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1 Accelerator Physics 





ATLAS Physics Results 

Vasiliki A. Mitsou* 
Instituto de Ffsica Corpuscular (IFIC) , CSIC - Universitat de Valencia, 

Pare Cientffic de la U.V., C/ Catedratico Jose Beltran 2, 

E-46980 Paterna (Valencia) , Spain 

Abstract 
The ATLAS experiment at the Large Hadron Collider at CERN 

has been successfully taking data since the end of 2009 in proton­
proton collisions at centre-of-mass energies of 7 and 8 TeV, and 
in heavy ion collisions. In these lectures, some of the most recent 
ATLAS results will be given on Standard Model measurements, 
the discovery of the Higgs boson, searches for supersymmetry and 
exotics and on heavy-ion results. 

1 Introduction 

Particle Physics aims at explaining the known content and forces of the 
Universe at a fundamental level. This knowledge is summarised in the 
Standard Model (SM) [1] : It includes 12 elementary matter particles, 
whereas their interactions are induced by requiring local gauge invariance. 

The Standard Model provides an excellent description of collider ex­
perimental data so far. LEP, SLC, Tevatron, B-factories and LHC data 
show that SM describes physics at energies up to Js ,..., 200 GeV with 
respect to QCD and hadronic structure, precision EW physics, top quark 
properties and flavour physics. Despite its success, the SM suffers from a 
number of shortcomings: How we solve the hierarchy problem in the elec­
troweak symmetry breaking (Higgs mechanism)? How are the neutrino 
masses generated? Are the neutrinos Dirac or Majorana particles? New 

•E-mail: vasiliki .mitsou@ific. uv .es 

9 



sources for CP violation are needed in the SM to explain the observed 
matter - antimatter baryon asymmetry. Gravitation is the only known 
force not included in the SM. The strong and electroweak interactions are 
not unified to a single coupling (grand unification) . What is the nature of 
the dark matter and dark energy components of the Universe? 

The Large Hadron Collider (LHC) [2] at CERN is designed, constructed 
and operated precisely in order to address these open issues of the Standard 
Model. In particular, the ATLAS experiment [3] has been successfully 
taking data since the end of 2009 till the first months of 2013 in proton­
proton collisions at centre-of-mass energies of 7 and 8 TeV, and in heavy 
ion collisions. An overview of the physics results obtained so far is given 
here. 

The ATLAS detector [3] consists of an inner tracking system (inner de­
tector, or ID) surrounded by a superconducting solenoid providing a 2 T 
magnetic field, electromagnetic and hadronic calorimeters, and a muon 
spectrometer (MS) incorporating three large superconducting toroid mag­
nets arranged with an eight-fold azimuthal coil symmetry around the 
calorimeters. The ID [4] consists of silicon pixel [5] and microstrip [6] 
detectors, surrounded by a transition radiation tracker [7] . The electro­
magnetic calorimeter is a lead/liquid-argon (LAr) detector [8] . Hadron 
calorimetry is based on two different detector technologies, with scintilla­
tor tiles or LAr as active media, and with either steel, copper, or tungsten 
as the absorber material [8, 9] . The MS comprises three layers of chambers 
for the trigger and for track measurements [ 10] . 

The structure of this paper is as follows. Section 2 provides an overview 
of the SM measurements carried out with ATLAS. Sections 3 and 4 high­
light recent results on top quark and flavour physics, respectively. In 
Section 5 ,  the runs and latest observations with heavy-ion collisions are 
discussed. The Higgs boson discovery and its studied properties are given 
in Section 6. In Sections 7 and 8, the latest results in searches for su­
persymmetry and for other beyond-the-SM (BSM) scenarios, respectively, 
are presented. The paper concludes with a summary and an outlook in 
Section 9. 

2 Standard Model measurements 
The measurement of the high-mass Drell-Yan differential cross section in 
proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC 
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is reported in Ref. [ 1 1] .  Based on an integrated luminosity of 4.9 fb-1, 
the differential cross-section in the Z -+ e+ e- channel is measured with 
the ATLAS detector as a function of the invariant mass, mee, in the range 
1 16 < mee < 1500 GeV, for a fiducial region in which both the electron and 
the positron have transverse momentum PT > 25 GeV and pseudorapidity 
1111 < 2.5. A comparison is made to various event generators and to the 
predictions of perturbative QCD calculations at next-to-next-to-leading 
order. 

• 
10·1 

• • • ATLAS 
·-··. 

10-4 ,s.,7TeV, f ldt=4.9fti1 

electron pr> 25 GeV, �I< 2.5 
1.8 % luminosity uncertainty not included 

200 300 400 

+Data 
M Sys. uncertainty 

Total uncertainty 

1000 1500 

lllee [GeV] 

Figure 1 :  The measured differential cross section at the Born level within 
the fiducial region with statistical, systematic, and combined statistical 
and systematic (total) uncertainties. From Ref. [11] . 

The measured differential cross section at the Born level within the 
fiducial region (electron PT > 25 GeV and !111 < 2.5) with statistical, 
systematic, and combined statistical and systematic (total) uncertainties, 
excluding the 1 .83 uncertainty on the luminosity is shown in Fig. l. The 
measurement is compared to FEWZ 3 .1  calculations at NNLO QCD with 
NLO electroweak corrections using the G µ electroweak parameter scheme. 
The predictions include an additional small correction from single-boson 
production in which the final-state charged lepton radiates a real W or 
Z boson. In the upper ratio plot, the photon-induced corrections have 
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been added to the predictions obtained from the MSTW2008, HERA­
PDFl .5 ,  CTlO, ABMll and NNPDF2.3 NNLO parton distribution func­
tions (PDFs) , and for the MSTW2008 prediction the total uncertainty 
band arising from the PDF, °'" renormalisation and factorisation scale, 
and photon-induced uncertainties is drawn. The lower ratio plot shows the 
influence of the photon-induced corrections on the MSTW2008 prediction, 
the uncertainty band including only the PDF, 0'.8 and scale uncertainties. 
The comparison with event generators and PDFs show good agreement, 
therefore no sign of new physics is observed. 

:0 1a6 s. 
} Hf 
/\I 10" + 

�= 10' i ;;-- 10' ,,_ N b 10 

10·1 
1cr' 

� 0 
g z 

ATLAS J L dt = 4.6 fb-1 
anti-kdets, R = 0.4 !";' > 30 GeV, IY°'I < 4.4 

-
--»-----.._ 

Zfy•(-71•r)+jets (l=e,µ) 

"'"# Data 2011 ({s = 7 Te 
--- ALPGEN 
_..__SHERPA 
.. ,,_ MC@NLO 
.........._ 8LACKHAT + SHERPA 

---(.'---·-·----

f'.\,, 

Figure 2: Measured cross section for Z(-t ££)+jets as a function of the 
inclusive jet multiplicity, Hjet· From Ref. [12] . 

Measurements of the production of jets of particles in association with 
a Z boson in pp collisions at y's = 7 Te V are presented in Ref. [12] , using 
data corresponding to an integrated luminosity of 4.6 fb-1 collected by the 
ATLAS at the LHC. Inclusive and differential jet cross sections in Z events, 
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with Z decaying into electron or muon pairs, are measured for jets with 
transverse momentum PT > 30 Ge V and rapidity lr71 < 4.4. The results are 
compared to next-to-leading-order perturbative QCD calculations, and to 
predictions from different Monte Carlo (MC) generators based on leading­
order and next-to-leading-order matrix elements supplemented by parton 
showers. 

Measured cross section for Z(-+ U)+jets as a function of the inclusive 
jet multiplicity, �et are depicted in Fig. 2. The data are compared to NLO 
pQCD predictions from BH+SHERPA corrected to the particle level, and 
the ALPGEN, SHRPA and MCatNLO event generators (see legend for 
details) . The error bars indicate the statistical uncertainty on the data, and 
the hatched (shaded) bands the statistical and systematic uncertainties on 
data (prediction) added in quadrature. This analysis confirms the Poisson 
scaling for exclusive bins in the high-PT regime. 

3 Top physics 
The study of the top quark is important for High Energy Physics for a 
number of reasons. It is the heaviest fermion -near the electroweak (EW) 
symmetry-breaking scale-, therefore it features a large coupling to the 
Higgs boson. The top-quark production cross sections provide a test of 
QCD, since it is produced at very small distances. The top decays before 
hadronisation, allowing the study of spin characteristics (production mech­
anisms) and the W-helicity measurement (test of EW V-A structure) . Its 
cross sections are sensitive to new physics, e.g. through the decay t---+ H+b. 
Besides these, it is an important background for Higgs studies and most 
searches for BSM scenarios. 

The measurement of the top quark pair (tf) inclusive production cross 
section in pp collisions at JS = 8 Te V is discussed in Ref. [13] . The analysis 
has been done in the lepton+jets final state in a dataset corresponding to 
an integrated luminosity of 5.8 fb-1. A multivariate technique and b­
jet identification were employed to separate the signal tf events from the 
various backgrounds. The inclusive tf production cross section is measured 
to be O"tl = 241 ± 2(stat) ± 3l (syst) ± 9(lumi) pb and is in good agreement 
with the theoretical prediction O"tt,th = 238:'.:�� pb. The overview of the tf 
cross section measurement for various centre-of-mass energies is presented 
in Fig. 3 .  

The top quark mass, on the other hand, has been measured using 
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� ---NLoclco (pp) + Smg!e Lepton (8 TeV}241:: 32.pb 
� WApprox,NNLO ( 1 '1' Singleleplon<7TeV)179::12pb 
! :rat pp, a Di!epton 173 .,, pb i - -NLO QCD (Pi>) O A.8-hadronic 167 ± 81 pb 1 

Q2 '=--Approx. NNLO (pp) • Comtxned 177 :.� pb 
t: •CDF _ _  , . - -

t 
10L g 

t L a 1�i �-:-�........,.����-::---�'-7-'�---=-��� 1 2 3 4 5 6 7 8 
Vs [feV] 

Figure 3: Summary plot showing the top pair production cross section as 
a function of the proton-(anti)proton centre-of-mass energy. The experi­
mental results in the various top decay channels (and their combination) 
at 7 TeV and the recent result at 8 TeV are compared to an approximate 
NNLO QCD calculation based on Hathor 1 .2 .  From Ref. [14] . 

the template method in the channel tl --+ lepton + jets (lepton = e, µ) 
based on ATLAS data recorded in the year 201 1  [15] . The data were 
taken at a proton-proton centre-of-mass energy of JS = 7 TeV and cor­
respond to an integrated luminosity of about 4. 7 fb-1. This analysis 
uses a 3-dimensional template technique which determines the top quark 
mass together with a global jet energy scale factor (JSF), and a rela­
tive b-jet to light-jet energy scale factor (bJSF), where light jets refers 
to u, d, c, s quark jets. The top quark mass is measured to be: mtop = 
172.31 ± 0.23(stat) ± 0 .27(JSF) ± 0.67(bJSF) ± 1 .35(syst) GeV or, equiva­
lently, mtop = 172.31 ± 0.75(stat + JSF + bJSF) ± 1.35(syst) GeV, where 
the uncertainties labelled JSF and bJSF refer to the statistical uncertain­
ties on mtop induced by the in-situ determination of these scale factors. 
The summary of all ATLAS direct mtop measurements compared with the 
Tevatron and CMS ones is shown in Fig. 4. 

The top quark polarisation in tl events using the lepton plus jets final 
state, where one W boson decays leptonically and the other hadronically, 
has been measured with ATLAS [16] . The decay of the tl pair is fully 
reconstructed using a likelihood method in order to calculate the rest frame 
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Figure 4: Summary of the ATLAS direct mtop measurements. The results 
are compared to the 2013 Tevatron and 2012 CMS ffitop combinations. For 
each measurement , the statistical uncertainty, the JSF and bJSF contribu­
tions (when applicable) as well as the sum of the remaining uncertainties 
are reported separately. From Ref. [14]. 

of the leptonically decaying top quark. A template fit to the distribution of 
lepton polar angles in the parent top quark's rest frame is used to extract 
the fraction of positively polarised top quarks. The full 2011 ATLAS 7 Te V 
centre of mass energy pp collisions dataset from the LHC (4.66 fb-1) is 
used to perform the measurement. The fraction of positively polarised top 
quarks is found to be f = 0.470 ± 0.009(stat) �g:g��(syst), compatible with 
the Standard Model prediction of f = 0.5. 

Recent measurements of the W-boson polarisation in top-quark decays 
performed by the ATLAS and CMS Collaborations have been combined 
in Ref. [17]. The measurements are based on proton-proton collision data 
corresponding to integrated luminosities ranging from 35 pb-1 to 2.2 fb-1 
produced at the LHC at a centre-of-mass energy of ../S = 7 TeV. The 
results are quoted as helicity fractions, i.e. the fractions of events which 
contain W bosons with longitudinal and left-handed polarisation. The 
combined helicity fractions are 

0.626 ± 0.034(stat) ± 0.048(syst), 
0.359 ± 0.021(stat) ± 0.028(syst) , 

(1) 
(2) 

which are in agreement with predictions from NNLO QCD. The fraction of 
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W bosons with right-handed polarisation is calculated assuming the sum 
of all fractions to be unity: 

FR = 0.015 ± 0.034 , (3) 

where the uncertainty includes the statistical and systematic uncertain­
ties. Exclusion limits on anomalous Wtb couplings are derived from these 
results. 

4 B physics 
Weak decays of hadrons containing heavy quarks are employed for tests of 
the Standard Model and measurements of its parameters. In particular, 
they offer the most direct way to determine the weak mixing angles, to 
test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and 
to explore the physics of C P violation. The latter may also provide some 
hints about New Physics beyond the Standard Model. On the other hand, 
hadronic weak decays also serve as a probe of that part of strong-interaction 
phenomenology which is least understood: the confinement of quarks and 
gluons inside hadrons. In ATLAS beauty-physics analyses also include 
heavy quarkonia and D-hadron production in a variety of channels and 
analyses. 

A limit on the branching fraction of B� --t µµ has been set using an 
integrated luminosity of 4.9 fb-1 collected in 201 1  by the ATLAS detec­
tor [18] . The decay B± --t 111/JK±, with Jj'ljJ --t µ+µ-, was used as a 
reference channel for the normalisation of the integrated luminosity, ac­
ceptance and efficiency. The final selection was based on a multivariate 
analysis which is trained on MC, leaving the events in the sidebands to 
be used for optimisation and background estimation. Furthermore, this 
result profits from an improved event reconstruction and the use of multi­
dimensional unbinned maximum likelihood fits for the extraction of the 
reference channel yield, with respect to previous results. An upper limit 
on BR(B� --t µµ) < 1 .5 ( 1 .2) x 10-3 at 953 (903) confidence level (CL) 
has been set, as observed in Fig. 5. 

Using 4.9 fb-1 of integrated luminosity taken at JS= 7 Te V by the AT­
LAS experiment, B� --t K*0 µ+ µ- events have been reconstructed and the 
angular distribution of their final state particles hase been measured [19] . 
The forward-backward asymmetry AFB and the K*0 longitudinal polari­
sation FL have been measured as a function of the dimuon invariant mass 
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_J (.) 

3 4 5 
BR(B� � µ•µ-) [10-8] 

Figure 5: Observed CLs (circles) as a function of B�---+ µµ. The 953 CL 
limit is indicated by the horizontal (red) line. The dark (green) and light 
(yellow) bands correspond to the ±10" and ±20" ranges of the background­
only pseudo-experiments with the median of the expected CLs given by 
the dashed line. From Ref. [18] . 

squared, q2 . The results obtained on AFB and FL are mostly consistent 
with theoretical predictions and measurements performed by other experi­
ments. The results for FL in the low-q2 bins slightly deviate from Standard 
Model expectations, as reflected in Fig. 6. 

5 Heavy-ion runs and results 

During the operation in the years 2009-2013, besides collisions of proton 
beams, the LHC also delivered Pb+ Pb collisions and p+Pb collisions, at 
the centre-of-mass energy JSNN = 2.76 TeV and JSNN = 5.02 TeV, re­
spectively. Studies of heavy ion collisions explore complicated systems 
created in the volumes much larger than the size of the proton under 
the conditions of extreme energy density. Such conditions are similar to 
those at an early phase of the Universe evolution, when the matter was 
in the state of strongly interacting quark-gluon plasma. Results of nuclei 
collisions depend on the size of the volume and its shape, which are di­
rectly connected with the smallest distance of the nuclei centres during 
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2 4 6 8 10 12 14 16 18 20 
q2 [GeV2] 

Figure 6: Fraction of longitudinal polarised K*0 mesons FL as a function 
of q2 measured by ATLAS (black dots). In each q2 bin, ordered from right 
to left, results of other experiments are shown as coloured squares: BaBar, 
Belle, CDF and LHCb. All errors including statistical and systematic un­
certainties. The experimental results are compared to theoretical Standard 
Model predictions including theoretical uncertainties. From Ref. [19]. 

the collision. Commonly, centrality of the nuclei collisions is denoted by 
the percentage of the cross section (starting from the most central events) 
or is characterised by the number of nucleons participating in inelastic 
interactions or by the number of binary nucleon-nucleon collisions. 

Two-particle correlations in relative azimuthal angle D..¢ and pseudo­
rapidity D..ry were measured in ..jSNN = 5.02 TeV p+Pb collisions using 
the ATLAS detector at the LHC [20]. The measurements were performed 
using approximately 1 µb-1 of data as a function of PT and the transverse 
energy 2:: E¥b summed over 3 . 1  < 'T/ < 4.9 in the direction of the Pb beam. 
The correlation function, constructed from charged particles, exhibits a 
long-range (2 < ID..TJI < 5) near-side (D..¢ rv 0) correlation that grows 
rapidly with increasing 2::E�h- A long-range away-side (D..¢'"" 7r) corre­
lation, obtained by subtracting the expected contributions from recoiling 
di jets and other sources estimated using events with small 2:: E¥b, is found 
to match the near-side correlation in magnitude, shape (in D..ry and D..¢) 
and 2:: E¥bT dependence, as shown in Fig. 7 (right). The resultant D..¢ 
correlation is approximately symmetric about 7r/2, and is consistent with 
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Figure 7: Left: Per-trigger yield 6.¢> distribution together with pedestal 
levels for peripheral (b�YAM) and central (b�YAM) events. Right: Integrated 
per-trigger yield as a function of L: Efb for pairs in 2 < 16.771 < 5. The 
shaded boxes represent the systematic uncertainties, and the statistical 
uncertainties are smaller than the symbols. From Ref. [20] . 

a cos(26.¢>) modulation for all L: Efb ranges and particle PT, as shown in 
Fig. 7 (left) . The amplitude of this modulation is comparable in magnitude 
and PT dependence to similar modulations observed in heavy-ion collisions, 
suggestive of final-state collective effects in high multiplicity events. 

6 Higgs boson discovery and properties 

The Brout-Englert-Higgs mechanism [21] plays a central role in the uni­
fication of the electromagnetic and weak interactions by providing mass 
to the W and Z intermediate vector bosons without violating local gauge 
invariance. Within the Standard Model, the Higgs mechanism is invoked 
to break the electroweak symmetry; it implies the existence of a single 
neutral scalar particle, the Higgs boson. In July 2012 the ATLAS [22] and 
CMS [23] Collaborations announced the discovery of a new particle, with 
evidence of decays to photons as well as Z and W bosons. In the following 
year the LHC has produced more data, allowing for a more detailed under­
standing of this new resonance. With this dataset , the ATLAS experiment 

19 



has studied the properties of the particle, including its spin, mass, and cou­
plings to SM particles, and found these properties to be consistent with 
those of the Standard Model Higgs boson. 

Crucial experimental aspects of ATLAS for the observation of the 
diphoton decay of the Higgs boson are the excellent II mass resolution 
to observe the narrow signal peak above irreducible background and the 
powerful I /jet separation to suppress "Y - jet and jet-jet background with 
jet -t 7ro faking single photons. Measurements of the properties [24] , the 
spin [25] and the cross section [26] of the Higgs boson in the H -t II 
channel have been performed using the complete dataset of,...., 20 fb-1 of 
pp collision data at a centre-of-mass energy of 8 TeV. 

The diphoton invariant-mass distributions for the �ets ;::: 3 bin is shown 
in the left panel of Fig. 8 [26] . The curves show the results of the single 
simultaneous fit to data for all �ets bins. The red line is the combined 
signal and background, and the dashed line shows the background. The 
difference of the two curves is the extracted signal yield. The bottom inset 
displays the residuals of the data with respect to the fitted background 
component, and the dotted red line corresponds to the signal. The lower 
local probability of the background fluctuating beyond the observation 
in the data at a particular mH (po value) of rv 10-13 (7.40" significance) 
was found at mH = 126.5 GeV. The best-fit mH value was found to 
be 126.8 ± 0.2(stat) ± 0.7(syst) GeV. The dominant contribution to the 
systematic uncertainty on mH comes from the uncertainties on the photon 
energy scale. At the best-fit value of mH = 126.8 Ge V, the signal strength, 
i .e . the ratio of the observed cross section to the expected SM cross section, 
was found to be µ = 1 .65:'.:8:�6. 

Also known as the "golden" decay channel, H -t ZZ(*) -t 4£ fea­
tures by far the cleanest sample (S/N ,...., 1) due to its unique signature 
of two high energy lepton pairs. However for mH below 180 GeV, the 
ZZ decay is sub-threshold, thus forcing one of the z0 off-shell, thereby 
significantly reducing the branching ratio. The ATLAS detector was con­
ceived to measure high-energy muons and electrons with great precision, 
also incorporating recognition of fast leptons already at the first (hard­
ware) stage of the trigger. The distributions of the four-lepton invariant 
mass, m4t, for the selected candidates compared to the background ex­
pectation in the mass range 80 - 170 Ge V are shown in Fig. 8 [27] . The 
signal expectation for the mH = 125 GeV hypothesis is also shown. The 
resolution of the reconstructed Higgs boson mass is dominated by detec-
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Figure 8: Left: Diphoton invariant-mass distribution for the Hjets ::'.: 3 bin. 
From Ref. [26] . Right: The distributions of the four-lepton invariant mass, 
m4f, compared to the background expectation for the combined y's = 
8 TeV and y's = 7 TeV data sets in the mass range 80 - 170 GeV. From 
Ref. [27] . 

tor resolution at low mH values and by the Higgs boson width at high 
mH. The results are based on 4.6 fb-1 of 7 TeV pp collision data com­
bined with 20.7 fb-1 of 8 TeV. A clear excess of events over the back­
ground is observed at mH = 124.3 GeV in the combined analysis of the 
two datasets with a significance of 6.6cr, corresponding to a background 
fluctuation probability of 2 .7 x 10-1 1 . The mass of the Higgs-like boson is 
measured to be mH = 124.3:'.:8:�(stat)��:� (syst) GeV in this channel, and 
the signal strength at this mass is found to be µ = 1 .  7:'.:8:�. 

The full datasets recorded by ATLAS in 201 1  and 2012, correspond­
ing to an integrated luminosity of up to 25 fb-1 at y's = 7 Te V and 
y's = 8 TeV, have been analysed to determine several properties of the 
recently discovered Higgs boson using the H -+ rr, H -+ Z Z* -+ 4£ 
and H -+ WW* -+ l'vl'v decay modes [28] . The reported results include 
measurements of the mass and signal strength, evidence for production 
through vector-boson fusion, and constraints on couplings to bosons and 
fermions as well as on anomalous contributions to loop-induced processes. 

The measured production strengths for a Higgs boson of mass mH = 
125.5 GeV, normalised to the SM expectations, for diboson· final states 
and their combination is visible in Fig. 9. The best-fit values are indi­
cated by the solid vertical lines. The total ±lcr uncertainty is indicated 
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Figure 9: Measured production strengths for a Higgs boson of mass mH = 
125.5 GeV, normalised to the SM expectations, for diboson final states and 
their combination. From Ref. [28]. 

by the shaded band, with the individual contributions from the statistical 
uncertainty (top) ,  the total (experimental and theoretical) systematic un­
certainty (middle) , and the theoretical uncertainty (bottom) on the signal 
cross section (from QCD scale, PDF, and branching ratios) shown as super­
imposed error bars. The overall compatibility between the signal strengths 
measured in the three final states and the SM predictions is about 143, 
with the largest deviation ("' 1 .9a) observed in the H-+ TT channel [28]. 

Good consistency between the measured and expected signal strengths 
is also found for the various categories of the H -+ TY, H -+ Z Z* -+ 4€ 
and H -+ WW* -+ fvfv analyses, which are the primary experimental 
inputs to the fit. If the preliminary H -+ TT (29] and H -+ bb [30] results, 
for which only part of the 8 TeV dataset is used (13 fb-1), were included, 
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the combined signal strength would be µ= 1 .23 ± 0 .18 [28] . 
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Figure 10: Likelihood contours (68% CL) of the coupling scale factors 
K,p and K,v for fermions and bosons, as obtained from fits to the three 
individual channels and their combination (for the latter, the 95% CL 
contour is also shown).  The best-fit result ( x ) and the SM expectation 
( +) are also indicated. From Ref. [28] . 

The benchmark model for the Higgs couplings presented here assumes 
one coupling scale factor for fermions, K,p, and one for bosons, K,v; in this 
scenario, the H -+ 'TY and gg -+ H loops and the total Higgs boson width 
depend only on K,p and K,v, with no contributions from physics beyond the 
Standard Model. The strongest constraint on K,p comes indirectly from 
the gg -+ H production loop. Figure 10 shows the results of the fit to the 
data for the three channels and their combination. Since only the relative 
sign of K,p and K,v is physical, in the following K,v > 0 is assumed. Some 
sensitivity to this relative sign is provided by the negative interference 
between the W-boson loop and t-quark loop in the H -+  II decay. The 
data prefer the minimum with positive relative sign, which is consistent 
with the SM prediction, but the local minimum with negative sign is also 
compatible with the observation (at the,...., 2o- level) . The two-dimensional 
compatibility of the SM prediction with the best-fit value is 12%. 

The Standard Model JP= o+ hypothesis for the Higgs boson has been 
compared to alternative spin-parity hypotheses using 8 TeV (20.7 fb-1) 
and 7 TeV (4.6 fb-1) proton-proton collision data collected by ATLAS [31] . 
The Higgs boson decays H -+ II, H -+ Z Z* -+ 4£ and H -+ WW* -+ 
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Figure 11 :  Expected distributions of the log-likelihood ratio q, for the 
combination of channels as a function of the fraction of the qq spin-2 pro­
duction mechanism. The green and yellow bands represent , respectively, 
the la- and 2a- bands for o+ (left) and for 2+ (right) .  From Ref. [31] . 

£11£11 have been used to test several specific alternative models, including 
JP = o-, 1+ , 1- and a graviton-inspired JP = 2+ model with minimal 
couplings to SM particles. The data favour the Standard Model quantum 
numbers of JP = o+ . The o- hypothesis is rejected at 97.8% CL by 
using the H -+ Z Z* -+ 4£ decay alone. The 1 + and 1- hypotheses are 
rejected with a CL of at least 99. 73 by combining the H -+ Z Z* -+ 4£ and 
H -+ WW* -+ £11£11 channels. Finally, the JP = 2+ model is rejected at 
more than 99.9% CL by combining all three bosonic channels, independent 
of the assumed admixture of gluon-fusion and quarkantiquark production, 
as observed in Fig. 1 1 .  All these alternative models are excluded without 
assumptions on the strength of the couplings of the Higgs boson to SM 
particles. These studies provide evidence for the spin-0 nature of the Higgs 
boson, with positive parity being strongly preferred. 
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7 Hunt for supersymmetry 

Supersymmetry (SUSY) [32, 33] is an extension of the Standard Model 
which assigns to each SM field a superpartner field with a spin differing 
by a half unit. SUSY provides elegant solutions to several open issues in 
the SM, such as the hierarchy problem, the identity of dark matter, and 
grand unification. 

SUSY searches in collider experiments typically focus on events with 
high transverse missing energy (E;f88) which can arise from (weakly inter­
acting) Lightest Supersymmetric Particles (LSPs) , in the case of R-parity 
conserving SUSY, or from neutrinos produced in LSP decays, when R­
parity is broken. Hence, the event selection criteria of inclusive channels 
are based on large E;f88, no or few leptons (e, µ) , many jets and/or b-jets, 
T-leptons and photons. 
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Figure 12: Exclusion limits at 953 CL for 8 TeV analyses in the (m0, m1;2) 
plane for the MSUGRA/CMSSM model. From Ref. [14] . 

In the absence of deviations from SM predictions, limits for squark 
and gluino production are set. Figure 12 illustrates the 953 CL limits 
set by ATLAS under the minimal Supergravity (mSUGRA) model in the 
(m0, m1;2) plane. The remaining parameters are set to tan/) = 30, A0 = 
-2 m0, µ > 0, so as to acquire parameter-space points where the predicted 
mass of the lightest Higgs boson, h0, is near 125 GeV, i.e. compatible 
with the recently observed Higgs-like boson [22, 23]. Exclusion limits are 
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obtained by using the signal region with the best expected sensitivity at 
each point. 

The mixing of left- and right-handed gauge states which provides the 
mass eigenstates of the scalar quarks and leptons can lead to relatively 
light 3rd generation particles. Stop (t1) and sbottom (b1) with a sub-Te V 
mass are favoured by the naturalness argument, while the stau (7'1) is the 
lightest slepton in many models. Therefore these could be abundantly 
produced either directly or through gluino production and decay. Such 
events are characterised by several energetic jets (some of them b-jets) , 
possibly accompanied by light leptons, as well as high ET'58• 
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Figure 13: Summary of the dedicated ATLAS searches for stop pair pro­
duction based on 20 - 21  fb-1 of pp collision data taken at JS =  8 TeV, 
and 4.7 fb-1 of pp collision data taken at JS= 7 TeV. From Ref. [14] . 

If the gluino is too heavy to be produced at the LHC, direct til1 and b1b1 
production is the only remaining possibility. If stop pairs are considered, 
two decay channels can be distinguished depending on the mass of the stop: 
t1 -+ bxf and t1 -+ tx�. ATLAS has carried out a wide range of different 
analyses in each of these modes at both 7 TeV and 8 TeV centre-of-mass 
energy. In all these searches, the number of observed events has been 
found to be consistent with the SM expectation. Limits have been set on 
the mass of the scalar top for different assumptions on the mass hierarchy 
scalar top-chargino-lightest neutralino, as shown in the left (right) panel 
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of Fig. 13 for t1 -t bxt (t1 -t tx?) decays. 
For the former scenario, a scalar top quark of mass of up to 480 GeV 

is excluded at 953 CL for a massless neutralino and a 150 GeV chargino. 
For a 300 GeV scalar top quark and a 290 GeV chargino, models with a 
neutralino with mass lower than 180 GeV are excluded at 953 CL. For 
the case of a high-mass stop decaying to a top and ax?, analyses requiring 
one, two or three isolated leptons, jets and large E;piss have been carried 
out. Stop masses are excluded between 200 GeV and 680 GeV for massless 
neutralinos, and stop masses around 500 Ge V are excluded along a line 
which approximately corresponds to neutralino masses up to 250 Ge V. It 
is worth noting that a mono jet analysis with c-tagging is deployed to cover 
part of the low-mt,, low-mx1 region through the t1 -t ex? channel [34] . 
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Figure 14: Summary of ATLAS searches for electroweak production of 
charginos and neutralinos based on 20 fb-1 of pp collision data at JS = 
8 TeV. From Ref. [14]. 

If all squarks and gluinos are above the TeV scale, weak gauginos with 
masses of few hundred GeV may be the only sparticles accessible at the 
LHC. As an example, at JS = 7 TeV, the cross-section of the associ­
ated production x txg with degenerate masses of 200 GeV is above the 
1-Te V gluino-gluino production cross section by one order of magnitude. 
Chargino pair production is searched for in events with two opposite-sign 
leptons and E;piss using a jet veto, through the decay xt -t £±v527. A 
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summary of related analyses performed by ATLAS is shown in Fig. 14. Ex­
clusion limits at 953 confidence level are shown in the (m-±, mx-o ) plane. Xo, 1 
The dashed and solid lines show the expected and observed limits, respec-
tively, including all uncertainties except the theoretical signal cross section 
uncertainties. 

Charginos with masses between 140 and 560 Ge V are excluded for a 
massless LSP in the chargino-pair production with an intermediate slep­
ton/sneutrino between the xt and the :X�- If xtxg production is assumed 
instead, the limits range from 1 1  to 760 GeV. The corresponding limits 
involving intermediate W, Z and/or H are significantly weaker. 

Searches are also performed in ATLAS for several signatures associated 
with the violation of R-parity (RPV) . As an example we highlight here 
the interpretation of null inclusive searches in the one-lepton channel [35] 
in the context of a model where RPV is induced through bilinear terms, 
depicted in the left panel of Fig. 15. The results are obtained by combining 
the electron and muon channels. The band around the median expected 
limit shows the ±117 variations on the median expected limit, including 
all uncertainties except theoretical uncertainties on the signal. The dotted 
lines around the observed limit indicate the sensitivity to ±117 variations 
on these theoretical uncertainties. The thin solid black contours show the 
LSP lifetime. The result from the previous ATLAS search [36] for this 
model is also shown. 

