NESS) that
forms in the expanding region between the two semi-infinite fluids. Recently
two papers [48, 50] have presented a solution that is not completely correct.
Let us quickly review their work to see where the problem occurs.

They start with the EOS p = c2se. The initial conditions are that of
two systems (with energies eL and eR) brought into thermal contact. They
assume that two shocks propagate away from each other, leaving the NESS
in between. The central region is assumed to have a constant fluid velocity
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v. (We will suppress the x subscript on the fluid velocity v in what follows
and set vT = 0.) The conservation laws (4.13)-(4.15) imply

uL = �cs

s
c2s�+ 1

�+ c2s
, uR = cs

s
�+ c2s
c2s�+ 1

, (4.16)

e =
p
eLeR ,

v

cs
=

�� 1p
(c2s�+ 1)(�+ c2s)

, (4.17)

where � =
p

eL/eR. The velocity of the left and right moving shocks are uL

and uR respectively.
This solution however is invalid because it violates the Entropy Condition

[51]. This condition is most easily stated when the conservation conditions
are written in characteristic form,

@t~u+B(~u)@x~u = 0, (4.18)

where here ~u(x, t) = (p(x, t), v(x, t)). The eigenvalues �± of B are

�± =
v ± cs
1± vc2s

. (4.19)

These characteristics correspond to the local right and left moving speeds of
sound at a given space-time point in the fluid. (Reassuringly, �± ! ±cs in
the limit where the background fluid velocity vanishes, v = 0.)

The entropy condition requires that for solutions involving a shock, char-
acteristics end on a shock discontinuity rather than begin on it. By ending
on the shock, information is lost and entropy should increase. In contrast,
in order for characteristics to begin on a shock, boundary conditions need to
be specified, decreasing the entropy. More precisely, consider a right moving
shock, us > 0. Let �R and �L be eigenvalues of B immediately to the right
and left of the shock, respectively. We should take the eigenvalues corre-
sponding to right moving characteristics. For the characteristics to end on
the shock, it is necessary that

�L > us > �R . (4.20)

A similar condition is also required for a left moving shock, taking now the
left moving characteristic eigenvalues instead.
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Rewriting the entropy condition (4.18) for the right moving shock yields

u2

R � c2s + (1� c2s)csuR

c2s(u
2

R � c2s) + uR(1� c2s)
> uR > cs. (4.21)

This condition is true for uR 2 (cs, 1), which is true for � > 1. Therefore
a shock is a valid solution for the wave moving into the colder medium.
However for uR 2 (c2s, cs), which is true for � < 1, neither inequality holds.
Thus the entropy condition rules out a shock moving into the hotter region.
(We could also analyze separately the left moving shock, but the physics is
invariant under parity.)15

While we know from this analysis that the double shock solution is un-
physical, it turns out to be very close to the actual solution in some situations.
Given the simplicity of the double shock solution, it is interesting to consider
adding a conserved charge. This addition requires us to include a contact
discontinuity. A contact discontinuity is a discontinuity in one variable that
travels at the local fluid velocity. For such a discontinuity the Rankine-
Hugoniot jump condition is trivially satisfied and the change in the variable
can be arbitrary. In this case the discontinuity is in the conserved charge.
The result is the splitting of the NESS region into two NESS with distinct
charges but equal velocities and pressures. The resulting charge densities are

q
1

=
qL
p
c2s�+ 1

p
�
p

c2s + �
, (4.22)

q
2

=
qR

p
�
p
c2s + �

p
c2s�+ 1

. (4.23)

where q
1

is the charge density in the region adjacent to qL, q2 is the charge
density in the region adjacent to qR.16

4.4 Adiabatic flow

We now need to replace the shock that does not satisfy the entropy condition
with a smooth solution. The solution can be found in previous papers. As

15When cs = 1, which holds for a conformal field theory in 1+1 dimensions, uR = �± = 1
as well, and the entropy condition is satisfied (and saturated) for both the left and right
moving shocks. We will see below that in this degenerate case, the two shock solution
becomes identical with the solution involving a rarefaction wave.

16The entropy condition is trivially satisfied for shock discontinuities.
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Figure 9: Plot of triple shock solutions. The regions from left to right are L,
1, 2 and R.

can be concluded by considering characteristics, the shock solution should be
replaced with a fan of characteristics [44, 45, 51]. There is a characteristic for
each value of the dimensionless ratio ⇠ = x/t. Therefore we will search for a
solution that depends only on ⇠ = x/t. Such a solution would correspond to
an adiabatic expansion.

It is simple to check that for s = p1/(1+c2
s

), eqs. (4.6–4.8) imply

@t(s�) + @(s�vx) = 0. (4.24)

After switching to coordinates ⇠ = x/t, we can combine equations (4.8) and
(4.24) and obtain

(⇠ � vx)
d

d⇠
(p�vT ) = 0 , (4.25)

where we have defined

 ⌘ c2s
1 + c2s

. (4.26)
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The solution in the adiabatic region is then

vT =
↵
p

1� vx(⇠)2p
↵2 + p2

, (4.27)

vx =
± (⇠2 � 1) csp

p
↵2(1� c2s) + p2 + ⇠(c2s � 1) (↵2 + p2)

↵2(c2s � 1) + (⇠2c2s � 1) p2
, (4.28)

p =
↵2(c2s � 1)

⇣
1�⇠
⇠+1

⌘⌥ c

s

2

4c
1

+ c
1

✓
1� ⇠

⇠ + 1

◆±c

s

2

, (4.29)

q = exp

0

@
Z

d⇠

↵2
+p2

1�⇠2 + ↵2@
x

p
p

+ ↵2c
s

p�1@
x

pp
p2�↵2

(c2
s

�1)

↵2 + p2

1

A . (4.30)

If we take the limit of zero tangential velocity (↵ = 0), there are two solutions:

v±(⇠) =
cs ± ⇠

cs⇠ ± 1
, (4.31)

p±(⇠) = p

✓
1� ⇠

1 + ⇠

◆± 1+c

2
s

2c
s

, (4.32)

q±(⇠) = q

✓
1� ⇠

1 + ⇠

◆± 1
2c

s

. (4.33)

To solve the Riemann problem we need to match this adiabatic region
onto a NESS region and a shock. Without loss of generality we can choose
pL > pR. We then have a shock moving to the right at speed us. In the left
region, the disturbance moves at the speed of sound as can be seen by setting
v± = 0. To the right of the shock v = 0 and p = pR. To the left of the shock
v = V and p = p

0

. Then the jump conditions are

p
0

(c2sV (usV + 1) + us � V ) + pRus

�
V 2 � 1

�
= 0 , (4.34)

p
0

(c2s + V (c2sus + us � V )) + pRc
2

s

�
V 2 � 1

�
= 0 . (4.35)

Ideally when we put everything together we would get V and us as functions
of �. The best we were able to achieve were parametric expressions of V and
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� as functions us:

V =
u2

s � c2s
us(1� c2s)

, (4.36)

�(us)
2 =

(us � c2s)(c
2

s + us)

c2s(1� u2

s)

✓
1 + us

1� us

◆ c

2
s

+1
2c

s

✓
us � c2s
c2s + us

◆ c

2
s

+1
2c

s

, (4.37)

p
0

= pL

✓
(1� us)(us + c2s)

(1 + us)(us � c2s)

◆ c

2
s

+1
2c

s

, (4.38)

where � =
p

pL/pR. We can then add in the charge which has a contact
discontinuity.

q
1

= qL

✓
(1� us)(us + c2s)

(1 + us)(us � c2s)

◆ 1
2c

s

, (4.39)

q
2

=
qRus

p
u2

s � c4s
c2s
p

1� u2

s

. (4.40)
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Figure 10: Plot of velocity, charge, and pressure profiles: left c2s = 1/2, right
c2s = 1/6.

4.4.1 Simple Limits

While we only have a parametric solution in general, various limits take a
simpler form. Consider the first the limit cs ! 1. As c2s = 1/d for a conformal
field theory, we can think about this limit as perturbing the number of spatial
dimensions away from one, d = 1+✏. In this case, the width of the rarefaction
fan scales as

�⇠ =
1

2
(�� 1)✏+O(✏2) , (4.41)
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which vanishes as ✏ ! 0. Indeed, the di↵erence between the rarefaction
solution and the two-shock solution is controlled by ✏, with the di↵erences

�v = 2f(�)✏2 +O(✏3) , (4.42)

�uR = f(�)✏3 +O(✏4) , (4.43)

�p =
pL

�2(1 + �)4
f(�)✏2 +O(✏3) , (4.44)

where we have defined the function of �, positive for � > 1,

f(�) ⌘ �

8(1 + �)3

✓
1� �+ (1 + �) tanh�1

�� 1

�+ 1

◆
.

The quantities �v, �p and �uR are the di↵erences between the rarefaction
solution and the two shock solution in velocity, pressure and shock speed
respectively, e.g. �v = v(2-shock) � v(rarefaction). In this limit, the two-
shock solution slightly overestimates the pressure and fluid velocity in the
NESS, and also the right moving shock speed.

The non-relativistic limit � ! 1 of the rarefaction solution also ap-
proaches the two-shock solution. Let pL = pR(1 + ✏), ✏ ⌧ 1, in which
case

�⇠ =
(1� c2s)cs
2(1 + c2s)

✏+O(✏2), (4.45)

�v =
(1� c2s)

2cs
384(1 + c2s)

3

✏3 +O(✏4), (4.46)

�p = pL
(1� c2s)

2

384(1 + c2s)
2

✏3 +O(✏4), (4.47)

�uR =
(1� c2s)

3cs
768(1 + c2s)

3

✏3 +O(✏4), (4.48)

where �⇠, �v, �p and �uR are as before. In this limit, the two-shock solution
again slightly overestimates the velocity and pressure in the NESS and the
speed of the right moving shock.

While the two shock solution and the solution with a rarefaction region
quickly approach each other in the limit pL ! pR, in the opposite limit
where � � 1, the solutions have qualitatively di↵erent behavior. In both
cases, the speed of the right moving shock approaches one, us, uR ! 1, but
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at a di↵erent rate. Let us assume a large � ansatz where us = 1� �. In the
rarefaction case

� =

✓
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�

◆ c

2
s

+1
4c

s

+

1
2 1p

2

s
1

c2s
� c2s

✓
�2 +
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2
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4c
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(1 +O(�)) , (4.49)

p = pL�
c

2
s

+1
2c

s

✓
�2 +

4

1 + c2s

◆� 1+c

2
s

2c
s

(1 +O(�)) , (4.50)

v = 1� 1 + c2s
1� c2s

� +O(�2) . (4.51)

In contrast, for the two shock solution � ⇠ 1

�
and p ⇠

p
�.

Another important di↵erence is that the size of the rarefaction region
grows in this limit � � 1. The rightmost characteristic of the rarefaction
fan approaches the location of the right moving shock:

⇠R = 1� 1 + c2s
(1� cs)2

� +O(�2) . (4.52)

Thus the size of the NESS is correspondingly reduced. Indeed, for all prac-
tical purposes, the NESS probably disappears in this limit. An initial con-
dition that is a step function is an idealization, and slightly smoothing the
step function will destroy the NESS, as will viscous corrections, which smear
out the shock.

