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Abstract. We apply the phase-integral approximation devised by Fröman and Fröman in
order to compute cosmological perturbations in the power-law inflationary model. The phase-
integral formulas for the scalar and tensor power spectra are explicitly obtained up to ninth
order of approximation. Our approximate expressions reproduce the shape of the power spectra
as well as the spectral indices. We compare the accuracy of the power-integral approximation
with the results for the power spectrum obtained with the slow-roll and uniform approximation
methods.

1. Introduction
The results reported by WMAP favor inflation [1] over other cosmological scenarios. The data
is consistent with a flat universe and with an almost scale invariant spectrum for the primordial
perturbations. The spectrum of the perturbations generated during inflation depends on the
model, therefore it is important to predict the energy spectrum of the cosmological perturbations
for a variety of inflationary models. In general, most of the inflationary scenarios are not
exactly solvable so approximate methods are mandatory. Traditionally, the method of choice for
inflationary cosmology is the slow-roll approximation [2]. Recently, some authors have applied
semiclassical methods, such as the WKB method with the Langer modification [3, 4, 5], and the
method of uniform approximation [6, 7, 8]. In the present article we propose an alternative
method of approximation for the study of cosmological perturbations during inflation, this
method is based on the phase integral method [9, 10, 11] which has been succesfully applied in
the study of quasinormal modes in black hole physics [12, 13].

The Friedmann-Robertson-Walker line element for a spatially flat universe can be written as

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)

where a is the scale factor. In order to study cosmological perturbations we consider
perturbations of the spatially-flat Friedmann-Robertson-Walker universe (1). The perturbative
metric depends on new functions which depend on space and time.

The scalar density perturbations are described by the function uk = aΦ/φ′, where Φ is a
gauge-invariant variable corresponding to the Newtonian potential, and φ is the scalar field.
The equations of motion for the perturbation uk in a universe dominated by a scalar field φ can
be obtained after linearizing the Einstein field equations [14], and are given by
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u′′k +
(

k2 − z′′

z

)
uk = 0, (2)

where z = aφ′/H, H = a′/a, where the prime indicates derivative with respect to the conformal
time η =

∫
dt/a.

For the tensor perturbations (gravitational waves) we introduce a function vk = ah, where
h is the amplitude of the gravitational wave. The tensor perturbation obey a second order
differential equation analogous to Eq. (2)

v′′k +
(

k2 − a′′

a

)
vk = 0. (3)

Considering the limits k2 À |z′′/z| (short wavelength) and k2 ¿ |z′′/z| (long wavelength), we
have that the solutions to Eq. (2) and Eq. (3) have the following asymptotic behavior

uk → e−ikη

√
2k

(
k2 À |z′′/z|,−kη →∞

)
, (4)

uk → Akz
(
k2 ¿ |z′′/z|,−kη → 0

)
, (5)

the same asymptotic boundary conditions also hold for tensor perturbations.
Once the mode equations for scalar and tensor perturbations are solved for different momenta

k, the power spectra for scalar and tensor modes are given by the expression

PS(k) = lim
−kη→0

k3

2π2

∣∣∣∣
uk(η)
z(η)

∣∣∣∣
2

, (6)

PT (k) = lim
−kη→0

k3

2π2

∣∣∣∣
vk(η)
a(η)

∣∣∣∣
2

. (7)

The spectral indices are defined as [15]

nS(k) = 1 +
d ln PS(k)

d ln k
, nT (k) =

d lnPT (k)
d ln k

. (8)

The purpose of the next sections is compute approximate solutions for the scalar and tensor
power spectra with the help of the phase-integral approximation method and show that the
phase integral methods gives very good estimates for the power spectra when we compare them
with those using other methods. The article is structured as follows: In section 2 we give an
introductory review of the phase-integral method. In section 3 we apply the phase-integral
approximation to the power-law inflationary model. In section 4, we numerically solve the
equation governing the scalar and tensor perturbations. In section 5 we compare the results
for the power-spectra obtained using the phase-integral approach with those computed with the
slow-roll and uniform-approximation methods. Finally we summarize our results in section 6.