In view of the null results in other SUSY searches, it became mandatory 
to fully explore the SUSY scenario predicting meta-stable or long-lived par­
ticles. These particles, not present in the Standard Model, would provide 
striking signatures in the detector and rely heavily on a detailed under­
standing of its performance. For instance, gluino, top squark, or bottom 
squark R-hadrons that have come to rest within the ATLAS calorimeter, 
and decay at some later time to hadronic jets and a neutralino have been 
searched for, using 5.0 and 22.9 fb-1 of pp collisions at 7 and 8 Te V, respec­
tively. Selections based on jet shape and muon-system activity are applied 
to discriminate signal events from cosmic ray and beam-halo muon back­
grounds. In the absence of an excess of events, limits are set on gluino, 
stop, and sbottom masses for different decays, lifetimes, and neutralino 
masses. As shown in the right panel of Fig. 15, with a neutralino of mass 
100 GeV, the analysis excludes gluinos with mass below 832 GeV(with 
an expected lower limit of 731 GeV) , for a gluino lifetime between 10 µs 
and 1000 s in the generic R-hadron model with equal branching ratios for 
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Figure 15: Left: Expected and observed 953 CL exclusion limits in the 
bilinear R-parity violating model. From Ref. [35]. Right: Bayesian lower 
limits on gluino mass versus its lifetime with R-hadron lifetimes in the 
plateau acceptance region between 10-5 and 103 seconds. From Ref. [37]. 

decays to qq + x� and g + x�. Under the same assumptions for the neu­
tralino mass and squark lifetime, top squarks and bottom squarks in the 
Regge R-hadron model are excluded with masses below 379 and 344 GeV, 
respectively. 

8 Searches for exotic scenarios 

Various theoretical scenarios that attempt to short out some of the Stan­
dard Model problems, in addition to supersymmetry, have also been en­
quired by ATLAS. Several signature-driven analyses have been pursued: 

• resonances: dileptons, jets, photons, bosons, . . .  ; 
• special particles: slow-moving, long-lived, . . .  ; 
• E!Fiss plus other object(s) ; 
• other non-conventional signatures. 
Subsequently the outcome of these searches are interpreted in the con­

text of specific models to obtain exclusion limits on masses, scales, etc: 
Extra-dimension scenarios, heavy gauge bosons, contact interactions, lep­
toquarks, new quarks, excited fermions, magnetic monopoles, new gauge 
bosons, etc. Given the wide range of possibilities, it is not possible to cover 
every analysis here, hence only some recent results are highlighted. 
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A search for a dijet resonance with an invariant mass in the range 
between 130 and 300 GeV has been performed in the processes P'P -7 Wjj+ 
X with W -7 ev and pp -7 Zjj+X with Z -7 e+e- (e = e, µ) [38] . The data 
used correspond to 20.3 fb-1 of pp collision data recorded at JS =  8 TeV 
with ATLAS. The results are interpreted in terms of constraints on the 
Low Scale Technicolor (LSTC) model. No significant deviation from the 
Standard Model background prediction is observed. Upper limits on the 
production cross section times branching fraction are set for a hypothetical 
technipion ( 7fT) produced in association with a W or Z boson from the 
decay of a technirho (P'r) particle. The limits for the W boson are shown 
in the left panel of Fig. 16, assuming the mass relation of mPT = 3/2 x 
m7rT + 55 GeV. The inner and outer bands on the expected limit represent 
±lu and ±2u variations, respectively. The LSTC predictions for the {Tr 
cross section are also shown in blue. 

a: al x c 

-- l.srcp;•-w.;"......ingm� . ..:1.Tll\,+SSGsV 
-- om....to:t95,_Uppwlinil --- �!t5%Upperl.Jn* � ·1 Slgma Uncertainty 
c:::::::=:J ..ZSi!Jnm.Uocartainty 

150 

j ldt .  20.3 tb"' 
ls =8 TeV AJLAS Preliminary 

300 
M., [GeVJ 

:::1 
T t "' 

a: al x 
&' 10-1 
T 
% 

1 tr' 4oo 600 BOO 

- RS Graviton, IC/� t.o 
- Observed 95% Upper limit 
-- - -- Expected 95% Upper Limit 
111111 ±1 0' CTZ.3 I2 11 

""'" [GeVJ 

Figure 16: Left: Observed and expected 953 CL upper limits on the W 7fT 
cross section as a function of the mass of the technipion in the Wjj channel. 
From Ref. [38] . Right: Observed and expected 953 credibility level upper 
limits on u(pp -7 G*) x BR(G* -7 ZZ) for the bulk RS graviton. From 
Ref. [39] . 

A search for a heavy particle that decays to a pair of Z bosons has 
been carried out using events recorded by ATLAS in P'P collisions at JS = 
8 TeV corresponding to an integrated luminosity of 7.2 fb-1 . The analysis 
considers the eeqq final state and uses the diboson mass reconstructed from 
the leptons and jets as the discriminating variable. No significant deviation 
in the mass distribution from a smoothly falling background distribution 
is observed. The upper limits set on the production cross section times 
branching fraction into a Z Z boson pair for the bulk Randall-Sundrum 
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(RS) graviton with coupling parameter of K/mp1 = 1 .0 are shown in the 
right panel of Fig. 16. The leading-order theoretical prediction for the 
bulk RS model is also shown. The inner and outer bands on the expected 
limit represent ±10" and ±20" variations, respectively. The corresponding 
953 credibility level observed (expected) lower limit on the mass for the 
graviton is 850 (870) GeV. 

Weakly-interacting massive particles (WIMPs, x) ,  stable neutral states, 
which exist in many extensions of the SM, provide a good candidate to 
explain the cosmological dark matter. The leading generic diagrams re­
sponsible for DM production at hadron colliders [40] involve the WIMP 
pair-production plus the initial- or final-state radiation (ISR/FSR) of a 
gluon, photon, weak gauge boson Z, W or a Higgs boson. The ISR/FSR 
particle is necessary to balance the two WIMPs' momentum, so that they 
are not produced back-to-back resulting in negligible E!fiss_ Therefore the 
search is based on selecting events high-E!fiss events, due to the WIMPs, 
and a single jet [41] , photon [42] or boson [43] candidate. 

In the context of pp ---+ XX +  W / Z production, ATLAS has searched for 
the production of W or Z bosons decaying hadronically and reconstructed 
as a single massive jet in association with large E!fiss from the undetected 
XX particles [43] . For this analysis, the jet candidates are reconstructed 
using a filtering procedure referred to as large-radius jets. The 903 limits 
on x-nucleon cross sections for spin-independent scattering are shown in 
Fig. 17 (left) .  They are compared to previous limits set by direct dark 
matter detection experiments and by the ATLAS 7 TeV monojet anal­
ysis [41] . For the spin-independent case with the opposite-sign up-type 
and down-type couplings, the limits are improved by about three orders of 
magnitude. 

This search is sensitive to WIMP pair production, as well as to other 
DM-related models, such as invisible Higgs boson decays (W H or ZH 
production with H ---+ xx) . Moreover the monojet analysis [41] is pertinent 
for exploring the production of light grativinos in association with gluinos 
or squarks in a gauge-mediated supersymmetric model. The cross section 
times acceptance times efficiency for the gravitino plus q/g production as 
a function of the q/g mass in the case of mass degenerate squark and 
gluinos is shown in Fig. 17 (right) . The comparison of these curves with 
the acquired model-independent upper limit from the monojet search leads 
to the best lower bound to date on the gravitino mass. Exclusion limits 
on models with large extra spatial dimensions and on pair production of 
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Figure 17: Left: 90% limits on x-nucleon cross sections for spin­
independent scattering obtained by the mono-W/Z analysis. From 
Ref. [43] . Right: Cross section times acceptance times efficiency for the 
gravitino plus ijfg production as a function of the q/g mass for different 
values of the gravitino mass. From Ref. [41 ] .  

weakly interacting dark matter candidates have been obtained as well. 
The leading quadratically-divergent contribution to the Higgs mass is 

the top quark loop, making particles closely coupled to the top quark natu­
ral candidates for relatively light manifestations of new physics. Vector-like 
top partners, i.e. fermions for which the right- and left-chiral components 
follow the same transformation rules, present a rich phenomenology. For 
heavy top-like partners, new decay modes open up: T -t Wb, T -t Ht and 
T -t Zt are possible. In addition, such partners can be part of multiplets 
that can include for example a charge 5/3 quark (Ts;3) , a heavy B quark 
or a charge -4/3 quark (Y_4;3) .  This can lead to a rich set of signatures 
which generally include many third-generation particles in the final state. 

In the case of pair production of T5;3 , the decay chain T�3 -t w+t -t 
w+w+b can lead to a pair of same-sign leptons, if both w bosons decay 
leptonically [44] . In the charge 2/3 case, for pair production the T -t Wb 
decay mode leads to the same signature as SM tf production, so that a good 
discriminant is needed, such as the reconstructed heavy quark mass [45] . 
The T -t Ht decay mode leads to an abundance of b-jets, since the fi­
nal state consists of WbbbX, where X represents the decay products of 
the second T quark, and contains at least one b quark [46] . This allows 
the application of hard selection cuts in this channel, requiring at least 
six jets of which at least four should be b-tagged. For the third decay 
mode, T -t Zt , requiring a leptonically-decaying Z boson offers excellent 
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background suppression. After imposing a high PT cut on the Z, ATLAS 
uses the reconstructed Zb mass (using the leading b-jet) as a discriminating 
variable [47] . This search is also sensitive to production of a heavy B quark 
decaying to Zb, for which this discriminating variable is even more power­
ful. Figure 18 summarises the limits obtained by the different ATLAS T 
quark searches. 

ATLAS Prehminary 
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Figure 18: Full summary of ATLAS searches for vector-like T quark with 
14 fb-1 of 8 TeV data. Excluded regions are drawn sequentially for each 
of the analyses in chronological order and overlaid (rather than combined) 
in each of the figures. From Ref. [14] . 

9 Summary and outlook 

Excellent performance from ATLAS experiment and the LHC has been 
observed during the 7 TeV and 8 TeV runs in 2011-2012. The first results 
from Run-I include high precision in measurements of SM processes, the 
discovery of a boson consistent with the SM Higgs and improved limits on 
BSM scenarios. The analysis of the latest data is still on-going and more 
exciting results are expected to be released soon. The Particle Physics 
community is looking forward to LHC resuming collisions at 13 - 14 TeV 
after the 2013-2014 LHC long shutdown. 
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Abstract 
In this lecture, the physics potential for the e+ e- linear collider ex­

periments ILC and CLIC is reviewed. The experimental conditions are 

compared to those at hadron colliders and their intrinsic value for pre­
cision experiments, complementary to the hadron colliders, is discussed. 

The detector concepts for ILC and CLIC are outlined in their most impor­

tant aspects related to the precision physics. Highlights from the physics 
program and from the benchmark studies are given. It is shown that linear 
colliders are a promising tool, complementing the LHC in essential ways 

to test the Standard Model and to search for new physics. 

1 Introduction 

In the European strategy for particle physics, linear electron-positron colliders 
represent an important component of the future High-Energy physics program. 
They are designed for precision measurements, complementary to the present 
Large Hadron Collider (LHC), as well as to its possible upgrades and successors 
at CERN [l] .  At present, two international projects are devoted to the design of 
the future linear colliders - the International Linear Collider (ILC) [2] and the 
Compact Linear Collider (CUC) [3]. 

One of the main goals of the linear collider experiments is to test the Stan­
dard Model (SM), in particular regarding the mechanism of the Electroweak 
Symmetry Breaking (EWSB). The recent discovery of a new scalar boson at 
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LHC [4], with properties consistent with those of the SM Higgs boson, has 
given a very strong impetus to this area of research. Precision measurements of 
the Higgs sector can test different existing theories describing EWSB. Another 
important area is the search for new physics. This area is driven by the quest 
to resolve open questions in particle physics, as well as by the evidence from 
cosmology of phenomena that cannot be explained within the framework of the 
SM. 

The crucial motivation and potential of the linear colliders is that of funda­
mental advance in knowledge. This lecture will underline new knowledge that 
can be gained through precision measurements [2, 5]. 

1 . 1  The experimental environment a t  hadron versus lepton 

colliders 

The difference in nature of the colliding particles lies at the origin of all of the 
major differences between the hadron and lepton collider experiments. 

Since hadrons are compound objects, the initial state of individual partons is 
not uniquely defined. In the general case, initial states are realized as quantum 
superposition of states distributed according to the proton structure functions. 
In the analysis, distributions of initial parton states are calculated using QCD 
models tuned to data from deep inelastic scattering experiments [6]. 

At lepton colliders the colliding particles are elementary, therefore the inital 
state is well defined at the fundamental level. This allows for full reconstruction 
of the final state from conservation principles, up to the distribution of initial 
center-of-mass (CM) energies. The distribution of initial particle energies due 
to beam-beam effects can be precisely measured in the course of the experiment 
[7, 8, 9, 1 0, 1 1 ] .  

Each collision at a hadron collider creates a large number of elementary 
processes. Most of these processes represent background for the physics analy­
sis, and deposit high doses of radiation energy in the detector. Complex trigger 
schemes, with the retention rate of only - I event in I 06, have to be employed 
during the data taking in order to select events that are of interest for the physics 
analysis. Moreover, due to high radiation levels, an important issue for the de­
tector design is the radiation hardness of detectors at all angles. 

By contrast, the total cross section at lepton colliders is relatively small. 
The total radiation levels are moderate, and the radiation dose does not repre­
sent an issue for the detector design except in the very forward region. The 
pulsed beam structure allows for the readout of all detector data. The readout 
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is thus triggerless, and the experiment is cleaner with regards to the physics 
background. In terms of cross sections, lepton colliders have high sensitivity to 
electroweak processes, allowing very precise measurements in the Higgs sector, 
as well as in the search for new physics. 

2 The accelerator concepts 

2.1  ILC accelerator 

The electrons for the ILC beam are produced by a polarized photocathode DC 
gun electron source. The electrons are first accelerated to 1 5  GeV in the bunch 
compressor, and then in the main linac to the nominal energy. The positrons are 
generated by pair conversion of high-energy photons produced by passing the 
high-energy electron beam through an undulator. The beam acceleration in the 
ILC main linac is provided by niobium superconducting nine-cell cavities. The 
beam delivery systems then bring the two beams into collision with a crossing 
angle of 14 mrad. 

The ILC beam is structured in bunch trains arriving at a rate of 5 Hz. The 
length of the bunch trains is 1 ms. The bunch spacing within the train is 370 ns, 
allowing full separation of events from different bunches by detector timing 
techniques. At 500 GeV in CM, each bunch contains 2 x 10 10 electrons in a 
quasi-Gaussian spatial distribution with <:Tx = 470 nm, <:Ty = 5.9 nm and CT= = 

300 µm, resulting in instantaneous luminosity of 2 x 1 034cm-2s-1 [ 12] .  
The present state of the art of  the superconducting RF technology is  a result 

of several decades of development [ 13]. The field gradient in superconductors 
is limited by the field emission, as well as by the quench-causing surface de­
fects. The FLASH FEL facility at DESY, Hamburg, has been in operation since 
2004 with an average gradient of 20 MV/m in the main accelerator [ 14]. For 
the European XFEL program, gradients up to 35 MV/m have been realised in 
TESLA prototype cryomodules using surface electropolishing [ 1 5].  Many of 
the beam-tuning techniques required by the ILC have also been demonstrated 
at the FLASH FEL. R&D on creation of small emittance beams, as well as their 
focusing and alignment, is done at the Accelerator Test Facility (ATF) at KEK, 
Japan. Suppression of the electron cloud formation in the beam tube is studied 
within the CesrTA program at the Cornell University [ 12] .  

4 1  



2.2 CLIC accelerator 

The main objective of the CUC project is to build a linear collider for the 
multi-TeV range at reasonable cost and size. This requires very high accelera­
tion gradients, which cannot be reached with the superconducting technology. 
Therefore, CUC is based on the novel two-beam acceleration technology, in 
which a low-energy high-current drive beam provides the RF power for the ac­
celeration of the physics beam. The acceleration cavities for the main beam 
operate at room temperature, and can sustain field gradients over 1 00 MV/m . 

In order to maintain a low breakdown rate, the length of the CUC bunch 
train has to be limited to about 150  ns. At the same time, in order to achieve 
high luminosity, the bunch focusing has to be very strong, the bunch population 
high, and the bunch spacing very short. In the standard beam parameter set at 
3 TeV, RMS bunch dimensions are <Tx = 40 nm, <Ty = 1 nm and <Tz = 44 µm, 
bunch population is 3 .  7 x I 09 and bunch spacing is only 0.5 ns, which results in 
a luminosity value of 5 .9 x 1 034 cm-2 s-1 [3] 

The two-beam acceleration scheme is the subject of study of the CTF3 
project at CERN. Some of the most important milestones achieved until now 
include the generation of an acceleration field well above 1 00 MV /m, as well as 
excellent performance of the accelerating structures at the nominal field of 1 00 
MV/m without beam load [3].  

3 The detectors for a linear collider 

Two detector concepts are foreseen for the future linear collider, the Interna­
tional Large Detector (ILD) and the Silicon Detector (SiD) [ 16, 1 7] .  The basic 
layout of both detectors is very similar (Fig. 1) .  The main tracker of ILD is 
based on a Time-Projection Chamber (TPC) for quasi-continuous track recon­
struction, supplemented by inner and outer barrel silicon strip layers for precise 
track reference, and a forward silicon strip tracker. SiD is a compact cost­
effective detector with a 5 Tesla magnetic field and all-silicon tracking with 5 
layers in the barrel and 7 layers in the endcap region. Both detectors are planned 
to be implemented using a push-pull configuration which allows installing one 
detector in the beam line while the other is in the hangar for maintenance. 

Vertex detector consists of a number of thin pixelized semiconductor layers 
with extremely light support structure. Its purpose is to allow reconstruc­
tion of the secondary vertices by precise tracking, avoiding multiple scat­
tering in the material. The innermost barrel layer has a radius of 1 6  mm. 
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Figure 1 :  Schematic view of the International Large Detector concept for the 
linear collider. 

Depending on the angle and energy of the detected particles, the impact 
parameter resolution is between a few µm and several ten µm [2]. 

Main tracker performs precise 3D reconstruction of particle tracks in the mag­
netic field. Both the ILD and the SiD tracker systems satisfy the de­
sign goal for the transverse momentum resolution of charged particles of 
!J.(l /pr) � 2 x 1 0-5oev-1 [ 1 6, 1 7). 

Electromagnetic calorimeter (ECAL) reconstructs electromagnetic (EM) 
showers and provides distinction of EM showers from the hadronic ones. 
The ECAL is designed with tungsten absorber layers, interspersed with 
scintillator tiles or silicon pads with high granularity. Because of the large 
difference between EM radiation length and nuclear interaction length in 
tungsten, hadronic showers develop slower, and start at larger depth of 
material than the EM showers. 

Hadronic calorimeter (HCAL) is designed with steel absorbers and either 
scintillator tiles or gas detectors, with sufficient thickness for full con­
tainment ofhadronic showers. The main aim of HCAL is to measure the 
energy of neutral hadrons, identified by the absence of tracks in the main 
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tracker. The long EM radiation length in steel allows fine longitudinal 
sampling with a reasonable number of layers. 

Forward calorimeters In the very forward region of the detector, two calorime­
ters are installed, LumiCal for precise luminosity measurement by count­
ing Bhabha-scattering events and BeamCal for fast luminosity estimate 
and for monitoring of the beam parameter by measurement of beam­
induced processes at low angles. Both calorimeters are centered around 
the outgoing beam axis. Beam Cal covers angles from below 1 °  to 2°, 
and LumiCal from about 2° to 6°. LumiCal is designed for precise re­
construction of EM showers, while the main challenge for BeamCal is 
radiation hardness because of the relatively high radiation dose at small 
angles [ 1 8].  

Both detector concepts have also been adapted for the CLIC environment 
[5]. Main differences include calorimeter thickness, and the use of tungsten ab­
sorber, in order to contain higher-energy showers, higher semiconductor granu­
larity to cope with the occupancy and a larger diameter of the innermost barrel 
layer of the vertex detector because of higher radiation. 

3.1 Particle ftow calorimetry 

About 1 0% of energy of a typical jet is carried by long-lived neutral hadrons, 
62% by charged particles, mostly hadrons, another 27% by photons and 1 .5% 
by neutrinos [ 1 9] .  If visible jet energy is entirely reconstructed from calorimet­
ric information, the precision is limited by the relatively poor energy resolu­
tion of HCAL. To improve the jet energy resolution, the Particle Flow concept 
aims at full identification of all constituent particles in the detector system, so 
that charged particle energies can be reconstructed from track curvatures. To 
this aim, finely granulated calorimeters are required to separate and reconstruct 
showers. This allows for precise reconstruction of invariant masses of jets and 
accurate identification of physics events. 

Figure 2 shows a typical reconstructed jet in a simulation of the cuc_ILD. 
Electrons are identified by a curved track in the main tracker, and a fast­
developing shower in the ECAL. Showers induced by photons develop fast as 
well, but there is no associated track in the tracker, due to the low interaction 
cross section in the low-density material of the tracker. Hadrons develop show­
ers slower and deposit a large fraction of their energy in the HCAL. Neutral 
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Figure 2: Particle tracks from a simulated jet in CLICJLD (from Ref. [ 19]). 

hadrons have no associated track in the tracker. It has been shown by simula­
tion that a jet energy resolution between 3 and 3. 7% is achievable in the entire 
energy range from 0 to 1 .5 TeV in the barrel region of the cuc_ILD [ 19) .  

4 Physics program 

Both in the ILC and the CLIC projects, the accelerator is planned to be built 
in stages defined with the physics potential in view. At each stage, each of the 
accelerators can be tuned to lower energy, at some cost in luminosity. 

At 250 GeV, the Higgs boson production by Higgsstrahlung (HZ) has its 
maximum (see Fig. 3). This point gives access to first precise measurements 
of the Higgs couplings and mass. At an accelerator built for a 250 GeV CM 
energy, high-precision W mass study can be also performed by tuning the ac­
celerator down to 160 Ge V in CM. The "Giga-Z" program [20) is also within 
reach at 9 1  Ge V in CM, provided that luminosity can be measured with the re­
quired precision. The 250 GeV CM energy is the first stage of the ILC program. 

At 350 GeV, the Higgsstrahlung and the WW fusion (Hv.v.) processes of 
Higgs production have comparable cross sections. This allows for the measure­
ment of absolute Higgs couplings, as well as a model-independent measurement 
of the total Higgs width. The top quark mass can be precisely measured in a 
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Figure 3 :  Higgs production cross section as a function of the CM energy. 

production threshold scan. In the CUC project, 350 GeV is considered as the 
first energy stage. In the ILC program, the top-pair threshold scan is performed 
at the 500 Ge V stage with the accelerator tuned down to 350 Ge V. 

Above 350 GeV, Higgs production is accessed predominantly by the WW 
fusion, allowing higher precision of Higgs couplings. Precise measurement of 
most couplings of the gauge bosons is best performed at 500 GeV. New physics 
is best accessed at higher energies. Production thresholds for supersymmetric 
particles are expected to start just below 1 Te V, and the !!!ass reach for searches 
such as the search for the Z' boson in the e+ e- ---> ff channel is higher for 
higher CM energies. 

The ILC program is thus planned in three building stages. The 250 GeV 
stage for the first precise measurements of the Higgs sector, the nominal design 
energy of 500 Ge V, and the ultimate CM energy of 1 Te V, achievable by exten­
sion of the main linac and the use of cavities with higher gradient, so that the 
total length of the facility reaches 50 km. 

The CUC machine is designed for searches for new physics at multi-TeV 
energies, with the goal to reach 3 TeV in the CM frame. Currently a lowest 
energy stage of350 GeV is considered, followed by an upgrade to 1 .4 TeV, and 
the final stage of 3 Te V, for which the accelerator facility will be 48 km long. 

Benchmark studies of physics performance of the ILC and CUC experi­
ments have been performed using dedicated tool-chains consisting of process 
generation with realistic beam- and Beamstrahlung spectra, relevant physics­
and beam-induced background, complete and realistic simulation of the inter­
action of the final particles with the detector, as well as event reconstruction 
using Particle Flow algorithms developed for the linear colliders. 
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Figure 4: Left: Higgsstrahlung Feynmann diagram; right: recoil-mass distribu­
tion of muon pairs from the Z decay at 250 Ge V ILC (figure taken from Ref. 
[ 16], see also [2 1]) .  

4.1 Highlights from the Standard Model 

4.1.1 The Higgs boson 

The program of precise measurements in the Higgs sector is an excellent illus­
tration of the capacity of the linear collider to advance our understanding of 
particle physics . The entry point into this field is the Higgsstrahlung process, 
in which a Z boson is created in the annihilation of the initial electron-positron 
pair and emits a Higgs boson in the final state (Fig. 4, left). Experimental 
identification of the Higgsstrahlung is achieved by selecting lepton pairs with 
invariant mass consistent with the Z mass. The distribution of the recoil mass, 
calculated under the assumption that all events occur at the nominal CM en­
ergy, features a clear peak at the Higgs mass, and a high-energy tail due to the 
luminosity spectrum (Fig. 4, right). In the analysis of the Z � µ+ µ- decay, 
the absolute value of �zz is determined from the number of events in the peak 
with a precision of 2.5% at ILC [2] and 4.2% at CUC [22]. The Higgs mass is 
determined from the position of the peak with a statistical precision of 40 Me V 
at the 250 GeV ILC [2] and 1 20 MeV at the 350 GeV CLIC [22]. If the analysis 
of the Z � e+e- decay is combined, the precision reaches 32 MeV at ILC [2]. 

At CM energies of 350 GeV and higher, Higgs production by WW fusion 
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Figure 5: Feynmann diagram for Higgs production by WW fusion, and subse­
quent decay to a particle-antiparticle pair. 

allows for the measurement of Higgs couplings via the branching ratios (BR) 
for the Higgs decay to a pair of fermions or gauge bosons (Fig. 5). 

Using the value of l0rzz obtained in the Higgsstrahlung measurement, the 
Higgs coupling to W is obtained from the relationship, 

- ( )2 <r(e+e- -? ZH) x BR(H -? xx) gHzz 
<r(e+e- -? v,v,H) x BR(H -? xx) ex: gHww ' ( 1 )  

where the best statistical precision i s  reached in the case when x stands for the b 
quark. Higgs total decay width, r H, can be obtained from either the H -7 WW* 
or the H -? ZZ* decay, 

(2) 

Finally, r H can be used to determine the absolute value of all other measured 
couplings. 

At 1 Te V or above, the cross section for the WW* fusion process is suf­
ficiently high to allow for the measurement of rare Higgs decays such as the 
decay to a pair of muons, for which the BR is calculated to be 2 . 14  x 1 0-4 
[23]. In such measurements, after subtraction of background by selection cuts 
or multivariate analysis (MVA), the shape of the dimuon invariant mass distri­
bution of the signal on top of the remaining background is fitted to the data (Fig. 
6). The statistical precision of BR(h -? µµ) is 32% at the 1 TeV ILC [2], 29% 
at the 1 .4 Te V CLIC [22], and 1 6% at the 3 Te V CLIC [22, 24]. An overview 
of achievable uncertainties in various Higgs measurements can be found in the 
ILC Technical Design Report [2], as well as in the CLIC Snowmass paper [22]. 
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Figure 6: Fit of the model of the dimuon invariant mass distribution of the signal 
on top of the background remaining after an MVA selection at 1 .4 TeV CLIC. 

4.1.2 Top pair threshold scan 

The top pair threshold scan is a very precise method of experimental determi­
nation of the top quark mass. The effective cross section for top pair production 
is measured in several energy points near the threshold, with � l Ofb-1 of ded­
icated beam time per point. The position of the rising edge of the measured 
cross-section curve is sensitive to the top-quark mass. The precise value of the 
mass is extracted by fitting the theoretical calculation of the cross-section curve 
to the data. The luminosity spectrum, as well as the initial-state radiation (ISR) 
distribution have to be taken into account in the calculation, as can be seen in 
Fig. 7. The statistical uncertainty of the top mass obtained in this way at either 
ILC or CLIC is 34 MeV. The overall uncertainty is, however, limited by the 
uncertainties of the theoretical calculation to about 1 00 Me V [25]. 

4.2 Searches for new physics 

Open questions in particle physics itself, as well as observations in other fields, 
such as cosmology, indicate that the SM does not cover all known phenomena. 
Such questions include the gauge hierarchy problem of the SM, the nature of 
elementary constituents of Dark Matter in the universe, or the source of CP 
violation in the evolution of the universe. Existing theoretical extensions of the 
SM that seek to address these questions drive the program of searches for new 
physics at future collider experiments. 
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Figure 7: Influence of the luminosity spectrum on the measured cross-section 
curve in the top-pair threshold scan (taken from Ref. (25]). 

4.2.1 New gauge boson 

A common consequence of many extensions of the SM, in which the SM gauge 
group is embedded into a larger mathematical structure with additional U(l )  
symmetry groups, is the existence of one or more new, heavy and electrically 
neutral gauge bosons, denoted Z'. If the mass of Z' is within the ki_!!ematical 
reach of the collider, it is observable as a resonance in the e+ e- ---+ ff channel. 
However, even if the Z' mass is higher than the CM energy of the c<!Jlider, 
its existence can be observed via loop corrections of the e+ e- ---+ ff cross 
section. The mass scale at whi�h Z' is detectable by such effects depends on 
the precision of the e

+ 
e- ---+ ff measurement. Depending on the model, the 

sensitivity of the 500 Ge V ILC to the Z' boson reaches between 4 and I O  Te V 
in terms of the 95% CL for exclusion [2]. The reach of the I TeV ILC is almost 
twice as high. At 3 TeV CLIC, depending on the couplings of Z' to fermions, 
5<r discovery of the Z' boson will be possible for m2, between 8 and 50 TeV, 
using the measured cross sections and forward-backward asymmetries (22]. 

4.2.2 Supersymmetry 

Supersymmetric theories postulate symmetry between bosons and fermions at a 
TeV scale. They offer a natural candidate for dark matter, as well as a possibility 
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New particle LHC ( 1 4  TeV) HL-LHC CLIC3 

squarks [TeVJ 2.5 3 ;S I .5 

sleptons [TeVJ 0.3 ;S I .5 

Z' (SM couplings) [Te VJ 5 7 20 

2 extra dims Mo [Te VJ 9 1 2  20-30 

TGC (95%) (Ay coupling) 0.001 0.0006 0.0001 

µ contact scale [Te VJ 1 5  60 

Higgs composite scale [Te VJ 5-7 9-1 2  70 

Table 1 :  Discovery reach in various theory models for different colliders. LHC 
at 14  TeV refers to integrated luminosity of 1 00 fb-1 , HL-LHC 1 ab-1 , and the 
3 TeV CLIC up to 2 ab-1 • Taken from Ref. [22]. 

of unification of forces at high energies. The potential for discovery of the 
supersymmetric partners of the SM leptons is higher at CLIC than at the 14 TeV 
LHC (Tab. 1 ,  [22]). Depending on the supersymmetric model, the production 
threshold for the lightest sparticles, which have not yet been excluded by the 
LHC, lies just below 1 Te V, requiring linear colliders of 1 Te V or more for 
their discovery. If supersymmetric particles are discovered, linear colliders offer 
unique opportunity to measure their masses and couplings, and thus test the 
existing theories. 

4.2.3 Discovery reach 

A brief overview of the discovery reach of the 3 TeV CLIC in comparison with 
the LHC and the HL-LHC is given in Tab. 1 from Ref. [22]. Beside the 
discovery potential for the supersymmetric particles, and the Z' boson, energy 
scale for theories with extra spatial dimensions is listed, the sensitivity level for 
anomalous triple coupling of the gauge bosons (TGC), the µ contact interaction 
scale, as well as the composite Higgs boson mass scale [5]. 

5 Conclusions 

In this lecture, basic motivation for building a next-generation linear collider 
was given, together with the accelerator and detector concepts. The physics 
program was outlined in its main aspects, including the SM studies and the 
search for new physics, and several higlights from the benchmark studies were 
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given. In these benchmark studies, based on detailed and realistic simulations, 
the precision capabilities of linear colliders were confirmed and significant dis­
covery potential has been demonstrated for the searches for new physics. Linear 
collider is a promising tool, complementing the LHC in essential ways to test 
the SM and to search for new physics. 

The linear collider study is a broad field for R&D in accelerator technology 
and in detector hardware, as well as for physics analysis work. Once built, the 
physics program of the linear collider unfolds in energy stages, and spans over 
20 years of research work with potentially ground-breaking physics opportuni­
ties at each stage. 
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Abstract 

The high charge density and high energy at future linear colliders will 
present challenges to the luminosity measurement that have not been there 
in the past. The intense electromagnetic interaction between the electron 
bunches influences the luminosity measurement at the level of several 
percent. Precise correction of the beam-beam effects, based on experi­

mentally measurable quantities, is described here. In addition, a com­

prehensive list of systematic effects in luminosity measurement is given, 
with their individual contributions to the final uncertainty of the luminos­

ity figure. 

1 Introduction 

High-precision capabilities of linear electron-positron colliders earn such ex­
periments a significant place in the program of elementary particle physics. A 
crucial condition necessary to fully realize the precision potential of the linear 
colliders is precise measurement of luminosity. Luminosity is a key figure re­
lating the observed number of events of a given process to its cross section. In 
the most straightforward sense, it can be defined by the expression, 

( 1 )  

*E-mail:slukic@vinca.rs 
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Figure I :  Luminosity spectrum at I TeV ILC, simulated using Guinea-Pig [ I ]  

Here N1 and N2 are the average populations of the colliding bunches, f is 
the overall bunch-crossing rate, and A is the overlap integral of the 2D density 
distributions of the two bunches in the perpendicular plane. 