4.5 Non-linear Equation of State

We can also consider the Riemman problem for nonlinear equations of state.
For simplicity we will assume that vT = 0. We consider a perturbation to
the CFT by a relevant operator as in [50, 52],

SQFT = SCFT + �0
Z

dd+1xO(x) (4.53)

in the limit �/T d+1�� ⌧ 1. For relevance and unitarity, we require d�1

2


� < d + 1. Such a perturbation should a↵ect the equilibrium pressure and
energy density at second order in �0. Following ref. [52], we assume an ansatz
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where

p = c T d+1

✓
1� �2

T 2(d+1��)

◆
, (4.54)

e = c d T d+1

✓
1� ↵

�2

T 2(d+1��)

◆
, (4.55)

where � and �0 are proportional.17 The Gibbs-Duhem relation e + p = sT
along with s = dp

dT
then imply that ↵ = 1

d
(2� � d � 2). Eliminating T , we

can write an equation of state for e as a function of p:

e = pd+ ✏�2pn , (4.56)

where

✏ = 2c
2(d+1��)

d+1 (d+ 1��) , (4.57)

n =
2�

d+ 1
� 1 . (4.58)

Note that ✏ > 0.
As in the case of a linear equation of state, we find an adiabatic solution

and match it onto a NESS region and a shock. The equations of motion
remain (4.6) and (4.7). We can solve these equations in a perturbative ex-
pansion in � as follows:

p = p
0

+ p
1

�2, vx = v
0

+ v
1

�2. (4.59)

Again there are two solutions
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= c
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v±
0

(⇠) =
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, (4.61)
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, (4.62)

v±
1

= ±✏
n(⇠2 � 1)c3sc

n�1

0p

2(⇠cs ± 1)2

✓
1� ⇠

1 + ⇠

◆±(n�1)

1+c

2
s

2c
s

. (4.63)

17We expect that a relevant perturbation should decrease the e↵ective number of degrees
of freedom of the theory and thus further decrease the entropy at low temperatures,
explaining the minus sign in front of the correction to the pressure.
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We are first interested in how fast the disturbance moves to the left (⇠L).
This can be found perturbatively in � by requiring that vx(⇠L) = 0 and
p(⇠L) = pL. The result is

⇠L = �cs +
npn�1

L c3s
2

✏�2 , (4.64)

c
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2

s + n� 2)

2(n� 1)(1 + c2s)

✓
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◆�(1+c2
s

)/2c
s

.

(4.65)

Unfortunately, analytic solutions for the correction to the NESS pressure
are not available. However, one can still do the calculation numerically with
an interesting result. Unlike for the double shock solution presented in [50]
the change to the NESS pressure is dependent on both � and pL (pL > pR =
1) as opposed to only � in [50]. We do not have an analytic expression
for the curve, but the phase diagrams are presented in Figure (11) for two
di↵erent spacetime dimensions.
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Figure 11: Phase diagrams for the change in PNESS where the shaded region
has PNESS < PCFT . The left is for d = 3 and the right d = 5.

In the two shock solution we can find the corrections analytically. We
find

�v =
(d+ 1) (�n + �) ((d+ �)�n � �(d�+ 1))

4
p
d�(d+ �)3/2(d�+ 1)3/2

✏�2, (4.66)

�p =
(�n � �) ((d+ �)�n � �(d�+ 1))

2d(d+ 1)�(�+ 1)
✏�2. (4.67)
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The quantities �v and �p are the di↵erences between the QFT and the CFT
values of velocity and pressure respectively, e.g. �v = vQFT � vCFT . We note
that �p � 0 for all relevant operators independent of �, where the inequality
is saturated for � = d+ 1.18

4.6 Numerical Check

We want to implement a numerical scheme to check our results. To do this we
use the same hydrodynamic scheme as [53] which employed spectral methods.
For simplicity we take vT = 0. We start with

T µ⌫ = (e+ p)uµu⌫ + p⌘µ⌫ + ⇧µ⌫ (4.68)

where we define ⇧µ⌫ recursively19 in a gradient expansion

⇧µ⌫ = �⌘�µ⌫ � ⌧
⇧


(D⇧)hµ⌫i +

3

2
⇧µ⌫(r · u)

�
� �

2

⌘
⇧hµ

↵⌦
⌫i↵ (4.69)

where D ⌘ uµrµ.
Conformality implies tracelessness of T µ⌫ which in turn yields a rela-

tionship e = d p between the energy density e and pressure p in d spatial
dimensions. While µ in principle takes values from 0 to d, we let only u0 and
u1 be nonzero. The vorticity is

⌦µ⌫ ⌘ 1

2
�µ↵�⌫�(r↵u� �r�u↵) , (4.70)

where we have defined a projector onto a subspace orthogonal to the four
velocity:

�µ⌫ ⌘ ⌘µ⌫ + uµu⌫ . (4.71)

The shear stress tensor is

�µ⌫ ⌘ 2rhµu⌫i . (4.72)

18This result is not at odds with [50] because they consider temperature rather than
pressure.

19The implicit definition of ⇧µ⌫ is Israel-Stewart like. Formally, higher than second
order gradient corrections are present in the definition of ⇧µ⌫ .
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The angular brackets hi on the indices indicate projection onto traceless
tensors orthogonal to the velocity

Ahµ⌫i ⌘ 1

2
�µ↵�⌫�(A↵� + A�↵)�

1

d
�µ⌫�↵�A↵� . (4.73)

Note that with these definitions, both ⇧µ⌫ and ⌦µ⌫ are traceless and
orthogonal to the velocity

uµ⇧
µ⌫ = uµ⌦

µ⌫ = 0 , ⌦µ
µ = ⇧µ

µ = 0 .

Using vT = 0 and flows that only depend on x and t, we know ⇧xy = 0 and
⌦xy = 0. The remaining one independent component of ⇧µ⌫ we choose to be
B = ⇧xx�⇧yy. We then use the two conservation equations and the implicit
definiton of B to propagate forward in time.

We give the equation of state in terms of the energy density e and tem-
perature T ,

e =

✓
4⇡T

3

◆d+1

, (4.74)

and we start with the initial condition

ux = 0, (4.75)

T =
TR � TL

2
tanh(�x) +

TR + TL

2
. (4.76)

As can be seen in Figure (12) our solution with an adiabatic region
matches well with the numerics. We accurately match the speed of the
shock as well as the position of the adiabatic region. The matching is not
perfect in the adiabatic region because the initial profile was not a perfect
step function. The results were insensitive to the values of the dissipative
coe�cients ⌘, ⌧

⇧

and �
2

. While the di↵erence cannot be seen in the figures,
we also calculated T tx

NESS for the two analytic results and the numerics. The
results are presented in Table (1)

4.7 Conclusion

We presented a review of previous work on the Riemann problem for a lin-
ear equation of state. The solution has the interesting feature of a steady
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Figure 12: Plot comparing T tx for the adiabatic solution and two shock
solution to numerics. The left uses pL = 2.75, pR = 1, � = ⇡/100 with 3001
grid points at t = 5777 (left) and t = 1652 (right).

d Two shock Adiabatic Numerics
3 0.176587 0.176545 0.176551± 0.000006
5 0.14948 0.14936 0.149344±0.00009

Table 1: The average and standard deviation of T tx over the flattest part of
the NESS region compared with the theoretical values for pL = 1.75, pR = 1,
� = ⇡/200. The adiabatic solution presented in this chapter is a better fit
than the two shock solution.

state region with a momentum flux. We contrast this solution with recent
solutions [48, 50] that have appeared which incorrectly solved the Riemann
problem by using a two shock ansatz. These papers had failed to consider
the entropy condition and missed the adiabatic expansion region (rarefac-
tion region) which exists between the hotter reservoir and the NESS. We
also showed that for a conserved charge, the NESS region is actually two
regions with di↵erent charges with a contact discontinuity separating them.

In the nonrelativistic limit (� ! 1) and the small dimension limit (cs !
1), the two shock solution leads to small errors in the value for the momentum
flux of the NESS as well as in the velocity of the shock wave. We were able
to show using a numerical simulation that the solution with the adiabatic
region is preferred over the two shock solution. The adiabatic region was
also a better match for the fluid profile than the shock propagating toward
the high temperature reservoir.

Finally, we considered a CFT which had been perturbed by a relevant
operator. The perturbation leads to a non-linear correction to the equation
of state. Again we found the adiabatic solution which should be matched
onto the NESS. Our solution gave a phase diagram for the correction to
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the NESS temperature that depended on pL and � the operator dimension.
This diagram contrasted with the two shock solution where the only relevant
parameter was the operator dimension.

One area for future investigation is adding viscosity to the solution. In
general adding viscosity makes analytic solutions impossible. However, nu-
merical simulations seem to show that the solution is very weakly a↵ected by
viscosity which gives hope that such a solution could be found. We are also
interested in considering analytical solutions with smooth initial conditions
to be better able to compare with our numerical results where the initial
conditions are smooth by necessity (because we used spectral methods).

Perhaps the most interesting question is a rephrasing of the problem
using the fluid-gravity correspondence [54] as a question about black-hole
dynamics. In this context, the Riemann problem considered here maps to
a solution to Einstein’s equations in an asymptotically anti-de Sitter space-
time. The temperature of the fluid can be re-interpreted as the location of
an apparent horizon of a black hole. Is there a gravitational counter-part
of the entropy condition that we considered in this chapter? What is the
gravity dual of the adiabatic region, and why is it required for consistency of
the theory?

5 Riemann Problem for large d Black Holes

5.1 Introduction

The Riemann problem may provide a relatively simple setting in which to
study the non-equilibrium physics of quantum field theory. The problem
asks for the time evolution of piece wise constant initial conditions with a
single discontinuity in the presence of some number of conservation laws, for
example of energy, momentum, mass, or charge. In our case, we consider a
fluid phase of a conformal field theory (CFT) with an initial planar interface,
where the energy density jumps from eL on the left of the interface to eR on
its right. We also allow for a discontinuity in the center of mass velocity of
the fluid across the interface.

For simplicity, we will make a number of further restrictions. We assume a
conformal field theory that has a dual gravity description via the AdS/CFT
correspondence. A priori, this will allow us to study the system beyond
the hydrodynamic limit. We also take the limit that the number of spatial
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dimensions d is very large. In this limit, we find that the system is described
by two conservation equations

@te� @2⇣ e = �@⇣j , @tj � @2⇣ j = �@⇣
✓
j2

e
+ e

◆
. (5.1)

where e is, up to gradient corrections, the energy density and j the energy
current. These equations are a special case of equations derived in ref. [55].
In these variables the Riemann problem amounts to a determination of e and
j given an initial configuration of the form

(e, j) =

(
(eL, jL) z < 0

(eR, jR) z > 0
. (5.2)

By choosing an appropriate reference frame, we may set jL = 0 without loss
of generality.

As it happens, there are extensive treatments of this type of Riemann
problem in hydrodynamics textbooks. See for example ref. [56]. Typically, a
pair of rarefaction and/or shock waves form and move away from each other,
creating in their wake a region with almost constant e and j. In recent litera-
ture, this intermediate region has been called a non-equilibrium steady state
(NESS) [47, 57]. One of the main results of this chapter is a “phase” diagram
(see figure 13) that describes, given the conservation equations (5.1) and ini-
tial conditions (5.2), which pair of waves are formed: rarefaction-shock (RS),
shock-shock (SS), shock-rarefaction (SR), or rarefaction-rarefaction (RR). A
physical reason for the preference of a rarefaction wave to a shock wave is
entropy production.

Recent interest in this type of Riemann problem was spurred by a study
of the problem in 1 + 1 dimensional conformal field theory [47] where the
evolution is completely determined by the conformal symmetry and a hy-
drodynamic limit need not be taken. Conservation and tracelessness of the
stress tensor imply that the stress tensor is a sum of right moving and left
moving parts. When jR = jL = 0 one finds a NESS in between the two
asymptotic regions, characterized by an energy density (eR + eL)/2 and an
energy current proportional to eR � eL. The NESS is separated from the
asymptotic regions by outward moving shock waves traveling at the speed
of light. (An extension of the analysis of [47] which includes a discontinuity
in the center of mass velocity, holomorphic currents and chiral anomalies
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Figure 13: A phase diagram for the solution to the Riemann problem. Given
a pair (eL, 0) and (eR, jR), the selection of shock and rarefaction waves is
determined by the value of eR/eL and jR/eL. The dashed and solid lines
are “critical”: The dashed line indicates the values of (eR, jR) connected to
(eL, 0) by a single rarefaction wave while the solid line indicates the values
of (eR, jR) connected to (eL, 0) by a single shock wave.
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can be found in [49]. An analysis of shock waves and their relation to two
dimensional turbulence was carried out in [58].)

In more than two space-time dimensions, conformal symmetry alone is
not enough to specify the evolution completely and one needs additional
assumptions about the structure of the conserved currents. Recent work
appealed to the gauge/gravity duality [48, 59, 60, 61], an analogy with 1+ 1
dimensions [49], and hydrodynamics [48, 50, 62]. These papers focused on
the case jR = jL = 0 and eL > eR such that from a hydrodynamic perspective
a left moving rarefaction wave and a right moving shock wave are expected
to emerge.

