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A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in

the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds.

This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as

both an approximation for classical General Relativity and as a framework for quantum gravity.

However, there has been no consistent effort to include arbitrary non-gravitational sources into

Regge Calculus or examine the structural details of how this is done. This manuscript explores

the underlying framework of Regge Calculus in an effort elucidate the structural properties of

the lattice geometry most useful for incorporating particles and fields. Correspondingly, we first

derive the contracted Bianchi identity as a guide towards understanding how particles and fields

can be coupled to the lattice so as to automatically ensure conservation of source. In doing so,

we derive a Kirchhoff-like conservation principle that identifies the flow of energy and momentum

as a flux through the circumcentric dual boundaries. This circuit construction arises naturally

from the topological structure suggested by the contracted Bianchi identity. Using the results of

the contracted Bianchi identity we explore the generic properties of the local topology in Regge

Calculus for arbitrary triangulations and suggest a first-principles definition that is consistent with

the inclusion of source. This prescription for extending vacuum Regge Calculus is sufficiently

general to be applicable to other approaches to discrete quantum gravity. We discuss how these

findings bear on a quantized theory of gravity in which the coupling to source provides a physical

interpretation for the approximate invariance principles of the discrete theory.

v



To my sister, Kelley.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Classical and Quantum Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Foundations of Classical and Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Approaches to Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Quantum Gravity is Discrete Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3 The Geometry of Simplicial Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 The Geometric Structure of RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Curvature and Gravitation in RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The Regge-Einstein tensor and the Cartan moment of rotation . . . . . . . . . . . . . . . . . . . . . 48

3.4 Contracted Bianchi Identity in Discrete Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Regge Calculus Beyond the Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Matter in Simplicial Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The Topology of Matter in Simplicial Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Flow of Fields and Matter in the Discrete Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 The Lattice Defines the Paths of Particles and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 5 Regge Calculus as the Paths of Fields and Particles . . . . . . . . . . . . . . . . . . . 84

5.1 Towards an Understanding of Diffeomorphism and Local Lorentz Invariance in Discrete

Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



Contents

5.2 Constraint Algebras in Discrete Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 A View of Regge Calculus For Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendix A Convex and Star Domains and their Properties . . . . . . . . . . . . . . . . . . . . . . 89

A.1 Convex Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Star Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



List of Figures

1.1 Chronometric Spatial Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Hole Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Generalized Action of the Hamiltonian on a Trivalent Node of a Spin Network . 26

2.3 A Gate in the Computational Universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Deficit Angles in Simplicial Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Hybrid Building Blocks in Regge Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Hinges and the Moment Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 The Polyhedral Boundary of a 4-polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Boundary of a Boundary Principle as a Geometric Identity . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 The Kirchhoff-like Form of the Contracted Biacnhi Identity in Regge Calculus . . . . . . 60

4.1 Dual Topologies in 2-dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Voronoi Tessellation in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Planar Minkowski Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



Chapter 1

Introduction

When mathematical propositions refer to

reality they are not certain; when they are

certain they do not refer to reality.

–Albert Einstein

One of the core problems in theoretical physics today is on how one unites the two shifts in

physical thought of the 20th century, General Relativity (GR) and quantum mechanics (QM), into

one consistent theory of quantum gravity. Early attempts to do this consistently found numerous

obstacles in defining such a theory beyond a formal context. While formal definitions are possible

practical and physical considerations of finiteness and uniqueness often doomed early attempts. It

appeared from these early attempts that the fundamental axioms of GR were inconsistent with

the interpretations of QM. For this reason two vastly different approaches were followed, back-

ground independent and perturbative quantum gravity. The first approach attempts to retain the

core principles of GR as one pushes gravitation through a given quantization procedure. These

approaches attempt to maintain a dynamical gravitational field which defines the background for

matter fields. However, even the approaches that can be categorized as background independent

can vary greatly in how they implement quantization and background independence. Despite the

variations, the main attraction to these models is their reliance on 4-dimensional spacetime and

their retention of spacetime as a dynamical field. The other category primarily refers to formula-

tions of string theory, superstring theory and M-theory in which quantum gravity is predominately

viewed as a theory of the graviton.

