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Аннотация. The finite-dimensional irreducible representations of Yangian of Lie
Superalgebra of A(n, n) type is described in terms of Drinfel’d polynomials. The necessarily
and sufficient conditions of finite-dimensionality of irreducible representation are formulated
and proved. The Poincare-Birkoff-Witt theorem for Yangian of A(n, n) Lie Superalgebra is
proved also.

1. Introduction
The description of irreducible representations of Yangians of Lie Superalgebras be an important
problem for the theory of exactly solvable models of Statistical Mechanics and Quantum Field
Theory. For example, construction of the transfer-matrix based on the determination of image of
universal R-matrix of quantum double of Yangian by the action of tensor product of irreducible
and identical representations. Computation of spectrum of Hamiltonian and correlation functions
is based also on the representation theory of Yangians by using universal R-matrix formula.
Therefore representations theory of Yangians of simple and reductive Lie algebras is a developed
theory, which began to develop until to appearance of term "Yangian"(see [1], [10], [3], [4], [15],
[25], [26]). In contrast with these theory, representation theory of Yangians of Lie Superalgebras
is a young discipline, which appear at the beginning of 90-th years of 20 century. In the last years
the number of applications of Representation Theory of Yangians of Lie Superalgebras rise, to
began research problems of Yang-Mills fields and Quantum Superstring Theory using Yangian
Theory technique (see [2], [6], [19]).

In this paper we research the finite-dimensional irreducible representations of Yangian of
Lie Superalgebra of A(n, n) type (see [14], [11]). The main result of this work is a theorem
on classification of such representations. Let’s note that classification of the finite-dimensional
irreducible representations of Yangian of Lie Superalgebra of gl(m + 1, n + 1) was received in
the middle of 90-th by R.B. Zhang (see [27], [28]) and classification of the the finite-dimensional
irreducible representations of Yangian of Lie Superalgebra of A(m,n),m �= n was received in
[24] (see also, [23]). The case m = n is a more difficult, because in these case Cartan generators
aren’t linearly independent.
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Let’s note that Yangians together with quantized enveloping algebras and elliptic quantum
algebras are one of the three most important examples of quantum algebras. The notion Yangian
was introduced by V. Drinfel’d in honour to C.N. Yang. But algebras isomorphic to Yangian were
used for investigation exactly solvable models by means of Quantum Inverse Scattering Method
in the 80-th years by V. Tarasov (see, for example, [25], [26]).

It should be mentioned that representation theory of Lie Superalgebra sl(m+1, n+1) differs
from representation theory of simple Lie algebra sl(n + 1) that Lie Superalgebra has together
typical representations also so called atypical representations. This pathology reveals itself in the
representation theory of Yangian of Lie superalgebra A(m,n) also.

Let’s note that Yangian with quantized enveloping algebras and quantum elliptic algebras are
most important examples of quantum algebras. The notion of quantum algebra was introduced
by V. Drinfel’d in the middle of 80-th years of 20 century (see [7], [8]). But earlier algebras
isomorphic to Yangian are used for investigation exactly solvable models by Quantum Inverse
Scattering Method (QISM) (see [25], [26]). Yangians of simple and reductive Lie algebras are
investigated in detail in present time (see books [3], [15]). Yangians of Lie Superalgebras began
investigate at the 90-th years of last century (see [16], [20]). In the papers [21], [22] was proved
formula for universal R-matrix of Yangin Double of Yangin for special linear Lie Superalgebra. Let
us note that using of results papers [21], [22], [24] and this work it can be systematically describe
all possible quantum R-matrices and transfer matrices connecting with Yangian Y (A(m,n))
including examples important for exactly solvable models of Quantum Field Theory.

Some words about structure od this works. In the second section we recall definition of the
Yangian of Lie Superalgebra A(n, n) in terms of generators and defining relations. We define it
in terms of current system of generators following the author’s work [20]. In the third section
we recall construction of PBW bases and give a sketch of the proof of this theorem. In the forth
section we recall the main definitions from representation theory of Yangians of Lie Superalgebras
and formulate and prove the main result of work the theorem on classification of finite dimensional
irreducible representations of Yangian of Lie Superalgebra A(n, n).

We’ll use the following notations. We denote by C the field of complex numbers, by Mn(K) the
ring of N ×N - matrices with elements from ring K; by K[u], K[[u]] the ring of polynomials and
ring of formal power series, correspondingly, with coefficients from ring K; by Z+ = {0, 1, 2, . . .}
the set of non negative integers, which is union of zero and set of natural numbers N . The end
of proof we denoted by symbol �.