The distinction between rarefaction and shock waves was ignored in some
of these papers [48, 50, 49]. Indeed, when working with 2+1 or 3+1 dimen-
sional conformal field theories, the di↵erence between, say, an SS solution to
the Riemann problem and an RS solution to the Riemann problem is very
small for all but extreme initial energy di↵erences. As the spacetime dimen-
sion d increases however, the di↵erence between a rarefaction wave type of
solution and a shock wave solution becomes significant.

Interestingly, a large d limit has independently been a topic of recent in-
terest [55, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74] in the study of black hole
solutions to Einstein’s equations. Of particular relevance to our work is the
connection between black holes in asymptotically AdS spaces and hydrody-
namics [75]. Certain strongly interacting conformal field theories are known
to have dual classical gravitational descriptions. In the limit where these
conformal field theories admit a hydrodynamic description, a solution to the
relevant hydrodynamic equations can be mapped to a solution of Einstein’s
equations, in a gradient expansion where physical quantities change slowly
in space and time. Transport coe�cients such as shear viscosity are fixed by
the form of Einstein’s equations. Thus, one may study the Riemann problem
in conformal field theories with a large number of dimensions by studying an
equivalent Riemann-like problem involving an initially discontinuous metric
of a black hole in an asymptotically AdS background.

Given that extensive analyses of conservation equations like (5.1) can be
found in many hydrodynamics textbooks and papers, one can legitimately ask
why we bother to redo the analysis here. The reason is that when working in
a large number of dimensions, one can solve for the black hole metric exactly,
independent of the derivative expansion (which is naturally truncated), thus
obtaining an exact solution to the Riemann problem which includes possible
viscous terms and is in general valid even when gradients of thermodynamic
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quantities are large (as is the case with discontinuous initial conditions).
Our work is organized as follows. In section 5.2, we rederive the equations

(5.1) by taking a large d limit of Einstein’s equations. We show how to
rewrite them as the conservation condition on a stress-tensor, @µT µ⌫ = 0. In
section 5.3, we compare the large d stress tensor and equations of motion
to those arising from the fluid-gravity correspondence [75]. We find that
both eqs. (5.1) and the stress tensor T µ⌫ are equivalent to the hydrodynamic
equations that come from the fluid-gravity correspondence at large d, at least
up to and including second order gradient corrections. In the same section
we also construct an entropy current Jµ

S using an area element of the black
hole horizon and show that the divergence of the entropy current is positive
@µJ

µ
S � 0 in this large d limit. In section 5.4, we solve the Riemann problem

for eqs. (5.1) and derive the phase diagram given in figure 13. Finally, we
conclude in section 5.5 with some directions for future research. Appendix
D contains a short calculation of the entropy produced across a shock, while
apppendix E contains plots of auxiliary numerical results.

5.2 The holographic dual of the Riemann problem for
large d

We wish to construct a holographic dual of the Riemann problem. Consider
the Einstein Hilbert action

S = � 1

22

Z p
�g

✓
R +

(d� 2)(d� 1)

L2

◆
ddx . (5.3)

A canonical stationary solution of the resulting equations of motion is the
black brane solution

ds2 = 2dt dr � r2
 
1�

✓
4⇡T

(d� 1)r

◆d�1

!
dt2 + r2dx2

? , (5.4)

where T is an integration constant which denotes the Hawking temperature.
The solution (5.4) is dual to a thermal state of a conformal field theory with
temperature T . For instance, the thermal expectation value of the stress
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tensor in such a state is given by

hT µ⌫i =

0

BBB@

(d� 2)P (T ) 0 . . . 0
0 P (T ) . . . 0
...

...
. . .

...
0 0 . . . P (T )

1

CCCA
(5.5)

where

P (T ) = p
0

✓
4⇡T

d� 1

◆d�1

(5.6)

is the pressure with p
0

a theory dependent dimensionless parameter.
As discussed in [61] a dual description of the Riemann problem necessi-

tates an initial black hole configuration which is held at some fixed temper-
ature TL for all z < 0 and at a di↵erent temperature TR for z > 0. This
would correspond to a configuration where the expectation value of the stress
tensor is given by (5.5) with T = TL for z < 0 and by (5.5) with T = TR for
z > 0. Since the initial black hole is out of equilibrium it will evolve in time.
Its dual description will provide a solution for the time evolution of the stress
tensor which we are after. Thus, our goal is to solve the equations of motion
following from (5.3) and use them to construct the dual stress tensor.

An ansatz for the metric which is compatible with the symmetries and
our initial conditions is given by

ds2 = dt(2dr � gttdt� 2gtzdz) + gzzdz
2 + g??dx

2

? , (5.7)

where the metric components are functions only of t, r, and z. (A more
general ansatz which involves a transverse velocity can be found in [55].) A
numerical solution of the equations of motion for gtt, gtz and gii (i = x? or
z) with smoothened initial conditions has been obtained for d = 4 in [61] for
relatively small initial temperature di↵erences, (TL � TR)/(TL + TR) < 1. A
solution for finite d > 4 and for large temperature di↵erences, (TL�TR)/(TL+
TR) ⇠ 1 is challenging.

In this work we use the methods developed in [55, 63] (see also [64, 65,
66, 67, 68, 69, 70, 71, 72]) to address the Riemann problem in the limit that
d is very large. Such a limit can be understood as follows. In an appropriate
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gauge, the near boundary expansion of the metric gives

gtt = r2 +O(r3�d) ,

gtz = O(r3�d) ,

gii = r2 +O(r3�d) .

(5.8)

Thus, in the large d limit at any finite value of r, the spacetime looks like the
AdS vacuum. Only by keeping R = rn finite with n ⌘ d� 1 will the O(r�n)
corrections to the metric remain observable. Our strategy is to solve the
equations of motion in the finite R region subject to the boundary conditions
(5.8). Following [55], we also use the scaling x? = �/

p
n and z = ⇣/

p
n so

that in this coordinate system the line element takes the form

ds2 = dt(2dr � gttdt� 2gt⇣d⇣) + g⇣⇣d⇣
2 + g??d�

2

? , (5.9)

where

gtt
r2

=
X

k=0

E(k)

nk
,

gt⇣ =
X

k=1

J (k)

nk
,

gii
r2

=
1

n
+
X

k=2

g(n)i

nk
.

(5.10)

(In a slight abuse of notation i is now either �? or ⇣.) We have used the
letters E and J to emphasize these quantities’ (soon to be seen) close con-
nection with an energy density and energy current in the dual hydrodynamic
description.

One can now solve the equations of motion order by order in 1/n. The
equations of motion are simply Einstein’s equations in the presence of a
negative cosmological constant:

RMN = �(d� 1)gMN , (5.11)

setting L = 1 for convenience. Let a and b index the t, r, and ⇣ directions
only, while i and j index the remaining perpendicular directions. Further-
more, let R̃ab be the Ricci tensor with respect to the three dimensional metric
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in the t, r, and ⇣ directions. Then

Rab = R̃ab +
d� 3

4
(@a log g??)(@b log g??)�
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, (5.12)
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◆
. (5.13)

Imposing that the boundary metric is Minkowski and choosing a near
boundary expansion of the form (5.8) we find
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(5.14)

where the O(n�2) correction to gtt and the O(n�3) contributions to g⇣⇣ are
too long to write explicitly. The functions e and j are functions of t and ⇣
only and must satisfy the additional constraints (5.1). Equations (5.1) are
identical to those obtained in [55, 63]. We can rewrite them in terms of a
conservation law

@µT
µ⌫ = 0 (5.15)

where
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where g is an arbitrary function. Likewise, the functions e
2

and j
2

must also
satisfy a set of equations which can be obtained from the conservation of
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2
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e
+ e� e
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� 2j0
⌘0

+ j + j
2⇣

j2

e
+ e� e

2

� 2j0
⌘0

+ j + j
2

T 11

1

A

+

✓
@2⇣g2 �@⇣@tg2

�@⇣@tg2 @2t g2

◆
. (5.17)
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where

T 11 = 2
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◆0

. (5.18)

We will use 0 and @⇣ interchangeably in what follows.

5.3 Comparison with hydrodynamics

Let us pause to understand (5.16). Within the context of the gauge-gravity
duality it is possible to construct a solution to the Einstein equations which
is perturbative in t, ⇣ and �? derivatives of the metric components [75]. Such
a perturbative solution to the equations of motion, which is available for any
dimension d [76, 77], allows for a dual description of the theory in terms of
fluid dynamical degrees of freedom.

5.3.1 Stress tensor from fluid-gravity correspondence

To construct the dual hydrodynamic description of a slowly varying black
hole, we boost the black hole solution (5.4) by a constant velocity uµ in the
t, z, x? directions. The resulting line element is given by

ds2
(0)

= 2uµdx
µdr�r2

 
1�

✓
4⇡T

(d� 1)r

◆d�1

!
uµu⌫dx

µdx⌫+r2 (⌘µ⌫ + uµu⌫) dx
µdx⌫ .

(5.19)
Allowing for uµ and T to become spacetime dependent implies that (5.19)
will get corrected. By setting gradients of uµ and T to to be small, one can
solve for the corrections to (5.19) order by order in derivatives so that the
line element will take the schematic form

ds2 = ds2
(0)

+ ds2
(1)

+ . . . (5.20)

where ds2
(i) denotes the ith order gradient corrections to the line element.

The stress tensor T µ⌫ which is dual to (5.19) takes the form

T µ⌫ =
X

i

T µ⌫
(i) (5.21)
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also expanded in gradients. One finds [76, 77]

T µ⌫
(0)

= P (T ) ((d� 1)uµu⌫ + ⌘µ⌫) (5.22)

which is nothing but a boosted version of (5.5) and then, in the Landau
frame,

T µ⌫
(1)

= �2⌘�µ⌫ ,

T µ⌫
(2)

=
(d� 1)⌘

2⇡T


(1� ⌧

0

)u · D�µ⌫ + ��µ��⌫ �
�↵��↵�
d� 2

Pµ⌫ � ⌧
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�
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���⌫ + !⌫
��µ�
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(5.23)

with

P µ⌫ = ⌘µ⌫ + uµu⌫ ,

�µ⌫ =
1

2
Pµ

↵P⌫
� (@↵u� + @�u↵)�

1

d� 2
P µ⌫@↵u

↵ ,
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P µ↵P ⌫� (@↵u� � @�u↵) ,

u · D�µ⌫ = Pµ
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(5.24)

and

⌘ =
(d� 1)P

4⇡T
, ⌧

0

=

Z 1

1

yd�3 � 1

y(yd�1 � 1)
dy =

1

2
+O(d�2) . (5.25)

(Note that our definition of �µ⌫ is somewhat unconventional.) An initial
analysis of third order gradient corrections has been carried out in [78] for d =
5. A full analysis of all third order transport terms for arbitrary dimension
d is currently unavailable.

Since (5.16) has been obtained from a large d limit of a gravitational
dual theory, we expect that (5.16) coincides with (5.21) when the former is
expanded in derivatives and the latter is expanded around large n = d � 1.
In short, we expect that taking a gradient expansion commutes with taking a
large d limit. To make a direct comparison let us consider the hydrodynamic
stress tensor (5.21) in the t, ⇣, �? coordinate system where the metric tensor
takes the form

ds2 = �dt2 +
d⇣2

n
+

d�2

?
n

. (5.26)
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One important e↵ect of this rescaling is to keep the sound speed to be an
order one quantity.

Scaling the spatial component of the velocity field by 1/
p
n, viz.,

uµ =
1q

1� �2
(t,⇣)
n

(1, �(t, ⇣)) , (5.27)

and maintaining that ✏ = (d� 2)P is finite in the large d limit, we find,

�µ⌫ = n@⇣� �
µ
⇣ �

⌫
⇣ +O(n0)

u · D�µ⌫ = n
�
�@2⇣� + @t@⇣�

�
�µ⇣ �

⌫
⇣ +O(n0)

��µ��⌫ �
�↵��↵�
d� 2

Pµ⌫ = n (@⇣�)
2 �µ⇣ �

⌫
⇣ +O(n0)

(5.28)

and thus,

T µ⌫ =

✓
✏ �✏
�✏ ✏(1 + �2) + p

◆
+O

�
n�1

�
(5.29)

where
p = �2✏@⇣� + 2✏(@⇣�)

2 + ✏�@⇣2� + ✏@⇣@t� +O
�
@3
�

(5.30)

and O (@3) denotes third order and higher derivative corrections. Note that
this constitutive relation for the stress tensor includes and encodes the large
d limit of the transport coe�cients (5.25).