The luminosity spectrum L(EcM) is defined as the distribution of the center­
of-mass (CM) energy EcM available to individual collisions in the experiment. 
Due to beam-beam effects (see Sec. 2), the luminosity spectrum features the 
characteristic low-energy tail (Fig. I )  

The basic expression, 
(2) 

relates the luminosity, the cross section a-a of an elementary process a in a given 
part of the phase space defined by experimental selection cuts, and the number 
of detected events Na of the process a in the same part of the phase space. 

In production threshold scans, the luminosity spectrum, including the lumi­
nosity peak shape, as well as the low-energy tail, affect the results of the scan 
in a considerable way [2]. It is thus indispensable to know the luminosity spec­
trum to sufficient precision in order to be able to fit the theoretical distributions 
of the kinematic parameters to the measurement. 

Presently the most precise way to measure luminosity at a linear collider is 
to use Bhabha-scattering as the gauge process. Bhabha scattering is character­
ized by low angles (the cross section scales approximately with o-3), as well 
as by final energies close to the beam energy. The cross section is relatively 
high, ensuring good statistical accuracy. Precision better than 10-3 was reached 
with this method at LEP, thanks to a careful experimental setup, and precise 
QED calculations [3, 4, 5, 6] . At future linear colliders, the International Linear 
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Collider (ILC) [7] and the Compact Linear Collider (CLIC) [8], the CM energy 
will be 3 to 30 times higher, and luminosity up to thousand times higher. In 
such conditions, intense beam-beam effects induce severe counting biases of 
Bhabha-events which require dedicated correction procedures, as pointed out 
in Ref. [9]. 

1.1 The luminosity calorimeter - LumiCal 

The luminometer for the future linear colliders (LumiCal, Fig. 2) is designed as 
a pair of sampling calorimeters with cylindrical geometry, centered around the 
outgoing beam axis at � 2.5 m from the interaction point (IP) on both sides. The 
calorimeters consist of a number of layers in the longitudinal direction, each 
layer containing a tungsten disk and a segmented sensor plate. Electromagnetic 
(EM) showers developing in tungsten are sampled in the sensor plates. The ab­
sorber plates are each 3 .5  mm thick, corresponding to one radiation length in 
tungsten. The number of layers is 30 for ILC, and 40 for CLIC. The Moliere ra­
dius ofLumiCal is � 1 .5 cm. The sensor plates are segmented both radially and 
azimuthally, allowing full reconstruction of the four momenta of the detected 
particles. The outer radius of the LumiCal is 196 mm in the ILC case, and ca. 
300 mm in the CLIC case. The inner radius is 80 mm in the ILC case, and 1 00 
mm in the CLIC case. 

The fiducial volume (FV) of the calorimeters is defined as the angular range 
with optimal energy resolution, and covers angles from 4 1  to 67 mrad at ILC, 
and 43 to 80 mrad at CLIC. 

Bhabha events are recognized by coincident detection of showers in the 
FV of both halves of the luminometer in a given energy range near the peak 
energy. According to Eq. 2, the luminosity figure is then obtained by dividing 
the number of detected events by the Bhabha cross section integrated in the 
corresponding region of the phase space. 

In Sec. 2, the physical processes affecting the luminosity measurement will 
be outlined, and the event simulation methods used in this work will be briefly 
described. In Sec. 3, a method of handling the counting bias due to beam-beam 
effects will be described and tested on simulated events. In the conclusions, the 
performance of the method for the final precision of the luminosity measure­
ment will be summarized and discussed . 
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Figure 2: LumiCal sketch 

2 Physics of the luminosity measurement 

2.1 Physical processes affecting the luminosity measurement 

Beamstrahlung 

In order to reach the projected luminosity at future linear colliders, the electron 1 
beams will be focused to a few nm in the vertical direction, and a few ten 
to few hundred nm in the horizontal directions [7, 8] at the interaction point 
(IP), resulting in extremely high local charge densities, and extremely intense 
EM interaction between the opposing bunches. In case of a charge moving 
with relativistic velocity v, the component of EM field perpendicular to v scales 
the Lorentz factor y = I /  �I - v2/c2 . At future linear colliders, the Lorentz 
factor of the bunches is of the order of 106 in the lab frame, or 10 1 2  in the rest 
frame of the opposing bunch. Since the bunches have opposite charge signs, the 
direction of the perpendicular component of the Lorentz force points towards 
the bunch center. This results in a very strong focusing effect of the bunches -
the pinch effect. The pinch effect enhances the luminosity, but induces emission 
of intense and energetic EM radiation, Beamstrahlung, from the electrons in the 

1 Unless stated otherwise, electron always refers to electron or positron 
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bunch. For an elaborate treatment of the beam-beam effects, see Refs. [ 1 0, l ] .  
The angular distribution of Beamstrahlung is contained in several hundred 

µrad around the beam axis. The distribution of energy loss of individual elec­
trons is very wide, and depending on the conditions, may reach up to the beam 
energy. This leads to the creation of the low-energy tail of the luminosity 
spectrum (see Fig. 1 ). At the level of individual e+e- collision events, Beam­
strahlung energy loss prior to the collision is asymmetric between the two col­
liding particles, resulting in non-zero velocity of the CM frame of the collision 
with respect to the lab frame. 

Initial and Final State Radiation 

The Bhabha process is accompanied by emission of the initial- and final state 
radiation (ISR, FSR). ISR and FSR are QED phenomena, and their energy­
and angular distributions can be precisely calculated [ 1 1 ] .  Due to the quantum 
interference terms, ISR and FSR cannot be cleanly separated at the fundamental 
level. The resulting angular distribution is quasi-continuous, with sharp peaks 
around the initial and final electron momenta. 

Boost of the collision frame 

In the frame of the two Bhabha electrons after emission of Beamstrahlung and 
ISR, and before emission of FSR, the collision frame2, the deflection angle is 
the same for both particles, according to the momentum-conservation principle. 
This angle is denoted the scattering angle, (f011• 

As the collision frame is recoiling against the photons radiated before the 
scattering, it has a velocity Pcoll with respect to the lab frame. Pcoll is collinear 
with the beam axis, axcept in rare cases when ISR is emitted under significant 
angle with respect to the beam. In the lab frame, the final particles have angles £Xab and e;_ab, which correspond to the scattering angle ff011 and its mirror image 
7r - ff011 boosted by Pcoll · Because of the boost, even if ff011 was in the angular 
range of the FV of the LumiCal, one or both of the final angles in the lab frame 
may be outside FV. In this way, Beamstrahlung induces an angular counting 
loss ofBhabha events. 

At LEP, the intensity of the beam-beam effects was small, and application 
of asymmetric selection cuts was sufficient to minimize the uncertainties arising 
from the Beamstrahlung to the required level. At future linear colliders, where 

2Also denoted the hard-scatteringframe in literature, see [I I]  
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the beam-beam effects are far more intense, the angular counting loss is of the 
order of several percent. If one endeavors to correct this counting bias using 
bunch-crossing simulations, the ultimate precision will be limited by the pre­
cision of the simulation, and by the uncertainties in the determination of beam 
parameters. A method of event-by-event correction of the angular counting loss 
by direct measurement of the boost of the collision frame [ 12] is described in 
sec 3 .  

Processes after scattering 

After scattering, the final electrons may emit FSR. Beside that, their trajecto­
ries are deflected inwards by a fraction of mrad under the influence of the EM 
field of the opposing bunch, thus inducing a small additional angular counting 
loss termed Electromagnetic Deflection (EMD) effect. Beamstrahlung may be 
emitted at this stage as well, but since it is emitted under very small angles with 
respect to the final electrons, it is summed with the electrons in the calorimeter. 

Bhabha event spectrum 

For the reconstruction of the luminosity spectrum from the energy spectrum 
of the Bhabha scattering events, it is important to take into account the energy 
dependence of the Bhabha cross section, 

d<Ts 2 !B(EcM) = .l(EcM) dEcM oc .l(EcM)f EcM (3) 

Since ISR mostly misses the luminometer, the CM energy reconstructed 
from the detected particles is EcM,rec < EcM, and the corresponding spectrum 
can be represented as a generalized convolution of !B(EcM) and the function 
I(x) describing the fractional CM energy loss due to the ISR, 

Ema.'f. 

I I EcM,rec h(EcM,rec) = !B(EcM)-E I(--) dEcM CM EcM 0 
(4) 

In the frame of the two-electron system after emission of ISR and before 
emission of the FSR, i.e. the collision frame, the deflection angles in the colli­
sion are the same for both particles, according to the momentum-conservation 
principle. One can, therefore, define a unique scattering angle OC011•3 

3Rigorous definition of the collision frame is not straightforward because of the quantum 
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2.2 Simulation tools for the analysis of the physics of the lu­

minosity measurement 

To estimate the precision of the luminosity measurement, Bhabha events in the 
bunch-collision were simulated using the Guinea-Pig software for the simula­
tion of the bunch crossing [ l ], and the BHLUMI Bhabha event generator [ 1 1 ) .  
For details on feeding BHLUMI events to Guinea-Pig, see Ref. [ 1 2). 

The simulations were run with the standard parameter set from the ILC 
Technical Progress Report 201 1 [ 1 3) as the basis for both the 500 GeV and 
the 1 TeV ILC cases, as well as with the standard simulated bunch density and 
momentum distributions for CLIC from Ref. [ 14) .  In the ILC case, beside 
the standard parameter set, simulations were also performed with 24 different 
variations of individual beam-parameters, in order to determine the influence of 
the beam-parameter uncertainties on the performance of the presented methods. 
The simulated beam-parameter variations included symmetric variations of the 
bunch size parameters rr x,y.= and the bunch charge q by ± 1 0  and ±20%, one­
sided variations of rrx,y.= ans q by +20%, as well as beam misalignment in x­
and y-direction by up to one rrx,y, respectively. 

The interaction with the detector was approximated by parametrization of 
the detector resolutions, as well as by summing together the four-momenta of 
all particles that are closer together than one Moliere radius, as described in 
detail in Ref. [ 1 2) .  

3 Correction of the beam-beam effects 

The analysis of the Bhabha count proceeds as follows: correction of the angular 
counting loss, deconvolution of the ISR energy loss, numerical correction for 
the counting bias due to the LumiCal energy resolution [ 1 2), and finally the 
correction of the EMD counting bias. 

3.1 Angular counting loss 

Since the angles of the detected showers, e;ab and �ab, are boosted by Pcoll with 
respect to the scattering angle Bc011, Pcoll can be reconstructed to a good approx­
imation from e;ab and �ab . If f3coll is taken to be collinear with the z-axis, the 

interference between ISR and FSR. In practice, the collision frame is defined as the CM frame 
of the final electrons together with all radiation within a given tollerance angle with respect to 

the respective final electron momenta. 
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system of two equations given by the expressions for the boost of the final par­
ticle momenta allows reconstructing ,Bcol/ and 8c011, 

sin(eiah + e;ah) 
,Beall = . rJab · rJab sm tr1 + sm tr2 

1 ( 1 1 ) 
-
t -8- = !'coll -----;;J;i; -,B coll---:-;::J;;b an coll tan trl s m tr] 

(5) 

The effective acceptance of Bhabha events in the luminometer decreases 
with increasing,Bcol/ · The effective limiting scattering angles (}":;/� and (}",:!!:, in the 
collision frame for a given ,Beall are obtained by boosting Bm;n and Bmax into the 
collision frame. This allows calculating the event-by-event weighting factor to 
compensate for the loss of acceptance, 

8mm w(/3eoll) = --­fF..Oll 

Imax dcr d8 cte 

(6) 

The results of correction are shown in Fig. 3 for the 1 TeV case. The con­
trol spectrum (black) contains all events that would hit the FV of the LumiCal 
if there were no boost of the collision frame. The detected spectrum is shown 
in red, and the corrected spectrum green. The blue line represents the events for 
which ,Beall is higher than some limiting value ,B*, at which the effective accep­
tance of LumiCal is reduced to zero. Due to kinematic constraints, high values 
of ,Beall are possible only with high energy loss, which explains the sudden drop 
of such events at 80% of the nominal CM energy. However, a small number 
of events with apparent ,Beall > ,B* is present also at energies above 80% of the 
nominal CM energy, because occasionally the assumption that ,Beall is collinear 
with the beam axis is broken due to off-axis ISR. This is visible in the zoomed 
figure (Fig. 3, right), where these events are scaled by a factor 1 00. 

The following is the list of sources of systematic uncertainty of the collision­
frame method: 

1 .  Off-axis ISR. In rare events with significant off-axis ISR, the assumption 
that ,Beall is collinear with the beam axis does not hold, 

2. The implicit assumption that the cluster around the most energetic shower 
always contains the Bhabha electron. In a fraction of events of the order 
of a few permille, this is not the case, and the reconstructed polar angles 
e;�� may differ from the final electron angles. 
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Figure 3 :  Correction of the counting loss due to Beamstrahlung and JSR at 1 
TeV. Left: whole spectrum; right: zoom on energies above 800 GeV. Black: 
Simulated control spectrum without counting loss due to Beamstrahlung and 
ISR; red: Reconstructed EcM spectrum affected by the counting loss; green: 
Reconstructed spectrum with correction for the counting loss due to Beam­
strahlung and ISR; blue: events inaccessible to the correction 

3. The use of the approximate angular differential cross section for the 
Bhabha scattering in the calculation of the correction weight, 

4. Assumption that all JSR is lost, and all FSR is detected, in the calculation 
of/Jcoll and w. 

The relative bias due to the off-axis ISR is if the order of one permille. 
This bias is related to the energy- and angular distribution of the ISR, which is 
reliably predicted by the generator. Thus this bias can be reliably corrected, and 
it is not sensitive to beam-parameter variations. 

The uncertainty introduced by the implicit assumption that the cluster around 
the most energetic shower always contains the Bhabha electron depends on 
the beam parameters, and it may even depend on the specifics of the position­
reconstruction algorithm in the Iuminometer. Its correction is beyond the scope 
of the present study. The contribution of the effects 3 and 4 is smaller than 
the statistical uncertainty of the present analysis. The final quoted uncertainty, 
containing the contributions from the effects 2, 3 and 4 in the upper 20% of 
the luminosity spectrum is as follows: For the 500 GeV JLC, the uncertainty is 
( +0.4 ± 0. 1 )  x 1 03, for the I Te V JLC, it is ( +O. 7 ± 0. 1 )  x 1 03• The absolute size 
of these final biases can be taken as the present estimate of the uncertainty of 
the luminosity measurement induced by beamstrahlung and ISR. 
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Figure 4: Deconvolution of the ISR deformation of the luminosity spec­
trum. Yellow: the control histogram - simulated EcM before emission of ISR, 
smeared with a normalized Gaussian; black: the histogram affected by the ISR 
energy loss - reconstructed EcM from the detected showers, green: deconvo­
luted spectrum. 

3.2 ISR energy loss 

To obtain the Bhabha CM energy distribution 13(EcM), the ISR energy loss 
should be deconvoluted from h(EcM,reJ. This deconvolution can be performed 
using the theoretical form of the distribution I(x) of the ISR fractional en­
ergy loss, and by solving the system of linear equations resulting from the 
discretization of Eq. 4 [ 12] .  To obtain the function I(x), the distribution of 
x = EcM.rec/EcM was taken from the BHLUMI file, and the beta distribution 
was fitted to it for x > 0.8. 

The results of the deconvolution are shown in Fig. 4. The control histogram 
(yellow) contains simulated CM energies before ISR emission, smeared by the 
energy resolution of the LumiCal. The histogram with ISR energy loss (black) 
is simply the histogram resulting from the correction of the angular counting 
loss in the previous step. The deconvoluted histogram is shown as green points 
with error bars. 

The uncertainty estimate of the deconvolution procedure alone for the inte­
gral luminosity in the upper 20% of the spectrum is given by the relative integral 
difference between the deconvoluted and the control spectrum in the upper 20%. 
This uncertainty is (+0.8 1 ± 0.22) x 1 0-3 at 1 TeV, and (+0.35 ± 0.2 1 )  x 10-3 at 
500 GeV. 
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3.3 Energy resolution 

Since full energy information of the detected particles is used to determine the 
luminosity spectrum, the energy resolution of LumiCal induces a bias in the 
Bhabha count by asymmetric redistribution of events around the CM energy cut 
because of the slope in the form of the spectrum at the cut energy. This can be 
corrected by integration of the fitted parametrized form of fJ(EcM)- When the 
cut is made at 80% of the nominal energy, the size of this correction is between 
1 and 4 x 10-4. It has been shown in Ref [ 12] that the energy-resolution effect 
can be corrected to better than 1 x 1 0-4 . 

3.4 Angular loss due to the EMD 

The EMD shifts the polar angles of the outgoing particles consistently towards 
smaller angles. Since the Bhabha cross section is monotonously decreasing 
with the polar angle, the net effect of the EMD is a decrease in the Bhabha count. 
Since the EMD bias is small, correction by MC simulation of the bunch crossing 
has sufficient precision. The precision is limited by the beam-parameter uncer­
tainties in the MC simulation. If the conservative beam-parameter uncertainty 
described in Sec. 2 .2 is taken, the precision of EMD correction is ±5 x 10-4 
of the total luminosity at 500 Ge V, and ±2 x 1 0-4 at 1 Te V. If the beam pa­
rameters are known with better precision than 20% (see Ref [ 1 5]), the residual 
uncertainty will be correspondingly smaller. 

4 Overview of the systematic uncertainties in lu­

minosity measurement 

Beside the uncertainties remaining after correction of the beam-beam effects, a 
number of further systematic effects limits the achievable luminosity precision 
at future linear colliders. These will be briefly reviewed here. 

4.1 Physics background 

A major systematic effect in the luminosity measurement origi�tes from the 
four-fermion neutral-current processes of the type e+e � e+ej f. These pro­
cesses have a signature similar to Bhabha scattering, characterized by the out­
going e+ e pairs at low angles carrying a large fraction of the beam energy so 
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they can be miscounted as signal. Using event selection based on coplanarity 

and CM energy, the fraction is reduced to 2.2 permille at 500 GeV and 0.8 

permille at I TeV [ 1 6] .  

At present there are no accurate estimates of the theoretical precision with 

which the fraction of physics background events is calculated. Thus the above 
quoted fractions, obtained using the WHIZARD generator, will be taken as a 

full-size effect. 

4.2 Systematics of the polar angle reconstruction 

Matching of the experimental and the theoretical selection cuts in Eq. 2 depends 

crucially on the precision of the reconstruction of the polar-angle of the shower. 

The inner radius of the active volume of the LumiCal has to be known 
with precision of 1 0  µm in order to keep the resulting luminosity uncertainty 
well below l permille [ 1 7, 1 8] .  

Position uncertainty LumiCal - IP reflects directly on the polar angle 

uncertainty. It is affected by the lateral positioning uncertainty of the Lumical 

relative to the final beam-delivery quadrupole, by the uncertainty of the lateral 
IP position determined by the beam-position monitors, and by the longitudinal 

uncertainty in the relative positioning of the two calorimeters. All three of these 
parameters must be known at the level of several hundred µm in order to keep 

the resulting luminosity uncertainty at the one-perm ille level [ 1 7, 1 8] .  
Intrinsic reconstruction uncertainties due t o  the shower reconstruction 

algorithm of the LumiCal introduce a polar angle bias of 3 .2 x 1 0-3 mrad and 

polar angle resolution of 2 .2 x 1 0-2 mrad [ 1 9] .  Each of these effects adds an 
independent contribution of 0 . 1 6  permille to the luminosity uncertainty [ 1 7] .  

4.3 Cross section 

The Bhabha cross-section calculation for the LEP experiment reached a preci­

sion of 0.54 permille [6]. For the future linear colliders, new calculations are 

necessary, because the contribution of the virtual Z-boson exchange alters the 

cross section significantly. Presently a new Bhabha generator is under develop­
ment [20] which will include beam polarization, the background processes, as 
well as the wide-angle measurement. 

The uncertainty on the beam polarization affects the luminosity fi gure via 

the cross-section calculation at the level of 0. 1 9  permille [ 1 7] .  
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5 Conclusions 

Precise luminosity measurement is essential at linear colliders in order to fully 
exploit their intrinsic precision physics capabilities. A number of systematic 
effects, ofwhoch the most dramatic are the beam-beam effects, limit the achiev­
able precision. 

The collision-frame method corrects the beam-beam effects by directly mea­
suring the counting losses via experimentally observable quantities related to 
the beam-beam effects in a fundamental way. Precision of below 1 permille 
is reached, essentially independent of the precision with which the key beam 
parameters are known. 

Contributions of the beam-beam effect correction, as well as from other 
sources, to the overall systematic uncertainty of the luminosity measurement 
are listed in Tab. 1 .  

Table 1 :  Systematic uncertainties in luminosity measurement. 

Source of uncertainty 500 GeV 1 TeV 
( 1  o-3) 00-3) 

Bhabha cross section 0.54 0.54 
Polar-angle resolution 0. 1 6  0 . 16  
Polar-angle bias 0 . 16  0. 1 6  
IP  lateral position 0 . 1  0. 1 
Energy resolution 0 . 1  0. 1 
Energy scale 1 1 
Beam polarization 0 . 19  0 . 19  
Correction of angular losses 0.4 0.7 
due to Beamstrahlung 
ISR deconvolution 0.4 0.8 
EMD correction 0.5 0.2 
Physics background 2 .2 0.8 

Total 2.6 1 . 8  

The final uncertainty i s  2.6, respectively 1 .8 permille i n  the 500 GeV and 
the 1 Te V cases. This satisfies the requirement for the largest part of the Physics 
programme at the ILC. However, for high-precision measurements such as 
the Giga-Z programme, precision of 1 0-4 is required [21 ] .  Uncertainties pre-
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sented here may be refined towards this goal as more precise knowledge be­
comes available on beam-parameter physical correlations, the cross section of 
the physics background, as well as with further refinement of the correction 
methods. 
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Lagrangian ( 1 )  leads to the following interactions: 

1 - [( SM 5 SM) ( 5 ) · g l j Lzff 2Zµfrµ v1z + / a1z cos e0 + v1 + / a1 sm 0 , 

Lz'ff �Z�hµ [(v1 + 15a1) cos Bo - (vJ� + 15aJ�) sin B0] f, (5) 

where f is a SM fermion state; VJ� , a;� are the SM couplings of the 
Z-boson. 

At low energies, it is convenient to introduce the dimensionless cou­
plings 

(6) 

which can be constrained by experiments. 

3 RG relations 

In a particular model, Y</>, YL,f , YR,J take some specific values. If the model 
is unknown, these parameters remain potentially arbitrary numbers. This 
is not the case if the underlying extended model is a renormalizable one. 
The couplings are correlated [1] : 

- - -
Y<1>,1 = Y<1>,2 = Y<t>,  

- - - - -
YL,f = YL,j• , YR,f = YL,f + 2T31 Y</>. (7) 

Here f and f* are the partners of the SU(2)L fermion doublet (l* = v1 , v* = 
l, q� = qd and q� = qu) ,  T31 is the third component of weak isospin. 

It is convenient to introduce the Z' couplings to the vector and axial­
vector fermion currents (4) , 

(8) 

Hence it follows: 
1) The couplings of Z' to the axial-vector fermion current have the uni­

versal absolute value proportional to the Z' coupling to the scalar doublet. 
2) Z-Z' mixing angle (3) can be determined by the axial-vector cou­

pling. 
Since a1 is universal, we introduce the notation 

(9) 
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and find 
0 _ 2_ sin Ow cos Ow mz o - - a 

� mz' 

From (8) it follows for each fermion doublet 

(10) 

(11) 

Thus, Z' couplings can be parameterized by seven independent cou­
plings 

(12) 

These variables are useful for either theoretical considerations or fitting 
data of experiments. 

4 Estimates from LEP experiments 

MinD limits on Z' couplings from LEPl and LEP2 have been obtained at 
1 - 2CT CL in [2] . The axial-vector coupling a can be constrained by LEPl 
(through the mixing angle) and LEP2 (e+e- ---+ µ+µ-,  T+T- ) data with 
the maximal likelihood value 

a2 = 1 .3 x 10-5 (13) 

and 2CT confidence level (CL) interval: 

o < a2 < 3.61 x 10-4. (14) 

The electron vector coupling Ve can be constrained by LEP2 data in the 
Bhabha process ( e+ e- ---+ e+ e- ) at 2CT CL interval: 

4 x 10-5 < v; < 1.69 x 10-4_ (15) 

Constrain Vu, Ve, Vt, Vµ , V7 by the widest interval from 2CT CL intervals for 

0 < v�ther < 4 x 10-4 . (16) 
Let us present expected parameters for Z' searching for 

• spin 1 

• charge 0 
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Figure 1 :  Plots for the form-factors given by Eq. (17) .  a) M = 50 GeV 
and c) M = 100 GeV are plots for uu --+ l+l- ; b) M = 50 GeV and d) 
M = 100 GeV are plots for dd --+ l+l- ; mz' = 2.5 TeV. 

• mass mz' :;::: 2 TeV, width fz, = 150 - 200 GeV 

• mixing angle 80 

• coupling g 

• axial-vector coupling constant ii2 = 1 .3  x 10-5 

• vector coupling constant 4 x 10-5 < v; < 1 .69 x 10-4(20" CL) 

These values will serve us as a guide for analysis of experimental data 
obtained at hadron colliders. In what follows, we shall concentrate on 
recent data from LHC. 

5 Z' in the quark-antiquark process 

We begin our consideration with the basic process of quark-atiquark anni­
hilation into lepton-antilepton pairs: qq --+ l+ l - .  Z' contribution comes as 
an interference between / / Z and Z' states. The cross-section is 
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da­di 
(da-) SM 

= di + f1 (M, z) a2 + h (M, z) liiit+ 

+h (M, z) livq + f4 (M, z) vqv1 + . . .  , z = cos B 
( 17) 

where i = (p1+ -pq) 2  is Mandelstam variable, B is the emission angle of the 
lepton z- relative to the quark momentum in the dilepton center-of-mass 
frame; M is dilepton mass. 

In our investigation only uil and dd pairs are taking into account as 
dominant [5] . We also neglect fermions masses since amplitudes are calcu­
lated in the tree-level. All parton-level calculations are performed using 
FeynArts [6] and FormCalc[7] packages. 

As it can be seen from Fig. ( 1 ) ,  the f1 and f2 are dominant . The 
function h is symmetric and its value can be neglected at the low energies. 
The last function f4 requires extra research. These functions behavior 
suggests the idea of asymmetry-like observable. 

6 The observable 

The cross-section is the function of three kinematic variables. We use 
tanh y instead of y. This trick allows us to save angular dependence of 
the cross-section. Integration over Y depends on the magnitudes of the 
form-factors F; but does not matter on their behavior. Fig. (2) shows 
F; as functions of cos B = tanh y for M = 50, 100 150 and 150 Ge V and 
intermediate state pseudorapidities Y < I l j .  

As i t  can be  seen from Fig. (2) the functions F1 and F2 are dominant. 
The function F3 can be neglected for a broad range of M that means 
av,, term is kinematically suppressed. The last term can be neglected by 
constructing an asymmetry. Let us denote 

�i (M, Y) = f
1 
dz F; (M, Y, z) - 1° dz F; (M, Y, z) , lo -1 

:E; (M, Y) = (
1 
dz F; (M, Y, z) + lo dz F; (M, Y, z) , z = tanh y .  lo -1 

( 18) 

Values of the �i are tabulated in the Tab. (1) for dilepton masses M = 
25, 50, 75, 100, 120, 150 and 200 GeV and Z' masses mz' = 1.2 , 2.0, 2.5 
and 3 TeV. Table is presented at the end of the paper. 
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As it can be seen .6.; modula are slightly decreased with mz1 grows. 
Also starting from M = 120 GeV VuVt term can not be neglected. That is 
why we take into account only M < 120 GeV for analysis. Using Eq. (18) 
forward-backward asymmetry can be written as 

(19) 

This asymmetry is our two-parameters observable. It also depends on 
M and Y but they are ignored as integration parameters. We use CMS 
collaboration data for Drell-Yan process forward-backward asymmetry [8] , 
so SM terms can not be discarded. 

7 Z' in the Drell-Yan process at LHC 

At the LHC, the most convenient possibility for detecting the Z' signals 
is Drell-Yan pp ---+ z+ z- process. Our approach is based on tree-level par­
ton scattering amplitudes, so there are no differences between final-state 
leptons. The cross-section of the considered process can be written as the 
parton-level cross-section combined with the parton distribution functions 
(PDFs) 

where fq,p (xq , Q2) is the pdf for parton -q in proton with the momentum 
fraction Xq at the scale Q2 . We use MSTW PDF package[9] . 

This triple-differential cross-section is complete description of the Drell­
Yan process. Experimental data are available with other set of variables. 
In experiments, events are selected using pseudorapidities T/± and mass M 
(or transverse momenta p�) of the final-state leptons. Momentum fractions 
Xq, Xq and Mandelstam variables s, i are expressed as 

M ry++ry_ M _ry++ry_ 
xq = 

v's
e 2 , xq = 

v's
e 2 

A 2 2 2 T/+ - T/- A M2 s = M = 4pr cosh , t = - ( )/2 . 2 1 + e 11+-11-

(21) 

lt is useful to denote Y = (TJ+ + TJ-)/2 - intermediate stare rapidity and 
y = (TJ+ - TJ-)/2 - scattering angle related variable; in dilepton center­
of-mass frame cos (} = tanh y. The kinematics of the lepton pair formation 
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is well-known and can be found in the literature (for example [10] ) .  Using 
these variables, the cross-section is 

03(Jpp-+l+t- � 0(Jqq-+l+t-
8M8Yoz = � fq,p(M, Y)fq,p (M, Y) oz , z = tanh y. 

q ,q 

Applying Eq. (17) to Eq. (22) the cross-section reads as 

(22) 

Note that Y enters PDF factors only, that allows us to neglect the second­
generation quarks [5] . Its values is limited by the detector capabilities and 
conservation laws. 

The functions Fi also depend on the Z' mass mz' and the decay width 
fz, . The model-independent analysis of LEP data showed that mz' � 

1 .2 TeV and fz, = O. l mz' � 120 GeV [ l ,  11] .  On the other hand, recent 
CMS experiments indicated (in model-dependent approaches) that mz' � 
1 .79 TeV. We use these values as starting point. We also suppose that 
fz, = 0.1 mz' · 

To have a hint for constructing an observable in the Drell-Yan process 
we take into consideration the above analysis od the qq -7 z+ z- process. 

8 Data fit 
Observable (19) actually has one additional parameter mz1 • We are going 
to calculate x2 for some given mz' values and apply a x2 -7 min criterium. 
It this way we reduce errors caused by the many-parametric fits. For 
specific experimental data, a suiting value of mz' will be related with 
positivity of a2 parameter and smallness of x2 value. 

We use general maximum-likelyhood method with x2 function 

2 (-2 - - ) - � (A�xp - A�s (a2 , av1 )) 2 
x a ,  av1 - � JA . I I 

(24) 

Since we expect experimental data to be normally distributed, 
l (a2 , av1 ) ex exp [-x2 (a2, av1)] is maximum-likelyhood function. And x2 
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Figure 2: Plots for the form-factors given by Eq. (23) . mz' 
y < 1 1 1 -
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Figure 3: Confidence level areas (26) (yellow - 683 CL, blue -
953 CL) for X�in at mz' = 2.5 TeV. Zero point is a2 = 9.86 x 10-5 and 
av1 = -6.93 x 10-5. 

itself is logarithmic maximum-likelyhood function and its minimum can be 
found from the conditions 

ax2 
aa2 = o, 

The confidence level (CL) areas are obtained from the condition 

2. (-2 -- ) 2 < 2 ( ) X a , av1 - Xmin - XcL,a V ' 

(25) 

(26) 

where X�in is minimum value found from Eq. (25) and X�in :<::; X�L,a(v) is 
chi-squared distribution critical value for v degrees of freedom at a-level 
(CL% = 100(1 - a) ) . 

We obtain min. X�in = 2 .67649 with a2 = 9.86 x 10-5 and av1 = 
-6.93 x 10-5 for mz' = 2.5 TeV. 
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For other values of mz1 wich are local minimums of x2 , the values of 
ii2 become negative. So, the mass mz' = 2.5 TeV is reasonable. 

9 Discussion 

Nowadays, when the LHC is in upgrade stage and the experimental data 
accumulated already at energies up to 7 TeV are reported by the Collab­
oration, it is of interest to apply different methods of the data treating. 
This can open possibilities for discovering new particles in future experi­
ments at higher energies. On the other hand, huge amount of data have 
been accumulated in finished experiments, that also opens perspectives 
for searching for new particles as virtual states. In the present report we 
described the model-independent analysis for searching for the Z' gauge 
boson on the base of the Drell-Yan process and applied it for the LHC 
experiments. In fact, the basic properties of the qq -+ z+ z- process were 
taken into considerations. So, formally, other hadronic initial states can 
be used. This will change the PDF parts of the cross-sections. We showed 
that the forward-backward asymmetry is the most perspective observable 
for detecting the Z' boson. Here, we have to stress that the RG relations 
between couplings of Z' to the SM fermions are key elements of our in­
vestigation. Just due to these relations the kinematics features proper to 
the Z' have been elucidated. These ensure the unique signals of the Z' 
virtual state. On the base of the data for forward-backward asymmetry 
of the Drell-Yan scattering process reported by CMS collaboration [8] ,  we 
estimated the mass and ii2 and iiv1 couplings to the SM fermions. These 
values could be accounted for as guide for future experiments. 