2. Definition of Yangian of Lie Superalfebra A(n, n)
2.1. Lie Superalfebra A(n, n)
Let me recall basic definitions from Lie Superalgebra theory, related to the Lie Superalgebra
A(n, n). This Lie superalgebra has rank equals 2n − 2 and dimension equals 4n2 − 2, number
of simple roots equals 2n − 1 and differs from rank. Lie Superalgebra A(n, n) is generated the
generators hi, x

±
i , i ∈ {1, 2, . . . , n, n + 1, . . . , 2n + 1}. The Cartan matrix (distinguished Cartan

matrix) determining the system of defining relations has following form:

A = (ai,j)2n+1
i,j=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 . . . 0 0 . . . 0 0
−1 2 . . . 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 1 . . . 0 0
0 0 . . . −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The symmetric Cartan matrix is follows:
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aii = 2, i < n + 1, an+1,n+1 = 0, ai,i = −2, n + 1 < i ≤ 2n + 1, ai,i+1 = ai+1,i = −1 for i < n + 1,
и ai,i+1 = ai+1,i = 1 for i ≥ n + 1. The all other matrix elements are equal zero. As a rule we’ll
use the symmetric Cartan matrix.

The system of defining relations of A(n, n) has the following form:

[hi, hj ] = 0,
i ∈ I = {1, 2, . . . , n, n + 1, . . . , 2n + 1}; (1)

[hi, x
±
j ] = ±aijx

±
j , i, j ∈ I; (2)

[x+
i , x−

j ] = δijhi, i, j ∈ I; (3)

[x±
n+1, x

±
n+1] = 0; (4)

[x±
i , x±

j ] = 0; |i − j| > 1; (5)

[x±
i , [x±

i , x±
j ]] = 0, |i − j| = 1, i, j ∈ I; (6)

[[x±
n , x±

n+1], [x
±
n+1, x

±
n+2]] = 0. (7)

Let’s note that the generators x±
n+1 are odd and other generators are even, or p(x±

n+1) =
1, p(x±

i ) = p(hj) = 0, where p be a parity function, j ∈ I, i ∈ I\{n + 1} (see [14]). Let be below
g = A(n, n) = sl(n + 1, n + 1).

2.2. Definition of Yangian
First, we recall the definition of Yangian Y (g) = Y (A(n, n)) (see also [20], [12]).

Yangian, as other quantum algebras, is defined as a result of deformation (in the case of
Yangian) of universal enveloping (super)algebra of current Lie superalgebra (wih values in Lie
superalgebra) in the class of Hopf superalgebras. In the paper [20] was shown that this definition is
equivalent other definition using so called current system of generators. This system of generators
is convenient for representation theory of Yangians. Therefore we’ll consider it further.

Definition 1 Let Y (g)� be a superalgebra ( over ring of formal power series C[[�]]), generated
by generators hi,k, x

±
i,k, i ∈ I = {1, 2, . . . , 2n + 1}, k ∈ Z+ (p(x±

n+1,k) = 1, p(x±
i,k) = p(hj,k) =

0, i ∈ I\{n + 1}, j ∈ I, k ∈ Z+), which satisfied the following defining relations (compare with
relations from paper [18], definition 2 of paper [20], and also relations from proposition 9.1 of
work [12]):

[hi,k, hj,l] = 0, i, j ∈ I, k ∈ Z+; (8)
[x+

i,k, x
−
j,l] = δi,jhi,k+l, i, j ∈ I, k, l ∈ Z+; (9)

[hi,k+1, x
±
j,l] = [hi,k, x

±
j,l+1] ± (aij/2)�(hi,kx

±
j,l + x±

j,lhi,k),

i, j ∈ I, k, l ∈ Z+; i �= n или j �= n (10)
[hn+1,k+1, x

±
n+1,l] = 0; (11)

[hi,0, x
±
j,l] = ±aijx

±
j,l, i, j ∈ I, l ∈ Z+; (12)

[x±
i,k+1, x

±
j,l] = [x±

i,k, x
±
j,l+1] ± (aij/2)�(x±

i,kx
±
j,l + x±

j,lx
±
i,k),

i, j ∈ I, k, l ∈ Z+; i �= n or j �= n; (13)
[x±

n+1,k, x
±
n+1,l] = 0; (14)

[x±
i,k1

, [x±
i,k2

, x±
j,k3

]] + [x±
i,k2

, [x±
i,k1

, x±
j,k3

]] = 0,

|i − j| = 1, i, j ∈ I, k1, k2, k3 ∈ Z+; (15)
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[x±
i,k, x

±
j,l] = 0, |i − j| > 1; (16)

[[x±
n,r, x

±
n+1,0], [x

±
n+1,0, x

±
n+2,s]] = 0. (17)

Easy to check that for different �, (aren’t equal zero), Hopf Superalgebras Y (g)� are
isomorphic.