Perturbative approaches, such as superstring theory, use quantum field theory as the start-

ing point for quantum gravity with point particles replaced by strings. However, these models

are most often formulated with respect to some fixed background manifold. They implement the

algebraic symmetries of the fields from the Standard Model and GR and recover theories with a

increased parameter space. While background independence is broken, there is an attractiveness

to these models since they form a mathematically consistent grand unified model of the forces in

nature. Despite the beauty of these models, it has been difficult to extract out phenomenological

evidence since the typical energy scale for Planck scale physics is currently beyond the technological
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Chapter 1: Introduction

advances of currently running particle accelerators.1

In the background independent models, the vast majority of the lines of research are aimed

at understanding the geometric content of the vacuum quantum theory. The focus of the back-

ground independent models on geometry preserves the dynamical role of spacetime but there is

less emphasis on the coupling of non-gravitational sources to spacetime. While it is vital to first

understand the dynamics of quantum spacetimes, it is useful to also useful to understand how

stress-energy couples to discrete quantum spacetimes. If geometry is indeed intrinsically linked to

matter, then they must be understood together at a fundamental level. In the words of Wheeler,

“Matter tells geometry how to curve while geometry tells matter how to move.” This classical un-

derstanding should be preserved at the very least; however, one should expect that there is a more

intricate and fundamental relationship between matter and geometry at the quantum level. Later

we will outline some of the arguments why spacetime geometry cannot be altogether separated

from the dynamics of the source particles but rather defined by them. It was argued by Synge

that to extract observable content from GR, one naturally utilizes the paths of material sources

to measure the spacetime geometry.2 Arguments similar to those presented below form the basis

for why a search for quantum gravity should inherently contain the inclusion of non-gravitational

sources in addition to the geometric content of the gravitational field.

In particular, this thesis will be concerned primarily with background independent theories

such as loop quantum gravity, spin foams, Regge Calculus, and causal dynamical triangulations.

Although there is no completely successful quantization scheme, we find that there are numerous

complementary approaches. Many of these come to similar conclusions regarding the underlying

structure of spacetime as a discrete dynamical system. This underlying discrete simplicial lattice

will thus be the focus of the majority of this thesis. Prior to introducing the framework for discrete

spacetime, we will briefly discuss some of these various programs for quantizating background

independent quantum gravity in §2.2.

Prior to quantizing gravity we must understand the gravitational field that we intend to

quantize. Moreover, it is important to ask whether this field exists unto itself or relies on material

fields to define its existence. Let us briefly examine this by exploring the meaning of a physical

observable in spacetime geometry. In broaching the subject of relativity, one might introduce the

concepts of relative and proper lengths or time by describing measurements using rods and clocks.3

These are used to define the components of the metric which gives full definition to the geometry of

spacetime. However, these mathematical constructs, e.g. the world function introduced by Synge,2

must be used carefully examined. Only then can one understand what it means to measure lengths

2



Chapter 1: Introduction

Figure 1.1: Chronometric Spatial Measurements: The measurement of lengths is shown to be
an inferred observable in the view of the chronometric interpretation of General Relativity.2 An
observer following one end of a “rigid” rod is represented by the world-line AD. The rod’s length,
CB, can then be determined using the triangle ∆ABD. This triangle is formed by sending a
light pulse from A to B and back to the initial observer at D. The length of CB can then be
determined using a clock carried by the observer on AD using the relation |CB|2 = − 1

4 |AD|2.
This “chronometric measurement” also carries over to the measurement of the spatial separation
of distinct events at C and B. Again, the spatial separation is obtained by a single temporal
measurement, AB that can be made with the clock carried by the observer with world-line AD.

with rods. In order to measure a length with a rod in a fundamental theory, we necessarily take into

consideration the atoms that make up the the rod and define relations between such atoms. Each

of these atoms is a self-defined time-like world-line and measuring distances with rods becomes the

measurement of relative distances between time-like curves which are “rigidly” connected. But how

do we determine the relative distances between the time-like curves in a sufficiently flat region of

spacetime? One natural measurement is to use pulses of light from locations on the rod. One then

measures these pulses of light as they are received by an independent observer. This situation is

represented in Figure 1.1 where the measuring rod CB starts at A and one end of the rod follows the

world line AD. The independent observer sends off a photon at A and receives it at D. The length

of the rod CB is then determined using the proper time of a clock carried along the world-line AD.

More simply put, the length of CB is determined by the the proper time as measured by the clock

between the release and reception of the test photon. Indeed, this is analogous to the methodology

of the global positioning system and it gives us initial indications that spatial measurements are

derived measurements from the properties of clocks and photons.

