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“ The worthwhile problems are the ones you can really solve

or help solve, the ones you can really contribute something

to. A problem is grand in science if it lies before us unsolved

and we see some way for us to make some headway into it.

No problem is too small or too trivial if we can really do some-

thing about it. ”

– Richard P. Feynman to Koichi Mano, February 3, 1966
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Resumo

Apesar dos repetidos sucessos, uma evidência clara de que o Modelo Padrão (MP) não é a teoria

final provém da observação de oscilações de neutrinos, que implicam massas de neutrinos não nulas.

Na presente dissertação, analisamos extensões do MP baseadas no mecanismo seesaw, em que as

pequenas massas dos neutrinos surgem naturalmente da troca a nível árvore de campos pesados, que

podem ser singletos fermiónicos, tripletos fermiónicos ou tripletos escalares. De um ponto de vista efe-

tivo a baixas energias, o operador de dimensão cinco responsável pelas massas dos neutrinos é comum a

todas as teorias com neutrinos de Majorana. No entanto, existe uma grande variedade de operadores de

dimensão seis. Nesta tese, obtemos então os operadores efetivos de dimensão seis para as três versões

do mecanismo de seesaw e verificamos que poderão existir efeitos observáveis em experiências futuras

se os coeficientes dos operadores de dimensão seis forem desacoplados dos do operador de dimensão

cinco segundo um padrão comum aos vários modelos.

Exploramos também consequências fenomenológicas, incluindo uma análise detalhada de processos

violadores do sabor leptónico (LFV). Em particular, obtemos constrangimentos a cada modelo seesaw e

discutimos a possibilidade de observar tais processos em experiências atuais e futuras. As predições

obtidas para tais processos poderão constituir uma ferramenta fundamental para discriminar entre os

três modelos considerados. Para além disto, uma análise combinada incluindo outros decaimentos

eletrofracos mostra que os desvios à unitariedade nos modelos de seesaw fermiónicos são menores que

2σ.

Palavras-chave:
Física de neutrinos; Extensões do MP; Mecanismos seesaw; Fenomenologia; Decaimentos raros; Violação

do sabor leptónico.
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Abstract

Despite all its successes, strong evidence that the Standard Model of particle physics is not the ulti-

mate theory comes from neutrino oscillation experiments, which imply nonvanishing neutrino masses

and mixing.

In the present thesis, we analyse seesaw extensions of the SM, which naturally accomodate tiny neu-

trino masses through tree-level exchange of heavy fields, which may be either fermionic singlets/triplets

or scalar triplets. From a low-energy effective viewpoint, neutrino masses are generated by a dimension-

five operator, characteristic of all theories with Majorana neutrinos. However, a plethora of dimension-

six operators exists. In this thesis, we derive the low-energy dimension six operators for the basic seesaw

scenarios, and verify that they may lead to observable effects in the near future if the coefficients of the

dimension five and six operators are decoupled along a pattern common to all models.

The phenomenological consequences are explored as well, including a detailed analysis of charged

lepton flavour violating (CLFV) processes. Our focus relies, mainly, on predictions and constraints set on

each model from muon and tau decays and from muon to electron conversion in nuclei. The possibilities

to observe these processes in present and future experiments are also considered. The analytic results for

the rates of CLFV processes rates might be a decisive tool to discriminate between the three models of

neutrino mass generation. Besides that, a combined analysis including other electroweak decays shows

that departures from unitarity are not larger than 2σ in the fermionic seesaw models.

Keywords:
Neutrino Physics; SM extensions; Seesaw mechanisms; Phenomenology; Rare decays; Lepton flavour

violation.
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1 Introduction and motivation

1.1 Historical introduction

“... a way out for saving the law of conservation of energy. Namely, the possibility that there could

exist in the nuclei electrically neutral particles, that I will call neutrons which have spin 1/2 and follow

the exclusion principle. The continuous β-spectrum would then be understandable assuming that in

β-decay together with the electron, in all cases, also a neutron is emitted... ”

– Wolfgang Pauli, 1930

Neutrinos are very fascinating particles: they are the only elementary fermions with no electric

charge and their masses are many orders of magnitude below the masses of their charged counter-

parts. As such, studying neutrino properties has been of utmost importance in particle physics for the

last decades. From these studies, clear evidence has been gathered regarding an ultimate relation be-

tween the knowledge of neutrino properties and the understanding of fundamental properties of the

Universe. In view of this, the History of neutrinos is very instructive and it is worth taking a glance at

its highlights [1–3], from the proposal of the neutrino until the confirmation of neutrino oscillations.

The History of neutrinos begins with a famous Pauli letter [4] addressed to the participants of a

nuclear physics conference in Tübingen, in December 1930. At that time, nuclei were considered to be

bound states of protons and electrons. In that framework, there were two fundamental problems:

1. β-decay exhibited a continuous spectrum;

2. some nuclei had the ’wrong’ spin (such as 14
7N , observed to satisfy the Bose-Einstein statistics but

with a predicted half-integer spin, contradicting the spin-statistics theorem).

From the point of view of this electron-proton model, the β-decay of a nucleus (A,Z) consisted in

an electron emitted in the nuclear transition (A,Z) → (A,Z + 1) + e−. Applying the law of energy-

momentum conservation to this process, the electrons produced in β-decays should have a fixed kinetic

energy approximately equal to the release energy Qe for the reaction.

However, by 1911, L. Meitner and O. Hahn verified that β-spectra were continuous, with an end-

point energy equal to Qe (see Fig. 1.1). This result was subsequently confirmed in the calorimetric

experiment performed by C. Ellis and W. Wooster in 1927 [5]. They found that the energy released

per β-decay was equal to the average energy over the spectrum, proving that the energy detected was

smaller than the total energy released. Later, Meitner and Orthmann [6] showed that γ-rays could not

1



solve this problem, which led to the idea of explaining the missing energy with the existence of a new

particle.

Figure 1.1: Continuous β-decay spectrum from radium E, from experiment [5].

As a desperate way out, in 1930, Pauli proposed to the “Radioactive Ladies and Gentlemen” that

the existence of a new weakly interacting neutral particle emitted in β-decay could solve the existing

problems [4]. He called this particle a "neutron", with a mass of "the same order of magnitude as the

electron mass". Pauli further assumed that "neutrons" had spin 1/2 and that, together with protons and

electrons, were constituents of nuclei. This allowed him to solve the spin problem of some nuclei.

Two years later, J. Chadwick discovered the neutron [7] as we know it today (with a mass approxi-

mately equal to the mass of the proton and spin equal to 1/2) and, soon after, Heisenberg [8], Majorana

[9] and Ivanenko [10] suggested that nuclei were bound states of neutrons and protons. This assump-

tion was the key to explain all nuclear data existing at the time as well as the spin of 14
7N and other

nuclei. After the discovery of the neutron, E. Fermi renamed the Pauli particle to neutrino, with the first

published reference to it in the Proceedings of the Solvay Conference of October 1933. In that same year,

Fermi [11] and Perrin [12] independently concluded that neutrinos could be massless!

Later on, in 1934, E. Fermi formulated a theory of β-decay [13]. He assumed that nuclei are bound

states of neutrons and protons and that the electron-(anti)neutrino pair was produced in the transition

of a neutron into a proton: n → p + e− + ν. In analogy with Quantum ElectroDynamics (QED), Fermi

assumed that the neutron decay is governed by the following effective Lagrangian

Lβ(x) = Gβ√
2
[
ψp(x)γµψn(x)

] [
ψe(x)γµψν(x)

]
+ h.c. , (1.1)

with Gβ ≈ 1.1× 10−5 GeV−2 a coupling constant (slightly different from the now known Fermi constant

GF , determined from the muon decay) extracted from the neutron decay width.

The simple Fermi theory, however, could not describe all β-decay data. Indeed, the largest contribu-

tions to β-decay come from transitions in which the electron-(anti)neutrino pair is produced in a singlet

state (total spin S = 0). Thus, the observation of β-decays with electron and (anti)neutrino produced in

a triplet state (S = 1) led to the Gamov-Teller generalisation of the Fermi theory in 1936 [14], where the

Lagrangian included also an axial vector current ψγµγ5ψ, in such a way that parity was still conserved.

The Fermi-Gamov-Teller interaction turned out to be valid in view of all β-decay data , which was an

indirect evidence of the correctness of the Pauli neutrino hypothesis.

2



However, a fundamental complication of the Fermi theory arised when calculations beyond the low-

est order in perturbation theory led to infinite results. An additional problem was the loss of unitarity,

with cross sections growing with energy to arbitrarily large values. The solution to the first difficulty

came a few years later by Bethe in 1947 [15] with the concept of renormalisation, i.e. physical quantities

are not the bare parameters of the theory and infinites that arise are absorbed in physical quantities.

This has led to modern QED, formulated by Feynman, Schwinger and Tomonaga in the 1950s [16–18],

whose concepts of gauge symmetry and renormalisability prevailed until today.

The weakly-interacting particle content was then extended with the discovery of the muon (µ) in

1937, by E.C. Stevenson and J.C. Street [19] and C.D. Anderson and S.H. Neddermeyer [20]. Observa-

tions of muon decay led B. Pontecorvo to suggest in 1947 [21] the universality of electron and muon

weak interactions with nucleons. Such hypothesis was further discussed by G. Puppi [22], O. Klein [23],

J. Tiomno and J.A. Wheeler [24] and T.D. Lee, M. Rosenbluth and C.N. Yang [25]. This is probably the

origin of the concept now known as generation or family.

The fact that the neutrino in β-decay is produced together with an electron suggested the intro-

duction of some new conserved quantum number, the lepton number L. Its assignments are L = 1 for

particles and L = −1 for the corresponding antiparticles. The existence of a conserved lepton number

predicted that neutrino and antineutrino are different particles: the neutrino has L = +1 while the an-

tineutrino has L = −1. This was confirmed in the reactor experiment of R. Davis in 1955 [26], in which it

was verified that the lepton number violating reaction ν + 37Cl → e− + 37Ar is forbidden. On the other

hand, conservation of lepton number also predicted that in inverse β-decay there must exist an antineu-

trino in the initial state: ν + p → e+ + n. It was precisely in the search for a method to measure inverse

β-decay that F. Reines and C.L. Cowan devised an experiment in 1953 "to detect the free (anti)neutrino"

[27]. Their experiment was the first reactor-neutrino experiment, in which antineutrinos from a nuclear

reactor (produced via β-decay) could be detected via the observation of inverse β-decay. The neutrino

was finally discovered in 1956 [28] and, for this discovery, F. Reines was awarded the Nobel prize in

1995.

Contemporary to the Cowan-Reines experiment, and motivated by the θ − τ puzzle [29], T. D. Lee

and C. N. Yang [30] started to question the validity of parity conservation in all weak interactions and

proposed a number of ways to test it. In the same year, W. S. Wu and collaborators [31] investigated

the β-decay of polarised 60Co nuclei and found a large asymmetry in the emission of the electrons with

respect to the nuclei polarisation: electrons were predominantly emitted opposite to the direction of

the nuclei polarisation. This proved that parity is not conserved in β-decays. Later, parity violation

was also observed in other weak processes, such as π+ → µ+ + νµ and µ+ → e+ + νe + νµ. In order

to explain parity violation in interactions involving neutrinos, A. Salam in 1956 [32], and L. Landau

[33], T. D. Lee and C. N. Yang [34] in 1957 proposed the two-component neutrino theory. Here, the

neutrino is a massless spin- 1
2 particle with only "one spin state", i.e. it has always the same helicity. One

year later, Goldhaber, Grodzins and Sunyar [35] measured the polarisation of the neutrino in electron

capture e− +152 Eu →152 Sm∗ + νe, followed by the decay 152Sm∗ →152 Sm + γ. By measuring the

circular polarisation of the photon, they found that the neutrino is a particle with negative helicity,
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thus supporting the two-component theory. However, these results could not exclude the existence of

extremely light neutrinos. In order to account for parity violation in weak interactions, parity-violating

couplings had to be included in the weak Lagrangian. This was accomplished with the effective V-A

theory formulated in 1958 by R.P. Feynman and M. Gell-Mann [36], E.C.G. Sudarshan and R.E. Marshak

[37] and J.J. Sakurai [38], realised in the leptonic sector by the two-component neutrino theory.

In the late fifties, the concept of lepton number was firmly established. However, if muon and elec-

tron neutrinos were the same particle, muons would also decay through the µ→ eγ channel, for which

experimental limits were many orders of magnitude below predictions. This suggested that νe and

νµ were actually different particles. To test this hypothesis, B. Pontecorvo proposed an experiment in

1959 [39], later realised by L. Lederman et al. in Brookhaven (1962) [40]. This was the first accelerator

neutrino experiment, where neutrinos were obtained from decays of pions (produced by the bombard-

ment of a Be target by 15 GeV protons). In these decays, predominantly muon neutrinos are produced

(π+ → µ+ + νµ) and if νe and νµ were the same particles the two processes

νµ + nucleons→ µ− + hadrons , (1.2)

νµ + nucleons→ e− + hadrons , (1.3)

would have the same cross section and equal number of electrons and muons would be detected. The

Brookhaven experiment detected 29 muons and only 6 background electrons, thus establishing the ex-

istence of a second neutrino. As a consequence, it was necessary to introduce two conserved quantities,

the electron lepton number Le and the muon lepton number Lµ, making µ→ eγ forbidden.

But the sixties were mostly marked by the formulation of the Glashow-Weinberg-Salam Standard

Model (SM) of electroweak interactions in 1967-1968 [41, 42]. The SM is based on the SU(2)×U(1) gauge

group proposed by S.L. Glashow in 1961 [43] which, in addition to the photon, predicted the existence

of weak neutral currents mediated by the Z boson, as well as the W± charged bosons mediating weak

charged currents. A key ingredient of the SM is the Higgs mechanism or, in a more conciliatory renaming

by P. Higgs, the ABEGHHK’tH mechanism (for Anderson [44], Brout and Englert [45], Guralnik [46],

Hagen, Higgs [47], Kibble [48] and ’t Hooft). This mechanism allows the massless gauge bosons that

appear in the gauge model to acquire longitudinal degrees of freedom, making them massive without

explicitly breaking the symmetries of the model. The renormalisability of the theory was proved in 1971

by G.’t Hooft and M. Veltman [49, 50], showing the consistency of the model as it allows to calculate

higher order corrections to physical quantitites (contrarily to what happened with the current-current

and intermediate vector boson theories).

The first crucial confirmation of the success of the SM was the discovery of neutral current neutrino

interactions in the bubble chamber "Gargamelle" (1973) [51, 52]. Anoter great triumph of the SM came

one year later, with the discovery of the charm quark in the form of the J/Ψ particle (cc̄) at BNL (J) [53]

and at SLAC (ψ) [54], as predicted by the S. Glashow, J. Iliopoulos and L. Maiani (GIM) mechanism of

quark mixing [55]. Finally, the subsequent dicovery of the W± [56, 57] and Z0 [58, 59] gauge bosons at

CERN firmly established the SM as the model for leptonic and hadronic electroweak interactions.
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The remaining building blocks of the SM were then gradually discovered, first with the τ lepton

discovery by M. Perl in 1975 [60] and with the b quark discovery at Fermilab in 1977 [61]. Through the

analysis of invisible Z decay at LEP in 1989, the number of lepton generations was later fixed to three

[62]. Finally, as predicted by M. Kobayashi and T. Maskawa in 1973 [63], in order to explain CP violation

in K0-decays, the t quark was discovered at Fermilab in 1995 [64, 65]. This confirmed the existence of

three SM generations of leptons and quarks. The only missing piece at the time was the Higgs boson,

the quanta of the Higgs field necessary to break the gauge symmetry spontaneously. Its detection took

almost fifty years to come about but, as a result of an enormous experimental enterprise put up to find

this elusive particle, the observation of a Higgs-like boson with a mass of 125.9±0.4 GeV [66] was finally

announced in 2012 by the ATLAS and CMS collaborations [67, 68].

From all existing data at the time of the SM formulation, it followed that neutrino interactions were

well described by that theory. However, neutrino masses, magnetic moments and other properties were

basically unknown. Measurements of the shape of the high-energy part of the β-decay spectrum of

tritium (method proposed by Fermi [11] and Perrin [12]) indicated that neutrinos are much lighter than

electrons, with an upper bound at about 100 eV when parity violation in β-decay was discovered [69].

Together with the success of both the SM and the two-component theory (both based on the assumption

of massless neutrinos), this led to a general belief that neutrinos were actually massless particles.

It was B. Pontecorvo who, in 1957 (even before the formulation of the SM), considered the possibil-

ity of small but nonzero neutrino masses [70]. He noted that, contrary to what happens in QED where

gauge invariance prevents the photon from acquiring a mass, there is no such principle for neutrinos.

Motivated by K0 � K̄0 oscillations (M. Gell-Mann and A. Pais [71], 1955), in which the strangeness

quantum number is oscillating, Pontecorvo suggested that lepton number is not conserved and that

neutrino states produced in weak decays are superpositions of states with definite masses. As a result,

neutrino oscillations would take place in neutrino beams propagating in vacuum. A seminal paper on

neutrino oscillations was published by B. Pontecorvo in 1958 [72]. At that time, R. Davis was conduct-

ing an experiment with reactor antineutrinos [73] with the aim of testing lepton number conservation.

Davis searched for the production of 37Ar in the process ν̄e+37Cl→ e−+37Ar with reactor antineutrinos,

which is forbidden if L is conserved. A rumor that Davis had seen some events reached B. Pontecorvo,

who interpreted that the successful observation could be due to ν̄ → ν transitions and a subsequent

ν +37 Cl → e− +37Ar reaction (at the time, only one type of neutrino was known and the possible os-

cillations that he could find were neutrino-antineutrino oscillations ). Later, after the Davis experiment

was finished and no production of 37Ar was observed, B. Pontecorvo understood that, due to oscilla-

tions, the neutrino (antineutrino) could transform into νR (νR), particles that do not participate in weak

interactions. It was thus introduced the concept of sterile neutrinos.

A more realistic model of oscillations was discussed at the time of the discovey of the muon neutrino

νµ in 1962, when Z. Maki, M. Nakagawa and S. Sakata [74] assumed that νe and νµ are linear orthogonal

combinations of two neutrino mass eigenstates, and pointed out that in such case νe � νµ transitions

become possible. The same idea was published by Pontecorvo in 1967 [75], who considered the oscilla-

tions νeL � νµL, νeL � νeR (sterile), νeL � νµR (sterile), etc. and applied this idea to solar neutrinos.
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At that time, R. Davis and collaborators had started his famous experiment [76] to detect solar neutri-

nos through the reaction νe +37 Cl→ e− +37 Ar. The solar neutrino flux measured by Davis revealed

a deficit of solar neutrinos when compared with the current solar model predictions. This led to the

so-called "solar neutrino problem". It took many years of research to find that the neutrino oscillation

hypothesis was the best candidate to explain the solar neutrino deficit. The development of the theory

of neutrino oscillations was finally achieved in 1975-76 by S. Eliezer and A. Swift [77], H. Fritzsch and P.

Minkowski [78], S. Bilenky and B. Pontecorvo [79].

Despite some plausible arguments given in the seventies for small but nonzero neutrino masses

there was not much interest in neutrino masses and mixings at that time: the two-component theory for

a massless neutrino was still the popular. The interest in massive neutrinos and neutrino oscillations

increased significantly by the end of the seventies with the works by Pati and Salam in 1973 [80] and

Georgi and Glashow in 1974 [81] on grand unified theories (GUTs). Such interest was driven by the fact

that in these models leptons and quarks appear in the same multiplets, and the mass-generation mech-

anism naturally leads to nonzero neutrino masses. A major cornerstone for the theoretical research on

neutrino physics was the formulation of the seesaw mechanism in 1979 [82], in the context of specific

GUT models such as horizontal, left-right and SO(10) symmetric models. The seesaw model could ex-

plain the smallness of neutrino masses with respect to the masses of charged fermions in the SM. In that

same year, a model-independent description of small neutrino masses was written down by S. Wein-

berg [83] and, as an application, a minimal nonsupersymmetric SO(10) model was constructed. From

this early enthusiasm, it became clear that the seesaw mechanism would be a major tool in understand-

ing neutrino masses and mixings if experimental evidence would ever appear. Indeed, this turned out

to be the case and, as a consequence, neutrino masses and mixing started to be considered as a signature

of physics beyond the SM, beginning a new era in neutrino physics.

In the 1980’s, several short-baseline experiments with accelerator and reactor neutrinos were per-

formed but no positive indication of oscillations was found using these artificially produced neutri-

nos 1. On the other hand, the neutrino oscillation hypothesis to explain the solar neutrino deficit was

strengthened by the Kamiokande experiment [84]. In this water Cherenkov experiment, high-energy

solar neutrinos from the decay 8B →8Be + e + νe were detected via the observation of recoil electrons

from electron-neutrino scattering νe + e → νe + e. The observed flux of solar neutrinos was about 1/2

of the predictions, and was later confirmed by the results of GALLEX/GNO [85], SAGE [86], Super-

Kamiokande [87] and SNO [88]. Particularly relevant, the results of the SNO experiment allowed to

obtain model-independent evidence of solar νe disappearance. Observations showed that the flux of

νe was three times smaller than the flux of νe, νµ and ντ , which was instrumental in solving the solar

neutrino problem in 2002. The solar electron-neutrino deficit was finally found to be due to oscillations

of νe into νµ and ντ inside the Sun through the Mikheev-Smirnov-Wolfenstein effect [89–91], and the

model proposed by J. Bahcall and others [92] has become the Standard Solar Model.

Atmospheric neutrinos were first detected by underground experiments located in South Africa

1More recently, the recalculated fluxes of ν̄′es from reactors were found to be (3-4)% higher than the old ones,
which is nowadays interpreted as a positive indication of short-baseline neutrino oscillations.
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[93] and India [94] and the first measurements of atmospheric neutrino fluxes were performed in the

iron calorimeter experiments NUSEX [95] in 1989 and Fréjus [96] in 1995. The results of these exper-

iments were apparently in agreement with the predicted ratio, but this turned out to be contradicted

by the Kamiokande and IMB experiments, which found a significantly smaller number of νµ-induced

events. This effect was called the atmospheric neutrino anomaly and could be explained by transitions of

νµ into other neutrino states. But the breakthrough in (atmospheric) neutrino physics happened in 1998,

when the Super-Kamiokande (SK) collaboration proved that the number of observed muon neutrinos

depended on the distance travelled by neutrinos from the production point in the atmosphere to the

detector. This was the first model-independent evidence of neutrino oscillations. One of the most important

results obtained by SK is that the mixing angle θ23 involved in atmospheric neutrino oscillations is large

(almost maximal), contrarily to what happens in the quark sector where all mixing angles are small.

This was later confirmed by the independent results of the long-baseline K2K [97] and MINOS [98]

accelerator experiments. Another very important experiment was the KamLAND reactor neutrino ex-

periment in Japan [99]. In 2002-2004, KamLAND reported that the total number of ν̄e events was∼ 60 %

of the number of expected events, providing another model-independent evidence of reactor neutrino

oscillations. Together, the data from SNO, SK and KamLAND experiments established the large mixing

angle pattern as a solution to the solar neutrino problem, with a solar neutrino mass-squared difference

∆m2
� ∼ O(10−5 eV2) and a mixing angle sin2 θ12 ≈ 0.3. Subsequent experiments using reactor and ac-

celarator neutrinos have gradually measured the solar and atmospheric neutrino parameters with a few

to several percent accuracy.

In recent years, the T2K collaboration (in 2011) reported evidence for a non-zero reactor mixing angle

θ13 [100]. This was subsequently supported by observations from the MINOS [101] and Double Chooz

[102] collaborations, although with smaller statistical significance. Finally, in 2013, the Daya Bay reactor

antineutrino [103] and the RENO experiments [104] both reported results consistent with a nonvanishing

reactor mixing angle θ13 with rather high precisions of 5.2σ and 4.9σ, respectively.
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1.2 Motivation and thesis outline

Despite the precise experimental determination of the parameters responsible for neutrino oscilla-

tions, the most fundamental questions regarding neutrinos are still to be answered. In first place, from

neutrino oscillation experiments, neutrino mass-squared differences and mixing angles are very well

known. However, absolute neutrino masses and their hierarchy are still unknown. Besides probing

the neutrino mass scale and their mass hierarchy, we also need to make clear what is the nature of

neutrinos: are they Dirac or Majorana particles? Secondly, in spite of irrefutable evidence for Lepton

Flavor Violation (LFV) in neutrino oscillations, all searches for LFV in the charged lepton sector (CLFV)

have obtained negative results so far. However, the expected improvement of experimental sensitivities

on CLFV processes by several orders of magnitude justifies the theoretical study of CLFV processes in

models for neutrino masses.

Concerning CLFV, it is well known that a minimal extension of the SM with massive (Dirac) neu-

trinos, in which total lepton number L is conserved, guarantees non-vanishing CLFV, but at a strongly

suppressed level. The predictions of this model obviously satisfy the current experimental limits but

do not give a natural explanation to the huge disparity between the magnitude of neutrino masses and

the masses of charged fermions. This suggests that neutrino masses are related to a new, yet unknown,

physics scale Λ, i.e. to physics beyond the SM. A natural explanation for tiny neutrino masses is pro-

vided by the seesaw models of neutrino mass generation. In these models, the scale Λ is set by the scale

of masses of the new degrees of freedom, which can be either fermion singlets (triplets) in the minimal

type I (type III) seesaw scenario or scalar triplets in the type II seesaw model.

The scale Λ at which the new physics manifests itself can, in principle, have an arbitrary large value,

up to the GUT scale and even beyond. An interesting possibility, which may even be supported by hier-

archy arguments, is to have Λ at the TeV scale, i.e. Λ ∼ O(TeV), in a way which naturally accomodates

tiny neutrino masses while allowing for large Yukawa couplings. Such low-energy scenario requires a

common and model-independent pattern, which we discuss [105]. In such scenario, predicted rates of

CLFV processes, such as `α → `βγ, ` → 3` and µ − e conversion in nuclei, can lie within the reach of

future experimental sensitivities, even when direct detection of the new particles is not achievable at the

LHC [106]. Moreover, an analysis of the behavior of CLFV rates in each type of seesaw could be used to

determine (or exclude) the mechanism responsible for neutrino masses.

The present thesis is organised as follows. In Chapter 2, we review the main aspects of the SM, in

particular of its electroweak sector. Then, in Chapter 3, we discuss how to describe massive neutrinos

in the most general Dirac-Majorana case and review the main features of the three canonical seesaw

scenarios, both their complete and effective description. In the end of the chapter, we also consider the

possibility of a TeV-scale seesaw. In Chapter 4 we analyse phenomenological signals for each seesaw,

such as those associated with non-unitarity. Limits on the parameters of each model are obtained from

present bounds on CLFV processes as well as data on other electroweak decays, and sensitivities of

future experiments are also discussed. Finally, we draw an overall conclusion in Chapter 5. Technical

details, like one-loop calculations, are collected at the end of the thesis.
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2 The Standard Model of

particle physics

“The Standard Model is the ultimate result of a long period of progress in elementary particle physics.

It is a consistent, finite and, within the limitations of our present technical hability, compuTable theory

of fundamental microscopic interactions that sucessfully explains all known phenomena in elementary

particle physics, describing strong, electromagnetic and weak interactions. ”

– G. Altarelli, Encyclopedia of Mathematical Physics

Despite all its successes, the Standard Model (SM) of strong and electroweak interactions contains

some flaws and unexplained phenomena. However, it still constitutes the foundations on which our

quest for new physics must be built. As such, we start the present work by making a brief introduction

to the SM, with particular emphasis to the problem of neutrino masses and mixings.

2.1 Field content and Lagrangian

The SM of particle physics consists in a mathematical description of strong, weak and electromag-

netic interactions. It is a relativistic quantum field theory built by postulating an underlying symmetry

group of local (continuous) transformations

GSM = SU(3)c︸ ︷︷ ︸
QCD

⊗ SU(2)L ⊗U(1)Y︸ ︷︷ ︸
EW interactions

, (2.1)

being thus a so-called gauge theory. The subscripts label new degrees of freedom called colour (c), left-

handed chirality (L) and weak hypercharge (y). The SU(3)c factor is the symmetry group responsible for

strong interactions whereas SU(2)L ⊗U(1)Y accounts for electroweak (EW) interactions.

As we will see, the symmetry group GSM fixes the possible interactions of the theory, i.e. the num-

ber and properties of mediating vector gauge bosons. On the other hand, the number and properties

of fermions and scalar bosons is unconstrained, except for the fact that they must transform under a

definite representation of the symmetry group GSM, and the fermion content must not lead to quantum

anomalies1 [107]. There exist ng = 3 generations of spin 1/2 fermions with identical properties (apart

from their masses), which are the fundamental constituents of visible matter. They are divided in quarks

1Quantum anomalies refer to quantum effects that break the symmetries associated with the classical equations
of motion. In particular, they may occur when the divergences in a theory cannot be regularised consistently with
the original symmetries.
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and leptons, as shown in Table 2.1. Quarks are the elementary components of hadrons (but do not exist

as free particles), and participate in all interactions, whereas leptons do not undergo strong interactions.

G
en

er
at

io
ns

Leptons

Flavour
Electric

charge (e)
Mass

(GeV/c2)
electron

νe neutrino
0 < 1× 10−5

e electron -1 5.11× 10−4

muon
νµ neutrino

0 < 1× 10−8

µ muon -1 0.106

tau
ντ neutrino

0 ≈ 0

τ tau -1 1.78

Quarks

Flavour
Electric

charge (e)
Mass

(GeV/c2)

u (up) 2/3 2.3× 10−3

d (down) -1/3 4.8× 10−3

c (charm) 2/3 1.3

s (strange) -1/3 9.5× 10−2

t (top) 2/3 173

b (bottom) -1/3 4.2

Table 2.1: Fermionic content of the SM. Electric charges and masses were taken from Ref. [66].

The next step in the construction of the theory is to choose proper representations for the fermion

fields. This choice has been guided by the wisdom of history, in particular by the V −A theory of weak

interactions and the two-component theory of the massless neutrinos. These theories are chiral theories,

i.e. they treat differently right- and left-handed components of fermion fields

ψR = 1 + γ5

2 ψ ≡ PRψ , ψL = 1− γ5

2 ψ ≡ PLψ . (2.2)

where γ5 is the chirality matrix and PL (PR) is the left (right)-handed chirality operator. The chiral fields

ψR,L can be described as two-component spinors and are the simplest nontrivial representations of the

Lorentz group [3], i.e. the fields ψR and ψL transform independently under Lorentz transformations.

In view of this, they must be considered as the fundamental ingredients for the construction of the SM

Lagrangian, which must be a scalar under the Poincaré group. The SM is also a chiral theory with left-

handed chiral components of the fermion fields grouped into weak isospin doublets (two-component

column vectors under SU(2)L ) and with right-handed fields being singlets under SU(2)L, thus leading to

parity breaking in SU(2)L. The fermionic field content of the SM is conveniently summarised in Table 2.2.

It should be noticed that these fields are weak eigenstates, i.e. they have definite gauge transformation

properties and only after spontaneous symmetry breaking (SSB) of the gauge symmetry will these states

become admixtures of mass eigenfields. As can be seen from Table 2.2, there are 2ng = 6 quark flavours

and each carries a colour indexm = 1, 2, 3, umαL,R or dmαL,R (each quark flavour is thus a three-component

column vector under SU(3)c). On the other hand, leptons are colour singlets, i.e. they are invariant under

SU(3)c. Leptons are divided into charged components (e, µ, τ ) and corresponding neutrinos (νe, νµ, ντ ),

with electric charges −1 and 0, respectively. Particularly relevant for our later discussion is the fact that,

in the SM, only left-handed neutrinos are introduced (inherited from the two-component neutrino the-

ory). This property will be specially important because it leads to strictly massless neutrinos in the SM.
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Quark fields
Quantum numbers

(n3, n2, y) Lepton fields
Quantum numbers

(n3, n2, y)

QαL =

uαL
dαL

 (3, 2, 1/3) LαL =

ναL
`αL

 (1, 2, -1)

umαR (3, 1, 4/3) `αR (1, 1, -2)

dmαR (3, 1, -2/3)

Table 2.2: SM fermionic fields, with the quantum numbers regarding (SU(3),SU(2),U(1)) representation
assignments. The index α runs over three generations (or families) of fermions.