Yangian Y (g) is called Hopf Superalgebra Y (g)1 over field of cjmplex numbers C.
Let us introduce the following generating functions of Yangian generators:

hi(u) = 1 +
∞∑

k=0

hi,k · u−k−1 =
∞∑

k=−1

hi,k · u−k−1, i = 1, 2; (18)

x±
i =

∞∑
k=0

x±
i,k · u−k−1, i = 1, 2. (19)

Easy to check that relation (10) for Yangian generators is equivalent the following relation for
generating functions:

[hi(u), x±
j (t)] = ∓aij

2
(hi(u)(x±

j (t) − x±
j (u)) + (x±

j (t) − x±
j (u))hi(u))

(u − t)
. (20)

3. Root generators. Poincare-Birkgoff-Witt theorem.
3.1.
In this subsection we formulate Poincare-Birkgoff-Witt theorem. This result is a quantum
analogue of classical Poincare-Birkgoff-Witt theorem for universal enveloping algebras (see [13],
[3]).

Let below g = A(n, n).
Let degree of generators ai,k, ai,k ∈ {x+

i,k, x
−
i,k, hi,k} be its second index.

A degree of monom from generators is called the sum of degrees of multipliers. A degree of
polynomial is called maximum of degrees of monoms of this polynomial. Let also degree of tensor
products of monoms be the sum of degrees of tensor multipliers. A degree of tensor polynomial
is called maximum of degrees of tensor monoms forming this polynomial.

Let’s denote the space of elements of Y (g) of degreee less or equal k by Yk = Yk(g)). We get
on Y (g) the following filtration:

Y0 ⊂ Y1 ⊂ Y2 ⊂ ... ⊂ Yn ⊂ ....

Let’s note that on modulo of terms of lesser degree (that is on modulo Y (g)k+l−1 )
commutation relations in Y (g) has the following form:

[hα,k̄, xβ,l̄] = (α, β)xβ,k̄+l̄; [hα,k̄, hβ,l̄] = 0; (21)

[xα,k̄, xβ,l̄] =

⎧⎨
⎩

0, α + β/∈ Δ ∪ {0},
hα,k̄+l̄, β = −α,
N(α, β)xα+β,k̄+l̄, α + β ∈ Δ

(22)

where N(α, β) is defined from the following relation in U(g):
[xα, xβ ] = N(α, β)xα+β , для α + β ∈ Δ.
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Let’s construct root vectors for Y (g). Let αn+1 be an odd root and Δ+ be a set of positive roots
of Lie superalgebra A(n, n). Let’s define on Δ+ so called convex order by induction. At first we
fix ordering on the set of positive roots, corresponding its numeration: α1 ≺ α2 ≺ ... ≺ α2n+1. If
α, β ∈ Δ+, α ≺ β and its sum is defined α+β, then we define ordering by condition α ≺ α+β ≺ β.
Let’s fix monotonous mapping α : [1, 2, ..., N ] → Δ+ with respect to order: α(k) ≺ α(n) if k < n.
(Let’s note that N = (2n+1)(2n+2)

2 .)
Let (i, k) = (i1, k1, i2, k2, . . . , i2n+1, k2n+1) be a vector, |(i,m)| =

∑m+n+1
j=1 (ij + mj) be sum

of components of its vector.
Let Y− be an associative subalgebra of Yangian Y (A(m, n)), generated by generators {x−

i,k =
x−

α(i),k|1 ≤ i ≤ N, k ∈ Z+}. Let’s describe ordering base in Yangian Y (g), as in vector
space, i.e Poincare-Birkgoff-Witt base (PBW – base). Let k = (k1, ..., kr), ki ≥ 0, be a vector,
k = |k| =

∑r
i=1 ki. Let also

x(k,w; s, p; r, t) = (x+
α(1),k1

)w1 · . . . · (x+
α(N),kN

)wN ·
(h1,s1)

p1 · . . . · (h2n+1,s2n+1)
p2n+1 · (x−

α(1),r1
)t1 · .... · (x+

α(N),rN
)tN .

Let’s define lexicographic ordering on the set of vectors {x(k,w; s, p; r, t)}. Let α = αs +
αs+1 + . . .+αt; α, αs, αs+1, . . . , αt ∈ Δ+, and αs, αs+1, . . . , αt be simple roots, s < t, l = t−s+1.
Let x±

s,k1
, . . . , x±

t,kl
∈ Y (G), k = k1 + k2 + ... + kl. Let’s define root vectors by formulas:

x±α,k = [x±
s,k1

, [x±
s+1,k2

, [. . . , x±
t,kl

] · · · ]].

Easy to check that if (k′
1, . . . , k

′
l) be another decomposition of number k, then xα,k =

[x±
n,k′

1
, [x±

n+1,k′
2
, . . . , x±

t,k′
l
] . . .]].

Let’s note that onto modulo of terms of lesser degree (i.e. onto modulo Y (g)k−1) commutation
relations in ⊕∞

k=1Y (g)k/Y (g)k−1 ⊕ Y (g)0 are coincide with commutation relations in universal
enveloping superalgebra of current Lie superalgebra U(g[t]), i.e have the following form:

[hi,k, x
±
j,l] = ±(αi, αj)x±

j,k+l,

[x+
i,k, x

−
j,l] = δijhi,k+l,

[hi,k, hj,l] = 0,
[x±

i,l, [x
±
i,r, x

±
j,s]] = 0,

[[x±
n,r, x

±
n+1,0], [x

±
n+1,0, x

±
n+2,s]] = 0.