It is also interesting to compare the present results with the ones coming 
from the LEP experiments adduced in Sect.4. We see that the mass of the 
virtual state is increased twice from 1.2 TeV to 2 .5 TeV. The universal 
coupling's maximum likelyhood value ii2 is increased nearly 10 times. One 
of the reasons why the discrepancy appeared may be the fact that in the 
analysis of the LEP data carried out already the order of the Z' coupling 
to the SM fermions was taken be a2 rv 10-2. In contrast, in the present 
analysis any assumptions have been done. Other possibility is the fact that 
here we took into account the results of CMS collaboration accumulated 
at JS =  7 GeV, only. The results may change when a more complete data 
set will be analyzed. 
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Table 1 :  Tabulation of the fl; calculated for different Z' masses 
M, GeV 61 x 10-1 62 x 10-s 64 x 10-9 

mz' = 1.2 TeV 
25 7.579 5 .702 -1 .486 
50 8.829 26.899 - 1 1 .879 
75 19.418 196.365 -69.942 
100 -33. 132 548.646 202.653 
120 -10.290 42.245 86.278 
150 -5. 130 4 .377 57.575 
200 -2.905 -2.338 41 .254 

mz1 = 2.0 TeV 
25 7.629 5.715 - 1 .486 
50 8.869 26.946 - 1 1 .867 
75 19.455 196.510 -69.767 
100 -33.096 548.420 201 .780 
120 -10.252 42 .198 85.737 
150 -5.089 4.387 57.008 
200 -2.857 -2.282 40.529 

mz' = 2.5 TeV 
25 7.639 5.718 -1 .486 
50 8.877 26.955 - 1 1 .863 
75 19.463 196.539 -69. 733 
100 -33.088 548.374 201.604 
120 -10.245 42. 188 85.628 
150 -5.081 4.389 56.895 
200 -2.848 -2.271 40.385 

mz' = 3.0 TeV 
25 7.645 5.719 -1 .486 
50 8.881 26.960 - 1 1. 862 
75 19.467 196.555 -69.715 
100 -33.084 548.349 201 .509 
120 -10.241 42. 183 85.569 
150 -5 .076 4.389 56.833 
200 -2.843 -2.265 40.307 
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Abstract 
We propose a scheme of searches for the Z' gauge boson at mod­

ern hadron colliders. The scheme utilizes model-independent rela­
tions between the Z' couplings to fermions. It includes a prescrip­
tion for integrating the Drell-Yan cross section in the SM Z-boson 
peak region and leads to twcrparametric observables, which are suit­
able for constraining the Z' vector and axial-vector couplings to 
SM fermions in a general phenomenological parameterization with 
non-universal Z' interactions. Also a one-parametric observable for 
searching for the popular leptophobic Z' boson is proposed. 

1 Introduction 

A new heavy neutral vector boson (Z' boson) [1, 2, 3] is a popular scenario 
of searching for physics beyond the standard model (SM) of elementary 
particles in modern collider experiments. Both the Tevatron and LHC 
collaborations try to catch the particle as a resonance in the Drell-Yan 
process. Observing no peak they conclude that the Z' mass is no less than 
approximately 2 .2 TeV [4, 5] if one considers some predefined set of Z' 
models. 

Significant amount of the Tevatron and LHC data is collected at the Z­
boson peak at 66-116 Ge V. At these energies the Z' boson also can manifest 
itself as an off-shell state, as the Z coupling constants are influenced by 

*E-mail:alexey.gulov@gmail.com 
tE-mail:a.kozhushko@yandex.ru 
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the Z - Z' mixing, and these effects may allow to find Z' signals by fitting 
the experimental data. 

In order to select Z' off-shell hints, proper observables have to be in­
troduced to amplify possible signal [6, 7, 8] . The key problem for off-shell 
Z' detection is to maximally reduce the number of the Z' couplings in the 
observable that is used to fit the data. The ultimate scenario assumes a 
one-parametric observable. However, a two-parametric observable can be 
also useful and effective. For example, the strategy to construct observ­
ables driven by one or two parameters was successfully applied to analyze 
the final data of the LEP experiment leading to model-independent hints 
and constraints on Z' couplings [9, 10, 1 1] .  

I n  this paper we investigate possibilities of constructing few-parametric 
observables for the Drell-Yan process taking into account kinematics of the 
proton- (anti)proton collisions and model-independent parameterization of 
the Z' couplings. Here we consider the general case of a Z' boson with 
non-universal phenomenological Z' couplings to fermion generations. We 
conclude that two-parametric observables exist at energies corresponding 
to Z peak, and we obtain all of them. These observables can be used as a 
key to find possible signals of the off-shell Z' boson. Our suggestions and 
results are valid both for the minimal SM and for the two-Higgs doublet 
model (THDM) . 

All calculations in our paper are performed for the Tevatron case (pp 
collision, VS =  1 .96 TeV, corresponding kinematical cuts) . The general­
ization for the LHC case is mostly straightforward. 

The paper is organized as follows. In section 2 we provide all necessary 
information on the low-energy Z' parameterization for our calculations. 
Section 3 contains specifics on Z' contribution to the Drell-Yan process, 
uncertainties, and kinematic variables suitable for hadron colliders. In 
section 4 we construct the observables in a step-by-step manner. In section 
5 we briefly summarize and discuss the obtained results. 

2 Abelian Z' couplings to leptons and quarks 
Being decoupled at energies of order of mz, the Abelian Z' boson interacts 
with the SM particles as an additional U(l) gauge boson. Its couplings to 
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the SM fermions are usually parameterized by the effective Lagrangian: 

�Zµf 1µ [ ( v7� + 15a1�) cos Bo + (VJ + 15aJ) sin Bo] f, 

�Z�hµ [(VJ + ,5aJ) cos Bo - ( v1� + 15a1�) sin Bo] f. (1)  

(Further details on the parameterization can be found in [12 ,  13] .) Here 
f is an arbitrary SM fermion state; aJ and VJ are the Z' couplings to the 
axial-vector and vector fermion currents, respectively; v7� , a1� are the 
SM couplings of the Z-boson; B0 is the Z-Z' mixing angle. The aJ and VJ 
couplings are proportional to the Z' gauge coupling g. 

LzfJ 

Lz'fJ 

This parameterization is suggested by a number of natural conditions: 

• the Z' interactions of renormalizable types are to be dominant at 
low energies rv mz. The non-renormalizable interactions generated 
at high energies due to radiation corrections are suppressed by the 
inverse heavy mass l/mz1 (or by other heavier scales 1/A; « l/mz1) 
and, therefore, at low energies can be neglected; 

• the Z' boson is the only neutral vector boson with the mass '"" mz' . 

At low energies the Z' couplings enter the cross section together with 
the inverse Z' mass, so it is convenient to introduce the dimensionless 
couplings 

_ mz _ mz 
(2) aJ = r:.= aJ, VJ = r:.= VJ, 

v 47rmz' v 47rmz' 
which are constrained by experiments. 

Below the Z' decoupling threshold the effective U(l) symmetry is a 
trace of the renormalizability of an unknown complete model with the Z' 
boson, and it leads to additional relations between the Z' couplings 

vz = v,,1 + 2a, (3) 

where Qu , Qd , l ,  and v1 are an up-type and a down-type quark, a lepton, 
and a neutrino inside any fermion generation, correspondingly, and a is a 
universal coupling constant, which defines also the Z-Z' mixing angle in 
(1) : 

B rv 2_ sin Bw cos Bw mz 
0 rv - a � mz1 

(4) 
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The discussed relations (3) and ( 4) are also true for the THDM case. 
More details on this matter can be found in [14] . The full Lagrangian is 
written out in [15] . 

As a result , Z' couplings can be parameterized by seven independent 
constants a, Vu , Ve, Vt , Ve , Vµ , Vr. These parameters must be fitted in 
experiments. In a particular model, one has some specific values for them. 
In case when the model is unknown, these parameters remain potentially 
arbitrary numbers. 

3 Abelian Z' in the Drell-Yan process 

At hadron colliders the most prominent signal of the Abelian Z' boson is 
expected in the pp or (pp) --+ z+ 1- scattering process. The general idea of 
our approach is equally applicable both for dielectrons and dimuons in the 
final state. To be definite, we shall consider the dimuon case. Specifics 
concerning the dielectron final state are addressed to in [8] . 

The quantities that are directly measured in experiments and used for 
event selection are the pseudorapidities 'T/± and transverse momenta p� of 
the final-state muons. 

We use the cross section in the following standard form: 

ff3crAB 
8M8Y8y 

Cf qq-+µ+µ- (5) 

where Y = (TJ+ + 'T/- )/2 is the well-known intermediate-state rapidity, 
y = (TJ+ -TJ-)/2 is related to the scattering angle in the qij --+ µ+µ- process 
and governs the parton-level kinematics, and M2 = s = (Pµ+ + Pµ- )2 • 
The interacting hadrons are marked with A and B (p or p) , and Fqq is 
the PDF factor for each quark flavor q at the factorization scale µp and 
renormalization scale µR. To access the parton distribution data, we use 
the MSTW 2008 package [16] . The quantity crqq-+µ+µ- is the parton-level 
cross section. All parton-level calculations are performed using FeynArts 
[19] and FormCalc [20] packages. 

Leading Z' contribution to the Drell-Yan process arises from interfer­
ence between diagrams with 1* / Z and Z' intermediate states, resulting in 
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corrections of order of O(?j2) . The cross section reads as 

iTDY iTSM + O" Z' , 
O"z1 a.20"a2 + aveO"avµ + avuO"av,, + VuVµO"v,,vµ + avcO"avc + VcVµO"vcvµ (6) 

Here a and VJ are the couplings defined in (2) ,  (3) , and O"a2 ,  O"av1 , O"v1v11 are 
the numerical factors that depend on M, Y, y .  In this approximation there 
are six independent unknown quantities entering the Drell-Yan process 
cross section. In (6) the factors that include Vu and Ve arise only due to 
contributions of first and second generation fermions, respectively. The 
contribution from the third generation is neglected due to the nature of 
(anti )protons. 

Both the PDF factor and the parton-level cross section are calculated 
in the leading order (LO) in o:5, and iTAB in the LO is obtained in this way. 
The next-to-next-to-leading order (NNLO) QCD corrections are then taken 
into account by multiplying O" AB by the NNLO K-factor, which is calculated 
using the FEWZ 2. 1 software [17] . To take into account the electroweak 
radiative corrections we use running couplings and decay widths, the main 
contribution comes with the running value of the QED coupling constant 
O:QED at the Z-peak [18] . 

We also consider the PDF uncertainties 6.0"PDF in the 90% CL inter­
vals and the uncertainties due to the factorization and renormalization 
scales variation, 6.0" µ · To incorporate the latter uncertainties, we follow 
the common procedure: we set µR = µp = µ and vary µ from v's/2 to 
2v's. 

The cross section then can be written as O"oy ± 6.0"PDF ± 6.0" w 
We note that Y enters the PDF factors only, while y is included into the 

parton-level cross sections only. This is a crucial point for our analysis, as 
it allows us to treat Fqq and O"qq-tµ+µ- separately. Therefore, we can try to 
use any peculiarities in the M-, Y-, and y-dependence of the PDF factors 
and partonic cross sections to suppress some of the numerical factors in 
(6) . It is assumed that all the combinations of the Z' couplings in the cross 
section are of the same order of magnitude. The leptophobic Z' case, which 
seems to be a popular parameterization nowadays, is treated separately in 
section 4. 

In addition to the Z' couplings, there are another two unknown Z' 
parameters that affect 0"0y. These are the Z' mass mzt and decay width 
f z' . The latest data from the CMS and ATLAS indicates that Z' is heavier 
than 2 .27 TeV. This means, that for energies close to the Z peak the O"oy 

110 



dependencies on mz' and fz, can be neglected, assuming that the Z' peak 
is far away from this region. 

The Y and y values that we can investigate are limited by detector 
performance and conservation laws. 

The selection citerium for muons at the DO Collaboration is that the 
muon pseudorapidity must be in the range 177± 1 :::; 2.0 [21] . Therefore, 

IY I :::; 2 .0 .  (7) 

The limits for y are the same as for Y. The CDF case is addessed in [8] . 
This section can be briefly summarized by saying the following: the cross 
section of the Drell-Yan process contains six unknown linear-independent 
terms inspired by Z' boson. The cross section depends on three kinematic 
variables, which will be used in what follows to suppress some of the con­
tributions from the unknown Z' parameters. This will allow us to amplify 
the signal of Z' that is possibly hidden in the Tevatron experimental data. 

4 The Observable 

Of course, the most detailed description of a scattering process is contained 
in the differential cross section. But a possible Z' signal can be washed 
out by the interference between the six independent combinations of Z' 
couplings entering the cross section. In general, integration by kinematic 
variables can leave this situation without changes. We need to pay special 
attention to the integration scheme to reduce the number of interfering 
parameters in order to make a successful data fit possible. This scheme 
must derive benefits from kinematic properties of the cross section. 

4.1 Integrating by Y 
The intermediate-state rapidity Y enters the PDF factors only. Let us 
study the M- and Y-dependence of Fqq(M, Y) in eq. (5) . At any fixed 
kinematically allowed Y value Fqif. is a smooth monotonically decreasing 
function of M. Kinematic properties of Fqif. are different for each flavor but 
independent of Z' properties. So, the Y-dependence of the cross section 
can be utilized to suppress the contributions of the second generation, i.e. , 
the terms with a/iic and VcVµ in eq. (6) . 
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We use the following integration scheme 1Ym 03�DY �1 = dY W(M, Y) 
aYaMa -Ym Y 

with a simple piecewise-constant weight function 

W(M Y) = 
{ A(M) , 0 < IY I -::; Y1 , 

' 1 ,  Yi < IY I < Ym. 

(8) 

(9) 

In eq. (8) �1 denotes the value obtained by the integration of the triple­
differential cross section �DY by Y. In fact, we integrate the PDF factor 
in eq. (5) : 

{Ym 
2 Jo dM W(M, Y) Fq1.J(M, Y) , 

""" F -(M) a2�qiJ--+µ+µ-
. Lt qq 8May q.q 

(10) 

( 1 1 )  

So, in in this subsection we will study FqiJ(M) for different quark gener­
ations. Note, that the Y-distribution for the Drell-Yan cross section is 
symmetric. 

Consider the M values at the Z-peak. Both CDF and DO collaborations 
define limits of this region to be symmetric with respect to the Z boson 
mass. These limits are often set to either 66 GeV -:=; M -:=; 1 16 GeV or 
71 GeV -:=; M -:=; 1 1 1  GeV. In the present paper the former alternative is 
used. Actually, the choice of specific lower and upper limits does not affect 
our results. There are only two general requirements: the limits have to 
be symmetric with respect to mz and large enough so that we could set 
all quark masses to zero. 

In figure 1 the plots for FqiJ(M, Y) versus Y at different M values are 
shown for u, d, c, and s quarks. The relative contributions of second 
generation quarks amount up to 1 13 at M = 66 Ge V and cannot be 
neglected. There is a qualitative difference between the PDF factors for 
the first and second generations. At some energies the factor for u quarks 
is convex for Y close to zero (at somewhat lower energies this is also the 
case for d) . This is due to the nature of a proton. 

For any given M value from the Z-peak region we can adjust the weight 
function in such a way that the factors Fcc(M) and F88(M) amount to less 
than 13 of each of the factors Fuv. ( M) and FdJ.( M) : 

Fcc, s:s(M) -::; O.OlFuv., dJ.(M) (12) 

112 



0.5 I 1.5 
y 

0.014 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

PDF Factors GeV1 M=91 GeV 
d - u  ---- ' .. 

�'�'-';, 
.,.\ 

\ 
-::-.:::.::::::::-�.=�. 

0.5 I 
y 

1.5 

0.010 

0.008 

0.006 

0.004 

0.002 

0.5 I 1.5 
y 

Figure 1 :  Plots for Fqq(M, Y) versus Y at different M values. The uncer­
tainties that arise from the PDF errors and factorization scale variation 
are also shown (see section 3) . 

This is shown on figure 2 (b) . Therefore, the contributions of the second­
generation quarks are suppressed, and Uavc and O-vcv,. are excluded from 
uny. The weight coefficient A(  M) can be determined for several M values 
and interpolated in the Z-peak region. For our specific case A(M) is 
plotted in figure 2 (a) . Here Ym is set to 2.0, and Y1 is 0.75. 

As a result, we obtain the cross section a-1 , which depends on y and M 
and contains four linearly independent Z' terms instead of six: 

Our next step is to use the remaining two kinematic variables, M and 
y, to get rid of another two unknown combinations of the Z' couplings. 

4.2 Integrating by M and y 
The difference of the pseudorapidities, y, enters the parton-level cross sec­
tion of the Drell-Yan process, uqiJ-+µ+µ- ,  only and is irrelevant for the PDF 
analysis. In general, the parton-level cross section depends also on M 
through four 'resonant' functions: 
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Figure 2 :  (a) Weight coefficient A(M) used for integration over the Z-peak 
region. Ym = 2.0, Y1 = 0.75; (b) A plot illustrating the suppression of the 
contributions of second-generation quarks to the Drell-Yan cross section 
in different regions of Ji.,f values and with different integration schemes. 
The plotted values are Fuu, FdJ, and Fee (Fss is not shown on the right 
plot. Because of the utilized integration scheme at some M this PDF 
factor becomes negative, but its absolute value is even smaller than Fee) 
integrated by Y over the region IY I :::; 2.0 with A(M) from figure 2 (a) , 
where Y1 is set to 0. 75. 

1 
fi (M) (M2/m� - 1)2 + r�;mr 

(M2/m� - 1) 
h(M) 

(M2 /m� - 1)2 + f�/m� ' 
, (M2/m�, - 1) f
2 (M) - (M2 /m�, - 1)2 + f�,/m�, ' 

f (M) = M2fzfz, /(m1mz')  + (M2 /m�)(M2 /m� - l)(M2 /m�, - 1) 
3 [(M2/m� - 1)2 + f�/m�] [(M2/m�, - 1)2 + f�,/m�,] 

(14) 

Here mz,z' and f z,z' denote the masses and the widths of the Z and 
Z' bosons. We investigate the energy region close to the Z boson peak. As 
it was noted earlier, in this case we do not care about the specific values of 
the Z' mass and decay widths. But at this point for numerical calculations 
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Figure 3: Plots for the resonant functions, which are given by eqs. 14, in 
the region 66 GeV ::::; M ::::; 1 16 GeV. 

we are going to set specific values for mz' and rz' · Following the recent 
LHC results [4, 5] , we set mz' to 2.5 TeV and assume the decay width to 
be 103 of the mass. Actually, we use some asymptotics of f� and h at 
M « mz' · 

As it can be seen from figure 3, the Ji function is dominant. In the 
discussed symmetric Z-peak region the functions Jz, h are odd-like with 
respect to M = mz, and the function f� is small. As a consequence, after 
integrating by M over the region the functions fz, f� , and h are negligible 
compared to f1 . We are going to use the discussed feature in what follows. 

When investigating the M-dependence of the hadronic cross section 
cr1 , we deal not with the resonant functions themselves, but with their 
products with the PDF factors. The general form of cr1 can be written as 

cosh 2y CT1 - CT1 SM = --4- [a(M) tanh 2y + b(M)] , cosh y 
(15) 

where a(M) and b(M) are some functions that include the unknown cou­
plings a, vu , and vµ- The M-dependence arises from the 'resonant' func­
tions multiplied by Fqq(M) from eq. ( 10) . From the plots in figure 2 
(b) we can conclude that the factors Fqq( M) are smooth, monotonic, and 
slowly-varying in the considered region. Therefore, we stress that all the 
discussed properties of fi , Jz,  f� , and f3 are generally maintained, when 
these functions are multiplied by Fqq(M) . 
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Figure 4: Plots for (a) the Z'-related factors and (b) 0"2 sM from eq. (16) .  
The uncertainty bands are also shown. 

Naturally, f� and h do not enter the SM part 0"1 sM ·  There are four 
factors entering the Z' contribution: O"u 12 , O"u w,, ,  0"1 avu , and 0"1 iiuiiµ (see eq. 
(13) ) .  The factor 0"1 vuv,, does not depend on Ji,  and, therefore, according 
to our discussion of properties of the 'resonant' functions we may eliminate 
it by the straightforward integration by M over the Z-peak region (66 GeV 
::::; M ::::; 116  GeV) . The resulting value is denoted 0"2 : 

J cosh 2y dM (0"1 - 0"1 sM )  = --4- (a tanh 2y + b) , 
cosh y 

0"2 0"2SM + a.20"2 a2 + iiVµO"nv,, + iiVu0"2 avu ' 

a = J dM a(M), b = f dM b(M) . ( 16) 

The factors 0"2sM , O"n2 , 0"2 av,, , 0"2 avu ' and 0"2 vuiiµ are plotted on figure 4. 
It can be seen that 0"2vuv,, is negligibly small compared to the other three 
factors indicating that our assumption is relevant. 

We are not concerned about 0"2 SM at the moment and shall turn to 
investigating the y-dependence of the Z'-related contribution presented in 
eq. (16) . The behavior of the 0"2avu factor is governed by its odd part, 
while the 0"2a2 and 0"2av,, factors are obviously dominated by their even 
parts. From the plots on figure 4 (a) , one can conclude that it is possible 
to suppress one of the three factors by integrating the cross section by y 
over a symmetric region. Remember, that the integration limits for y are 
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the same as for Y. In our case 

-2.0 :s; y :s; 2.0. (17) 

For integration by y we propose the following approach. The weight 
function that we use has a structure similar to the one in eq. (15) : 

w(y) = tanh 2y + k. (18) 

Just like the Z' contribution to CJ2 , this is a sum of odd and even functions 
of y .  Here k is a numerical constant. We will adjust its value so that the 
contribution of one of the remaining three factors becomes negligible when 
integrated by y. 

After the integration we obtain 

(19) 

Note, that due to the symmetric integration region only the even part of 
the function w(y)CJ2 survives. The factors CJgM , CJ;2 ,  CJ�v'" ' and CJ�v,, are 
linear functions of k: 

* 
aavu 
CJ�-avµ 

(3.40 + 63.5 k) pb ± (0.39 + 5.4 k) pb, 
(0.354 - 12.2 k) nb ± (0.003 - 1.2 k) nb, 
(0.468 + 3.89 k) nb ± (0.009 + 0. 17 k) nb, 
(7.12 + 0.802 k) nb ± (0.52 + 0.068 k) nb. (20) 

Let us construct an observable that is suitable for fitting of the axial­
vector coupling a and the coupling to the up-quark vector current, Vu · 
That is, the factor CJ�v'" has to be suppressed. We choose the suppression 
criteria 

l(J;v) < o.01 1CJ;2 1 , l(J;v'" I < o.01 1(J;v,, 1 (21) 

to calculate k in eq. (20) . Overlap of the intervals obtained from the 
upper and lower bounds for factors gives the resulting interval -9.18 :s; 
k :s; -8.55. If we set k = -9 in eq. (20), the resulting observable will 
contain only two unknown Z' parameters: 
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CfgM = -569 ± 48 pb, 
CJ;Vu = -34.5 ± 1 .5 nb. (22) 



Table 1 :  Couplings entering each of the two considered observables, to­
gether with the corresponding values of k, the SM contribution o-8M , and 
the factors 0-�2 , o-�vu ,  and o-�v" . 
couplings k a-8M, pb 
a2 , avu -9 -569 ± 48 

a-;2 ,  nb 
1 1 1 ± 10 

0-�Vu ' nb 
-34.5 ± 1 .5 

a2 , Zifiµ -0. 12 -4.23 ± 0.26 1 .82 ± 0 . 14 suppressed 

o-�v , nb 
suppressed 
7.02 ± 0.52 

This specific observable allows us to perform fitting of the ii and iiu cou­
plings. 

There are two other possible observables in this approach: the one with 
suppressed o-�vu and the one with suppressed a-;2 .  However, the latter case 
cannot be realized in our scheme with suppression factor 0.01 ,  because 
the intervals obtained for the lower and upper bounds from (20) do not 
overlap . Therefore, one has either to require weaker suppression in eq. 
(21) or to narrow down the margin of error reducing the confidence level. 
Furthermore, this observable contains three Z' couplings as opposed to 
two couplings in the case when o-�vu or o-�v" is suppressed. The mentioned 
flaws make this observable less attractive for data fitting, and we refrain 
from discussing it in the rest of our paper. 

In table 1 we present the combinations of couplings that enter each 
of the proposed observables, together with the corresponding values of k 
and 0-�2 ,  o-�vu '  and o-�v" · Note, that we choose certain k values from the 
corresponding intervals. 

The model-independent analysis of the LEP II data [12, 13] resulted in 
obtaining upper bounds for ii2 and iJ� at 95% CL, both of order of 10-4_ 
From figures 4 (a) , (b) and table 1 (see also [15] ) it can be seen that these 
upper bounds are too large, since when substituted into eq. ( 16) they 
lead to a large deviation from the SM, which is not confirmed by any of 
the experimental data. Therefore, we may expect at least some significant 
improvement of the LEP-motivated bounds. 

Neither LEP data nor Tevatron or LHC data shows any explicit indi­
cations of the Abelian Z'. This provides motivation to investigate models 
with the so called leptophobic Z'. In these models Z' boson couplings to 
the SM leptons are strongly suppressed compared to the quark couplings. 
From the Lagrangian in eq. ( 1 )  and the relations in eq. (3) it follows that 
in the leptophobic case v1 , a1 , and aq are small compared to vq, and the 
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leading Z' contributions to the cross section are 

o-ny o-sM + a-Z' , 
0-z' aVuO"avu + VuV1.PvuVµ + aVcO"avc + VcVµO"vcVµ + O(a2 , avµ) · (23) 

After applying all the integrations discussed in section 4, we end up with 
the observable where only the term avuo-�vu survives. This observable is 
one-parametric: 

(24) 

The numerical values are the same as in the second line of table 1. 
Our results obtained for the dimoun case can be easily recalculated 

for dielectrons, taking into account the difference between event selection 
criteria for muons and electrons. 

5 Discussion 

The data analysis performed by the LHC and Tevatron collaborations re­
sulted in setting model-dependent lower bounds on the Z' mass. In that 
analysis only the high-energy region of the Drell-Yan cross section was 
considered. In our paper we present a different approach that allows to 
search for a Z' signal in the pp ---+ z+ z- process at the energies near mz. In 
this region the most important contributions at the Z peak come from the 
Z - Z' mixing angle and Z'-induced contact couplings. The approach uti­
lizes the model-independent relations between the effective Z' couplings. 
Therefore, in case no signal is observed one would still be able to derive 
constraints for different Z' models and compare them to the ones presented 
in [4, 5] . 

We provided the example of how to use the proposed procedure. The 
numerical values of the cutoffs Yi , Ym and k may vary, as they depend 
on specific experimental conditions, e.g. bin structure and available data. 
For example, the Ym value can easily be moved closer to the detector 
coverage limit, and the weighting functions W(M, Y) and w(y) will have 
to be adjusted accordingly, but the general layout, including the qualitative 
form of the weighting functions, will remain unchanged. 

The obtained two alternative observables can be used in fitting the ex­
perimental data on the pp ---+ z+ z- scattering collected by the Tevatron 
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collaborations. This allows to constrain the Z' vector axial-vector cou­
plings to SM fermions. 

In case of the leptophobic Z' boson, there is a one-parametric observ­
able containing the combination of couplings avu . 

There is a large amount of data on leptonic scattering processes col­
lected in the LEP and LEP II experiments. The second observable in 
table 1 contains the coupling combinations a2 and ave that also enter lep­
ton scattering processes. It seems to be attractive for combined fits of the 
LEP and Tevatron data. 
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On the Influence of Crystal Geometry 
on the Efficiency of " Crystal Collimation" 

on the LHC 

Viktor Tikhomirov� Alexei Sytov 
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Abstract 
Future crystal based collimation system of the Large Hadron 

Collider is considered. We reveal that the collimation efficiency 
depends both on the crystal thickness and positive value of the 
miscut angle characterizing nonparallelity of the channeling plane 
and the crystal surface. In both cases the collimation efficiency is 
mostly determined by the number and amplitude of betatron oscil­
lations of particles hitting the crystal the second time and can be 
described in terms of both beam phase space and particle deflection 
angle distribution after the first crystal passage. We demonstrate 
that a crystal thickness optimal for the collimation efficiency exist. 
Additionally, we prove that the miscut angle could considerably in­
crease the inelastic nuclear interaction fraction even in the perfectly 
aligned crystal collimator in the UA9 experiment. 

1 Introduction 
The future collimation system at the LHC based on bent crystals can dras­
tically increase the collimation efficiency in comparison with the traditional 
" amorphous" one [l] , [2] to solve efficiently the problem of halo cleaning 
after the LHC luminosity upgrade. 

In order to investigate the possibilities future LHC crystal based col­
limation system the UA9 experiment was conducted at the SPS [3] . The 

*E-mail:vvtikh@mail.ru 
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Crystal thickness 

Figure 1 :  Parameters affecting the collimation efficiency. 

considerable difference between simulation and experiment was observed. 
The experimental ratio of the nuclear reaction rate at channeling and amor­
phous orientation cases turned out to be equal to 5 .  So, the collimation 
efficiency at the channeling orientation obtained in the UA9 experiment 
was much lower than expected. As we will show below this disagreement 
can be explained in terms of the miscut angle measured between the chan­
neling planes and crystal surface (see Fig. 1 ) .  

In most particle accelerators including the SPS and LHC it  is  possible 
to achieve practically zero angular divergence of the incident beam to the 
crystal. However the miscut angle can greatly influence for collimation 
efficiency. Even if the crystal alignment is perfect a small nonparallelity of 
the lateral crystal surface with atomic planes can become a reason of un­
capturing the particle in the channeling regime in the case of the positive 
miscut angle or of early escape the particle from channeling in the case of 
the negative one. So, too many particles will not hit the absorber imme­
diately and have to hit the crystal again after several turns in accelerator 
causing additional nuclear reaction. 

According to our simulations some particles can pass on the opposite 
side of the crystal after the first crystal passage. We demonstrate that 
some of them can hit the absorber without additional crystal passage. It 
means that the existence of this kind of secondary halo particles can be 
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Figure 2: Particle groups. 

considered as an important factor determining the collimation efficiency. 
Additionally, it is the reason of dependence of the collimation efficiency on 
the crystal thickness (see Fig. 1 ) .  

2 Particle deflection by the crystal at the 
first crystal passage 

In the ideal case all particles hitting the crystal at the channeling orien­
tation will be deflected in the channeling regime by an angle of crystal 
bending. However, in spite of nearly negligible beam angular divergence 
some particles will either not be captured into the channeling regime or 
dechannel before the crystal exit . Depending on the deflection angle all 
the particles deflected by the crystal for the first time can be separated 
into four groups (Fig. 2) .  

1 .  The first one consists of particles deflected by the crystal in the 
channeling regime approximately by an angle of crystal bending and hit­
ting the absorber immediately. As it was mentioned above it is the ideal 
situation. 

2. The second group includes the particles deflected quite enough to 
enter the absorber at the first time as the particles from the previous group. 
In general, these particles pass not full crystal length in the channeling 
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regime but are deflected enough to reach the absorber. 
Both of these groups include good particles that will be absorbed just 

after the first crystal passage. So, these particles are not " interesting for 
us" . However there are particles that will not enter the absorber imme­
diately after the first crystal passage. These particles are included in the 
third and forth groups. 

3. The third group includes particles deflected by either not full-length 
channeling or amorphous-like scattering. These particles acquire suffi­
ciently high amplitude of betatron oscillations for hitting the absorber 
after several turns in the accelerator. However, they have not enough 
initial conditions after the first crystal passage in order to get into the 
absorber immediately. The main interest of such particles is that they 
could pass the crystal again. This can decrease their high amplitude of 
betatron oscillations by cooling. And what is even worth these particles 
can be scattered inelastically. 

4. The forth group combines the particles deflected by either not full­
length channeling or amorphous-like scattering or volume reflection by the 
angles small enough to reach the absorber whenever. So, such particles 
need additional crystal passage for hitting the latter. 

Both of these groups comprise the secondary beam which has to hit the 
crystal again. That is why we should consider the second crystal passage 
in order to investigate the crystal collimation efficiency. 

All of these particle groups will exist at the channeling orientation. 
Depending on some parameters the particle portion in corresponding group 
can vary. These parameters are the miscut angle and particle impact 
parameter of the first crystal hitting. 

Note that particles from the third group and even some particles from 
the forth one can have sufficient amplitude of betatron oscillations to by­
pass the crystal from both sides including the opposite one and, of course, 
they can hit the crystal again. The probability of another crystal hit de­
pends on the crystal thickness because the crystal becomes wider as a 
target with increasing of its thickness for particles hitting it at the sec­
ond time. That is why the collimation efficiency must also depend on the 
crystal thickness. 

As was mentioned above the collimation efficiency is determined by 
the particle second crystal passage in all cases. The problem is at which 
conditions particles can be captured at the channeling regime again or be 
deflected enough for hitting the absorber. This problem should be treated 
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Figure 3: Phase space in accelerator. 

in terms of phase space at the crystal longitudinal position and particle 
deflection angle distribution after the first crystal passage. 

3 Conceptions for treating the second crys­
tal passage 

Consider the phase space in accelerator. It is shown in Fig. 3. Internal 
ellipse (51.3 µrad) separates the fourth and the third particle groups as 
well as the external one (65.7 µrad) bounds the third group. These ellipses 
are defined by equation 

(1) 

where 'Yer = (1 + a;.)/ /3er, CY.er and /3er are the Courant-Snyder coefficients 
at the crystal longitudinal coordinate, x and x' are particle transverse 
coordinate and angle in accelerator respectively [4] . These coordinates in 
phase space vary at different particle revolution and in the ideal case must 
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be random value uniformly distributed on the corresponding ellipse. The 
Courant-Snyder coefficients are constants at the respective longitudinal 
coordinate known for each accelerator. So, just the value A 2 defines the 
size of the ellipse. This value is an invariant equal to the beam emittance. 
It strictly depends on the particle deflection angle ed during the previous 
crystal passage. 