The quantum numbers (n3, n2, y) in Table 2.2 are representation assignments for each fermion. They

are thus related to the transformation properties of the fields under the group GSM of local transforma-

tions. An element g of GSM = SU(3)c ⊗ SU(2)L ⊗U(1)Y can be parametrised by 8 + 3 + 1 local parame-

ters (Θ(x), θ(x), η(x)), with Θ(x) = (Θ1(x), ...,Θ8(x)) and θ(x) =(θ1(x), θ2(x), θ3(x)), which depend on

space-time coordinates x. Thus, under g ∈ GSM a general field ψ transforms as

ψ(x)→ Ug(x)ψ(x) ≡ exp [ iΘs(x)T s ] exp
[
iθk(x)Ik

]
exp [ iη(x)Y ]ψ(x) . (2.3)

The operators Ts, Ik and Y are the generators of SU(3)c, SU(2)L and U(1)Y , respectively. For a general

SU(N ) group there are N2 − 1 generators tk obeying the relations

[
ta, tb

]
= ifabctc with Tr[tatb] = 1

2δab , a, b, c = 1, ..., N2 − 1 , (2.4)

where fabc are the structure constants of the group, fabc = εabc for SU(2). Hence, there are eight gener-

ators T s for SU(3)c and three generators Ik for SU(2)L, and the trace in Eq. (2.4) implies that for each

representation of the gauge groups the scale of the generators is fixed. On the other hand, for U(1)Y the

only generator is the hypercharge operator Y , whose action on each representation is fixed after SSB.

As can be seen from Table 2.2, SM fermions are either in a fundamental or in a singlet representation of

SU(3)c and SU(2)L. The corresponding generators for each representation are organised in Table 2.3.

In order to implement local gauge invariance of the Lagrangian under GSM, the usual partial deriva-

tive ∂µ must be replaced by a covariant one Dµ in the kinetic terms of the Lagrangian:

∂µ → Dµ = ∂µ − igsGsµTs − igAkµIk − ig′Bµ
Y

2 , (2.5)

where gs, g and g′ are coupling constants associated with each invariant subgroup of GSM. For each

generator of the gauge, local gauge invariance requires the introduction of one vector gauge boson,

which transforms in such a way that the kinetic terms are kept invariant under GSM. These will give

origin to the vector bosons that mediate strong and EW interactions: eight massless gluons for strong

interactions, the massive Z and W± for weak interactions and the photon for electromagnetism.
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Quantum number Ts Ik Y

Fundamental representation n3 = 3 / n2 = 2 / y 6= 0 1
2λs

1
2τk y

Singlet representation n3 = 1 / n2 = 1 / y = 0 0 0 0

Table 2.3: Generators of SU(3)c, SU(2)L and U(1)Y transformations for the fundamental and singlet
representations in the SM. λs are the Gell-Mann matrices in a certain basis and τk are the Pauli matrices.

At this point, the SM Lagrangian is then the most general renormalisable Lagrangian invariant under

the local symmetry group GSM and written in terms of fermion and gauge boson fields,

L = Lgauge + Lf , (2.6)

where the gauge Lagrangian Lgauge contains the kinetic terms and self-couplings of the gauge bosons:

Lgauge = −1
4G

s
µνG

µνs − 1
4A

k
µνA

µνk − 1
4BµνB

µν . (2.7)

It corresponds to the Proca Lagrangian for massless vector (spin 1) fields with the following definitions

of the field strength tensors for SU(3)c , SU(2)L and U(1)Y , respectively:

Gsµν =
(
∂µG

s
ν − ∂νGsµ

)
+ gsfsjlG

j
µG

l
ν , s, j, l = 1, ..., 8 , (2.8)

Akµν =
(
∂µA

k
ν − ∂νAkµ

)
+ gεkjlA

j
µA

l
ν , k, j, l = 1, 2 , 3 , (2.9)

Bµν = (∂µBν − ∂νBµ) . (2.10)

On the other hand, the SU(2)L and U(1)Y fermion representations are chiral and, therefore, no fermion

(Dirac) mass terms of the type mψψ are explicitly allowed because they would break the gauge symme-

try. Therefore, the fermions Lagrangian Lf consists entirely of gauge invariant kinetic terms,

Lf =
(
QLαi /DQLα + uRαi /DuRα + dRαi /DdRα

)︸ ︷︷ ︸
Lquarks

+
(
LRαi /DLRα + R̀αi /D R̀α

)︸ ︷︷ ︸
Lleptons

. (2.11)

Expanding the first term,

QαLi /DQαL = i
(
uL dL

)
mα

γµ
[(
∂µI −

ig

2 ~τ ·
~Aµ −

ig′

6 IBµ

)
δmn −

igs
2
~λmn · ~GµI

]uL
dL


nα

, (2.12)

it is clear that the SU(3)c and SU(2)L⊗U(1)Y groups commute [108]. Added to the fact that the colour

group SU(3)c will remain unbroken, this implies that EW interactions can be studied separately from

strong itneractions. As such, in the following we will simplify the notation by suppressing colour indices

on quark fields and omitting contributions from SU(3)c in the covariant derivatives.
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2.2 Higgs mechanism

“If my view is correct, the universe may have a kind of domain structure. In one part of the universe

you may have one preferred direction of the axis; in another part the direction may be different.”

– Y. Nambu

The SM as described is not a realistic theory since bare mass terms for fermions or electroweak gauge

bosons are not allowed in the Lagrangian, contrarily to the experimentally known existence of massive

fermions and vector bosons. However, effective masses may be generated if we give up from an exact

and unbroken gauge symmetry principle by breaking the SM gauge symmetry spontaneously [109, 110]:

GSM = SU(3)c ⊗ SU(2)L ⊗U(1)Y
SSB−−→ SU(3)c ⊗U(1)Q . (2.13)

The SU(3)c symmetry remains unaffected by SSB since it encodes an exact symmetry of nature whereas

the electroweak SU(2)L⊗U(1)Y symmetry is spontaneously broken into an U(1)Q symmetry correspond-

ing to electric charge conservation. The gauge symmetry must be spontaneously broken instead of ex-

plicitly to ensure renormalisability [49] and unitarity [111].

The SSB mechanism is implemented by introducing in the theory scalar fields whose vacuum state

|0〉 is not SU(2)L⊗U(1)Y symmetric, i.e. UGSM |0〉 6= |0〉. Fermion and vector boson fields cannot be used

for this purpose because their ground state must be zero in order to preserve Lorentz invariance. Also,

charged scalar fields must vanish in the vacuum, to keep it electrically neutral2. Thus, only neutral scalar

fields can have a nonzero value in vacuum, the so-called vacuum expectation value (VEV). Considering

that masses for the Z and W± vector bosons must be generated while keeping the photon massless,

we must introduce at least 3 degrees of freedom for the scalar fields, two of which are charged. The

simplest/minimal choice is a complex SU(2)L doublet of scalar fields, the Higgs doublet:

Φ(x) =

φ+(x)

φ0(x)

 = 1√
2

ϕ1(x) + iϕ2(x)

ϕ3(x) + iϕ4(x)

 , Φ ∼ (1,2,1) , (2.14)

where ϕi are real fields and the signs in superscript will soon be explained. To the SM Lagrangian (2.6)

we then need to add the gauge invariant Lagrangian term for the scalar field:

LHiggs = (DµΦ)† (DµΦ)− V (Φ) . (2.15)

The term V (Φ†Φ) corresponds to the most general renormalisable scalar potential3,

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2 = µ2

( 4∑
i=1

ϕ2
i

)
+ λ

( 4∑
i=1

ϕ2
i

)2

. (2.16)

2This is a consequence of the CPT theorem, according to which any Lorentz-invariant gauge quantum field
theory is invariant under a CPT transformation.

3Power counting of divergent diagrams dictates that Lagrangian terms containing products of fields with energy
dimension larger than four are not renormalisable (see, for example, [112]).
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−
√
−µ2/λ

√
−µ2/λ

V (v)

v

Figure 2.1: Potential V (v) in Eq. (2.17) for µ2 > 0 (solid) and for µ2 < 0 (dashed).

and is obviously O(4)∼ SU(2)⊗ SU(2) invariant, which is a clear example of an accidental symmetry.

However, the associated extra generators are explicitly broken by the gauge interactions in Eq. (2.15).

Since our interest lies on the mass spectrum, we must study the theory around the minimum energy

state (lowest-energy classical solution), because particles are the result of oscillations around it. This

state is the ground state value of Φ, 〈0|Φ|0〉 ≡ 〈Φ〉. From the Lagrangian (2.15), we see that the lowest-

energy solution is for ϕi(t, ~x) = ’constant’ since any x-dependence of the ground state would violate

translation invariance. Without loss of generality, we can perform an SU(2)L⊗U(1)Y rotation so that

〈Φ〉 = 1√
2

0

v

 and 〈V (Φ)〉 → V (v) ≡ µ2

2 v2 + λ

4 v
4 , with v ∈ R+

0 . (2.17)

Thus, the minimisation of V (Φ) is equivalent to that of a potential V (v) with a single hermitian scalar

field. One must choose λ > 0 so that V (v) is bounded from below. However, the sign of µ2 is arbitrary

and the shape of V (v) in Fig. 2.1 must be carefully analysed.

For µ2 > 0, there is only one minimum at v = 0 and SU(2)L⊗U(1)Y is unbroken, i.e. UGSM 〈Φ〉 = 〈Φ〉.

This case corresponds to the so-called Wigner-Weyl realisation of the symmetry. The other possibility,

µ2 < 0, corresponds to SSB, also known as the Nambu-Goldstone realisation of the symmetry. In this

case UGSM 〈Φ〉 6= 〈Φ〉 and the SU(2)L⊗U(1)Y symmetry is broken with a minimum at

v =
√
−µ2

λ
. (2.18)

For the sake of completeness, one must say that for µ2 = 0 it is not sufficient to consider the classical

theory. In this case, it can be proven that by adding quantum corrections to the potential the symmetry

is again spontaneously broken [113].

Thus, from now on, we will consider the case µ2 < 0, for which the generators Ik and Y are sponta-

neously broken4. Namely, we have

Ik 〈Φ〉 = τk

2 ·
1√
2

0

v

 6= 0, k = 1, 2, 3, Y 〈Φ〉 = 1
2 ·

1√
2

0

v

 6= 0 . (2.19)

4To see which symmetry groups G are unbroken one simply needs to check if the VEV of the field belongs to the
kernel of the transformations defined by the group generators T , since in this case eiαT 〈φ〉 = (1 + iαT + ...) 〈φ〉 =
〈φ〉+ iαT 〈φ〉+ ... ≈ 〈φ〉.
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However, there is still a combination of SU(2)L⊗U(1)Y generators which leaves the vacuum invariant:

[
Y

2 + I3
]
〈Φ〉 =

[
1 + τ3

2

]
1√
2

0

v

 = 1√
2

1 0

0 0

0

v

 = 0 . (2.20)

To this unbroken U(1)Q symmetry we associate electric charge conservation, and the unbroken generator

Q is interpreted as the electric charge operator, related to the weak isospin generator I3 and to the

hypercharge operator Y by the Gell-Mann-Nishijima relation [114]:

Q = Y

2 + I3 . (2.21)

Applying this operator to the Higgs doublet Φ, we get

QΦ =

1 0

0 0

φ+

φ0

 =

φ+

0

 , (2.22)

showing that φ+ is a singly-charged scalar field whereas φ0 is a neutral scalar field.

In order to derive the physical consequences of SSB, one must quantise the theory around the clas-

sical vaccum state, i.e. write Φ = 〈Φ〉 + Φ′, where Φ′ is a scalar field with zero VEV. At first order, the

Higgs doublet can be written as

Φ(x) =

 φ+

(v+H+iϕz)√
2

 ≈ 1√
2

exp
(
iξjLj

) 0

v +H

 , j = 1, 2, 3 , (2.23)

with φ+ ≈ ξ2+iξ1
√

2 and ϕz ≈ −ξ3. The Lj are the three broken generators I1, I2 and I3 − Y/2, and H is

a real scalar field, the physical Higgs boson obtained by excitations of the neutral Higgs field above the

vacuum. The fields ξ1, ξ2 and ξ3 would be the massless pseudoscalar Goldstone bosons if we had been

dealing with a global symmetry [115, 116]. In a gauge theory, these unphysical fields can be gauged away

from the physical spectrum by the following gauge transformation

Φ→ exp
(
−iξjLj

)
Φ = 1√

2

 0

v +H

 , (2.24)

which defines the so-called unitary gauge, where only physical degrees of freedom remain. Rewritting

the Higgs Lagrangian (2.15) in the unitary gauge, we then obtain

LHiggs = 1
2 (∂µH) (∂µH)− µ2H2

+ 1
2

(
1 + H

v

)2
v

2

4 g
2 (A1

µA
1µ +A2

µA
2µ)+

A3
µ

Bµ

T  g2 −gg′

−gg′ g′2

A3
µ

Bµ


 (2.25)

+ nonbilinear terms .
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Diagonalising the mass (squared) matrix

M2 = 1
4v

2

 g2 −gg′

−gg′ g′2

 , (2.26)

we get two mass eigenstates Aµ and Zµ with eigenvalues 0 and v2

4 (g2 + g′2), respectively:Aµ = sin θWA3
µ + cos θWBµ

Zµ = cos θWA3
µ − sin θWBµ

, tan θW ≡
g′

g
, (2.27)

where θW is the weak mixing angle [41, 43]. Defining the fields Wµ and W †µ through the relations

Wµ =
A1
µ + iA2

µ√
2

, W †µ =
A1
µ − iA2

µ√
2

, (2.28)

we can finally rewrite the Higgs Lagrangian (2.26) in terms of the new massive fields Wµ, Zµ and Aµ as

LHiggs = 1
2 (∂µH) (∂µH)− µ2H2 + 1

4

(
1 + H

v

)2{
v2

2 g
2 (W †µWµ

)
+ v2

4 (g2 + g′2)ZµZµ
}

+ nonbilinear terms .

(2.29)

From (2.29), it is clear that we have succeded in our quest to generate three massive vector bosons

(Z and W ’s) while keeping one vector boson massless (the photon Aµ). This mass generation can be

thought as resulting from constant interactions of the W and Z bosons with the condensate of scalar

fields. In the unitary gauge, each gauged away Goldstone boson has reemerged as the longitudinal po-

larisation of a massive vector boson, which is confirmed by counting degrees of freedom (twelve, before

and after SSB). This is the essence of the Higgs mechanism. At tree level, the SM prediction is

MW =
∣∣∣gv2 ∣∣∣ , MZ =

√
g2 + g′2

4 = MW

cos θW
, MA = 0 . (2.30)

and experiments yield the valuesMZ = 91.1876±0.0021 GeV andMW = 80.385±0.015 GeV [66]. Thus,

in the SM one expects the below defined ρ parameter to be unit at tree level:

ρ = M2
W

M2
Z cos θ2

W

= 1 . (2.31)

If we extend the Higgs sector of the SM to include several Higgs multiplets Φk, there is a deviation from

(2.31), since the new VEVs vk will give additional contributions to the masses of gauge bosons [117]:

ρ =
∑
k

[
Ik(Ik + 1)− (I3

k)2] v2
k

2
∑
k(I3

k)2v2
k

, (2.32)

where Ik is the weak isospin of the Higgs multiplet Φk and I3
k is the third isospin component of the

component of Φk which acquires a VEV. From Eq. (2.32), we see that ρ = 1 for any number of Higgs

doublets (Ik = 1/2), whereas additional isospin multiplets are severely constrained by the experimental

value ρexp. = 1.0004+0.0003
−0.0004 [66]. On the other hand, from (2.30), one can also observe that in the limit
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g′ → 0 one has MW = MZ . This is because the global O(4) symmetry of (2.16) is broken to O(3)∼ SU(2)

by SSB and this global symmetry is respected by the gauge interactions in (2.15) for g′ = 0. In this limit

the W ’s and the Z form a triplet of an unbroken symmetry, and that is why in this limit their masses

is the same. It is this custodial symmetry [118], an accidental approximate symmetry of the SM, what

’protects’ the ρ parameter from acquiring large radiative corrections in the SM.

Finally, the second term in the Lagrangian (2.29) represents a (tree level) mass

MH =
√
−2µ2 = v

√
2λ (2.33)

for the Higgs boson, which experimentally has the value MH = 125.7± 0.4 GeV [66].

2.3 Fermion masses

Until now, we have described how the W and Z bosons become massive after SSB but, with no

further considerations, the fermions of the theory remain massless. However, by introducing the Higgs

doublet (2.14) with hypercharge y = +1, one can couple it to fermions through the Yukawa Lagrangian

LYuk. = −
(
Y`
αβLαLΦ`βR + h.c.

)
−
(

Yu
αβQαLΦ̃uβR + h.c.

)
−
(
Yd
αβQαLΦdβR + h.c.

)
, (2.34)

where Φ̃ ≡ iτ2Φ∗ 5. The matrices Y `, d, u of Yukawa couplings are completely arbitrary ng × ng matrices.

They introduce most of the free parameters and break almost every U(ng) family symmetry of the SM.

As we will see, this implies that the masses of charged leptons cannot be predicted by the SM.

Fermion masses arise from the Yukawa interactions after electroweak spontaneous symmetry break-

ing (EWSB). To be explicit, after EWSB the Yukawa Lagrangian (2.34) becomes

LYuk. = −
(
v +H√

2

)(
Y`
αβ`αL`βR + Yu

αβuαLuβR + Yd
αβdαLdβR

)
+ h.c.

= −
(
M`

αβ`αL`βR + Mu
αβuαLuβR + Md

αβdαLdβR
)

+ LHYuk. ,

(2.35)

where Mψ ≡ vYψ/
√

2 is the mass matrix for the fermion fields ψ and LHYuk. contains the trilinear cou-

plings HψLψR. However, since Yψ are in general non-diagonal matrices, the weak eigenstate fields do

not have definite masses. In order to identify the physical particle content it is mandatory to diagonalise

the mass matrices M`, d, u. This can be achieved throught the following biunitary transformations [3]:

V `L
†M`V `R = diag(me, mµ, mτ ) ≡ D` ,

V uL
†MuV uR = diag(mu, mc, mt ) ≡ Du ,

V dL
†MdV dR = diag(md, ms, mb ) ≡ Dd ,

(2.36)

where V l,u,dL,R are appropriate ng × ng unitary matrices and mj are real and positive masses. A more

5The invariance of the second term in the Yukawa Lagrangian (2.34) is ensured by the field Φ̃, which transforms
as (1,2,−1). That is because the 2∗ representation of SU(2) is equivalent to the 2, i.e. there is a unitary matrix U
such that −Ik∗2 = UIk2U

†. In fact, with U = τ2 we have Ik∗2 = − τ
k∗

2 = τ2 τk
2 τ

2.
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interesting way of interpreting the bi-diagonalisation defined by (3.3) is to say that one must ’rotate’ the

weak eigenfields to bring them to a physical basis where fermions have a definite mass:

`αL →
(
V `L
)
αβ
`βL , `αR →

(
V `R
)
αβ
`βR ,

uαL → (V uL )αβ uβL , uαR → (V uR )αβ uβR , (2.37)

dαL →
(
V dL
)
αβ
dβL , dαR →

(
V dR
)
αβ
dβR .

Thus, one sees that the EWSB mechanism allowed not only the generation of masses for vector

bosons but also of Dirac masses for SM fermions. On the other hand, since neutrino fields are left-

handed in the SM, the appearance in the SM Lagrangian of a Dirac mass term for them upon EWSB, as

in the case of other fermion fields, is not possible. Hence,

neutrinos are strictly massless particles in the SM.

2.4 Electroweak currents and fermion mixing

We are now in position to derive the interactions between the fermion fields ψ and the physical

vector bosons W ’s, Z and A. The first step is to rewrite the covariant derivative (2.5) in terms of the

physical vector bosons defined through Eqs. (2.27) and (2.28):

Dµψ =
[
∂µ − i

g√
2
W †µτ

+ − i g√
2
Wµτ

− − ig sin θWQAµ − i
gZµ

cos θW

(τ3
2 − sin2θWQ

)]
ψ , (2.38)

where we have used the usual definitions τ+ ≡ (τ1 + iτ2)/2 and τ− ≡ (τ1 − iτ2)/2. The interaction

terms in the fermions Lagrangian (2.11) can then be written as

Lint.
f =

[
g sin θWJµEMAµ + g

cos θW
JµZZµ

]
︸ ︷︷ ︸

Neutral currents

+ g√
2

(JµWWµ + h.c.)︸ ︷︷ ︸
Charged currents

, (2.39)

where JµEM, JµZ and JµW represent the electromagnetic (EM) vector current, weak neutral currents (NC)

and the weak charged currents (CC), respectively. In a flavour basis, their definitions are:

JµEM =
∑
f

Qfψfγ
µψf = 2

3uαγ
µuα −

1
3dαγ

µdα − `αγµ`α , (2.40)

JµZ =
∑
f

ψfγ
µ
[
I3
fPL −Qf sin2θW

]
ψf =

∑
f

I3
fψfLγ

µψfL − sin2θWJ
µ
EM , (2.41)

JµW =
∑
f

`αLγ
µναL + dαLγ

µuαL , (2.42)

where the sums
∑
f extend over fermion fields and I3

f is the third isospin component for the fermion

field f (+1/2 for the up-fields, −1/2 for the down-fields and 0 for SU(2)L singlets).
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|qµ| ≪ MW

ig√
2
Jµ
W

†

ig√
2
Jµ
WW

qµ−

νµ

νe

e−

µ−

νµ

νe

e−

Figure 2.2: Tree-level diagram for muon decay (left) and its low-energy approximation (right).

If we want the first term in the interaction Lagrangian (2.39) to be the usual EM vector current in

QED, eJµEMAµ, then the positron electric charge e must be identified with

e = g sin θW = g′ cos θW =⇒ g2 + g′2 = e2 , (2.43)

which gives us an important relation among the coupling constants g and g′ and the electric charge e.

As expected, neutrinos do not couple to the photon since they are neutral particles. The EM currents

only mix fields of the same charge and chirality. This means that the EM current is family universal,

flavour diagonal and C (charge), P (parity) and CP invariant. An immediate consequence is that, upon

the rotations (2.37) to the mass eigenstates basis, the electromagnetic current is not changed.

On the other hand, the weak neutral currents JµZ in Eq. (2.41) have a V −A component and a purely

vector one proportional to the EM current. Therefore, these currents violateC and P symmetries, though

not maximally. Similarly to the electromagnetic current, JµZ is flavour diagonal and as such takes the

same form in the flavour and mass eigenstate bases. This phenomenon is the so-called GIM mechanism

[55], which forbids flavour-changing neutral currents (FCNC). The absence of such transitions can be

used to constrain extensions of the SM involving exotic fermions [119].

Finally, the CC in Eq. (2.42) have a V −A structure and thus violateC and P maximally. An important

result that can be extracted in the flavour basis is the amplitude T for a t-channel 4-fermion interaction,

such as the muon decay µ− → e−νµνe represented in Fig. 2.2. In the unitary gauge, we have

−iT =
(
ig√

2

)2 [
uνe(pνe)γµ

(
1− γ5

2

)
ve(pe)

] −i(gµν − qµqν
M2
W

)
q2 −M2

W

[
uνµ(pνµ)γν

(
1− γ5

2

)
uµ(pµ)

]
, (2.44)

which, for a small momentum transfer, |qµ| �MW , leads to the Fermi effective Lagrangian (1.1):

Leff.
|qµ|�MW−−−−−−−→ −GF√

2
J†WµJ

µ
W ,

GF√
2

= g2

8M2
W

= 1
2v2 . (2.45)

We can therefore extract the Fermi constant GF = 1.166367(5)× 10−5 GeV−2 [66] from the muon decay

µ− → e−νµνe and provide an estimated value for the electroweak scale v:

v = 2MW /g ≈ (
√

2GF )−1/2 ≈ 246 GeV . (2.46)

19



Matrix type # Parameters # Moduli # Phases
n×m General 2nm nm nm
n× n Symmetric n(n+ 1) n(n+ 1)/2
n× n Unitary n2 n(n− 1)/2 n(n+ 1)/2
n× n Hermitian n2 n(n+ 1)/2 n(n− 1)/2

Table 2.4: Number of parameters for the various types of matrices considered in this thesis.

Contrary to what happens with the EM and neutral currents, charged currents do not take the same

form in the weak and mass eigenstate bases. More specifically, upon the rotations (2.37) the CC read

JµW = `βLγ
µ
(
V `L
†)
βα
ναL + dβLγ

µ
(
V dL
†)
βα

(V uL )αρ uρL

= `βLγ
µ
(
V `L
†)
βα
ναL + dαLγ

µ
(
V †CKM

)
αβ
uβL ,

(2.47)

where the ng × ng unitary matrix VCKM is known as the Cabibbo-Kobayashi-Maskawa matrix [120, 121]

or quark mixing matrix. It describes the mismatch between the unitary rotations (2.37) for the up and

down-type quarks and can be interpreted by saying that in the CC each massive up-type quark interacts

with a linear combination d′αL = (VCKM)αβ dβL of massive down-type quarks.

The unitarity condition on VCKM imposes n2
g constraints on its elements,

(
V †CKMVCKM

)
mn

= δmn, and

so it can be described by n2
g parameters, ng(ng − 1)/2 of which are rotation angles (the number of angles

in an O(ng) rotation) and ng(ng + 1)/2 are phases. This result is summarised in Table 2.4 along with its

generalisation to other types of matrices. However, not all of the parameters in VCKM are observable,

since some phases can be removed through a rephasing of quark fields. In fact, apart from the CC

interactions, the SM Lagrangian possesses a U(1)2ng symmetry corresponding to its invariance under

global phase transformations of quark fields:

uαL,R → eiϕ
u
αuαL,R , dαL,R → eiϕ

d
αdαL,R . (2.48)

This property can be used to eliminate the phases from one line and one column in the CKM matrix,

i.e. 2ng − 1 phases can be eliminated. The reason why there are just 2ng − 1 unphysical phases instead

of 2ng is that a common global rephasing of the quark fields leaves the SM Lagrangian invariant. This

U(1)B symmetry is related, through Noether’s theorem, to baryon number conservation. For the case

of interest, ng = 3, the CKM matrix thus depends on three mixing angles θ12, θ13, θ23 ∈ [0, π/2] and one

physical phase δ ∈ [0, 2π], with its standard parametrisation given by [122]

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 , (2.49)

where cab ≡ cos θab and sab ≡ sin θab. There are other useful parametrisations of VCKM, such as the

Wolfenstein parametrisation [123], but the standard one is the most advantageous to our future discus-

sion. The physical phase δ is responsible for CP violation in the SM quark sector, whose strength can be
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Le Lµ Lτ Le Lµ Lτ

(νe, e−) +1 0 0 (νe, e+) -1 0 0
(νµ, µ−) 0 +1 0 (νµ, µ+) 0 -1 0
(ντ , τ −) 0 0 +1 (νe, τ+) 0 0 -1

Table 2.5: Assignment of flavour lepton numbers to particles (left) and antiparticles (right).

quantified in a rephasing invariant way in terms of the Jarlskog invariant [124]:

Im[VαβVγηV ∗αηV ∗γβ ] = JCKM

∑
m,n=e,µ,τ

εαγmεβηn, JCKM = c12s12c
2
13s13c13s23 sin δ . (2.50)

The study of CP violation in the quark sector is an extremely challenging and very wide subject but we

shall not pursuit it on this thesis. A detailed treatment can be found in Ref. [125].

Let us now analyse the lepton CC, i.e. the first term in Eq. (2.47). Since neutrinos are strictly massless

particles in the SM, performing a rotation of the neutrino fields in flavour space leaves the Lagrangian

of the SM invariant, apart from the CC term. In fact, the EM and neutral currents are flavour diagonal

and, in what concerns LYuk., there is no neutrino mass term to spoil, i.e. neutrinos have zero mass in

all bases. Therefore, we can freely rotate the neutrino fields and in particular cancel the effects of the

charged lepton mixing matrix V `L in Eq. (2.47). By performing the rotation

ναL →
(
V `L
)
αβ
νβL , (2.51)

it is then evident that the leptonic CC JµW,L takes the same form in the weak and mass eigenstate bases:

JµW,L = ναLγ
µ`αL . (2.52)

Thus, one concludes that there is no mixing in the leptonic sector of the SM and that the existence of

neutrino masses is a necessary condition for leptonic mixing.

In general, one defines flavour neutrino fields νe,µ,τ as the neutrino field combinations which couple

with the corresponding charged lepton e, µ, τ in the CC (2.52). As a consequence of the absence of

leptonic mixing, the SM Lagrangian exhibits a global U(1)ng symmetry associated with the rephasings

ναL → eiϕαναL , `αL → eiϕα`αL , `αR → eiϕα`αR , (2.53)

ans Noether’s theorem requires the existence of ng conserved charges, the flavour lepton numbers

Lα =
∫
d3x

(
ν†ανα + `†α`α

)
, (2.54)

as assigned in Table 2.5. A trivial consequence is that the total lepton number L = Le + Lµ + Lτ is also

conserved. As we will see, the nonconservation of the flavour (or family) lepton numbers Lα plays a

crucial role in neutrino physics beyond the SM.
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2.5 Summary of the SM
One is finally in position to write the full Lagrangian of the SM6:

LSM = Lgauge + LHiggs + Lf + LYuk. . (2.55)

In addition to the gauge and Poincaré symmetries, the SM possesses a miscellaneous of accidental

symmetries and associated conservation laws, summarised in Table 2.6. In particular, processes like

`α → `βγ are forbidden since they violate flavour lepton number conservation. There are very strong

bounds on the rates of these processes [127] but, as we will see, lepton number violating processes are

closely related to the problem of neutrino masses. As such, the study of SM extensions with lepton

number violation is a fundamental step on our path towards the understanding of neutrino masses.

Symmetry Lie Group Symmetry type Conserved Charges

Poincaré ISO(1,3) Global, Exact Energy, Momentum,
Angular Momentum

Gauge SU(3)c ⊗ SU(2)L ⊗U(1)Y Local, Broken Color/Electric charge

Quarks rephasing U(1)B Global, Accidental Baryon number

Electron rephasing U(1)Le Global, Accidental Electron number Le
Muon rephasing U(1)Lµ Global, Accidental Muon number Lµ
Tau rephasing U(1)Lτ Global, Accidental Tau number Lτ

Table 2.6: Symmetries of the Standard Model.

The electroweak sector of the SM depends on seventeen parameters. However, the SM offers no

prediction for the values of fermion masses and gives no definite explanation to why there are three

generations of fermions. Nevertheless, some valid clues may be hidden in the closeness of VCKM to the

identity matrix as well as in the presence of mass hierarchies between generations (see Table 2.1).

Other shortcomings of the SM are the absence of a description of gravity and of dark matter. There

is also the (weak) hierarchy problem, related to the fine-tuning of parameters required to give MH a

value near the electroweak scale (v ∼ 102 GeV) if the SM is to be valid up to the Planck scale (1019

GeV). Another concern is the absence of a CP-violating term in the strong sector of the SM despite there

being no symmetry which forbids it. Additionally, the SM cannot achieve exact unification of its gauge

coupling constants at high-energies, unlike what happens in supersymmetric models or GUTs.

All these issues support the idea that the SM is an effective low-energy theory of a more fundamental

one. Although some of these problems can be classified as theoretical prejudice, undeniable evidence for

physics beyond the Standard Model arises when one considers the experimental evidence for neutrino

oscillations [128]: neutrinos have small but nonzero masses. In the next chapter, simple extensions of

the SM will be considered in order to generate naturally small neutrino masses.

6In addition to these terms, the quantisation of the theory requires the presence of gauge-fixing and Faddeev-
Popov terms in the Lagrangian of the SM. For a detailed introduction to the quantisation of the SM see, for instance,
[112, 126]. A short outline is given in Appendix A.1.
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3 Neutrino masses and

seesaw-type models

“ Even though it is perhaps not yet possible to ask experiments to decide between the new theory

and a simple extension of the Dirac equations to neutral particles, one should keep in mind that the new

theory introduces a smaller number of hypothetical entities, in this yet unexplored field. ”

– E. Majorana in [129]

The absence of electric charge for neutrinos allows their masses to have a Majorana nature (lep-

ton number violating) rather than a Dirac one (lepton number conserving). But the nature and ori-

gin of small neutrino masses remains a mystery. Their tiny values suggest that neutrino masses are a

low-energy manifestation of new physics beyond the SM with a high-energy scale ΛNP. It is therefore

expected that the SM predictions, in particular (zero) neutrino masses, are affected by small effects pro-

portional to powers of v2/ΛNP. The most popular high-energy models consider the existence of heavy

fields with masses of order ΛNP. Among all possible scenarios, the seesaw mechanism is perhaps the

best known example of how neutrino mass suppression can be achieved.

In this chapter, we discuss how to describe a massive neutrino in the general Dirac-Majorana case

and the resulting leptonic mixing and observables. Finally, we study ultraviolet completions of the SM

in which the seesaw mechanism can be implemented through tree-level exchange of heavy fermion

singlets (type I), scalar triplets (type II) or fermionic triplets (type III).