It should be note that these relations enough for determination linear order on elements of
base of polynomial current superalgebra g[t] = A(n, n)[t], when odd root generators take part
in relations. This can be checked by direct calculations. Foe every number k let’s fix vector
(k1, k2, ...., kl), k = k1 + ... + kl, defines partition of its number.

Above we introduce the linear order onto set of roots Δ and inducing by its order an order
on root vectors. Let’s note by Ω the set of ordering monoms from xα, hi, α ∈ Δ, i ∈ I. We use
notation xα = x+

α , x−α = x−
α , α ∈ Δ+.

Theorem 1 (Ω,≺) is Poincare-Birkgoff-Witt base in Yangian Y (g).

3.2.
Let’s prove Poincare-Birkgoff-Witt theorem for Yangian Y (A(n, n)). We give a sketch of proof.

At first let’s prove completeness of Ω(<).
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For monom M belong to Ω(<) let’s define its length l(M) as number of multipliers or
generators are contained in M . After reordering multipliers from (21), (22) it follows that we’ll
get additional summands either lesser degree or equal degree and lesser length. Using induction
we get that Y (g) coincide with linear span of Ω(<). Note when we reording monoms contain odd
root generators we use relation (17).

Let us prove that monoms from Ω(<) are linear independent. Our proving is based on existence
of such representation ρ of Yangian Y (g) that ρ(x+

i,0), ρ(x−
i,0), ρ(hi,0) are are linear independent.

After them we reduce to contradiction assumption that elements of Ω(<) are linear dependent.
Suppose that monoms from Ω(<) aren’t linear independent. Then exist such numbers c1, . . . , cs ∈
C \ {0} and monoms M1, . . . ,Ms ∈ Ω(<), that

∑
1≤j≤s

cjMj = 0 (23)

It can be show that this assumption reduced to contradiction (see [24]).
�

4. Representations of Yangian Y (A(n, n))
4.1.
Let V be a module over Yangian Y (A(n, n)).

Definition 2 Let V be a module over Yangian Y (g) of Lie Superalgebra g = A(m,n), d̄ =
{di,r|i ∈ I, r ∈ Z+} be a collection of complex numbers. Let’s denote by Vd̄ and call weight
subspace of module V the space

Vd̄ = {v ∈ V : hi,rv = di,rv} (24)

Collection of numbers d̄ = {di,r} is called weight of Yangian module.
We are going to describe a structure of finite dimensional modules over Yangian Y (g) and to

formulate necessary and sufficient conditions finite dimensionality of irreducible module.
The vector v ∈ V is called primitive, if v ∈ Vd̄ and x±

i,r · v = 0 for all i ∈ I, r ∈ Z+.
The module V is called highest weight module if it is generated by primitive vector, that is

V = Y (A(n, n)) · v for some primitive vector v ∈ Vd̄.
At first we show that every finite dimensional representation of Yangian Y (g) has highest

(primitive) vector.
Let’s note that every highest weight module should be constructed as a factor of Verma

module. Verma module should be constructed in usual manner as f factor module of Yangian
Y (g) on ideal generated by vectors x+

i,r and hi,k − di,k. In this case highest vector is a unite of
Yangian 1. Let’s consider weight

∑
i λi ·hi,0, where λ is a fundamental weight of Lie Superalgebra

g. Then weight subspace of Yangian Verma module with such weight is 1-dimensional. Easy to
show that it follows Verma module has unique irreducible factor module is denoted as V (d̄),
i.e. V (d̄) = M(d̄)/N(d̄), where N(d̄) be a maximal submodule of Verma module M(d̄). Let
π : M(d̄) → V (d̄) be a canonical projection.

Theorem 2 Every finite dimensional representation of Yangian Y (g) (simple Y (g)-module) V
contains unique (up to scalar multiplier) highest vector v.

The proof of this theorem is based on the following lemma. Let V0 = {v ∈ V |x+
i,kv = 0,∀k ∈

Z+}.
Lemma 1 1) hi,kV0 ⊂ V0.
2) V0 �= 0.
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it Proof 1) Let v ∈ V0. Then x+
i,khj,lv = hj,lx

+
i,kv + [hi,l+1, x

+
i,k−1]v + 1

2(hi,kx
+
i,l + x+

i,lhi,k)v. Let
rearrange generators x+

i,s и hj,r using commutation relations (defining relations of Yangian) we
get x+

i,khj,lv = 0 or hj,lv ∈ V0 для v ∈ V0, that is hi,lV0 ∈ V0.