2. The phase-integral method
Let us consider the differential equation

d2uk

dz2
+ R(z)uk = 0. (9)

where R(z) is an analytic function of z. In order to obtain an approximate solution to Eq. (9),
we are going to use the phase integral method developed by Fröman [9, 16].
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The phase integral approximation, generated using a non specified base solution Q(z), is a
linear combination of the phase integral functions [10, 17], which exhibit the following form

uk = q−1/2(z) exp [±iω(z)dz] , (10)

where

ω(z) =
∫ z

q(z)dz. (11)

Substituting (10) into (9) we obtain that the exact phase integrand q(z) must be a solution of
the differential equation

q−3/2(z)
d2

dz2
q−1/2(z) +

R(z)
q2(z)

− 1 = 0, (12)

For any solution q(z) of Eq. (12) the functions uk in Eq. (10) are linearly independent and
the linear combination of the functions uk represents a local solution. In order to solve the
global problem we choose a linear combination of phase integral solutions representing the same
solution in different regions of the complex plane. This is known as the Stokes phenomenon [9].

If we have a function Q(z) which is an approximate solution of Eq. (12), the quantity ε0,
obtained after substituting Q(z) into Eq. (12)

ε0 = Q−3/2(z)
d2

dz2
Q−1/2(z)− R(z)−Q2(z)

Q2(z)
, (13)

is small compared to unity. We take into account the relative size of ε0 by considering it
proportional to λ2, where λ is a small parameter. This is obtained when Q(z) is proportional to
1/λ and R(z)−Q2(z) is independent of λ, i.e. if R(z) is replaced by Q2(z)/λ2 +

[
R(z)−Q2(z)

]

in Eq. (9). Therefore, instead of using the original equation (9), we deal with the auxiliary
differential equation

d2uk

dz2
+

{
Q2(z)

λ2
+

[
R(z)−Q2(z)

]}
uk = 0, (14)

which reduces to Eq. (9) when λ = 1.
Inserting the solutions (10) into the auxiliary differential equation (14), we obtain the

following equation for q(z)

q1/2 d2

dz2
q−1/2 − q2 +

Q2(z)
λ2

+ R(z)−Q2(z) = 0, (15)

which is called the auxiliary q equation. After introducing the new variable ξ =
∫ z Q(z)dz, we

obtain the equation

1−
(

qλ

Q(z)

)2

+ ε0λ
2 +

(
qλ

Q(z)

)1/2 d2

dξ2

(
qλ

Q(z)

)−1/2

λ2 = 0, (16)

where ε0 is given by (13). A formal solution of Eq. (16) is obtained after the identification

qλ

Q
=

∞∑

n=0

Y2nλ2n (17)
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By substituting (17) into (16), we obtain

1−
(∑

n

Y2nλ2n

)2

+ ε0λ
2 +

(∑
n

Y2nλ2n

)1/2
d2

dξ2

(∑
n

Y2nλ2n

)−1/2

= 0. (18)

Using computer manipulation algebra it is straightforward to obtain the coefficients Y2n

[16, 18]. If we truncate the series (17) at n = N with λ = 1 we obtain

q(z) = Q(z)
N∑

n=0

Y2n, (19)

New substituting Eq. (19) into Eq. (11) we have that

ω(z) =
N∑

n=0

ω2n(z), (20)

where

ω2n(z) =
∫ z

Y2nQ(z)dz. (21)

From (19), (20) and (10) we obtain a phase integral approximation of order 2N +1 generated
with the help of the base function Q(z). The election of the base function Q(z) depends on the
problem in question. In many cases, it is enough to choose Q2(z) = R(z), and the first-order
phase integral approximation reduces to the WKB result. In the first-order approximation it is
convenient to choose a root of Q2(z) as the lower integration limit in expression (21). However,
for higher orders, i.e. for 2N +1 > 1, this is not possible because the function q(z) is singular at
the zeros of Q2(z). In this case, N > 0, it is convenient to express ω2n(z) as a contour integral
over a two-sheet Riemann surface where q(z) be single valued [16]. In order to compute ω2n(z)
we define

ω2n(z) =
1
2

∫

Γt

Y2n(z)Q(z)dz, (22)

where t is a zero of Q2(z) and Γt is a contour of integration starting at the point corresponding
to z over a Riemann sheet adjacent to the complex plane z, and that encloses the point t in the
positive or negative sense and ends at the point z.