(2) 

where x0 and x� are initial coordinate and angle at the crystal entrance. 
From the Fig. 3 one can see where the ellipses intersect the crystal i . 
e. the hit of the crystal occurs. However, the first crystal hit occurs 
approximately at the maximal coordinate in phase space. This coordinate 
is equal to the corresponding amplitude of betatron oscillations at which 
the crystal " scrapes" the beam at Xcr . The incident angle is expressed by 
Xcr : x� = -CY.crXcr/ f3cr in this case. That's why Eq. (2) can be simplified: 

A2 = x�r/f3cr + f3cre� .  (3) 
So, we should just find the deflection angles to determine corresponding 
zone boundaries. The external boundary of the fourth particle group can 
be obtained from the condition that the transverse coordinate of the bound­
ary of the absorber Xr AL is equal to the amplitude of betatron oscillations 
at the absorber longitudinal coordinate. So, one can conclude that 

A� = XfAL/f3rAL (4) 
and substituting this equation into Eq. (3) , one can obtain the deflection 
angle 

(5) 
where f3r AL is the Courant-Snyder coefficient at the absorber longitudinal 
coordinate. For the UA9 experiment such deflection angle is approximately 
equal to 51 .3 µrad. 

The external boundary of the third particle group can be obtained from 
the condition that the positive deflection angle is sufficient only for particle 
touching the absorber at its boundary XrAL · The coordinate of incidence 
to the absorber xinT AL depending on the transverse particle coordinate xd 
and the deflection angle ed after the crystal passage can be written as: 

xinTAL = xdJ f3rAL/ f3cr(cos !::..'¥ + CY.er sin !::..'¥) + (6) 

+(ed + x'cr)V f3rALf3cr sin !::..'¥, 
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where l:i.1Ji is the difference between absorber and crystal betatron phases. 
Assuming that xd = Xcr for the first crystal passage and putting XinT AL = 
XrAL one can obtain the required deflection angle 

XrAL - XcrV fJrAL/ fJcr( cos l:i.1Ji + O:cr sin l:i.1Ji) 1 ed3 = Vf3TALf3cr sin l:,.1Ji - Xcr · (7) 

This deflection angle is approximately equal to 65.7 µrad for the UA9 ex­
periment. Unlike the external boundary of the fourth particle group the 
one of the third group is not so strict because if the deflection angle ex­
ceeds ed3 but possesses negative sign, the particle will not hit the absorber 
immediately and, thus, will join the third particle group. But the case 
of large negative deflection angle is rather exotic because the volume re­
flection can't produce such considerable angle at the first particle crystal 
passage and the probability of scattering by nuclei by such angle at the 
UA9 crystal collimator length (rv2 mm) and the beam energy (120 GeV) 
is sufficiently small. So, we can consider that at the second crystal passage 
the beam phase space is limited by the external boundary of the third 
particle group. 

What effects are possible at the second crystal entrance? One can 
notice in the Fig. 3 the zone of possible capture in the channeling regime 
restricted by the Lindhard angle, the volume reflection zone and the zone 
of amorphous-like scattering. Here the same value of crystal thickness 
was taken as in the UA9 experiment: 0.5 mm. One can see that at such 
value of crystal thickness most of particle simply scattered during the first 
crystal passage will hit the crystal at the channeling zone because the 
r.m.s. angle of scattering at the crystal length 2 mm (as in the UA9) 
is approximately equal to 25 µrad. The entrance in the channeling zone 
doesn't mean automatic capture in the channeling regime, it only means 
that the entrance in the channeling regime is possible. 

In the case of entrance in the zone of amorphous-like scattering parti­
cle can be deflected in different directions. According to (2) the amplitude 
of betatron oscillations can not only increase but also decrease. It means 
the possibility that some particles can lose their transverse energy and 
have a chance to enter the channeling regime at the next crystal passage. 
Also they can increase their amplitude of betatron oscillations and hit 
the absorber without additional crystal passage. But of course each crys­
tal passage increases the probability of nuclear reaction, that's why the 
amorphous-like scattering is undesirable. 
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Figure 4: Particle distribution in deflection angle after the first crystal 
passage. 

The volume reflection can be useful for particles from the forth group 
that need only small betatron oscillation amplitude increasing in order to 
reach the absorber. 

In all cases the question is how many particles from this or that group 
will enter. In favorable cases the particles with low amplitude of betatron 
oscillations are good for the channeling regime and the particles with high 
amplitude of betatron oscillations are good for straight hit into absorber. 
So, we need the particle distribution in deflection angles after the first crys­
tal passage simulated for the perfect channeling alignment of the crystal 
with zero miscut (Fig. 4) . Vertical lines represent corresponding ellipses 
(that the relationship between them is given by Eq. (3) ) .  One can see that 
most of particles will enter the channeling regime with high probability. 
But considerable part of them possess bad betatron oscillations amplitude 
both for channeling and for the immediate absorber hit. 

All the conceptions in this section can be applied to investigation of 
both the miscut angle and the crystal thickness influence. 
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Figure 5: Phase space in accelerator and particle distribution of deflection 
angles after the first crystal passage. 

4 Crystal thickness influence on the colli­
mation efficiency 

Imagine at first that we have a crystal of infinite thickness. It is clear 
that such configuration cannot be optimal because particles from the third 
group will hit the crystal every time instead of flight from the opposite 
crystal sight directly to the absorber. From the other hand if the crystal is 
very thin many particles will not enter the channeling regime at the second 
crystal passage as we can see from both the phase diagram and deflection 
angle distribution (the initial conditions at the first crystal passage remain 
the same because the particle impact parameter doesn't exceed 0.270.3 
µm) . So, this case also cannot be considered as optimal. That's why we 
can conclude that a crystal thickness optimal for the maximal collimation 
efficiency must exist. 

Which optimal crystal thickness can we expect? In order to answer 
this question we can apply the conceptions of phase diagram and deflection 
angle distribution, shown in Fig. 5. Different possible values of the crystal 
thickness correspond to the maximal coordinates of the ellipses. The latter 
can be defined by the particle deflection angle at the first crystal passage, 
that's why we can connect the crystal thickness and the deflection angle. 
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Figure 6: Dependence of the inelastic nuclear interaction fraction of pro­
tons on the crystal thickness. 

One can see this correspondence in Fig. 5. So, we can conclude that for 
low probability of the amorphous-like scattering the crystal thickness must 
be at least less than 2 mm for the U A9 case in order not to include the 
forth particle group (see Fig. 3) completely. On the other hand it must 
exceed 0.270.3 mm in order to include at least the peak of the deflection 
angle distribution in the channeling zone. The most expected value of the 
crystal thickness is a bit more than 0.3 mm because the ellipses with the 
maximal coordinate exceeding 0.3 mm don't belong to the channeling zone 
completely. 

The dependence of inelastic nuclear interaction fraction of protons on 
the crystal thickness was simulated (Fig. 6) . As we have expected before 
the optimal crystal thickness slightly exceed 0.3 mm and is considerably 
less than 2 mm. If the crystal thickness decreases, the nuclear interaction 
fraction will increase. While we increase it the nuclear interaction fraction 
will also do asymptotically approaching to the value of 0.00162. 
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Figure 7: Distribution of deflection angles after the first crystal passage in 
the case of positive miscut angle of 200 µrad. 

5 Miscut angle influence to the collimation 
efficiency 

The technology of crystals with almost zero miscut is very complicated and 
expensive. But is the miscut angle so important for taking it into account? 
What is better the positive miscut angle or the negative one? 

The first variant seems to be better [5] because the angular divergence 
of the beam hitting the crystal the second time is considerably higher in 
the case of negative miscut than in the case of the positive one (Fig. 7-8) .  
It means that much more particles will enter in the channeling zone (see 
Fig. 3) in the positive miscut case than in the negative one. However, let 
us recall that the particles from the third and edge of the fourth group 
needn't another crystal passage or need only a small additional deflection 
by crystal. Much more of such particles appear in the negative miscut 
angle case than to the positive one. So, each sign of the miscut angle has 
its own advantage. 

We simulated the dependence of inelastic nuclear interaction fraction of 
protons on the miscut angle (Fig. 9) . At small values the positive miscut 
angle provides better collimation efficiency than the negative one. But the 
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Figure 8: Distribution of deflection angles after the first crystal passage in 
the case of negative miscut angle of -200 µrad. 

peaks of the dependence are approximately symmetric w. r. t. vertical 
axis and have approximately the same value. It is also important that the 
nuclear interaction fraction in both peaks is exceeds that at zero miscut 
approximately by a factor of four. Note that the UA9 experiment was 
provided at the miscut of 200 µrad, that is at the worst possible value for 
the collimation according to both our simulations and [6] . So, the miscut 
angle of both signs can considerably increase the nuclear interaction rate 
in the UA9 case in which the collimation efficiency of the positive miscut 
case is practically the same as in the case of negative one. 

6 Conclusion 

Thus, both the crystal thickness and the miscut angle can considerably 
affect the collimation efficiency. In particular, the influence of the latter 
increases the nuclear reaction probability in the crystal collimator up to 
four times. So, one can improve the crystal based collimation system by 
varying the miscut angle. At small values of about 10 µrad the positive 
sign of the latter is much more preferable than the negative one. However, 
the nuclear reaction probability will increase up to four times for both 
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Figure 9 :  Dependence of inelastic nuclear interaction fraction of protons 
on the miscut angle. 

signs of the miscut angle in the widely used 100 µrad region. Thus the 
UA9 experiment was carried out at optimal crystal thickness of 0.370.5 
mm and really unfortunate miscut angle value of 1007200 µrad. 
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Abstract 
In the process of work it has been found that space-time quan­

tum fluctuations are naturally described in terms of the deformation 
parameter introduced on going from the well-known quantum me­
chanics to that at Planck's scales and put forward in the previous 
works of the author. As shown, with the use of quite natural as­
sumptions, these fluctuations must be allowed for in Einstein Equa­
tions to lead to the dependence of the latter on the above-mentioned 
parameter, that is insignificant and may be ignored at low energies 
but is of particular importance at high energies. Besides, some in­
ferences form the obtained results are maid. 

1 Introduction 

The notion " space-time foam" , introduced by J. A. Wheeler about 60 years 
ago for the description and investigation of physics at Planck's scales (Early 
Universe) [ l] , [2] , is fairly settled. Despite the fact that in the last decade 
numerous works have been devoted to physics at Planck's scales within the 
scope of this notion, for example [3]-[22] , by this time still their no clear 
understanding of the " space-time foam" as it is. 
On the other hand, it is undoubtful that a quantum theory of the Early 
Universe should .be a deformation of the well-known quantum theory. 
The deformation is understood as an extension of a particular 

*E-mail: a.shalyt@mail.ru; alexm@hep.by 

137 



theory by inclusion of one or several additional parameters in 
such a way that the initial theory appears in the limiting transi­
tion [23] . 
In his works with the colleagues [24H32] the author has put forward one 
of the possible approaches to resolution of a quantum theory at Planck's 
scales on the basis of the density matrix deformation. This work demon­
strates that space-time quantum fluctuations, in essence generating the 
space-time foam, may be naturally described in terms of the deformation 
parameter o:1 introduced in [24]- [32] , where l - measuring scale. Further it 
is shown that, with the use of quite natural assumptions, these fluctuations 
must be allowed for in Einstein Equations [33] to result in their dependence 
on the parameter o:1 , insignificant and negligible at low energies (i.e. in 
the limit l ---+ oo) but important at Planck's scales l --+ex: lp. 
Actually it is revealed that, if the metrics gµv is measured at some fixed 
energy scale E ,..., 1 / l (as is always the case in real physics) , Einstein Equa­
tions are o:1-deformed, and the known Einstein Equations [33] appear in 
the low-energy limit. However, this aspect may be ignored in all the known 
cases and the corresponding energy ranges because the scale l is very dis­
tant from lp . Two clear illustrations of the high-energy o:1-deformation of 
Einstein Equations are given. 
Some inferences from the results obtained are considered, in particular for 
the cosmological term A. 
This work is a natural continuation of the paper [50] . In [50] it has been 
shown that in particular cases the General Relativity Einstein Equations 
may be written in the o:1-representation, i .e. they are dependent on the 
parameter o:1 • Also, it has been demonstrated that for the indicated cases 
one can derive the high-energy (Planck) o:1 - deformation of Einstein Equa­
tions. Then the question arises whether Einstein Equations are dependent 
on o:1 in the most general case. 
Proceeding from the present work, this question may be answered posi­
tively. 

2 Quantum Fluctuations of Space-time and 
High-Energy Deformation 

In accordance with the modern concepts, the space-time foam [2] notion 
forms the basis for space-time at Planck's scales (Big Bang) . This object 
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is associated with the quantum fluctuations generated by uncertainties 
in measurements of the fundamental quantities, inducing uncertainties in 
any distance measurement. A precise description of the space-time foam 
is still lacking along with an adequate quantum gravity theory. But for 
the description of quantum fluctuations we have a number of interesting 
methods (for example, [34] , [12]- [22] ) .  
In what foll�ws, we use the terms and symbols from [14] . Then for the 
fluctuations ol of the distance l we have the following estimate: 

'lz "' rr z1-7 f'V p ' 

where 0 ::::; 'Y ::::; 1 and lp = (nG/c3) 112 is the Planck length. 

(1) 

At the present time three principal models associated with different values 
of the parameter "( are considered: 
A) 'Y = 1 that conforms to the initial (canonical) model from [2] 

(2) 

B) "( = 2/3 that conforms to the model [34] , [14] compatible with the 
holographic principle [35]-[39] 

'lz � (ll�) l/3 = lp c�) 
1/3

; 

C) "( = 1/2 - random-walk model [21] [22] 

( 
) 

1/2 'lz � (llp) 112 = lp z� 

(3) 

(4) 

But, because of the experimental data obtained with the help of the Hub­
ble Space Telescope [40] , a random-walk model C) may be excluded from 
consideration (for example, see [19] )  and is omitted in this work. 

Moreover, in fact it is clear that at Planck's scales, i.e. for 

l --+ex lp, (5) 

models A) are B) are coincident. 
Using(2)-(4) ,  we can derive the quantum fluctuations for all the primary 
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- -
space-time characteristics, specifically for the time 5t, energy 5E, and met-
rics 

5gµv (formula ( 10) of [14] ) :  

(6) 

It is obvious that all of them are dependent on one and the same dimension­
less parameter lp/l and on the Planck length lp, i .e . on the fundamental 
constants. 
Note also that in fact this parameter is introduced as a deformation param­
eter on going from the well-known quantum mechanics (QM) to a quantum 
mechanics with the fundamental length (QMFL) ,  provided this length lmin 
is on the order of Planck's length lmin ex: lp , as revealed by the author in 
the works written with his colleagues [24] -[32] . Let us recollect in short 
the central idea of the above-mentioned works (pp. 1267, 1268 in [25] ) .  
The main object under consideration in this case is the density matrix p. 
We assume that in QMFL the measuring procedure adopted in QM is valid 
being defined by p. Then 

(7) 

where X is the coordinate operator. Expression (7) gives the measuring 
rule used in QM. However, in the case considered here, in comparison with 
QM, the right part of (7) cannot be done arbitrarily near to zero since it 
is limited by z;,.in > 0. A natural way for studying QMFL is to consider 
this theory as a deformation of QM, turning to QM at the low energy limit 
(during the expansion of the Universe after the Big Bang) . 
We will consider precisely this option. Here the following question may be 
formulated: how should be deformed density matrix conserving quantum­
mechanical measuring rules in order to obtain self-consistent measuring 
procedure in QMFL? For answering to the question we will use the R­
procedure. For starting let us to consider R-procedure both at the Planck's 
energy scale and at the low-energy one. At the minimal length scale l � 
ilmin where i is a small quantity. Further l tends to infinity and we obtain 
for density matrix [24]- [32] : 

Sp[pl2] - Sp[pl]Sp[pl] '::::'. z;,.in OT Sp[p] - Sp2 [p] '::::'. z;,,in/l2 . (8) 

Therefore: 
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1 .  When l < oo, Sp[p] = Sp[p(l)] and Sp[p] - Sp2 [p] > 0. Then, 
Sp[p] < 1 that corresponds to the QMFL case. 

2. When l = oo, Sp[p] does not depend on l and Sp[p] - Sp2 [p] ---+ 0. 
Then, Sp[p] = 1 that corresponds to the QM case. 

The above deformation parameter is as follows: 

(9) 

This parameter is variable within the interval 

(10) 

whereas the density matrix in QMFL becomes deformed and dependent 
on 0:1: p = p(o:z ) , and we get 

(11)  

where p - known density matrix from QM. 
When lmin ex lp , it is cleat that o:1 ex l�/l2 and all the fluctuations above 
'll}gµ., , Jt, JE may be expressed in terms of the deformation parameter o:1 . 
For example, this is the case when the Generalized Uncertainty Principle 
(GUP) [41]-[48] is valid 

( 12) 

and >. is the model-depended dimensionless numerical factor. 
Then, as seen in ( 12) , we have a minimal length on the order of the Planck 
length 

(13) 
Therefore, we obtain 

(14) 

and the factor 4\ is introduced into all of the formula (2)-(8) as soon as the 
fundamental quantities involved are expressed in terms of o:1 . Specifically, 
the most important formula (6) in this case is of the form 

(15) 
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In what follows we assume that a minimal length in a theory - lmin is 
existent no matter how it is introduced, from CUP (12) or in some other 
way. Then the parameter a1 (9) is quite naturally brought about from (7) ,  
(8) . 
With the use of this "coordinate system" the above-mentioned models A) 
and B) of the space-time quantum fluctuations may be " unified" as follows: 

I. The minimal length lmin , similar to cases A)  and B) ,  is intro­
duced at Planck's level 

lmin ex lp. 
II. In both cases fluctuations of the fundamental quantities may 
be expressed in terms of the parameter a1 • 

III. The principal difference between A) and B) resides in the 
fact that in the second case a minimal fluctuati�n of the length 
is dependent on the measuring scale l, (Jminz) = (Jminz) [l] , whereas 
!_n the first case it is completely determined by the minimal length 
5min � lmin • being absolute in its character. 

IV. As noted above, in the high-energy limit, i.e. for 

both models are coincident. 

3 Quantum Fluctuations and Einstein 
Equations 

(16) 

Thus, from the pr�ceding section it follows that in any case we have min­
imal fluctuations 5min (dependent on the measuring scale l or on the en­
ergy E '°'"' ljl) for all the fundamental physical quantities l, t, E, gµv, . . . , 
expressed in terms of the parameter az .  Specifically, we have 

(17) 

Next we make the only natural assumption 
if the metric gµv in General Relativity {GR) is measured at the 
scale l or, that is the same, on the scale of the energies E '°'"' ljl, 
variation of the metric bgµv is governed by its fluctuation (Jgµv) [l] 
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and hence it is dependent on l or, actually, on a.1 

In particular, it can't be arbitrary small as its lower limit is the fixed value 

That means 
(omin9µ11) [a.z] = r;,a.jl2 , 

where K > 0 - some model-dependent factor. 
Obviously, we have 

lim (ogµ11) [l] = lim (ogµ11) [o:z] --+ 0. 
1--+oo a:--+0 

( 18) 

( 19) 

From this it follows immediately that in this case variation of the action 
of oSc in General Relativity [33] is also dependent on o:1 

oSc = (oSc) [a.z] (20) 
and hence Gµ11 = Rµ11 - !Rgµ11 is dependent on 0:1 too: 

G[ad - G [ ] µ11 = µ11 a.1 . (21) 
Then the knowns Einstein tensor 

lim Q[a�] = lim G[�] = G 11 
1--+oo µ a:--+0 µ µ (22) 

and Einstein Equations in the vacuum 

lim G[�] = lim G[a�] = G 11 = 0 
1--+oo µ 

a:--+0 µ µ (23) 

are brought about in the low-energy limit. 
Naturally, the right side of Einstein Equations [33] should be dependent 
on a.1 as 

(24) 
Therefore, Einstein Equations with a nonzero right side are of the following 
form: 

lim Q[ai] = lim (8rr� - Ag ) [ad 
a1 --+0 µv a:--+0 µII µII · (25) 
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Of course, at low energies, i .e .  for 

l » lp (26) 

or, that is the same with a very high accuracy, for 

Ctz ::::::; 0, (27) 

the function of a1 may be disregarded and in this case, with a very high 
accuracy, we can obtain the well-known Einstein Equations 

All the scales (energy) , at which Einstein Equations have been studied 
until the present time, satisfied (26) , (27) , being far away from the Planck 
scale lp ex 10-33cm, and in fact had no a1-dependence. 
But on going to the high-energy limit 

l --+ 2lmin ex lp; a1 --+ 1/4 (28) 

there appears a nontrivial a1-deformation of Einstein Equations, later re­
ferred to as a- deformation 

Q[az] = (87rT - Ag ) [az] µ,v µ,v µ,v · (29) 

Note that from [25] (practically from formula (7) , (8)) we have found: 
with the canonical measuring procedure (7) ,  the minimal length lmin is 
unattainable and a minimal measurable length, denoted as l";;';f�sur , 
is the quantity 

in accordance with (28). 
Consider two examples of the a- deformation of Einstein Equations. 

El.Phenomenological Markov's Model [49] . 
This example is taken from Section 3 of [50] . 

(30) 

Let us dwell on the work [49] , where it is assumed that " by the universal 
decree of nature a quantity of the material density {! is always bounded by 
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its upper value given by the expression that is composed of fundamental 
constants" ( [49] , p .214) : 

c5 n < n - ­" - "P - G2n '  

with {!p as "Planck's density" . 

(31) 

It is clearly seen that, proceeding from the involvement of the fundamental 
length on the order of the Planck's lmin "" lp, one can obtain {!p (31) up 
to a constant. Indeed, within the scope of CUP (12) (but not necessarily) 
we have lmin oc lp and then, as it has been shown in [26] , (12) may be 
generalized to the corresponding relation of the pair " energy - time" as 
follows: 

(32) 

This directly suggests the existence of the " minimal time" tmin oc t p and 
of the " maximal energy" corresponding to this minimal time Emax "" E p . 

Clearly, this maximal energy is associated with some "maximal mass" 

(33) 

Whence, considering that the existence of a minimal three-dimensional 
volume Vmin = z;:,in "" Vp = zi naturally follows from the existence of 
lmin rv lp , we immediately arrive at the "maximal density" {!p (31) but 
only within the factor determined by .A 

Actually, the quantity 

Mmax 
-- = {!max "" (!p .  Vmin 

(34) 

(35) 

in [49] is the deformation parameter as it is used to construct the defor­
mation of Einstein's equation ( [49] ,formula (2) ) :  

R" - �Rc5" = 87rG 
T"(l - s:?r - Ap2n1511 µ 2 µ c4 µ u u µ > (36) 

where n � 1/2, r;-energy-momentum tensor, A- cosmological constant. 
The case of the parameter Pu « 1 or {! « {!p correlates with the classical 
Einstein equation, and the case when Pu = 1 - with the de Sitter Universe. 
In this way (36) may be considered as Pu-deformation of the General Rel­
ativity. 
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As it has been noted before, the existence of a maximal density directly, up 
to a constant , follows from the existence of a fundamental length (31) . It 
is clear that the corresponding deformation parameter p12 (35 may be ob­
tained from the deformation parameter ax (9) . In fact, since ax = l!;n/x2 , 
we have 

0:3/2 = 
l":;,,in ,..._, Vmin x x3 V ' (37) 

where V is the three-dimensional volume associated with the linear dimen-
sion x .  
As ax may be represented in the form [24]-[32] : 

(38) 

Emax ,..._, Ep, and Vmin ,..._, Vp = lj, , then from (33)-(35), (37) , (38) we get 

E/V _ _  (! _ _ �2 P12 '"'"' /V. - - '-'x · Emax min (!max (39) 

Of course, the proportionality factor in (39) is model dependent . Specifi­
cally, if QMFL is related to GUP, this factor is depending on A ( 12) . But 
the deformation parameters p12 and a are differing considerably: the limit­
ing value p12 = 1 is obviously associated with singularity, whereas originally 
(by the approach involving the density matrix deformation [25]-[27] , [32] ) 
no consideration has been given to the deformation parameter a = 1 asso­
ciated with singularity, (formula (30) ) ) .  
So, p12-deformation of  the General Relativity [49] may be interpreted as 
a-deformation. 

E2.Spherically-symmetric horizon spaces [51] . 
As shown in [51] , the Einstein Equation for horizon in this case may be 
written as a thermodynamic identity (the first principle of thermodynam­
ics) : ( [51] , formula ( 1 19)) 

ncf'(a) .i!_d (�47ra2) - � c4da = Pd (471" a3) (40) 471" Gn 4 2 G 3 ' 
� � '--v---" '"--v--"" �T � -� P W  

where a static, spherically symmetric horizon in space-time is described by 
the metric 

(41) 
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and the horizon location will be given by simple zero of the function J(r) 
(J(a) = 0, J'(a) I- 0) at r = a. ( Here r = a  is the radius of a sphere. ) And 
p = r; is the trace of the momentum-energy tensor and radial pressure. 
In Sections 5 and 6 of [50] first the Einstein Equations on horizon (40) 
have been written in terms of the parameter aa , next the high-energy 
(aa -+ 1/4) , C¥a - deformation of these equations has been derived in two 
different cases: equilibrium and nonequilibrium thermodynamics. 
The latter case is distinguished from the first one by the dynamic cosmo­
logical term dependent on aa , appearing with the corresponding factor in 
the right side of high-energy deformed (40) as follows: 

(42) 

4 Comments and Conclusion 

In this way we can conclude that 

Cl) with inclusion of the space-time quantum fluctuations (e.g. , in the 
form of (2) or (3) , we can naturally assume that in the most general case 
of Einstein Equations there is a dependence on the small dimensionless pa­
rameter ai , infinitesimal at normal energies to be neglected but important 
at high energies which are on the order of the Planck energy. 

C2) The parameter a1 is a deformation parameter on going from the 
well-known quantum theory to a quantum theory of the Early Universe 
(Planck's scales)and hence the above-mentioned dependence of Einstein 
Equations on this parameter may be considered as a1 - deformation of the 
General Relativity whose well-known, i.e. canonical, Einstein Equations 
are brought about in the low-energy limiting transition. 

The foregoing results are rather important for better understanding and 
investigation of the cosmological term A, especially in view of the Dark 
Energy Problem [52]-[56] . 
In principle, they may be used to answer the question whether A = canst 
or A = A(t) is a time-variable quantity. 
Despite the fact that the works taking A as A(t), i.e. as a dynamic quan­
tity, are numerous(for example, [57]- [60] ) quite forceful arguments are 
given against this point of view (for example, [61] ) .  
Indeed, according to  the General Relativity, the cosmological term A has 
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been considered constant A = canst as, due to the Bianchi identities [33] , 

(43) 

But in this work it has been demonstrated that, actually, Bianchi identities 
(43) are introduced at the low-energy limit only 

(44) 

Because of this, the really measured cosmological term A in fact is dy­
namic A =  A[a1 (t) ] , practically invariable in the modern epoch, i .e . at low 
energies, due to slow variations of the deformation parameter a1(t) at low 
energies and due to its very small value. 
In the works [62]-[64] a behavior of the term A has been studied reasoning 
from a1(t) on the assumption that it is dynamic, similar to the case proven 
in [62] GUP for the pair of conjugate variables (A, V) , where V is the 
space-time volume, as with the holographic principle applied to the whole 
Universe [65] . The main difference of these two cases is in the leading order 
of expansion A[a] in terms of a. In the first case it is the second 

(45) 

whereas in the second case it is the first 

(46) 

where AP = Aa-+l/4 - cosmological term at Planck's scales. 
As A Hal is practically coincident with the experimental value of the cosmo­
logical term Aexper , a holographic model is preferable - model B) of Section 
2 developed for quantum fluctuations is supported experimentally. 
In conclusion, let us state some important problems of the particular con­
cern: 

A) What is the way to derive, in the most general case and in the explicit 
form, the high-energy (a1 -+ 1/4) a1 - representation or, that is the same, 
the high-energy a1 - deformation of Einstein Equations? 

B) Provided the foregoing representation is derived, is it possible to have 
its logical series expansion in terms of a1? Note that we must allow for 
the following: a1 may be considered continuous with a high accuracy only 
at low energies. Obviously, at high energies it is discrete as the length l 
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is comparable to the minimal length l rx lmin , i .e . in fact to the Planck's 
length l rx lp . 
As noted in point IV of Section 2, on approximation of the Planck ener­
gies, models (A) and (B) for the space-time fluctuations are practically 
coincident . Because of this, we can raise the following questions: 

C1 ) Is there some "critical measure" or "critical index" /crit :/ = 
2/3 < /crit < I = 1 - minimal bound, beginning from which models (A) 
and (B) are practically identical at high energies, between the coefficients 
I =  2/3 and I = 1 in formulae (3) and (3)? If such a " critical index" 
exists, what is it like? This may be of great importance for answering 
the question that concerns the " phase transition" , i .e . the minimal 
energies, beginning from which one should take into account the quantum­
gravitational effects. 

Another but similar problem: 

C2) concerns a minimal bound for a1 (denoted by a/it = z;,,in/z;;t) ,  above 
which models (A) and (B) actually result in the same physics. It is clear 
that the problem at hand is associated with derivation of the correspond­
ing energy: Ecrit '"" l/lcrit · 
And, finally, 
(D) it is interesting how the high-energy a1 - deformation of Einstein Equa­
tions is related to the adequate selection of a model for the space-time 
foam. Is it representing a set of micro worm holes(for example, [3]-[6] ) ,  
micro black holes [7]- [9] or something else? 
The author is planning to answer these questions, at least some of them, 
in his future works. 
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Polarizability of Nucleon 
in Quantum-Field Approach 

V.V. Andreev � N.V. Maksimenko t O.M. Deruzhkova + 

Abstract 
On the basis of the relativistic gauge-invariant approach, the 

solutions of the electromagnetic equations by the covariant method 
of Green functions and the effective Lagrangians the low-energy 
Compton scattering amplitudes are determined. Calculations of 
magnetic and electric quasi-static polarizabilities of spinor parti­
cle were evaluated on the based on matrix elements calculation for 
Compton scattering amplitudes. 

Introduction 

At present there are many electrodynamic processes on the basis of 
which experimental data on hadrons polarizabilities can be obtained. In 
this context, there is a task of covariant determination of the polarizabil­
ities contribution to the amplitudes and cross-sections of electrodynamic 
hadron processes [1] , [2] . This problem can be solved in the framework of 
theoretical-field covariant formalism of the interaction of electromagnetic 
fields with hadrons with account for their polarizabilities. In the papers 
[3]- [6] one can find covariant methods of obtaining the Lagrangians and 
equations describing interaction of the electromagnetic field with hadrons, 
in which electromagnetic characteristics of these particles are fundamental. 
Effective field Lagrangians describing the interaction of low-energy electro­
magnetic field with nucleons based on expansion in powers of inverse mass 
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of the nucleon have been widely used recently [7] . In Ref. [8] on the basis 
of correspondence principle between classical and quantum theories an ef­
fective covariant Lagrangian describing the interaction of electromagnetic 
field with particles of spin is presented in the framework of field approach 
with account for particles polarizabilities. 

In this paper, in the framework of the covariant theoretical-field ap­
proach based on the effective Lagrangian presented in [8] a set of equations 
describing the interaction of electromagnetic field with hadrons of spin is 
obtained taking into account their polarizabilities and anomalous magnetic 
moments. Using the Greens function method for solving electrodynamic 
equations [9]- [12] , amplitude of Compton scattering on the particles of spin 
is obtained with account for their polarizabilities. Structures of the ampli­
tude that are similar to polarizabilities, but are caused by electromagnetic 
interactions, are obtained. The analysis of these structures contributions 
to hadrons polarizability is performed. 

1 The covariant equations of interaction 
of an electromagnetic field with a nucleon 
taking into account polarizabilities 

To determine the covariant equations describing the electromagnetic 
field interaction with nucleon taking into account anomalous magnetic mo­
ments and polarizabilities we use the following effective Lagrangian: 

L = --F Fµv + -W iD - m W - - W  iD + m W 1 1- ( - ) 1- ( - ) 
4 � 2 2 . 

The following notations were introduced: 

� a -;j v ieK µvF. . A� 1J = T/av/ d + - (]" µv + ie , 4m 

(1) 

(2) 

t:- +=--a v a ieK µvF. . A� ( ) 1J = I T/av - 4m O" µv - ie , 3 

T/av = gl7V + : [aF17µF/: + f3FaµF/:] . (4) 

If we substitute expressions (2)-(4) into (1 ) ,  the effective Lagrangian will 
have the form: 

1 µv i ,T. +:;}ff• '1';,T. ·T·A�·T· eK ,T. µv.T•F. K eav (5) L = --FµvF +-'I' u 'l' -ffi'l' 'l' -e'I' 'l' - -'l'O" 'I' µv+ av , 4 2 4m 
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where 

We separate the part related to nucleon polarizabilities in the Lagrangian 
(5) 

(6) 

(7) 

Expression for the Lagrangian (7) is consistent with the effective La­
grangian presented in [13] . Formula (7) is a relativistic field-theoretic 
generalization of the non-relativistic relation 

which corresponds to the polarizabilities of induced dipole moments in 
a constant electromagnetic field [14] . In the case of a variable electro­
magnetic field the signs of polarizabilities in the Lagrangian (in the non­
relativistic approximation) will change [15] . However, the structure of 
tensor contraction in (7) does not change. 

