
-.

SLAC-PUB-3069

CERN/DD/83/3

MARCH 1983

WI)

THE 3081/~ PROCESSOR

PAUL F. KUNZ, MIKE GRAVINA, GERARD OXOBY, AND QUANG TRANG*
Stanford Linear Accelerator Center

Stanford University, Stanford, California 04305

and

ADOLFO FUCCI, DAVIDJACOBS,BRIANMARTIN,ANDKENNETH STORR
CERN

i211 Geneva 23, Switzerland

Invited paper presented at the Three Day In-Depth Review on the

Impact of Specialized Processors in Elementary Particle Physics,

Padova, Italy, March 23-25, 1983.

* Work supported by the Department of Energy, contract DEAC03-76SFOO515.

1. INTRODUCTION

Since the introduction of the 168/E ,le2 emulating processors have been __

successful over an amazingly wide range of applications.3 For example, the 168/~
has been used for off-line data processing at SLAC,4-5 CERN,6-8 and DESK

where thousands of lines of FORTRAN are involved and the processing takes

many seconds per event. The same processor has been used at SLAC as a trigger

processorlO-ll involving only a few hundred lines of assembly code and taking

only 100 psecs, and at CERN as a trigger processor involving hundreds of lines

of FORTRAN and taking tens of milliseconds.12 The processor has even been

used for Monte Carlo lattice calculations13 involving a few hundred lines of

FORTRAN and yet taking an hour of processing time. Still more applications

are planned at Saclay, l4 University of Siegen, l5 University of Toronto,IS I.N.S.-

Tokyo,17 and at Cornell.18

The 168/E has its shortcomings, however, which have limited its use. This

paper will describe a second generation processor, the 3081/E. This new proces-

sor, which is being developed as a collaboration between SLAC and CERN, goes

beyond just fixing the obvious faults of the 168/E. Not only will the 3081/E

have much more memory space, incorporate many more IBM instructions, and

have full double precision floating point arithmetic, but it will also have faster

execution times and be much simpler to build, debug, and maintain. The simple

interface and reasonable cost of the 168/~ will be maintained for the 3081/E.

The name of this processor needs a little explanation. IBM has recently come

out with a new series of high performance mainframes which are called the 308x

series. To the end-user, these machines have the same instruction set as the

360/370 series of machines. Our new emulating processor takes its name from

the first mainframe in this series: the 3081.

2. ARCHITECTURE

The architecture of the 3081/E is shown in Figure 1. There are four execution

units interfaced to two 64 bit wide busses, called the ABUS and the BBUS. There

2

-.

is one for integer operations, one for floating point addition and subtraction, one

for floating point multiplication, and one for division. An arithmetic operation

is started by a microinstruction that transfers ttio operands ‘siniiiltaneously on

the AENJS and BBUS busses to the input registers of an execution unit. The

execution unit then operates on the operands internally. After enough processor

cycles have elapsed for completion of the operation, the results are presented on

the BBUS when a microinstruction calls for them.

ADR

ABUS

BBUS

Figure 1. Block diagram of 3081/E.

. Also interfaced to these busses are the control and register unit, data memory,

and the interface. The control and register unit serves three functions: it contains

the microprogram address counter and conditional branching logic, the data

memory address logic, and the register files.

Most IBM arithmetic instructions are of the form:

BOpA+B

where ‘B’ is called the first operand and is usually a register, ‘A’ is called the

second operand and may be either a register or memory, and ‘0~’ is some arith-

metic operation. About 75% of the instructions encounted in execution are of

the form where the second operand is memory. For this reason the data memory

is interfaced to the execution units via the ABUS. If both operands come from

3

registers, then the control and register board supplies the second operand on the

~- ABUS. In stores to memory, it is memory that behaves like the first operand,

therefore, stores to memory are done via the BBUS. This structure allows stores

to memory to be done directly from the output of an execution unit.

The design philosophy of the 3081/~ processor is simplicity of design and

efficiency for important instructions. Of the two, the simplicity of design can not

be over-emphasized. Members of the 3081/~ collaboration, and many others,

have built and debugged a processor with the complexity of the 168/~. But in

the environment of a High Energy Physics laboratory, we feel it is undesirable to

introduce a processor of more complex design. We have noted that production of

one prototype processor is only a small part of the overall effort and it is the rapid

production of many processors that makes a real contribution to our respective

laboratories.