We assume that the function Q2(z) is real over the real axis z. Taking into account this
restriction, we shall call turning point the zero of Q2(z). We want to know the connection
formulas at both sides of an isolated turning point zret, i.e., a turning point which is located
far from other turning points. We will adopt the terms “classically permitted region” and
“classically forbidden region” in order to denote those regions over the real axis where Q2(z) > 0
and Q2(z) < 0, respectively.

3. Application to power-law inflation
The power-law inflationary model is a very simple model that allows one to solve the horizon
and flatness problem. Since power-law model does not have a natural way of terminanting the
inflationary epoch, this model is not physically acceptable, nevertheless the advantage lies in
the possibility of analytically computing the solutions to the perturbation equations and the
corresponding power spectra [19, 20]. The power-law model also allows testing approximations
that are necessary in other models that do not exhibit analytic solutions. In the power-law
model, the scale factor is given by

XXIXth Spanish Relativity Meeting (ERE 2006) IOP Publishing
Journal of Physics: Conference Series 66 (2007) 012034 doi:10.1088/1742-6596/66/1/012034

4



a(η) = l0η
1
2
−ν , (23)

where ν = 3
2 + 1

p−1 . We have to impose the condition p > 1 so that equation (23) satisfies the
inflationary condition ä > 0.

Using the power-law scale factor (23) we find that z = l0MPl

√
2
pη

1
2
−ν . Since, for this model,

the differential equations governing the scalar and tensor perturbations are identical, we make
the identification uk = vk = wk.

d2uk

dη2
+


k2 −

(
ν2 − 1

4

)

η2


 uk = 0, (24)

where the function uk in equation (24) satisfies the boundary conditions (4) and (5).
Equation (24) can be exactly solved. The exact solution, satisfying the boundary conditions

(4) and (5) can be expressed in terms of a fractionary Hankel function [15].

uex
k (η) =

√
π

2
exp

[
i

(
ν +

1
2

)
π

2

]√−ηH(1)
ν (−kη). (25)

The exact power spectra are

P ex
S (k) =

1
l20M

2
Pl

gex(ν)k3−2ν , P ex
T (k) =

1
l20

hex(ν)k3−2ν , (26)

where

gex(ν) =
(

1− 2ν

3− 2ν

) [
2ν−2Γ(ν)
2πΓ(3

2)

]2

, (27)

hex(ν) =

[
2ν−3/2Γ(ν)

2πΓ(3
2)

]2

. (28)

the corresponding spectral indices are

nex
S (k) = 2− 2p

p− 1
, nex

T (k) = 3− 2p

p− 1
. (29)

In order to apply the phase-integral method to Eq.(24), we introduce the variable z = kη. The
function R(z) has the form

R(z) = a0 +
a−2

z2
, (30)

where a0 = 1 and a−2 = 1
4 − ν2 are constants. In order to solve Eq. (24) with the help of the

phase integral approximation we need to choose the base function Q(z). If we choose the square
of the base function as Q2(z) = R(z) one obtains that the phase integral approximation fails
at the origin, which is the place where the boundary condition (5) has to be imposed. We can
circumvent this problem if we make the following choice for the square of Q(z) [11]

Q2(z) = R(z)− 1
4z2

. (31)

The equation governing the modes k for the scalar and tensor is
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d2uk

dz2
+ Q2(z)uk = 0, (32)

where

Q2(z) = 1− ν2

z2
, (33)

therefore, the phase-integral approximation is valid as −z → 0, where the boundary condition
(5) should be imposed.

The square of the base function Q2(z) exhibits two turning points zret = ±ν. Since we are
interested in the limit −z → 0, we choose to work with the negative turning point. This turning
point corresponds to the horizon k = aH (z = −ν). The solution is defined in two ranges:
On the left of the turning point, corresponding to scales lower than the horizon, we have the
classically permitted region Q2(z) > 0 and the solution oscillates. On the right of the turning
point −ν < −z < 0, corresponding to scales larger than the horizon, we have the classically
forbidden region Q2(z) < 0, and the solution grows or decreases exponentially.