Now, we insert the redefinitions

e = ✏� 1

2
@2⇣ ✏ ,

j = �✏+ @⇣✏+
1

2
@t@⇣✏ ,

g =
1

2
✏

(5.31)

into the large d constitutive relation for the stress tensor (5.16), use the large
d stress tensor conservation equations (5.1), and throw out terms that have
three or more derivatives. We claim that in this fashion, we recover the stress
tensor (5.29) in the gradient expansion. Note that while the conservation
equations (5.1) are of second order in gradients of ⇣ and t, the stress tensor
includes at least second order gradients.
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5.3.2 Entropy from Gravity

Within the context of our forthcoming analysis, it is instructive to compute
the dual entropy production rate which is associated with the evolution of
the horizon. Due to its teleological nature, it is usually di�cult to identify
the location of the event horizon. However, in the large d limit the analysis is
somewhat simplified. Let us look for a null surface of the form R = rh(t, ⇣).
The normal to such a surface is

⌅MdxM = dR� @trhdt� @⇣rhd⇣ . (5.32)

Demanding that ⌅2

���
R=r

h

= 0 implies, to leading order in the large d limit,

that
rh = e . (5.33)

The spacetime singularity which exists in our solution implies that an event
horizon must be present. Since the only null surface available is (5.33), it
must be the location of the event horizon. Subleading corrections to the
location of the event horizon are given by

rh = e+
1

n

✓
4je0 � 2(e0)2 � j2

2e
+ e

2

� 2j0 + 2e00 + j0 log(e)

◆

⌘ e+
1

n
rh 1

.

(5.34)

To compute the change in the black hole entropy over time we compute
the area form of the event horizon. Following the prescription of [79], we find
that

A =
✏µ1...µ

d

(d� 1)!
Jµ1
S dxµ2 ^ . . . ^ dxµ

d (5.35)

where

Jµ
S =

p
h

4GN

Nµ

N t
(5.36)

where h is the spatial (t = constant) part of the induced metric on the horizon

Hµ⌫dx
µdx⌫ = gMNdx

MdxN
���
R=r

h

(5.37)

and Nµ is defined via

⌅M@M = NR@R +Nµ@µ . (5.38)

66



A short computation yields

p
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(5.39)

Thus,
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(5.40)

where we have normalized the entropy density so that it is compatible with
our conventions for the energy density.

The second law of black hole thermodynamics amounts to

@µJ
µ
S � 0 . (5.41)

In our large d limit we find that

@µJ̃
µ
S =

8⇡e

n2


@⇣

✓
j � @⇣e

e

◆�
2

. (5.42)

The expectation from hydrodynamics, to second order in derivatives, is that
the divergence of the entropy current is given by

@µJ̃
µ
S =

2⌘

T
�2 . (5.43)

(See for example (8) of ref. [80].) This expectation matches (5.42) on the
nose. Note that to leading order in the large d limit the entropy current
vanishes. This somewhat surprising feature of the large d limit follows from
the fact that entropy production terms are suppressed by inverse powers of
the dimension in the large d limit.

5.4 Near equilibrium steady states

We now analyze the dynamics controlled by the partial di↵erential equations
(5.1) which encode the dynamics of an out of equilibrium black hole (5.7)
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and its dual stress tensor (5.16). Various related holographic analyses can
be found in [53, 81, 82, 83, 84, 85, 86, 87, 88, 89]. As discussed in the
introduction, the particular question we would like to address is a Riemann
problem: What is the time evolution following from an initial condition (5.2)?
We are particularly interested in the steady state solution which will emerge
at late times. For convenience we will consider a reference frame for which
jL = 0. Indeed, if e(x, t) and j(x, t) satisfy the conservation equations (5.1),
then so do e(x � vt, t) and j(x � vt, t) + ve(x � vt, t). Thus, for constant
values of e and j, we can choose a v such that j will be set to zero. The
non-relativistic nature of the boost symmetry reflects the fact that the large
d limit we have taken is e↵ectively a non-relativistic limit where the speed
of light c ⇠

p
d has been pushed o↵ to infinity.

5.4.1 Rarefaction waves vs. shock waves

Before addressing the Riemann problem in its entirety let us consider a sim-
plified system which is less constrained. Consider (5.16) with gradient terms
neglected. The resulting expression is the large d limit of the energy momen-
tum tensor of an inviscid fluid which is known to support (discontinuous)
shock waves [56] for any finite value of d. Indeed, consider a single dis-
continuous shock wave moving with velocity s. Conservation of energy and
momentum imply

s[T tt] = [T t⇣ ] , s[T t⇣ ] = [T ⇣⇣ ] , (5.44)

where [Q] = Ql � Qr and Qr/l specify the value of Q to the left or right of
the shock respectively.20 The conservation conditions (5.44) are very general
and are often referred to as the Rankine-Hugoniot (RH) relations. In our
setup they reduce to

sel � jl = ser � jr ,

sjl �
✓
el +

j2l
el

◆
= sjr �

✓
er +

j2r
er

◆
,

(5.45)

where er/l and jr/l are the energy density and current immediately to the
right or left of the shock. While these Rankine-Hugoniot relations hold for

20In this section we use subscripts r and l to denote values of quantities to the right
or left of the shock. In other sections we use subscripts R and L to denote quantities in
the right and left asymptotic regions. In the latter case there is generally an interpolating
region which we denote with a 0 subscript.
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an arbitrary, piece-wise continuous fluid profile, in what follows, we are in-
terested in the much simpler situation where e and j are constant functions
away from the shocks. Amusingly, er satisfies a cubic equation,21

(eljr � erjl)
2 = eler(el � er)

2 , (5.46)

a plot of which as a function of jr resembles a fish: fixing (el, jl), each value
of s is mapped to a point on the (er, jr) plane. The collection of such points
is given by a fish-like curve, an example of which is given in the left panel of
figure 14.

We make two observations about the fish. The vacuum (er, jr) = (0, 0)
always lies on the cubic (5.46), corresponding to the fact that a shock can
interpolate between any value of (el, jl) and the vacuum. Also (er, jr) =
(el, jl) is the point of self-intersection of the cubic and has s = ±1 + jl/el.
The physical content of this observation is that when (er, jr) is close to (el, jl)
but still lies on the cubic, we can find a close approximation to the fluid
profile by linearizing the equations of motion. As we will describe in greater
detail below, linearized fluctuations correspond to damped sound modes, and
indeed the two regions can be connected by sound waves propagating at the
local sound speed s = ±1 + jl/el.

The shock solutions we found all solve the conservation equations (5.45).
However, some of these solutions are unphysical in the following sense. Let us
boost to a frame where the shock speed vanishes, s = 0. In half of the shock
solutions, a quickly moving fluid at low temperature is moving into a more
slowly moving fluid at higher temperature, converting kinetic energy into
heat and producing entropy. We will refer to these shocks as “good” shocks.
The other half of the solutions correspond to the time reversed process where
a slowly moving fluid at high temperature moves into a rapidly moving but
cooler fluid, turning heat into kinetic energy. This second solution, as we
shall see shortly, should be discarded.

Strictly speaking, entropy is conserved in the large d limit (see the dis-
cussion following equation (5.43)). A more formal way of understanding why
one should discard the bad shocks is to restore the gradient corrections but

21In general d, one finds the relation

sinh2(↵l � ↵r) =
d� 2

(d� 1)2
(✏l � ✏r)2

✏l✏r
,

where � = tanh↵ is the fluid velocity.
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take a limit where these are small. et us assume that in the frame where
the shock velocity is zero there is an approximately stationary configuration
such that time derivatives are much smaller than spatial derivatives. Boost-
ing back to a shock with velocity s, we expect that e and j depend only on
the combination ⇣�st, i.e., j(t, ⇣) = j(⇣�st) and likewise, e(t, ⇣) = e(⇣�st).
The equations of motion (5.1) become ordinary di↵erential equations which
can be integrated once to obtain

e0 =� s(e� el) + (j � jl) ,

j0 =� s(j � jl) +

✓
e+

j2

e
� el �

j2l
el

◆
.

(5.47)

We have picked the two integration constants such that e0 and j0 vanish in the
left asymptotic region. The Rankine-Hugoniot conditions (5.45) imply that
e0 and j0 also vanish in the right asymptotic region. As e0 and j0 themselves
vanish in the left and right asymptotic regions, we can describe e0 and j0

well near these points by looking at a gradient expansion. Near the left
asymptotic region

✓
e0

j0

◆
⇡
 

�s 1

1� j2
l

e2
l

2j
l

e
l

� s

!✓
e� el
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◆

⌘ Ml

✓
e� el
j � jl

◆
.

(5.48)

There is a similar looking equation for e0 and j0 near the right asymptotic
region ✓

e0

j0

◆
⇡ Mr

✓
e� er
j � jr

◆
. (5.49)

The solutions near (el, jl) and near (er, jr) have an exponential nature
with the sign of the exponents depending on the eigenvalues of Ml and Mr

appearing on the right hand side of (5.48) and (5.49) given by

�r± = ±1 +
jr
er

� s , �l± = ±1 +
jl
el

� s . (5.50)

We now observe that the signs of the eigenvalues of Ml and Mr determine
whether the shock is a viable solution to the equations of motion.

70



• If both eigenvalues of Ml are negative, then e0 and j0 will not vanish
as x ! �1. Thus we require that at least one eigenvalue of Ml is
positive in order for a shock solution to exist.

• If we assume there is exactly one positive eigenvalue, then 1+ jl/el > s
and�1+jl/el < s. Note that the value 1+jl/el corresponds to the slope
of one of the characteristics (i.e. the local speed of one of the sound
waves), and this condition implies that this characteristic will end on
the shock. Since �l� is assumed to be negative, we have to tune one
of the two integration constants of the system of di↵erential equations
to zero. This tuning means that generically the solution to the right
of the shock will be a linear combination of both of the solutions near
(er, jr). If both solutions are to be used, then it had better be that
both eigenvalues of Mr are negative. (Otherwise, it will not be true
that e0 and j0 vanish in the limit x ! 1.) In particular, the larger of
the two eigenvalues must be negative, which implies that 1+ jr/er < s.
(In terms of characteristics, both will end on the shock.) Thus, we find
the constraint

1 + jr/er < s < 1 + jl/el . (5.51a)

• If both eigenvalues of Ml are positive, we still need at least one negative
eigenvalue of Mr to be able to connect the solutions in the left and right
asymptotic regions. Moreover, for Mr to have two negative eigenvalues
would be inconsistent with momentum conservation (5.45). An analysis
similar to the previous one yields

�1 + jr/er < s < �1 + jl/el . (5.51b)

The constraints (5.51) choose the good shocks over the bad ones.
Since bad shocks are not allowed, one may inquire as to the time evolution

of a discontinuity with initial conditions which would have generated a bad
shock. As it turns out, bad shocks can be replaced by the more physical
rarefaction solutions [56]. The rarefaction solution assumes that between the
asymptotic regions specified by (el, jl) and (er, jr), there is an interpolating
solution where e and j are functions of ⇠ = ⇣/t. As was the case for the
shock wave, given el and jl, there is a one parameter family of allowed values
of er and jr. These are given by

er =el exp (±jl/el � 1⌥ ⇠r) ,

jr =el(±1 + ⇠r) exp (±jl/el � 1⌥ ⇠r) .
(5.52)
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The curve traced by (er, jr) also resembles a fish, and for moderate values of
the shock parameters er and jr it closely follows the cubic curve corresponding
to a shock solution. (See the central panel of figure 14.) The vacuum (0, 0) =
(er, jr) solution can always be connected to (el, jl) through a rarefaction
wave. The self-intersection point (er, jr) = (el, jl) has ⇠ = ⌥1 + jl/el, again
corresponding to a sound wave type interpolation between the two regions
(er, jr) ⇡ (el, jl).

er

jr

jl
el
<s<1+ jl

el
s<-1+ jl

el

1+ jl
el
<s-1+ jl

el
<s< jl

el

er

jr

er

jr

Figure 14: (Left panel) The solid blue curve corresponds to the solution to
the Rankine-Hugoniot condition for (el, jl). Points on the curve correspond
to di↵erent values of s in (5.45). The regions jl/el < s < jl/el + 1 and
s < jl/el � 1 correspond to good shocks satisfying (5.51a) and (5.51b) re-
spectively. (Center panel) The dashed line, which almost overlaps with the
blue line at places, parameterizes the rarefaction solution (5.52) also asso-
ciated with (el, jl). (Right panel) A plot of possible values of (er, jr) for a
given a pair (el, jl) with good shocks preferred over the rarefaction solution
and the rarefaction solution preferred over bad shocks.