An important goal of the 3081/Eprocessor project, perhaps the most impor-

tant goal, is to produce a processor that is simple, reliable, and easy to debug

and maintain. To meet this goal, the design philosophy of the 3081/E is based

on the following rules and guidelines:

Separation of function to individual execution units in order to reduce the

control logic.

Use of standard TTL circuits that have ‘second sources’ to ensure supply

of components in the future.

Use of published maximum propagation time of every circuit in calculation

-of cycle time.

Use of additional circuits, if necessary, rather than using a ‘clever trick,’

in order to make the design as straightforward as possible.

The choice of the architecture helps tremendously to reach these goals. It

also has many additional benefits. The advantages are:

4

l The control logic for each execution unit is much simpler than it would be

if, for example, than the control logic if all the operations were done on

one board.
-

l With the reduction in control logic, it is much easier to analyze the circuit

for its longest propagation delay path. It is therefore easier to design the

processor to work in a given cycle time and to be sure that it will.

l Each execution unit can have enough board space to allow a straightfor-

ward implementation of its function, which not only simplifies the design

but also allows for a circuit that optimizes the execution speed of its op-

eration.

l With the reduction in control logic, each of the floating point execution

units can have enough board space to easily allow implementation of full

double precision arithmetic (REAL*8). Full double precision is not needed

for the accuracy of the results, as been shown with the results of truncated

double precision of the 168/E, but it is highly desirable in order to compare

results of the processor with those from an IBM compatible mainframe.

. l The choice of having 64 bit wide busses allows 8 byte fetches and stores to

memory in one cycle, which not only improves the double precision perfor-

mance but also simplifies the control logic and data paths for transferring

double precision operands to and from the execution units.

l -The modular structure allows for additional execution units in the future

as well as installation of improved versions of the current ones.

The disadvantage of this structure is that it requires more integrated circuits.

That is, although the number of circuits in the control logic is greatly reduced,

the number of circuits in the data paths is increased due to duplication of some

functions. However, it is felt that circuits are not expensive compared to man-

power effort and most of the manpower effort spent in debugging a processor is

in areas of the control logic rather than the data paths.

5

-.

3. REGISTERS

-

The registers must be tightly coupled to the memory addressing logic and

the branching logic. For this reason all the general purpose registers are located

on the control board. The physical implementation of the registers is as 16 dual-

ported registers, each 64 bits wide using 16 29705 circuits, as shown in Figure

2. The 16 IBM General Purpose registers (Integer registers) are located in the

first 8 locations with the least significant bit of the register address field choosing

the most or least significant 32 bits of the 64 bit register. The 4 IBM floating

point registers are located in the next 4 locations. Finally, 4 64 bit registers are

left over for temporary storage. They can be used as some combination of 32

bit integer registers, 32 bit floating point registers, and/or 64 bit floating point

registers.

Figure 2. The 3081/E register file implementation.

6

There are several benefits in this implementation of the register file.

l To the processor’s microcode, integer and floating registers look the same; _ -
~- a simplification of the control logic is achieved.

l Some integer instructions have 64 bit operands. nansfer of an even/odd

register pair can be done in one cycle with this implementation since all

registers can be treated as 64 bits wide. Thus, an improvement in execution

speed, and a simplification of the control logic.

l The Load Multiple (LM) and Store Multiple (STM) instructions can be done

2 registers per cycle. These instructions are used for every subroutine call

and can consume a lot of execution time; even more than some of the

floating point instructions.

l The extra registers can be used for decoding some instructions.

4. MEMORY

Memory is one of the most important aspects of any computer or processor.

For experimental high energy physics applications, the memory space of a pro-

cessor must be large enough to simultaneously hold an event buffer, calibration

constants, and enough working space for the event reconstruction program to op-

erate. Modern and future detectors, especially those at colliding beam facilities,

have tens of thousands of individual channels and their track reconstruction

algorithms require a large amount of working space. Today, memory space is

measured in units of MegaBytes, while a few short years ago only large main-

frame processors had more than 1 MegaByte of real memory.

It would seem that large memory space could be most easily achieved by using

the dense dynamic memory circuits that are commonly available. These circuits

typically have 150 to 200 nsecs access time, 300 to 350 nsec cycle time, come in

packages of 64K bits, and cost about US $1,000 per MegaByte. However, there

are some problem areas in using these circuits. For example, it is not prudent to

have a large memory using them without error correcting code logic. LSI circuits

are now available for this logic, but the effect of implementing it is the need for

7

more memory chips for the error correcting code to be stored and a slow down
- of the memory cycle time.