This can be taken one step further if we look closely at the use of clocks and photons

3



Chapter 1: Introduction

as measuring devises. Of the two pieces of this measurement scheme, one plays a particularly

important role–the standard clock. The role of the light ray in these measurements is to help

distinguish events and provide a means to determining spatial distances. Light is particularly

useful in this regard since it is postulated in special and general relativity that the speed of light

in a vacuum is a constant with regard to any inertial frame of reference. Clocks are of importance

because they provide the formal measurement that give meaning to lengths. The ticks of the clock

define the length of the time-like curve separating the transmission and reception of the light pulse.

Therefore, it is crucial to understand the nature of the clock and it’s relation to length of its time-

like curve. There are many ways one may construct a standard clock; a rudimentary clock can be

defined by simply using a free particle. Given a free particle one may prepare it in some initial

state |ψ(0)〉 such that the particle’s evolution in its rest frame with proper time parameterization,

τ , is given by

|ψ(τ)〉 = e−
i
~

Ĥτ |ψ(0)〉 = e−
i
~

mc2τ |ψ(0)〉 . (1.1)

where H is the Hamiltonian for the particle. It’s clear from this that the time dependence appears

only as a global phase in the free-particle’s evolution. The time evolution is therefore encoded in

the overall accumulated phase of the quantum particle. This suggests that the local measurement

of time amounts to a measurement of the local phase change of the quantum state of the particle.

However we have defined the time parameterization as a global phase of the particle and global

phases are not physically observable and therefore not wholly relevant to the measurement of time.

This might appear to be a problem, yet this can be overcome by incorporating additional clocks

such that we are able to measure relative phases. This allows a consistent and measurable picture

of the parameterization of each clock’s word-line. It is in this way that it appears that even time

is not a directly observable physical quantity, but rather a quantity inferred from the dynamics of

some underlying quantum system.

If we are to assume that the physical observables in quantum gravity are directly linked to

the dynamics of particles and fields, then what does this imply about the fundamental structure of

spacetime? For one, it tells us that geometry alone cannot complete the story of gravitation. Rather,

there is no interpretation of local geometry without something to define and measure the geometry.

This is the point of view taken in4;5 where quantum dynamics serves as the dynamical foundation of

spacetime geometry. However, this view of spacetime and measurement should not be focused only

at alternative approaches to quantum gravity but should be applied to all established models. One

cannot have spacetime geometry without matter just as there can be no physical description of the
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Chapter 1: Introduction

dynamics of matter without the inclusion of spacetime geometry. This creates a pseudo-Quantum

Steering Principle for quantum gravity: local spacetime geometry owes its existence to the flow

of stress-energy, in turn, the derived local geometry determines the relative flux of stress-energy.

While this statement is not in particular true for all current models of quantum gravity, it is the

author’s belief that such a principle should be a partial goal of quantum gravity.

A clear separation between this Machian view of gravity and other approaches to quantum

gravity we feel is self-evident. Much of the current effort in background independent quantum

gravity is to study the geometric content of each model. While this is a necessary effort, it is

undeniably insufficient in a complete fundamental theory. The picture outlined so far seems to

indicate that a fundamental theory of gravitation should utilize and expand upon the intimate

relationship between stress-energy and spacetime geometry. There is currently no consistent or

coherent description for including arbitrary fields into discrete spacetimes. This incomplete picture

persists despite discrete spacetimes providing numerous descriptions of dynamical, kinematical, and

semiclassical models of quantum gravity. This manuscript aims to shine light on the mathematical

and structural questions involved in coupling non-gravitational sources to lattice spacetimes. While

continuous GR presents few problems to the coupling of a dynamical background to matter fields,

defining fields on a lattice introduces unique obstacles. In the classical continuum one is able to

clearly define the a continuous topological structure which serves as well-defined background to

continuous fields. However, in the lattice one has to find a unique representation for stress-energy

on either the primary simplicial lattice or its dual such that the geometric quantities coincide with

the topology for non-gravitational quantities. Moreover, while there are many well-understood

theorems that help us understand how to incorporate spin structure, spin-connections, and gauge

fields into a continuous spacetime, it is not currently understood how a spin structure can be

incorporated directly into a simplicial geometry.