3.1 The Dirac-Majorana mass term

It is possible to define a Dirac mass term for neutrinos consistently with the gauge symmetries of

the SM by adding three right-handed neutrino fields ναR (α = e, µ, τ ) to its particle content. These extra

fields are weak isospin singlets with null hypercharge, y = 0. Therefore, right-handed neutrino fields do

not participate in electroweak interactions and, as such, are called sterile. On the other hand, the usual

left-handed neutrino fields ναL that participate in weak interactions are called active.

To the SM Yukawa Lagrangian (2.34), we must therefore add a lepton term similar to the one which

generates the masses of up-type quarks. This extra Lagrangian term reads, before and after EWSB:

LνYuk. = −
(

Yν
αβLαLΦ̃νβR + h.c.

) EWSB
GGGGGGGGGGGA −

(
Mν

αβναLνβR + h.c.
)
, Mν

αβ = v√
2

Yν
αβ . (3.1)
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The neutrino mass matrix Mν
αβ can be bi-diagonalised by rotating flavour neutrino fields into the basis

of massive states ν1,2,3,

ναL → (V νL )αj νjL , ναR → (V νR )αj νjR , (3.2)

resulting in a diagonal neutrino mass matrix:

(V νL )†MνV νR = diag(mν1 , mν2 , mν3 ) ≡Mν
diag. . (3.3)

As a consequence of (3.2), there will be lepton mixing in the CC in an analogous way to the quark case

(2.47), with a mixing matrix parametrised as VCKM. Therefore, flavour lepton numbers [Eq. (2.54)] are

not conserved but it is easy to see that total lepton number L = Le + Lµ + Lτ is conserved. However,

a fundamental problem arises if we take a quick glance at Table 2.1. One immediately sees that the

couplings Yν should be much smaller than Y`,u,d, which poses a naturalness problem. As a matter of

fact, a Dirac mass term for neutrinos is not natural according to the ’t Hooft criterium [130],

“at any energy scale µ, a physical parameter or a set of parameters αi(µ) is allowed to be

very small only if the replacement αi(µ) = 0 would increase the symmetry of the system.”,
(Z1)

because in the Yν → 0 limit the theory does not exhibit any new symmetry. This signals the presence of

an alternative description for naturally small neutrino Yukawa couplings Yν .

In fact, it is possible to build a Majorana mass term for neutrinos. Such a construction is related with

the possibility of describing a massless fermion by a chiral field (two-component theory). The first thing

to note is that the Dirac equation for a fermion is equivalent to two coupled equations:

(iγµ∂µ −m)ψ = 0 ⇔

iγµ∂µψL = mψR

iγµ∂µψR = mψL
. (3.4)

If the fermion ψ is massless, then the two previous equations are decoupled into two Weyl equations:

iγµ∂µψL = 0 and iγµ∂µψR = 0 , (3.5)

which proves our claim that a massless fermion can be described by a single chiral field. In a similar

manner, also a massive fermion can be described by a two-component spinor [129]. This is achieved

assuming that the chiral components ψR and ψL are not independent, which means that the two coupled

Eqs. (3.4) must be two ways of writing the same equation for one independent chiral field. Indeed, after

some manipulation of the second coupled equation in (3.4) we arrive at

iγµ∂µCψR
T = mCψL

T
, (3.6)

where C is the charge conjugation matrix. This is just the first equation in (3.4) if we set

ψR = CψL
T
, (3.7)

where CψL
T

has right-handed chirality and transforms as a spinor under Lorentz transformations.
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The Majorana condition for the field ψ then reads

ψ = ψL + ψR = ψL + CψL
T ⇔ ψ = CψT = ψL + ψcL = ψc , (3.8)

with ψc being the charge-conjugated field of ψ. The Majorana condition implies the equality of particle

and antiparticle. Hence, only neutral fermions, as neutrinos, can be described by a Majorana field.

For the case of neutrinos, taking ψ = να in Eq. (3.7), one can build a Majorana Lagrangian:

LM = ναLi∂/ναL −
1
2
(
Mν

αβν
c
αL νβL + h.c.

)
= 1

2να
(
i∂/δαβ −Mν

αβ

)
νβ , (3.9)

where Mν is a symmetric neutrino mass matrix. The factor 1/2 distinguishes a Majorana from a Dirac

Lagrangian and is needed in order to avoid double counting of the dependent fields νcL and νL when

obtaining the equation of motion for Majorana neutrinos [3]. We should also remark that the Majorana

mass term (3.9) is nonzero due to the anticommutation property of fermion fields because for commut-

ing fields νTLC†νL = −νTLC†νL, and the mass term vanishes identically.

There is, nonetheless, a symmetry clearly broken by the Majorana Lagrangian (3.9). This becomes

clear if we notice that it is not invariant under a global U(1) gauge transformation:

ναL → eiϕναL =⇒ LM → ναLi∂/ναL −
1
2
(
e2iϕMν

αβν
c
αL νβL + h.c.

)
. (3.10)

Therefore, total lepton number is not conserved.We could have considered the transformation να→eiϕνα

for the Majorana fields, which leaves invariant the Lagrangian (3.9). However, such a transformation is

not compatible with the Majorana constraint (3.8), since we would have νcα → e−iϕνcα. Therefore, taking

the limit Mν → 0, we recover lepton number conservation and small Majorana masses are thus natural

according to ’t Hooft.

Let us now analyse the general case when active and sterile neutrinos are both present. To be exact,

we consider the existence of ng left-handed neutrino fields ναL and n′ right-handed neutrino fields νsR.

We define the column vector NL with n = ng + n′ left-handed fields:

NL ≡
(
νL

νcR

)
, where νL =

νeLνµL
ντL

 and νcR =


νcs1R

...
νcsn′R

 . (3.11)

Then, in general it is possible to have the Dirac-Majorana mass term

LD+M
mass = −1

2N
C
L MD+M NL + h.c. , MD+M ≡

(
ML MT

D

MD MR

)
, (3.12)

where MD is a n′ × ng mass matrix, and ML and MR are ng × ng and n′ × n′ symmetric mass matrices,

respectively. The symmetric mass matrix MD+M can be diagonalised with the transformation [3]:

(V νL )T MD+MV νL ≡Mdiag = diag(m1, ...,mn) , (3.13)
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with V νL a n × n unitary matrix and mk real and positive masses. This diagonalisation can be achieved

by writing the flavour fields NL as a unitary rotation of n mass eigenfields νkL (roman indices):

NL = V νLnL with nL = (ν1L, ... , νnL)T . (3.14)

Defining the Majorana fields νk = νkL + νckL, we can finally write the free Lagrangian for neutrinos:

LD+M = 1
2νk

(
i∂/−Mdiag

kk

)
νk , (3.15)

which shows that, in the most general Dirac-Majorana case, massive neutrinos are Majorana particles.

3.2 Lepton mixing and observables

The mixing of sterile and active neutrinos, defined in Eq. (3.14), has important consequences for

weak interactions. In the mass basis (3.14), the leptonic weak currents involving neutrinos are

JµW = 2LLγµUnL , JµZ,ν = 2nLγµU†UnL , (3.16)

where U is a 3× n non-unitary mixing matrix defined by:

Uαk =
∑

β=e,µ,τ

(V `
†

L )αβ(V νL )βk . (3.17)

The non-unitarity of U implies that the GIM mechanism does not work, which means that in the general

Dirac-Majorana case there are flavour-changing neutral currents among different massive neutrinos.

In the rest of this section, we will consider the special case n = ng = 3, with no sterile neutrinos, in

which the 3 × 3 mixing matrix is called the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix [70, 74],

UPMNS = V `
†

L V νL . A general ng×ng unitary matrix can be parametrised in terms of ng(ng − 1)/2 = 3 mix-

ing angles θ12, θ13, θ23 and of ng(ng + 1)/2 = 6 phases (see Table 2.4). However a convenient rephasing

of the charged lepton fields allows us to eliminate ng = 3 phases from UPMNS, as is evident from Eq.

(3.16). The same does not apply to the neutrino fields nL due to the lepton number violating nature of

the Majorana mass term (3.9). Therefore, UPMNS can be parametrised in terms of three mixing angles and

ng(ng − 1)/2 = 3 physical phases, one Dirac phase δ and two Majorana phases α1 and α2 [66]:

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13




1 0 0

0 eiα1 0

0 0 eiα2

 , (3.18)

where cij ≡ cos θij and sij ≡ sin θij . In particular, CP violation due to the Dirac phase δ can be quantified

in terms of the Jarlskog invariant (2.50) and the two Majorana phases are CP-violating phases. One

should remark that this same parametrisation also applies to the case of Dirac neutrinos, with α1,2 = 0.
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As a consequence of lepton mixing, a neutrino beam with a specific flavour can change along their

trajectory into another flavour. Remember that we define flavour neutrino fields νe,µ,τ (greek indices)

as the field combinations which couple to the corresponding charged lepton in the CC (3.16), i.e. as

νL = UnL = V `†L NL, with νL =
(
νeL , νµL , ντL

)T
. (3.19)

In a plane-wave approximation, the transition probability from a flavour neutrino |να〉 produced at the

source (0, 0) with energy E to a neutrino |νβ〉 at the detector (t, L) is easily seen to be given by [3]

Pνα→νβ (L,E) = |〈νβ | να(t, L)〉|2 =
∑
j,k

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
kjL

2E

)
, ∆m2

kj ≡ m2
k −m2

j .

(3.20)

This shows that neutrino oscillations are only sensitive to mass-squared differences ∆m2
kj , providing

no information on the absolute neutrino mass scale. As expected, it also proves that the Majorana

phases α1,2 do not appear in the transition probability because neutrino oscillations are lepton number

conserving. Therefore, oscillation experiments are not sensitive to the nature of massive neutrinos.

Depending on the experimental settings, the oscillations will be governed by different mixing angles

and mass-squared differences. From this fact, a common notation emerged such that ∆m2
12 ≡ ∆m2

sol,

∆m2
31 ≡ ∆m2

atm, θ12 ≡ θsol (solar), θ23 ≡ θatm (atmospheric) and θ13 is called the reactor mixing angle.

The ordering of neutrino masses is unknown because experiments are only sensitive to |∆mkj |2. We

assume that ν1 and ν2 are the neutrinos involved in solar neutrino oscillations, with m1 < m2. Since

experiments dictate that |∆m2
31| � ∆m2

21, there is room for two possible orderings:

Normal neutrino mass Spectrum (NS): m1 < m2 � m3 ;

Inverted neutrino mass Spectrum (IS): m3 � m1 < m2 .

The latest global fit results to oscillation data are the ones in Refs. [131–133]. We consider the global

fit of Ref. [131], with results shown in Table 3.1. The mass-squared differences are well determined as

well as the value of θ12. The reactor experiments Double Chooz, Daya Bay and RENO also impressively

confirmed that the reactor mixing angle is non-zero, θ13 ≈ 9o. The global fit values for the atmospheric

mixing angle θ23 indicate a deviation from maximal mixing sin2 θ23 = 1/2. However, it is still not clear

in which octant θ23 lies. Finally, the Dirac phase δ is still completely undetermined at 3σ.

As discussed, neutrino oscillations are not sensitive to the absolute neutrino mass scale. The most

direct way to determine this scale is through the investigation of the β-decay endpoint of tritium,
3H →3 He + e− + νe. The obtained bounds are those for an effective electron antineutrino mass

mβ =
√∑

k |Uek|2m2
k which, in the regime mβ �

√
|∆m2

31|, is equivalent to the absolute neutrino mass

scale. Using this technique, the Mainz [134] and Troitsk [135] experiments obtained the most stringent

upper bounds at 95% level mβ < 2.3 eV and mβ < 2.05 eV, respectively. An improved experiment, KA-

TRIN, is going to start in 2016, planning to reach a sensitivity of about 0.2 eV . Furthermore, oscillation

experiments do not distinguish Dirac from Majorana neutrinos [136]. Thus, CP and T violation effects
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Parameter Best fit 1σ range 2σ range 3σ range

∆m2
21/10−5 eV2 (NS or IS) 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18

sin2 θ12/10−1 (NS or IS) 3.08 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59

∆m2/10−3 eV2 (NS) 2.44 2.38 – 2.52 2.30 – 2.59 2.22 – 2.66

∆m2/10−3 eV2 (IS) 2.40 2.33 – 2.47 2.25 – 2.54 2.17 – 2.61

sin2 θ13/10−2 (NS) 2.34 2.16 – 2.56 1.97 – 2.76 1.77 – 2.97

sin2 θ13/10−2 (IS) 2.39 2.18 – 2.60 1.98 – 2.80 1.78 – 3.00

sin2 θ23/10−1 (NS) 4.25 3.98 – 4.54 3.76 – 5.06 3.57 – 6.41

sin2 θ23/10−1 (IS) 4.37 4.08 – 4.96 ⊕ 5.31 – 6.10 3.84 – 6.37 3.63 – 6.59

δ/π (NS) 1.39 1.12 – 1.72 0 – 0.11 ⊕ 0.88 – 2.00 —

δ/π (IS) 1.35 0.96 – 1.59 0 – 0.04 ⊕ 0.65 – 2.00 —

Table 3.1: Results taken from [131] of a global 3ν oscillation analysis, in terms of best-fit values and
allowed ranges for the 3ν mass-mixing parameters. ∆m2 is defined as m2

3 − (m2
1 +m2

2)/2, with +∆m2

for NS and −∆m2 for IS. The overall χ2 difference between IS and NS is insignificant (∆χ2
I−N = +0.3).

measurable by neutrino oscillations depend solely on the Dirac phase δ, whose experimental value is

sensitive to both the ordering of the neutrino masses and to the value of the reactor angle θ13 [137].

The determination of Majorana phases is possible through lepton-number violating processes such as

the neutrinoless double-β-decay [138, 139]. In fact, the decay amplitude is proportional to an effective

neutrino mass mββ ,

A(0ν2β) ∝ mββ ≡

∣∣∣∣∣
3∑
i=k

U2
ekmk

∣∣∣∣∣ =
∣∣∣(m1c

2
12 +m2s

2
12e

2iα1)c213 +m3s
2
13e

2i(α2−δ)
∣∣∣ , (3.21)

and we immediately notice that Majorana phases of the neutrinos are important. A recent upper limit

on mββ was determined by the GERDA collaboration to be mββ . 0.2 − 0.4 eV [140]. An additional

(indirect) constraint on the absolute neutrino masses scale comes from cosmological considerations,

which limit the sum of neutrino masses mtotal =
∑
νmν . The recent bound obtained by the Planck

Collaboration [141] is
∑
νmν < 0.66 eV, at 95% CL. However, there is still no consensus on the value

of the cosmological neutrino mass limit. For example, considering baryon acoustic oscillation data, the

Planck Collaboration obtained
∑
νmν < 0.23 eV (95% CL) [142].

28



3.3 Seesaw mechanism(s)

Despite its theoretical appeal, the Majorana neutrino mass term (3.9) is forbidden in the SM since

it has weak isospin I = 1 and hypercharge y = −2. Therefore, in order to write a renormalisable

Lagrangian which generates Majorana neutrino masses, we would need an isospin scalar triplet (I = 1)

with y = 2, which the SM does not contain. This fact suggests that the SM is a low energy effective

theory resulting from a more complete theory at a high-energy scale Λ.

At low energies, an analysis independent of the high energy theory can be performed in terms of an

effective theory description, in which the impact of the high-energy theory is parametrised by means of

an effective Lagrangian valid at energies less than Λ. This amounts to adding a set of non-renormalisable

higher-dimension operators to the gauge-invariant SM Lagrangian:

Leff. = LSM + δLd=5 + δLd=6 + ... , (3.22)

where each operator is suppressed by inverse powers of the high-energy scale Λ. More specifically, we

have δLd>4 ∼ O
(
1/Λd−4). The effective Lagrangian can be calculated in the path integral formalism by

integrating out the heavy fields N . The effective action Seff. is then obtained from the full action S by

separating the terms SN involving the heavy fields N from those involving only the SM fields, SSM, i.e.

eiSeff. ≡
∫
DNDNeiS = eiSSM

∫
DNDNeiSN [N ] , (3.23)

where DN is the integration measure. Expanding the action SN [N ] around the stationary (classical)

configuration N0, one gets

eiS
eff.
N =

∫
DNDNei(SN [N0]+δSN [N0]+δ2SN [N0]+...) ≈ eiSN [N0] , (3.24)

where the first order variation δSN [N0] is zero by definition of stationarity, and the higher-order terms

can be perturbatively neglected. The effective action is thus

Seff. = SSM + SN [N0] =
∫
d4x [LSM + LN (N0) ] , (3.25)

with the stationary fields defined through:

δS

δNi

∣∣∣∣
N0i

= 0 , δS

δNi

∣∣∣∣
N0i

= 0 . (3.26)

Inserting these fields to SN [N0], we finally obtain the effective Lagrangian [compare with Eq. (3.22)]:

Leff. = LSM + LN (N0) = LSM + δLd=5 + δLd=6 + ... (3.27)
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For d=5, there is just one possible operator made out of SM fields, the Weinberg operator [83]:

δLd=5 = 1
2c

d=5
αβ

(
LcαLΦ̃∗

)(
Φ̃†LβL

)
+ h.c. = −1

2c
d=5
αβ

(
Φ̃†LαL

)T
C†
(

Φ̃†LβL
)

+ h.c. , (3.28)

where cd=5
αβ ∼ O(1/Λ) are complex matrix coefficients. This operator is not invariant under B − L

symmetry. As a matter of fact, after EWSB this operator induces naturally small Majorana neutrino

masses provided that the scale Λ is high enough. More specifically,

δLd=5 EWSB−−−−→
(
−1

2Md=5
αβ νcαLνβL + h.c.

)
+ ... , Md=5

αβ = −v
2

2 c
d=5
αβ . (3.29)

This suggests that neutrino masses are the lowest-order effect of high-energy physics beyond the SM.

However, there are several d = 6 operators which may arise from different high-energy models [143].

Their identification is thus crucial to get some hints on the origin of neutrino masses. An important

scenario is that in which the suppresion of the d = 6 operators is not as strong as that of the d = 5

operator, leading to potentially observable low-energy effects. This becomes clear from the point of

view of the ’t Hooft naturalness criterium (Z1). In fact, it may be natural to consider large coefficients

for the B − L conserving d = 6 operators while having small coefficients for the B − L odd operator

δLd=5. We will see that this requires a value of Λ not far from the electroweak scale.

Effective operators modify the SM parameters. In addition to fermion masses, there are four pa-

rameters relevant to our discussion, namely the coupling constants g and g′, the Higgs VEV v and the

Higgs quartic self-coupling λ . In our analysis, the first three parameters will be constrained using as

input parameters the well-determined experimental values of the fine structure constant α, the Fermi

constant GF (as extracted from the muon decay rate by the removal of SM process-dependent radiative

corrections) and the very precise measurement of MZ [66].

In the following, we analyse seesaw extensions of the SM, in which the Weinberg operator (3.28)

arises after integrating out heavy fields, with masses M ∼ Λ. Thus, at low energy, such interactions

reduce to a four-point interaction of the form ΦΦLLLL, which produces Majorana neutrino masses after

electroweak symmetry breaking (EWSB). In order to generate such an effective interaction, the high-

energy theory Lagrangian must respect the SM gauge symmetry and the heavy fields χ must have

interaction terms of the form χΦLL or both χΦΦ and χLLLL. In order to fathom the possibilities of

building those couplings, we need to consider the possible invariants built from two SU(2)L doublets.

For the case of χΦLL couplings, the bilinear terms formed with Φ and LL after integrating out χ must

have the form Φ̃†LL. Looking at the tensor product

(
Φ̃
)∗
⊗ LL ∼ 2⊗ 2 = 1⊕ 3 , (3.30)

it is then clear that the heavy fields χ must have y = 0, and that either transform as an SU(2)L singlet

(type I seesaw) or as an SU(2)L triplet (type III seesaw). Additionally, invariance under the Poincaré

group requires these χ to be spin 1/2 fields. On the other hand, for both χΦΦ and χLLLL interac-

tion terms, it is evident that χ must be a scalar field. The bilinears formed from the doublets LL after
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∆
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Figure 3.1: Tree-level exchange interactions which in the low-energy effective description generate the
Weinberg operator (3.28). These interactions correspond to the exchange of: fermionic singlets N (type
I seesaw) or triplets Σ (type III seesaw) on the left; scalar triplet ∆ (type II seesaw) on the right.

integrating out the heavy field χ must have the structure LcLLL. Looking at the tensor product

(LcL)∗ ⊗ LL ∼ 2⊗ 2 = 1⊕ 3 , (3.31)

we see that one needs a scalar field χ with hypercharge y = +2, which transforms either as a singlet or

as a triplet of SU(2)L. The Yukawa coupling with an SU(2)L singlet χ would be given by

LcαLεLβLχ+ h.c. , ε ≡ iτ2 , (3.32)

and SU(2)L-invariance follows from

UT εU = (detU) ε = ε , with U ∈ SU(2)L . (3.33)

However, such a singlet would have an electric charge Qχ = +1 and any VEV of χ would break U(1)EM,

being therefore forbidden. Consequently, such Yukawa coupling cannot generate tree-level neutrino

masses and one is left with the scalar triplet option, corresponding to the type II seesaw mechanism.

Each one of these standard realisations of the seesaw mechanism is graphically represented in Fig. 3.1.

In the following, we describe the high-energy theory and deduce the low-energy effective Lagrangian

and its consequences at orderO(M−2) for the above realisations of the seesaw mechanism. It is expected

that the conclusions obtained here will hold for their generalisations or embeddings in larger theories.

3.3.1 Type I seesaw mechanism

We begin our analysis with the study of the type I seesaw model [82, 144, 145], in which n′ sterile

neutrino fields NsR ∼ (1,1, 0) are added to the SM. Aside from the Yukawa term (3.1), one can add to

the Lagrangian a Majorana mass term for the sterile fields NsR. The type I seesaw Lagrangian is then

Ltype I = LSM + iNR ∂/ NR −
(
LL Φ̃ Y†N NR + 1

2NR MN N
c
R + h.c.

)
, (3.34)

where YN is an n′ × ng matrix of Yukawa couplings and MN is an n′ × n′ symmetric mass matrix.

We will work in a basis where both MN and M` are real and diagonal, which is always possible by

a convenient rotation of the neutrino fields NsR of the type (3.14) and of the charged-lepton fields as
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done in the SM [remember Eqs. (2.38) and (2.51)]. The necessary unitary rotations can be absorved by

redefining of the (fully general) Yukawa matrix YN and, therefore, we can always start with the type

I seesaw Lagrangian (3.34) written in this basis. Notice also the use of a compact notation in (3.34), in

which indices in generation space are omitted but implicitly summed.

The type I seesaw Lagrangian (3.34) then reads

Ltype I = LSM + iNR ∂/ NR −
[
νL φ

0 Y†N NR − `L φ
−Y†N NR + 1

2NR MN N
c
R + h.c.

]
, (3.35)

and we immediately see that a Dirac-Majorana mass term emerges for neutral leptons:

Lmass
type I = −1

2n
c
L

 0 vYT
N√
2

vYN√
2 MN

nL + h.c. ≡ −1
2n

c
L

ML MT
D

MD MN

nL + h.c. , nL≡

 νL

NL

 , (3.36)

where NL ≡ N c
R. Since NsR are sterile, the elements of the mass matrix MN are allowed to be much

larger than the electroweak scale. More precisely, for a mass matrix MX we define its scale mX to be of

the order of magnitude of the eigenvalues of
√

M†
XMX . In seesaw-type models, we assume MN to be

non-singular1 and that all the matrix elements of ML and MD are much smaller than the scale mN :

(ML)αβ , (MD)sα � mN . (3.37)

This should be understood in the sense that the eigenvalues of
√

M†
NMN , though not necessarily all of

the same order of magnitude, are all much larger than the matrix elements of ML and MD. Under these

assumptions, there are in the theory n′ heavy neutrinos with masses of ordermN , and ng light neutrinos

with masses which, in the case ML = 0, are suppressed by inverse powers of mN .

The diagonalisation of the (ng + n′) × (ng + n′) Dirac-Majorana mass matrix MD+M can be accom-

plished by starting with a block-diagonalisation of MD+M, following the procedure developed in Ref.

[148]. This allows to simply decouple the high mass scale from the low one, up to any order in m−1
N .

Such decoupling is done by performing a unitary rotation of the neutrino fields nL by means of an

(ng + n′)× (ng + n′) unitary matrix UnL ,

nL −→ UnL nL , UnL =

V S

R T

 , (3.38)

and by demanding from this unitary rotation that it block-diagonalises MD+M:

(UnL)T
 ML MT

D

MD MN

UnL =

 Mlight 0

0 Mheavy

 , (3.39)

where Mlight and Mheavy are, respectively, ng × ng and n′ × n′ symmetric mass matrices.

1In the framework of the singular seesaw mechanism [146, 147], MN can even be singular, with n0 eigenvalues of√
M†

NMN equal to 0. However, going into a basis where MN is diagonal, we realise that this case is mathematically
contained in the usual seesaw model with n′g = ng+n0 left-handed doublets and n′s = n′−n0 right-handed singlets.
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Eq. (3.39) can be solved using the following ansatz for the unitary transformation UnL :

UnL =

 √1−BB† B

−B†
√

1−B†B

 , (3.40)

where the square-root of matrices should be understood in the sense of a Taylor expansion. Inserting

the transformation (3.40) into Eq. (3.39), yields the following results at first order in m−1
N :

V =
√

1−BB† ≈ 11− 1
2M†

D (M∗
N )−1 M−1

N MD ,

S = B ≈M†
D (M∗

N )−1
,

R = −S† ≈ −M−1
N MD ,

T =
√

1−B†B ≈ 11− 1
2M−1

N MDM†
D (M∗

N )−1
.

(3.41)

For ML = 0, the mass matrices for the light and heavy neutrinos are then, at lowest order:

Mlight =
(
V TML +RTMD

) (
V − ST−1R

)
≈ −S∗MNS

† ≈ −MT
DM−1

N MD , (3.42)

Mheavy =
(
STML + TTMD

) (
S − V R−1T

)
≈ −MDR

−1 ≈MN . (3.43)

We thus see that Mlight is suppressed with respect to the Dirac mass matrix MD by the small factor

MD
TM−1

N . Therefore, if the scalemN is high enough, we are able to get naturally small neutrino masses.

The next step is the diagonalisation of the mass matrices Mlight and Mheavy. This is achieved through

a unitary rotation of the neutrino fields νL and NL:

νL → (UνL) νL , NL →
(
UNL
)
NL , (3.44)

where UNL ≈ 11 at first order in m−1
N since MN is already diagonal. Defining the Majorana fields

ν = νL + νcL , N = NL +N c
L , (3.45)

we obtain for the charged and neutral interactions involving only the light Majorana neutrinos νi:

LνCC = g√
2
`αγ

µ (V UνL)αi PL νiW
−
µ + h.c. , (3.46)

LνNC = g

2 cos2 θW
νiγ

µ
[
(V UνL)† (V UνL)

]
ij
PL νj Zµ , (3.47)

where α = e, µ, τ as usual and i, j = 1, ..., ng . From the charged-current expression (3.46), it is straight-

forward to see that the usual PMNS unitary mixing matrix (3.18) is now replaced by a nonunitary matrix,

UPMNS −→ V UνL ≈
(

11− 1
2M†

D (M∗
N )−1 M−1

N MD

)
UνL ≡N , (3.48)

whose deviation from unitarity is characterised by the suppressed matrix

εN ≡M†
D (M∗

N )−1 M−1
N MD =

(
SUNL

) (
SUNL

)†
. (3.49)

33



The elements of UPMNS are extracted from neutrino oscillation experiments which study the oscillation

of flavour neutrinos ναL = (V UνL)αi νiL at relatively low energies. In these experiments, the heavy Ma-

jorana neutrino states Nj are not present in the superpositions representing the initial flavour neutrino

states. This is what leads to deviations from unitarity of the PMNS matrix.

On the other hand, the CC and NC involving the heavy fields Nk are, up to first order in m−1
N :

LNCC = g√
2
`αγ

µ
(
SUNL

)
αk
PLNkW

−
µ + h.c. , (3.50)

LNNC = g Zµ
2cos2 θW

{
νiγ

µ
[
(V UνL)†

(
SUNL

)]
ik
NkL + h.c.

}
+ g Zµ

2cos2 θW
Nkγ

µ
[(
SUNL

)†(
SUNL

)]
kk′
Nk′L . (3.51)

We thus see that the matrix elements of the matrix SUNL appearing in Eq. (3.49) determine the strength

of the CC and NC involving the heavy Majorana neutrinos Nk. It is this matrix (or εN ) that, as a conse-

quence of the unobservable signal from heavy Majorana neutrinos, shall be constrained.

The main aspects of the high-energy theory are thus revised. Let us now focus on its effective de-

scription [149]. Following the procedure outlined in Eqs. (3.23)-(3.27), the stationary fields N0 are given

by the equations of motion (3.26) for the Majorana fields N ≡ NR +N c
R, namely

(i∂/−MN )N0 =
(

YN Φ̃†LL + Y∗N Φ̃TLcL
)
, (3.52)

and the effective Lagrangian for the type I seesaw scenario is:

Leff.
type I = LSM + LN [N0] = LSM −

1
2

[
LLΦ̃Y†N + LcLΦ̃∗YT

N

]
N0 . (3.53)

All effective operators can then be obtained by expanding the heavy neutrino propagator in Eq. (3.52)

and inserting such expansion in the effective Lagrangian (3.53). The first new term in the expansion of

Eq. (3.53) corresponds to an effective operator of dimension d = 5, the Weinberg operator (3.28), with

coefficients given by the following expression:

cd=5
αβ =

(
YT
N M−1

N YN

)
αβ

. (3.54)

After EWSB, this operator generates a Majorana mass matrix for the light left-handed neutrinos,

Mν ≡ −
v2

2 c
d=5 = −v

2

2
(
YT
N M−1

N YN

)
, (3.55)

which is precisely the same result as the one of Eq. (3.42), obtained for Mlight in the high-energy descrip-

tion. On the other hand, the second contribution gives rise to an effective dimension d = 6 operator,

δLd=6 = cd=6
αβ

(
LαL Φ̃

)
i∂/
(

Φ̃† LβL
)
, (3.56)

with coefficients expressed in terms of the full high-energy theory parameters by

v2

2 c
d=6 = εN = v2

2 Y†N (M∗
N )−1 M−1

N YN . (3.57)
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As the d = 5 coefficients cd=5, these parameters are also quadratic in the Yukawa couplings, but are

suppresed by m−2
N . From (3.57), we also see that the d = 6 coefficients encode deviations from unitarity

of the neutrino mixing matrix.

After EWSB and disregarding couplings with the Higgs and Goldstone bosons, the type I neutrino

effective Lagrangian up to dimension d = 6 operators is thus given by:

Ld≤6
ν = iνL∂/

(
11 + εN

)
νL −

1
2
(
νcL Mν νL + h.c.

)
, (3.58)

from which we see that the immediate effect of the d = 6 operator (3.56) is to rescale the neutrino kinetic

energy. The neutrino kinetic-terms can be brought back to canonical form through the field redefinitions

νL →
(
11 + εN

)− 1
2 νL . (3.59)

Rotating νL with a unitary matrix UνL which diagonalises the mass matrix Mν , we obtain an effective

Lagrangian for the type I seesaw which, at order m−2
N , is given by:

Ld≤6
leptons = 1

2νj
(
i∂/−Mdiag

νj

)
νj + `α(i∂/−Mdiag.

`α )`α + LCC + LNC + LEM , (3.60)

where νj = νLj + νcLj (j = 1, 2, 3) are Majorana mass eigenfields, and Mdiag.
` is the diagonal mass matrix

for the SM charged leptons (α = e, µ, τ ). In this mass basis, the weak currents are then given by:

LCC = g√
2
`LW/

−NνL + h.c. , (3.61)

LNC = gZµ
2 cos2 θW

[
νLγ

µ
(
N †N

)
νL − `Lγµ`L − 2 sin2θWJ

µ
EM

]
. (3.62)

As expected, we arrive at the same result as the one obtained in the high-energy description, namely

that the usual PMNS mixing matrix (3.18) is replaced by a nonunitary matrix,

UPMNS −→N ≡
(

11− ε
N

2

)
UνL , (3.63)

and that there are FCNCs involving neutrinos, with mixing matrix N †N . The translation from the

high-energy theory to its effective description is thus simply made with the prescription (V UνL)→N ,

and neglecting all interactions involving the heavy fields Nk.

An immediate phenomenological consequence of the above result is that the experimentally mea-

sured Fermi constant, GF , cannot be identified anymore with its SM tree-level value GSM
F in Eq. (2.45).