Large memory space is important but the speed of the memory is equally

important in High Energy Physics code. This is because even with the best of

compilers, a processor still obtains one operand (of the two for an arithmetic

instruction) from memory over 75% of the time. Therefore, the overall speed of

execution becomes dominated by memory access time as the execution time of
arithmetic instructions tends to zero.

The memory of the 3081/E will be implemented using the less dense but

faster static memory circuits. Today they have typically 55 nsec access and cycle

time, come in packages of 16K bits, and cost about US $5,000 per Megabyte.

The 55 nsec access time of the memory circuit leads to a 120 nsec memory

cycle time for the processor when one adds up the address decoding time, circuit

access time, propagation time of bus buffer circuits, and minimum setup times

at the destination. Compared to using the dynamic memory circuits, the use of

static memory is also much simpler because there is no need for error correcting

code logic or the refresh timing logic. Also a very rapid access time is achieved

without resorting to a cache memory buffer as is done in many high performance

computers.

The use of more expensive memory can easily be justified in many applica-

tions. For example, in a multi-processor application, if one used a processor ten

times slower than the 3081/~ but with memory that was 5 times less expensive,

then one would need 10 of these processors to equal the throughput of the 3081/~
and one would be spending twice the amount of money on memory circuits.

A 3081/~ memory board will initially contain l/4 MegaByte using 16K static

memory circuits. The processor can accept a maximum of 14 memory boards

or 3.5M Bytes. Today, most High Energy Physics programs, including their I/O

buffers for each tape and disk file, run with less than 3.5M Byte allocation on

an IBM mainframe. It is expected that 64K statics will be introduced in 1984

-

8

so by 1985 they will be reasonably priced. Their use will lower the price of the

processor’s memory and make it possible to have a processor with 14M Bytes.
-

5. MEMORY ADDRESS CALCULATION

The availablity of large memory with fast access times is only half the prob-

lem. To access it quickly one must also be able to calculate the memory address

quickly.

In the 3081/~ the problem is solved in the following way. Each micro-

instruction that accesses memory has two completely independent fields. The

first field controls the basic address calculation; i.e. adding the IBM 12 bit dis-

placement field to the contents of a base register. This is denoted in the examples

that follow as &(B2) + MAR. The second field controls the execution of an

instruction. The address calculation will be done one micro-cycle ahead of the

use of the memory operand. Thus, an isolated Load instruction would take two

cycles as shown in the example below:

JBJ Instruction micro-instruction 30811~
L 3,328(13) 328(13)‘MAR

(M)+R3

However, two Load instructions in a row would take only three cycles as shown

below:

IBM Instruction
L 3,328(13)
L 8,808(10)

micro-instruction 30811~
32 8 (13)+MAR
808(10)+NAR (M)-R3

(Ml-R8

All the IBM instructions with one operand in memory are handled in the same

way. Note that this simple addressing pipelining makes the Load instruction

execution effectively only one cycle of 120 nsecs, which is the same amount of

time that the Load instruction executes on an IBM 370/168. Stores to memory

on the 3081/E will take the same amount of time as Loads, but on an IBM

370/168 they take twice as long because of the cache memory. The execution

time of these simple instructions is important. For most programs, the execution

time spent in loads and stores can exceed 30% of the total.

9

The implementation requires that in one cycle one has a read access to one
- of the General Purpose registers for address calculation while reading or writing

to another register. This is done by using the same port-of the register file that

is used to output the contents of a register on the ABUS.

Instructions with both operands from registers require use of both ports of

the 29705. However, the pipelining is maintained in the 3081/E by moving the

address calculation up one cycle as is shown in the following example:

J&l Instruction micro-instruction 30811~
L 3,328(13) 328(13)--+HAR
LR 4,8 808(10)-vlAR (MI-R3
L 8,808(10) R8 -R4

(MI-R8

There will always be available a ‘slot’ for the address calculation because every

instruction that uses a memory operand will leave an opening for the next one.

A small fraction of the memory addressing instructions have a non zero index

register, thus requiring the addition of 3 numbers to form the memory address.

Rather than having the complexity of a 3 input adder and the logic to feed it

with the contents of two registers, the 3081/~ will take two cycles to complete

the address calculation as is shown below:

IBM Instruction 3081/E micro-instruction
L 3, 64(9,101 64(10I+MAR

MAR(9)+MAR
(MI-R3

Since the frequency of this type of addressing is only about 10% in typical code,

the time penalty is not important. When it is heavily used in some loops the

same pair of index and base registers will frequently be used more than once. If

this condition occurs, the 3081/~ will calculate the sum of the registers once and

store the results in one of the temporary registers. Memory address calculations

based on the register pair will then be done using this register, thus requiring

only one cycle.