Given that bad shocks are replaced by rarefaction waves, one should re-
move from the fish diagram (left panel of figure 14) the portion of the curve
which corresponds to bad shocks and replace it with a curve corresponding
to a rarefaction solution (central panel of figure 14). The resulting curve can
be found on the right panel of figure 14: the belly of the fish and the lower
part of its tail corresponds to a good shock and its back and upper tail to
a rarefaction solution. One may compute the curve explicitly by imposing
(5.51), but it can also be understood from a graphical viewpoint as we now
explain.

Recall that the self intersection point of the shock wave fish (solid curve
on the left panel of figure 14) corresponds to a shock velocity, s, which takes
the values of the local speed of sound, ±1 + jl/el. On the tail, s is either
larger than 1+ jl/el (upper tail) or smaller than �1+ j/e (lower tail). Thus,

72



on the tails, the eigenvalues are either both positive or both negative. The
top portion of the tail has �±l < 0 while the bottom portion of the tail has
�±l > 0. As a result, the top portion of the tail must be replaced by a
rarefaction wave while the bottom portion can be a shock. To decide which
portion of the body of the shock fish to replace by a rarefaction wave, one
must study �±r.

Consider a second fish which exhibits the solution to the cubic (5.46)
for a given value of (er, jr). We will call this second fish an r-fish and the
first an l-fish. Similar to the analysis of the tail of the l-fish, we find that
the bottom portion of the tail of the r-fish should be constructed from a
rarefaction solution while the top portion from a shock.

Consider an r-fish whose point of self intersection lies somewhere on the
body of the l-fish. When the r-fish is drawn so that it intersects the back of
the l-fish, the bottom portion of the r-fish’s tail will go through the point of
self-intersection of the l-fish (see the left panel of figure 15). As the bottom
portion of the tail of the r-fish is a rarefaction, the region (er, lr) can be
connected to (el, jl) by a rarefaction. Reciprocally, since we’re describing
a single shock or rarefaction interface between two regions, the back of the
l-fish should be replaced by a rarefaction wave. We can run the argument
again for an r-fish drawn to intersect the belly of the l-fish. We conclude
that the belly of the l fish must be a shock (see the right panel of figure 15).

5.4.2 Solving the Riemann problem using ideal hydrodynamics

Armed with our understanding of shock waves and rarefaction solutions, let
us now tackle the Riemann problem we set out to solve. At t = 0, we consider
a pair (eL, 0) which describes the fluid for z < 0 and another pair (eR, jR)
describing the fluid for z > 0. For a single interpolating shock or rarefaction,
we have seen that given (eL, 0) there is a one parameter family of solutions
that determine (eR, jR). Thus, generically, there will not be a single shock or
rarefaction solution that joins (eL, 0) to an arbitrary (eR, jR). However, we
can connect the two regions using a pair of shock and/or rarefaction waves.
That is, we could connect (eL, 0) to an intermediate regime with values of e
and j given by (e

0

, j
0

) using a shock or rarefaction wave and another shock
wave or rarefaction wave to connect the intermediate regime to the right
asymptotic region (eR, jR). In all cases, given the initial conditions, the pair
of rarefaction and/or shock waves should be such that they move away from
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(el,0)

(er, jr)

e

j

(el,0)

(er, jr)

e

j

Figure 15: A graphical determination of the “good shocks” and “bad shocks”.
The red fish corresponds to (er, jr) while the blue fish is built from (el, 0).
See the main text for a discussion.

each other.
The strategy for determining which type of solution is allowed is to prefer

good shocks over rarefaction solutions and rarefaction solutions over bad
shocks. Thus, given a pair (eL, 0) and (eR, jR) we need to establish which of
the four possibilities for the time evolution of the initial state is allowed: two
shocks (SS), a rarefaction wave followed by a shock (RS), or the remaining
two configurations which we will denote by SR and RR.

To understand the possible solutions to the Riemann problem, let us first
consider two fish diagrams: one associated with (el, jl) = (eL, 0) (the l-fish)
and another with (er, jr) = (eR, jR) (the r-fish). The points of overlap of the
diagrams will give us the possible value of e

0

and j
0

. We will always choose
a point where the two disturbances are moving away from each other. See,
for example, figure 16.

Instead of plotting the r- and l-fishes, we can obtain closed form expres-
sions for the various types of solutions by solving (5.51) and (5.52) on a case
by case basis. In the following we provide some simple examples of such
expressions.

• RS configurations. As an example of the RS case, we take (eL, 0)
and (eR, 0) as the asymptotic regions with eL > eR. The SR case is
a left-right reflection of the RS case and therefore does not warrant
further discussion.
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(eL,0)
(eR,0)

e

j

(eL,0)

(eR, jR)

e

j

(eL,0)

(eR, jR)

e

j

Figure 16: Some diagramatic solutions to the Riemann problem. The blue
fish corresponds to (eL, 0) while the red fish to (eR, jR). The solid line is a
shock and the dashed line a rarefaction. The intermediate region is indicated
by a black dot. Left panel: The shock solution of the right asymptotic region
overlaps with the rarefaction solution of the left asymptotic region, so we get
an SR type configuration. Center panel: The rarefaction solution of the left
and right regions overlap creating an RR type solution. Right panel: An SS
type solution.

To estimate the values of e
0

and j
0

we can follow the strategy laid out
in [62, ?]. For the left region we use the solution (5.52) with el = eL,
jl = 0, er = e

0

and jr = j
0

. For the right region we use (5.45) with
el = e

0

, jl = j
0

, er = eR and jr = 0. We find

e
0

= eRs
2 ,

j
0

= eRs(s
2 � 1) ,

0 =
1

s
� s� log

✓
eR
eL

s2
◆

,

(5.53)

which, unsurprisingly, coincides with the large d limit of the hydrody-
namic analysis of [62, ?].

As pointed out in [62] the rarefaction solution will cover the location
of the original shock discontinuity whenever

eL
eR

�
 
1 +

p
5

2

!
2

exp(1) ⇠ 7.11655 . (5.54)

At the point ⇣ = 0 in the rarefaction wave, the values of e and j are
time independent (since any function of ⇣/t will have a fixed point at
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⇣ = 0). Moreover for a conserved stress tensor T µ⌫ = T µ⌫
�
⇣
t

�
, the first

spatial derivative of T t⇣ and the first and second spatial derivatives of
T ⇣⇣ vanish at this fixed point. Thus, one may think of the pressure at
the fixed point as a “short” steady state for long enough times. “Short”
implies that the region is of small spatial extent. From this perspec-
tive one has split steady states for large enough initial temperature
di↵erences. The values of e and j at the short steady state are given
by

es = js = eL exp(�1) . (5.55)

• SS configurations. A simple example of the SS case has (eL, 0) on the
left and (eL, jR) on the right with jR < 0. We compute the NESS by
gluing two shock waves to an intermediate region with (e, j) = (e

0

, j
0

),
similar to the RS case. Setting � = jR/eL, the intermediate NESS is
given by

e
0

=
eL
8
(8 + �2 � �

p
16 + �2) ,

j
0

e
0

=
�

2
, (5.56)

and the shock velocities for the left and right moving shocks, sL and
sR respectively, are given by

sL =
1

4
(� �

p
16 + �2) , (5.57)

sR =
1

4
(3� +

p
16 + �2) . (5.58)

• RR configurations. Using eL = eR and jR > 0, we can find simple
solutions that involve two rarefaction waves.22 In this case, the NESS

22As it turns out in the RR phase, there is a simple expression for the steady state for
all values of eL, eR, jL and jR,

e0 =
p
eLeR exp

✓
jL
2eL

� jR
2eR

◆
, j0 =

e0
2
(⇠+ + ⇠�) ,

where

⇠+ � ⇠� = 2 , ⇠+ + ⇠� =
jL
eL

+
jR
eR

� log
eR
eL

.

A fixed point associated with a left moving rarefaction solution occurs whenever

eR
eL

 exp

✓
jL
eL

+
jR
eR

� 2

◆
with es = js = eL exp

✓
�1 +

jL
eL

◆
,
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is characterized by

e
0

= eL exp

✓
� jR
2eL

◆
, j

0

=
jR
2

exp

✓
� jR
2eL

◆
, (5.59)

where the left moving rarefaction wave extends from ⇠ = �1 to ⇠ = ⇠�
while the right moving rarefaction wave extends from ⇠ = ⇠

+

to ⇠ = 1
with

⇠
+

� ⇠� = 2 , ⇠
+

+ ⇠� =
jR
eR

, (5.60)

Similar to the RS case we find that there is a fixed point associated
with the left moving wave whenever

jR
2eL

� 1 , (5.61)

with
es = js = eL exp(�1) . (5.62)

We claim that given (eL, 0), the “phase diagram” of figure 13 immediately
allows us to choose the correct configuration of shocks and rarefaction waves
for any (eR, jR). Indeed, following figure 16, the location of the self intersec-
tion point of the r-fish will determine the nature of the intersection of the r-
and l-fish: if the intersection point of the r-fish lies above the l-fish we will
always get an RR solution; if the intersection point of the r-fish is below the
l fish we get an SS solution; and RS and SR solutions will correspond to an
intersection point of the r-fish in the body or tail of the l-fish respectively.
Conformal invariance dictates that the phase diagram can depend on the
only two dimensionless parameters of this problem, and we obtain the phase
diagram in figure 13.

Note that even though the r-fish and the l-fish intersect at (0, 0), we can
always rule out an intermediate point that corresponds to a vacuum. The
vacuum intersection point is always along the bodies of the two fish where
we have ��,l/r < 0 < �

+,l/r. As discussed, we can not in general connect the
two asymptotic solutions if we do not have two eigenvalues of the same sign
(positive for l and negative for r) in one of the regions.

and a fixed point associated with the right moving rarefaction solution occurs whenever

eR
eL

� exp

✓
jL
eL

+
jR
eR

+ 2

◆
with es = �js = eR exp

✓
�1 +

jR
eR

◆
.
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5.4.3 A numerical solution to the Riemann problem.

In the previous sections we have obtained predictions for the evolution of e
and j starting from an initial configuration (5.2) and assuming that gradient
corrections to the equations of motion are small. It is somewhat unfortunate
that this assumption stands in stark contrast to the discontinuous jump in
the initial state and one may inquire whether the analysis of the previous
section is relevant for the problem at hand. In order to resolve this issue
we solve the full equations of motion (5.1) numerically. We give numerical
examples of the RR, SS, and RS phases described above. To our numerical
accuracy, the di↵erence in e

0

and j
0

between the ideal case which we have
studied analytically and the case with gradients included which has been
obtained numerically appears to disappear in the long time limit.