2) Let v′ ∈ V0. Let act on vector v′ by elements of PBW-base. At first let consider the case
m = n = 1, i.e. case of Y (sl(1, 1)) and after we consider a general case. In the case of Y (sl(1, 1))
exist such number m ∈ N , that (x+

0 )mv′ �= 0, (x+
0 )m+1v′ = 0. Let v2 = (x+

0 )mv′. We’ll act by
elements of PBW base in correspondence with order on the PBW base. Easy to check that exist
such integer r that vr = (x+

r )pr · ... · (x+
0 )p0v �= 0, but x+

t · vr = 0 for ∀t ∈ Z+. Then vr ∈ V0. WE
get that V0 �= {0}.

Let consider the general case of Y (A(n, n)). Consider linear order on vectors of PBW base
from Y+. Let’s denote these vectors by {x+(j)}∞j=0, and let x+(j) ≺ x+(l) for j < l. Then exist
such integer m ∈ Z+, that x+(m)v′ �= 0, butо x+(m + 1)v′ = 0 for v′ ∈ V0. �

Lemma 2 V0 be 1-dimensional space (that is every two vectors from V0 are proportional).

Proof Let v′, v” ∈ V0, v
′ �= v”. Then acting on these vectors by elements of Yangian Y (A(n, n)),

we get two submodules Y (A(m,n))v′ and Y (A(m,n))v” of module V . These fact contradicts to
irreducibility of module V in the case when v′, v” aren’t proportional. �

The theorem follows from these two lemmas.
Let us introduce class of highest weight modules are analogues of Verma modules. Let

V0 = CvΛ
+ be 1-dimensional vector space, Y +

0 be a subsuperalgebra of Yangian Y (A(n, n)),
generated by generators x+

i,k, i ∈ {1, 2, ..., m+n+1}, k ∈ Z+; Y 0
0 = 〈hi,k|i ∈ I, k ∈ Z+〉 is a linear

span of generators {hi,k|i ∈ I, k ∈ Z+}; Y + = Y +
0 · Y )

0 . Let also hi,kv
Λ
+ = di,kv

Λ
+, Y +

0 · vΛ
+ = 0.

(We’ll use also notation Λ = d̄ in order to stress analogy with highest weights of modules of
Lie Superalgebras. We’ll use also notation v+ = vΛ

+ for highest vector). Then V0 became 1-
dimensional Y (A(n, n))-module. Let’s define free module MΛ with highest weight Λ by formula:

MΛ = Y (g) ⊗Y + vΛ
+. (25)

Evidently, that MΛ isomorphic to Y −
0 ⊗vΛ

+ : MΛ
∼= Y −

0 ⊗vΛ
+ as a vector space. We’ll write x−

i,kv
Λ
+

instead of x−
i,k ⊗ vΛ

+. Clearly, that module MΛ is infinite dimensional. Standard arguments show
that module MΛ contains maximal submodule NΛ. Then module VΛ = MΛ/NΛ is irreducible
module with highest weight Λ. Using the standard methods of representation theory easy to
check that every two modules with equal highest weights are isomorphic (see also [?]). Namely,
let V1(Λ), V2(Λ) be two irreducible modules with equal highest weights Λ = {λk}∞k=0 and uΛ

+, wΛ
+

be its highest vectors, correspondingly. Let W = V1(Λ) ⊕ V2(Λ), vΛ
+ = (uΛ

+, wΛ
+) be a highest

vector of some submodule V (Λ) with highest weight Λ generated in W by vector vΛ
+ (under action

of Yangian Y (A(n, n))). Let’s define a projections Pi : V (Λ) → Vi(Λ), i = 1, 2 : P1(v1, v2) =
(v1, 0), P2(v1, v2) = (0, v2), vi ∈ Vi(Λ). Easy to check that Pi, i = 1, 2 are module homomorphisms
and P1(vΛ

+) = uΛ
+, P2(vΛ

+) = wΛ
+. It follows that ImPi = Vi(Λ) from irreducibility of modules

Vi(Λ), i = 1, 2. Then KerP1 = {0},KerP2 = {0} (or KerP1 = V2(Λ),KerP2 = V1(Λ)). But last
equality is impossible because vectors (0, wΛ

+), (uΛ
+, 0) /∈ W . Therefore Pi, i = 1, 2 are module

isomorphisms and V (Λ) ∼= V1(Λ) ∼= V2(Λ).
So then we prove the following theorem

Theorem 3 For every highest weight Λ = {λi}∞i=0 exist unique irreducible Y (g)-module V (Λ)
with highest weight Λ.
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4.2.
Let’s define on module M(d̄) the following two filtrations. As the module M(d̄) as a vector
space naturally isomorphic to Y (g)−, we can define at first filtrations on Y (g)−. After them we
can define this filtrations on M(d̄) using isomorphism between Y (g)− and M(d̄). Let (Y (g)−)k