Branching breaks the addressing pipeline. The first instruction that accesses

memory after a branch has been taken must take two cycles or more to complete.

10

However, the first memory accessing instruction after a branch instruction that

was not taken may have its address calculation done in the cycle before the

branch. This is because if the branch is taken, there is no harm iiihaving loaded

the memory address register with an address that will not be used, and if the

branch is not taken then the memory accessing instruction can proceed.

6. FLOATING POINT

One of the important aspects of a processor for High Energy Physics is its

floating point performance. However, attempts to vectorize High Energy Physics

code, in order to make good use of processors with vector instructions (some-

times called array processors), have not yet proven successful. It seems that the

nature of most experimental code, as it is usually written, is such that there

is an equal mix of scalar add/subtracts and multiplies, with a large intermix

of conditional statements. Also, most event reconstruction codes spend 3040%

of their execution time in the subroutines SIN, COS, ATAN, and SQRT alone.

These subroutines use floating point heavily and even double precision arithmetic

internally. Therefore, for a processor to have good performance, it should have

fast execution time on individual floating point instructions.

The following sections describe each of the floating point execution units.

A. Floating Point Add/Subtract

Floating point addition and subtraction are fairly complex operations. They

involve pre-normalization, addition or subtraction, and post-normalization. Since
it is not possible to perform all of these operations in one processor cycle time,

the add execution unit does the operation internally in two processor cycles.

Even internal to the add execution unit there is separation of function and

circuits. For example, the pre- and post- normalization shifters are separate cir-

cuits, and the arithmetic units to compare the exponents for pre-normalization

are separate from those to correct the exponent from post-normalization. Again,

this implementation choice requires more circuits but greatly simplifies the con-

11

trol logic and therefore the manpower effort.
-

B. Floating Point Multiply
_ - .

Multiplication is a rather simple operation but takes many circuits for it to

go fast. The implementation has been optimized for single precision execution

time which will take two processor cycles to complete. In the first cycle, the

mantissa of each operand passes through an array of 9 8X8 multiplier circuits

and the partial products are stored in internal registers. In the second cycle, the

partial products are summed. Post-normalization and exponent correction are

accomplished during the cycle that the results are presented to the BBUS.

To implement double precision multiplication in the same way would take a

considerable number of circuits, therefore, an iterative technique will be used that

is reasonablely fast and does not require too many circuits to fit on one board. In

the first cycle, each byte of one operand is multiplied by the least significant byte

of the other in an array of 7 8X8 multiplier circuits and the partial products

stored in internal registers. In the next cycle, the partial products are summed

and stored in an internal accumulator register, while each byte of one operand

is multiplied by the second least significant byte of the other. In the next cycle,

the partial products are summed and added to the accumulator shifted by 8 bits

and stored, while the next byte is in the multipliers. After 7 multiply cycles plus

1 accumulation cycle, the results can pass through the post-normalization logic

and onto the BBUS.

C. Floating Point Divide

Division has traditionally been one of the slowest instructions in any processor

and so it will be with the 3981/~also. It will be done iteratively, 2 bits per cycle.

7. INTEGER

The benefits of separate execution units for floating point are also extended

to the integer instructions. All integer instructions will be done in the integer

12

execution unit. On this board there will be enough space to handle not only the
---- 4 byte (INTEGERed) and 2 byte (INTEGERd) arithmetic operations, but also

permit the data multiplexing required for the instructions with ibyte operands

(LOGICALLY and CHARACTER*n). This is especially important for implemen-

tation of the instructions required by the FORTRAN ‘77 compilers.

8. INSTRUCTION PIPELINING

The separation of execution units, each capable of operating on its operands

internally, allows for instruction pipelining. The pipelining of memory address

calculation with memory access has already been discussed, but now one is refer-

ing to the starting of a new instruction before the previous one is finished, or the

overlapping of one instruction with another.