We will briefly review the conceptual foundations of classical and quantum gravity, along

with some of the current proposals for quantized gravity, in Chapter 2. This will include a dis-

cussion on the foundations of continuum and discrete formulations of spacetime as a precursor to

understanding the many models of quantized spacetime. Following this overview, we will examine

the issues related to the inclusion of sources in discrete formulations of classical and quantum grav-

ity. We first examine the contracted Bianchi identity as the path towards automatic conservation of

source. This identifies a necessary symmetry of the geometry to ensure the automatic conservation

of source. This will be examined thoroughly in Chapter 3 with an eye towards identifying how

source is conserved in the lattice. We then examine natural spacetime topologies as implied by the

5
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contracted Bianchi identity. Once a topology is defined, we search for a natural spinor structure

on the lattice. This will be examined in Chapter 4 as we provide an outline and examples of how

to couple arbitrary fields to the Regge lattice.

6



Chapter 2

Classical and Quantum Spacetimes

I weigh all that is.

Nowhere in the universe

Is there anything over which

I do not have dominion.

As a spacetime,

As curved all-pervading spacetime,

I reach everywhere.

My name is gravity.6

–John Archibald Wheeler

We have argued that spacetime is defined as a set of physically observable relationships

whose existence are derived from the dynamics of the particles and fields in the universe. The poem

leading into this chapter demonstrates a view of the gravitational field or the spacetime geometry

as an independent field with its own dynamics. Despite the difference in philosophical or quantum

points of view, the classical theory of spacetime should be recovered in the macroscopic (large-scale

or coarse-granined) limit. Since any theory of quantum gravity should retain Einstein’s general

theory as the classical limit, we can start by understanding the vital aspects of the classical theory

of the gravitational field. In this chapter we will examine the basic properties of the gravitational

field and how these properties have been incorporated into discrete and continuum formulations

of GR and quantum gravity. This will provide a necessary foundation for understanding how

the gravitational interaction is quantized and why there are many distinct, yet complementary,

approaches to quantum gravity. We first turn to the principles and foundations of gravity described

as the geometry of spacetime.

2.1 Foundations of Classical and Quantum Gravity

The modern treatment of gravitation is embodied by the theory of relativity–both the

special and general theories. While GR governs the global dynamics of matter in spacetime,

special relativity describes physics locally at an observer. This separation is the heart of our

7



Chapter 2: Classical and Quantum Spacetimes

current understanding of spacetime and is manifest in the guiding principles of GR. We start by

defining the foundations of relativity theory in four principles before defining how each applies to

either the global or local dynamics of nature.

P1. (Special) Principle of Relativity.

All (inertial) observers are equal under the laws of physics.

P2. Constancy of the Speed of Light.

All inertial observers measure the speed of light to be a constant value c.

These two principles define the structure of special relativity. Together these principles determine

how inertial observers in special relativity observe physics in a unified space and time. Moreover,

they imply that the geometry of this spacetime is that of Minkowski geometry. When we remove

the special part of the Special Principle of Relativity, we must make another assumption in order

to obtain the General Theory. We now refine our application of the Special Theory from general

frames for inertial observers to local frames for general observers. We state this more clearly in the

Principle of Equivalence;

P3. Principle of Equivalence.

The local form of all the laws of physics in a sufficiently small neighborhood of spacetime obey the

laws of special relativity.

This is the most striking of the four principles as one makes the transition from continuum

to discrete spacetimes. It tells us that there exist local neighborhoods of spacetime such that all

the laws of physics obey the laws of special relativity. Assuming the Principle of Equivalence to

be true, nature prescribes everywhere a sufficiently small neighborhood to which we can apply the

geometry and principles of special relativity. We cannot emphasize this enough since it is one of

the primary propositions when we make the transition to discrete spacetimes. In the continuum

theory one interprets this principle in the sense of Leibniz’s calculus: a sufficiently, maybe infinites-

simal, neighborhood of a point in spacetime can always be chosen such that the geometry of the

neighborhood is that of Minkowski spacetime. In the discrete theory, one presupposes that there

are finite-sized neighborhoods in spacetime whose geometry is that of Minkowski space. In the

large-scale, these small discrete, finite-sized neighborhoods are not typically noticeable or math-

ematically significant since the typical length scale is that of quantum gravity–the Planck length

lP ≈ 10−33cm.

To prescribe how we must model the physics that result from the previous principles,

8



Chapter 2: Classical and Quantum Spacetimes

we turn to the Principle of General Covariance. The essential idea is that the physics must be

independent of the system of coordinates that we use to describe the dynamics. Mathematically

this implies that observable quantities in GR must be represented by tensorial fields which enforce

the invariance of physical laws under local Lorentz transformations.

P4. Principle of General Covariance.