For example, the Fermi constant GF extracted from muon decay, µ→ νµeνe, is now given by

GF = GSM
F

√
(NN †)ee(NN †)µµ , (3.64)

since NN † = (1 − εN ) and neutrino flavour eigenfields [remember the definition (3.19)] are given by

να ≈ (11− εN

2 )αjνj ≈
√

(NN †)αj νj , at order m−2
N . The remaining parameters in the Lagrangian match
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Matrix
Full theory Effective Description

Modules Phases Modules Phases
Y` n2

g n2
g n2

g n2
g

YN / cd=5 ngn
′ ngn

′ ng(ng + 1)/2 ng(ng + 1)/2
MN / cd=6 n′(n′ + 1)/2 n′(n′ + 1)/2 ng(ng + 1)/2 ng(ng − 1)/2

V `
L ng(ng − 1)/2 ng(ng + 1)/2 ng(ng − 1)/2 ng(ng + 1)/2
V `
R ng(ng − 1)/2 ng(ng + 1)/2 ng(ng − 1)/2 ng(ng + 1)/2

V N n′(n′ − 1)/2 n′(n′ + 1)/2 - -
Nphysical ng + n′ + ngn

′ ng(n′ − 1) ng(ng + 2) ng(ng − 1)

Table 3.2: Number of parameters in the type I seesaw scenario, in both the full and effective theories.

the SM ones. It is also interesting to notice that, as predicted, deviations from unitarity can be directly

related with the matrix coefficients cd=6:

|NN † − 1| = |εN | = v2

2 |c
d=6| = v2

2

∣∣∣∣∣Y†N 1
M†

NMN

YN

∣∣∣∣∣ . (3.65)

The non-unitarity of N also generates a “zero-distance” effect in oscillation experiments, i.e. a flavour

transition at the source before oscillations can even take place. Althoug interesting, we shall not pursue

this subject in the present thesis. For more details, the reader is addressed to Ref. [150].

Finally, let us analyse the number of parameters in the leptonic sector of both the full theory and its

low-energy description. For that, we follow the method developed in Ref. [151]. Let Y` be the charged

lepton Yukawas of Eq. (2.34). If Y` = YN = MN = 0, the Lagrangian (3.34) is invariant under

LL → V `LLL , `R → V `R`R , NR → V NNR , (3.66)

where V N is a unitary n′ × n′ matrix in flavour space and V `L,R are ng × ng unitary matrices. The

Lagrangian (3.34) is then invariant under the symmetry group G = U(ng)`L ×U(ng)`R ×U(n′)N , with

NG = 2n2
g + n′2 generators. Both the Yukawa coupling and Majorana mass matrices explicitly break

that symmetry group into G′ ⊂ G with NG′ generators. The NG−NG′ broken generators can be used to

absorve parameters of Y`, YN and MN . The number of physical parameters is then

Nphysical = NY,M − (NG −N ′G) , (3.67)

where NY,M is the number of parameters in Y`, YN and MN . On the other hand, in the effective theory

with dimension d ≤ 6 operators, the symmetry group isG = U(n)`L ×U(n)`R , which is explicitly broken

by the d = 5 operator. As in both descriptions the symmetry groups are completely broken, NG′ = 0,

we obtain the counting of physical parameters shown in Table 3.2. These results show that for n′=ng

(or n′<ng) the number of parameters is the same in both theories, thus proving that all the parameters

of the full theory appear in the effective theory through the dimension d ≤ 6 operators. On the other

hand, if n′ > ng , the number of parameters in the full theory is larger than in the effective theory and we

would need to consider operators of dimension d > 6, in order to account for the remaining parameters.
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3.3.2 Type II seesaw mechanism

In the minimal type II seesaw [145, 152–154] we extend the SM with a scalar triplet ~∆ = (∆1,∆2,∆3)T

with y = 2. This flavour isospin triplet pertains to the adjoint representation of SU(2)L with generators

I1 =


0 0 0

0 0 −i

0 i 0

 , I2 =


0 0 i

0 0 0

−i 0 0

 , I3 =


0 −i 0

i 0 0

0 0 0

 . (3.68)

In order to work with charge eigenfields, we must diagonalise the charge operatorQ = (Y + I3) /2. This

is done through a change of SU(2)L basis by a unitary change of basis matrix B which relates the new

charge eigenfields and SU(2)L generators I ′k with the old ones by

I ′k = B†IkB ,


−∆++

∆+

∆0

 ≡ B†~∆ =


(−∆1+i∆2)√

2

∆3

∆1+i∆2
√

2

 , B = 1√
2


−1 0 1

−i 0 −i

0
√

2 0

 . (3.69)

The flavour isospin triplet ~∆ matches exactly the field we need to build a renormalisable Lagrangian

for Majorana neutrino mass generation. The coupling between two doublets LL and the triplet ~∆ can

be obtained by analysing the Kronecker product of two doublets and one triplet of SU(2)L [155]:

2⊗ 2⊗ 3 = (1⊗ 3)⊗ 3 = 3⊕ (3⊗ 3) = 3⊕ (1⊕ 3⊕ 5) . (3.70)

From this decomposition, one notices that a singlet representation (1) is extracted from the product

of two triplet representations (3⊗ 3), one of which should be obtained from the product of two dou-

blets (2⊗ 2). Looking at the Clebsch-Gordan coefficients for SU(2), one sees that for two doublets

LαL=(ναL, `αL) and LβL=(νβL, `βL), the Lorentz-invariant combination transforming as a triplet is
νTαLC

†νβL(
νTαLC

†`βL + νTβLC
†`αL

)
/
√

2

`TαLC
†`βL

 = −


νcαLνβL(

νcαL`βL + `cαLνβL
)
/
√

2

`cαL`βL

 . (3.71)

Using now the Clebsch-Gordan coefficients for the product of two SU(2)L triplets, the above one and ~∆,

we are allowed to write the Yukawa couplings:

LYukawa, ∆ = −
√

2 (Y∆)αβ

[
νcαLνβL∆0 −

(
νcαL`βL + `cαLνβL

)
√

2
∆+ + `cαL`βL(−∆++)

]
+ h.c. .

= −LcLY∆ [iτ2(~τ · ~∆)]︸ ︷︷ ︸
≡∆

LL + h.c. ,
(3.72)

where Y∆ is a ng× ng symmetric matrix since
(
LcLY∆[iτ2(~τ · ~∆)]LL

)T
=LcLYT

∆[iτ2(~τ · ~∆)]LL. We define

the matrix ∆ of charge eigenfields by ∆ ≡ iτ2(τ · ~∆). Under an SU(2)L⊗ U(1)Y transformation (2.3), we

see from (3.72) that ∆ transforms as ∆→ U∗g ∆U†g .
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Following the same reasoning, it is also possible to couple the scalar triplet to the Higgs doublet as:

−µ∆Φ̃T iτ2(~τ · ~∆)Φ̃ + h.c. = −µ∆Φ̃T∆ Φ̃ + h.c. . (3.73)

We can then write the type II seesaw Lagrangian in the charge eigenfield basis:

Ltype II = LSM + 1
2Tr

[
(Dµ∆)†(Dµ∆)

]
− 1

2M
2
∆Tr

(
∆†∆

)
−
[
LcLY∆∆LL + µ∆Φ̃T∆ Φ̃ + h.c.

]
−
{
χ1Tr

[(
∆†∆

)]2 + χ2Φ†ΦTr
(
∆†∆

)
+ χ3Tr

(
∆†∆ ∆†∆

)
+ χ4Φ†∆†∆Φ

}
,

(3.74)

where, as in the type I seesaw scenario, we work in the mass basis for charged leptons. For future

purposes, it is convenient to write this Lagrangian in the flavour basis defined by (3.68) as

Ltype II = LSM + (Dµ
~∆)† · (Dµ~∆)− ~∆†M2

∆
~∆ +

[
L̃LY∆(~τ · ~∆)LL − µ∆Φ†(~τ · ~∆)Φ̃ + h.c.

]
−
{
λ1

2

(
~∆†~∆

)2
+ λ2Φ†Φ

(
~∆†~∆

)
+ λ3

2

(
~∆†Ii~∆

)2
+ λ4

(
~∆†Ii~∆

) (
Φ†τiΦ

)}
,

(3.75)

where M∆ = M∆diag(1, 1, 1) is the mass matrix for the triplet ~∆, L̃L ≡ iτ2 (LcL) and λi are real coeffi-

cients. The translation from the first Lagrangian (3.74) to this second form is given by the prescriptions:


2
(
~∆†~∆

)
= Tr

(
∆†∆

)
4
(
~∆†Ii~∆

)2
= 2Tr

(
∆†∆ ∆†∆

)
−
[
Tr
(
∆†∆

)]2(
~∆†Ii~∆

) (
Φ†τiΦ

)
= −Φ†∆†∆Φ + 1

2Φ†ΦTr
(
∆†∆

) −→


λ1 = 8χ1 + 4χ3

λ2 = 2χ2 + χ4

λ3 = 4χ3

λ4 = −χ4

. (3.76)

For the triplet mass matrix M∆, we must have M∆ = M∆ diag(1, 1, 1) in order to obtain an invariant

mass term, i.e. U†g M2
∆ Ug = M2

∆ under an SU(2)L⊗U(1)Y transformation Ug .

The essence of the type II seesaw mechanism consists in the suppression of the triplet VEV v∆ com-

pared to the Higgs VEV v. In fact, v∆ is severely constrained by the experimental value of the ρ pa-

rameter, ρexp. = 1.0004+0.0003
−0.0004 [66]. Considering Eq. (2.32) with an additional scalar triplet, we have

ρtype II = 1 + 2 v2
∆/v

2

1 + 4 v2
∆/v

2 , (3.77)

and we see that v∆ is constrained by electroweak precision data to be of magnitude v∆ ≤ 1 − 10 GeV

[66]. We assume that the VEVs have the form

〈0|∆|0〉 =

√2
〈
∆0〉 −〈∆+〉

− 〈∆+〉 −
√

2 〈∆++〉

 =

v∆ 0

0 0

 , 〈0|Φ|0〉 = 1√
2

0

v

 ,
∣∣∣v∆

v

∣∣∣� 1 . (3.78)

Minimising the scalar potential, the Higgs VEV remains unchanged, while in the limitM2
∆ � (λ2+λ4)v2

the triplet VEV is given by

v∆ = − v2µ∗∆
M2

∆ + (λ2 + λ4)v2/2 ≈ −
v2µ∗∆
M2

∆
, (3.79)
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Therefore, we see that the triplet VEV is small, v∆ � v, if M2
∆ � vµ∆. Note at this point that the

physical singly-charged mass eigenstate H+ practically coincides with ∆+, with an admixture of the

Higgs doublet component φ+ suppressed by a factor v∆/v. In general, singly- and doubly- harged

scalars fields ∆++ and ∆+ have different masses [156]. In this thesis, however, we will always use the

approximationM+
∆ ≈M

++
∆ ≡M∆, unless stated otherwise. After EWSB, the Yukawa interactions (3.72)

then generate a naturally small Majorana neutrino mass matrix:

LYukawa, ∆
EWSB−−−−→ −1

2ν
c
L Mν νL , Mν = 2v∆Y∆ ≈ −

2v2µ∗∆
M2

∆
Y∆ . (3.80)

Notice that for Yukawa couplings of O(10−9) or higher, the most stringent constraint on v∆ does not

come from EW precision measurements but from the absolute scale of neutrino masses. The neutrino

mass matrix turns out to be proportional to both Y∆ and µ∗∆. This was already expected from the

Lagrangian (3.75), in which the breaking of lepton number L results precisely from the simultaneous

presence of the Yukawa and µ∆ couplings.

As usual, the diagonalisation of the mass matrix (3.80) is achieved through the unitary rotation

νL → UνLνL =⇒ 2v∆

(
UνL

TY∆U
ν
L

)
= Mdiag.

ν = diag(mν1 ,mν2 , ... ,mνng
) . (3.81)

The weak currents involving neutrinos are then affected in the standard way described in Section 3.2.

The triplet Yukawa interaction (3.72) also generates couplings between the triplet-component fields

and the charged leptons. The relevant terms for our discussion are:

L∆`` =
√

2 (`cLY∆`L)∆++ +
√

2 (`LY†∆`
c
L)∆−− , (3.82)

L∆`ν = 2
[
`cL (Y∆U

ν
L) νL

]
∆+ + 2

[
νL (Y∆U

ν
L)† `cL

]
∆− , (3.83)

where the obvious definitions ∆−− = (∆++)† and ∆− = (∆+)† apply.

Also relevant to our analysis are the gauge interactions of the charged triplet components, which are

obtained from the kinetic term of the triplet in the Lagrangian (3.75):

LW,∆± = igW †µ
[(
∂µ∆−−

)
∆+ −∆−−

(
∂µ∆+)]+ h.c. , (3.84)

LZ,∆ = ig

cW

{
(1− 2s2

W )
[
∆−−

(
∂µ∆++)]+ s2

W

cW

[
∆+ (∂µ∆−

)]}
Zµ + h.c. , (3.85)

Lγ,∆ = 2ie
[
∆−−

(
∂µ∆++)]Aµ + ie

[
∆−

(
∂µ∆+)]Aµ + h.c. . (3.86)

where we have defined sW ≡ sin θW and cW ≡ cos θW .

Let us now discuss the low-energy effective description of the type II seesaw model [105]. In the

flavour basis, the equations of motion for the triplet components ∆α are

∆α=
[
(Dµ)2+λ4T

iΦ†τ iΦ+M2
∆+λ2Φ†Φ+λ1~∆†~∆+λ3T

i(~∆†T i~∆)
]−1

αβ

[
LLY†∆τ

βL̃L−µ∗∆Φ̃†τβΦ
]
, (3.87)

where (Dµ)2 ≡ D†µD
µ. In order to find the dominant terms of the effective low-energy Lagrangian up

to d ≤ 6 operators, it suffices to solve the problem perturbatively in the quartic couplings of λ2 and λ4.
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At zero order, the effective Lagrangian is then obtained expanding Eq. (3.87) in inverse powers of M2
∆.

The first contribution to the effective Lagrangian comes from a d = 4 operator,

δLd=4 = |µ∆|2

M2
∆

(
Φ̃†τ iΦ

)(
Φ†τ iΦ̃

)
= 2 |µ∆|2

M2
∆

(
Φ†Φ

)2
, (3.88)

whose effect is to correct the quartic coupling λ of the Higgs in Eq. (2.16):

δλ = −2 |µ∆|2

M2
∆

. (3.89)

We also obtain the d = 5 Weinberg operator (3.28), with coefficients

cd=5 = 4Y∆
µ∗∆
M2

∆
, (3.90)

which generates a Majorana mass matrix for neutrinos

Mν = −2Y∆v
2 µ∗∆
M2

∆
, (3.91)

in agreement with the result (3.80) obtained in the complete theory. It must be noted that, unlike to the

fermionic seesaw models, the neutrino mass matrix in the type II seesaw mechanism depends linearly

on the Yukawa coupling matrix Y∆. This means that the study of the d = 5 operator coefficients of the

low-energy theory allows us to determine the high-energy theory parameters Y∆. This is possible up

to an overall scale µ∆/M
2
∆, whose experimental access will be analised in Chapter 4.

From the effective Lagrangian, we also obtain a set of three effective operators with dimension d = 6:


δL4F = − (Y∆)ρσ(Y∆)†

αβ

M∆
2

(
LLβγµLLρ

) (
LLαγ

µLLσ
)

δL6Φ = −2 (λ2 + λ4) |µ∆|2
M4

∆

(
Φ†Φ

)3
δLΦD = 4 |µ∆|2

M4
∆

(
Φ†Φ

) [
(DµΦ)† (DµΦ)

]
+ 4 |µ∆|2

M4
∆

[
Φ†DµΦ

]† [Φ†DµΦ
]
.

(3.92)

The operator δL4F induces a shift to the SM value of the Fermi constant, GSM
F = 1/(

√
2v2), as extracted

from muon decay [see Eq. (2.44) and Fig. 2.2]:

GF = GSM
F + δGF , δGF = 1√

2M2
∆

∣∣∣(Y∆)eµ
∣∣∣2 . (3.93)

The value of MZ also gets a correction from the last operator δLΦD:

δM2
Z

M2
Z

= 2v2 |µ∆|2

M4
∆

. (3.94)

Finally, besides a correction to the Higgs quartic coupling, the Higgs potential (2.16) is also modified by

the presence of the dimension d = 6 operator δL6Φ. It now reads

V = µ2 |Φ|2 + λ̃ |Φ|4 − 2 (λ2 + λ4) |µ∆|2

M4
∆
|Φ|6 , (3.95)
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where λ̃ = λ+ δλ is the corrected value of the Higgs quartic coupling. Therefore, the combined effect of

the δLd=4 and δL6Φ operators is to induce a shift in the VEV v of the Higgs doublet:

δv2

v2 = −3v2 |µ∆|2

M4
∆

(λ2 + λ4)
λ+ δλ

. (3.96)

Using all these parameters, we will consider in Section 4.3 the deviations from SM predictions induced

to several physical observables. Also interesting is the minus sign Eq. (3.89), which could affect the

stability of the Higgs potential. An analysis of this possibility can be found in Ref. [156].

Let us finally proceed to the counting of the number of parameters in the type II seesaw model. In

the full theory, one introduces the triplet mass M∆, 5 coupling parameters λi and µ∆, and ng(ng + 1)

Yukawa couplings. There are also ng lepton masses and ng(ng − 1) parameters in the mixing matrix

UνL (ng phases can be eliminated from UνL with a convenient rephasing of the charged-lepton fields).

Therefore, the lepton sector in the type II seesaw model contains ng(2ng + 1) + 6 = 27 parameters. It

is easy to verify by comparison of Eq. (3.75) with Eqs. (3.88) and (3.92) that this number is larger than

the number of parameters in the effective theory with dimension d ≤ 6 operators. In order to obtain an

equal number of parameters in both theories, we would need to consider all d ≤ 8 operators [105].

3.3.3 Type III seesaw mechanism

Consider, finally, the type III seesaw scenario [157], in which the SM field content is extended with n′

right-handed fermionic triplets ~ΣkR = (Σ1
kR,Σ2

kR,Σ3
kR)T with null hypercharge. As in the type II seesaw

scenario, these flavour isospin triplets pertain to the adjoint representation of SU(2)L with generators

given by Eq. (3.68). The charge eigenfields are related with the flavour eigenfields by:

Σ± = Σ1 ∓ iΣ2
√

2
, Σ0 ≡ Σ3 . (3.97)

Following the same argument that led to Eq. (3.72) in the type II seesaw, Lorentz-invariance and

SU(2)L⊗U(1)Y invariance allow Yukawa couplings involving the doublets iτ2L∗L and Φ̃:

LYukawa, Σ = −LLY†Σ
[
(~τ · ~ΣR)

]
Φ̃ + h.c. = −~ΣR ·YΣ(Φ̃†~τLL) + h.c. , (3.98)

with YΣ a n′ × n matrix. Allowing lepton number violation, it is also possible to build a Majorana mass

term for the triplet:

LMaj.
type III = −1

2

[
Σ+
RMΣ(~Σ−R)c + Σ0

RMΣ(~Σ0
R)c + Σ−RMΣ(~Σ+

R)c
]

+ h.c. = −1
2
~ΣRMΣ~ΣcR + h.c. , (3.99)

where MΣ is a n′ × n′ symmetric mass matrix. The type III seesaw Lagrangian is then

Ltype III = LSM + i ~ΣR
↔
D/ ~ΣR −

[
1
2
~ΣRMΣ~ΣcR + ~ΣR ·YΣ(Φ̃†~τLL) + h.c.

]
. (3.100)
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As done in the type I seesaw scenario, we work in the basis where both the charged-lepton and triplet

mass matrices M` and MΣ are diagonal, with mΣ � v.

The physical particles are neutral Majorana fermions and charged fermions. The flavour fields are

defined as:

E ≡ Σ−R +
(
Σ+
R

)c
, N ≡ Σ0

R +
(
Σ0
R

)c
, ν ≡ νL + (νL)c . (3.101)

After EWSB, the type III Lagrangian (3.100) leads to a neutrino Dirac-Majorana mass matrix

Lν, mass
type III = −1

2

(
νR NR

) 0 MT
D

MD MΣ

 νL

NL

+ h.c. , MD ≡
v√
2

YΣ , (3.102)

which is similar to (3.34) in the type I seesaw model. On the other hand, the type III Lagrangian also

leads to a mass matrix for charged leptons:

L`, mass
type III = −

(
`R ER

) M†
` 0

√
2MD MΣ

 `L

EL

+ h.c. , M` ≡
v√
2

Y` . (3.103)

As in the type I seesaw, we assume that MΣ is non-singular and that all the matrix elements of M` and

MD are much smaller than the scale mΣ:

(M`)αβ , (MD)kα � mΣ . (3.104)

Under these assumptions, there will be n′ heavy neutrinos and charged fermions with masses of order

mΣ, ng light neutrinos with masses suppresed by inverse powers of mΣ and also ng charged fermions

with mass matrix approximately given by M`.

The diagonalisation of the mass matrices in Eq. (3.102) and Eq. (3.103) can be accomplished similarly

to the type I seesaw, i.e. we start by performing the following unitary rotations of fermion fields:

 νL

NL

→ U0

 νL

NL

 ,

 `L,R

EL,R

→ U `L,R

 `L,R

EL,R

 , (3.105)

where we define the unitary rotations U0 and UL,R by blocks as

U0 =

U0νν U0νN

U0Nν U0NN

 , UL =

UL`` UL`E

ULE` ULEE

 , UR =

UR`` UR`E

URE` UREE

 . (3.106)

Applying the procedure in Ref. [148], we then get the following results up to order O
[
(mD,m`)2/m2

Σ
]
:

UL`` = 11− εΣ UL`E =
√

2M†
DM−1

Σ ULE` = −
√

2M−1
Σ MD ULEE = 11− ε′Σ

UR`` = 11 UR`E =
√

2M`M†
DM−2

Σ URE` = −
√

2M−2
Σ MDM` UREE = 11

U0νν = (11− εΣ

2 ) U0νN = M†
DM−1

Σ U0Nν = −M−1
Σ MD U0NN = (11− ε′Σ

2 )

, (3.107)
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where the following definitions have been used:

εΣ ≡M†
D (M∗

Σ)−1 MΣMD , ε′Σ ≡M−1
Σ MDM†

D (M∗
Σ)−1

. (3.108)

At lowest order, the mass matrices for the light and heavy fields are then given by:

Mν
light =

(
UT0ννML + UT0NνMD

) (
U0νν − U0νNU

−1
0NNU0Nν

)
≈ −MT

DM−1
Σ MD , (3.109)

Mν
heavy =

(
UT0νNML + UT0NNMD

) (
U0νN − U0ννU

−1
0NνU0NN

)
≈MΣ , (3.110)

M`
light = (U†R``M

†
` +
√

2U†RE`MD)UL`` + U†RE`MΣULE` ≈M` , (3.111)

M`
heavy = (U†R`EM†

` +
√

2U†REEMD)UL`E + U†REEMΣULEE ≈MΣ . (3.112)

We see that the mixing between flavour fields is small and its only relevant effect is, as happened in the

type I seesaw scenario, the generation of a light neutrino mass matrix Mν
light suppressed as MD

TM−1
Σ

with respect to the Dirac mass matrix MD by the small factor MD
TM−1

Σ . The final step is the diagonal-

isation of the mass matrices Mν,`
light and Mν,`

heavy. This is achieved through the unitary rotations

νL → (UνL) νL , NL →
(
UNL
)
NL , `L →

(
U `L
)
`L , EL →

(
UEL
)
EL , (3.113)

where UN,`,EL ≈ 11 at first order in m−1
Σ because MΣ and M` are already diagonal mass matrices.

Having completely diagonalised the mass matrices in Eq. (3.102) and Eq. (3.103), the charged and

neutral interactions involving only the light fields νi and `α are then:

Lν,`CC ≈
g√
2
`γµ

[(
11 + 1

2ε
Σ
)
UνL

]
PL ν Wµ + h.c. , (3.114)

Lν,`NC ≈
g

2 cos2 θW

[
νγµ (UνL)†

(
11− εΣ)UνLPL ν − `γµ (11 + 2εΣ)PL `− 2 sin θ2

WJ
µ
EM

]
Zµ , (3.115)

where JµEM is the usual SM electromagnetic current [Eq. (2.39)]. From Eq. (3.114), it is clear that, as

happened in the type I seesaw scenario, the usual PMNS unitary mixing matrix (3.18) is now replaced

by a nonunitary matrix,

UPMNS −→N ≡
(

11 + 1
2ε

Σ
)
UνL , (3.116)

whose deviation from unitarity is characterised by the small hermitian matrix εΣ. Also noticeable is the

presence of FCNCs for both neutral and charged fermions.

Determining the remaining Lagrangian terms, we obtain the Lagrangian for the leptonic sector:

L = LKin + LCC + LNC + LH,η + Lφ− , (3.117)
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where the relevant interactions for our future discussion are the following:

LCC = g√
2

(
` E

)
γµWµ

(
PLg

CC
L + PRg

CC
R

√
2
) ν

N

+ h.c. , (3.118)

LNC = g

cos θW

(
` E

)
γµZµ

(
PLg

NC
L + PRg

NC
R

) `

E

 (3.119)

+ g

cos θW

(
ν N

)
γµZµ

(
PLg

NC
Lν + PRg

NC
Rν

) ν

N

 , (3.120)

L`,EH,η = g

2MW

(
` E

)
H
(
PLg

H
L + PRg

H
R

) `

E


+ i

g

2MW

(
` E

)
η (PLgηL + PRg

η
R)

 `

E

 , (3.121)

L`φ− = −φ−` g√
2MW

[(
PLg

φ−

Lν
+ PRg

φ−

Rν

)
ν +

(
PLg

φ−

LN
+ PRg

φ−

RN

)
N
]

+ h.c. , (3.122)

with

gCC
L =

(11 + εΣ

2

)
UνL −M†

DM−1
Σ

0
√

2
(

11− ε′

2

)
 , gCC

R =−

 0
√

2M†
`M
†
DM−2

Σ

M−1
Σ M∗

D (UνL)∗ −
(

11− ε′∗

2

)
 , (3.123)

gNC
L =

sin2θW − 1
2
(
11 + 2εΣ) 1√

2M†
DM−1

Σ
1√
2M−1

Σ MD ε′ − cos2 θW

 , gNC
R =

 sin2θW
√

2M†
`M
†
DM−2

Σ
√

2M−2
Σ MDM` − cos2 θW

 , (3.124)

gNC
Lν =

(UνL)†
(
11−εΣ)UνL (UνL)†M†

DM−1
Σ

M−1
Σ MDU

ν
L ε′Σ

 , gNC
Rν = 0 , (3.125)

gHL =

 M†
`

(
3εΣ − 11

)
−
√

2M†
`M
†
DM−1

Σ

−
√

2MD

(
11− εΣ)−√2M−2

Σ MDM`M†
` . . .

 , gHR =
(
gHL
)†
, (3.126)

gηL =

 M†
`

(
11 + εΣ) √

2M†
`M
†
DM−1

Σ

−
√

2MD

(
11− εΣ)+

√
2M−2

Σ MDM`M†
` . . .

 , gηR = − (gηL)† , (3.127)

andg
φ−

Lν
=M†

`

(
11− 1

2ε
Σ)UνL

gφ
−

Rν
=
(
11−εΣ)UνLMdiag.

ν (UνL)T
,

g
φ−

LN
=
√

2M†
`M
†
DM−1

Σ

gφ
−

RN
=
(
11−εΣ)M†

D

(
1− ε

′∗

2

)
−2UνLMdiag.

ν (UνL)TMT
DM−1

Σ

. (3.128)

The dots in Eqs. (3.123)-(3.128) correspond to E-E interactions which do not contribute to the one-loop

`1 → `2γ rates and, therefore, are irrelevant for our purposes.
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We now conclude our study of the type III seesaw by analysing its effective description. Expanding

the triplet propagator up to order O(1/M2
Σ), the stationary fields are given by:

~ΣR = PR [iD/−MΣ]−1
[
Y∗ΣΦ†~τL̃L + YΣΦ̃†~τLL

]
≈ −M−1

Σ Y∗ΣΦ†~τL̃L − iD/
(

M†
Σ

)−1
M−1

Σ YΣΦ̃†~τLL .
(3.129)

Inserting these equations in the Lagrangian (3.100), the first effective operator that we obtain is the

Weinberg operator (3.28) with coefficients given by

cd=5 = YT
Σ M−1

Σ YΣ . (3.130)

This results in a Majorana mass matrix for the light neutrinos after EWSB with an identical structure to

the mass matrix in the type I scenario:

Mν = −v
2

2
(
YT

Σ M−1
Σ YΣ

)
. (3.131)

This result matches exactly the one obtained in the high-energy description for Mlight in Eq. (3.109).

From the effective Lagrangian we extract a single operator with dimension d = 6,

δLd=6 = cd=6
αβ

(
LαL~τ Φ̃

)
iD/
(

Φ̃†~τLβL
)
,

v2

2 cd=6 = εΣ = Y†Σ (M∗
Σ)−1 M−1

Σ YΣ . (3.132)

Notice again the similarity between this operator and the corresponding one in the type I seesaw mech-

anism, Eqs. (3.56) and (3.57). However, the usual derivative /∂ appears now replaced by a covariant

derivative version /D, which leads to a richer interaction pattern.

After EWSB, the d = 6 operator corrects the lepton fields kinetic terms as well as their couplings

with the SU(2)L gauge bosons Akµ. Going to a basis with kinetic terms canonically normalised at order

O(1/M2) and with diagonal lepton mass matrices, we get an effective Lagrangian similar to the one

obtained in the type I seesaw model. Up to order O(1/M2), the effective Lagrangian reads

Ld≤6
leptões = 1

2νj
(
i∂/−Mdiag

νj

)
νj + `α(i∂/−Mdiag.

`α )`α + LCC + LNC + LEM , (3.133)

where νi = νLi + νcLi are Majorana neutrino mass eigenfields and the weak currents are given by:

LCC = g√
2
`LW/

−NνL + h.c. , (3.134)

LNC = gZµ

2 cos θW

{
νLγµ

(
N †N

)−1
νL − `Lγµ

(
NN †

)2
`L − 2 sin θ2

WJ
EM
µ

}
, (3.135)

which coincides with the result obtained in the high-energy description. Namely, the usual PMNS mix-

ing matrix (3.18) is replaced by a nonunitary matrix,

UPMNS −→N ≡
(

11 + 1
2ε

Σ
)
UνL , (3.136)

and now there are FCNCs involving both neutrino and charged lepton fields. The translation from

45



W−
µ−

νµ

e−

νe

√
(NN †)µµ

√
(NN †)ee

µ−

(NN †)−1
eµ

(NN †)2eµ

Z0

e−

νe

νµ

Figure 3.2: Tree-level diagrams for muon decay in the effective description of the type III seesaw model.

the high-energy to the effective theory description is thus made by simply neglecting all interactions

involving the heavy fields Nk.

With the presence of FCNCs involving charged lepton fields, the Fermi constant GF extracted from

muon decay (Fig. 3.2) gets a slightly different correction than the one in the type I seesaw [see Eq. (3.64)],

GF = GSM
F

√
(NN †)ee(NN †)µµ + 3

4(NN †)2
eµ ≈ GSM

F

√
(NN †)ee(NN †)µµ . (3.137)

Finally, the deviations from unitarity of the mixing matrix N can once more be directly related with

the dimension d = 6 operator coefficients:

|NN † − 1| = v2

2 |c
d=6| = v2

2

∣∣∣∣∣Y†N 1
M†

NMN

YN

∣∣∣∣∣ . (3.138)

The counting of the number of parameters in both the full theory and its low-energy effective de-

scription is identical to the type I seesaw one, shown in Table 3.2. The translation from the former case

to the latter is done with the trivial replacement N → Σ. Again, the effective theory with dimension

d ≤ 6 effective operators allows us to determine all the full theory parameters if the number of triplets

n′ equals (or is less than) the number of generations ng in the SM.

As a summary of this section, we have gathered in Table 3.3 the effective operators with mass di-

mension d ≤ 6 for the three types of seesaw mechanism.