((Y (g)−)k) be a linear span of monoms od degree lesser or equal k. The degree of monom
from generators , as usual, is sum of degrees of these generators form this monom. A degree of
generators is a value of second index of this generators in first case and is number equals value
of second index plus 1 in the second case. In he first case we’ll denote degree of monom x by
d1(x) and by d1(x) in the second case. Also as above we extend our definition on polynomials
defining a degree of polynomial as a maximum of degrees of monoms form this polynomial. Let
Y (g)k = {x ∈ Y (g) : d1(x) ≤ k}, а Y (g)k = {x ∈ Y (g) : d2(x) ≤ k}. Let’s consider constriction
of these filtrations on Y (g)−. Thus we get the following two filtrations on Y (g)−:

C ⊂ (Y (g)−)0 ⊂ (Y (g)−)1 ⊂ · · · (Y (g)−)k ⊂ ... (26)
{0} ⊂ C ⊂ (Y (g)−)0 ⊂ (Y (g)−)1 ⊂ · · · (Y (g)−)k ⊂ ... (27)

Let M(d̄)k = (Y (g)−)k · vd̄, M(d̄)k = (Y (g)−)k · vd̄. As irreducible module V (d̄) is a
factor-module of Verma module M(d̄)k, the the above defined filtrations determine filtration
on irreducible module V (d̄). It should be mentioned that properties of these two filtrations are
various. Let’s note also that the every space with index k of the first filtration contains all spaces
of second filtration with indices lesser or equals k.

Let’s describe conditions of finite dimensionality of irreducible highest weight Yangian module.
Let note by B̄n+1,t, B̄i,k, i ∈ I\{n + 1} the linear spans of following vectors

B̄n+1,s := 〈(x−
n+1,k1

)t · . . . · x−
n+1,kr

· v+|(k1 + 1) + . . . + (kr + 1) ≤ s〉
B̄i,s := 〈(x−

i,k1
)t1 · . . . · (x−

i,kr
)yr · v+|t1(k1 + 1) + . . . tr(kr + 1) ≤ s〉, i ∈ I\{n + 1}

Lemma 3 If B̄n+1,p = B̄n+1,p+1, то и B̄n+1,p = B̄n+1,p+k for every integer k ∈ N.

Proof. Let a ∈ B̄n+1,p. At first let show that every vector from B̄n+1,p+k can be represent
as image of B̄n+1,p under action Cartan subalgebra h = 〈hn+1,k, hn+2,k|k ∈ Z+〉, namely,
B̄n+1,p+k ⊂ h · B̄n+1,p. For k = 1 this fact it follows from condition of lemma. Let now k = 2.
We need the following relation
hi,1 · x−

j,l · v+ = x−
j,l · hi,1 · v+ + [hi,1, x

−
j,l] · v+ = x−

j,l · hi,1 · v+ + [hi,0, x
−
j,l+1] · v+

+ ai,j/2(hi,0x
−
j,l + x−

j,lhi,0) · v+ = di,1x
−
j,l · v+ + ai,lx

−
j,l+1 · v+ +

ai,j/2(hi,0x
−
j,l + x−

j,lhi,0) · v+ = ai,jx
−
j,l+1 · v+ + (di,1 + (ai,j/2)(ai,j + 2di,0))x−

j,l · v+.

Using this relation let prove the lemma. Let a ∈ B̄m+1,p+2, then a =
∑r

s=1 x−
is,ks

bsv+. Let
represent an element a in the form

a =
r∑

s=1

a−1
is−1,is

[his−1,1, x
−
is,ks−1]bsv+ (28)

Repeating these arguments we can represent the element a as a sum of elements from B̄n+1,p+1

and product x−
n+1,1 and elements from B̄n+1,p+1. As every element from B̄n+1,p+1 is contained

in B̄n+1,p we get that a ∈ B̄n+1,p+1 and after them it follows from condition of lemma that
a ∈ B̄n+1,p. Lemma is proved. �
Lemma 4 1) There are the strict inclusions
Bi,k ⊂ Bi,k+1, ∀k < ni, k ≥ 0, i ∈ I;
2) Bi,ni = Bi,ni+1 = · · · .
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Proof The case i ∈ I\{n+1} it follows from results of representation theory of Yangian Y (sl(2))
(see [8], [25]). The 1)it follows from definitions. The point 2) it follows from previous lemma in
the case i = n + 1. �

4.3.
Let’s formulate and prove the main result of our work – the following theorem. We’ll suppose,
that n ≥ 1.

Theorem 4 1) Every irreducible finite dimensional Y (A(n, n))-module V be a highest weight
module with highest weight d :V = V (d).
2) The module V (d) be finite dimensional iff when exist the polynomials P d

i , i ∈ {1, 2, . . . , n, n +
2, . . . 2n} = I\{n + 1}, and polynomials P d

n+1, Q
d
n+1, such that:

а) all these polynomials with highest coefficients equal 1;
b)

P d
i (u+1)

P d
i (u)

= 1 +
∑∞

k=0 di,k · u−k−1, i ∈ I\{n + 1}, (29)

P d
n+1(u)

Qd
n+1(u)

= 1 +
∑∞

k=0 dn+1,k · u−k−1. (30)

Proof. Let’s note that our proof is a slight modification analogous result from work [24].
The point 1) of theorem is proved already. Let deduce the point 2) from above proved lemmas.