The following example is taken from actual code. The FORTRAN compiler

frequently generates a sequence of instructions like LE 0,. . .; SE 0,. . .; ME 0,. . . .
This would be translated into 3081/~ microcode as shown below:

IBM Instruction micro-instruction 30811~
1) LE 0, 316(0,13) 1: 314(13)-MAR
2) SE 0, 688(0,13) 2: 688(13)-HAR (Ml-F0 LE

3: (Ml-A2 FO-Al A0
4: Al

3) ME 0,1672(0,10) 5:1672(10)-EAR A2
6: (Ml-M2 AR-Ml MO
7: MI
8: Hz
9: MR-FO

The Load instruction, l), executes in 2 cycles, 1: and 2:, as has already been

described in the section on memory addressing. The Subtract instruction, 2)

has its memory address calculation overlapped with the actual memory access of

the Load instruction in 3081/~ instruction 2:. The start of the subtract occurs

in 3081/~ instruction 3: when the second operand is transferred from memory

to the second operand input of the add/subtract execution unit (A2) and the

first operand is supplied from register to the first operand input (Al). After the

two cycles (Al,Az), 3081/~instructions 4: and 5:, the results of the subtract are

ready.

13

The next IBM instruction, 3), uses these results and modifies them. So instead
- of transfering them back to floating point register 0, they are transferred from

the output of the add/subtract execution unit (AB) to--the first-operand input

register of the multiply execution unit (Ml) using the BBUS. During this same

cycle, 3081/~ instruction 6:, the second operand for the multiply instruction is

transferred from memory to the second operand input (M2) using the ABUS.

This is called instruction overlapping and it occurs very often in typical

High Energy Physics code. Overlapping can occur whenever two sequential IBM

instructions modify the same register. Measuring some codes show that about

half of the floating point add/subtracts are followed immediately by a floating

point multiply to the same register, and vice versa. Thus the design of the 3081/~

‘s execution units is such that their output is placed on the BBUS so that it can

be used immediately as input to the next instruction.

A sequence such as the one given above is frequently followed by a similar

sequence, but using a different register. Thus one would translate into 3081/E

microcode as show below:

IBM Instruction micro-instruction 30811~
1) LE 0, 316(0,13) 1: 316(13)-MAR
2) SE 0, 688(0,13) 2: 688(13)-MAR (Mb+FO LE

3: 320(13)-MAR (Ml-A2 FO-Al A0
4: 692(13)-MAR (NJ-F2 Al LE

3) NE 0,1672(0,10) 5:1672(10)-MAR (Ml-A2 F2-Al A2 A0
4) LE 2, 320(0,13) 6: (Ml-M2 AR-Ml MO Al
5) SE 2, 692(0,13) 7:1676(10)-MAR Ml A2
6) NE 2,1676(0,10) 8: (Ml-M2 AR-M1 IIt MO

9: MR-FO M,
10: M2

7) AER 2,O 11: FO -A2 RR-Al Ao
12: Al

8) STE 2, 144(0,13) 13: 144(13)-MAR A2
14: AR-F2rCM)

IBM instruction 4) does not depend on the results from instructions l)-3). There-

fore, it can be executed at 3081/~instruction 4:, which is only one microinstruc-

tion after IBM instruction 2) has started. Similarly, IBM instruction 5) can be

started at 3081/Einstruction 5:, since the add execution is pipelined internally.

-

14

This is called instruction pipelining. It also happens very often in High

-- Energy Physics code. The code shown above could have been generated by a line
_ -

of FORTRAN like:

XC = VIX*(XA - XZERO) + VIY*(YB - YZERO)

It is possible to do instruction pipelining with the 3081/~ because the execution

units operate independantly of each other. Note also that in 3081/~ instruction

14:, the results of the add execution unit are stored to register and memory

in the same cycle, thus effectively reducing the Store execution time to zero.

Without instruction pipelining, the same sequence would have required 23 3081/~

instructions, but with the pipelining it requires only 14.

When the code uses floating point heavily, the pipelining becomes extensive.

This is illustrated by adding to the above sequence of instructions one that is

based on floating point register 4 as is shown below:

JBJ Instruction
1) LE 0, 316(0,13)
21 SE 0, 688(0,13)

3) ME 0,1672(0,13)
4) LE 2, 320(0,131
5) SE 2, 692(0,13)
6) ME 2,1676(0,10)

7) AER 2,O

8) STE 2, 144(0,13)
91 LE 4, 404(0,13)

10) AE 4, 668(0,13)

30811~ micro-instruction
1: 316(13)+MAR
2: 688(13)+MAR (Ml-FO LE
3: 320(13)-MAR (NJ-A2 FO-Al A0
4: 692(13)-MAR CM)-+F2 A1 LE
5:1672(10)-HAR (Ml-A2 F2-+Al A2 A0
6: 404(13)-MAR (M)-M2 AR-Ml MO Al
7:1676(101-MAR (Ml-F4 Ml A2 LE
8: (Ml-M2 AR-Ml Hz MO
9: 688(13)-MAR MR-FO Ml