Seesaw
Effective Lagrangian Leff. = ciOi

cd=4Od=4 cd=5 cd=6
i Od=6

i

Type I - Y TN
1

MN
YN

[
Y†N

(
M†

N

)−1
M−1

N YN

]
αβ

(
LLαΦ̃

)
i∂/
(

Φ̃†LLβ
)

− (Y∆)ρσ(Y∆)†
αβ

M∆
2

(
LLβγµLLρ

) (
LLαγ

µLLσ
)

Type II 2 |µ∆|2
M2

∆

(
Φ†Φ

)2 4Y∆
µ∆
M2

∆

|µ∆|2
M4

∆

(
Φ†−→τ Φ̃

)(←−
Dµ
−→
Dµ
)(

Φ̃†−→τ Φ
)

−2 (λ2 + λ4) |µ∆|2
M4

∆

(
Φ†Φ

)3
Type III - YT

ΣM−1
Σ YΣ

[
Y†Σ

(
M†

Σ

)−1
M−1

Σ YΣ

]
αβ

(
`Lα
−→τ Φ̃

)
iD/
(

Φ̃†−→τ `Lβ
)

Table 3.3: Coefficients ci and effective operators ciOi obtained for the three seesaw scenarios.
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3.4 Low scale seesaw, M ∼ O(TeV)

3.4.1 Electroweak hierarchy problem

An unsatisfactory aspect of the seesaw-type models pertains to a potential worsening of the elec-

troweak hierarchy problem [158]. More specifically, if the above seesaw models are regarded as theories

valid at energies below a high-energy scale Λ, the bare Higgs massM0
H receives quadratically-divergent,

finite and logarithmic quantum corrections. In fact, using a cutoff regularisation procedure and an on-

shell renormalisation scheme, the one-loop correction to the Higgs mass in the type I seesaw is

δM2
H = −

n′∑
i=1

(
YNY†N

)
ii

16π2

[
2Λ2 + 2

(
M2

N

)
ii

ln
(
M2

N

)
ii

Λ2

]
, (3.139)

while for the fermionic-triplet model (type III seesaw):

δMH
2 = −3

n′∑
i=1

(
YΣY†Σ

)
ii

16π2

[
2Λ2 + 2

(
M2

Σ
)
ii

ln
(
M2

Σ
)
ii

Λ2

]
. (3.140)

Finally, in the type II seesaw one has:

δM2
H = 3

16π2

[
λ2

(
Λ2 −M2

∆ ln Λ2

M2
∆

)
− 4|µ∆|2 log Λ2

M2
∆

]
. (3.141)

Notice that in this last expression there is no dependence on the quartic coupling λ4 of the Lagrangian

(3.75). The reason for this is that the λ4 interactions involving the charged scalar fields ∆++ (∆−−)

cancel with those involving ∆0. This occurs because the Higgs fields in the λ4 term are combined as a

triplet of SU(2)L. Note also that in these equations the aproximations mν �M � Λ have been used.

These results show that, even if the quadratically-divergent contributions of the SM cancel the ones

in Eqs. (3.139)-(3.141), there are other troubling logarithmic contributions which do not cancel. Thus, if

any of the new scales Λ or M is much larger than the electroweak scale v, large fine-tunings would be

necessary to cancel all these contributions and accommodate a valueMH ≈ 125 GeV for the Higgs mass.

These cancellations would however be artificial and depend on the adopted renormalisation scheme.

For instance, working in the MS scheme, the demand of no fine-tuning (δM2
H ∼M2

H ) requires for the

type I and type III seesaw mass matrices:

mN,Σ . 107GeV
(

MH

125 GeV

)2/3 ( mν

10−9 GeV

)−1/3
[

ln Λ2

m2
N,Σ

+ 1
]−1/3

, (3.142)

which leads to mN,Σ . 107GeV. However, this result is only satisfied with Yukawa couplings of or-

der YN =
√

2m1/2
ν m

1/2
N,Σ/v . 10−4 [remember Eq. (3.55)], which spoils the naturalness of the seesaw

mechanism to explain the smallness of mν . This problem could be obviously soften if it is possible to

choose the high-energy scale M of the seesaw scenario close to the electroweak scale, rather than to the

Grand-Unified scale. It is precisely this possibility that we briefly comment in the following.
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3.4.2 Direct lepton violation

We now assume that the seesaw scale M = mN ,m∆,mΣ is large but not too far from the TeV scale.

From the point of view of the effective theory, the issue now is whether it is possible to accomodate tiny

neutrino masses while keeping the d = 6 operators (suppressed as 1/M2) close to observability without

fine-tunings or cancellations in the heavy mass matrices or Yukawa couplings.2

According to the ’t Hooft naturalness criterium (Z1), such decoupling of the lepton-number odd

d = 5 operator responsible for neutrino masses from the lepton-number preserving d = 6 operators

may be a natural possibility. In fact, lepton-number symmetry may be broken by a small parameter

whose value cannot be destabilised by other large scales of the theory through radiative corrections

since, by nature, it can only be multiplicatively renormalised. On the other hand, other beyond-the-SM

effects of the high-energy theory are lepton-number preserving and, as such, do not need to be strongly

suppressed. Therefore, this reasoning suggests the ansatz[105]:

when lepton-number symmetry is broken in the full theory through a small mass parameter µ, µ�M ,

the coefficients of the d = 5 operator are naturally suppressed in powers of µ/M , while the fermionic

d = 6 operators keep their unsuppressed (by the small mass parameter µ) 1/M2 dependence.

(Z2)

Such decoupling pattern for minimal seesaw models has the qualitative structure:

cd=5 = f(Y ) µ

M2 , cd=6 = g(Y ) 1
|M |2

, (3.143)

where f and g are functions of the Yukawa couplings scale Y . From the d = 5 operator, we thus get a

neutrino mass matrix proportional to the small parameter µwhile the effects of the µ-independent d = 6

operator may be sizable, even of O(1), for generic Yukawa couplings. Notice that such a feature has

already been found in the type II seesaw model, in Eqs. (3.90)-(3.92), thus suggesting that µ∆ � M∆

and Y∆ ∼ O(1). In accordance to Ref. [105], we call this pattern direct lepton violation (DLV), since

neutrino masses are proportional to the odd lepton-number parameter µ.

Low-scale models of light neutrino masses with large Yukawa couplings

There are models in the literature which illustrate and support the general ansatz (Z2). An interesting

example is the inverse seesaw model [159]. Considering, for simplicity, only one left-handed neutrino and

two singlet fermions, (νL, N1, N2), this model assumes the following structure for the full mass matrix:


0 mD1 0

mD1 0 MN1

0 MN1 µ

 , (3.144)

where µ is a small mass parameter, µ � MN1 . Notice that µ is a Majorana mass while all the other are

of Dirac nature. In fact, with lepton number assignements L = 1,−1, 1 to νl, N1N2, respectively, L is

2We can safely restrain the analysis to the d ≤ 6 operators without significant changes to the main physical
aspects, as long as the heavy scale M keeps being larger than O(v).
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conserved if µ = 0. Expanding the eigenvalues of Eq. (3.144) in powers of the ratio µ/MN1 � 1, we

obtain one light and two heavy neutrinos with masses:

mν ≈
µ

MN1

m2
D1

MN1

M2
N1

M2
N1

+m2
D1

, m±heavy ≈
√
m2
D1

+M2
N1
±

M3
N1

2
(
m2
D1

+M2
N1

) µ

MN1

. (3.145)

As mD1 is a typical Dirac mass term, mD1 ∼ Y1 v/
√

2, Eq. (3.145) shows that mν is suppressed by an

extra factor µ/MN1 with respect to the result for the minimal type I seesaw model [Eq. (3.42)], exactly

as expected from the general argument leading to Eq. (3.143). Therefore, we see that in the inverse

seesaw model it is possible to avoid fine-tuning (MN1 ∼ 1 TeV) while having Yukawa couplings of order

O(1) as long as µ/MN1 ∼ 10−11. On the other hand, the lepton-number conserving d = 6 operators are

independent of µ. Thus, low-energy effects associated to it could be discovered in the near future.

The above results generalise to the case with a non-zero 22 element in the mass matrix [160]:


0 mD1 0

mD1 MN2 MN1

0 MN1 µ

 . (3.146)

The interesting feature about this case is that MN2 acts as a strong source of lepton number violation

without inducing by itself neutrino masses: for µ = 0 the determinant still vanishes leading to massless

neutrinos 3. However, regarding the decoupling and suppresion of the d = 5 operators relative to d = 6

operators, we arrive at no new conclusions. For an extension of the above argument to the 3 left-handed

plus 3 right-handed neutrico case, see, for instance, Ref. [105]. A generalisation to the type III inverse

seesaw scenario as well as to a quintuplet version can be found in Ref. [161, 162].

The conclusion of the above discussion is that, irrespective of the specific model, having large effects

from d = 6 operators requires lowering the scale M towards the TeV range and decoupling the d = 5

and d = 6 coefficients along the pattern discussed above and summarised in Eq. (3.143). This allows

to account for the experimental values of neutrino masses without neither fine-tuning the Yukawa cou-

plings nor assuming cancellations in combinations of them. For a seesaw scale of O(TeV), observable

effects are then possible. The next chapter, which deals with the phenomenological aspects of seesaw

models including bounds for any value of M , will focus on those effects.

Note that the canonical seesaw models analysed in this chapter correspond only to a small portion of

all possible SM extensions with naturally small neutrino masses. In fact, the inverse-seesaw models just

discussed are viable tree-level alternatives [105, 159, 161]. Another option is to invoke loop processes,

as in the case of the Zee-Babu model [163, 164], with two additional charged SU(2)L scalar singlets

and Majorana neutrino masses generated via a two-loop diagram. Other exotic possibilities include

the breaking of R-parity without inducing proton decay in SUSY models, as well as theories with extra

dimensions or expanded gauge symmetries (see Ref. [165] and references therein).

3Since the 22 matrix element breaks lepton number, extra interaction couplings to Ni could induce neutrino
masses. Such contribution would be suppressed by loop factors, couplings of the extra interactions, as well as the
masses of the new states, but would not be necessarily negligible with respect to the contribution in Eq. (3.145).
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4 Phenomenology of seesaw

models

The discovery of neutrino oscillations and, consequently, of neutrino masses, has shown that lepton

flavour is violated. This automatically leads to rare charged-lepton flavour violating (CLFV) processes,

such as `α → `βγ, ` → 3` or µ− e conversion in atomic nuclei. These processes have been subject

of intense experimental investigation for decades and current experimental sensitivities on the various

rates are expected to improve by several orders of magnitude [127] (see Table 4.1). For µ−e transitions,

in particular for the µ→3e decay [166, 167] and µ−e conversion in atomic nuclei [168], an improvement

by as much as four to six orders of magnitude could be expected. An important improvement of one

order of magnitude is also foreseen for the `α→`βγ decays [169–171].

Process Present Limit Future Sensitivity

µ→ eγ 5.7× 10−13 (MEG) 5× 10−14 (MEG II)

τ → eγ 3.3× 10−8 (Belle) 10−9 (Super B)

τ → µγ 4.4× 10−8 (Belle) 10−8,−9 (Belle II, Super B)

µ− → e+e−e− 1.0× 10−12 (SIN/SINDRUM) 10−16,−16,−17 (Mu3e, MUSIC, Project X)

τ− → e+e−e− 2.7× 10−8 (Belle,BaBar) 10−10 (Super B)

τ− → µ+µ−e− 2.7× 10−8 (Belle,BaBar) 10−10 (Super B)

τ− → e+µ−µ− 1.7× 10−8 (Belle,BaBar) 10−10 (Super B)

τ− → e+e−µ− 1.8× 10−8 (Belle,BaBar) 10−10 (Super B)

τ− → µ+e−e− 1.5× 10−8 (Belle,BaBar) 10−10 (Super B)

τ− → µ+µ−µ− 2.1× 10−8 (Belle,BaBar) 10−10 (Belle II, Super B)

µ−Ti→ e−Ti 4.3× 10−12 (SINDRUM II)
10−17,−17,−18,−19

(COMET, Mu2e, PRISM/PRIME, Project X)

µ−Au→ e−Au 7.0× 10−13 (SINDRUM II)
10−17,−17,−18,−19

(COMET, Mu2e, PRISM/PRIME, Project X)

µ−Pb→ e−Pb 4.6× 10−11 (SINDRUM II)
10−17,−17,−18,−19

(COMET, Mu2e, PRISM/PRIME, Project X)

µ−Al→ e−Al
10−16

(COMET, Mu2e, PRISM/PRIME, Project X)

Table 4.1: Present experimental bounds on the branching ratios of charged lepton flavour violating
processes considered in our analysis and corresponding future sensitivities. [66, 127].
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In the framework of the SM extended with light neutrino masses, CLFV rates are expected to be far

below expected sensitivities. In fact, assuming Dirac massive neutrinos, the µ→ eγ rate is

BR(µ→ eγ) = 3α
32π

∣∣∣(MνM†
ν

)
eµ

∣∣∣2
M4
W

∼ 3α
32π

(
m2
v

M4
W

)
∼ 10−52 , (4.1)

where we have assumed mν ∼ 0.1 eV for the neutrino mass scale. However, for the Majorana case,

the existence of additional states can potentially induce CLFV transitions not suppressed by neutrino

masses and, therefore, at the reach of future experiments. As we have seen in Section 3.4.2, this is the

case if neutrino masses are generated through direct lepton violation, in which neutrino masses turn out

to be directly proportional to a small lepton number violating parameter. From Eq. (3.145), such setup

predicts a quasi-degenerate mass spectrum for heavy neutrinos. This fact will play an important role

below. In fact, for a quasi-degenerate mass spectrum of right-handed neutrinos, the ratio of two µ − e

transition processes depends only on the right-handed mass scale mN,Σ. As such, predicted ratios con-

stitute a precious model-discriminating tool. Finally, by analysing those ratios, we can also determine

the range of Yukawa couplings and right-handed neutrino masses that future experiments can reach.

Experimental bounds on those CLFV decays can also be used to constrain combinations of Yukawa

couplings (Y∆)ij in the type II seesaw scenario, while in the type I and type III seesaw models these

bounds constrain the off-diagonal elements of the matrixNN †, characterising deviations from unitarity

of the leptonic mixing matrix N [see Eq. (3.65)]. On the other hand, the diagonal elements of NN † can

be constrained by a combined analysis of well-known lepton flavour conserving processes: W decays,

Z decays and universality tests listed in Tables 4.2 and 4.3.

Process/Quantity Experimental Value

Γ(W → eνe) 224.1375± 0.0053 MeV

Γ(W → µνµ) 220.385± 0.051 MeV

Γ(W → τντ ) 234.563± 0.056 MeV

Γ(Z → invisible) 499.0± 1.5 MeV

BR(Z →
∑
α `α`α) 3.3658± 0.0023 %

Table 4.2: Low-energy gauge boson decays.
Data taken from [66].

Process/Quantity Experimental Value

BR(τ → πντ ) 10.83± 0.06 %

BR(π → eνe) (1.230± 0.004)× 10−4

BR(π → µνµ) 99.98770± 0.00004 %

BR(τ → ντeνe) 17.83± 0.04 %

BR(τ → Kντ ) (7.00± 0.10)× 10−3

BR(τ → ντµνµ) 17.41± 0.06 %

BR(K → eνe) (1.581± 0.008)× 10−5

BR(µ→ νµeνe) ≈ 100 %

BR(K → µνµ) 63.55± 0.11 %

Table 4.3: Low-energy decays of leptons, pions
and kaons. Data taken from [66].
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Process Constraint On Upper Bound Future Sensitivity on |(NN †)αβ |
µ→ eγ |(NN †)eµ| 2.6× 10−5 7.6× 10−6

τ → eγ |(NN †)τe| 1.5× 10−2 2.5× 10−3

τ → µγ |(NN †)τµ| 1.7× 10−2 2.5× 10−3

Table 4.4: Bounds on the coefficients (NN †)αβ resulting from `α→`βγ decays in the type I seesaw.

4.1 Type I seesaw model

4.1.1 Charged-lepton flavour violating processes

We begin our phenomenological study with the analysis of `α→ `βγ, ` → 3` and µ − e conversion

in nuclei in the type I seesaw. All these processes are induced at one-loop level. The contribution to µ

-e conversion in nuclei and `→ 3` decays can be divided in penguin diagrams, mediated by either a

photon or a Z boson, and box diagrams mediated by two W bosons. The corresponding form factors

are calculated in Appendix C, resulting in the effective Lagrangians for Z-penguin and box diagrams:

L(Z)
eff. = GSM

F g2e

4
√

2π2
FαβZ

[
ψγµ

(
I3
ψPL −Qψs2

W

)
ψ
] [
`βγ

µPL`α
]

+ h.c. , (4.2)

L(Box)
eff. = GSM

F g2e

8
√

2π2M2
W

FαβψψBox

[
ψγµPLψ

] [
`βγ

µPL`α
]

+ h.c. , (4.3)

where Qψ is electric charge of ψ, which is a quark (for µ− e conversion) or a lepton (for `→ 3` decays).

On the other hand, the effective Lagrangian for the photon-penguin diagram is

L(γ)
eff. = GSM

F e

4
√

2π2

[
(eQψ)Fαβγ

(
ψγµψ

) (
`βγ

µPL`α
)
+
Gαβγ

2
[
`βσµρ(mαPR +mβPL)`α

]
Fµρ

]
+h.c. , (4.4)

where Fµρ is the EM field tensor. Unlike for Z-penguin and box diagrams, the photon contribution con-

tains a non-local term inGµeγ , which is the only one contributing for an on-shell photon and, therefore, to

`α→`βγ decays. In these expressions, the form factors Fαβγ ,Gαβγ , FαβZ and FαβψψBox are given in Appendix

C in terms of the full (n′ + ng)× (n′ + ng) neutrino mixing matrix U defined in Eq. (C.11).

Using the non-local contribution in the effective Lagrangian (4.4) and Eq. (3.49), we obtain a simple

expression for the branching ratio of `α→`βγ decays:

BR (`α → `βγ)
BR(`α → ναeνe)

= 3α
2π|U†ααUββ |2

∣∣∣∣∣∣
ng+n′∑
j=1

UαjU
∗
βjGγ(λj)

∣∣∣∣∣∣
2

mN�MW−−−−−−−→ 3α
8π

∣∣∣(NN †)
αβ

∣∣∣2
(NN †)αα (NN †)ββ

, (4.5)

in agreement with Refs. [172, 173]. The last approximation is valid in the large mass regime mN �MW

since the form factor Gγ(λj) obeys Gγ(λj � 1) ≈ 1/2 and Gγ(λj � 1) ≈ λj/4, with λj ≡ m2
j/M

2
W

and mj the neutrino masses. Eq. (4.5) allows to constrain the off-diagonal elements
(
NN †

)
αβ

1. In fact,

using the present experimental bounds on `α→ `βγ (Table 4.1), we obtain the upper bounds on NN †

listed in Table 4.4. We see that the most stringent upper bound of |(NN †)eµ| < 2.6 × 10−5 comes from

µ→eγ, while the remaining off-diagonal elements are constrained to be less than a few percent.

1We have neglected the elements (NN†)ββ in expression (4.5) since corrections are suppressed at ∼ O(m−2
N ).
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A
ZNucleus Zeff. F (−m2

µ) D m
−5/2
µ V (p) m

−5/2
µ V (n) m

−5/2
µ Γcap (×10−18 GeV)

27
13Al 11.5 0.64 0.0362 0.0161 0.0173 0.464
48
22Ti 17.6 0.54 0.0864 0.0396 0.0468 1.70

196
79Au 33.5 0.16 0.189 0.0974 0.146 8.60

207
82 Pb 34.0 0.15 0.161 0.0834 0.128 8.85

Table 4.5: Nuclear parameters related to µ− e conversion in nuclei (values taken from Ref. [174]).

As for µ−e conversion in nuclei, we study it in the effective way described in Ref. [174], using the

couplings (4.2)-(4.4). The nuclear information is encoded in the form factors D, V (p) and V (n), as well as

in the muon capture rate Γcapt., with values reported in Table 4.5 for the analysed nuclei, namely 27Al,
48Ti, 196Au and 207Pb. The expression for the conversion rate reads

CR (µN→eN )
BR(µ→ νµeνe)

= 3g4

2π ·
Γµ

Γcapt.

∣∣∣∣4V (p) (2Fµeu + Fµed )+4V (n) (Fµeu + 2Fµed ) + s2
WG

µe
γ

D

2e

∣∣∣∣2 1
|U†ααUββ |2

, (4.6)

in conformity with Ref. [172]. In this expression, Γµ ≈ 2.996× 10−19 GeV is the muon decay width [66]

and the form factors Fµeq (q = u, d) are given in terms of the functions Fαβγ , FαβZ and FαβψψBox by

Fµeq = Qqs
2
WF

µe
γ + FµeZ

(
I3
q

2 −Qqs
2
W

)
+ 1

4F
µeqq
Box , with I3

u = −I3
d = 1

2 . (4.7)

Finally, we will also be interested in `−α → `+β `
−
β `
−
β decays. Following Ref. [175], we get:

BR(`α → 3`β)
BR(`α → ναeνe)

= g2

1024π4×

{
32s4

W

∣∣Gαβγ ∣∣2
(

ln m
2
α

m2
β

− 11
4

)
− 48s4

WRe
[(
FαβZ − Fαβγ

)
Gαβγ

∗]
+ 4s4

W

∣∣∣FαβZ − Fαβγ
∣∣∣2 + 16s2

WRe
[(
FαβZ + 1

2F
αβββ
Box

)
Gαβγ

∗
]

+2
∣∣∣∣12FαβββBox + FαβZ − 2s2

W (FαβZ − Fαβγ )
∣∣∣∣2
}

1
|U†ααUββ |2

.

(4.8)

Thus, µ−e conversion in nuclei and µ→ eγ are sensitive to different combinations of form factors.

Moreover, the rates for µ−e conversion in nuclei and `→ 3` decays exhibit a non-vanishing logarithmic

dependence on heavy neutrino masses [172]. Therefore, a simple expression as Eq. (4.5) is not possible

to obtain. However, models that lead naturally to observable CLFV rates imply a quasi-degenerate mass

spectrum mN1 ≈mN2 ≈ ...≡mN [see Eq. (3.145)]. As a result, in such scenario, the dependence on the

mixing matrix factorises out, leaving only a dependence on the mass scale mN (λN = m2
N/M

2
W ):

BR (`α → `βγ)
BR(`α → ναeνe)

= 3α
2π |Gγ(λN )|2 ×

∣∣∣∑Nj
UαjU

∗
βj

∣∣∣2
|U†ααUββ |2

, (4.9)

CR (µN→eN )
BR(µ→ νµeνe)

= 3g4

2π ·
(

Γµ
Γcapt.

)
|Cµe(λN )|2 ×

∣∣∣∑Nj
UαjU

∗
βj

∣∣∣2
|U†ααUββ |2

, (4.10)

BR(`α → 3`β)
BR(`α → ναeνe)

= g4

1024π4 |Cα3β(λN )|2 ×

∣∣∣∑Nj
UαjU

∗
βj

∣∣∣2
|U†ααUββ |2

. (4.11)
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Figure 4.1: Loop factors |Cµ3e|2 and Cµe as functions of the seesaw scale mN in the type I seesaw. Note
that we only stop at 1 GeV for plot-aesthetic reasons.

The loop factors Cµe and Cµ3e in Eqs. (4.10) and (4.11) are functions of the mass scale mN , given by

Cµe =
∣∣∣∣4V (p) (2Fu + Fd) + 4V (n) (Fu + 2Fd) + s2

WGγ
D

2e

∣∣∣∣2 , (4.12)

|Cα3β |2 = 32s4
W |Gγ |

2

(
ln m

2
α

m2
β

− 11
4

)
−48s4

W

(
F̃Z−Fγ

)
Gγ
∗+4s4

W

∣∣∣F̃Z−Fγ∣∣∣2
+ 16s2

W

(
F̃Z−F̃d Box

)
G∗γ+2

∣∣∣−F̃d Box+F̃Z−2s2
W (F̃Z − Fγ)

∣∣∣2 . (4.13)

where Gγ , Fγ , GZ , F̃Z and F̃q Box (q = u, d) are functions only of λN ≡ m2
N/M

2
W given in Appendix C,

while the form factor Fq inherits the structure of definition (4.7) for Fµeq :

Fq = Qqs
2
WFγ + F̃Z

(
I3
q

2 −Qqs
2
W

)
+ 1

4 F̃qBox . (4.14)

As LFV µ processes are presently the most constrained ones, we limit our analysis of CLFV processes

to µ−e conversion in nuclei, µ→eγ and µ→3e. The dependence of the loop factor |Cµ3e|2 on the seesaw

mass scale mN is represented in Fig. 4.1. At mN = 100 (1000) GeV, we have: |Cµe|2 ≈ 1.75 (38.73) and,

therefore, the µ → 3e branching ratio increases by a factor of ∼ 22 when mN goes from 100 GeV to

1000 GeV. Using the experimental upper bounds on BR(µ→ 3e), we obtain the following constraint:

|
(
NN †

)
µe
| . 5.8× 10−4 (1.2× 10−4) for mN = 100 (1000) GeV , (4.15)

which is around one order of magnitude less stringent than that obtained from BR(µ→eγ) (in Table 4.4).

On the other hand, the loop factor Cµe for the nuclei of interest is represented in Fig. 4.1 as a function of

mN . The first feature to notice is that |Cµe| has maxima at mN ≈ 360, 350, 310 , 310 GeV for 27Al, 48Ti,
196Au and 207Pb, respectively. In other words, the conversion rates suffer the strongest enhancement at

approximately the same mass mN ≤ 1000 GeV. Besides the maxima, |Cµe| vanishes for mass values in

the 10 − 50 TeV range, respectively 51, 30, 11 and 9.7 TeV for 27Al, 48Ti, 196Au and 207Pb. This feature

was already noticed in Ref. [172] and is due to opposite up- and down-quark contributions in Eq. (4.6).

As a result of the factorisation of the dependence on the mixing matrix in Eqs. (4.9)-(4.11), the ratio

of two same-flavour-transition rates offer several possibilities to test the seesaw model.
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Figure 4.2: Ratios of the µ − e conversion rate for several nuclei and BR(µ → eγ) (solid lines) or
BR(µ→ 3e) (dashed lines), as functions of the seesaw scale mN in the type I seesaw.

In Fig. 4.2, we show the ratios of conversion rates in nuclei to the µ→eγ and µ→ 3e decay branching

ratios. For mN ≤ 1000 GeV, the observation of monotonous functions means that the measurement of

this ratio would allow for a determination of mN . In fact the observation of a single rate that, together

with the experimental upper bound on another one, leads to a ratio incompatible with the expectations

of Fig. 4.2, can be sufficient to exclude the model. Additionally, in the large mass regime mN�MW , we

see that, as expected, both ratios vanish at a value of mN dependent on the nucleus. This shows how

important the search for µ→ e conversion in several nuclei could be in testing the model.

Finally, present bounds and future sensitivities to Yukawa couplings resulting from CLFV processes

are shown in Fig. 4.3. The results clearly suggest that µ−e conversion experiments will become dominant

in the study of flavour physics, allowing to probe Yukawa couplings as small as 10−2, 10−3 or even 10−4

for mN = 10 TeV, 1 TeV and 100 GeV, respectively. By requiring YN ∼O(1), we can rephrase the bounds

of Fig. 4.3 as upper bounds on mN . The most stringent bound comes from µ−e conversion in 48Ti:

mN . 2000 TeV ·

(
10−18

CRTi
µ→e

) 1
4

|
∑
Nj

(YN )je (YN )†jµ |
1/2 , (4.16)

showing that future experiments may probe the type I seesaw scenario beyond the ∼ 1000 TeV scale.
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Figure 4.3: Bounds on
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∣∣∣ and
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Ue jU

†
j µ

∣∣∣ for a type I seesaw scenario with a single heavy
mass scale mN . The present experimental upper bounds are represented by solid lines and excluded
regions by shaded areas, while dashed lines correspond to expected experimental sensitivities. Our
analysis is valid below

∣∣∣∑Nj
Ye jY†j µ

∣∣∣ = 4π, i.e. in the non-perturbative regime YN ≥
√

4π.
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4.1.2 Unitarity of the lepton mixing matrix

In the previous section, we discussed the possibility of having observable CLFV processes unsup-

pressed by neutrino masses, i.e. large effects from d = 6 operators with small neutrino masses. Directly

related to the d = 6 operators is the possibility of having a non-unitary lepton mixing matrix N , lead-

ing to non-standard effects in neutrino propagation [176]. As such, in this section we aim at obtaining

bounds on non-unitarity which are independent of the heavy masses and applicable to any type I see-

saw theory. For that, we will work in the large mass regime mN � MW (mN ∼ O(TeV) for example)

in which the bounds in Table 4.4 resulting from `α → `βγ decays can be used. These bounds constrain

the off-diagonal elements of NN †. On the other hand, in order to set bounds on the diagonal elements(
NN †

)
αα

an additional analysis of (tree-level) W and Z decays as well as of constraints on the univer-

sality of weak interactions will be pursued.

W decays

With a non-unitary mixing matrix N in the leptonic CC defined in Eq. (3.114), we obtain for the

W → `ανα decay width the following expression:

Γ(W → `ανα) = GSM
F M3

W

6
√

2π
(NN †)αα =⇒ (NN †)αα√

(NN †)ee(NN †)µµ
= fα . (4.17)

Using the experimental values of the W decay widths and mass from Ref. [66] and the value of the

Fermi constant as extracted from muon decay [see Eq. (3.64)], GF = (1.16637± 0.00001)× 10−5 [66], the

parameters fα in the above expression are:

fα ≡
Γ(W → `ανα) 6

√
2π

GFM3
W

=


0.983± 0.023 , for α = e

0.975± 0.024 , for α = µ

1.044± 0.023 , for α = τ .

(4.18)

Inserting these values in Eq. (4.17), allows to obtain the constraints shown in Table 4.6, from where we

immediately see that, as expected, the elements
(
NN †

)
αα

are equal up to a few percent.

Invisible Z decay

Additional constraints come from the analysis of invisible Z decay. In fact, for a non-unitary leptonic

mixing matrixN , the neutral weak couplings in Eqs. (3.47) or (3.62) result in the decay width:

Γ(Z → invisible) =
∑
i,j

Γ(Z → ν̄iνj) = GSM
F M3

Z

12
√

2π
(1 + ρt)

∑
i,j

|(N †N)ij |2 , (4.19)

where ρt ≈ 0.008 [66] accounts for (non-negligible) radiative corrections, mainly involving the top

quark. As these corrections do not involve leptons, the dependence on the mixing matrix in Eq. (4.19)

remains exact beyond tree level. Converting the summation in Eq. (4.19) to a summation over flavour

eigenstates, through the relation
∑
i,j |(N †N)ij |2 =

∑
αβ |(N †N)αβ |2, and writing the decay width in
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Process Constraint On Bound

Γ(W→µν̄µ)
Γ(W→eν̄e)

(NN†)µµ
(NN†)ee 0.9925± 0.0338

Γ(W→τν̄τ )
Γ(W→eν̄e)

(NN†)ττ
(NN†)ee 1.0626± 0.0022

Γ(τ→ντµν̄µ)
Γ(τ→ντeν̄e)

(NN†)µµ
(NN†)ee 0.9764± 0.0040

Γ(τ→ντeν̄e)
Γ(µ→νµeν̄e)

(NN†)ττ
(NN†)µµ 1.0006± 0.0021

Γ(τ→ντµν̄µ)
Γ(µ→νµeν̄e)

(NN†)ττ
(NN†)ee 1.0004± 0.0021

Γ(π→µν̄µ)
Γ(π→eν̄e)

(NN†)µµ
(NN†)ee 1.0021± 0.0016

Γ(τ→πν̄τ )
Γ(π→µν̄µ)

(NN†)ττ
(NN†)µµ 0.9956± 0.0031

Γ(τ→Kν̄τ )
Γ(K→µν̄µ)

(NN†)µµ
(NN†)ee 0.9852± 0.0072

Γ(τ→πν̄τ )
Γ(K→eν̄e)

(NN†)ττ
(NN†)µµ 1.0180± 0.0420

Table 4.6: Constraints on (NN †)αα from a selection of processes.

terms of the Fermi constant as measured in muon decay [see Eq. (3.64)], we obtain the constraint [66]∑
α,β |(NN †)αβ |2√

(NN †)ee(NN †)µµ
= 12

√
2π Γ(Z → invisible)
GFM3

Z(1 + ρt)
= 2.984± 0.009 . (4.20)

Notice that this quantity corresponds to the number of active neutrinos at LEP. Its departure from 3

could signal the presence of new physics but the 2σ deviation is not (yet) statistically significant.

Universality tests

Finally, constraints on the universality of weak interactions, as ratios of lepton, W and π decays,

can also be translated into bounds on
(
NN †

)
αα

. The results of our analysis are displayed in Table 4.6.

When analysing leptonic decays `α → να`β , we used the following expression for the decay width:

Γ(`α → να`βνβ) = GSM
F

2
m5
α

192π3 (NN †)αα(NN †)ββ . (4.21)

Note that in Table 4.6 we have also considered low-energy leptonic decays involving pions (π) and kaons

(K), whose bounds were taken from Ref. [176].