In order to obtain the equations for interaction of the electromagnetic 
field with nucleons, we use the effective Lagrangian (1) and Euler-Lagrange 
equations: ( · 8L ) 8L oµ 8 (oµAv) - 8Av = O, 

0 ( 8L ) - 8L = O µ a (aµw) aw ' 
( 8£ ) 8L 8µ 8 (8µ IJ!) - 81J! = 0. 

As a result we get: 

(8) 
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= -\ileA - !:_ [av (\if,/' Kuv) + ( av\il) 'Y" Kuv] - w �(}µv Fµv · (10) 2 4m 
If equations (9) and (10) above is not limited to members of the second­
order frequency of the radiation, they may be represented as: 

where lJ and D defined in (2) and (3) . Anti-symmetric tensor Gµv in (8) 
is: 

Gµv = - 8L(o:,f3) = 47r [(a: + ,8) (FµSpv - pvepµ) - ,88P F ] (11) a ( aµAv) m P P P µv ' 

where EJPV = � (8pv + evp) .  With the anti-symmetric tensor (11 ) , the 
effective Lagrangian (7) can be represented as follows: 

L(o:,(3) = -�FµvGµv . 
4 

If equations (9) and (10) to limit the contribution of the charge and mag­
netic moment, we obtain the well-known equation given, for example, [12] . 

To identify the physical meaning of tensor Gµv lets use Gordon decom­
position [16] .  Current density jµ of Dirac particles with the help of Gordon 
decomposition can be represented as follows: 

where the notation 
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The components of G6v tensor, which is called anti-symmetric dipole ten­
sor, are static dipole moments of point-like particles. With the help of this 
tensor we can define the current 

In the rest frame of the particle, we have the following relations: 

i i i 'k m = -E J Go ·k 0 2 J ' Ji - GiO 
Uo - . 

Components 4-dimensional current can be defined by the dipole moments 

The Lagrangian of the interaction of electromagnetic fields with a charged 
particle with a static dipole moment is: 

L - ·µA l Gvµ F I - -Je µ - 2 O vµ - (12) 

By using Lagrangian (12) , and the Lagrangian L = -iFµvpµv of the form 
based on the Euler-Lagrange equations, we get 

In relativistic electrodynamics is introduced tensor similar to induced 
dipole moments [17] . The current density and moments are expressed 
through cµv the following 

Relations (13) satisfies the tensor form: 

i mµ = -Eµvpa G u 
2 vp a · ( 13) 

In the quantum description of the structural particles induced dipole mo­
ments pass to the operator form [18] : 

�µv . 
(; = -

2
� [ ( dµ av - dv aµ) + Eµvpa mp a a] , 
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Gµv 
= 2� [ (8vJµ - aµJv) + Eµvpcr8 crmp] ' 

where Jµ and mµ - operators of the induced dipole moments, which are 
dependent on the electromagnetic field tensor. If you require that the 
low-energy theorem for Compton scattering, then these operators can be 
defined as --::::,µ,v mµ = 47r/3F "iv · 

Thus, the expression (11)  is anti-symmetric tensor of the induced dipole 
moments of the nucleon. In this case, the interaction Lagrangian is defined 
as follow 

L - ·µA 1 GµvF 1 Gµvp I - -Je µ - 2 O µv - 4 µv, 
which implies the Maxwell equation of the form: 

2 Covariant representation of the amplitude 
of Compton scattering on the nucleon, 
with input from the polarizabilities 

We define the contribution of electric and magnetic polarizabilities of 
the amplitude of Compton scattering. To do this, use the method of 
Green's function [10]-[12] .  We represent the differential equation (9) , which 
will take into account the contributions of the polarizabilities in integral 
form: 

w (x) = w<0l (x) + J SF (x - x') v(a,{3) (x') dx', (14) 

where v<a,f3) (x') = -� [av (Kcrv (x') 1"1l1 (x')) + Kcrv (x') 1"8vw (x')] . 
We define the matrix element S1; of the scattering of photons on a 

nucleon. To do this, we turn (14), w�:2) (x) when t -+ +oo we use the 
relation 

J-(r2) ( ) ( ') 3 I ( .) -(r2) ( ') W p2 X SF X - X d X t-++oo = -z W P2 X , 

where 
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As a result, we get : 

S1; = ( -i) j \lf�2) (x') V(a,,B) (x') d4x' . (15) 

Using the boundary conditions and the symmetry of the cross, the expres­
sion ( 15) can be represented as: 

( 16) 
Integrating by parts and using the definition of the electromagnetic field 
tensor in ( 16) we get: 

- 27ri J [( ) ( (2) . µv (l) µv) eer 
S Ji - -:;;;- a + /3 Ferµ F(1) + Ferµ F(2) (21)v + 

(17) 
If we consider the wave functions of the nucleon and the photons in the 
initial and final states, the expression ( 17) takes the form: 

( 18) 

where in M in the amplitude ( 18) is as follows: 

M = :  u(r2) (P2) (a + /3) { [k2ei.X2) - k2µe<.X2)] [ki (e(.Xrlp) - (k1P) e(.Xi)µ] + 

+ [k� (e(.X2lP) - (k2P) eC.X2)µ] [k1ei.Xr ) - k1µe<.Xr)J } + 

+m/3 [k2µe�.x2) - k2vei.x2>] [kie(.Xr)v - kr eC.Xi)µ] uCrr) (pi) . ( 19) 
We now define the amplitude ( 19) in the rest frame of the target and limit 
in M members are not higher than the second frequency radiation. In this 
case, we have [19] : 
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If the amplitude of M along with the contribution of the polarizabilities 
a: and (3 take into account the contribution of the electric charge, then M 
can be represented as follows: 

M = x(r2 l+ [ (-� + 47rw2o:) (et(.\2 let(>" l ) + 

(20) 
Differential Compton cross section, for example at an angle e = 0 , com­
puted using (20) has the form [19] : 

h e2 w ere O:e = 47r . 

dO" ( O:e ) 2 O:e ( 2 
drl 

= 
m 

- 2 
m 

a: + (3) w ' 

3 Quasi-static polarizability of particles 
spin � in QED 

We find the quasi-static polarizability structureless fermions, which ap­
pear in the Compton scattering due to higher orders. In general, the AKP 
T forward (B = 0) and backward (B = 7r) up w2 can be written as: 

>..' a' 2 T.\,; (B = 7r) = 8Jrm1w (o:E - f3M) A.8-.\ybr;,-r;' · 
On the other hand it is possible to calculate the matrix elements, respec­
tively, the amplitude of Compton scattering in the framework of QED, 
including next to the Born-order perturbation theory in the coupling con­
stant O:QED (see, e.g. , [20] , [21] ) .  In [22] developed a method of calculating 
the polarizabilities of fermions in the framework of quantum field models 
and theories by comparing the corresponding matrix elements. The out­
come of this procedure in this case is the ratio: 

q-s (3q-s O:�ED 1 1  So:�ED l 2w 
a + = -- - + --- n -E M 37rm} 6 37rm} m/ 
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where the parameter A is an infinitely small mass of the photon. 
As follows from (21) and (22) in addition to the quasi-static polariz­

ability of the permanent members and contain non-analytic terms ""' ln w, 
which differ in the Thomson limit w --+ 0. This property was the reason 
that the work [23] , [24] structure (21) and (22) were identified quasistatic 
polarizabilities. From (21) and (22) it is easy to find the electric (o:'r8) and 
magnetic (/3'J;;8) quasi-static polarizability and assess their contribution to 
the polarizability of the " Dirac" proton (point of zero fermion anomalous 
magnetic moment) :  

The experimental values [25] : 

o:'rs + /3'J;;8 = (13, 8 ± 0, 4) · 10-4 Fm3. 

Numerical estimates are consistent with estimates of [26] . 

Conclusion 

(23) 

(24) 

In the framework of the gauge-invariant approach we obtain the covari­
ant equations of motion of a nucleon in the electromagnetic field, taking 
account of its electric and magnetic polarizabilities. Based on the deci­
sion of electrodynamic equations of motion of the nucleon obtained by 
the Green's function, it is shown that the developed covariant formalism 
of Lagrange interaction of low-energy photons with nucleons is consistent 
with the low-energy theorem of Compton scattering. Based on an original 
technique reproduced the known result for the combination of quasi-static 
polarizabilities o:'rs + /3'J;;8 in QED framework and obtain a new expression 
for o:'r8 - f3'J;;8 •  The apparent advantage of method of defining "polariz­
abilities" referred to in Section 3, is its relative simplicity. This approach 
opens up more opportunities for the study of the internal structure of 
nucleons and can be applied in various quantum field theories and models. 
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Numerical Investigation of Bound 
Relativistic Two-Particle Systems with 

One-Boson Exchange Potentials 

Yury Grishechkin� Valery Kapshai t 
Francisk Scorina Gome! State Univerity, Gome!, Belarus 

Abstract 
In this paper numerical solutions of quantum field theory equa­

tions describing bound s-state systems of two particles are found in 
the cases of different variants of one-boson exchange potentials. The 
masses of particles are supposed to be equal and the mass of the ex­
change boson is equal to zero. Decay widths of fermion-antifermion 
bound system into two photons are calculated on the basis of so­
lutions found. Comparison of the obtained energy spectrum and 
decay widths with experimentally measured values for positronium 
is carried out. 

1 Introduction 

Quantum field theory two-particle equations of the quasipotential type 
were obtained in the momentum representation (MR) in the integral form 
[1 ,  2] . Later for these equations the relativistic configurational representa­
tion (RCR) was found [3] , it is actually the relativistic generalization of the 
quantum mechanical coordinate representation. One of the advantages of 
the RCR over the MR is transparency of physical meaning of potentials in 
the equations. For instance, form of the potential in the RCR may indicate 
the existence of bound states or resonance states by analogy with quantum 
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mechanics. Moreover, the elastic form-factors and the decay constants in 
the terms of wave functions have the simplest form in the RCR [4, 5] . 

In this paper we consider numerical solutions of relativistic integral 
equations describing bound s-states of two spinless particles and systems 
of two particles with spin 1/2 in the cases of one-boson exchange potentials, 
which were obtained in the framework of different variants of quasipotential 
approach in quantum field theory. Decay widths of the particle-antiparticle 
bound state system into two photons are calculated on the basis of obtained 
solutions. Comparison of the energy spectrum and decay widths found 
with experimentally measured values for positronium is carried out. 

2 Relativistic two-particle equations 
Relativistic two-particle equations for bound s-states in the MR have the 
form [1 , 2] (Ep = vm2 + p2, Ek =  vm2 + k2 , p = IP I , k = lk l ) 

2>.m2 100 dk E;¢(2E, p) + -- V(2E, p, k)1f;(2E, k)- = E21j;(2E, p) , 
7r o Ek 

2>.m2 la00 dk 2Ep1/J(2E, p) + -E V(2E ,p, k)1f;(2E, k) -E = 2E¢(2E, p) , 7r p 0 k 

( 1 )  

(2) 

where ( 1 )  - is the Logunov-Tavkhelidze equation, (2) - is the Kadyshevsky 
equation. The value 1f;(2E, p) - is the wave function, m - is the mass of each 
particle, 2E - is the two-particle system energy (0 < 2E :::; 2m) , >. - is the 
coupling constant, V(2E, p, k) - is the relativistic potential which in the 
most common case depends on the system energy 2E and spin variables. 

The normalization conditions of wave functions have a rather cumber­
some form for energy dependent potentials [6] . In the s-states case these 
conditions have the form 

f00 dp m 1f;2(2E, p) - I = 1 lo Ep 
- for the wave function of equation ( 1 ) ,  

� fo00 dp1/J2 (2E,p) - I =  1 
- for the wave function of equation (2) , where 

2>.m3 r= dp r= dk [) I = KE lo Ep1/J(2E, p) lo Ek 1/J(2E, k) 8(2E) V(2E, p, k) .  

166 

(3) 

(4) 

(5) 



To find the two-particle equation form in the RCR let us write equations 
(1 ) ,  (2) as 

_ -2>.m (j) 100 dk 1/Jui (2E, p) - -- G (E, p) -E V(2E, p, k)'lj;(2E, k), n o k 
(6) 

where the Green function are introduced for the Logunov-Tavkhelidze 
equation (j = 1) and the Kadyshevsky equation (j = 2) :  

( 1) ) - m . G (E, p - E2 - E2 ' p 
(7) 

We also consider the modified Logunov-Tavkhelidze equation (j = 3) and 
the modified Kadyshevsky equation (j = 4) ,  for which Green functions 
have the following form 

Q(3l (E ) - Ep . , p  - E2 - E2 ' p 

(4) - 1 
G (E, p) - 2E - 2E ' p 

(8) 

The values in equations (6) are associated with the respective values in 
the RCR by expressions 

1/J(j) (w, r) = fo00 dx sin(xmr)1/JuJ (2E, m sinh x) , (9) 

-2 100 %J (w, r, r ') = -;- sin(xmr)G(J) (2E, p) sin(xmr ')dx, (10) 
0 

V(2E,p, k) = fo00 dr sin(xmr)V(2E, r) sin(x 'mr) , (11)  

where x - is  the rapidity connected with the momentum p by the relation 
p = m sinh x (k = m sinh x ') ,  quantity w is connected with energy by 
2E = 2m cos w (0 :S w < n/2) ,  r - is the modulus of radius-vector in the 
RCR. Expression ( 11 )  is valid for RCR-local potentials V(2E, r) .  In the 
nonlocal potential case this expression has more complicated form [3] . 

Taking into account formulas (9)- (11) equations (6) can be converted 
into the two-particle equations in the RCR [7] 

1/J(j) (w, r) = >.m fo
00 

dr 'gu) (w, r, r ')V(r ') 1/JuJ (w , r ') , ( 12) 

in which we will consider the energy independent potentials only (V(r) = 
V(2E, r)) .  
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Substitution of (7) , (8) into formula (10) and subsequent calculation of 
integrals gives the explicit form of the Green functions in the RCR 

where [7] 

%l (w, r, r ') = %J (w, r - r ') - %J (w, r + r ' ) ,  (13) 

( ) -1 sinh[(7r/2 - w)m r] 
g(l) w, r = m sin 2w sinh[7r m r/2] ( 14) 

( ) 
(4m cos w)-1 1 sinh [(7r - w)m r] 

g(2) W, T = cosh[7r m r /2] m sin 2w sinh[7r m r] 

( ) -1  cosh[(7r/2 - w)m r] 
g(3) w, r = 2m sin w cosh[7r m r/2] 

( ) -1 sinh[(7r - w)m r] 
g(4) w, r = 

[ ] 2m sin w sinh 7r m r 

It is easy to see that the non-relativistic limit for all four relativistic Green 
functions (13) (m --+ oo, w --+ 0) gives the Green function of Schrodinger 
equation in ordinary coordinate representation. 

Since we consider the energy independent potentials only the RCR only 
then normalization condition can be written in the form 

( 15) 

which is analogous to the non-relativistic one. 

3 One-boson exchange potentials 

Let us consider solving of equations in the momentum representation ( 1 ) ,  
(2) and in the RCR (12) with several variants of potentials. 

One of the first potentials describing the interaction of two scalar par­
ticles which was obtained in the framework of the quasipotential approach 
is the expression [2] 

1 V(2E, 
p, k) = IP - kl (Ep + Ek + IP - kl - 2E) . (l5) 

It should be noted that this potential was obtained on the basis of the 
diagram technique of the Hamiltonian formulation of quantum field theory. 
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The partial expansion of potential (16) by Legendre polynomials leads to 
the following expression in the s-wave case: 

1 (Ep + Ek + IP - k l - 2E) V(2E, p, k) = 2 log Ep + Ek + p + k - 2E . (17) 

In article [8] one-boson exchange potentials were found on the basis 
of two the scalar particle system's retarded and causal Green functions 
calculation: 

where 

(Ep + Ek + IP - k l - 2E) V,.et(2E, p, k) = A(2E, p, k) log Ep + Ek + p + k _ 2E 
( Ep + Ek + 

I
P - k l ) 

+B(2E, p, k) log E E k p + k + P + 

+C(2E, p, k) (EP + Ek� lp - k l - Ep + Ek
1
+ p + k

)
' 

(18) 

A(2E, p, k) EpEk _ E 
2E2 , B(2E,p ,  k) = 1 - EP + Ek - A(2E ,p, k) ; 

C(2E,p, k) (Ep - E) (Ek - E) 

and 

Vc(2E, p, k) 

E 

(Ep + E) (Ek + E) V. (2E k) 4E E ret , p, p k 

+ (Ep - E) (Ek - E) V. (-2E k) . 4E E ret , p, p k 

(19) 

Potentials of two fermion interaction were obtained in article [9] in the 
cases of different values of total spin and total angular momentum of the 
system as coefficients of the expansion of three-dimensional potential [10] 
into spherical spinors. In the case when system's spin is equal to zero the 
potential has the form 
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If the total spin is equal to one the potential has the form [9] 

= _l_ [p (2E k) lo (EP + Ek + IP - kl - 2E) 
6m2 1 ,p, g EP + Ek +  p + k - 2E 

( J2EpEk + 2m2 - p2 _ k2 
+F3(2E, p, k) arctan 

IP _ k l 
J2EpEk + 2m2 - p2 - k2) - arctan �--------

p + k 

+F2 (2E,p , k) log (EpEk + m: - pk)] ' EpEk +m  + pk (21) 

where the following notations are introduced 

F1 (2E, p, k) = 4 2p2k2 - (EpEk + m2) (p2 + k2 - (Ep + Ek - 2E)2) + p2 + k2 - (Ep + Ek - 2E)2 - 2 (EpEk + m2) 
+2EpEk + m2 , 

4 p2k2 - (EpEk + m2)2 

The potential for pseudoscalar fermion-antifermion bound state was 
found in article [ ll] and in the case of scalar boson exchange has the 
following form 

where 

V(2E,p, k) = (22) 

= (b(2E, p, k) + �) lo (EP + Ek +  IP - kl - 2E) + a(2E, p, k) 
8m2 2 g Ev + Ek + p + k - 2E 8m2 ' 

a(2E, p, k) 
b(2E, p, k) 

(2E - Ev - Ek) ( IP - kl - (p + k)) - 2pk, 
4m2 + (2E)2 - 4E(Ev + Ek) · 

Potentials (17)- (22) can not be converted into the RCR in the form 
of analytical expressions for arbitrary energy value. That is why we con­
sidered the solution of equations in the RCR (12) for more simple energy 
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independent one-boson exchange potential which has in the RCR and in 
the MR the forms [3] : 

V(r) = 
_ cosh�7f - a)mr

; V(p, k) = � log (EpEk - pk - m2 cos a)
, r smh 7fmr 4 EpEk + pk - m2 cos a 
(23) 

where parameter a is connected with the boson exchange mass µ as cos a = 
1 - µ2 /2m2 . In what follows we consider the case µ = 0 .  Potential (23) 
was obtained on the base of using the quasipotential equation for scattering 
amplitude which is supposed to be given by Feynman diagrams. In the MR 
potential (23) is singular at p = k. Thus solving equations ( 1) , (2) for (23) 
is much more difficult problem than solving equations ( 12) in the RCR. 

It is not difficult to see that the non-relativistic limit ( m -t oo) of 
expressions ( 16) - (23) gives the Coulomb potential ( lim 2E = 2m- r;,2 /m, m-+oo 
where K > 0) . 

4 Numerical methods of solving 

Simple analysis of the wave functions and potentials in the MR ( 17) -
(22) at k -t oo  at fixed p (or at p -t oo  at fixed k) shows that integrals in 
equations ( 1 ) ,  (2) converge which makes solving of these equations possible. 

To solve integral equations ( 1 ) ,  (2) we used quadrature method [12] 
after reducing the half-infinite integrate interval to finite one 0 ::; x < 1 by 
replacing the variable p/m = Cx/( 1  - x) . Selecting the parameter C > 0 
influences the convergence rate of numerical results to the exact ones at 
increasing number of nodes. 

All considered kernels of integral equations in the MR contain the mod­
ule of variable difference IP - kl ,  which slows down the convergence of ob­
tained results to the exact ones. Therefore the rectangle quadratures with 
the number of nodes N and 2N were used. Then the Richardson extrap­
olation process [12] was applied to the obtained solutions: wave functions 
'I/JN, 'l/J2N and eigenvalues energy 2EN, 2E2N 

that allowed to obtain more accurate results. 
Solutions of equations in the RCR (12) were found by using the compos­

ite Gauss quadrature method after replacing the infinite limit of integration 
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by a large value R: the integration interval was range into N small pieces, 
to which the Gauss quadrature formula for M nodes was then applied [12] .  

There are nonlinear eigenvalue matrix problems for 2E after reduc­
ing the integral equations to the homogeneous systems of linear algebraic 
equations. To solve these problems the iteration method was used [13] . 

5 Results 

Solutions were obtained for >. equals to the fine structure constant: >. = 
7.2973525698 x 10-3 [14] . In figure 1 the wave functions are shown which 
were found at solving the Logunov-Tavkhelidze equation with potential 
(19) for C = 0.005 and N = 1000. The number of curve is equal to the 
state number n . Figures of wave functions in the other cases have a similar 
form. Therefore we do not show them. It can be understood from figure 1 
that the number of wave functions zeros is equal to the state number. 

'I' 
40 : :  
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'. 1 ' I 
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2 

0.006 0.008 0.01 0.012 plm 

Figure 1 :  The wave functions for Logunov-Tavkhelidze equation with po­
tential ( 19) 

The results for dimensionless and multiplied by 105 binding energy 
2E/m - 2 of the first four states are represented in Table 1. The energy 
values obtained by llichardson extrapolation (24) of results found for N 
and 2N are given in the columns under each N: C = 0.01 for potentials 
(17) - (21) , C = 0.005 for potential (22). 

It should be noted that to achieve the best accuracy, we chose small 
values C (about 0.01). As seen in figure 1 this is due to the fact that the 
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wave functions change is the fastest at small p/m (p/m � 0.005) . 
Table 1 

Binding energy ( 2E / m - 2) x 105 
Logunov-Tavkhelidze equation Kadyshevsky equation 

v n N = 1600 N = 3200 N = 1600 N = 3200 
1 -1 .266331 -1 .266331 -1 .266300 -1 .266300 

(17) 2 -0.300378 -0.300377 -0.300374 -0.300374 
3 -0.124168 -0. 124168 -0. 124167 -0. 124167 
4 -0.064003 -0.064003 -0.064003 -0.064002 
1 -1 .266454 -1 .266453 - 1 .266423 -1 .266422 

(18) 2 -0.300397 -0.300397 -0.300394 -0.300393 
3 -0. 124174 -0. 124173 -0. 124173 -0. 124173 
4 -0.064005 -0.064005 -0.064005 -0.064005 
1 -1 .266515 -1 .266515 -1 .266484 -1 .266484 

(20) 2 -0.300402 -0.300402 -0.300399 -0.300398 
3 -0.124174 -0.124174 -0. 124173 -0. 124173 
4 -0.064005 -0.064004 -0.064004 -0.064004 
1 - 1 .266361 - 1 .266361 -1 .266331 -1 .266330 

(22) 2 -0.300381 -0.300381 -0.300377 -0.300377 
3 -0. 124168 -0. 124168 -0.124168 -0. 124168 
4 -0.064003 -0.064003 -0.064003 -0.064003 

N = 800 N = 1600 N = 800 N = 1600 
1 -1 .266396 -1 .266392 -1 .266365 -1 .266361 

(19) 2 -0.300391 -0.300387 -0.300388 -0.300384 
3 -0. 124175 -0. 124171 -0. 124174 -0. 124170 
4 -0.064008 -0.064004 -0.064007 -0.064004 
1 -1 .266437 -1 .266432 -1 .266406 -1 .266402 

(21) 2 -0.300397 -0.300393 -0.300394 -0.300389 
3 -0. 124176 -0. 124172 -0. 124175 -0. 124171 
4 -0.064008 -0.064004 -0.064008 -0.064004 

Transition frequencies of the two-particle systems from the second state 
(first excited state) to the first state (ground state) are calculated based 
on the energy values obtained. These frequencies are given in Table 2. 
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Table 2 
Transition frequency, MHz 

v Logunov-Tavkhelidze equation Kadyshevsky equation 
N = 1600 N = 3200 N = 1600 N = 3200 

( 17) 1 193521990 1 193521987 1193488134 1193488121 
(18) 1 193649720 1 193649714 1 193615764 1193615758 
(20) 1 193719570 1193719559 1193685433 1193685431 
(22) 1 193555894 1193555835 1 193521981 1193521930 

N =  800 N = 1600 N =  800 N = 1600 
(19) 1 193585705 1 193585495 1193551800 1193551589 
(21) 1 193629089 1193628884 1193595151 1193594932 

The experimentally measured transition frequency for the orthopositro­
nium is equal to 1233607216.4(3.2) MHz [15] . Its comparison with the fre­
quencies from Table 2 shows that the solutions found for potentials ( 17)­
(22) are in satisfactory agreement with the experimental value. It should 
be noted that, since the orthopositronium - is the system with total spin 
one, it is preferable to compare the experimental value of the transition 
frequency with the results obtained for potential (21) than for the other 
potentials. Vve will carry out more detailed discussion of these results after 
investigation the decay widths. 

Now let us consider solutions of equations in the RCR ( 12) . The method 
of solving has been tested in the case of the modified Logunov-Tavkhelidze 
equation with potential 

V(r) = - tanh(7rmr/2)/r, (25) 

which allows the exact solutions [16] and which has similar to (23) asymp­
totic at large r. The exact energy quantization condition in this case has 
the following form 

2En = V4m2 - A.2/n2 , n = l , 2 ,  . . .  (26) 

It is easy to see that potential (25) is the difference of two one-boson 
exchange potentials (23) at µ = 0 and µ = 2m. Moreover, expression 
(25) is the Coulomb potential in the RCR. In Table 3 we represent the 
transition frequency between energy levels obtained by solving equations 
(12) with potentials (23) , (25) and potential r-1 . 
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Table 3 
Transition frequency, MHz 

J N r-1 tanh( Jrmr /2) r-1 coth(Jrmr) r-1 
400 1233673256 12336956443 12336886274 

1 800 1233673569 12336954153 12336880641 
400 1233651095 12336734637 12336664665 

2 800 1233651664 12336735112 12336661596 
400 1233708292 12337306742 12337236596 

3 800 1233701226 12337230675 12337157181 
400 1233682565 12337049503 12336979345 

4 800 1233679188 12337010316 12336936813 
The transition from the first state to the ground one frequency obtained by 
exact solution of the Schrodinger equation with the Coulomb potential is 
12336907360 MHz. The transition frequency calculated on the basis of the 
energy quantization condition (26) is 12336958685 MHz. Comparison all 
these results shows that the best agreement with the experimentally mea­
sured value gives the result obtained by solving the Kadyshevsky equation 
with potential (25) . 

6 Decay width of two-particle systems 

Let us use the obtained numerical wave functions to find another quantity 
which experimental value is known - the decay width (the decay proba­
bility) of parapositronium into two photons. The decay width of fermion­
antifermion system into two photons was obtained in the framework of 
the quasipotential approach in article [5] based on the amplitude of this 
process and has the form: 

r =  
8:_>.2 l l� � 1og (Ep:P}r(2E, p) J

2 
= 4::2 1!7/l(w, r) ll=O· 

(27) 

It is more correct to calculate the decay widths for potential (22) describing 
the fermion-antifermion system than for the other potentials. However, we 
found these quantities for all considered here potentials except (21) . Cal­
culated decay widths are represented in table 4. To find the integrals in 
(27) the same quadratures were used as at solving the equations. For po­
tentials (17) - (19) calculations were carried out at C = 0.005, for potential 
(20) at C = 0.015, and for potential (22) at C = 0.01. 
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Table 4 
Decay width for parapositronium r, µs-1 

v Logunov-Tavkhelidze equation Kadyshevsky equation 
N = 1000 N = 2000 N = 1000 N = 2000 

(17) 71 17.719 7117.730 7103.877 7103.883 
(18) 7148,564 7148,592 7131,901 7131,915 
(19) 7130,939 7130,953 71 16,073 7116,081 
(20) 7196,282 7196,448 7172,333 7172 ,449 
(22) 7136,326 7136,399 7120,028 7120,077 

In table 5 we show the values of the decay widths found on the basis of 
numerical solutions in the RCR (12) in the cases of potentials (23) , (25) 
and potential r-1 . 

Table 5 
Decay width for parapositronium, r, µs-1 

j N r-1 tanh( nmr /2) r-1 coth(nmr) r-1 
800 7938.39 7966.34 7395.60 

1 1600 7938.47 7966.68 7395.64 
800 7918.82 7942.44 7933.91 

2 1600 7918.91 7942.71 7934.23 
800 7995.24 8059 . 1 1 8031.52 

3 1600 7995.03 8060.68 8032.98 
800 7966.67 8012.48 7993.61 

4 1600 7966.60 8013.42 7994.52 

Substitution of the exact non-relativistic wave function of the ground state 
for the Coulomb potential [17] in (27) gives the value of decay width 
8032.5µs-1 .  Substitution of the exact wave function obtained from the 
modified Logunov-Tavkhelidze equation solution for potential (25) [16] in 
formula (27) gives 7995.18µs-1 .  The experimental value of the decay width 
for parapositronium is equal to 7990.9(1 . 7)µs-1 [18] . It is easy to see that 
the best agreement with the experimentally measured result is given by 
the solution of the modified Kadyshevsky equation for potential r-1 and 
the modified Logunov-Tavkhelidze equation for superposition of one-boson 
exchange potentials (25) . 

Let us note that the results for the potentials that admit transfor­
mation into the RCP (23) , (25) and r-1 coincide with the experimental 
values better than the results for more cumbersome, but received more 
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strongly potentials (17) - (22) . This is the additional argument in favor of 
the investigation of phenomenological potentials, especially admiting exact 
solutions of equations. 

7 Conclusion 

In this paper numerical solutions of quantum field theory equations are 
found for bound s-states of two scalar particle system and system of two 
particles with spin 1/2. Solutions are obtained for different variants of 
one-boson exchange potentials, the superposition of these potentials and 
for potential r-1. On the basis of the solutions found the decay widths 
of particle-antiparticle bound state into two photons are calculated. The 
energy spectrum and decay widths obtained in this approximation are 
compared with the experimentally measured values for positronium. 
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Abstract 
The Lagrangian in the covariant form and the equation of mo­

tion of the pion in the electromagnetic field, taking into account its 
electric and magnetic polarizabilities were defined in the formalism 
of Duffin-Kemmer on the basis of the principle of gauge invariance. 
The amplitude of Compton scattering was defined on the basis of 
the solution of the equation of the interaction of the pion with the 
electromagnetic field produced by the method of Greens function, 
taking into account the impact and polarizabilities of the pion. 

1 Introduction 
Low-energy theorems which are based on general principles of relativis­
tic quantum field theory and the expansion of the amplitude of Compton 
scattering on the frequency of the photons play an important role in under­
standing the structure of hadrons. According to the low-energy theorem, 
the amplitude of Compton scattering depends not only on the charge and 
magnetic moment of hadrons, but also to other significant electromagnetic 
characteristics, such as the anomalous magnetic moments, electric and 
magnetic polarizabilities. Recently measurement polarizabilities realized 

*E-mail:elvakulina@yandex.ru 
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not only by Compton scattering experiments, but also in other processes 
electrodynamic [ l ,  2] . Description of the contribution of the polarizabilities 
in the amplitude and the cross section of two-photon electrodynamic pro­
cesses can be performed in sequential relativistic field-theoretic approach 
[3, 4] . In the papers [4, 5] have been developed methods for obtaining 
covariant Lagrangians and equations of two-photon amplitudes of electro­
dynamic processes in view of the polarizabilities of hadrons. In the devel­
opment of this approach, the problem arises of determining the universal 
covariant Lagrangians and amplitudes of hadron electrodynamics with the 
polarizabilities of hadrons for different spins. In this paper, in the frame­
work of the covariant field-theoretical approach, using the method of [4] , 
obtained by the Lagrangian equations and the interaction amplitude of the 
electromagnetic field with zero spin hadrons in the Duffin-Kemmer formal­
ism, which opens up the possibility of field-theoretical description of the 
polarizabilities of hadrons, such as spin unit . 

2 Description of the polarizability of the 
pion in the formalism of the 
Duffin-Kemmer 

Using a relativistic field-theoretic properties of the fields in the formalism 
of the Duffin-Kemmer may establish new structural properties of the po­
larizabilities of the particles [6] . Duffin-Kemmer for free scalar particles 
are: 

(/3µ 7f µ + m)'lf;(x) = 0, 
- t-'lf;(x) ( a µ/3µ - m) = 0, 

( 1) 

(2) 
where 'lf;(x) and "°if(x) - five-dimensional wave functions of scalar particles, 
as determined by the components of the four-momentum aµ{lta4 = ia0} .  

In the equations ( 1) and (2) five-dimensional matrix /3µ = {3�5) are the 
matrices of the Duffin-Kemmer and satisfy the commutation relations: 

(3) 

Covariant formalism of Lagrange that equation (1 )  and (2) follow from 
the Lagrangian 
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To get the equations of the electromagnetic field interactions with pe­
onies in the Duffin-Kemmer formalism based on their polarizabilities, we 
use the principle of gauge invariance. To do this, according to [7] , the 
Lagrangian ( 4) must be entered 

£hl = -�F F 4 µv µv 

and the substitution of derivatives 8 µ and tJ µ on elongated derivatives 
f; � • A V = 0 vf3uT/uv + ieA , 

D = T/uvf3u B v - ieA, 
27r - -

T/uv = Ouv + - [aEFuµFµv + f3MFuµFµv] ·  m 

(5) 

(6) 

(7) 

In (5) - (7) Fµv = OµAv - OvAµ - tensor, and Fµv = �EµvpuFpu - dual 
tensor of the electromagnetic field. If in (4) to take into account (5) - (7) , 
we obtain 

1 1- +-+ - - A 
L = -4FµvFµv - 2'lj; aµ /3µ'lf; - m'lj;'lj; + ie'lj;A'lj; + Kuv8uv · (8) 

In (8) the following notation: 
27f - -

Kuv = - [aEFuµFµv + f3MFuµFµvJ , m 

1- +-+ 
8uv = 

2'l/J/3u aµ 'lj;. 