10: (Ml-A2 F4-Al M2 A0
11: FO +A2 RR-Al Ao Al
12: AI A2
13: 144(13)-MAR AR-F4 A2
14: AR-F2,(M)

IBM instruction 10) starts at 3081/~ instruction 10: and finishes with 3081/E in-

struction 13:. At 3081/~instruction ll:, however, is the start of IBM instruction

7) which finishes at 3081/ E instruction 14:. Thus the pipelining is so extensive

that IBM instructions are being executed in a different order from the way they

appear in the object code. Without instruction pipelining, this sequence would

have taken 28 3081/E instructions, but with pipelining it takes only 14.

15

8. PERFORMANCE

To accurately predict the execution speed of the 3081/Eis rather difficult,

as, in common with many processors, it will depend on the program’s instruc-

tion mix. The pipelining of instructions makes predictions even more difficult.

However, three studies have been made to predict the upper and lower bounds

of the expected performance.

The lower bound of processor performance can be estimated by assuming

that instruction pipelining never occurs. With this assumption the execution

time of each IBM instruction is known. Two different event reconstruction codes

were traced while in execution to measure the frequency of instructions executed.

With these numbers, the performance of the 3081/~ processor would be 0.98 to

1.01 times that of an IBM 370/168.

An upper limit could be estimated by the assumption that pipelining occurs

to such an extent that every instruction takes effectively 1 cycle. With the same
samples of code, this assumption leads to execution time 2.5 times faster than

an IBM 370/168; a figure that can not be realistically expected.

A third measure was obtained by translating an inner loop of one of these

programs. The loop consisted of 82 FORTRAN statements containing 32 IF

statements. Since IF statements break instruction pipelining, it was important

to try a loop with a typical number of them. This loop also consisted of several

divides and memory references with a non-zero index register. The calculated

execution time for one pass through the loop for the 3081/~ is 47 psecs, while

for an IBM 370/168 the time would be 71 psecs. Thus the processor would be

1.5 times faster for this loop. As a check, the execution time was also calculated

for a 168/E . Its time would be 149 psecs, or 2.1 times slower than a 370/168

which is in good agreement with execution times measured on the 168/E.

One can conclude, therefore, that the performance of the 3081/~ will be at

least that of an IBM 370/168 for typical High Energy Physics event reconstruction

code, and up to 5070 faster under the condition that most of the execution time

is spent in floating point loops. The performance of the 3081/E is comparable

16

with a well known array processor. The FPS-164” has a theoretical maximum

- execution speed of 12 MFLOPS, while the 3081/~ theoretical maximum is 8.3

MFLOPS. In practice, Lattice gauge programs, implemented in microcode of the

array processor, achieve about 6 MFLOPS,m while examples of that same code,

implemented in FORTRAN, would achieve 4 MFLOPS on the 3081/~.

10. THE MICROCODE AND THE TRANSLATOR

As with the 168/~, the processor’s instruction set is not that of IBM’s, but

is its own microcode. This microcode is generated by a software program, called

the Translator. This program reads JBM object code modules, translates them

to object microcode, links them together to form an absolute load module for the

processor. The source of the IBM object code could be the output of a compiler,

or that of a linkage editor.

The advantage of using a translator is the elimination of the complex hard-

ware that decodes IBM instructions into microinstructions. This hardware, called

the I-unit by IBM engineers, can consume over half the total design effort of the

computer. A further advantage of using the translator with the 3081/~ is that

instruction pipelining will be generated automatically.

The microinstruction format of the 3681/E has only two forms: register

transfer instructions and conditional branching instructions. The form of the

register transfer instructions is given below:
loo 10 12 16 20 311

I MOP R2 0
I

where MOP is a 10 bit micro operation code, RI and R2 are the least significant

four bits of the register addresses, MBA is the most significant bits of the register

address, and 02 is the displacement field for memory addressing. The MOP field

is decoded on each board with a PROM. It controls the source for the ABUS, the

source for the BBUS, the destination(s), and the length of the operands,

17

--

The form of conditional branching instructions is shown below:

100 04 08 311

1ltttlASK BRANCH ADDRESS - -
I

where MASK is the IBM mask field, tt controls the type of branch, and the

absolute branch address fills the remaining 24 bits of the instruction.