After computing the coefficients Y2n up to N = 4 we obtain a ninth order approximation for
q(z). In this case, the expression for ω(z) takes the form

ω(z) = w0(z) +
4∑

n=1

w2n(z), (34)

=
∫ −z

−ν
Q(z)dz +

1
2

4∑

n=1

∫

Γ−ν

Y2nQ(z)dz. (35)

Using the connection formulas and the expression for ω(z), we obtain a ninth order phase integral
approximation to the solution of the equation for scalar and tensor perturbations (24). In order
to compute the power spectrum we need to evaluate the limit −kη → 0 for the growing part of
the phase integral solution. In this limit we have

uphi
k (η) → exp

[
i

(
ν − 1

2

)
π

2

]
fpi

ν

1√
k

(−kη)
1
2
−ν , (36)

where

fphi
ν = (2ν)ν− 1

2 exp
(
−ν +

1
12ν

− 1
360ν3

+
1

1260ν5
− 1

1680ν7

)
. (37)

Using Eq. (36), we have that the scalar and tensor power spectra, given by equations (6) and
(7) are

P phi
S (k) =

1
l20M

2
P l

gpi
ν k3−2ν , P phi

T (k) =
1
l20

hpi
ν k3−2ν , (38)

where

gphi
ν =

(
1− 2ν

3− 2ν

) [
fpi

ν

2π

]2

, hphi
ν =

[
21/2fpi

ν

2π

]2

. (39)

The index ν in fpi
ν indicates the order of the approximation. If we only keep the first term,

−ν, in the exponential fphi
ν (37), we obtain the first-order phase integral approximation which

coincides with the WKB method after using the Langer modification [3, 4, 5]. If we keep the
two first terms in the exponential (37), we obtain the third-order phase integral approximation.
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It is worth mentioning that, for the power law model, the tensor and scalar spectral indices do
not depend on the order of approximation. The spectral indices calculated with the help of Eq.
(38) and Eq. (39) coincide with the exact ones.

4. Numerical implementation
In this section we carry out the numerical integration of Eq. (24) for the scalar and tensor
perturbations. In order to integrate the equation (24) we apply the Adams predictor-corrector
method of order 12. [21, 22]. Since Eq. (24) is a second order ordinary differential equation
with real coefficients, we can take the real and imaginary parts of uk as two linearly independent
solutions.

We derive the asymptotic initial conditions for uk(ηi) and u′k(ηi) using two different
approaches. The first method consists in obtaining from Eq. (4) the initial condition for
starting the numerical integration: cos(−kη)/

√
2k for the real part of uk and sin(−kη)/

√
2k

for the imaginary part of uk. We assume that, as −kη → ∞, the solution oscillates. We carry
out the integration in two steps, first, for a value of ηi calculated at 350 oscillations before the
turning point, we integrate Eq. (24) assuming that k2 >> z′′/z. We solve the equation

d2uk

dη2
+ k2uk = 0, (40)

and let evolve the solution up to a point ηeval calculated at 250 oscillations before reaching the
turning point. The value of the solution at this point is taken as initial condition of the exact
differential equation for the perturbations (24). The number of oscillations is obtained from n/2,
where n is the number of zeros which can be approximately calculated from n = k/π(ηret − η),
with ηret = −

√
ν2 − 1

4/k. This procedure is called IC’s exp. The second procedure consists in
obtaining the initial conditions for the real and imaginary parts of uk y u′k from the ninth-order
phase integral approximation solution wk. We start the integration at a value ηi calculated 25
oscillations before reaching the turning point. We call this procedure IC’s phi9.

Fig. 1 and Fig. 2 compare the real part of the analytic solution of uk with the ninth order
phase integral approximation and the numerical methods IC’ exp and IC’s phi, respectively.
The graphics were made using the number of e-folds N = log(a(η))/a(η) as the independent
variable. As expected, the phase integral solutions diverge at the root of q(η). Using IC’s phi9,
the relative error is smaller than a part in 105, an error which is smaller than that obtained
using the numerical method IC’s exp. Therefore, we are going to use the phase integral initial
condition for the numerical computation of PS(k) and PT (k). We stop the computation of
PS(k) and PT (k) when the quotient uk/z (scalar perturbations) or uk/a (tensor perturbations)
becomes constant, i.e., when the function uk leaves the horizon.