As it turns out, the equations (5.1) are easy to evolve numerically with
canned PDE solvers, such as Mathematica’s NDSolve routine [90]. To obtain
various solutions one can evolve the initial condition

e = hei (1 + �e tanh(c sin(2⇡x/L))) , (5.63)

j = hji (1 + �j tanh(c sin(2⇡x/L))) , (5.64)

in a periodic box of length L. (In appendix E, we use a more elaborate
piecewise continuous initial condition.) For c su�ciently large, the initial
condition approaches a square wave. As long as the disturbance has not
travelled a distance of order L, causality ensures that the behaviour of e and
j are very close to that of an infinite system where the values of e and j in
the asymptotic region are fixed at some constant value. If we denote these
asymptotic values as eL and eR then

�e =
eL � eR
eL + eR

and hei = 1

2
(eL + eR) . (5.65)

We can similarly define hji and �j.
In figures 17, 18, and 19, we have plotted typical results for numerical

solutions to (5.1), corresponding to RS, SS, and RR configurations. The
resulting values of e and j seem to approach the predicted values of e

0

and
j
0

at long times—at least as far as our numerical precision can be trusted
(see appendix E). In particular, in the RS case, we approach the steady
state value (5.53); in the SS case, we approach (5.56); and in the RR case,
we approach (5.59). As we discuss in greater detail in the next section, one
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Figure 17: A numerical solution to the Riemann problem. The plots were
obtained starting with an initial condition (E.5) with L = 8000, c = 300 and
hji = 0. Only one half of the box, centered around the origin, is depicted.
The dashed curve corresponds to values of e and j at t = 0 while the solid
curve corresponds to values of e and j at t = 800. The black, red and blue
horizontal lines correspond to the predicted near equilibrium steady state as-
sociated with a rarefaction wave and shock pair (c.f., equation (5.53)), a bad
shock and good shock pair (c.f., references [48, 49]), and a non thermody-
namic shock pair (c.f., reference [49]) respectively. The fixed point associated
with a rarefaction solution which exists for �e � 0.7536 . . . is represented by
a black dot.
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Figure 18: Two numerical solutions to the Riemann problem in the RR
case. The plots were obtained starting with a constant e initial condition,
jL = 0, and fixed � = jR/eL, with L = 8000 and c = 200. The dashed line
corresponds to the solution at t = 0 and the solid blue line at t = 1000. The
solid red curves are the rarefaction waves in the ideal limit, without gradient
corrections. The horizontal black line is the predicted steady state value.
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Figure 19: A numerical solution to the Riemann problem in the SS case. The
plots were obtained starting with a constant e initial condition, jR = 0, and
� = �jL/eL = �1, with L = 8000 and c = 200. The dashed line corresponds
to the solution at t = 0 and the solid blue line at t = 1000. The horizontal
black line is the predicted steady state value.

place where gradient e↵ects show up and do not disappear as a function of
time is in the shock width.

One may speculate that the agreement between the predicted steady state
in the absence of gradient corrections and the numerical results is asscoiated
to the fact that the gradient corrections, even though order one in our system
of units, come with dimensionful coe�cients. In the language of the renor-
malization group, they conform to irrelevant couplings. Perhaps it is for this
reason that at long enough time and in a large enough box, we may be able
to ignore these corrections for the most part.

5.4.4 Restoring gradient corrections

In this section, we try to gain a better handle over the gradient corrections
and their a↵ect on the predicted steady state values. The analysis here
is incomplete and approximate. To overcome the deficiencies of paper and
pencil estimates, we include some numerical solutions to the conservation
equations (5.1) that provide support for the estimates. We will consider
separately corrections to each of the features we found in the idealized limit:
the steady state and asymptotic regions with constant e and j, a shock wave,
a rarefaction wave, and the discontinuity at the edge of the rarefaction.
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Corrections to constant regions Corrections to a constant e and j re-
gion are easiest to analyze. Assuming the fluctuations are small, we look
for linearized solutions of the form e = e

0

+ �e exp(�i!t + ik⇣) and j =
j
0

+ �j exp(�i!t+ ik⇣). We find two propagating modes

! =

✓
±1 +

j
0

e
0

◆
k � ik2 . (5.66)

These two modes are damped sound modes whose speed is shifted by the
fluid velocity � = j/e. The gradient corrections appear here in the form
of the damping term ik2 in the dispersion relation. Given this result, we
anticipate that we will be able to correct a constant e and j region by taking
an appropriate linear superposition of sound waves. The damping suggests
that at long times the solution can only involve constant e and constant j.

As a side comment, an odd thing about these mode relations is that they
are exact. Recall that in first order viscous hydro, we would typically solve
an equation of the form !2 + i�k2! � k2 = 0 for !, in the case of vanishing
background fluid velocity. If this equation were treated as exact, the solutions
for ! would be non linear in k and therefore have higher order contributions,
i.e. O(k3), O(k4), etc., when expanded around small k.

Corrections to shocks The gradient corrections should act to smooth a
shock and give it some characteristic width. We estimate this width in a
frame in which the shock is not moving, i.e. s = 0. In this frame, jr = jl and
erel = j2l . We can find a solution for the shock profile in the case where the
shock is weak er ⇠ el:

e = hei
"
1 + �e tanh

✓
⇣�e

2

◆
� �e2

2
sech

✓
⇣�e

2

◆
2

log cosh

✓
⇣�e

2

◆
+O(�e3)

#
,

(5.67)

j = hji
"
1 +

�e2

2
sech

✓
⇣�e

2

◆
2

+O(�e3)

#
, (5.68)

where we have defined

hei ⌘ er + el
2

, �e ⌘ er � el
er + el

, and hji ⌘ jr + jl
2

.
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Figure 20: A numerical simulation of stationary shocks. We start from an
initial condition e = hei(1 + �e tanh(c sin(2⇡x/L))), j = 1 with parameters
L = 8000 and c = 1.2(L�e/4⇡). We chose er and el to produce a stationary

shock (el =
p
1��ep
1+�e

, er =
p
1+�ep
1��e) using the RH relations. We then plot the

value of the slope of the shock after the system has settled into a steady state.
This is compared with the weak shock solution (5.67), given by the dashed
red line. The inset plot shows the relaxation from the initial conditions to
the steady state for �e = 0.23.

We can see in figure 20 that even for values of �e ⇠ 1/2, that hei�e2/2 appears
to be a good estimate for the slope of the shock.23 In appendix D, we show
that this shock profile produces, at the correct subleading order in a large
d expansion, the correct (positive) amount of entropy predicted by the RH
relations.

Corrections to a rarefaction We will perform two estimates of gradient
corrections to the rarefaction wave. The first estimate is a correction to the

23We found that when �e = 0.8 the relative error between (5.67) and the numerical
solution grew to ⇠ 13%. As �e gets closer to one numerical error is more di�cult to
control.
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interior of the wave far from the edges where it joins onto constant e and
j regions. The second estimate is a correction to the discontinuity where
the rarefaction joins a constant region. For the first estimate, we assume an
ansatz for the long time behavior of the rarefaction wave:

e = e
0

(⇠) +
log t

t
el(⇠) +

1

t
e
1

(⇠) +O((log t)2/t2) ,

j = j
0

(⇠) +
log t

t
jl(⇠) +

1

t
j
1

(⇠) +O((log t)2/t2) ,

where

e
0

= c
1

exp(⌥⇠) , j
0

= (±1 + ⇠)c
1

exp(⌥⇠) , (5.69)

el = 2c
1

exp(⌥⇠)� 1

2
c
2

exp(⌥⇠/2) , jl = ⇠el , (5.70)

j
1

= ± exp(⌥⇠)(c
1

� c
2

exp(±⇠/2)) + ⇠e
1

. (5.71)

With an appropriate choice for the integration constant c
1

, the expressions
for e

0

and j
0

become the same as we had before (5.52). There are subleading
corrections that scale as 1/t and log(t)/t that depend on a second integration
constant c

2

and an arbitrary function e
1

(⇠), both presumably set by the initial
conditions. Note that the combination ⇠e� j is independent of the arbitrary
function e

1

(⇠) at order 1/t. In figure 21, the numerics confirm that the
corrections to ⇠e� j do indeed scale as 1/t.

Last, we would like to heal the discontinuity at the edge of a rarefac-
tion wave. The tanh function we found above heals the discontinuity in the
shock case, making the question of what happens at the edge of a shock less
pressing. Consider a case where the rarefaction wave meets a steady state
at ⇣ = 0, with the rarefaction region to the right and the steady state to the
left. (We can always move the meeting point away from ⇣ = 0 by boosting
the solution ⇣ ! ⇣ + vt.) With the intuition that the second order gradients
in the conservation equations are dominant and render the behavior similar
to that of a heat equation with 1/

p
t broadening, we look for an approximate

late time solution of the form

e = e
0

+
1p
t
e
1

(�) +O(t�1) , (5.72)

j = j
0

+
j
1p
t
+

1

t
j
2

(�) +O(t�3/2) , (5.73)
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Figure 21: A plot of �(⇠e � j) vs. time at three di↵erent points in a single
rarefaction wave. The quantity �(⇠e� j) is the di↵erence between the zeroth
order prediction (5.52) and numerics. The rarefaction wave spreads from
⇠l = �1 to ⇠r = 1. The three points correspond to ⇠ = �1/2 (red), ⇠ = 0
(purple) and ⇠ = 1/2 (green). The dashed line 1/(2t) is a guide to the eye.
Inset: the rarefaction profile at t = 3000. Dashed lines correspond to e while
the solid lines correspond to j. The blue curve is numeric, while the red
curve is the ideal result (5.52).
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defining � ⌘ ⇣/
p
t. We find that j

0

= ±e
0

, that j
1

is constant, and that

j0
2

(�) = ⌥e
1

(�)e0
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(�)

e
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+

✓
4
e0
1

e
0

± 1

◆
j
1

.

Note that the relation j
0

= ±e
0

is consistent with a rarefaction meeting a
steady state region at ⇣ = 0. These relations for the ji lead to a second order,
nonlinear di↵erential equation for e

1

:

e00
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+
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2
+
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� j
1

e
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1

+
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2
⌥ j
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4
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Remarkably, this equation can be written as a total derivative and integrated
to yield

± e2
1

2e
0

+ e��
2/4@�(e

�2/4e
1

)� j
1

e
1

e
0

⌥ j
1

4
� = c

1

, (5.75)

where c
1

is another integration constant. The integration constants reflect
a translation symmetry of both e

1

and �. We can shift � ! � + j
1

/e
0

and
e
1

(�) ! e
1

(�� j
1

/e
0

)± j
1

/2. The shifts send j
1

! 0 and c
1

! c
1

⌥ 3j2
1

/8e
0

in the equation (5.75). If we apply the boundary condition that both e
1

(�)
and e0

1

(�) vanish in the steady state region � ! �1, then we must set
c
1

= 0, and the resulting first order di↵erential equation becomes separable.
To match onto the rarefaction region, we require that e0

1

! ±e
0

as � ! 1.
This boundary condition fixes the remaining integration constant associated
with the first order equation (5.75), and the solution for e

1

is then

e
1

= ± 2e
0

e��
2/4

p
⇡ erfc(�/2)

. (5.76)

As we choose the rarefaction region to match onto the steady state at � =
0, we conclude that the integration constant j

1

in the original di↵erential
equation must be zero as well. We can check numerically that a 1/

p
t scaling

is consistent with the behavior at the endpoints of a rarefaction solution. See
figure 22.

5.5 Discussion

We presented a solution to the Riemann problem for the conservation equa-
tions (5.1). Through fluid-gravity and the AdS/CFT correspondence, these
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Figure 22: A log log plot of �e,�j vs. time at the endpoints of a rarefaction
wave, where �e = e � e

0

and �j = j � j
0

and e
0

and j
0

are from the zeroth
order prediction (5.52). As in figure 21 the rarefaction wave spreads from
⇠l = �1 to ⇠r = 1. The four curves correspond to e(1) (red), e(�1) (purple)
and j(1) (green) and j(�1) (orange). The dashed lines 0.43t�1/2 and 3t�1/2

are a guide to the eye.
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equations describe, in a large d limit, both the dynamics of a black hole hori-
zon and also the dynamics of a strongly interacting conformal field theory.