The arrows above the derivatives indicate their effect on the wave func­
tions of the pion in the five-dimensional space, and 0'£ and f3M - electric 
and magnetic polarizabilities of the pion. 

We distinguish in equation (8) part of the Lagrangian associated with 
the polarizabilities of the pion: 

(9) 

In the rest frame of the pion Lagrangian (9) takes the form: 

L(oE,fJM) = -H(oE,fJM) = 27r(aEE2 + f3MH\ 
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where fi(aEJ3M) - the Hamiltonian of the interaction of electromagnetic 
fields with a peony with the induced dipole moments in the static limit . 

We now see that the amplitude of Compton scattering polarizability 
are included in accordance with the low-energy theorem. To do this, we 
obtain the equation of the pion interaction with the electromagnetic field 
with the polarizabilities using the Lagrangian (8) 

We represent the differential equation (10) , which will take into account 
the contributions of the polarizabilities in integral form: 

'lj;(x) = 'lj;O(x)+ j S(x - x')V(aE,JJMl (x')dx' , 

where the potential is of the form: 

and the Green's function S(x - x') satisfies the equation 

(a + m)S(x - x') = 8(x - x') .  

We define the matrix element S1i scattering o f  photons by pioneers 
following [8-10] . To do this, use the formula: 

where 1jj (x') = -1- fEicp-: e-ip2x . P2 C-:i V  E2 Jl 2 y (27r)'I 
The function Vi-p 

2 
- the momentum representation of the wave function 

1jjP2 (x) , which is in the Duffin-Kemmer formalism is defined as follows: 

- i IB .  ( 10 i 1 ) 'Prf 2 = - 2 zgr € - mP2µ€ µ ' 

where c;AB - elements of the full matrix algebra, which satisfy: 

(cA8)vc = 8Av8Bc, CAB CDC = 8Bc€
AD , 

indices A, B, C, D run from 0 to 4. 
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As a result , we obtain 

(11)  

Using the boundary conditions [8-10] ,  and the symmetry of the cross, 
the expression ( 11 )  can be written as: 

(12) 

In (12) the amplitude of Compton scattering of M is given by: 

M = : 'f?(P2) { [k2eS.\2) + k2µe(>'2l ] [k1µ (e(.\i l  P) - (k1P)eh.\1 l ]+ 

+ [k2µ(e(.\2) P)  - (k2P)eS.\2l ] [k1eS.\i )  - k1µtP1 l ] } (o:E + J3M )1P(P1 )+ ( 13) 

+27r/3M"if?(P2) [k2µeS,\2) - k2veS,\2) ] [k1µeS,\1 ) - ki,,eS,\1) ]1P(P1 ) -

In this expression eh.\, ) and eS.\2) - the polarization vectors of the initial 
and final photons, P = � (p1 +p2) ,  ki , p1 and k2 , p2 - momenta of the initial, 
final photons and pions, respectively. 

In the rest frame of the initial pion amplitude M with the electric charge 
and polarizabilities up to the second order in the frequency of the photons 
takes the form [11] : 

where nt and m - the unit vectors directed along the ki and �, which 
is consistent with the low-energy theorem of Compton scattering on the 
pion. 

3 Conclusion 

In the formalism of the Duffin-Kemmer on the basis of the principle of 
gauge invariance defined in covariant form of the Lagrangian and the equa­
tion of motion of the pion in the electromagnetic field, taking account of its 
electric and magnetic polarizabilities. On the basis of the solution of the 
pion interaction with the electromagnetic field produced by the method of 
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Green's function is defined amplitude of Compton scattering, taking into 
account the impact and polarizabilities of the pion. It is shown that the 
covariant formalism developed by Lagrange interaction of low-energy pho­
tons from the pion is consistent with the low-energy theorem of Compton 
scattering. 
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The Search of Critical Parameter Values for 
Semirelativistic Coulomb Problem 

Andreev V.V. � Babich K .S .  
Fransick Skorina Gome! State University, Physics Department, 

Gome!, Belarus 

Chebotareva E.S.  
L G .  Petrovsky Bryansk State University, Russia 

Abstract 
The paper presents the new calculation method of upper bounds 

of critical values for the semirelativistic Coulomb problem with the 
trial pseudoColumb wave functions. 

1 Introduction 

One of the main problems of relativistic quantum mechanics is the solution 
of Salpeter-like equation 

which describes a system of two particles with a total energy En- The 
interaction is determined centrally symmetric potential V ( /r l ) .  The most 
common method of solving (1) is a variational method. In this approach 
the solution of equation (1) reduces to an eigenvalue problem 

00 00 L ak (\lfk/ if / llfk1) = L (Hh k' ak' = E ak (2) k=O k=O 
*E-mail:vik.andreev@gsu.by 
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by expanding the initial wave function (WF) with respect to some complete 
set of trial wave function w 

(3) 

For an approximate solution of the series (3) terminate at a value N - 1 
and get the eigenvalue problem 

N-1 
L ak (wk ! iI ! wk' ) = En ak' (4) k=O 

for the matrix (Hh k' · Moreover, according to the variation of Rayleigh­
Ritz technique condition for spectrum E0 ::;: E1 ::;: . . .  , Ek ::;: Ek , k = 
0, . . .  n - 1 is satisfied. In other words, the solution of ( 4) allows us to find 
the upper limits En for (1) . Entries of the matrix Nn l fl I Wn' ) = (H)n n' '  
after calculating the angle part with the trial wave functions 

represent the integrals of the form 
00 

(H)n n' = J ;;;� e (k) [ Vk2 + mi +  Vk2 + m�] ;;;n' e (k) k2dk + 
0 

00 

+ J 'l/i� e (r) V (r) 'l/in' e (r) r2dr , r =  l r l , k =  lkl .  (6) 
0 

There 'l/i� e (k) - Fourier transform of the wave function 'l/i� e ( r) . 0 bviously, 
the most accurate solution of ( 1) requires the matrix elements with large n 
and n'. The aim of this work is to find the critical values a of the Coulomb 
potential V (r) = -a/r, a >  0 for ( 1) of equal mass that is m1 = m2 = m, 
using the test WF pseudo Coulomb type 
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n! 

(n + 2£ + 2)! ' 
(7) 

(8) 



f'ic _ 2J,Bn! (n + 2£ + 2) !  
ne - f(n + £ + 3/2) 

In (7) , (8) L;(z) are Laguerre polynomials; Pf:,v (z) are Jacobi polynomials; 
number n, £ ;::: 0, and ,8 is variational parameter of WF. 

2 Searching of the critical values a 

In quantum systems with Coulomb potential there is a critical value where 
there is a discrete energy spectrum. In [l] (see also the references in [2] ) 
have shown that relativistic generalization of the Schrodinger equation (1) 
- spinless Salpeter equation will also be critical. 

We present a new method of estimating the critical values based on 
the variation problem. Using the variational method with the trial wave 
function (7) to equation (4) with the Coulomb potential and equal masses 
m1 = m2 = m leads to the eigenvalue problem 

Det l l (H(a, ,8)) - I x  Ell = 0 . (9) 

We make the transition to dimensionless variables by the relations: (H) --+ 
,B(H) and E --+ ,BE, where ,8 is parameter of WF (7) . Then (9) reduces 
to the solution of the equation 

Det l l (H(o:, m/,8)) - I x  Ell = 0 . ( 10) 

since ,8 -/=- 0. The critical value of the Coulomb parameter a O:crit. 
corresponds to the limit as ,8 --+ oo [2] . In this case, there is no minimum 
value of the function E(,8) and the spectrum of the Hamiltonian equation 
(1) gives a negative value. Performing the limit ,8 --+ oo in (10) we obtain 
the equation 

Det l l (H(o:crit. > 0)) I I  = Det l l (T( (m/ ,8) = 0) + O'.crit V()) ll = 0 . ( 1 1) 

where 
00 00 \ fI Jn n' = � J �� e(k, ,8)��' e (k, ,B)k3dk -

a�it. J 7/J� e (r, ,8)7/;� e(r, ,B)rdr . 
0 0 
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It can be shown that ( 12) for (H)n n' does not explicitly depend on the 
variational parameter (3. Indeed, performing the replacement to the di­
mensionless variables r = (Jr, k = k/ (3, arrive at the relationship 

00 00 

\if) 
n n' 

= 2 J 1fi� e (k)1J;<;;, e (k)k3dk - Ctcrit. J 1/J� eU)1/J<;;, e(I)fdr , ( 13) 
0 0 

with dimensionless wave functions 

8n1 -
---· --(2r/e-r £l2£+2l (2I) . (n + 2£ + 2) ! n ( 14) 

1j;C (k) = 2Jn! (n + 2£ + 2) ! (---l-)
e+2 

(k)e� (e+3/2,e+1/2) (�2 - 1) . n f r(n + £ + 3/2) k2 + 1  n k2 + 1  
(15) 

Therefore, equation (11 ) with the matrix elements ( 15) defines a set of n 
critical values Ctcrit. for n energy levels E. To solve this equation we need 
the matrix elements of the various n and n' with the wave function (7) or 
(15) .  

3 Calculation of  matrix elements (H)n ,n' 
To test the WF pseudo Coulomb type (7) , the potential of equation (6) 
V(r) = rP written in the form 

00 

(rP)ne ,n' = J 1/J� e (r, f3)rP1f;<;;, e (r, f3)r2dr = 
0 

00 

= N;/eN$ g(2(3)2e+3 J drr2e+2+Pe-2f3r L;e+2(2(3r)L��+2(2(3r) . (16) 
0 

After the change of variables z = 2(3r in (16)we obtain the expression 
00 

(rP) , = N;:gN$ f jdzz2e+2+pe-zL2e+2 (z)L2e+2 (z) (17) nf ,n (2(3)P n n' · 
0 
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Next, using the ratio of the Chu-Vandermonde with parameters Cl' = 2£+2, 
f3 = 2£ + 2 + p [3] , 

°' ( ) � (Cl' - f3)n-j f3 ( ) Ln-l z = L., (n _ j) !  X L1_1 z , 
J=l 

(18) 

where (z)N - Pochhammer symbol and the orthogonality relation for the 
Laguerre polynomials 

00 

J 13 -z 13 13 _ r(j + f3 + 1) dzz e L1 (z)LJ' (z) - . 1  o1 J' J .  0 
obtain a general expression for the integral (16) 

( P) - _1_ r n,n' - (2f3t 
n! n'! --------- x 

(n' + 2£ + 2) ! (n + 2£ + 2) ! 

(19) 

x � (-p)n+l-j (-p)n'+l-j r (2£ + 1 + p + j) n � n' . (20) f;:t (n + 1 - j) !  (n' + 1 - j) !  (j - 1) ! ' 

Formula (20) generalizes the relation [4] , where the calculations were made 
for special cases with p = -1  and p = 1. For the case £ = 0 and p = -1 
have 

(1/r)n,n' = f3 
(n + l) (n + 2) , --'----'--'-----'-- , n < n . 
(n' + l) (n' + 2) - (21) 

Part associated with the kinetic energy can be calculated exactly. For 
example, we present the answers to the case n = C = 0 and n' = {O, 1, 2, 3}: 

k = ;j;C k -c; k k3dk = � 1 � y'2 y'2 
00 

{ ( ) n=l=O,n'={0,1,2,3} I nl( )'l/Jn l( ) 3n ) v'3' sv'3' svs} . 

4 The calculation of the critical values 

(22) 

For the simplest case n = C = 0 , n' = 0 the upper limit Cl'crit. can be easily 
calculated analytically. The resulting value Cl'crit. = 16/(3n) coincides with 
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the results of [2] , which indirectly confirms the method. The calculations 
for different n and n' up to n = n' = 30 using (20) and (22) show that 
there is convergence of the calculation results and the relative error 

bn = O'.crit. (n - 2) - O'.crit (n) 
O'.cr;t( n) (23) 

and for n = 30 is r530 = 1, 113. Estimate for the critical value is then equal 
to 

O'.crit. :S 1 ,  09 , 
roughly agrees with the estimate O:crit. :S 1 ,  obtained in [5] . 

5 Conclusion 

(24) 

The paper presents a method of calculating the upper limit of the critical 
value of the Coulomb parameter o: for the spinless Salpeter equation (1 ) .  
In contrast to [2] (see also other works of these authors) , this approach does 
not require the computation of eigenvalues E = E(/3) then calculating the 
limit lim E(/3) in order to obtain the equation for the critical value O:crit . . {3--700 

The proposed method of solution of (11) immediately allows to find an 
estimate O:crit. ,  which greatly simplifies the computational cost . Obviously, 
in the case of different masses, as the derivation of (11) and ( 13) , the 
estimate of the critical value is the same as for the case of equal masses, 
because of (11) and ( 13) remain unchanged. 
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Resonance Width Consideration for 
Compton Rotation in Magnetic Field 

A.I .  Sery* 
Brest State Pushkin University, Brest, Belarus 

Abstract 
In the framework of tree approximation a formula is obtained 

for the calculation of Compton rotation angle of the plane of linear 
polarization of photons per unit path in electron gas with high de­
gree of spin polarization of electrons. The finite width of resonance 
on intermediate virtual Landau level is taken into account, averag­
ing on the momenta of electrons is performed in zero temperature 
approximation. 

1 Introduction 

In present work the research is done according to the suggestion of V.G. 
Baryshevsky and V.V. Tikhomirov. The effect of Compton rotation of the 
plane of polarization of hard X- (soft gamma-) photons in the absence of 
magnetic field was theoretically predicted by V.G. Baryshevsky and V.L. 
Luboshitz in 1965 and experimentally tested at early 1970s [1 ,  2 ,  3, 4] . 

In [5] , using the approach of [6] , a formula was obtained for the calcu­
lation of Compton rotation angle of the plane of linear polarization of pho­
tons per unit path in electron gas with total spin polarization of electrons 
(Poe = 1) , though the finite width of resonance on intermediate virtual 
Landau level was not considered: 

d<p 
= 

('rrhc)2nea cosfJ (-±) � ,i,n-1 (;::;" ( ) - ;::;" (J)) = � dl fiw(Eo + Jiw) exp 
2 f:'i '+' �n g �n ' a he ' 

*E-mail:alexey_ sery@mail.ru 
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to2 · 2 p \ \ 2 2 4  </> = ILW sm fJ ';::;' (.\) = CAoEo - A3PzC - m c 
cBe ' �n c2 -A6 - E;,>. - i · 0 ' 

Ea =  Jm2c4 + p;c2 , En>. = Jm2c4 + 2nenBc + .\§c2 . (1) 

Here ne is electron density, m, pz are electron's mass and momentum along 
z axis, respectively; µ8 is Bohr magneton, e is electric charge, nw is pho­
ton's energy, iJ is magnetic field strength, (3 is the angle between the wave 
vector of photon k and B; En>. is energy of virtual electron on intermediate 
nth Landau level. For such an electron in R-process (.\ = g) and S-process 
(.\ = f) we have 

ego = Eo+ 'fiw, cg3 = Pzc+'fiw cos (3, cfo = Eo -'fiw,  ch = PzC-'fiw cos (3. (2) 

Formulas (1) are applicable if spin polarization of electrons Poe = 1 which 
corresponds to 

(3) 

2 Consideration of resonance width on Lan­
dau level 

If 'fiw < Ea (which corresponds to X-photons) , then the width r n of res­
onance on nth Landau level in R-process must be considered, but the 
resonance in S-process is absent. Removing the poles from the real axis in 
Bn(g) and extracting the real part, we obtain 

·r /2 r 16(2n - l)a(µ8B)2 
Eng � Eng - i n ' n � 2 ' 3mc 

R (';::;' ( ) ) = 
(cgoEo - 93PzC2 - m2c4) Gn G - 2 2 - 2 r;, e �n g Q2 + f2 2 ' n - C 90 Eng + 4 . n nEng 

(4) 

(5) 

Numerical calculations show that similar consideration of r n in S-process 
is not important, at least, at 'fiw < mc2 . 

3 Averaging of amplitudes over momenta at 
T=O K 

Let's average (1) over electron momentapz at T=O K, using the formula for 
electron state density per unit volume [7] and the formula for the averaging 
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of an arbitrary function f: 
dNe eBdpz ( ) 1 J

w, 
( Pz 7r2(ne)3ne 

V = (27rn)2e =} f = 2wi 
f w)dw, w = me ' wi = (me2)2µ3B ' (5) -w1 

dcp = e2mµ3Beos/3 (-1-) � ,.1.n-i jw' 
( _ S )d dl 4n3w exp 2 � '+' Rn n w, 

-w1 

R = 
Ji ( w) h ( w) 

n 
( r2 B ) ' h(w) Jf(w) + n2:2 (1 + 4n';;;e2 + (w + teosf3)2) 
1 ( Qn ) . 2 µBB Sn = h(w) 1 - Qn - h(w) , Qn = tsin /3 - 4n nw , 

r2 li (w) = Qn + h(w) + riw
n 

2 , h(w) = 2(v1 + w2 - weosf3) , 4 me 
� nw 

h(w) = v i -r w- + t , t = -2 . (7) me 
The integrals can be taken numerically or analytically, and for S-process 
we obtain (analytical expressions for R-process are very complicated) : 

4tyi Sn = 2arsh(wi) - vT=t2 - Qnin, (8) 
1 - t2 

2In(l  - t)2eosf3 = ( 1  - t)y3 - 2t (CJ2y3eosf3 -
2�

i
Yi ) , Qn = -2; (9) 

In = � ('/'in (4€nY2 + ln 
I 
Tn+ 

I
) _ 8')'2nY2 + 2')'3nYi ) + 

Din Vn Tn- Vn CJi 
l6y2 + ( 1 - t ) (Qn + 2)vn ' Qn -/= -2, µn = O; ( 10) 

In = _1_ (8t')'3nYi + 2t')'inln 
I 
Y� + €nY2 + qn 

I
) + Din CJi Y2 - €nY2 + qn 

2D2n ( ( Tn+ ) ( Tn- ) ) ) +� arctg � - arctg � e(µn + 
Hin y lµn l V lµn l 

D2n ( 2y2 - /f;J) 2 - €� 
+nln 

( £:112 
e(-µn) ,  Qn I= -2, µn I= O; ( 1 1) in 2y2 + y lµn l J - €� 

{l+t eos/3 4eosf3 2 - Qn CJi = V i'=t' CJ2 = o-rcos2/3 + 1 ' 
€n = - 2 + Qn ' qn = 

2 + Qn ' 
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�n �; qn - o-i ( 2)2 c2 2 /'1n = -, f'2n = - - f'3n , /'3n = , f'4n = qn - 0-1 + c,,nt'.Tl , 
/'4n /'4n /'4n 

l!n = 4y� - �� ' µn = 4qn - �� ' Tn± = �n ± 2y2 , 
n - (1 - t)2 (Q + 2) n - 2(21'2n - �nl'ln + l)t - 2 
Hln - n , 2n - � , 

(y2 ) w1 + J1 + w? - l 1 l - y2cosf3 1 
y1 = arctg - , Y2 = , y3 = ln . 

t'.T1 w1 + J1 + wr + 1  1 + Y2cosf3 

Here B(TJ) is Heaviside function. 

4 Numerical results and applications 

(12) 

For example, if ne ,..._, 1023 cm-3 , fiw ,..._, 0 .1 MeV (hard X-region), B 
1013 Gs (close to the pole of a neutron star) , then dcp / dl ,..._, 102 - 103 
rad/ cm at the resonance. Besides: l. Compton rotation can change its 
sign (like nuclear spin precession of neutrons [l] ) ,  that's why the addition 
of Compton and Faraday rotation can give zero at some w, B.  2. The 
increase of f3 leads to the decrease of the resonant frequency WR, but the 
increase of B leads to the increase of wR; in both cases the value of dcp/dl 
decreases at the resonance. In order to obtain more realistic formula for 
dcp / dl, finite temperatures must be considered, though the procedure of 
averaging over Pz becomes more complicated. 

Compton rotation is important in some astrophysical problems . One 
can estimate ne and the degree of ionization of cosmic plasma from the 
formula for dcp / dl where other quantities can be measured or estimated: l .  
The value of ¢> can be measured at different w.  2. B, T can be estimated 
by different methods. 3. If B > 1010 Gs, then the degree of ionization is 
about unity, almost all electrons are free and Faraday rotation is absent ; 
otherwise,if B < 109 Gs, the difference of estimations of ne from the formu­
las for dcp/dl in cases of Faraday and Compton rotation helps to estimate 
the degree of ionization. 

Besides, photon magnetic splitting becomes very important at B ,..._, 

1012 - 1013 Gs, that's why Compton rotation dominates at B ,..._, 1010 - 1011 
Gs in comparison with photon splitting and Faraday rotation. 
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5 Summary. The main results 

Considering the finite width of resonance on intermediate Landau level for 
a virtual electron, in the framework of tree approximation a formula is ob­
tained for the calculation of Compton rotation angle of the plane of linear 
polarization of photons per unit path in electron gas with high degree of 
spin polarization of electrons. Averaging on the momenta of electrons is 
performed in zero temperature approximation, where integration is per­
formed for S-diagram of Compton scattering. 
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The QCD analysis of xF3 structure function 
based on the analytic approach 

A. V. Sidorov * 
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia 

0. P. Solovtsova t 
Gome! State Technical University, 246746 Gome!, Belarus 

Abstract 
We apply analytic perturbation theory to the QCD analysis of 

the xF3 structure function data of the CCFR collaboration. We 
use a different approaches for the leading order Q2 evolution of 
xF3 structure function and compare the extracted values of the 
parameter A and the shape of the higher twist contribution. Our 
consideration is based on the Jacobi polynomials expansion method 
of the unpolarized structure function. The analysis shows that the 
analytic approach provides a reasonable results in the leading order 
QCD analysis. 

1 lntrod uction 

The data on xF3 structure function [1] provides a possibility for the pre­
cise test of the perturbative QCD predictions for the Q2 evolution of this 
structure function. The analysis of xF3 data simplified because one do not 
need to parameterize gluon and see quark contributions and could param­
eterize the shape of the xF3 structure function itself at some value Q6. 
For the kinematics region of this data Q2 ;::: 1.3 GeV2 the higher twists 
contribution (HT) to the structure function should be taken into account. 

*E-mail: Sidorov@theor.jinr.ru 
tE-mail: olsol@theor.jinr.ru 
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This allows to study from the above-mentioned data both the perturbative 
part and HT correction related to each other. Here, we'll focus our atten­
tion on the interplay of the different approaches to the strong coupling 
Q2-behavior and the x-dependence of the HT contribution. 

In our investigation we apply the analytic approach in QCD proposed 
by Shirkov and Solovtsov [2] the so-called analytic perturbation theory 
(APT) (see also Refs. [3, 4] ) .  This method takes into account basic prin­
ciples of local quantum field theory which in the simplest cases is reflected 
in the form of Q2-analyticity of the Kallen-Lehmann type. The key point 
of APT constructions-the analytic properties of some functions (the two­
point correlator of the quark currents, the moments of the structure func­
tions and so on) . A overview of the analytic approach to QCD can be 
found in Ref. [5] . In the framework of the APT in contrast to the infrared 
behavior of the perturbative (PT) running coupling, the analytic coupling 
has no unphysical singularities. At low Q2 scales, instead of a rapidly 
changing Q2 evolution as occurs in the PT case, the APT approach leads 
to a slowly changing functions (see, e.g. , Refs. [6, 7] ) .  In the asymptotic 
region of large Q2 the APT and the PT approaches coincide. It should 
be noted that the moments of the structure functions should be analytic 
functions in the complex Q2 plane with a cut along the negative real axis 
(see Ref. [8] for more details) , the ordinary PT description violates an­
alytic properties due to the unphysical singularities of PT coupling. On 
the other hand, the APT support these analytic properties. For fullness, 
in our analysis, we consider also the recent variant of the model for the 
freezing-like behaviour coupling - "massive analytic perturbative QCD" 
(MPT) [9] (see Ref. [10, 1 1] for a discussion) . 

In Refs. [12, 13] was made further development of the APT method -
the generalization for the fractional powers of the running coupling which 
called the Fractional Analytic Perturbation Theory (FAPT) (see Ref. [14] 
as review). The FAPT technique was applied to analyze the F2 structure function behavior at small x-values [11 , 15] , to analyze the low energy 
data on nucleon spin sum rules rf,n(Q2) [16] , to calculate binding ener­
gies and masses of quarkonia [17] .  Here, we continue applications of the 
APT /FAPT approach executing the data on xF3 structure function and 
investigating how the analytic approach works in this case by comparison 
with the standard PT analysis. 
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2 The Method of the QCD analysis 

In our analysis we'll follow the well known approach based on the Jacobi 
polynomial expansion of structure functions. This method of solution of 
the DGLAP equation was proposed in Ref. [18] and developed both for un­
polarized [ 19] and polarized cases [20] . The main formula of this method 
allows approximate reconstruction of the structure function through a fi­
nite number of Mellin moments of the structure function 

h(x) Nmax n 
xF["max (x, Q2) = Q2 + x" (l - x)/3 � 8�'/3 (x) _t; c)n) (a, ;3)Mj+2 ( Q2) . 

( 1) 
The Q2-evolution of the moments MN(Q2) in the leading order (LO) per­
turbative QCD is defined by 

Here a8 (Q2) is the QCD running coupling, ry(o),N are the nonsinglet 
leading order anomalous dimensions, /30 = 1 1 - 2n f / 3 is the first coefficient 
of the renormalization group ;3-function, n1 denotes the number of active 
flavors. 

Unknown coefficients M�CD (Q5) in Eq. (2) could be parameterized as 
the Mellin moments of some function: 

M�CD (N, Q5) = l dxxN-2 Axa(l  - x)b ( l  + "( x),  N = 2, 3, . . .  . (3) 

The shape of the function h(x) as well as parameters A, a, b, ry, and 
AqcD are found by fitting the experimental data on the xF3 (x, Q2) struc­
ture function [1] . Detailed description of the fitting procedure could be 
found in Ref. [21] . The terms h(x)/Q2 considered as pure phenomeno­
logical. The target mass corrections are taken into account to the order 
o( M�uci/ Q

4) · 

3 Analytic approach in QCD 

The APT method gives the possibility of combining the renormalization 
group resummation with correct analytic properties in Q2-variable some 

203 



physical quantities and provides also a well-defined algorithm for calculat­
ing higher-loop corrections [4] . As the difference between the APT and PT 
running couplings becomes significant at low Q2-scales (see, e.g. , Fig. 1 in 
Ref. [6]) that stimulates applications of the analytic approach for a new 
analysis [5] especially after the generalization of the APT on the fractional 
powers of the running coupling (see Refs. [14, 22, 23] for further details) . 

In the framework of the analytic approach the following modification 
in the standard PT expression (2) for the Q2-evolution of the moments 
MN(Q2) is required: [o:PT(Q2)t =? Av (Q2) . It transforms Eq. (2) as 
follows1 

A (Q2) (O),N 
MQcn(Q2) = 

v MQcn(Q2) = _r _ N Av( Q5) N ° ' v - 2/3o ' (4) 

where analytic function Av is derived from the spectral representation 
and correspond to the discontinuity of the v-th power of the PT running 
coupling 

(5) 

Note that the function A1 ( Q2) defines the APT running coupling: 
0:APT(Q2) = A1 (Q2) . Mathematical tool for numerical calculations of Av 
for any v > 0 up to four-loop order in the perturbative running coupling 
is given in Ref. [24] . 

The 'normalized' analytic function Av = /3oAv / ( 47r) in the leading 
order (LO) has rather simple form (see, e.g. , [14]) and can be writhen as 

_ALO(Q2) = [-LO (Q2)] v _ Lis(t) v aPT f(v) ' 

oo tk A2 Li8 (t) = L ks , t = Q2 , o = 1 - v, 
k=l 

where 'normalized' PT running coupling a�? (Q2) = f30o:�?(Q2)/(47r) 

(6) 

1/ [ln(Q2/A2)] and Lis is the polylogarithm function. For v = 1 the ex­
pression (6) leads to well-known one-loop APT result [2] 

(7) 

1Beyond LO see Ref. [ll] and discussion therein. 
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Figure 1: The behavior of the parameter APT vs. AAPT in LO for different 
values of v at Q6 = 3 GeV2. 

One could see, that at large Q2 the second term in the r.h.s. of (7) is 
negative. It was confirmed qualitatively in the phenomenological analysis 
of the xF3 data in Ref. [25] . 

It should be stressed that values of the QCD scale parameter A are 
different in PT and APT approaches. In order to illustrate this, in Fig. 1 ,  
we present the behavior following from the condition [a�� (Q6, APT)r = 

A�0(Q6, AAPT) of the parameter APT vs. AAPT for different values of v .  
In short, one-loop modification of the QCD coupling within the MPT 

approach, which is considered by us further corresponds to the replacement 
of the logarithm in the a�� ( Q2) to the "long logarithm" with the "effective 
gluonic mass" m91 :  ln(Q2/A2) =} ln[(Q2 + m�1)/A2] (see, Refs. [9, 26] ) .2 
4 Numerical analysis of experimental data 

The results of LO QCD fit in different approaches are presented in Table 
1 and Figs. 2-5. Both cases h(x)- free and h(x) = 0 are considered for 
Q6 = 3 GeV2, Q2 > 1.3 GeV2 , n1 = 4, and NMax = 12. In order to 
reconstruct the x-shape of the HT contribution we have parameterized 
h(x) in the number of points x; = 0.015, 0.045,  0.080, 0. 125 , 0 . 175, 0 .225, 

2The parameter of "effective mass" serves as an infrared regulator and typically of 
the order m91 = 500 ± 200 MeV (see, e.g . ,  Ref. [27] ) .  
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Table 1 :  The results for the QCD leading order fit (with TMC) of xF3 
data [l] (Q6 = 3 GeV2, Q2 > 1 GeV2, n1 = 4, and NMax = 12) . 

h(x) = 0 h(x )-free I 
Approach A (MeV) I 

PT 291 ± 36 I 
APT 215 ± 39 I MPT 299 ± 38 I "naive" analyt. 417 ± 83 

x" d.f. 
1 .35 
1 .42 
1 .35 
1 .34 

A (MeV) 

363 ± 170 
350 ± 145 
351 ± 128 
412 ± 240 

x" d.f. 
0.984 
0.980 
0.985 
0.980 

0.275, 0.35, 0.45, 0.55, 0.65 - one per x-bin. The values of A, a, b, /, x; 
and A are consider as a free parameter. 

As can be seen from the Table 1, the values of A's for the case h(x) = 0 
are smaller in comparison with the case of nonzero HT contribution. The 
difference of the A's values for the APT and PT are smaller in the analysis 
with HT contribution: (APT - AAPT ) h(x)=D > (APT - AAPT )h(x)J"O· The LO 
h(x) = 0 results for A's values are consistent within errors. If one add 
the HT contribution, the values of parameter A and their errors are higher 
than h(x) = 0 case. For illustrative purposes we present in the last line of 
the Table 1 the result corresponding to the use in the analysis of "naive 
analytization" when the perturbative coupling is replaced by the analytic 

.. ::/(\\ >< 0.4 :'I\ 
I \ 

0.2 . '" 

Ax'(1-x)'(1+yx) a,' = 3 �11' 

- APT 
----· PT 
· · · · · ·  MPT 

'· ... ,..� 
o.o L......��������C::b�_._.,, 

0.0 0.2 0.4 0.6 0.8 1.0 

x 

Figure 2: Comparison of 
parametrizations of xF3 in 
PT, APT and MPT approaches 
for h(x) = 0. 
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�� 0 4  / 
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Figure 3: Comparison of 
parametrizations of xF3 in 
PT, APT and MPT approaches 
for h(x) =f. 0. 
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Figure 4: Higher twist contribution 
resulting from LO QCD analysis of 
xF3 data [l] for PT and APT ap­
proaches. 
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Figure 5: Higher twist contribution 
resulting from LO QCD analysis of 
xF3 data [l] in PT and MPT ap­
proaches. 

coupling: etPT(Q2) --+  O'.APT(Q2) (see Ref. [12] and references therein) . 
Figures 2-3 show the xF3-shape obtained in the APT, PT and MPT 

approaches without taken into account the HT term (Fig. 2) and with the 
HT (Fig. 3) . In both cases, the result for the APT approach slightly higher 
than for the PT and MPT ones for small x and less for small x. 

Figures 4-5 demonstrate HT contributions. From Fig. 4 one can see, 
that for x > 0.3 we obtained hAPT(x) > hPT(x) . This inequality is in 
qualitative agreement with the result obtained in LO for the shape of the 
HT contribution for non-singlet part of F2 structure function (see Table 3 
in Ref. [ ll ] ) .  Opposite inequality we obtain for small values x < 0.2 : 
hAPT(x) < hPT(x). Figure 5 shows that the central values of hPT(x) and 
hMPT(x) are very close to each other. 