The structure of separate execution units and the pipelining of instructions

at execution time has been done in large computers since the 1960’s.21-22 The

difference between such computers and the 3081/Eprocessor is that in a computer

the pipeline has to be generated by hardware while for the 3081/E processor

the pipeline is generated by software of the translator. Hardware generating of

the pipeline can become very complex and is limited to looking ahead to a few

instructions. Software generation of the pipeline is considerably easier and has

no limit in looking ahead.

The 3081/~ translator will generate the instruction pipelining and overlap

ping by following a simple algorithm as follows:

1. Take each IBM instruction one at a time and determine which operands
are needed for execution of the instruction.

-2. Starting with the previously translated instruction, scan backwards to

determine where is the earliest point the execution could start. Two rules

are followed to determine this point:

(a) If a register or memory location is to be read, then find the point it

was stored.

(b) If a register or memory location is to be written, then find the point

where it was last read.

3. Starting from the earliest point where the translation could take place, scan

forward to the first empty microinstruction and put the microinstruction

there.

18

This algorithm is still a one pass translation, not an optimization which would

~- be much more difficult to program. Nevertheless, it is felt that the one pass

translation yields results which are within 70-80% of maximum optimization.

11. INTERFACE

The interface to the 3081/~ processor will be of the same style as the 168/E.

That is, either the CPU or the interface has control of the internal busses. Thus

when the processor is running, one cannot access the processor’s memory from

the interface. When the processor is not running, all of the processor’s memory is

directly addressable through the interface. From the outside, the processor will

appear to be a simple slave device on a FASTBUS cable segment. The transfer

rate to or from the processor could be over 64k4 Bytes per second if a 64 bit wide

data path were used, but FASTBUS is only 32 bits wide.

There will be some improvements to make it easier to debug the processor:

l The interface will have registers to allow one to halt the processor when

certain conditions arise in a way similar to the Program Event Recording

(PER) registers of IBM mainframes. For example, there will be a stop on a

Store within an address range, a stop on modification of a certain register,

etc.

l The interface will be able to generate any microinstruction. This will

allow the debugging of any execution unit without having the rest of the

processor around.

12. CONCLUSION

The 3081/E project was formed to prepare a much improved IBM mainframe

emulator for the future. Compared to the 168/~ the goals for the 3081/E are:

l Much More Memory Space: The advances in memory technology coming

from the manufacturers now make it possible to build a 3.5M Byte pro-

cessor at a cost of only US $5,000 per MegaByte while keeping the fast,

18

yet simple design style of the 168/~ memory. Fast memory is a very im-

portant factor in a processor’s speed. Large memory is needed for today’s

large detectors. By 1985, a 14h4 Byte pro&ssor should be possible at half

the cost per MegaByte.

l More IBM Instructiona: A more complete set of IBM instructions will be

implemented thus allowing for use of FORIRAN ‘77. FORTRAN ‘77 is

heavily used on many computers and has just recently been introduced on

the IBM.

l Full Double Precision: REAL*8 will be handled correctly, making compar-

isons between output from the processor and output of an IBM computer

bit for bit identical.

l Faster Ezecution Times: The processor will be at least equal to the execu-

tion speed of a 370/168; and up to 1.5 times faster for heavy floating point

code. A single processor will thus be 4 times more powerful than the VAX

11/780, and 5 processors in a system would equal the performance of the

IBM 3081K.

l Less Technical Eflort: The design of the processor will be much simpler

than the M/E . The design rules will be much more conservative and

will use only off-the-shelf multiple source TTL components. Every effort is

being made to reduce the man-power effort to build, debug, and maintain

the processor.

l J’ficient Translation to Microcode: The translation of IBM native instruc-
tions to microcode of the processor will be maintained. It is an important

element in keeping the hardware simple and fast. With the 3081/E, the

translator will also automatically produce pipelined floating point opera-

tions, thus enhancing the performance for heavy floating point code.

l Reasonable Cost and Eflort: The cost of the CPU has been considered

as less of a concern than manpower effort. Nevertheless, the cost of the

processor, power supply, and chassis is expected to be under US $10,000

excluding the cost of memory.

-

20

l Simple Interfacing: We will maintain the simple interface of the 168/,y .

That is to say, the processor will look like a slave on a FASTBUS cable

segment. _ -

The project is being carried out as a collaboration between SLAC and CERN
DD division. At this date we have detailed block diagrams of the entire pro-

cessor, simulation programs of some parts, an approximate circuit count and

costs, approximate board layouts, existence proof of the translator’s pipelining

capabilities, and partial computer based documentation. It is planned during

the calendar year 1983, that a prototype processor will be built with the work

being divided equally between SLAC and CERN. Final debugging should occur

at SLAC early in 1984 with processors being generally available for use by the

end of 1984.