There are a number of possible future directions for research. The sim-
plest is perhaps to include a transverse velocity. With a transverse velocity, in
addition to the shock and rarefaction waves, there will in general be a contact
discontinuity [43, 44, 45]. It is known (and perhaps intuitive given the similar-
ity to a counter flow experiment), that the contact discontinuity is in general
unstable to the development of turbulence [91]. It would be interesting to see
what precisely happens in our large d limit. Another more complicated exten-
sion is the inclusion of a conserved charge. The large d equations of motion
in the presence of a conserved charge are available from ref. [63]. Once again,
a contact discontinuity is expected, as seen in the previous chapter, although
whether such a discontinuity is stable or unstable to turbulence is unclear.
More ambitiously, one could consider what happens for the holographic dual
of a superfluid or superconductor [68, 74, 92, 93, 94, 95, 96].

Another possible direction is the addition of higher curvature terms to
the dual gravitational description. One could presumably tune the d depen-
dence of these terms such that higher order gradient corrections appear in
the conservation equations (5.1) and also such that the first and second or-
der transport coe�cients are tuned away from the values examined in this
chapter.

Perhaps the most interesting direction for future study is the connection
to black hole dynamics. What can we learn about black holes through the
connection to hydrodynamics in a large d limit?

6 Conclusion and Outlook

In this dissertation we looked at finite temperature field theories in and out
of equilibrium. The two parts of this dissertation study opposite ends of
statistical mechanics. Entanglement entropy captures information about the
short distance nature of field theories. On the other end of the spectrum
fluids ignore short distance nature the QFT in favor of studying long distance
features. There are interesting directions of research in both topics.

• Entanglement While entanglement and Rényi entropies are very use-
ful for measuring entanglement of the ground state as temperature
increases the entanglement entropy is contaminated by thermal en-
tropy. While the method presented in Chapter 3 does not su↵er from
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this problem, in general, entanglement negativity[97, 98] is a better
quantity for studying entanglement. As yet there is no known simple
holographic calculation for negativity. In addition, there are plenty of
open problems for specific CFTs.

• Fluids Fluid dynamics is an old and well studied area in physics and
math. Yet there is still much that needs to be uncovered. Funda-
mental questions about existence and smoothness of solutions to fluid
equations is one of the unsolved Millennium Problems. Turbulence and
instabilities of fluid flows are interesting from a theoretical viewpoint
and are also important for real world applications e.g. airplane wing
design.

• Gravity Following the discovery of gauge/gravity duality solutions to
classic general relativity problems can now give great insight into previ-
ously intractable problems. The duality between classical gravity and
strongly coupled QFTs has lead to a profusion of semi-empirical studies
of quark gluon plasmas. It also opens the door for similar studies in
condensed matter theory e.g. high temperature superconductors.

Discoveries in early 20th century left physicists with years of interesting
problems to investigate. More was understood about the physical world in
that century than in the rest of human history. As the 21st century begins a
new set of questions, combined with old ones, will keep physicist interested
for decades to come.
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A Classical Fluid Equations Derivation

We use the following definitions

Table 2: Definitions of fluid related quantities.
⇢ Fluid density.
u Local fluid velocity
F Force on a fluid element
⌧ Stress on a fluid element

A.1 Newton’s second law

Let us derive the Navier-Stokes equations. First let us define a pathline as
the trajectory that an infinitesimal part of the fluid follows. Then we can
define the fluid flow, �(t,x), as the pathlines of all infinitesimal parts of the
fluid. Then the velocity is given by

u(t, x) =
d

dt
�(t,x). (A.1)

Let us then consider the Jacobian, J(t,x), of fluid flow. Taking a time
derivative we obtian

@t@x
j

�i = @x
j

vi,

= (@x
i

vi)(@x
j

�i),
(A.2)

where � = (�
1

,�
2

...) and i,j run over spatial directions. Then the derivative
of the Jacobian is then

@tJ(t,x) = J(t,x)r · v. (A.3)

We can then prove the Transport Theorem, for some general function
q(t,x),

d

dt

Z

�(t,W )

dxq(t,x) =

Z

�(t,W )

dx (@tq(t,x) +r · (qu)) . (A.4)
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Recalling that the definition of the fluid flow

d

dt

Z

�(t,W )

dxq(t,x) =
d

dt

Z

W

dx
0

q(t,�(t,x
0

)J(t,x
0

), (A.5)

=

Z

W

dx
0

(@tq + (rq) · u+ qr · u)J(t,x
0

), (A.6)

=

Z

�(t,W )

dx(@tq +r · (qu)). (A.7)

Let us first apply this to the density. Classically, mass is conserved and
therefore

d

dt

Z

V

dx⇢ = 0, (A.8)
Z

V

dx(@t⇢+r · (⇢u)) = 0. (A.9)

Next applying Newton’s second law to a volume element V of the fluid

d

dt

Z

V

dx ⇢u =

Z

V

dx ⇢F+

Z

@V

⌧ · n̂. (A.10)

Where F is the force and ⌧ is the stress matrix on the fluid element. We
can apply the Transport Theorem to this to obtain

Z

V

dx [@t(⇢u) + (r(⇢u)) · u+ ⇢ur · u)] =
Z

V

dx(F⇢+r · ⌧). (A.11)

Combining Equations (A.9) and (A.11) and noting that they must be
true for any fluid element considered we get the Euler equations

@t⇢ = r · (⇢u),
⇢(@tu+ u ·ru) = ⇢F +r · ⌧. (A.12)
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A.2 Boltzmann Equation

Let us give a derivation of the Euler equations from a microscopic view point.
Let us define the f(t,x,u) as the distribution function in phase space. Then
the total particle number and number density are given by

N =

Z
dxduf(t,x,u), (A.13)

n =

Z
duf(t,x,u). (A.14)

After a short time dt and in the absence of collisions the distribution is
to

f(t+ dt,x+ udt,u+ (F/m)dt), (A.15)

where F is the external force and m is the mass of the fluid particles. This
can be viewed as the coordinate change

x0 = x+ udt, (A.16)

u0 = u+
F

m
dt. (A.17)

In the absence of collisions there should be no change in the number of
particles in each area of phase. Therefore

f(t+ dt,x+ udt,u+ (F/m)dt)dx0du0 � f(t,x,u)dxdu = 0. (A.18)

Expanding the left hand side to first order in dt yields the collision-less
Boltzmann equation

@tf + u ·r
x

f +
F

m
·r

u

f = 0. (A.19)

When we allow for two point collisions it is possible to write down the
additional term that appears on the right hand side of equation (A.19). Such
collisions take two particles out of one part of phase space into another with
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rates depending upon the cross section �(!). The particles lost in one part
of phase space are given by

@f
1

@t

���
out

=

Z
du

2

Z
d⌦�(⌦)f

2

f
1

|u
1

� u
2

|, (A.20)

fi = f(t,x,ui), (A.21)

and they scatter into

@f
1

@t

���
in

=

Z
du

2

Z
d⌦�(⌦)f 0

2

f 0
1

|u0
1

� u0
2

| (A.22)

f 0
i = f(t,x,u0

i). (A.23)

For elastic collisions |u0
1

�u0
2

| = |u
1

�u
2

| and so the correction to Equation
A.19 is given by

@f
1

@t

���
coll

=

Z
du

2

Z
d⌦�(⌦)(f 0

2

f 0
1

� f
2

f
1

)|u
1

� u
2

|. (A.24)

The average value of a test function � can be obtained from the distribu-
tion function

h�i = 1

n

Z
du�f. (A.25)

By multiplying Equation A.19 by � and integrating over du and then
integrating each term by parts we get the transport equation,

@t(nh�i) +rx · (nh�ui)� nhu ·r
x

�i � n

m
hF ·r

u

�i � n

m
h(r

u

· F )�i = 0.

(A.26)

Replacing � with m, mu and m|u� v|2/2 we obtain

@t⇢+r · (⇢v) = 0 (A.27)

@t(⇢vi) +r · (⇢viv)�
⇢

m
Fi +

X

j

@Pij = 0 (A.28)

@t(⇢✏) +r · (⇢✏v) +r · q+
X

i,j

Pij⇤ij = 0, (A.29)
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where we used the fact that all of the test functions are conserved quantities
and so the collision integral is zero. We also made the following definitions

⇢ = mn,

Pij = ⇢h(ui � vj)(uj � vi)i,

✏ =
1

2
h|u� v|2i, (A.30)

⇤ij =
1

2
(@x

j

vi + @x
i

vj),

q =
1

2
⇢h(u� v)|u� v|2i.

To evaluate these we make the assumption of small mean free path. Such
a system is always in local thermal equilibrium and so the distribution f
must be the Maxwell-Boltzmann Distribution. Then there are two integrals
to do; one is odd and therefore zero and the other is Gaussian,

q = 0 (A.31)

Pij = ⇢

✓
m

2⇡kBT

◆
3/2 Z

d|u� v|(ui � vj)(uj � vi) exp

✓
� m

2kBT
|u� v|2

◆

(A.32)

= p�ij. (A.33)

Plugging P and q back into (A.30) we obtain the Euler equations for an
ideal fluid

@t⇢+r · (⇢v) = 0 (A.34)

@t(⇢vi) +r · (⇢viv)�
⇢

m
Fi +rp = 0 (A.35)

⇢(@t✏+ v ·r✏) + pr · v = 0. (A.36)

Had we kept higher order corrections we would have also gotten the vis-
cous terms in the Navier Stokes equations. The same approach can be taken
for the relativistic Boltzmann equation. If we again take the zero mean free
path limit the resulting equations are for a relativistic perfect fluid.
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B Computing Traces in the Continuum Limit

The basic technique used in computing trC2

e , trC2

o and h |C2

e | i in the
continuum limit N ! 1 with n/N held fixed was to replace sums with
integrals. However, there are three wrinkles in this procedure, two of which
have already been hinted at in the text. The first is that we were not able
to perform the integrals obtained by taking the continuum limit of the mode
sums over a and b. Thus, we first performed the mode sums over a and b
explicitly yielding sums over cotangents. For example, performing the mode
sums for eq. (2.25) yields,

8N2(C̃2

e )jk =
h
cot

⇡

N
(s+ j + 1/2) + cot

⇡

N
(s� j + 1/2)

i
⇥

"
N�1X

b=1

csc
⇡b

N
� 2

sX

l=1

cot
⇡

N
(l � 1/2)

�
|k|X

l=1

⇣
cot

⇡

N
(s+ l � 1/2)� cot

⇡

N
(s� l + 1/2)

⌘
3

5

+
sX

l=1

h
cot

⇡

N
(l + j � 1/2) + cot

⇡

N
(l � j � 1/2)

i
⇥

h
cot

⇡

N
(l + k � 1/2) + cot

⇡

N
(l � k � 1/2)

i
, (B.1)

while performing the mode sums for eq. (2.26) gives

(C̃2

o )jk =
1

4N2

sX

l=1

h
cot

⇡

N
(j + l � 1/2)� cot

⇡

N
(j + s+ 1/2)+

+ cot
⇡

N
(j � l + 1/2)� cot

⇡

N
(j � s� 1/2)

i
⇥

⇥
h
cot

⇡

N
(k + l � 1/2) + cot

⇡

N
(k � l + 1/2)

i
.(B.2)

The second wrinkle is that naive integral approximations of the cotangent
sums often include singular regions. Our strategy in this case was to add
and subtract a sum that we could perform analytically but whose integral
approximation had the same singular region. This procedure was already
used in the text to perform the sum (2.23). The third wrinkle is that the
integral approximations of the cotangent sums were often di�cult to perform.
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Changing variables and using discrete symmetries reduced the integrals to
known results in most cases. However, in two cases, we had to perform an
integral we could not find in the books.