Combination of all constraints

Finally, from all constraints resulting from electroweak decays, in Tables 4.6 and 4.4 as well as in Eq.

(4.66), a global fit leads to the following elements ofNN † at 90% CL:

|NN †| ≈


0.996± 0.003 < 2.6 · 10−5 < 1.5 · 10−2

< 2.6 · 10−5 0.994± 0.003 < 1.7 · 10−2

< 1.5 · 10−2 < 1.7 · 10−2 1.001± 0.004

 . (4.22)
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The constraints on the off-diagonal elements
(
NN †

)
αβ

result mainly from experimental bounds exist-

ing on `α → `βγ while the diagonal ones come from the combined analysis of all other processes men-

tioned above, although a small interference between both constraints appears through Eq. (4.21). How-

ever, in view of the present upper bounds in Table 4.4 for the off-diagonal elements, their (quadratic)

contributions are negligible small and, as such, were neglected in the analysis. From these results, we

conclude that there is a 2σ departure from unity of the diagonal elements in Eq. (4.67), which can be

interpreted as resulting from a similar discrepancy in the invisible width of the Z boson, Eq. (4.20). As

we remarked there, this 2σ deviation is not significant enough to be interpreted as a signal of physics

beyond the SM.

Let us finally remark that, as discussed in the beginning of this section, the bounds above are valid for

any values of the heavy-field masses, provided they satisfy mNj � MW . Notice also that these bounds

apply to any type I seesaw theory. In particular, they apply to the inverse seesaw model (Section 3.4.2),

characterised by a quasi-degenerate heavy mass spectrum with a scale mN possibly near the TeV scale,

while maintaining large Yukawa couplings and signals possibly at the edge of experimental limits.

4.2 Type II seesaw model

4.2.1 Charged lepton flavour violating processes

As we saw above, in the type I seesaw all CLFV processes can only be induced at loop level. The

type II-model introduces a novelty, with tree-level `→ 3` decays. As a result, we expect `→ 3` rates to

be the largest ones. Another important difference with respect to the type I seesaw case is that from the

ratio of two same flavour transition rates we do not always get a function of the mass scale m∆.

In the mass-eigenstate basis, the effective charged lepton flavour changing `β`αγ vertex arises at

one-loop order from the exchange of singly- and doubly-charged scalar fields ∆± and ∆±±, respec-

tively. The form factors are calculated in detail in Appendix D and the resulting effective Lagrangian,

corresponding to Eqs. (D.22) and (D.23), can be written as [177–179]:

L(γ)
eff. = −4G

SM
F√
2
(
mαAR`βσ

ρσPR`αFρσ + h.c.
)
− GSM

F√
2

AL(q2)`βγρPL`α
∑
ψ=u,d

Qψψγρψ + h.c.

 , (4.23)

with

AR = − e

4
√

2GSM
F

(
Y∆Y†∆

)
αβ

6π2

(
1

8M∆+
+ 1
M∆++

)
, (4.24)

AL(q2) = −
√

2e2

GSM
F

Y∗∆βjY∆αj

6π2

[
1

12M2
∆+

+ 1
M2

∆++
f

(
−q2

M∆++
,
m2
`σ

M∆++

)]
, (4.25)
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and where q is the momentum carried by the photon. The loop function f(r,Sσ) is given by:

f(r, Sσ)= 4Sσ
r

+lnSσ+
(

1− 2Sσ
r

)√
1+ 4Sσ

r
ln
∣∣∣∣√r+4Sσ+

√
r√

r+4Sσ−
√
r

∣∣∣∣ , r ≡ −q2

M∆++
, Sσ ≡

m2
`σ

M∆++
. (4.26)

Notice that f(r, Sσ) is a monotonically decreasing function of M∆++ (see Fig. 4.4) and that, for σ = e,

f(r, Se) ≈ ln r to a very good approximation. Moreover, the ratios f(r, Se)/f(r, Sσ) do not change

significantly when M∆++ increases from 100 GeV to 1000 GeV (Fig. 4.5). At M∆++ = 100 (1000) GeV,

f(r, Se)/f(r, Sµ) ≈ 1.2 (1.1) and f(r, Se)/f(r, Sσ) ≈ 2.1 (1.7).

`α → `βγ decays

The first term in the Lagrangian (4.23), with form factor AR, generates the on-shell `α → `βγ decay

amplitude; it comes from the contribution of one-loop diagrams with virtual neutrino and ∆+ and with

virtual charged lepton and ∆++. A trivial calculation based on Eq. (4.23) leads to the result:

BR(`α → `βγ) = 384π2(4πα) |AR|2 BR(`α → eνανe)

= α

48π

∣∣∣∣(Y∆Y†∆
)
αβ

∣∣∣∣2
(GSM

F )2

(
1

M2
∆+

+ 8
M2

∆++

)2
BR(`α → eνανe)

≈ 27α
16π

∣∣∣∣(Y∆Y†∆
)
αβ

∣∣∣∣2
(GSM

F )2M4
∆

BR(`α → eνανe) ,

(4.27)

in agreement with Refs. [177, 178]. Note that in the last step above we have used M∆+ ≈M∆++≡M∆
2.

The upper limits on BR(`α → `βγ) reported in Table 4.1 then imply the upper bounds on |(Y∆Y†∆)αβ |

given in Table 4.7. From this last table, we see that the most stringent bound comes from µ → eγ and

that for an O(TeV) seesaw scale M∆, the Yukawa couplings are allowed to be of O(10−1), while they

2We have also neglected the phase space factor ≈ 1 − 8m2
β/m

2
α in the decay width Γ(`α → `βνανβ). However,

even for τ → µγ decays, it corresponds only to a correction smaller than 3%.
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Process Constraint On Upper Bound
(
×
(
M∆

1 TeV
)2)

Future Sens.
(
×
(
M∆

1 TeV
)2)

µ→ eγ |(Y∆Y†∆)µe| 1.4× 10−4 4.5× 10−5

τ → eγ |(Y∆Y†∆)τe| 8.0× 10−2 1.4× 10−2

τ → µγ |(Y∆Y†∆)τµ| 9.4× 10−2 1.4× 10−2

Table 4.7: Bounds on combinations of Yukawa couplings resulting from `α → `βγ in the type II seesaw.

should be sizeably smaller by up to 3 orders of magnitude for specific flavours.

The upper bounds in Table 4.7 can be used to extract lower bounds on the vacuum expectation value

v∆ of the triplet [180]. In fact, from Eq. (3.81), we obtain∣∣∣∣(Y∆Y†∆
)
αβ

∣∣∣∣ = 1
4v2

∆

∣∣∣(UνL)β2 (UνL)†2α ∆m2
21 + (UνL)β3 (UνL)†3α ∆m2

31

∣∣∣ , (4.28)

where we have used the unitarity of UνL. It follows from Eq. (4.28) that the prediction for |(Y∆Y†∆)αβ |

and, thus, for BR(`α → `βγ), depends on the Dirac phase δ of the mixing matrix UνL [see Eq. (3.18)].

For the best-fit values of the oscillation parameters listed in Table 3.1, the term ∝ ∆m2
21 in Eq. (4.28)

is approximately one order of magnitude smaller than the term ∝ ∆m2
31. It is easy to check that this

implies a relatively weak dependence of BR(`α → `βγ) on the Dirac phase and on the neutrino mass

spectrum. Thus, neglecting the term ∝ ∆m2
21, we obtain from Eq. (4.28) and Table 4.7:

v∆ > 42.2 |s13s23c13∆m2
31|1/2 ·

(
1 TeV
M∆

)
≈ 0.71 eV ·

(
1 TeV
M∆

)
, (4.29)

v∆ > 1.77 |s13c23c13∆m2
31|1/2 ·

(
1 TeV
M∆

)
≈ 0.029 eV ·

(
1 TeV
M∆

)
, (4.30)

v∆ > 1.63 |s23c23c
2
13∆m2

31|1/2 ·
(

1 TeV
M∆

)
≈ 0.056 eV ·

(
1 TeV
M∆

)
. (4.31)

As expected, the contribution from µ→ eγ sets the highest lower bound on v∆ [see Eq. (4.27)]. We there-

fore see that for M∆ ∼ O(TeV) seesaw mass we get v∆ & 1 eV. We can therefore rewrite BR(`α→`βγ)

for the most stringent process µ→ eγ as

BR(µ→ eγ) ≈ 1.4× 10−13
(

1 eV
v∆

)4
·
(

1 TeV
M∆

)4
. (4.32)

from which follows that, for the values of v∆ and M∆ of interest, BR(µ → eγ) may reach values within

the projected sensitivity of the MEG II experiment [169].

µ− e conversion in nuclei

Together with the on-shell contribution in the effective Lagrangian (4.23), the off-shell contribution -

involving the form factor AL - generates the µ− e conversion amplitude. In the type II seesaw scenario,
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Process Constraint On Upper Bound
(
×
(
M∆

1 TeV
)2)

Future Sens.
(
×
(
M∆

1 TeV
)2)

µTi→ eTi |C(II)
µe | 3.1× 10−3 4.7× 10−6

µAl→ eAl |C(II)
µe | - 2.0× 10−5

Table 4.8: Bounds on |C(II)
µe | [see Eq. (4.38)] resulting from µ− e conversion in the type II seesaw model.3

µ − e conversion in nuclei thus arises only from photon-exchange contributions. In the same way that

was done in Section 4.3.1, we obtain the conversion rate following the effective theory approach devel-

oped in [174]. Therefore, from the effective Lagrangian (4.23), we get the following conversion rate in

the type II seesaw scenario:

CR (µN → eN ) ≈ (4πα)2 2
(
GSM
F

)2
Γcapt.

∣∣∣∣A∗R D√
4πα

+ (2Qu +Qd)AL(q2)V (p)
∣∣∣∣2 , (4.33)

with an energy scale q2 ≈ −m2
µ for this process. Using the light nuclei (Z ≤ 30) approximation

V (p) = m5/2
µ α3/2Z2

eff.Z
1/2F (q2)/4π , D ≈ 8eV (p) , (4.34)

we arrive at the relevant expression for the conversion rate:

CR (µN → eN ) ≈ α5

9π4
m5
µ

Γcapt.
Z4

eff.ZF
2(−m2

µ) (4.35)

×

∣∣∣∣∣(Y∆Y†∆
)
eµ

(
5

24M2
∆+

+ 1
M2

∆++

)
+ 1
M2

∆++

∑
ρ=e,µ,τ

Y†∆eρf(r, Sρ)Y∆ρµ

∣∣∣∣∣
2

(4.36)

≈ α5

9π4
m5
µ

Γcapt.
Z4

eff.ZF
2(−m2

µ)
∣∣∣C(II)
µe

∣∣∣2 , (4.37)

where we have used the approximation M∆+ ≈M∆++ = M∆. The quantity C(II)
µe is defined by

C(II)
µe ≡

1
M2

∆

[
29
24

(
Y∆Y†∆

)
eµ

+
∑

ρ=e,µ,τ
Y†∆eρf(r, Sρ)Y∆ρµ

]
. (4.38)

Using the upper bounds on the µ − e conversion rates of Table 4.1, as well as the values for the

effective atomic number Zeff., the nuclear form factors F 2(−m2
µ) and the muon capture rate Γcapt. given

in Table 4.5, we are then able to get the upper limits for |C(II)
µe | collected in Table 4.8. From this table, we

see that µ − e conversion in 48Ti sets an upper bound |C(II)
µe | < 3.1 × 10−3 (M∆/1 TeV)2. On the other

hand, using the (less optimistic) future sensitivities to µ − e conversion rates in Table 4.1, we are also

able to set lower bounds on the value of |C(II)
µe | that future experiments can probe. From Table 4.8, we

then conclude that future experiments with 48Ti will be sensitive to |C(II)
µe | & 4.7× 10−6(M∆/1 TeV)2.

3Only the 48
22Ti and 27

13Al nuclei are considered due to the light nuclei approximation used in Eq. (4.37). Notice
that for 27

13Al there is no present upper bound.
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Figure 4.7: `→ 3` in the type II full theory.

`→ 3` decays

Contrary to what happens with the other CLFV decays, the leading contribution to the `→ 3` decays

in the scalar triplet model is due to tree-level exchange of a doubly-charged scalar ∆++ [177, 181]. From

the point of view of the effective theory, these processes are generated by the d = 6 effective operator

δL4F [105, 182]. The comparison between these two approaches can be illustraded as sketched in Figs.

4.6 and 4.7. In terms of the coefficients c4F
αβρσ of the d = 6 operator δL4F in Eq. (3.92),

c4F
αβρσ ≡

1
M2

∆
Y∆αβ

Y†∆ρσ
, (4.39)

we obtain for the `−α → `+β `
−
σ `
−
σ decay branching ratio for any β, σ:

BR(`−α → `+β `
−
σ `
−
σ ) =

4
∣∣∣c4F
αβρσ

∣∣∣2(
GSM
F

)2 BR(`−α → e−νανe) =
4 |Y∆αβ

|2|Y∆ρρ
|2

M4
∆
(
GSM
F

)2 BR(`−α → e−νανe) . (4.40)

Similarly, for `−α → `+β `
−
σ `
−
ρ decays with σ 6= ρ, we obtain the expression:

BR(`−α → l+β l
−
σ l
−
ρ ) = 8

M4
∆
(
GSM
F

)2 |Y∆αβ
|2|Y∆ρσ

|2BR(`−α → e−νανe) , (4.41)

which is in agreement with the results of [177, 181]. Instead, it is off by a factor of 4 from that of Ref.

[105], probably because the authors of this work have not included a factor of 2 in the derivation of the

Feynman rules with two identical fields.

From the present experimental upper limits on branching ratios given in Table 4.1, we obtain the up-

per bounds on the Yukawa couplings listed in Table 4.9. From the latter table, we see that the most strin-

gent upper bound comes from the process µ− → e+e−e−, namely |Y∆µe||Y∆ee| . 5.8× 10−6 × (M∆/1 TeV)2.

For Yukawa couplings of order unity, we also see that the present non-observation of µ− → e+e−e− im-

plies a lower bound on the seesaw scale

M∆ ≥ 414 TeV , for Y∆ ∼ O(1) . (4.42)

On the other hand, the (less optimistic) future sensitivities given in Table 4.9 indicate that future ex-

periments will be able to probe values of Yukawa couplings combinations one of magnitude below the

present bounds (or one order of magnitude above for the masses M∆ ).
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Process Constraint On Upper Bound Future Sens. on |Y∆αβ
||Y∆ρσ

|

µ−→e+e−e− |Y∆µe||Y∆ee| 5.8× 10−6 5.8× 10−8

τ−→e+e−e− |Y∆τe||Y∆ee| 2.3× 10−3 1.4× 10−4

τ−→µ+µ−µ− |Y∆τµ||Y∆µµ| 1.4× 10−3 9.8× 10−5

τ−→µ+e−e− |Y∆τµ||Y∆ee| 1.2× 10−3 9.8× 10−5

τ−→e+µ−µ− |Y∆τe||Y∆µµ| 1.3× 10−3 9.8× 10−5

τ−→µ+µ−e− |Y∆τµ||Y∆µe| 1.6× 10−3 9.8× 10−5

τ−→e+e−µ− |Y∆τe||Y∆µe| 1.3× 10−3 9.8× 10−5

Table 4.9: Bounds on Y∆ij

[
×
(
M∆

1 TeV
)2]

from tree level `→ 3` decays in the type II seesaw scenario.

4.2.2 MW and the ρ parameter

The µ∆ parameter in the Lagrangian (3.75) can also be constrained by the well-determined observ-

ables ρ and MW [105]. In fact, the operator LφD in Eq. (3.92) corrects the value of both. Considering Eq.

(2.31), if the ρ parameter is extracted from data using only hadronic transitions (which do not depend

on the leptonic Yukawa couplings) its value is shifted from the SM prediction by:

δρhad = −|µ∆|2

M4
∆

√
2

GSM
F

. (4.43)

As an estimate, using the average experimental value of ρ (ρexp. = 1.0004+0.0003
−0.0004) as if it were indeed

dominated by the hadronic contributions, we are able to obtain the following constraint on µ∆/M
2
∆:

v2 |µ∆|2

M4
∆
. 0.0002+0.0001

−0.0002 =⇒ |µ∆| . 5.7× 10−2
(
M2

∆
1 TeV

)
. (4.44)

Using the relation M2
W ≈ 8ρGF /

√
2g, the W boson mass is also shifted,

δM2
W = − M2

W

2MW
2 −M2

Z

[
δρhadM

2
W −

δGF
GF

(M2
W −M2

Z)
]

(4.45)

= − M2
W

2MW
2 −M2

Z

[
|µ∆|2

M4
∆

M2
W

GF
√

2
− M2

W −M2
Z√

2GFM2
∆

Y∆eµY∆
†
eµ

]
,

where MW is the SM value for the W -boson mass as predicted in the (MS) scheme at the Z-pole (Z-

scheme), MSM
W = 80.4887 ± 0.0515 GeV, and GF is extracted from muon decay, see Eq. (3.93). Barring

extreme cancellations between both terms in Eq. (4.45), the precise experimental value of MW allows to

set stringent bounds on both the Yukawa couplings and on the µ∆ parameter:

|Y∆µe|4 = (0.00023± 0.00109)
(
M∆

1 TeV

)−4
, |µ∆| . 8.7× 10−2

(
M2

∆
1 TeV

)
. (4.46)

Notice that the ratio v2|µ∆|/M2
∆ is directly related to neutrino masses via Eq. (3.80). For example,

mν ∼ 1 eV and Y∆ ∼ O(1), require a ratio µ∆/M
2
∆ ∼ 10−11 TeV−1 below the bound in Eq. (4.46).
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4.2.3 Experimental signatures of scalar triplets

Another difference of the scalar triplet model compared to the type I seesaw scenario is that the ratio

of two rates with the same flavour transition exhibit a different dependence on the masses M∆+ and

M∆++ . An analysis based on these ratios, as performed in the type I seesaw, is therefore not possible

except in very particular cases. For instance, in the limit M∆++ � M∆+ (where the dominant con-

tribution to the µ − e conversion is given by the exchange of the singly-charged scalar ∆+), we have

|C(II)
µe | ∝ (Y∆Y†∆)µe and an analysis based on the ratio of the µ → eγ and µ − e conversion rates is

possible [173]. The measurement of any of these ratios can give us the value of M∆ if these CLFV tran-

sitions are due to scalar triplet interactions. Future facilities open up the possibility of observing such

new signals of the type II seesaw scenario. For instance, expected sensitivities on M∆ are:

M∆ . 200 TeV · |(Y∆Y†∆)µe|1/2 ·
[

10−14

BR(µ→ eγ)

]1/4

, (4.47)

M∆ . 400 TeV · |C(II)
µe |1/2 ·

[
10−18

CR(µTi→ eTi)

]1/4

, (4.48)

M∆ . 2400 TeV ·
√
|Y∆µe||Y∆ee| ·

[
10−16

BR(µ→ eee)

]1/4

, (4.49)

which shows that for Y∆ ∼ O(1) future CLFV decay experiments may in principle probe the type II

seesaw model beyond ∼ 1000 TeV.

Assuming that M∆ could be as low as O(TeV), a striking signal of the type II seesaw mechanism

would be the production of the doubly-charged scalars ∆++ and ∆−− at the LHC, and their subsequent

decay into pairs of leptons with equal charge [183]. However, even with a detection of a boson with

such behavior, the identification of a type II seesaw mechanism would still require the measurement of

at least three CLFV processes in order to determine the Yukawa couplings in Tables 4.7 and 4.9.

Other interesting signals of the type II seesaw mechanism would be the observation of the pro-

cesses: ∆++ → W+W+, W+W+ → ∆++ , Z0 → ∆+W−, or ∆+ → ZW+. For example, the ∆++

and ∆−− produced by a Drell-Yann process (q̄q → ∆−−∆++) [183], could decay into pairs of W bosons

(∆±± →W±W±). However, for such a decay, the decay width is proportional to v2 M3
∆

M2
W

|µ∆|2
M4

∆
and the

constraint obtained in Eq. (4.46) largely suppresses this decay. The same holds for other decays [184].

Thus, the only relevant channel will be the ∆±± → l±l±, with a decay rate proportional to M∆|Y∆ij |2.

Alternative investigations involve the study of modifications to SM Higgs physics. For instance, the

L6φ [Eq. (3.92)] and LφD [Eq. (3.92)] operators induce the following new couplings with the Higgs

boson: HHWW , HHZZ, H4, HWW , HZZ and H3. However, the strong upper limit in Eq. (4.46)

precludes observable effects, except maybe from L6φ for very large values of λ2 and/or λ4. Similarly,

LφD also affects Higgs processes but, once more, the bound coming from the ρ parameter discussed

above excludes observation in the planned future facilities such as the ILC [185].
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Process Constraint On Upper Bound Future Sensitivity on |εΣ
βα|(|εΣ

βρ|)

µ→ eγ |εΣ
eµ| 2.3× 10−5 6.5× 10−6

τ → eγ |εΣ
eτ | 1.3× 10−2 2.3× 10−3

τ → µγ |εΣ
µτ | 1.5× 10−2 2.3× 10−3

µ− → e+e−e− |εΣ
eµ| 1.1× 10−6 1.1× 10−8

τ− → e+e−e− |εΣ
eτ | 4.3× 10−4 2.6× 10−6

τ− → µ+µ−µ− |εΣ
µτ | 3.8× 10−4 2.6× 10−5

τ− → µ+µ−e− |εΣ
eτ | 3.2× 10−4 1.9× 10−5

τ− → e+µ−µ− |εΣ
τµ||εΣ

eµ| 2.2× 10−4 1.7× 10−5

τ− → e+e−µ− |εΣ
τµ| 2.6× 10−4 1.9× 10−5

τ− → µ+e−e− |εΣ
τe||εΣ

µe| 2.1× 10−4 1.7× 10−5

µPb→ ePb |εΣ
eµ| 2.5× 10−6 3.7× 10−10

µTi→ eTi |εΣ
eµ| 5.3× 10−7 2.6× 10−10

µAu→ eAu |εΣ
eµ| 1.5× 10−7 1.8× 10−10

µAl→ eAl |εΣ
eµ| 2.1× 10−9

Table 4.10: Bounds on the coefficients εΣ
βα resulting from CLFV decays in the type III seesaw scenario.

4.3 Type III seesaw model

A crucial difference between the type I and type III seesaws is that in the latter there is charged-

lepton flavour mixing in neutral currents [see Eq. (3.135)]. As a result, in the type III seesaw, `→ 3` and

µ − e conversion are tree-level processes. Only `α → `βγ decays still have to proceed at one-loop level

since the QED coupling (2.40) remains flavour diagonal.

4.3.1 Charged lepton flavour violating processes

`α → `βγ decays

Following the detailed computation in Appendix E, we have for mΣ �MW [186]:

BR(`α → `βγ) ≈ 3α
32π

∣∣∣∣∣∣
(

13
3 +C

)(
εΣ)

βα
−
∑
j

wνj (UνL)βj
(
UνL
†
)
jα

+O
(
mΣ

MW

)3
∣∣∣∣∣∣
2

BR(`α → `βνβνα) , (4.50)

where wνj ≡ m2
νj/M

2
W and C = 16

3
(
cos2 θW − 2

)
. The second term in Eq. (4.50) is the usual con-

tribution (4.1) from neutrino mixing, while the first corresponds to the explicit contribution of the

triplet(s). For a given value of the seesaw scalemΣ we would expect εΣ∼mν/mΣ ∼ 10−12 (102 GeV/mΣ)

and wν =m2
ν/M

2
W ∼10−24 (see Table 3.1). Therefore, even for mΣ as low as 100 GeV, we would get

BR (`α → `βγ) ∼ 10−27 BR(`α → `βνβνα), which is far below the present upper limits in Table 4.1. How-

ever, as discussed in Section 3.4.2, the rates can be naturally much larger if neutrino masses are generated

through direct lepton violation. This can be realised in the type III seesaw if, besides the high scale mΣ, a

small parameter µ responsible for lepton-number violation is also present. In this case, the εΣ term in

Eq. (4.50) is magnified to much larger values and the second term can be safely disregarded. Therefore,
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Figure 4.8: Tree-level contributions to `−α → `+ρ `
−
β `
−
σ decays in the type III seesaw scenario.

we can rewrite the branching ratio for `α → `βγ as

BR(`α → `βγ)
BR(`α → `βνβνα) = 3α

32π

∣∣∣∣(13
3 +C

)∣∣∣∣2 ∣∣εΣ
βα

∣∣2 ≈ 1.08× 10−3 ·
∣∣εΣ
βα

∣∣2 , (4.51)

and, using present upper limits and future sensitivities in Table 4.1, we obtain the constraints on the

coefficients εΣ
βα listed in Table 4.10. Again, the most stringent bound comes from µ→eγ and we see that

present experiments preclude off-diagonal coefficients εΣ
βα larger than ∼ 10−2.

`→ 3` decays

On the other hand, the `α`βZ coupling in the Lagrangian (3.115) provides a tree-level contribution

to `→ 3` decay rates, as illustrated in Fig. 4.8. For `−α → `+β `
−
β `
−
β , the branching ratio is given by

BR(`−α → `+β `
−
β `
−
β )

BR(`−α → e−νανe)
= 4|εΣ

βα|2
(

3s4
W − 2s2

W + 1
2

)
≈ 0.81|εΣ

βα|2 , (4.52)

while for - `−α → `+ρ `
−
ρ `
−
β and `−α → `+ρ `

−
ρ `
−
β , with ρ 6= β, the branching ratios are given by:

BR(`−α → `+ρ `
−
ρ `
−
β )

BR(`−α → e−νανe)
= 4|εΣ

βα|2
(

2s4
W − s2

W + 1
4

)
≈ 0.51|εΣ

βα|2 , (4.53)

BR(`−α → `+ρ `
−
β `
−
β )

BR(`−α → e−νανe)
= 2|εΣ

βα|2|εΣ
βρ|2 . (4.54)

Taking into account the above expressions and the experimental upper limits reported in Table 4.1 for

these processes, we then get the upper bounds on the coefficients εΣ
βρ listed in Table 4.10. From this table,

we see that the most constraining bound of |εΣ
eµ| . 10−6 comes from µ→ 3e, whereas for the remaining

coefficients |εΣ
βα| . 10−4. Notice also that the bounds obtained from `−α → `+ρ `

−
β `
−
β are not particularly

stringent since they are set on the product of two coefficients, |εΣ
βα||εΣ

βρ|.

µ− e conversion in nuclei

More stringent bounds on the µ− e− Z coupling can be obtained using data from µ− e conversion

in nuclei. In fact, in the fermion triplet model, µ − e conversion in atomic nuclei proceeds at tree level

via the same diagram as µ→3e (left diagram in Fig. 4.8), with the electron line replaced by a quark line.
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The µ−e conversion ratio in a generic nucleus N can be straightforwardly obtained from the quark-

lepton effective interaction induced by Z exchange [see Eqs. (3.119) and (2.41)]:

Lµ−eeff. = −2GF√
2

[
eγσPL

(
gNC
L

)
eµ
µ
]
×
(
uγσ

[
gLV (u) − γ5

]
u+ dγσ

[
gLV (d) + γ5

]
d
)
, (4.55)

where

gLV (u) = 1− 8
3s

2
W and gLV (d) = −1 + 4

3s
2
W . (4.56)

Using the general parametrisation given in [174], we then have for the µ−e conversion ratio in a nucleus

N with N neutrons and Z protons [186]:

CR (µN → eN )
BR(µ→ eγ) =

8
(
GSM
F

)2 Γµ
Γcapt.

∣∣εΣ
µe

∣∣2 ∣∣∣(2gLV (u) + gLV (d))V (p) + (gLV (u) + 2gLV (d))V (n)
∣∣∣2 , (4.57)

with nuclear parameters V (p), V (p) and Γcapt. given in Table 4.5 for the analysed nuclei.

From the present upper limits on µ -e conversion rates, we extract the upper bounds on |εΣ
µe| reported

in Table 4.10. The most stringent bound comes from 197
79Au and present upper limits on CR(µN → eN )

preclude a coefficient |εΣ
µe| larger than ∼ 10−6. On the other hand, if prospective experimental sensitivi-

ties to CR(µN → eN ) of ∼ 10−18 are reached, one will be able to probe values of |εΣ
µe| ∼ 10−10.

Comparison of CLFV decays

From the results (4.51), (4.52)-(4.53) and (4.57), we notice that all CLFV rates in the type III seesaw do

not involve logarithmic terms and exhibit the general form

BR`α→`β = g(MW ,m`) ·
∣∣εΣ
βα

∣∣2 . (4.58)

with g(MW ,m`) a function which depends only on MW and m`. Therefore, the ratio of processes with

the same flavour transition are predicted to a fixed value. Namely, we obtain:

BR(µ→ eγ) = 1.3× 10−3 · BR(µ→ eee) , (4.59)

BR(τ → µγ) = 1.3× 10−3 · BR(τ → µµµ) = 2.1× 10−3 · BR(τ− → e−e+µ−) , (4.60)

BR(τ → eγ) = 1.3× 10−3 · BR(τ → eee) = 2.1× 10−3 · BR(τ− → µ−µ+e−) , (4.61)

and, for ratios involving µ− e conversion in nuclei (in 48
22Ti for example),

BR(µ→ eγ) = 3.1× 10−4 · CR(µTi→ eTi) , (4.62)

BR(µ→ eee) = 2.4× 10−1 · CR(µTi→ eTi) . (4.63)

It is apparent from these results that in the type III seesaw model ` → 3` and µ−e conversion rates are

much larger than BR(µ → eγ). Obviously, the reason for this is that `α → `βγ is a one-loop process

while ` → 3` and µ−e conversion in nuclei proceeed at tree level. Notice, however, that these results
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hold only in the limit where mΣ �MW,Z,H , as they are based on Eq. (4.50). If we do not take this limit,

i.e. if we use Eq. (E.30) in Appendix E, a study based on these ratios is only possible if we assume a

quasi-degenerate mass spectrum of fermion triplets (as predicted by direct lepton violation) with scale

mΣ. In this case, the above ratios can change by up to one order of magnitude for values of mΣ as low

as ∼ 100 GeV.

On the other hand, from Table 4.10 we verify that the bounds on |εβα| resulting from `α→ `βγ are

not as constraining as the ones coming from `→ 3` decays and that, even if the upper limits on `α→`βγ

are improved in the future by three or two orders of magnitude, respectively, the `→ 3` decays will still

provide more competitive bounds on |εβα|. Nonetheless, the most stringent bound comes from µ − e

conversion in nuclei for which the experimental sensitivity to CR(µN → eN ) is expected to improve

by several orders of magnitude. Therefore, unlike for other seesaw models, the observation of a CLFV

radiative decay rate close to the present bounds, would rule out the minimal type III seesaw mechanism

since it would be incompatible with bounds arising from `→ 3` and µ− e conversion in nuclei.

4.3.2 Unitarity of the leptonic mixing matrix

While CLFV processes put bounds on the off-diagonal elements
(
NN †

)
αβ

= εΣ
αβ [remember Eq.

(3.116)], the additional analysis of (tree-level) W and Z decays as well as of constraints on the univer-

sality of weak interactions, already discussed in the type I seesaw scenario, allows us to set bounds on

the diagonal elements
(
NN †

)
αα

. The relevant expressions concerning W decays and the universality

of weak interactions are identical to the ones for the type I seesaw, namely Eqs. (4.17) and (4.21), re-

spectively. Therefore, the bounds obtained in Table 4.6 for the type I seesaw apply as well in the type III

seesaw scenario. However, a slight modification is required in the expression (4.19) for the invisible Z

decay width. Indeed, in the type III seesaw model, the modified neutral weak couplings in Eq. (3.135)

leads to

Γ(Z → invisible) =
∑
i,j

Γ(Z → ν̄iνj) = GSM
F M3

Z

12
√

2π
(1 + ρt)

∑
i,j

|[(N †N)−1]ij |2 , (4.64)

which should be compared with the expression (4.19) obtained in the type I seesaw. Here, the parameter

ρ ≈ 0.008 accounts for radiative corrections involving the top quark. Using the approximation

∑
i,j

|[(N †N)−1]ij |2 = Tr(1− 2 εΣ) = 9− 2
∑
α

(NN †)αα , (4.65)

valid at first order in m−1
Σ , and the data provided in Ref. [66], we then obtain the following constraint:

9− 2
∑
α(NN †)αα√

(NN †)ee(NN †)µµ
= 12

√
2π Γ(Z → invisible)
GFM3

Z(1 + ρt)
= 2.984± 0.009 . (4.66)

As pointed out in Section 4.1.2, this is the number of active neutrinos at LEP and it gives us one constraint

on the diagonal elements
(
NN †

)
αα

. It is the difference between this constraint and the one in Eq. (4.20)

for the type I seesaw that makes the unitarity analysis for the type III seesaw any different.