The laws of physics should be independent of which coordinate system one chooses.

These principles will serve as the guiding inspiration for how we search for a quantum

theory of gravity. While the Principle of Equivalence tells us that spacetime is locally Minkowski,

we do not make any assumptions regarding the large-scale geometry of the spacetime. As these

locally Minkowski neighborhoods are strung together they build a curved or warped geometry. The

motion of the particles on this warped geometry defines their motion through spacetime. Particles

which are locally in inertial motion will then follow geodesics (or paths of extremal distance) on

the large-scale curved geometry. In the discrete spacetime, we say that the particles follow straight

lines within a single local Minkowski neighborhood and curved motion appears in trajectories that

traverse at least one conic singularity of the lattice. We will see more of this in the next chapter

as we discuss the geometric foundations of Regge Calculus.

For the remainder of this section we will outline the conceptual foundations that lie at the

core of classical and quantum gravity. Most pivotal in the development of Einstein’s relativity

was the issue of background independence. However, we will first examine Mach’s Principle (and

Wheeler’s Steering Principle) as a goal and source of inspiration for GR. This will lead us directly

into a more detailed discussion on the meaning of background independence and its realization in

GR. This will take us into a discussion on causality. We will close the section with a discussion on

the roles of symmetries in classical and quantum gravity.

2.1.1 Mach’s Principle

One of the great questions in physics since Newton formulated his laws of motion has been

whether physical theories should explicitly rely on absolute space and time or on relations between

material particles. This question was brought to the forefront with the work of Ernst Mach (1838-

1916) and his views on absolute space have lead to what is now known as Mach’s Principle. There

is still much debate over the exact statement and interpretation of Mach’s arguments; however,

there are some common themes inherent in each point of view. The plethora of debate often forces

one to preface any discussion of Mach’s Principe with a description of how one chooses to interpret

9
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the argument. This prompted John Arhchibald Wheeler to coin the phrase the Steering Principle7

as a physically motivated formulation of Mach’s Principle as it is realized in GR. We will try to

separate out the various interpretations involved in understanding Mach’s Principle and outline

what we believe it to mean for fundamental physical theories.8;9

Mach’s Principles has grown out of the argument made by Mach in response to Newton’s

“Bucket Experiment”.10 Newton’s setup consisted of a bucket hanging by a rope and filled with

water. The argument stated that if the bucket is set in motion by twisting the rope and letting

the system rotate, then the water will remain still until such a time when the walls of the bucket

are able to transfer their motion to the water. At that time the water would begin climbing the

walls of the bucket and the surface of the water would begin to curve. The question raised by this

thought experiment is that when both the bucket and the water are spinning, when the bucket has

completely transferred motion to the water, then why does the water’s surface curve? Moreover,

when bucket begins to slow, why does the surface of the water remain concave? At this time, it

cannot be said that the water’s surface is curved due to centrifugal forces on the water from the

bucket. Instead, Newton argued that the water is in rotation with respect to the absolute space

thus giving rise to the concavity of the water’s surface. However, Mach railed against Newton’s

conclusion. He argued that all one can truly contend is that there are no centrifugal forces acting

on the water from the bucket. Rather the water’s surface becomes curved due to the influence of

the Earth, the stars and galaxies with respect to which the water is rotating.

The argument forms the heart of relationalism and boils down to stress-energy there deter-

mines inertia here. This version of Mach’s Principle has become known as the Geometrodynamic

Steering Principle coined by Wheeler to avoid confusion with more philosophical interpretations of

Mach’s Principle which aim to say something about the ontological existence of spacetime itself.

However this underlying principle of geometrodynamics relies explicitly on a (3+1)-dimensional

split of spacetime as is clear in Wheeler’s definition

The specifications of the relevant features of a 3-geometry and its time rate of change

on a closed space-like hypersurface together with the energy density and the density of

energy flow on that hypersurface together with the entire spacetime geometry and hence

the inertial properties of every test particle and every field everywhere and for all time.7

As Wheeler saw it the Geometrodynamic Steering Principle is a clear statement of how flow of

energy-momentum affects spacetime geometry while spacetime geometry steers the flow of energy-

momentum. Instead of making a claim that the spacetime is only derived from the existence of

10
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material fields, the Steering Principle embodies Mach’s Principle as is realized in GR: spacetime

geometry is determined from the stress energy of the material universe in addition to the stress-

energy of the gravitational field.