Let us first sketch the computation of trC2

o , i.e. the trace of (B.2). Several
of the terms in the sum have the structure

I±± =
1

N2

sX

k,j=1

cot
⇡

N
(k ± (j � 1/2)) cot

⇡

N
(k ± (j � 1/2)) . (B.3)

To perform these sums, we make the change of variables x = k + j and
y = k � j. Using the same technique in eq. (2.23) to regularize the singular
regions of the integral approximations, one straightforwardly finds

I
++

= �1

4
� s2

N2

+
1

⇡2


ln

2N tan(⇡s/N)

⇡
+ 1 + �

�
+O(1/N) ,(B.4)

I�� = s� s2

N2

� 2

⇡2


ln

4N sin(⇡s/N)

⇡
+ 1 + �

�
+O(1/N2) ,(B.5)

I
+� = I�+

=
1

8
+O(logN/N) . (B.6)

An intermediate result necessary for the computation of I
+� is

1

N

nX

k=1

(�1)k cot
⇡

N
(k � 1/2) = �1

2
+

(�1)n

2N
cot
⇣⇡n
N

⌘
+O(1/N3) . (B.7)

The remaining pieces of trC2

o can be rearranged in the following way

2
sX

k,j=1

⇣
cot

⇡

N
(k + j � 1/2) + cot

⇡

N
(k � j + 1/2)

⌘
⇥

⇥
⇣
cot

⇡

N
(k � s� 1/2) + cot

⇡

N
(k + s+ 1/2)

⌘

= �
 

2sX

y=0

cot
⇡

N
(y + 1/2)

!
2

�
2sX

y=0

cot2
⇡

N
(y + 1/2)

+2
2sX

y=0

2sX

x=2s�y

cot
⇡

N
(y + 1/2) cot

⇡

N
(x+ 1/2) . (B.8)
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The first sum on the r.h.s. of eq. (B.8) we performed in (2.23). The second
sum can be performed using the same techniques:

1

N2

nX

k=1

cot2
⇡

N
(k � 1/2) =

1

2
+O(1/N) . (B.9)

The third sum requires more work and reduces to one of the two integrals
we could not find in tables. Up to logN/N corrections, we may replace the
third sum by the following integral:

I(b) ⌘
Z

1

0

Z
1

1�x

cot(bx) cot(by) dy dx , (B.10)

where

1

N2

2sX

y=0

2sX

x=2s�y

cot
⇡

N
(y+1/2) cot

⇡

N
(x+1/2) =

✓
2s

N

◆
2

I

✓
2⇡s

N

◆
+O(logN/N) .

(B.11)
The integral over dy is trivial:

I(b) =
1

b

Z
1

0

cot(bx) log
sin(b)

sin(b(1� x))
dx . (B.12)

We find that I 0(b)b+2I(b) = �1 and that in the small b limit I(b) = ⇡2/6b2+
O(1). From these two facts, we deduce that24

I(b) =
⇡2

6b2
� 1

2
. (B.13)

The quanties trC2

e and h |C2

e | i may be computed in an analogous way.
As can be seen in eq. (B.1), there was one mode sum we were forced to do
in the continuum limit:

1

N

N�1X

b=1

csc
⇡b

N
=

2

⇡

✓
� + ln

2N

⇡

◆
+O(1/N2) . (B.14)

All of the other mode sums we were able to perform explicitly. The remaining
sums over cotangents are similar to cases treated above. We spare the reader

24We would like Dan Gulotta for showing us how to perform this integral and also the
integral (B.15).
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almost all of the remaining details. In the computation of h |C2

e | i, we came
across a second novel integral:

J(b) =

Z
1

0


log

sin(b(1 + x))

sin(b(1� x))

�
2

dx . (B.15)

Similar to the strategy in computing I(b), we find that J 00(b)+2J 0(b)/b = �8
and that in the small b limit J(b) = ⇡2/3 +O(b2). Thus we deduce that

J(b) =
1

3
(⇡2 � 4b2) . (B.16)

C Alternate Formulation of d=3 Sum

In our e↵ort to find the Rényi entropies in odd dimensions we came across
an alternate form of the sum in Equation (3.38).

m�1X

k=0

e�⇡ik(m�1)/m

sin(⇡k/m+ ✓)
= e�i✓

0

@cot(m✓) + i� 2
1

sin(m✓)

m/2�1X

k=1/2

sin[2k(✓ � ⇡/2m)]

sin(⇡k/m)

1

A .

(C.1)

This alternate representation is essentially a Fourier series on the shifted
interval ⇡

2m
< ✓ < 2⇡ + ⇡

2m
.

Using the same integral form for the cosecant used for d = 3 we can
rewrite this new sum as an integral.

m/2�1X

k=1/2

sin[2k(✓ � ⇡/2m)]

sin(⇡k/m)
=

1

⇡

m/2�1X

k=1/2

Z 1

0

dx
xk/m

x(1 + x)
sin[2k(✓ � ⇡/2m)].

(C.2)

The integral can be evaluated for individual values of n = 1/m. This rewrit-
ing of the sum seems to have di↵erent issues with analytic continuation than
those that plagued Equation (3.39). It appears to reproduce correctly the
n = 2 thermal correction to the Rényi entropy (see Figure 23), but fails for
the others and for the entanglement entropy.

Equation (C.1) gives the following results for the first couple of Rényi
entropies

n = 2 2 sin(✓/2)3

n = 3 4

3

⇥
2 + cos

�
2✓
3

�⇤
sin2

�
✓
3

�

(Note that the n = 3 result is not reproduced by our numerics.)
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Figure 23: For d = 2 + 1, �S
2

with 200 grid points.

D Comment About Entropy Production Across
a Shock

In the ideal limit, in addition to conservation of energy and momentum, we
can write down a conservation condition for the entropy current, @µJ̃

µ
S = 0

where
J̃µ
S = (✏+ p)uµ/T. (D.1)

This conservation condition would naively seem to lead to an additional
Rankine-Hugoniot relation across a single shock. As is well known in the
hydrodynamics community (see for example [62]), since shocks create en-
tropy this third Rankine-Hugoniot relation is violated. Let us parameterize
a possible violation of the additional Rankine-Hugoniot relation by �.

� = s[J̃ t
S]� [J̃⇣S] (D.2)

where the square brackets are the same as those in (5.44). One finds

� =
2⇡p
ereld2

✓
e2r � e2l � 2erel log

✓
er
el

◆◆
+O(d�3) . (D.3)

Equation (D.3) can be obtained by using a large d expression for the entropy
current (5.40) along with the Rankine-Hugoniot relations for energy and
momentum, (5.44) supplemented by (5.16) and (5.17). Note that in the
asymptotic regions, the gradient terms will all vanish. (It is also possible to
start with a finite d result, as done in the previous chapter or for example
ref. [62], and then take a large d limit directly.)
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The non-conservation of entropy (D.3) can be captured by the leading
viscous corrections to the shock width (5.67) when the energy di↵erence is
small. Indeed, using (5.42)

@µJ̃
µ
S =

8⇡

d2
j2
0

(e0)2

e3
+O(d�3) =

2⇡j2
0

�e4

d2hei sech

✓
⇣�e

2

◆
4

+O(�e5, d�3) . (D.4)

Integrating this divergence over the ⇣ direction leads to
Z
@µJ̃

µ
Sd⇣ =

16⇡hei�e3
3d2

+O(�e4, d�3) , (D.5)

which agrees with a small �e expansion of (D.3).

E A bestiary of plots

In section 5.4.3 we studied the numerical solutions to the Riemann problem
for various initial energy and velocity profiles associated with RR, RS and
SS type solutions. In what follows we provide additional evidence that at
late times the full numerical solution to the Riemann problem approaches the
appropriate predicted steady state values e

0

and j
0

and fixed point values es
and js.

E.1 RR configurations

To generate an RR configuration we used the initial data

e = 1 , j =

8
>>>>>><

>>>>>>:

f(⇣) 0  ⇣ < `/4

0 `/4  ⇣ < L/2� `/4

f(⇣ � L/2� `/2) L/2� `/4  ⇣ < L/2 + `/4

j⇤ L/2 + `/4  ⇣ < L� `

f(⇣ � L) L� `  ⇣ < L

(E.1)

where

f(⇣) =
1

2
j⇤

✓
1� tanh

✓
c sin

✓
2⇡⇣

`

◆◆◆
. (E.2)

The analysis of section 5.4.2 predicts a steady state of the form

e
0

= exp (�j⇤/2) j
0

=
j⇤
2
exp (�j⇤/2) . (E.3)
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Once j⇤ � 2 one should find a fixed point with es = js = exp(�1). We find
that the numerical solution approaches the predicted states via power law
behavior, see figure 24.

E.2 SS configurations

To generate an SS configuration we used the initial data (E.1) with j⇤ < 0.
The analysis of section 5.4.2 predicts a steady state of the form

e
0

=
1

8
(8 + j2⇤ � j⇤

p
16 + j2⇤) ,

j
0

e
0

=
j⇤
2

. (E.4)

See figure 25 for a comparison with the numerical data.

E.3 RS configurations

To generate an RS configuration we used the initial data

j = 0 , e =

8
>>>>>><

>>>>>>:

f(⇣) 0  ⇣ < `/4

e⇤ `/4  ⇣ < L/2� `/4

f(⇣ � L/2� `/2) L/2� `/4  ⇣ < L/2 + `/4

1 L/2 + `/4  ⇣ < L� `

f(⇣ � L) L� `  ⇣ < L

(E.5)

where

f(⇣) =
1

2
(1 + e⇤) +

1

2
(e⇤ � 1) tanh

✓
c sin

✓
2⇡⇣

`

◆◆
+ e⇤ . (E.6)

The analysis of section 5.4.2 predicts a steady state of the form

e
0

= s2 , j
0

= s(s2 � 1) . (E.7)

with

0 =
1

s
� s� log

✓
s2

e⇤

◆
. (E.8)

According to the same analysis, once e⇤ �
⇣

1+

p
5

2

⌘
2

exp(1) we will obtain a

fixed point at the origin with es = js = exp(�1). An analysis of the late
time behavior of the numerical solution can be found in figure 26.
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Figure 24: Late time behavior of the steady state and fixed point for RR type
configurations. Top plots: The deviation of j(t, ⇣ = vt) from the predicted
steady state value j

0

for various values of v. The initial conditions are given
by (E.1) with L = 20000, ` = 8000, and c = 300 and j⇤ = 1.8 for the top
left plot and L = 8000, ` = 2000, c = 100 and j⇤ = 5 for the top right
plot. Both the results roughly fit a ⇠ t↵ asymptotic behavior with ↵ ⇠ 0.9.
Bottom plots: The deviation of e and j from the predicted fixed point value
at ⇣ = 0 for various values of c. The initial conditions are given by (E.1)
with L = 16000, ` = 4000 and j⇤ = 3. Both the time dependence of e/es � 1
and j/js�1 can be fit to a power law, ⇠ t↵. For the energy density one finds
that ↵ gradually increases to ↵ ⇠ 0.8 as one approaches c = 300. For the
energy current ↵ decreases to ↵ ⇠ 1.1 at c = 300.
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Figure 25: Late time behavior of the steady state and fixed point for SS type
configurations. The plots show the deviation of e(t, ⇣ = vt) and j(t, ⇣ = vt)
from the predicted steady state values e

0

and j
0

for various values of v. The
initial conditions are given by (E.1) with L = 40000 (top) or L = 20000
(bottom), ` = 2000 and c = 100. The top plots correspond to j⇤ = �0.5
and the bottom ones to j⇤ = �2. We expect that numerical error is of order
10�7 � 10�8.
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Figure 26: Late time behavior of the steady state and fixed point for RS type
configurations. Top plots: The deviation of e(t, ⇣ = vt) from the predicted
steady state value e

0

for various values of v. The initial conditions are given
by (E.5) with L = 16000, ` = 2000, and c = 100 and e⇤ = 4 for the top left
plot and e⇤ = 9 for the top right plot. Bottom plots: The deviation of e and
j from the predicted fixed point value at ⇣ = 0 for various values of c. The
initial conditions are given by (E.1) with L = 16000, ` = 4000 and e⇤ = 9.
Both the time dependence of e/es� 1 and j/js� 1 can be fit to a power law,
⇠ t↵. For the energy density one finds ↵ ⇠ 0.77. For the energy current
↵ ⇠ 1.1.
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E.4 Error analysis

In sections E.1 and E.3 we have fit the late time approach of the data to the
predicted steady state and (or) fixed point values to a power law behavior.
The fit was done using Mathematica’s NonLinearModelFit routine [90]. In
detail, the late time data was discretized into order 1 time steps which were
then fit to a a/t↵ curve with a and ↵ as parameters. The standard errors for
the fit were usually of order 10�3 to 10�4. Fits involving very small values of
the slope parameter c in (E.2) and (E.6) (c.f., the bottom plots of figures 24
and 26) often had large standard errors.
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