68



Combination of all constraints

From all constraints reported in Table 4.6 and in Eq. (4.66), we have performed a global fit of the

diagonal elements to the experimental data. Using the lower upper bounds for the off-diagonal elements

in Table 4.10, we can then write for theNN † elements, at the 90% CL:

|NN †| ≈


1.004± 0.011 < 1.5 · 10−7 < 3.2 · 10−4

< 1.5 · 10−7 0.993± 0.011 < 2.6 · 10−4

< 3.2 · 10−4 < 2.6 · 10−4 1.014± 0.012

 . (4.67)

As in the type I seesaw scenario, small deviations from unity in the diagonal elements are not significant

enough to be interpreted as a signal of new physics. Note also that, due to the fact that CLFV processes

are now allowed at tree level, the bounds on off-diagonal elements are stronger than those obtained in

the type I seesaw model.

Concerning the direct production and detection of fermionic triplets, the type III seesaw model is

less promising than the scalar triplet model. In fact, in the type III seesaw, only particles with electric

charge ±1 exist, resulting in less clean experimental signals. For a detailed discussion on searches for

type III seesaw at the LHC see, for example, Refs. [154, 187]. Recall, however, that in the type III seesaw

scenario the observation of a single CLFV radiative decay close to the present bounds would provide an

important (indirect) possibility to exclude this model as the unique low-energy source of lepton flavour

violation.
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5 Summary and conclusions

In the present thesis, we have investigated seesaw extensions of the SM, which naturally accomo-

date tiny neutrino masses via tree-level exchange of heavy particles: fermion singlets (triplets) in the

type I (III) seesaw and a scalar triplet in the type II seesaw. From a low-energy effective viewpoint,

neutrino masses are generated by a dimension-five operator, common to all theories with Majorana

neutrinos. However, a plethora of dimension-six operators exists and, therefore, they are a crucial tool

to discriminate among various models. In a nutshell, for the fermionic seesaw models the effective oper-

ators induce non-unitary lepton mixing matrices in the weak currents, while in the scalar triplet model

mixing matrices remain unitary but dimension-six operators induce exotic four-fermion couplings and

modifications to gauge and Higgs potential parameters.

We have also discussed the possible values of the heavy mass scaleM from a theoretical perspective.

An unsatisfatory aspect of seesaw models pertains to a worsening of the electroweak hierarchy problem,

which could be soften if M is close to the TeV scale. Such scenario is indeed possible if neutrino masses

are generated through direct lepton violation, in which neutrino masses are directly proportional to a small

lepton number violating parameter µ. Such a pattern is already included in the minimal type II seesaw

and also in fermionic seesaw models, such as the inverse seesaw. Within the DLV framework, small

neutrino masses can be accomodated while keeping the effects of d = 6 operators close to observability

without fine-tunings or cancellations in the heavy neutrino mass matrices or Yukawa couplings.

Finally, in Chapter 4, we have analysed CLFV processes such as `α → `βγ, `→ 3` and µ− e conver-

sion in nuclei for the three canonical seesaw models discussed in Chapter 3. In the type I seesaw, our

results show that µ→ eγ and µ → 3e decays as well as µ → e conversion in nuclei have predicted rates

within the sensitivities of the next-generation experiments. Still, the rates of µ→ e conversion in nuclei

could vanish at a value of the heavy mass scale of mN ∼ 10 TeV. Constraints on the dimension-six op-

erator coming from a combined analysis of other lepton flavour conserving processes also predict a 2σ

departure from unitarity of the mixing matrix. In the type II scenario, we have set bounds and analysed

future sensitivities for Yukawa couplings combinations. The results show that O(1) Yukawa couplings

are allowed by present bounds for a seesaw scale of O(TeV) and that, for a value of the triplet VEV

v∆∼1 eV, CLFV rates could be within projected sensitivities. Finally, in the type III seesaw scenario, the

ratio of two same-flavour transition processes is a constant. Combined with the presence of tree-level

FCNCs and, therefore, large µ→ 3e and µ→ e conversion rates, this offers a clear possibility of tests.

In summary, the work presented in this thesis clearly illustrates how important the exploration of

synergies among the intensity and energy frontiers of particle physics will be to improve our knowledge

on the fundamental laws of Nature.

labor omnia vincit
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A One-loop calculations

A.1 Beyond the unitary gauge: Rξ gauges

The unitary gauge introduced in Eq. (2.24) is not convenient when calculating loop corrections to

some process. In fact, the propagator for massive vector bosons V in this gauge is given by

Dµν
V (k) = −i

q2 −M2
V + iε

[
gµν − qµqν

M2
V

]
, (A.1)

and its qµqν term does not vanish as q → ∞. Therefore, it induces harsh ultraviolet divergences in

higher order calculations and very delicate cancellations between diagrams must be satisfied [188].

More convenient is to work in the so-called Rξ gauges. In this class of gauges the Higgs doublet is

written in its full form (2.23), and gauge fixing terms are added to the SM Lagrangian:

LGF = −1
ξW

(∂µW †µ − iξWMWφ
+)(∂νWν + iξWMWφ

−)− 1
ξZ

(∂µZµ − iξZMZφZ)2 − 1
ξA

(∂µAµ)2 , (A.2)

where ξA,W,Z are free parameters corresponding to different choices of renormalisable gauges. LGF is

demanded by a correct quantisation procedure of the theory [112, 126] and allows us to define vector bo-

son propagators, as it removes ambiguous terms in the gauge part of the Higgs Lagrangian. In addition,

the quantisation of the theory requires the introduction in the theory of nonphysical anticommutative

scalar fields, the Faddeev-Popov ghosts, along with their Lagrangian LFP. However, since these fields do

not couple with matter fields, their contribution to one-loop corrections of physical processes involving

fermions in external lines is zero. As such, we will not concern ourselves with ghost fields.

In a general Rξ gauge, the propagators of gauge and Goldstone bosons are collected in Fig. A.1. In

order to avoid cumbersome calculations, we will use the ’t Hooft-Feynman gauge (ξA,Z,W = 1) in one-

loop calculations and the unitary gauge (ξZ,W → ∞, ξA → 1) in tree-level calculations. For a review of

the SM Feynman rules in the Rξ gauge (ξA,Z,W = ξ) with convention-independent notation, see [189].

µ ν

V = Z,W

k

νµ

A

k

−igµν
k2

+ (1− ξA)
ikµkν
k4

i

−gµν + (1− ξV )
kµkν

k2 − ξVM 2
V + iǫ

k2 −M 2
V + iǫ

i

k2 − ξZM 2
Z

i

k2 − ξWM 2
W

νµ

νµ

φ±

k

ϕZ

k

Figure A.1: Propagators of gauge and Goldstone bosons in Rξ gauges.
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A.2 Regularisation procedure

For an arbitrary 1-loop diagram with n internal lines, the most general integrals in Minkowski 4-

dimensional space that we need to calculate have the following form:

(A.3) T̂µ1,...,µρ
n =

∫
d4k

(2π)4
kµ1 ...kµρ

D1D2...Dn
, k + r1

k + r2

k + rn−1

k

p1
pn

pn−1

pi

p2

whereDj = (k+rj)2−m2
j + iε is the propagator denominator of

the virtual particle i (with ε > 0 an infinitesimal parameter) and

rj =
j∑
i=1

pi, rn =
n∑
i=1

pi = 0, j = 1, ..., n− 1 . (A.4)

The external momenta are pi and the virtual particle j carries a 4-momentum (k + rj) and a mass mj .

These integrals are often divergent but the amplitude for a physical process must be finite. As such,

we need a procedure to make sense of these divergences. In this thesis we adopt the dimensional regular-

isation method [50], where calculations are extended to d-dimensional space-time. In such space-time,

the Lagrangian has mass dimension d, and it is easy to verify that the coupling constant g (or g′) should

have dimension [g] = 2 − d/2. As it is more convenient to work with adimensional couplings, we

introduce a mass parameter µ and make the substitution

g → gµε/2 , ε ≡ 4− d . (A.5)

With this, the 1-loop integrals have the general form

Tµ1,...,µρ
n =

∫
ddk

(2π)d
kµ1 ...kµρ

D1D1, ...Dn
. (A.6)

The first step is to combine the products of denominators Di in Eq. (A.6) in just one common de-

nominator. This is achieved by the Feynman parametrisation technique:

1
a1...an

= Γ(n)
∫ 1

0
dx1

∫ 1

0
dx2 ...

∫ 1

0
dxn−1

xn−2
1 ... xn−2

[a1(1− x1) + a2x1(1− x2) + ...+ anx1 ... xn−1]n
, n ≥ 2 .

(A.7)

The loop structure of 1-loop diagrams with n propagators can then be rewritten as:

D(n)(k, ri,mi) = 1
D1 ... Dn

= Γ(n)
∫ 1

0
dx1 ...

∫ 1

0
dxn−1

xn−2
1 ... xn−2

[(k + Pn)2 −∆n + iε]n
, (A.8)
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with the generalised 1-loop momentum and mass squared defined by


Pn ≡ r1(1− x1) + ... + rnx1 ... xn−1 ,

∆n ≡ −x1(1− x1)A2
n + (1− x1)m2

1 +Bnx1 ,

(A.9)

where An and Bn are coefficients defined by


An ≡

∑n−1
i=2 ri(1− xi)Π

i−1
j=2xj + rn

(
Πn−1
j=2 xj

)
− r1 ,

Bn ≡ −
∑n−1
i=2 (1− xi)

(
r2
i −m2

i

)
Πi−1
j=2xj +

(∑n−1
i=2 ri(1− xi)Π

i−1
j=2xj

)2

+ 2rn
(
Πn−1
s=2 xs

)∑n−1
i=2 ri(1− xi)

(
Πi−1
j=2xj

)
+
(
Πn−1
s=2 xs

) (
r2
n

(
Πn−1
j=2 xj − 1

)
+m2

n

)
.

Applying a change of variables k → k + Pn, we then get the k-even function:

D(n)(k + Pn, ri,mi) = Γ(n)
∫ 1

0
dx1 ...

∫ 1

0
dxn−1

xn−2
1 ... xn−2

[k2 −∆n + iε]n
, (A.10)

From this calculation, it is obvious that all scalar integrals Tn can be reduced to the family of integrals

Ir,n =
∫

ddk

(2π)d
k2r

[k2 −∆n + iε]n
. (A.11)

The same is also true for tensor integrals [126], among which:

∫
ddk

(2π)d
kµ

[k2 −∆n + iε]m
= 0 ,∫

ddk

(2π)d
kµkν

[k2 −∆n + iε]m
= 1

d
gµν

∫
ddk

(2π)d
k2

[k2 −∆n + iε]m
. (A.12)

The integration of the 1-loop integrals Ir,n is done in the complex plane of k0, yielding the result

Ir,n = i(−1)r−n

(4π)2

(
4π
∆n

)ε/2
∆2+r−n
n

Γ (2 + r − ε/2)
Γ(2− ε/2)

Γ (n− r − 2 + ε/2)
Γ(n) , (A.13)

which is valid for all values of d, except for those where the gamma function Γ(n− r − d/2) has poles.

The divergences in the integrals are separated from finite terms analysing the limit ε → 0 (usual 4D

Minkowski space). The Γ(z) function has poles for z = 0,−1,−2, ... and close to z = −m we have

Γ(z) = (−1)m

m!
1

m+ z
+ (−1)m

m! ψ(m+ 1) +O(z +m) , ψ(z) ≡ d

dz
ln Γ(z) . (A.14)

Thus, when ε→ 0, we get

Γ (ε/2) = 2
ε

+ ψ(1) +O(ε/2) , (A.15)

Γ (−n+ ε) = (−1)n

n!

[
1
ε
ψ(n+ 1)

]
+O(ε) , (A.16)

Γ (1 + ε) = 1− εγ +
(
γ2 + π2/6

) ε2
2 + ... , (A.17)
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where γ = −ψ(1) = 0.5772156649015329 is the Euler-Mascheroni constant. Using the above result, the

expansion in powers of ε of the relevant integrals Ir,n for this work are listed in Eqs. (A.18) to (A.25).

For future convenience, these integrals are multiplied by appropriate factors µm.

µ3ε/2I0,2 = i

16π2

[
∆ε − ln ∆n

µ3

]
+O(ε) , (A.18)

µ3ε/2I1,2 = i

16π2 ∆n

[
2∆ε + 1− 2 ln ∆n

µ3

]
+O(ε) , (A.19)

µ3ε/2I0,3 = − i

32π2∆2
n

+O(ε) , (A.20)

µεI1,3 = i

16π2 ∆n

[
2∆ε − 1− 2 ln ∆n

µ3

]
+O(ε) , (A.21)

µ2εI0,4 = i

96π2∆2
n

+O(ε) , (A.22)

µ2εI1,4 = − i

48π2∆n
+O(ε) , (A.23)

µ2εI2,4 = i

96π2

[
6∆ε − 5− 6 ln ∆n

µ4

]
+O(ε) , (A.24)

∆ε ≡
2
ε
− γ + ln 4π . (A.25)

It should be remarked that in our calculations we do not include explicitly the regularisation factors

µm because their presence in the power expansions of ε is inconsequential as long as all divergences can-

cel at the end of the calculation. The argument of the logarithms ln ∆n will then be kept dimensionless

by an appropriate (mass) normalisation of ∆n. After expressing our 1-loop amplitudes in terms of the

Ir,n integrals above, the last step in our calculations is then to perform the integrations over Feynman

parameters x1, ... xn and the simplification of the final result. (Almost) all calculations were performed

in Mathematica, with the help of FeynCalc [190].

For a more complete and gentle summary of the techniques used for 1-loop calculations, see [126].
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B Feynman rules with

Majorana fermions

We give here the Feynman rules used in our one-loop calculations. In all processes computed, we

followed the method reported in Ref. [191], which allows us to use the standard propagators and

avoid the explicit appearance of the charge conjugation matrix C. With these prescriptions, the rules

for propagators are the usual ones and external legs are taken following the flow defined in the fermion

lines. The rules for the SM vertex and propagators are taken from [189], with the sign conventions

ηe = −ηZ = η = −1. In all Feynman rules considered, the momenta follow the direction of the corre-

sponding arrow and the compact notation sW ≡ sin θW and cW ≡ cos θW is used.

∆+

∆++

2
√
2i (Y∆)kj PL

ℓj ℓk

ℓj νk

2i (Y∆U
ν
L)jk PL

∆−

∆−−

ℓj νk

ℓj νk

2
√
2i (Y ∗

∆)kj PR

2i (Y∆U
ν
L)

∗
jk PR

Figure B.1: Feynman rules for Yukawa interactions between the heavy scalar triplet and leptons in the
type II seesaw model.

∆+

∆+ ∆−

∆−

Zµ

∆+ ∆−−

W †
µ

ie(p+ − p−)µ

ig(p−− − p+)µ

i
g

cW
s2W (p− − p+)µ

Aµ

p+ p−−

p+ p−

p+ p−

Wµ

∆++ ∆−−

2ie(p++ − p−−)µ

Aµ

i
g

cW
(p++ − p−−)µ(1− 2s2W )

∆++ ∆−−

Zµ

∆++ ∆−

ig(p− − p++)µ

p++ p−−

p++ p−−

p++ p−

Figure B.2: Feynman rules for heavy scalar triplet gauge interactions in the type II seesaw model.
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i
g√
2
U∗
αj

W †
µ

Zµ

i
g

2cW

(
U †U

)
kj

φ+

i
g√
2MW

U∗
αj (mjPL −mαPR)

ℓα nj

ℓα nj

nj nk

φ−

i
g√
2MW

Uβj (mjPR −mβPL)

ℓβnj

Wµ

i
g√
2
Uβj

ℓβnj

Figure B.3: Relevant Feynman rules in the type I seesaw scenario. We use the short notation nj to denote
neutral fermions, either νj or Nj [see Eq. (3.45)].

Finally, for the type III seesaw model, we present the relevant Feynman rules using the compact

notation defined in Eqs. (3.118)-(3.128).

ϕZ −g
2MW

[
PR

(
g
ϕZ
Lψ

)†

αj
+ PL

(
g
ϕZ
Rψ

)†

αj

]

ℓα ψj

H ig

2MW

[
PR

(
gHLψ

)†

αj
+ PL

(
gHRψ

)†

αj

]

ℓα ψj

φ+ −ig√
2MW

[
PR

(
gφ

−
Lnℓ

)†

αj
+ PL

(
gφ

−
Rnℓ

)†

αj

]

ℓα nj

ϕZ −g
2MW

[
PR

(
g
ϕZ
Lψ

)
βj
+ PL

(
g
ϕZ
Rψ

)
βj

]

ℓβψj

H ig

2MW

[
PR

(
gHLψ

)
βj
+ PL

(
gHRψ

)
βj

]

ℓβψj

φ− −ig√
2MW

[
PL

(
gφ

−
Lℓn

)
βj
+ PR

(
gφ

−
Rℓn

)
βj

]

ℓβnj

Figure B.4: Feynman rules for interactions between fermions and scalars in the type III seesaw model.
In our notation, nj = νj , Nj are neutral fermions and ψj = `j , Ej are the charged ones.

Zµ
ig

cW

[
PR

(
gNCLψℓ

)†

αj
+
√
2PL

(
gNCRψℓ

)†

αj

]

ℓα ψj

W †
µ

ig√
2

[
PR

(
gCCLnℓ

)†

αj
+
√
2PL

(
gCCRnℓ

)†

αj

]

ℓα nj

Zµ
ig

cW

[
PR

(
gNCLℓψ

)
βj
+
√
2PL

(
gNCRℓψ

)
βj

]

ℓβψj

Wµ ig√
2

[
PL

(
gCCLℓn

)
βj
+
√
2PR

(
gCCRℓn

)
βj

]

ℓβnj

Figure B.5: Feynman rules for gauge interactions with SM fermions, in the type III seesaw model. In our
notation, nj = νj , Nj are neutral fermions and ψj = `j , Ej are the charged ones.

82



C Type I seesaw form factors

In this appendix, we calculate the form factors corresponding to the diagrams which contribute to

the LFV processes `α → `βγ, µ→ 3e and µ− e conversion in nuclei, in the type I seesaw model. We use

the Feynman rules given in Appendix B and notation reported in [192], namely:

D3(x, y) = (1− y)m2
j + y

[
M2
W − q2x(1− x)

]
− y(1− y)p2 , (C.1)

D3F (x, y) = (1− y)M2
W + y

{
m2 − q2x(1− x)

}
− y(1− y)p2 , (C.2)

D2α(x) = M2
W (1− x) +m2

jx− p2
1x(1− x) , (C.3)

D2β(x) = M2
W (1− x) +m2

jx− p2
2x(1− x) , (C.4)

D4(x, y, z) = (1− z)M2
W + z

{
(1− y)m2

j + ym2
i

}
+ ... , (C.5)

p = (1− x)p1 + xp2 , m2 = (1− x)m2
j + xm2

i , q = p1 − p2 , (C.6)

Sσ = m2
σ

M2
W

, λj =
m2
j

M2 , r = q2

M2
W

, (C.7)

where mσ is the mass of the charged lepton `σ (σ = e, µ, τ ); j = 1, ..., ng + n′ runs over neutrinos and

mj is the mass of the Majorana neutrino νj or Nj (or quark qj); finally, p1 and p2 are the momenta of

external leptons `α and `β , respectively.

The calculations were performed following the procedure outlined in Appendix A in the t’ Hooft-

Feynman gauge (ξW,Z,A = 1). We also define new useful notation for integrals:

Int [f(x)] ≡
∫ 1

0
dx f(x) , (C.8)

Int [f(x, y)] ≡
∫ 1

0
dx

∫ 1

0
dy f(x, y) , (C.9)

Int [f(x, y, z)] ≡
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz f(x, y, z) . (C.10)

Finally, note that the matrix U in the type I seesaw corresponds to the full neutrino mixing matrix,

namely the combined result of the rotations in Eqs. (3.38) and (3.44):

U ≡

V S

R T

UνL 0

0 UNL

 =

V UνL SUNL

RUνL TUNL

 . (C.11)
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= +

+

(e)(d)(c)

(f) (g) (h)

(a) (b)

γ γ

φ−
W+

γ

W− W+

+ + +

γ W−
γW−

γ

φ+
W−

γφ−
γ φ−γ

φ− φ+

νj , Nj νj , Nj

ℓα ℓβℓα νj , Njνj , Nj νj , Nj

νj , Njνj , Njνj , Nj

ℓα ℓβ

ℓα ℓβ

ℓα ℓβ ℓα ℓβ

ℓα ℓβℓβ
+ +

ℓα ℓβ ℓα ℓβℓβℓα ℓβℓα

Figure C.1: One-loop contributions to the effective vertex `β`αγ (`α 6= `β) in the Type I Seesaw scenario.

C.1 Photon-exchange diagrams

The diagrams which, at one-loop order, contribute to the effective vertex `β`αγ (`α 6= `β) are shown

in Fig. C.1. We assume that `α and `β are on-shell but the photon is allowed to be off-shell. Using the

Feynman rules in Appendix B, and defining the effective vertex `β`αγ as

ieΛγµ = ie

h∑
m=a

Λ(r)
µ , (C.12)

the expressions for Λ(r)
µ are [omitting the external spinors u(p2,mβ) and u(p1,mα)]:

iΛ(a)
µ =g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(γµPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)[

(k + p1)2 −m2
j

]
[(k + p1 − p2)2 −M2

W ] [k2 −M2
W ]

; (C.13)

iΛ(b)
µ =g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(mjPR −mβPL)

(
/k + /p1 +mj

)
(γµPL)[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + p1 − p2)2 −M2
W ]

; (C.14)

iΛ(c)
µ =− g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(γρPL)

(
/k + /p1 +mj

)
(γσPL) Γσρµ (−k, k + q,−q)[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + p1 − p2)2 −M2
W ]

,

with Γσρµ (p−, p+, q) ≡ gσρ(p− − p+)µ + gρµ(p+ − q)σ + gµσ(q − p−)ρ ;

(C.15)

iΛ(d)
µ =− g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(γρPL)

(
/k + /p2 +mj

)
(γρPL)

(
/p2 +mα

)
γµ[

(k + p2)2 −m2
j

]
[k2 −M2

W ]
[
m2
β −m2

α

] ; (C.16)

iΛ(e)
µ =− g2

2 UβjU
∗
αj

∫
ddk

(2π)d
γµ
(
/p1 +mβ

)
(γρPL)

(
/k + /p1 +mj

)
(γρPL)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]
[
m2
α −m2

β

] ; (C.17)
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iΛ(f)
µ =− g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(mjPR −mβPL)

(
/p1 + /k +mβ

)
(mjPL −mαPR) (2k + q)µ[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + q)2 −M2
W ]

; (C.18)

iΛ(g)
µ =g2

2 UβjU
∗
αj

∫
ddk

(2π)d
(mjPR −mβPL)

(
/k + /p2 +mj

)
(mjPL −mαPR)

(
/p2 +mα

)
γµ[

(k + p2)2 −m2
j

]
[k2 −M2

W ]
[
m2
β −m2

α

] ; (C.19)

iΛ(h)
µ =g2

2 UβjU
∗
αj

∫
ddk

(2π)d
γµ
(
/p1 +mβ

)
(mjPR −mβPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]
[
m2
α −m2

β

] . (C.20)

Applying the procedure outlined in Appendix A, we then obtain the intermediate expressions:

Λ(a)
µ =− g2

32π2U
∗
αjU

∗
l′j

[
−m2

jPRγµ

∫ 1

0

dx dy y

D3(x, y) +mαPRγµ

∫ 1

0

dx dy

D3(x, y)y
2/p

]
; (C.21)

Λ(b)
µ =− g2

32π2U
∗
αjU

∗
l′j

[
−m2

jPRγµ

∫ 1

0

dx dy y

D3(x, y) +mβ

∫ 1

0

dx dy

D3(x, y)y
2/pPRγµ

]
; (C.22)

Λ(c)
µ =− g2

32π2U
∗
αjU

∗
l′j

[
−γµPL

{
3∆ε − 2− 6

∫ 1

0
dx dy y ln

[
D3(x, y)
M2
W

]}

+ PR

∫ 1

0

dx dy y2

D3(x, y)
{(
/p2 − 2 /p1 + y/p

)
/pγµ − 2(p1 + p2 − 2yp)µ/p+ γµ/p( /p1 − 2 /p2 + y/p)

}]
;

(C.23)

Λ(d)
µ = g2

32π2UαjU
∗
βj

[
m2
j (mαPR +mβPL)

{
∆ε −

∫ 1

0
dx ln

[
D2β(x)
M2
W

]}

− /p2

2
(
m2
jPR +mαmβPL

)(
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2β(x)
M2
W

])]
/p2 +mα

m2
β −m2

α

γµ ;

(C.24)

Λ(e)
µ = g2

32π2UαjU
∗
βjγµ

/p1 +mβ

m2
α −m2

β

[
m2
j (mαPR +mβPL)

{
∆ε −

∫ 1

0
dx ln [D2α(x)]

}
/p1

2
(
m2
jPR +mαmβPL

)(
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2α(x)
M2
W

])]
;

(C.25)

Λ(f)
µ =− g2

32π2M2
W

UαjU
∗
βj

[
m2
j (mαPR +mβPL)

∫ 1

0

dx dy y

D3(x, y) (p1 + p2 − 2yp)µ

− 1
2
(
m2
jPR +mαmβPL

)
γµ

(
∆ε − 2

∫ 1

0
dx dy y ln

[
D3(x, y)
M2
W

])

−
(
m2
jPR +mαmβPL

) ∫ 1

0

dx dy y2

D3(x, y) (p1 + p2 − 2yp)µ /p
]

;

(C.26)
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Λ(g)
µ =− g2

32π2U
∗
αjU

∗
l′j

[
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2β(x)
M2
W

] ]
/p2PL

/p2 +mα

m2
β −m2

α

γµ ; (C.27)

Λ(h)
µ =− g2

32π2U
∗
αjU

∗
l′j

[
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2α(x)
M2
W

] ]
γµ

/p1 +mβ

m2
α −m2

β
/p1PL . (C.28)

It is easy to check that these results are in accordance with the ones reported in Appendix B of

Ref. [192]. From the above results, one can see that divergences appear in Λ(i)
µ for i = c, ..., h. The

divergences in diagrams (c), (d) and (e) vanish explicitly due to the unitarity of the (full) neutrino mixing

matrix,
∑3+Ns
j=1 UµjUβj = 0 (µ 6= β), while the ones in Λ(f)

µ , Λ(g)
µ and Λ(h)

µ cancel each other.

Carrying out integrations keeping only the leading order terms, we arrive at

Λγµ(λ) =
h∑
k=a

Λ(k)
µ (λ) = g2

16π2UαjU
∗
βjPR

[
Fγ (λj)

{
− q2

M2
W

γµ + /qqµ

M2
W

}
(C.29)

+ Gγ (λj)
{(

/p1 + /p2
)

(p1 + p2)µ
M2
W

− (Sα + Sβ) γµ − 2 /
p2γµ /p1

M2
W

}]
, (C.30)

where the Fγ (x) and Gγ (x) are functions defined by:

Fγ (x) = − x(12 + x− 7x2)
12(1− x)3 − x2(12− 10x+ x2)

6(1− x)4 ln x , (C.31)

Gγ (x) = x(1− 5x− 2x2)
4(1− x)3 − 3x3

2(1− x)4 ln x . (C.32)

Finally, using the Gordon-decomposition identities in the form

u (p2)
[
/p1(p1 + p2)µ −m2

α − /p2γµ /p1
]
u(p1) = mαu (p2) iσµρqρu(p1) , (C.33)

u (p2)
[
/p2(p1 + p2)µ −m2

β − /p2γµ /p1
]
u(p1) = mβu (p2) iσµρqρu(p1) , (C.34)

we can rewrite the effective coupling in a gauge-covariant way as:

ie u (p2) Λγµ (λ)u (p1) = i
g2e

32π2M2
W

u (p2)
[
Fαβγ

(
q2γµ − /qqµ

)
PL

− iσµρq
ρGαβγ (mβPL +mαPR)

]
u (p1) .

(C.35)

where Fαβγ and Gαβγ are functions of λj = m2
j/M

2
W and the mixing matrix U defined by:

Fαβγ ≡
ng+ns∑
j=1

UαjU
∗
βjFγ(λj) , (C.36)

Gαβγ ≡
ng+ns∑
j=1

UαjU
∗
βjGγ(λj) . (C.37)
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Figure C.2: One-loop contributions to the effective vertex `β`αZ (`β 6= `α) in the type I Seesaw scenario.

C.2 Z-boson exchange diagrams
In the type I Seesaw Model, the diagrams which give one-loop corrections to the effective vertex

`β`αZ (`β 6= `α) are listed in Fig. C.2. The effective vertex of interest to us is defined as

i
g

4 cos θW
ΛZµ = i

g

4 cos θW

k∑
m=a

Λ(m)
µ . (C.38)

Using the same steps as in the previous case, the contribution of each diagram in Fig. C.2 is:

iΛ(a)
µ =− 2g2s2

WUβjU
∗
αj

∫
ddk

(2π)d
(γµPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)[

(k + p1)2 −m2
j

]
[(k + p1 − p2)2 −M2

W ] [k2 −M2
W ]

; (C.39)

iΛ(b)
µ =− 2g2s2

WUβjU
∗
αj

∫
ddk

(2π)d
(mjPR −mβPL)

(
/k + /p1 +mj

)
(γµPL)[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + p1 − p2)2 −M2
W ]

; (C.40)

iΛ(c)
µ =− 2g2c2WUβjU

∗
αj

∫
ddk

(2π)d
(γρPL)

(
/k + /p1 +mj

)
(γσPL) Γσρµ (−k, k + q,−q)[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + p1 − p2)2 −M2
W ]

; (C.41)

iΛ(d)
µ =− g2UβjU

∗
αj

∫
ddk

(2π)d
(γρPL)

(
/k + /p2 +mj

)
(γρPL)

(
/p2 +mα

)
γµ
(
PL − 2s2

W

)[
(k + p2)2 −m2

j

]
[k2 −M2

W ]
[
m2
β −m2

α

] ; (C.42)

iΛ(e)
µ =− g2UβjU

∗
αj

∫
ddk

(2π)d
γµ
(
PL − 2s2

W

) (
/p1 +mβ

)
(γρPL)

(
/k + /p1 +mj

)
(γρPL)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]
[
m2
α −m2

β

] ; (C.43)

iΛ(f)
µ =g2(1− 2 s2

W )UβjU∗αj
∫

ddk

(2π)d
(mjPR−mβPL)

(
/p1 + /k +mβ

)
(mjPL−mαPR) (2k+q)µ[

(k + p1)2 −m2
j

]
[k2 −M2

W ] [(k + q)2 −M2
W ]

; (C.44)
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iΛ(g)
µ =g2UβjU

∗
αj

∫
ddk

(2π)d
(mjPR−mβPL)

(
/k+ /p2 +mj

)
(mjPL−mαPR)

(
/p2+mα

)
γµ
(
PL−2s2

W

)[
(k + p2)2 −m2

j

]
[k2 −M2

W ]
[
m2
β −m2

α

] ; (C.45)

iΛ(h)
µ =g2UβjU

∗
αj

∫
ddk

(2π)d
γµ
(
PL−2s2

W

) (
/p1 +mβ

)
(mjPR−mβPL)

(
/k+ /p1+mj

)
(mjPL−mαPR)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]
[
m2
α −m2

β

] ; (C.46)

iΛ(k)
µ =g2UβiU

∗
αjCij

∫
ddk

(2π)d
(γρPL)

(
/k + /p2 +mj

)
γµ
(
/k + /p1 +mi

)
(γρPL)[

(k + p2)2 −m2
j

]
[(k + p1)2 −m2

i ] [k2 −M2
W ]

; (C.47)

iΛ(l)
µ =− g2UβiU

∗
αjCij

∫
ddk

(2π)d
(mjPR−mβPL)

(
/k+ /p2 +mj

)
γµ
(
/k+ /p1 +mi

)
(miPL−mαPR)[

(k + p2)2 −m2
j

]
[(k + p1)2 −m2

i ] [k2 −M2
W ]

; (C.48)

where Γρσµ is the WWZ vertex defined in Eq. (C.15).