5 Conclusion 

We performed the QCD analysis of xF3 structure function data based on 
the analytic approach. It should be noted that the wide kinematic region 
experimental points gave us the possibility to analyze HT contributions of 
both small and relatively large x and to compare APT and MPT results 
to the PT one. We have found that in the examined region Q2 > 1 Ge V2 
the values of A obtained in PT, APT and MPT approaches are close each 
other. While the "naive analytization" approach leads to the rather large 
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A's value. The shape of HT contributions are in quantitative agreement 
with the results of the previous analysis of xF3 structure function data. We 
made the first step - LO analysis which showed that the analytic approach 
gives reasonable results. It is important to extend the analysis to higher 
orders and applied it to the structure function data at low Q2 region. 
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Low-energy QCD Calculations with 
Package "FAPT" 

Viacheslav Khandramai; Dmitry Prokopenko 
Gome! State Technical University, Gome! 246746, Belarus 

Abstract 
We consider computational problems in the framework of non­

power Analityc Perturbation Theory and Fractional Analytic Per­
turbation Theory that are the generalization of the standard QCD 
perturbation theory. The singularity-free, finite couplings Av(Q2) ,  
'ilv ( s )  appear i n  these approaches as analytic images o f  the standard 
QCD coupling powers a�(Q2) in the Euclidean and Minkowski do­
mains, respectively. We provide a package "FAPT" based on the 
system Mathematica for QCD calculations of the images Av(Q2) ,  
'ilv(s) u p  t o  N3LO o f  renormalization group evolution. Application 
of these approaches to Bjorken sum rule analysis and Q2-evolution 
of higher twist µ�-n is considered. 

1 Introduction 

The QCD perturbation theory (PT) in the region of space-like momentum 
transfer Q2 = -q2 > 0 is based on expansions in a series in powers of 
the running coupling a.. (µ2 = Q2) which in the one-loop approximation 
is given by a.�1) ( Q2) = ( 47r /b0) / L with b0 being the first coefficient of the 
QCD beta function, L = ln(Q2 / A2) ,  and A is the QCD scale. The one-loop 
solution a.�1) ( Q2) has a pole singularity at L = 0 called the Landau pole. 
The £-loop solution a.�f) ( Q2) of the renormalization group (RG) equation 
has an £-root singularity of the type L-l/f at L = 0, which produces the 
pole as well in the £-order term de a�(Q2) .  This prevents the application 

*E-mail:v.khandramai@gmail.com 
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of perturbative QCD in the low-momentum space-like regime, Q2 ,....., A2 , 
with the effect that hadronic quantities, calculated at the partonic level 
in terms of a power-series expansion in a8(Q2) ,  are not everywhere well 
defined. 

In 1997, Shirkov and Solovtsov discovered couplings A1 ( Q2) free of un­
physical singularities in the Euclidean region [l] , and Milton and Solovtsov 
discovered couplings l.2l1(s) in the Minkowski region [2] . Due to the absence 
of singularities of these couplings, it is suggested to use this systematic ap­
proach, called Analytic Perturbation Theory (APT) , for all Q2 and s. The 
APT yields a sensible description of hadronic quantities in QCD (see re­
views [3, 4, 5] ) , though there are alternative approaches to the singularity 
of effective charge in QCD - in particular, with respect to the deep in­
frared region Q2 < A 2 . One of the main advantages of the APT analysis 
is much faster convergence of the APT nonpower series as compared with 
the standard PT power series (see [6] ) .  Recently, the analytic and nu­
merical methods, necessary to perform calculations in two- and three-loop 
approximations, were developed [7, 8, 9] . The APT approach was applied 
to calculate properties of a number of hadronic processes, including the 
width of the inclusive T lepton decay to hadrons [10, 11 , 12, 13, 14] , the 
scheme and renormalization-scale dependencies in the Bjorken [15, 16] and 
Gross-Llewellyn Smith [17] sum rules, the width of Y meson decay to 
hadrons [18] , meson spectrum [19] , etc. 

The generalization of APT for the fractional powers of an effective 
charge was done in [20, 21] and called the Fractional Analytic Perturba­
tion Theory (FAPT) .  The important advantage of FAPT in this case is 
that the perturbative results start to be less dependent on the factoriza­
tion scale. This reminds the results obtained with the APT and applied 
to the analysis of the pion form factor in the 0( a;) approximation, where 
the results also almost cease to depend on the choice of the renormaliza­
tion scheme and its scale (for a detailed review see [22] and references 
therein) . The process of the Higgs boson decay into a bb pair of quarks 
was studied within a FAPT-type framework in the Minkowski region at 
the one-loop level in (23] and within the FAPT at the three-loop level 
in (21] . The results on the resummation of nonpower-series expansions 
of the Adler function of scalar Ds and a vector Dv correlators within 
the FAPT were presented in [24] .  The interplay between higher orders 
of the perturbative QCD expansion and higher-twist contributions in the 
analysis of recent Jefferson Lab data on the lowest moment of the spin-
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dependent proton structure function, rf ( Q2) ,  was studied in [25] using 
both the standard PT and APT/FAPT. The FAPT technique was also 
applied to analyse the structure function F2(x) behavior at small values of 
x [26, 27] and calculate binding energies and masses of quarkonia [28] . All 
these successful applications of APT /FAPT necessitate to have a reliable 
mathematical tool for extending the scope of these approaches. In this 
paper, we present the theoretical background which is necessary for the 
running of Av [L] and 2lv [L] in the framework of APT and its fractional 
generalization, FAPT, and which is collected in the easy-to-use Mathemat­
ica package "FAPT" [29] .  This task has been partially realized for APT as 
the Maple package QCDMAPT in [30] and as the Fortran package QCDMAPLF 

in [31] . We have organized "FAPT" in the same manner as the well-known 
package "RunDec" [32] . A few examples of APT and FAPT applications 
are given. 

2 Theoretical framework 

Let us start with the standard definitions used in "FAPT" for standard 
PT calculations. The QCD running coupling, as (µ2) = as [L] with L = 

ln[µ2 / A2] , is defined through 

das [L] _ f3 ( [L] · ) _ _ [L] """' b ( ) (as [L] ) k+l 
dL - as , n1 - as L.., k n1 47r ' k2'.0 (1)  

where n1 is  the number of active flavours. The /3-function coefficients are 
given by (see [33] ) 

bo (n1) 

b1 (n1) 

bz (n1) 

b3 (n1) 

2 1 1 - -n1 3 ' 
38 

102 - -n1 3 , 
2857 5033 325 2 -2- - 13n1 + 54n1 , 
149753 3564 ( - [ 1078361 6508 ( ] 

6 + 3 162 + 27 3 ni 

[50065 6472 ( ] n2 1093 
n3 + 162 + 81 3 f + 729 f . 
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( is Riemann's zeta function. We introduce the following notation: 

Then Eq. ( 1 )  in the l-loop approximation can be rewritten as: 

In the one-loop (£ = 1) approximation (ck(n1) = bk(n1) = 0 for all k 2: 1 )  
we have the solution 

1 a(l) [L] = L (5) 

with the Landau pole singularity at L --+ 0. In the two-loop (£ = 2) 
approximation (ck(n1) = bk(n1) = 0 for all k 2: 2) the exact solution of 
Eq. (1) is also known [34] 

-C1-l (n1) [L J with zw [L] = -c1-1 (n1) e-I-L/c, (n1) , (6) a(2) ; ni = 1 + W_1 (zw [L]) 

where W_1 [z] is the appropriate branch of the Lambert function. 
The three- (ck(n1) = bk(n1) = 0 for all k 2: 3) and higher-loop solutions 

a(l) [L; n1] can be expanded in powers of the two-loop one, a(2) [L; n1] ,  as 
has been suggested and investigated in [8 , 9 ,  14]: 

a(t) [L; n1] = L, c�t) (a(2) [L ; n1Jr . (7) 
n2;1 

The coefficients C�t) can be evaluated recursively. As has been shown 
in [9] , this expansion has a finite radius of convergence, which appears to 
be sufficiently large for all values of n1 of practical interest . Note here 
that this method of expressing the higher-£-loop coupling in powers of 
the two-loop one is equivalent to the 't Hooft scheme, where one puts by 
hand all coefficients of the ,8-function, except b0 and b1 , equal to zero 
and effectively takes into account all higher coefficients b; by redefining 
perturbative coefficients d; (see for more detail [35] ) .  

The basic ob�ects in  the Analytic approach are the analytic couplings in 
the Euclidian A}l [L; n1] and Minkowskian iit�f) [L. ; n1] domains calculated 
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with the spectral densities pSe) (a; n1) which enter into the Kallen-Lehmann 
spectral representation: 

(8) 

(9) 

It is convenient to use the following representation for spectral func­
tions: 

(fl [L · ] = _!_ 1  ( (£) [L - .  . ] ) 11 _ sin [v ip(£) [L; n1J l Pv , nf - m o:s i7r , nf -
(/3 [L· ] )  · 7r 7r f R(o ' n1 v 

( 10) 

In the one-loop approximation the corresponding functions have the 
simplest form 

whereas at the two-loop order they have a more complicated form 

with W1 [z] being the appropriate branch of Lambert function. 

(12) 

( 13) 

In the three- (£ = 3) and four-loop (£ =  4) approximation we use Eq. (7) 
and then obtain 

I 

ei cp<2J [L] (£) ei k 'P(2J[L] 1 -l 
= -[-l + I: ck k [ l , R(2l L k2".3 R<2l L 

(14) 

4?(t) [L] _ [R(e) [L] cos (4?<2l [Ll) '°' (t) R(t) [L] cos (k 4?(2) [Ll) ] (l5) - arccos [ ] + L.J Ck k [ ] · 
R(2) L k2".3 R(2) L 

Here we do not show explicitly the n f dependence of the correspond­
ing quantities - it goes inside through R(2) [L] = R(2) [L; n1J , 4?(2) [L] = 

[ J (3) (3) [ l c(4) (4) [ J ( ) . 
'P(2) L; nf ' ck = ck n1 '  k = ck n1 '  Ck = Ck n1 . The Figure 1 
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Figure 1 :  The one-loop analytic functions AS1J [L] (left) and !2LS1l [L] (right) 
for n1 = 3 and different values of v. 

shows the behavior of the one-loop analytic images in the space- and time­
like domains for different values of v. It should be note the following 
properties of the one-loop A,,[L] and !2l,, [L] : 

Ao[L] 
Am[±oo] 

(Am[-L]) 
!2lm[-L] 
(A-m[L]) 

!2l_m[L] 

2lo [L] = l ;  ( 16) 
!2lm[±oo] = 0 for m 2: 2 , m E N ; ( 17) 

m (Am[L]) (-1) !2lm[L] for m 2: 2 , m E N ; (18) 

(
_1 _ 1  

L
[(

m 
. )m+l]

) for m 2: 2 , m E N  . ( 19) 
7r(m+l) m L + rn 

Thus, "inverse powers" A-m[L] = Lm coincide with the inverse powers 
of the effective charge a-m[L] = Lm, while for the "inverse degrees" arise 
additions in the form of lower degree L with 7r2-factors in the Minkowski 
domain. 

The package "FAPT" performs the calculations of the basic required 
objects: (o:�eJ [L, n1]r in Eqs. (5) , (6) and (7), ASeJ [L, n1] in Eq. (8) and 

!2lSl) [L, n1] in Eq. (9) up to the N3LO approximation (£ = 4) with a fixed 
number of active flavours n1 and the global one with taking into account 
all heavy-quark thresholds (for more details and description of procedures 
see [29] ) .  As an example, we present here the following Mathematica real­
izations for analytic coupling ASl) [L, n1] and !2lSl) [L, n1] :  

• AcalBarf [L ,Nf ,Nu] computes the £-loop nrfixed analytic coupling 
ASe) [L, n1] in the Euclidean domain, where the logarithmic argument 
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L=ln[Q2/A2] , the number of active flavors Nf=n1 , and the power 
index Nu=v; 

• UcalBare [L , Nf , Nu] computes the £'-loop n1-fixed analytic coupling 
2l�e) [L, n1] in the Minkowski domain, where the logarithmic argument 
L=ln[s/ A2] , the number of active flavors Nf=n1 , and the power index 
Nu=v. 

3 APT and FAPT applications 

As an example of the APT application, we present the Bjorken sum rule 
(BSR) analysis (see for more details [39] ) .  The BSR claims that the differ­
ence between the proton and neutron structure functions integrated over 
all possible values 

ri-n (Q2) = 11 [.ifi'(x, Q2) - g�(x, Q2)] dx ' (20) 

of the Bjorken variable x in the limit of large momentum squared of the 
exchanged virtual photon at Q2 ---+ oo is equal to gA/6, where the nucleon 
axial charge gA = 1 .2701 ± 0.0025 [33] . Commonly, one represents the 
Bjorken integral in Eq. (20) as a sum of perturbative and higher twist 
contributions 

fp-n(Q2) = gA [l _ � (Q2)] + � µi":n 1 6 BJ � Q2i-2 
. 

i=2 
(21) 

The perturbative QCD correction �Bi ( Q2) has a form of the power series 
in the QCD running coupling a8 (Q2). At the up-to-date four-loop level in 
the massless case in the modified minimal subtraction (MS) scheme, for 
three active flavors, n1 = 3, it looks like [36] 
��f (Q2) = 0.3183 a8(Q2) + 0 .3631 a; (Q2) +0.6520 a;( Q2) + 1 .804 a!( Q2) .  

(22) 
The perturbative representation (22) violates analytic properties due to the 
unphysical singularities of a8(Q2) . To resolve the issue, we apply APT. In 
particular, the four-loop APT expansion for the perturbative part �&[(Q2) 
is given by the formal replacement 
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Clearly, at low Q2 a value of as is quite large , questioning the conver­
gence of perturbative QCD series (22) .  The qualitative resemblance of the 
coefficients pattern to the factorial growth did not escape our attention 
although more definite statements, if possible, would require much more 
efforts. This observation allows one to estimate the value of as '"" 1/3 
providing a similar magnitude of three- and four- loop contributions to 
the BSR. To test that, we present in Figures 2 and 3 the relative con­
tributions of separate i-terms in the four-loop expansion in Eq. (22) for 
the PT case and in Eq. (23) for APT. As it is seen from Figure 2, in the 

N1(Q') PT 
0.8 

0.6 ; ... J 
0.4 

i=Z 
0.2 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
Q' (Gev') 

Figure 2 :  The Q2-dependence of the 
relative contributions at the four-loop 
level in the PT approach. 

N1(Q') APT 
0.8 ........ ,_, ·--·--·--·· 

0.6 

0.4 

,_, 
0.2 ·-

J-= ,_, 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
rt (Gev') 

Figure 3: The Q2-dependence of the 
relative contributions of the perturba­
tive expansion terms in Eq. (23) in the 
APT approach. 

region Q2 < 1 GeV2 the dominant contribution to the pQCD correction 
L'.\Bj (  Q2) comes from the four-loop term '"" a! . Moreover, its relative con­
tribution increases with decreasing Q2. In the region Q2 > 2 GeV2 the 
situation changes - the major contribution comes from one- and two-loop 
orders there. Analogous curves for the APT series given by Eq. (23) are 
presented in Figure 3 .  

Figures 2 and 3 demonstrate the essential difference between the PT 
and APT cases, namely, the APT expansion obeys much better conver­
gence than the PT one. In the APT case, the higher order contributions 
are stable at all Q2 values, and the one-loop contribution gives about 70 
3, two-loop - 20 3, three-loop - not exceeds 53, and four-loop - up to 1 
3. 
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One can see that the four-loop PT correction becomes equal to the 
three-loop one at Q2 = 2 GeV2 and noticeably overestimates it (note that 
the slopes of these contributions are quite close in the relatively wide Q2 
region) for Q2 � 1 GeV2 which may be considered as an extra argument 
supporting an asymptotic character of the PT series in this region. In the 
APT case, the contribution of the higher loop corrections is not so large as 
in the PT one. The four-loop order in APT can be important , in principle, 
if the theoretical accuracy to better than 1 3 will be required. 

Now we briefly discuss how the APT applications affect the values of 
the higher-twist coefficients µ�;n in Eq. (21) extracted from Jlab data. 
Previously, a detailed higher-twist analysis of the four-loop expansions in 
powers of 0:8 was performed in [39] . In Figures 4 and 5 we present the 
results of 1- and 3-parametric fits in various orders of the PT and APT. The 
corresponding fit results for higher twist terms µ�;n , extracted in different 
orders of the PT and APT, are given in Table 1 (all numerical results are 
normalized to the corresponding powers of the nucleon mass M) . From 

�����������..-, 
0.16 

0.12 l 
0.08 • •  � 

If :; 
0.04 -�/ // ! 

0 tt : ! 
' I  

-PTNLO 

• ·  · •  PTN'LO 
-···-··PTN'LO 
----- APT 

0.5 1.0 1.5 Q' (Gev') 
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Figure 4: The one-parametric µ�-n -
fits of the BSR JLab data in various 
(NLO, N2LO, N3LO) orders of the PT 
and the all-order APT expansions. 
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Figure 5: The three-parametric 
µ�6';;-fits of the BSR JLab data in var­
io�s

· 
(NLO, N2LO, N3LO) orders of the 

PT and the all-order APT expansions. 

these figures and Table 1 one can see that APT allows one to move down 
up to Q2 � 0 . 1  GeV2 in description of the experimental data [39] . At the 
same time, in the framework of the standard PT the lower border shifts 
up to higher Q2 scales when increasing the order of the PT expansion. 
This is caused by extra unphysical singularities in the higher-loop strong 
coupling. It should be noted that the magnitude of µ�-n / M2 decreases 
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Table 1 :  Results of higher twist extraction from the JLab data on BSR in 
various (NLO, N2LO, N3LO) orders of the PT and all orders of APT. 

Method Q�in' µ� n/M2 µ� n/M4 µ� n/M6 
The best µ� n -fit results 

PT NLO 0.5 -0.028(5) 
PT N2LO 0.66 -0.014(7) 
PT N3LO 0.71 0.006(9) 
APT 0.47 -0.050(4) 

The best µ�6�-fit results 
PT NLO 0.27 -0.03(1) -0.01(1) 0.008(4) 
PT N2LO 0.34 0 .01(2) -0.06(4) 0.04(2) 
PT N3LO 0.47 0.05(4) -0.2(1) 0. 12(6) 
APT 0.08 -0.061(4) 0.009(1) -0.0004(1) 

with an order of the PT and becomes compatible to zero at the four-loop 
level. It is interesting to mention that a similar decreasing effect has been 
found in the analysis of the experimental data for the neutrino-nucleon 
DIS structure function xF3 [37] and for the charged lepton-nucleon DIS 
structure function F2 [38] . 

Consider the application of the FAPT approach by the example of 
the RG-evolution of the non-singlet higher-twist µ�-n(Q2) in Eq. (21) .  
The evolution of the higher-twist terms µ�8n is still unknown. The RG­
evolution of µ�-n( Q2) in the standard PT ���ds 

p-n (Q2) _ p-n (Q2) [as(Q2)] v µ4,PT - µ4,PT O as( Q6) ' 
16 4 v = 'Yo/ (87r,Bo) , 'Yo = 3CF , CF = 3 ·  

(24) 

(25) 

In the framework of FAPT the corresponding expression reads as follows: 

p-n (Q2) _ p-n (Q2) ASl) ( Q2) µ4,APT - µ4,APT 0 ASl) (Q6) . 
(26) 

We present in Table 2 the best fits for µ�-n( Q6) taking into account the 
corresponding RG-evolution with Q6 = 1 GeV2 as a normalization point 
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Table 2: Results of higher twist extraction from the JLab data on BSR 
with inclusion and without inclusion of the RC-evolution of µ�-n( Q2) nor­
malized at Q� = 1 Ge V2 . 

Method 

NNLO APT 
no evolution 

NNLO APT 
with evolution 

Q;,in > GeV2 
0.47 
0 . 17 
0 .10 
0.47 
0 . 17  
0 . 10  

µ� n/M2 
-0.055(3) 
-0.062(4) 
-0.068(4) 
-0.051 (3) 
-0.056(4) 
-0.058(4) 

µ� n/M4 µ� n/M6 
0 0 

0.008(2) 0 
0.010(3) -0.0007(3) 

0 0 
0.0087(4) 0 
0.01 14(6) -0.0005(8) 

and without the RC-evolution. We do not take into account the RG­
evolution in µ�-n for the standard PT calculations and compare with FAPT 
since the only effect of that would be the enhancement of the Landau 
singularities by extra divergencies at Q2 "' A 2, whereas at higher Q2 "' 

1 GeV2 the evolution is negligible with respect to other uncertainties. We 
see from Table 2 that the fit results become more stable with respect 
to Qmin variations, which reduces the theoretical uncertainty of the BSR 
analysis. 

4 Summary 
To summarize, APT and FAPT are the closed theoretical schemes with­
out unphysical singularities and additional phenomenological parameters 
which allow one to combine RC-invariance, Q2-analyticity, compatibility 
with linear integral transformations and essentially incorporate nonper­
turbative structures. The APT provides a natural way for the coupling 
constant and related quantities. These properties of the coupling constant 
are the universal loop-independent infrared limit and weak dependence on 
the number of loops. At the same time, FAPT provides an effective tool 
to apply the Analytic approach for RC improved perturbative amplitudes. 
This approaches are used in many applications. In particular, in this pa­
per we consider the application of APT and FAPT to the RC-evolution of 
nonsinglet structure functions and Bjorken sum rule higher-twist analysis 
at the scale Q2 "' A 2 considered. 
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The singularity-free, finite couplings A,, ( Q2) ,  2l,, ( s) appear in 
APT /FAPT as analytic images of the standard QCD coupling powers 
o:� ( Q2) in the Euclidean and Minkowski domains, respectively. In this pa­
per, we presented the theoretical background, used in a package "FAPT" [29] 
based on the system Mathematica for QCD calculations in the framework 
of APT /FAPT, which are needed to compute these couplings up to N3LO 
of the RG running. We hope that this will expand the use of these ap­
proaches. 
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Abstract 
The beta-function is investigated on the lattice in SU(2) gluody­

namics. It is determined within a scaling hypothesis while a lattice 
size fixed to be taken into account. The functions calculated are 
compared with the ones obtained in the continuum limit. Graph­
ics processing units (GPU) are used as a computing platform that 
allows gathering a huge amount of statistical data. Numerous beta­
functions are analyzed for various lattices. The coincidence of the 
lattice beta-function and the analytical expression in the region of 
the phase transition is shown. New method for estimating a critical 
coupling value is proposed. 

1 Introduction 

The beta-function is one of the main objects in quantum field theory. It 
defines scaling properties of the theory in different regions of dynamic 
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variables. It is defined as 

(1 )  

where {31(9µ,) - beta-function, 91, = g(µ2) - effective coupling constant, µ 
- normalizing momentum. 

For the case of the Monte-Carlo (MC) calculations in SU(N) lattice 
gluodynamics the beta-function has the form 

(2) 

where a replaces the parameter µ2 , a - is lattice spacing. Lattice spacing 
is a free parameter of the theory. In particular, calculation of f31 (9) is one 
of the ways to define a. 

In analytical approach, the beta-function described by an expansion 
as power series of coupling constant. In the cases of quantum chromody­
namics or SU(N) lattice gluodynamics, a non-perturbative beta-function 
attracts the most interest. 

In ref. [6] a new special method was developed. Namely, the effects 
connected with the final sizes of a lattice were taken into account, and 
scaling near the critical point of SU(N) lattice gauge theories has been 
considered without attempt to reach a continuum limit . 

The goal of the present paper is the detailed investigation and devel­
opment of this approach. In SU(2) gluodinamics, we calculate the beta­
functions on different lattices and compare their values with those obtained 
in a continuum limit. 

2 Analytical expression 

The beta-function describes the dependence of the lattice spacing a on a 
coupling constant 9 

(3) 

Our calculations are based on the special form of the definition of the 
beta-function [6] . Let us consider a transformation 

a -+  a' = ba = (1 + t:.b)a. (4) 
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Under this transformation the definition (3) becomes 

-a dg = - lim (ag(ba) - g(a)) = - lim dg = f3 (g) .  
da b-+I ba - a b-+I db 1 (5) 

The singular part of the free energy density can be described by the 
universal finite-size scaling function [9] 

(6) 

where /3, ry, v are the critical indexes of the theory. Due to the finite size 
scaling hypothesis, these indexes coincide with the critical indexes of 3-d 
Ising model. The scaling function Q f depends on the reduced temperature 
t = ry.;0 and the external field strength h through thermal and magnetic 
scaling fields 

Ctt( l  + btt) , 
chh(l + bht) 

with non-universal coefficients Ct, ch , bt, bh still carrying a possible Nr. 

(7) 

The existence of the scaling function Q [7] , [8] allows developing a 
procedure to renormalize the coupling constant g-

2 by using two different 
lattice sizes Nu, Nr and N�, N� (Nu - number of lattice nods in spatial 
directions, Nr - number of lattice nods in time direction) . Let us fix 
� = � = b and make a scale transformation 

a --+ 

Nu --+ 

Nr --+ 

a' = ba, 

N' = Nu 
u b ' 

N' = Nr 
r b . 

(8) 

Then the phenomenological renormalization is defined by the following 
equation 

-2 ) (( ')-2 Nu Nr ) Q(g , Na , Nr = Q  g ' b' b  · (9) 

It means that the scaling function Q remains unchanged if the lattice size 
is rescaled by a factor b and the inverse coupling g-2 is shifted to (g')-2 
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simultaneously. Taking the derivative with respect to the scale parameter 
b of the both sides of (9) and using (5) we obtain the expression 

(10) 

Fourth derivative of f in h taken at h = 0 and divided by x2(� )3 is 
called the Binder cumulant [10] 

( 11 )  

It  identically coincides with the scale function [10] 

( 12) 

Binder cumulant g4 is calculated through the Polyakov loops on a lattice 
[10] 

We get the expression for the beta-function 

dg-2 � + � 1 � + � 
a-- = 8lnN,, 8lnNT 8lnN,, 8lnNT 

da _fui_ 
= 4 f!.9.! a9-2 a� 

3 Lattice observables 

(13) 

(14) 

Let us calculate beta-function using (14) . As the lattice size is discrete, 
it is necessary to replace the derivatives in (14) by the finite differences 
which are calculated on lattices with the closest Na, Nr (and corresponding 
g4(Na ,  Nr) ) :  

og4(f3, Na, Nr) g4(/3, N�,  Nr) - g4(/3, Na, Nr) 
OlnNa -+ ln(/3, N�/Na) ' 

og4(/3, Na ,  Nr) g4(/3, Na , N�) - g4(/3, Na , Nr) 
OlnNr -+ ln(/3, N�/Nr) 
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Such replacement, 

(16) 

leads to huge computing errors. Near the phase transition area, the dis­
persion is increased and the substitution (16) becomes not reasonable. For 
different lattices investigated, the amount of data near the critical region 
varies from 120 up to 600 points, but the error for (16) remains large. 

Function 

Ai + l-1-l�r(:l�A�) .. p 

� + A  l+(fu)P 2 

A1 -A2 + A  l-!-e\i3-i3o)7P 2 

Table 1 .  Tested fitting curves 

Parameters 

Ai , A2 , ,80 , P 

Ai , A2 , ,80 ,P  

Ai , A2 , ,80, p 

Our the best fits (see Fig. 1 , Tab .  2) are reached for the function 

g4 = Al +  (A2 - Al)/(l + 10<.Bo-.Bl*P) , (17) 

where Al , A2, ,80, p - fitting parameters. 

-1 . 

-1 . 

-2. 
Figure 1. Binder cumulants. Cumulants are re­
ceived on lattices with Nr = 4, and Ncr = 8, 12, 16, 
24, 28, 32. The higher number of nods in the lattice 
corresponds with the sharper step. All curves inter­
sect each other in a local area and as it comes from 
the theory these curves should intersect in one point 
(the critical point) . 
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If one knows g4 in an analytical form, it is possible to calculate � 
straightforwardly. However, the result of g4 calculations is a set of points. 
To reveal a functional dependence on this sequence, it is necessary to apply 
some fitting procedure. For this procedure we chose the step functions, 
since the critical area of g4 is a steplike (see Tab. 1 ) .  

In  Tab. 2 best fits for number of lattices are represented. We have 
analyzed up to 600 points for some lattices and have reached small values 
(down to 10-3) of x2 function. 

Table 2. Fitting of Binder cumulants by A 1 + 1+�1;;;,A�)•p 

Parameters Fitting 
range 

Number 
Lattice x2 Ai A2 f3o p of /3min f3max 

points 

NT = 4, N,, = 8  0.009 -1 .953 -0.0523 2.2705 -12 126 1.7 2.95 

NT = 4, N,, = 8  0.012 - 1 .957 -0.0507 2.2747 -11  26 1 .7  2.95 

NT = 4, N,, = 12 0.025 -1.98 -0.1 2, 286 -24 253 1 .7  2.95 

NT = 4, N,, = 12 0.011 -2 -0.04 2, 289 -16 26 1.7 2.95 

NT = 4, N,, = 16 0.029 -2.01 -0.066 2.287 -30.1 236 1.7 2.95 

NT = 4, N,, = 16 0.013 - 1.99 -0.05 2.292 -30.9 26 1.7 2.95 

NT = 4, N,, = 20 0.055 -2 -0.065 2.291 -48 246 1.7 2.95 

NT = 4, N,, = 24 0.1 -2.0098 0.044 2.296 -68 126 1.7 2.95 

NT = 4, N,, = 24 0.006 -2.001 0.061 2.291 -27 26 1.7 2.95 

NT = 4, N,, = 28 0.089 -2.05 -0.13 2.29 -62 626 1.7 2.95 

NT = 4, N,, = 28 0.012 -1.99 -8 · 10-S 2.28 -21 26 1.7 2.95 

NT = 4, N,, = 32 0.12 -1.984 -0.2 2.3 -84 626 1 .7  2.95 
NT = 4, N,, = 32 0.01 - 1 .988 0.014 2.27 -28 26 1.7 2.95 
NT = 4, N,, = 36 0.19 -2 -0.27 2.3 - 105 600 2.28 2.31 

NT = 16, N,, = 20 0.094 - 1.17 -0.017 2.68 -7 126 1.7 2.95 

NT = 16, N,, = 24 0.054 - 1.7 0.04 2.75 -6 26 1.7 2.95 

NT = 16, N,, = 28 0.021 - 1 .6 -0.017 2.67 -17 26 1.7 2.95 

NT = 16, N,, = 32 0.021 -1.7 0.03 2.69 -23 126 1.7 2.95 

Now we turn to an interesting features of these fits. Parameters of the 
curve, which based on 600 data points, are nearly the same as parameters 
(especially /30) of the curve, which based on 25 data points. The parameter 
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/30 coincides (to within 2 up to 3 digits) with an inverse critical coupling 
constant for a corresponding lattice (see Tab. 3, ref. [9] , [12] ) .  

Table 3. Values of the inverse coupling constant 

NT 2 4 6 8 
f3c 1.875 2.301 2.422 2.508 

It is common to use linear fits for finding of critical point on the lattice. 
Because of the dispersion in critical region these fits need a lot of data to be 
performed. Using both listed above properties one can estimate the inverse 
critical coupling using just few points. For more precise calculations one 
can use function (17) with data, which are from above and below critical 
region. Dispersion for these data is much less than for data, which are 
near critical area, so one need much less statistics than usually. 

The expression for the beta-function in lattice variables reads: 

It will be used below. 

4 Calculation of the beta-function 

(18) 

We chose the heat-bath as working algorithm in MC procedure. We use 
standard form of Wilson action of the SU(2) lattice gauge theory. In the 
MC simulations, we use the hypercubic lattice Lt x L� with hypertorus 
geometry. 

We use the General Purpose computation on Graphics Processing Units 
(GPGPU) technology allowing studying large lattices on personal comput­
ers. Performance analysis indicates that the GPU-based MC simulation 
program shows better speed-up factors for big lattices in comparing with 
the CPU-based one. For the majority lattice geometries the GPU vs. CPU 
(single-thread CPU execution) speed-up factor is above 50 and for some 
lattice sizes could overcome the factor 100. 

The plots of dependencies of the beta-function on the inverse coupling 
constant are shown below. 
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Figure 2. The solid line represents 
the beta-function in asymptotic 
expansion. Dashed lines with a 
point - the beta-functions ( 18) , 

NT = 2, N(T = 8, 16, 20, 
6.NT = N� - NT = 2, 
6.N" = N� - N" = 4. 

I \ 
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\ 
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Figure 3. Same as above. Dashed 

lines with a point - the 
beta-functions ( 18) ,  NT = 4, 

N(T = 12, 20, 6.NT = N� - NT = 2,  
6.N" = N� - N" = 4. The Dashed 

line with two points - the 
beta-function is received in ref. [1] . 

Standard deviation of the function ( 18) is smallest near critical point. 
It comes from analysis of Binder cumulants. Cumulants decrease linearly 
in the critical area and change little above and belove that area. Therefore 094(/J'a�"'Nr) in the bottom of ( 18) comes to 0 and leads (18) to infinity. 
Beta-function values which are calculated near critical point are in good 
agreement with known results [1] . 

5 Conclusions 

We have performed high-statistics calculations of the beta-function in 
SU(2) lattice gluodynamics. These calculations became possible due to 
technology of GPU calculations. 

The key point for our investigations is definition (5) [6] . It gives a 
possibility to analyze a finite size of the lattice. 

We have constructed and analyzed the lattice beta-functions for a wide 
range of different lattices. 

Values of all beta-functions in critical region are the same for different 
functions. In particular, the values of the beta-functions ( 18) in critical 
region are almost the same as the values obtained in ref. [l] . The fast 
method of determination of the inverse critical constant on a lattice based 
on the formula (17) is proposed. 
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