At first let’s prove the necessary in theorem, that is let’s prove that if the irreducible module
V (d) be finite dimensional then exist mentioned in point 2) of theorem the polynomials satisfying
the conditions a), b) of theorem.

At first, we consider particular case when g = A(0, 1). More precisely, we consider inclusion
A(0, 1) → A(n, n), inducing by the mapping of roots α1 → αn+1, α2 → αn+2. These inclusion
unduces embedding Y (A(0, 1)) into Y (A(n, n)): Y (A(0, 1)) → Y (A(n, n)) (in category of
topological superalgebras) defined by mapping of root generators (which is induced by above
mentioned mapping of roots).

In the first part of the proof we’ll deal with particular case of irreducible representation of
Yangian Y (A(0, 1)) with weight d̄(u) = (dn+1(u), dn+2(u)). After them we’ll reduce the general
case to considering particular case.

Let as above x−
i (u) =

∑∞
k=0 x−

i,k · u−k−1, i ∈ I. From proved above lemmas it follows that
x−

i (u) ·v+ =
∑N

s=0 βi
s(u) ·vi,s, где {vi,s} form a base in B̄i,N , i ∈ I. Further we’ll get explicit form

for βi
s(u). Her it should be note that we can get all results for even root generators considering

inclusions of sl(2)−triples into Y (A(n, n)). These results are known as they are can be reduced
to well known results on representations of Yangian sl(2) (see [25] and also [26], [8], [9], [4]).
Therefore we prove in detail relation (30) relating to odd part of Yangian Y (A(n, n)).

We need the relations (20) in the following particular case:

[hn+1(u), x−
n+2(t)] =

1
2(u−t)(hn+1(u)(x−

n+2(t) − x−
n+2(u)) + (x−

n+2(t) − x−
n+2(u))hn+1(u)); (31)

[hn+1(u), x−
n+1(t)] = 0. (32)

Let vi,k = x−
i,kv+. Then from lemma 4 it follows following equality

x−
k (u)v+ =

N∑
i=0

βk
i (u)vk,i. (33)
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For brevity we’ll use the notation:

βi(u) = βn+2
i (u). (34)

Note that∑∞
k=0 x−

n+2,ku
−k−1v+ =

∑N
k=0 x−

n+2,ku
−k−1v+ +

∑∞
k=N+1 x−

n+2,ku
−k−1v+ =∑N

k=0 x−
n+2,ku

−k−1v+ +
∑N

k=0 u−N−1
∑∞

i=0 ϕi
ku

−i−1vn+2,k.

Let’s denote

ϕk(u) =
∑∞

i=0 ϕi
ku

−i−1, (35)
ϕ̃k(u) = u−k−1 + ϕk(u). (36)

Let’s rewrite relation (33) in the following form:

x−
n+2(u)v+ =

N∑
i=0

βi(u)vn+2,i =
N∑

i=0

(u−i−1 + u−N−1ϕi(u)vn+2,i). (37)

Then from equality (37) it follows that

x−
n+2,N+k+1v+ =

k∑
i=0

ϕk
i x

−
n+2,iv+. (38)

Let’s act on the left and right sides of equality (38) by element hn+2,1.
We get the following relations equating coefficients of equal linear independent vectors:

ϕi+1
k = ϕi

k−1 + ϕi
N · ϕ0

k (39)

ϕk+1
0 = 0. (40)

Let’s introduce the following notations:

δi(u) = 1 + ui−Nϕi(u). (41)
d̄i(u) =

∑∞
k=0 di,ku

−k−1, i ∈ {1, · · · , 2n + 1} (42)

Easy to see that from relations (39), (40), (41) it follows the equality :

δi(u) = δN (u)(1 −
N∑

j=i

ϕ0
ju

j−N−1). (43)

Let
βi(u) = u−i−1δi(u), i = 1, 2, . . . , N. (44)

Then for some matrices Ak(u) = (Ak
i,j)

N
i,j=0(u) ∈ MN+1(C[[u−1]]), k, r = n + 1, n + 2 is fulfilled

equality:

hr(u)x−
k (t)v+ =

∑
0≤i,j≤N

Ar
i,j(u)βr

j (t)vk,i. (45)
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Considering relations (45) и (31-32) jointly we get the following relations
∑

0≤i,j≤N An+1
i,j (u)βj(t)vn+2,i = x−

n+2(t)d̄n+1(u)v+ +
1

2(u−t)(hn+1(u)(x−
n+2(t) − x−

n+2(u)) + (x−
n+2(t) − x−

n+2(u))hn+1(u))v+; (46)
∑

0≤i,j≤N An+1
i,j (u)βj(t)vn+1,i = x−

n+1(t)d̄n+1(u)v+. (47)