Expressing the above results in terms of integrals Ir,n, using the results (A.18) to (A.21) and defining

Cji=
∑

ρ=e,µ,τ
U∗ρjUρi, we are able to obtain the following intermediate expressions for the amplitudes:

Λ(a)
µ = − g2s2

W

8π2 U∗αjU
∗
l′j

[
−m2

jPRγµ

∫ 1

0

dx dy y

D3(x, y) +mαPRγµ

∫ 1

0

dx dy

D3(x, y)y
2/p

]
, (C.49)

Λ(b)
µ = − g2s2

W

8π2 U∗αjU
∗
l′j

[
−m2

jPRγµ

∫ 1

0

dx dy y

D3(x, y) +mβ

∫ 1

0

dx dy

D3(x, y)y
2/pPRγµ

]
, (C.50)

Λ(c)
µ = g2c2W

8π2 U∗αjU
∗
l′j

{
−γµPL

(
3∆ε − 2− 6

∫ 1

0
dx dy y ln

[
D3(x, y)
M2
W

])
+ PR

∫ 1

0

dx dy y2

D3(x, y)
[(
/p2 − 2 /p1 + y/p

)
/pγµ − 2(p1 + p2 − 2yp)µ/p+ γµ/p( /p1 − 2 /p2 + y/p)

]}
,

(C.51)

Λ(d)
µ = − g2

16π2UαjU
∗
βj

{
− /p2

2
(
m2
jPR +mαmβPL

)(
∆ε −

∫ 1

0
dx(1− x) ln

[
D2β(x)
M2
W

])
+ m2

j (mαPR +mβPL)
(

∆ε −
∫ 1

0
dx ln

[
D2β(x)
M2
W

])}
/p2 +mα

m2
β −m2

α

γµ
(
PL − 2 sin2 θW

)
,

(C.52)

Λ(e)
µ = −

g2UαjU
∗
βj

16π2 γµ
(
PL−2s2

W

) /p1 +mβ

m2
α −m2

β

{
m2
j (mαPR +mβPL)×

(
∆ε−

∫ 1

0
dx ln

[
D2α(x)
M2
W

])

− /p1

2
(
m2
jPR +mαmβPL

)
×
(

∆ε−2
∫ 1

0
dx(1− x) ln

[
D2α(x)
M2
W

])}
,

(C.53)

Λ(f)
µ = g2

16π2M2
W

UαjU
∗
βj

(
1− 2s2

W

){
m2
j (mαPR +mβPL)

∫ 1

0

dx dy y

D3(x, y) (p1 + p2 − 2yp)µ

− 1
2
(
m2
jPR+mαmβPL

)
γµ

(
∆ε−2

∫ 1

0
dx dy y ln

[
D3(x, y)
M2
W

])
+2
∫ 1

0

dx dy y2

D3(x, y) (p1+p2−2yp)µ/p
}
,

(C.54)

Λ(g)
µ = g2

16π2U
∗
αjU

∗
l′j

{
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2β(x)
M2
W

]}
/p2PL

/p2 +mα

m2
β −m2

α

γµ
(
PL − 2s2

W

)
, (C.55)
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Λ(h)
µ = g2

16π2U
∗
αjU

∗
l′j

{
∆ε − 2

∫ 1

0
dx(1− x) ln

[
D2α(x)
M2
W

]}
γµ
(
PL − 2 sin2 θW

) /p1 +mβ

m2
α −m2

β
/p1PL , (C.56)

Λ(k)
µ =

g2UαjCjiU
∗
βi

16π2 PR

{∫ 1

0

dx dy2

D3F (x,y)
( /p1−y/p)γµ( /p2−y/p)+γµ

[
∆ε−1−

∫ 1

0
dx dy2 lnD3F (x, y)

]}
, (C.57)

Λ(l)
µ = g2

16π2UαjCjiU
∗
βi

{
−m2

jm
2
i γµPL

∫ 1

0

dx dy y

D3F (x, y) +mβm
2
j

∫ 1

0

dx dy y

D3F (x, y)
(
/p2 − y/p

)
γµPL

+mαm
2
jγµPL

∫ 1

0

dx dy y

D3F (x, y)
(
/p1 − y/p

)
−mαmβPL

∫ 1

0

dx dy y

D3F (x, y)
(
/p2 − y/p

)
γµ
(
/p1 − y/p

)
−mαmβγµPR

2

[
∆ε − 1− 2

∫ 1

0
dx dy y lnD3F (x, y)

]}
.

(C.58)

Again, the above results confirm those in Appendix B of [192] and show that there are no overall

divergences. Indeed, the unitarity of the neutrino mixing matrix ensures that divergences in diagrams

(e), (l) and (k) vanish explicitly, while the remaining cancel each other:

Div
(

Λ(d)
µ

)
+ Div

(
Λ(e)
µ

)
= 0 , (C.59)

Div
(

Λ(f)
µ

)
+ Div

(
Λ(g)
µ

)
+ Div

(
Λ(h)
µ

)
= 0 . (C.60)

Simplifying the results and carrying out integrations at leading order, the results read:

h∑
m=a

Λ(m)
µ = − g2

8π2UαjU
∗
βjFZ(λj)γµPL , Λ(k)

µ + Λ(l)
µ = − g2

8π2UαjCjiU
∗
βiGZ(λj)γµPL , (C.61)

where FZ(x) and GZ(x, y) are defined by

FZ(x) =− 5x
2(1− x) −

5x2

2(1− x)2 ln x , (C.62)

GZ(x, y) =− 1
2(x− y)

[
x2(1− y)
(1− x) ln x− y2(1− x)

(1− y) ln y
]
. (C.63)

Combining the above results, we can finally write the effective `β`αZ vertex as:

g

4 cos θW
ΛZµ = − g3FαβZ

32π2 cos θW
γµPL , FαβZ ≡

ng+ns∑
j,i=1

UαjU
∗
βi [δjiFZ(λj) + CjiGZ(λj , λi)] , (C.64)

Finally, note that in the limit of a degenerate mass spectrum, mN1 = mN2 = ... ≡ mN , and for

mN �MW , the form factor FαβZ in the previous expression simplifies to

FαβZ ≈
ng+ns∑
j=ng+1

UαjU
∗
βjF̃Z , with F̃Z ≡ [FZ(λN ) + 2GZ(0, λN )] and λN ≡

m2
N

M2
W

, (C.65)

in agreement with Ref. [172].
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Figure C.3: d-box type diagrams that contribute at one-loop order to µ-e conversion in nuclei and to
µ→ `−j `

−
j `

+
k decays, in the type I seesaw scenario.

C.3 Calculation of box diagrams

In this section we outline the calculation of the box diagrams that contribute at one-loop order to

µ-e conversion in nuclei and to µ → `−j `
−
j `

+
k in the type I Seesaw model. In u-type diagrams (Fig. C.4)

participate virtual quarks (d, s, b), while the quarks taking part in d-type diagrams are (u, c, t) (Fig. C.3).

It is important to remark that the final result for d-type diagrams remains valid when the d-quark is

replaced by charged leptons and virtual (u, c, t) quarks by neutrinos, in which case the quark mixing

matrix V ≡ VCKM is replaced by the leptonic mixing matrix U in Eq. (C.11).

A similar notation to Ref. [172] is used in our final results, which are in complete agreement with it.

C.3.1 d-type box diagrams

At one-loop order, the relevant d-box diagrams are the ones represented in Fig. C.3. Using the

Feynman rules in Appendix B, the invariant amplitude iΛ(r)
d of each diagram is:

iΛ(a)
d =g4

4 U
∗
αjUβjVduiV

∗
dui

∫
d4k

(2π)4

[
u(p2) (γρPL)

(
/k + /p1 +mj

)
(γσPL)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (γσPL)

(
/k + /p4 +mi

)
(γρPL)u(p3)

]
[(k + p4)2 −m2

i ] [(k + p2 − p1)2 −M2
W ] ;

(C.66)

iΛ(b)
d =−

g4U∗αjUβjVduiV
∗
dui

4

∫
d4k

(2π)4

[
u(p2) (mjPR −mβPL)

(
/k + /p1 +mj

)
(γρPL)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (γρPL)

(
/k + /p4 +mi

)
(miPL −mαPR)u(p3)

]
[(k + p4)2 −m2

i ] [(k + p2 − p1)2 −M2
W ] ;

(C.67)
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iΛ(c)
d =−

g4U∗αjUβjVduiV
∗
dui

4

∫
d4k

(2π)4

[
u(p2) (γρPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (miPR −mβPL)

(
/k + /p4 +mi

)
(γρPL)u(p3)

]
[(k + p4)2 −m2

i ] [(k + p2 − p1)2 −M2
W ] ;

(C.68)

iΛ(d)
d =

g4U∗αjUβjVduiV
∗
dui

4

∫
d4k

(2π)4
u(p2) (mjPR −mβPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)u(p1)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]

×
u(p4) (miPR −mβPL)

(
/k + /p4 +mi

)
(miPL −mαPR)u(p3)

[(k + p4)2 −m2
i ] [(k + p2 − p1)2 −M2

W ] .

(C.69)

where mj is the mass of Majorana neutrinos νj or Nj , and mi is the mass of the virtual quark ui.

Using dimensional regularisation and simplifying the result neglecting external masses, we are able

to get the following intermediate expressions:

Λ(a)
d = g4

32π2UαjU
∗
βjVduiV

∗
dui

∫ 1

0
dx dy dz

z(z − 1)
D4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] ; (C.70)

Λ(b, c)
d =

g4m2
jm

2
i

64π2M2
W

UαjU
∗
βjVduiV

∗
dui

∫ 1

0
dx dy dz

z(z − 1)
D2

4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] ; (C.71)

Λ(d)
d = g4

128π2M4
W

UαjU
∗
βjVduiV

∗
dui

∫ 1

0
dx dy dz

z(z − 1)
D2

4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] . (C.72)

Performing integrations and summing up the above contributions, we then arrive at the final expression

for the d-type box diagrams:

Λd = g4

64π2 [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)]FαβdddBox , (C.73)

where the newly introduced form factor FαβdddBox is defined by:

FαβddBox ≡ UαjU∗βjVduiV ∗duiFdBox(λj , λi) , (C.74)

FdBox(x, y) = − 1
1− x

{(
1 + xy

4

) [ 1
x− y

+ x2

(1− x)2 ln x− 1
1− y −

y2

(1− y)2 ln y
]

− 2xy
[

1
x− y

+ x

(1− x)2 ln x− 1
1− y −

y

(1− y)2 ln y
]}

.

(C.75)

Finally, note that in the limit of a degenerate mass spectrum, mN1 = mN2 = ... ≡ mN , and for

mN �MW , the form factor FαβdddBox in the previous expression simplifies to

FαβddBox ≈
ng+ns∑
j=ng+1

UαjU
∗
βjF̃dBox , with F̃dBox ≡ [FdBox(λN , 0)− FdBox(0, 0)] . (C.76)
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Figure C.4: u-box type diagrams that contribute at one-loop order to µ-e conversion and to µ→ `−j `
−
j `

+
k ,

in the type I Seesaw scenario.

C.3.2 u-type box diagrams

The relevant u-box diagrams are shown in Fig. C.4. Similarly to the calculation of d-box diagrams,

the invariant amplitude iΛ(r)
u of each u-box diagram is:

iΛ(a)
u =g4

4 U
∗
αjUβjVudiV

∗
udi

∫
d4k

(2π)4

[
u(p2) (γρPL)

(
/k + /p1 +mj

)
(γσPL)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (γρPL)

(
/p3 − /k +mi

)
(γσPL)u(p3)

]
[(p3 − k)2 −m2

i ] [(k + p1 − p2)2 −M2
W ] ;

(C.77)

iΛ(b)
u =−

g4U∗αjUβjVudiV
∗
udi

4

∫
d4k

(2π)4

[
u(p2) (mjPR −mβPL)

(
/k + /p1 +mj

)
(γρPL)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (muPL −miPR)

(
/p3 − /k +mi

)
(γρPL)u(p3)

]
[(p3 − k)2 −m2

i ] [(k + p1 − p2)2 −M2
W ] ;

(C.78)

iΛ(c)
u =−

g4U∗αjUβjVudiV
∗
udi

4

∫
d4k

(2π)4

[
u(p2) (γρPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)u(p1)

][
(k + p1)2 −m2

j

]
[k2 −M2

W ]

×
[
u(p4) (γρPL)

(
/k + /p4 +mi

)
(muPR −miPL)u(p3)

]
[(k − p3)2 −m2

i ] [(k + p1 − p2)2 −M2
W ] ;

(C.79)

iΛ(d)
u =

g4U∗αjUβjVudiV
∗
udi

4

∫
d4k

(2π)4
u(p2) (mjPR −mβPL)

(
/k + /p1 +mj

)
(mjPL −mαPR)u(p1)[

(k + p1)2 −m2
j

]
[k2 −M2

W ]

×
u(p4) (muPL −miPR)

(
/k + /p4 +mi

)
(muPR −miPL)u(p3)

[(k − p3)2 −m2
i ] [(k + p1 − p2)2 −M2

W ] .

(C.80)

where mj is again the mass of Majorana neutrinos and mi is the mass of virtual quarks di.
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After applying dimensional regularisation and simplifying the result neglecting external masses, we

obtain the intermediate expressions:

Λ(a)
u = g4

8π2U
∗
αjUβjVudiV

∗
udi

∫ 1

0
dx dy dz

z(1− z)
D4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] , (C.81)

Λ(b, c)
u =

g4m2
jm

2
i

64π2M2
W

U∗αjUβjVudiV
∗
udi

∫ 1

0
dx dy dz

z(1− z)
D2

4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] , (C.82)

Λ(d)
u = g4

128π2M4
W

U∗αjUβjVudiV
∗
udi

∫ 1

0
dx dy dz

z(1− z)
D2

4(x, y, z) [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)] . (C.83)

As for d-type box diagrams, summing up the above contributions and carrying out integrations, we

obtain the final expression for u-type box diagrams:

Λu = g4

64π2 [u (p4) γρPLu (p3)] [u (p2) γρPLu (p1)]FαβuuBox ,

where FBox(x, y) is a function defined in an analogous way to Eq. (C.75):

FαβuuBox ≡
ng+ns∑
j=1

∑
i=d,s,b

UαjU
∗
βjVudiV

∗
udiFuBox(λj , λi) , (C.84)

FuBox(x, y) = 1
x− y

{(
4 + xy

4

) [ 1
x− y

+ x2

(1− x)2 ln x− 1
1− y −

y2

(1− y)2 ln y
]

− 2xy
[

1
x− y

+ x

(1− x)2 ln x− 1
1− y −

y

(1− y)2 ln y
]}

.

(C.85)

Again, in the limit of a degenerate mass spectrum, mN1 = mN2 = ... ≡ mN , and for mN � MW , the

form factor FαβuuBox in the previous expression simplifies to

FαβuuBox ≈
ng+ns∑
j=ng+1

UαjU
∗
βjF̃uBox , with F̃uBox ≡ [FuBox(λN , 0)− FuBox(0, 0)] . (C.86)

in agreement with the result in Ref. [172].

Finally, note that the result for d-type diagrams remains valid when the d-quark is replaced by a

charged lepton ψ and the virtual (u, c, t) quarks by neutrinos. The quark mixing matrix V ≡ VCKM is

then replaced by the leptonic mixing matrix U and, in the interesting case ψ=β, the relevant function is

FαβββBox ≡
ng+ns∑
i,j=1

UαjU
∗
βjUβiU

∗
βiFdBox(λj , λi) (C.87)

which, in the limit of a quasi-degenerate and large masses regime, λj >> 1, is simplified to:

FαβββBox ≈ −2
ng+ns∑
j=ng+1

UαjU
∗
βjF̃dBox . (C.88)

with F̃dBox defined in Eq. (C.76). This result agrees with that in Ref. [172].
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D Type II seesaw form factor

calculation

(a) (b)

(f) (g)
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+ +

+ + +

γ
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γ
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γ∆−−

ℓj
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ℓα ℓβℓβ
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Figure D.1: Diagrams that contribute at one-loop order to the type II seesaw form factor.

In this appendix, we calculate the effective vertex `β`αγ (`α 6= `β) at one-loop order in the type II

seesaw model. This vertex receives contributions from the diagrams shown in Fig. D.1 and, similarly to

the type I seesaw scenario, the leptons `α and `β are on-shell while the photon is allowed to be off-shell.

The definition of the effective vertex `β`αγ is also the same as in the type I seesaw:

ieΛγµ = ie

h∑
m=a

Λ(r)
µ . (D.1)

Using the Feynman rules in Appendix B, the amplitudes of the diagrams can be written as follows:

iΛ(a)
µ = −8 (Y∆)∗βσ (Y∆)ασ

∫
d4k

(2π)4
PR
(
/k + /p2 +mσ

)
γµ
(
/k + /p1 +mσ

)
PL

[(k + p2)2 −m2
σ] [(k + p1)2 −m2

σ]
[
k2 −M2

∆−−
] ; (D.2)

iΛ(b)
µ = −16 (Y∆)∗βσ (Y∆)ασ

∫
d4k

(2π)4

PR
(
/k+ /p1 +mσ

)
PL (2k+q)µ

[(k + p1)2 −m2
σ]
[
(k + p1 − p2)2 −M2

∆−−
][
k2−M2

∆−−
] ; (D.3)

iΛ(c)
µ = 8 (Y∆)∗βσ (Y∆)ασ

∫
d4k

(2π)4
PR
(
/k + /p2 +mσ

)
PL
(
/p2 +mα

)
γµ[

m2
β −m2

α

]
[(k + p2)2 −m2

σ]
[
k2 −M2

∆−−
] ; (D.4)
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iΛ(d)
µ = 8 (Y∆)∗βσ (Y∆)ασ

∫
d4k

(2π)4
γµ
(
/p1 +mβ

)
PR
(
/k + /p1 +mσ

)
PL[

m2
α −m2

β

]
[(k + p1)2 −m2

σ]
[
k2 −M2

∆−−
] ; (D.5)

iΛ(e)
µ = −4

(
UνL

TY∆

)
jα

(
Y †∆U

ν
L
∗
)
βj

∫
d4k

(2π)4

PR
(
/k + /p1 +mj

)
PL (2k+q)µ[

(k + p1)2−m2
j

][
(k + p1 − p2)2−M2

∆−
][
k2−M2

∆−
] ; (D.6)

iΛ(f)
µ = 4

(
UνL

TY∆

)
jα

(
Y †∆U

ν
L
∗
)
βj

∫
d4k

(2π)4
PR
(
/k + /p2 +mj

)
PL
(
/p2 +mα

)
γµ[

m2
β −m2

α

] [
(k + p2)2 −m2

j

] [
k2 −M2

∆−
] ; (D.7)

iΛ(g)
µ = 4

(
UνL

TY∆

)
jα

(
Y †∆U

ν
L
∗
)
βj

∫
d4k

(2π)4
γµ
(
/p1 +mβ

)
PR
(
/k + /p1 +mj

)
PL[

m2
α −m2

β

] [
(k + p1)2 −m2

j

] [
k2 −M2

∆−
] . (D.8)

Next, to perform the integrals, we apply dimensional regularisation and expand the resulting squared

masses ∆4 [remember Eq. (A.8)] in terms of leading and subdominant contributions. After a rather

lengthy calculation, one gets to leading order (in lepton masses)

Λ(a)
µ =

(Y∆)∗βσ (Y∆)ασ γµPL
4π2

{
∆ε +

[
1
2 −

5r
18 − Sσ + Sα + Sβ

3 + r

3f(r, Sσ)
]}

+
(Y∆)∗βσ (Y∆)ασ γµPR

2π2M2
∆−−

[
− 5

36 + f(r, Sσ)
6

] (
/p1γµ /p1 + /p2γµ /p2

)

+
(Y∆)∗βσ (Y∆)ασ γµPL

2π2M2
∆−−

{[
17
36 −

f(r, Sσ)
6

] (
/p2γµ /p1

)
−
[

1
36 + f(r, Sσ)

6

] (
/p1γµ /p2

)}
,

(D.9)

Λ(b)
µ =−

(Y∆)∗βσ (Y∆)ασ γµPL
2π2

[
∆ε +

(
1
2 + 4r

18 − Sσ + Sα + Sβ
6

)]

−
(Y∆)∗βσ (Y∆)ασ PR

36π2M2
∆−−

(
/p1p1µ + 5 /p1p2µ + 5 /p2p1µ + /p2p2µ

)
,

(D.10)

Λ(c)+(d)
µ =

(Y∆)∗βσ (Y∆)ασ γµPL
4π2

[
∆ε +

(
1
2 − Sσ + Sα + Sβ

3

)]
+

(Y∆)∗βσ (Y∆)ασ
12π2M2

∆−−
PR( /p2γµ /p1) , (D.11)

Λ(e)
µ =

(Y∆U
ν
L)∗βj (Y∆U

ν
L)αj γµPL

8π2

[
∆ε +

(
3
2 −

r

3 + Sa
3 −

Sb
3

)]

+
(Y∆)∗βσ (Y∆)ασ PR

12π2M2
∆−

(
5 /p2p2µ − 7 /p2p1µ − /p1p2µ + 3 /p1p1µ

)
,

(D.12)

Λ(f)+(g)
µ =−

(Y∆U
ν
L)∗βj(Y∆U

ν
L)αj γµPL

8π2

[
∆ε+

(
1
2−λj+

Sα + Sβ
3

)]
−

(Y∆)∗βσ(Y∆)ασ
24π2M2

∆−
PR( /p2γµ /p1) , (D.13)
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where f(r, Sσ) is the function defined by

f(r, Sσ) = 4Sσ
r

+ lnSσ +
(

1− 2Sσ
r

)√
1− 4Sσ

r
ln
√
r + 4Sσ +

√
r√

r + 4Sσ −
√
r
. (D.14)

It is now straightforward to obtain the contribution of the doubly-charged scalar to the effective

coupling by summing up the results of the first four diagrams. We arrive at the expression

Λ(∆−−)
µ =

d∑
i=a

Λ(i)
µ = 1Λ(∆−−)

µ + 2Λ(∆−−)
µ , (D.15)

with

1Λ(∆−−)
µ = −

(Y∆)∗βσ (Y∆)ασ
6π2M2

∆−−
f(r, Sσ)(q2γµ − qµqνγν)PL , (D.16)

2Λ(∆−−)
µ = −

(Y∆)∗βσ (Y∆)ασ
6π2M2

∆−−
[mβPLiσµνq

ν +mαPRiσµνq
ν ] . (D.17)

which is clearly gauge covariant, as expected. In the same way, it is easy to calculate the contribution of

the singly-charged scalar, corresponding to diagrams (e), (f) and (g) in Fig. D.1. The result reads:

Λ(∆−)
µ =

g∑
i=e

Λ(i)
µ = 1Λ(∆−)

µ + 2Λ(∆−)
µ , (D.18)

with

1Λ(∆−)
µ = −

(Y∆)∗βσ (Y∆)ασ
12× 6π2M2

∆−
(q2γµ − qµqνγν)PL , (D.19)

2Λ(∆−)
µ = −

(Y∆)∗βσ (Y∆)ασ
8× 6π2M2

∆−
[mβPLiσµνq

ν +mαPRiσµνq
ν ] . (D.20)

Finally, gathering the two contributions, the one-loop form factor for the type II seesaw model is:

Λµ =
g∑
i=e

Λ(i)
µ = 1Λµ + 2Λµ , (D.21)

with

1Λµ = −
(Y∆)∗βσ (Y∆)ασ

6π2

(
1

12M2
∆−

+ f(r, Sσ)
M2

∆−−

)
(q2γµ − qµqνγν)PL , (D.22)

2Λµ = −
(Y∆)∗βσ (Y∆)ασ

6π2

(
1

8M2
∆−

+ 1
M2

∆−−

)
[mβPLiσµνq

ν +mαPRiσµνq
ν ] . (D.23)

This result is in complete agreement with that of Refs. [177–179].
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E `α → `β γ decays in the type

III seesaw model

γ

γ

W− W+

+ +

γ

φ− φ+
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+ +

Z H,ϕZ

γ
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W+

γ

φ+
W−

= +

4 Diagrams with photons in external legs

ℓα ℓβ
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νj, Nj

νj, Nj

νj, Njνj, Nj

Figure E.1: One-loop diagrams contributing to `α → `βγ in the type III seesaw model.

In this appendix we outline the essential steps followed in the one-loop calculation of the `α → `βγ

decay width in the type III seesaw. We assume that `α → `βγ is an on-shell transition and the calculation

is done in the mβ → 0 limit. As such, its amplitude can be written as [193]

iT
(
`α → `βγ

)
= 2A×

[
uβ (p− q)

[
iqνελσλνPR

]
uα (p)

]
, (E.1)

where ε is the photon polarisation, pµ is the `α lepton momentum and qµ is the photon momentum.

Using the Gordon decomposition (C.34), we can rewrite the amplitude in a more appealing way as:

iT
(
`α → `βγ

)
= 2A× [uβ (p− q)PR (2p · ε−mα/ε)uα (p)] . (E.2)

We thus see that we only need to calculate the p · ε terms. The remaining terms (proportional to /ε) can

be recovered from the p · ε terms through Eq. (E.2). The decay width is thus:

Γ
(
`α → `βγ

)
= m3

α

4π |A|
2
. (E.3)

In a mass eigenstate basis, the diagrams that contribute to `α → `βγ are shown in Fig. E.1.
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Those with photons in external legs are omitted in Fig. E.1 since they only contribute to cancel the

divergences in the remaining diagrams (similarly to what happens in the other seesaw scenarios). In

fact, their invariant amplitude is proportional to γµεµ = /ε.

We followed a notation and a procedure similar to that of Ref. [186]. We grouped the fourteen

diagrams in Fig. E.1 according to the internal fermion and the calculation was performed in the ’t Hooft-

Feynman gauge, up to order O
(
m2
D

m2
Σ

)
, where MD is the Dirac mass matrix MD = vYΣ/

√
2 and MΣ is

the triplet mass matrix. The amplitudes for each set of diagrams are then the following:

Tφ
−,W−

νj = −G
SM
F√
2
emα

16π2 [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]
[
(U0ννU

ν
L)βj (U0ννU

ν
L)†jα F1

(
wνj
)

+
(
εΣ U0ννU

ν
L

)
βj

(U0ννU
ν
L)†jα F2

(
wνj
)

+ (U0ννU
ν
L)βj

(
εΣU0ννU

ν
L

)†
jα
F3
(
wνj
)]

,

(E.4)

Tφ
−,W−

Nj
= −G

SM
F√
2
emα

16π2 [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]
{(

M†
DM−1

Σ

)
βj

(
M−1

Σ MD

)
jα
F4(wNj )

+
[(

M†
DM−1

Σ

)
βj

(
M−1

Σ MDε
Σ)

jα
F5(wNj )+

(
εΣM†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα
F6(wNj )

]
wNj

+ 1
2M2

W

[(
M†

D

)
βj

(
ε′Σ

TMD

)
jα

+4
(

M†
D

)
βj

(
M−1

Σ M∗
D (UνL)∗Mdiag.

ν UνL
†
)
jα

]
F5(wNj )

+ 1
2M2

W

[(
M†

Dε
′Σ∗
)
βj

(MD)jα + 4
(
UνLMdiag.

ν (UνL)T MT
DM−1

Σ

)
βj

(MD)jα
]
F6(wNj )

}
,

(E.5)

TZ,H,ϕZEj
= −G

SM
F√
2
emα

16π2 [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]{(
M†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα

[
F7
(
zNj
)

+ F8
(
hNj

)]
−
(
εΣM†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα

[
F8
(
zNj
)

+ F8
(
hNj

)]
−
(

M†
DM−1

Σ

)
βj

(
M−1

Σ MDε
Σ)

jα

[
F9
(
zNj
)

+ F9
(
hNj

)]}
,

(E.6)

TZ,H,ϕZ`j
= −G

SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]
(
εΣ)

βα
G
(
ylj , h`j

)
. (E.7)

In the above expressions, we have defined the adimensional quantities

wνj ≡
m2
νj

M2
W

, wNj ≡
m2
Nj

M2
W

, z`j ≡
m2
`j

M2
Z

, h`j ≡
m2
`j

M2
H

, zNj ≡
m2
Nj

M2
Z

, hNj ≡
m2
Nj

M2
H

, (E.8)

along with the loop functions

F1(x) = 10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 log(x)
3(1− x)4 , (E.9)

F2(x) = 2(5− 24x+ 39x2 − 20x3 + 6x2(−1 + 2x) log(x))
3(1− x)4 , (E.10)

F3(x) = 7− 33x+ 57x2 − 31x3 + 6x2(−1 + 3x) log(x)
3(1− x)4 , (E.11)
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F4(x) = −38 + 185x− 246x2 + 107x3 − 8x4 + 18(4− 3x)x2 log(x)
3(1− x)4 , (E.12)

F5(x) = 1− 6x+ 3x2 + 2x3 − 6x2 log(x)
3(1− x)4 , (E.13)

F6(x) = 7− 12x− 3x2 + 8x3 − 6x(−2 + 3x) log(x)
3(1− x)4 , (E.14)

F7(x) = 40− 46x− 3x2 + 2x3 + 7x4 + 18x(4− 3x) log(x)
3(1− x)4 , (E.15)

F8(x) = x(−16 + 45x− 36x2 + 7x3 + 6(−2 + 3x) log(x))
3(1− x)4 , (E.16)

F9(x) = x(2 + 3x− 6x2 + x3 + 6x log(x))
3(1− x)4 , (E.17)

and

G(z`j , h`j ) = δjβ
(
1− 2 cos2 θW

) (
F5[z`j ) + F6(z`j )

]
+ δjα

{(
1− 2 cos2 θW

) [
F5(z`j ) + F6(z`j )

]
+ 8

(
1− cos2 θW

) [
F6(z`j )− F5(z`j )

]
+ 1

2
[
F9(z`j )− F8(z`j )− 3F8(h`j )

]}
.

(E.18)

Since z`j , h`j , wνj � 1, as a good approximation we set the flavour conserving quantities z`j and

h`j to zero, keeping only leading-order terms in the flavour-changing quantities wνj , i.e.

F1(wνj ) ' 10
3 − wνj , (E.19)

F2(wνj ) ' 10
3 −

8
3wνj , (E.20)

F3(wνj ) ' 7
3 −

5
3wνj , (E.21)

G(z`j , h`j ) ≈ C = 32
6
(
cos2 θW − 2

)
≈ −6.56 . (E.22)

With this approximation, the final expressions can then be obtained after summing over the internal

fermion states j and neglecting O [(mD/mΣ)n] terms, with n > 2. We arrive at the expressions

Tφ
−,W−

ν =
∑
j

Tφ
−,W−

νj = −G
SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]

×
[

7
3
(
εΣ)

βα
−
∑
j

wνj (UνL)βj
(
UνL
†
)
jα

]
,

(E.23)

Tφ
−,W−

N =
∑
j

Tφ
−,W−

Nj
= −G

SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]

×
[
− 8

3
(
εΣ)

βα
+
∑
j

(
M†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα
A(wNj )

]
,

(E.24)
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TZ,H,ϕZ` =
∑
j

TZ,H,ϕZ`j
= −G

SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]
(
εΣ)

βα
× C , (E.25)

TZ,H,ϕZE =
∑
j

TZ,H,ϕZEj
= −G

SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]

×
{

14
3
(
εΣ)

βα
+
∑
j

(
M†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα

[
B(zNj ) + C(hNj )

]}
,

(E.26)

where the following definitions have been used:

A(wNj ) =
−30 + 153wNj − 198x2

Nj
+ 75x3

Nj
+ 18(4− 3wNj )x2

Nj
logwNj

3(wNj − 1)4 , (E.27)

B(zNj ) =
33− 18zNj − 45z2

Nj
+ 30z3

Nj
+ 18(4− 3zNj )zNj log zNj

3(zNj − 1)4 , (E.28)

C(hNj ) =
−7 + 12hNj + 3h2

Nj
− 8h3

Nj
+ 6(3hNj − 2)hNj log hNj

3(hNj − 1)4 . (E.29)

The result for the total amplitude is then:

T (`α → `βγ) = −G
SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)] (E.30)

×

{(
13
3 + C

)(
εΣ)

βα
−
∑
j

wνj (UνL)βj
(
UνL
†
)
jα

+

∑
j

(
M†

DM−1
Σ

)
βj

(
M−1

Σ MD

)
jα

[
A(wNj ) +B(zNj ) + C(hNj )

]}
,

which is valid at O
(
m2
D

m2
Σ

)
. If we assume that the fields Nj are very heavy, wNj , zNj , hNj � 1, we can

take the additional limit wNj , zNj , hNj →∞, which leads to the result:

T (`α → `βγ) = −G
SM
F√
2

e

16π2mα [uβ (p− q)PR (2p · ε−mα/ε)uα (p)]

×

[(
13
3 + C

)(
εΣ)

βα
−
∑
j

wνj (UνL)βj
(
UνL
†
)
jα

]
.

(E.31)
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