5. Results
In this section we proceed to compare the power spectra calculated using the phase integral
approximation with the results obtained with the slow-roll and uniform approximation methods.
From Ref. [8] (equations (63) and (64)) we obtain that the scalar and tensor power spectra in
the slow-roll approximation are

P sr
S (k) =

1
l20M

2
P l

gsr
ν k3−2ν , P sr

T (k) =
1
l20

hsr
ν k3−2ν , (41)

with

gsr
ν = [1 + 2(2− ln 2 + b)(2ε + δ)− 2ε]

(
1− 2ν

3− 2ν

) [
2−ν |1− 2ν|ν−1/2

2π

]2

, (42)
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Figure 1. <(uk) for the power-law inflationary model with p = 10 and k = 1.389hMpc−1. The
solid line indicates the analytic solution, the dashed line indicates the numerical result (IC’s
exp); the dot-dashed line indicates the ninth-order phase integral approximation.
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Figure 2. <(uk) for the power-law inflationary model with p = 10 with k = 1.389hMpc−1.The
solid line indicates the analytic solution. The dashed line indicates the numerical result (IC’s
phi9). The dot-dashed line indicates the ninth-order phase integral approximation

hsr
ν = [1− 2(ln 2 + b− 1)ε]

[
21/2−ν |1− 2ν|ν−1/2

2π

]2

, (43)

where b is the Euler constant, 2 − ln 2 − b ' 0.7296, ln 2 + b − 1 ' 0.2704, and ε = −δ = 1
p .

In the slow-roll approximation we have ε ¿ 1, therefore, for the power-law model, the slow-roll
approximation is better suited for large values of the parameter p.

Using the result obtained in Ref. [7] (Eq. (109)), we obtain an expression for the second
order uniform approximation for the power spectrum associated with the scalar and tensor
perturbations. They are:

P ua
S (k) =

1
l20M

2
Pl

gua
ν k3−2ν , P ua

T (k) =
1
l20

hua
ν k3−2ν , (44)

with

gua
ν =

(
1 +

1
6ν

) (
1− 2ν

3− 2ν

) [
(2ν)ν−1/2e−ν

2π

]2

, hua
ν =

(
1 +

1
6ν

) [
21/2(2ν)ν−1/2e−ν

2π

]2

(45)

where the index ν in gua
ν and hua

ν indicates the order of approximation of the method. Omitting
the factor 1/6ν in (45), we obtain the first-order uniform approximation, result that coincides
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with the first-order phase-integral approximation and the WKB method with the Langer
modification [3]. Keeping the second term of the expressions in (45) one gets the second-order
uniform approximation.
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(b)

Figure 3. (a) Scalar power spectrum PS(k) and (b) tensor power spectrum PT (k) for the
power-law inflationary model with p = 10. Solid line: analytic solution; dotted line: slow-
roll approximation; dashed line: first-order phase integral, WKB and first order uniform
approximation; dot-dashed line: third-order phase integral approximation; two-dots dashed line:
second-order uniform approximation.
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Figure 4. (a) Relative error for the scalar PS(k) and (b) tensor power spectra PT (k) calculated
using different methods. The solid line indicates the ninth-order phase integral approximation.
The dashed line indicates the third-order phase integral approximation. The two-dots dashed
line indicates the second order uniform approximation. The dotted line indicates the slow-roll
approximation. The dot-dashed line indicates the WKB and first-order uniform approximations.

We want to compare the analytic expression for the scalar and tensor power spectra
for different values of k with the numerical result (IC’s phi9), the ninth-order phase
integral approximation, the slow-roll approximation and the first and second order uniform
approximation. Fig. 3 shows the power spectra PS y PT calculated analytically and the
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approximate spectra calculated using the the slow-roll, uniform approximation and phase integral
methods. Fig. 4 shows the relative error between the analytic solution and the different
approximation methods. It can be observed that the ninth-order phase integral approximation
gives the best approximation among the different methods.
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