These relations taking into account (33) can be rewrite in the following form

∑
0≤i,j≤N An+1

i,j (u)βj(t)vn+2,i = d̄n+1(u)(
∑N

i=0 βi(u)vn+2,i) +
1

2(u−t)(d̄n+1(u)(
∑N

i=0(βi(t) − βi(u))vn+2,i) +
∑

0≤i,j≤N An+1
i,j (u)(βj(t) − βj(u))vn+2,i)); (48)

∑
0≤i,j≤N An+1

i,j (u)βj(t)vn+1,i = d̄n+1(u)(
∑N

i=0 βi(t)vn+1,i). (49)

Let’s equate coefficients by linear independent vectors vn+2,i and we get that from relation
(49) it follows the following equality:

∑N
j=0 An+1

i,j (u)(βj(t) − 1
2(u−t)(βj(t) − βj(u)))vn+2,i =

d̄n+1(u)((βi(u)vn+2,i) + 1
2(u−t)(βi(t) − βi(u)))vn+2,i (50)

Let’s note the following easy checking fact. We can to select such constants u0, μ0, . . . , μN ,
such that the sum

∑N
i=0 μiβi(u0) isn’t equals zero. Let’s put in equality (50) u = u0 and multiply

equality on μi. After addition getting equalities (for 0 ≤ i ≤ N we get equality. From this last
equality we can explicitly express dn+1(u). Namely, we get that fulfilled equality

d̄n+1(u) =
∑N

i=0(aiu + bi)βi(u)∑N
j=0(cju + dj)βj(u)

(51)

for some constants ai, bi, ci, di, i = 0, · · · , N.
From relation (51), taking into account relations (43), (44), it follows proving equality (30).
As above we can deduce that relation (29) it follows from relations (46) for other indexes k,

corresponding to other simple even roots of Lie Superalgebra A(n, n). But, as above mentioned,
the relation 29) follows from results of papers [25], [9]. Now, we finish the proof of theorem by
standard arguments founding on the fact that inclusions of Y (sl(1, 2)) Y (sl(2)) in to Y (A(n, n))
are morphisms of Hopf Superalgebras. Thus, necessary condition is proved.

Let’s prove sufficient condition. The second part of proof can be get conversing above given
proving. Really, let d̄n+1(u) satisfies to relations (29 – 30). Let’s prove that the simple module
V (d) be finite dimensional. We, using theorem 1, get estimate of dimension of this module. We’ll
act on highest vector v+ by monoms in the following form x−(t) = x−

1,k1
. . . x−

1,kr
, k1 + . . . + kr =

t, kr < · · · < k1. Let’ note that from (30), dn+1(u) be a ratio of two polynomials. Let us
show that from commutation relations it follows that only finite number of vectors x−(n)v+

are linearly independent. We get more strong result, namely, we prove that dimension of module
V (d̄) is limited (from above) by number 2N , N = n1 + . . . + nk, where ni = deg(Pi(u)) are the
degrees of polynomials determine the highest weight. Let d̄n+1(u) = 1+

∑∞
k=0 dn+1,k ·u−k−1, and

d̄n+1(u) =
P d

n+1(u)

Qd
n+1(u)

be polynomials in a numerator and denominator, correspondingly, and these

polynomials haven’n common multipliers. Let us construct simple highest weight Y (sl(1, 1))–
module V (d̄) with highest weight d̄(u). Let us show that dimension of this module is limited
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(from above) by number 2M , where M = md+1 = deg(Pn+1(u)) = deg(Qn+1(u)). Let us consider
the linear span

M1 = 〈{v+;x−(r1) . . . x−(rs) · v+|1 ≤ rs ≤ . . . ≤ r1 ≤ N}〉 (52)

Let us show that
V (d̄) ⊆ M1 (53)

Sufficiently to show that
x+

k (u) · x−(n) = 0, ∀n > N. (54)

Let’s note that (54) it follows from following commutation relation in Yangian, which it follows
from relations (9), (30):

[x+
k (u), x−

m+1(v)]v+ = δk,m+1
hm+1(u)−hm+1(v)

u−v v+ =

δk,n+1
Pn+1(u)Qn+1(v)−Pn+1(v)Qn+1(u)

Qn+1(u)Qn+1(v)(u−v) v+. (55)

Like, we can prove that dimensions of corresponding Y (sl(2))– modules V (dk) with highest
weights dk(u) are limited by numbers 2mk , where mk = deg(Pk(u) is a degree of polynomial
Pk(u).

As embeddings of Yangians Y (sl(2)), Y (sl(1, 1)) in to Yangian Y (A(n, n)) are morphisms of
Hopf superalgebras they induce structure of Y (A(n, n))–module on every modules V (dk) and also
on they tensor products: V (d1)⊗. . .⊗V (dm+n). Easy to check that V (d̄) ⊆ V (d1)⊗. . .⊗V (dm+n)
and it is submodule of tensor product of modules. From last assertion it follows that module
V (d̄) be a finite dimensional and we get estimate of its dimension. Sufficient condition is proved.
Theorem is proved also.
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