21

1.

2.

3.

4.

5.

6.

7. D. R. Botterill, A. W. Edwards, Ezperiencea Using the 168/~ Micropro-

REFERENCES

P. F. Kunz, The LASS hurdwure processor, Nucl. Instrum. Methods

135, 435 (1976).
P. F. Kunz, R. N. Fall, M. F. Gravina, H. Brafman, The LASS Hardware

Processor, 11th Annual Microprogramming Workshop, Pacific Grove,

CA, November 1922, 1978. SIGMICRO Newsletter 9, 25 (1978).
P.F. Kunz, Use of Emulating Processors in High Energy Physics, Pro-

ceedings of the International Conference on Experimentation at LEP,

Phys. Ser. 23, 492 (1981).
P. F. Kunz, R. N. Fall, M. F. Gravina, J. H. Halperin, L. J. Levinson,

G. J. Oxoby, Q. H. ‘Dang Ezperience Using the 168/E Microprocessor

for On-line Data Anulyaia, IEEE Trans. NS-27, 582 (1980).
L. S. Rochester, Microprocessors in Physics Experiments at SLAG’, Top

ical Conference on Application of Microprocessors to High Energy Phys-

ics Experiments, Geneva, Switzerland, May 4-6, 1981. CERN 81-07 204

(1981).
C. Bertuzzi, D. Drijard, H. Frehse, P. Gavillet, R. Gokieli, P. G. In-

nocenti, R. Messerli, G. Mornacchi, A. Norton, J. P. Porte, On-Line

Use of the 168/~ Emulator ut the CERN ISR SFM Detector, Topical

Conference on Application of Microprocessors to High Energy Physics

Experiments, Geneva, Switzerland, May 46, 1981. CERN 81-07 329

(1981).

- ceaaor within the European Muon Collaboration (EMC), Topical Confer-

ence on Application of Microprocessors to High Energy Physics Experi-

ments, Geneva, Switzerland, May 4-6, 1981. CERN 81-07 336 (1981).
8. D. Lord, P. Kunz, D. R. Botterill, A. Edwards, A. Fucci, G. Lee, B. Mar-

tin, G. Mornacchi, P. Scharff-Hansen, M. Storr, T. Streater, The 168/~

at CERN and the MARK II: An improved processor design, Topical

Conference on Application of Microprocessors to High Energy Physics

Experiments, Geneva, Switzerland, May 4-6, 1981. CERN 81-07 341

(1981).

22

9.
10.

11.

12.

13.

14.
15.

16.
17.
18.

-19.
20.
21.

22.

T. Barklow and G. Wolf, Private Communication
D. Bernstein, J. T. Carroll, V. H. Mitnick, L. Paffrath, D. B. Parker,

SNOOP Module CAMAC Interface to the 168/~ Microptoceaaor, IEEE

Trans. NS-27, 587 (1980).
J. T. Carroll, J. Brau, T. Maruyama, D. B. Parker, J. S. Chima, D. R.

Price, P. Rankin, R. W. Hatley, On-Line Experience with the 168/E,
Topical Conference on Application of Microprocessors to High Energy

Physics Experiments, Geneva, Switzerland, May 46, 1981. CERN 81-07

501 (1981).
J. T. Carroll, M. DeMoulin, A. Fucci, B. Martin, A. Norton, J. P. Porte

and K. M. Storr, Dutu Acquisition Using the 168/E, Paper submitted in

these proceeding.
J. E. Hirsch, R. L. Sugar, D. J. Scalapino, R. Blankenbecler, Monte Carlo

Simulations of One-Dimensional Fermion Systems, NSF-ITP-82-44.
J. Prevost, Private Communication.
M. Rost, Use of the 168/E P roceaaora us Stund Alone Computing Fucil-

itiea, Nucl. Instrum. Methods 202, 445 (1982).
B. Shepard, Private Communication.
K. Ukai, Private Communication.
C. Bebek, Private Communication.
Floating Point Systems, Beaverton, Oregon.
K. Wilson, Private Communication.
J. E. Thornton, Design of a Computer, The Control Data 6600, Scott,

Foresmand, and Co., Glenville, Illinois(1970).
R. M. Tomasula, An Eficient Algorithm of Exploiting Multiple Arith-

metic Units, IBM Journal of Research and Development, 11, 25 (1967).

23