In other interpretations, Mach’s Principle challenges the concept of an ontologically real

absolute space more explicitly. One example of such an interpretation of Mach’s Principle can be

stated as: “The local inertial frame is completely determined by the matter content of the Uni-

verse.”8 In this form, Mach’s Principle seems to state that there is no such thing as a gravitational

field that exists unto itself. Rather, it emphasizes that the gravitational field is defined only by

the relational properties of particles and fields. This is, perhaps, the ultimate form of Descartes’

relationalism in which any measure of distance is wholly determined by the relations between par-

ticles and interactions of particles. Although the bucket debate focused on the question of absolute

space, we saw in Chapter 1 that a measure of space is also a measure of time. Therefore, this form

of Mach’s Principle is also a statement on the ontological existence of spacetime and not just space.

The question remains whether these interpretations differ only in semantics or whether

there is a true distinction. One point of view is that spacetime (or the gravitational field) is indeed

a unique and ontologically real dynamical field, much like the matter fields of the Standard Model.

In this view, one can make the argument that GR is indeed a fully relational theory since all

physical observables are relational in terms of dynamical fields. However, as we have tried to argue

in Chapter 1, the ontological existence of the gravitational field is an added assumption to the

theory. Indeed, it is not clear whether one can attribute independent existence to spacetime or

if spacetime is a derived physical observable at the microscopic level. Although there is no strict

resolution between the forms of Mach’s Principle, the insight of Mach’s Principle tells us that the

laws of physics must be formulated without respect to some absolute, untestable background space

and time. Moreover physics must be defined with due regard to relations between distinguishable

events as will become clear in a moment.

2.1.2 Background Independence

Mach’s Principle brings to light a core component of Einstein’s relativity: background

independence. But what is background independence and how does that fit in GR and quantum

gravity? To help make this clear, it is sometimes helpful to view natural phenomena and dynamics

as a play taking place in spacetime. To say that GR is a background independent theory is to say

that we cannot a priori define some fixed, non-dynamical geometry (a stage) on which the dynamical

11
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Figure 2.1: The Hole Argument: Diffeomorphism invariance in spacetime brings into question
the physical meaning of points on the spacetime manifold. Here we illustrate a spacetime with
a ‘hole’ of flat geometry–the unshaded region. Diffeomorphisms on trivially outside the hole and
nontrivially inside the hole ‘mix’ up the spacetime points making them physically indistinguishable.
These points only obtain physically relevant meaning when there is additional information used to
distinguish them–such as the interaction of non-gravitational fields.8

fields (the actors) interact and evolve. Instead, spacetime is elevated from the non-participatory

stage on which the play takes place to a core character who interacts and helps determine the path

of the plot. More formally, it is common in the literature to put this in terms of gauge invariance:

the gravitational field is a gauge invariant field under the group of diffeomorphisms on spacetime.

Physically this tells us that the relevant information for the gravitational field is not the set of

spacetime manifold M–the geometry of spacetime– with its metric structure g–the information of

distances and angles for the manifold–and all other fields F on the spacetime given by (M, g, F ).

Instead, the physically meaningful solutions to Einstein’s equations are the equivalence classes of

the manifold M, the metric g and the field F , denoted {M, g, F}, under smooth, invertible maps

θ from M to itself;11

θ : (M, g, F ) → (M′, g′, F ′). (2.1)

If we take all diffeomorphisms θ that leave a given manifold M invariant, then we build the

diffeomorphism group Diff(M). Moreover, if we take all the images of M under the elements of

Diff(M) we build the equivalence class {M, g, F}. It is in this sense that the gravitational field

is often regarded as a gauge theory with the gauge group Diff(M).

The invariance of physical spacetimes under diffeomorphisms results in strong implications

for observables in GR. Primary among these is that any observables cannot explicitly depend on
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spacetime points. This is the idea behind general covariance in GR. Einstein struggled with the

implications of general covariance and even tried to reformulate the gravitational field equations in

a non-generally covariant form.8 The reason for Einstein’s initial resistance to general covariance

came from the physical meaning of spacetime points. This is often stated in the form of the Hole

Argument:8 given a spacetime with a closed, bounded region devoid of any matter and a metric

g(xµ) outside and on the boundary of the hole there does not exist a unique homogeneous solution to

the gravitational field equations inside the hole. More precisely, one can apply a diffeomorphism to

any solution inside the hole–as long as the diffeomorphism is trivial outside the hole–that transforms

the homogeneous solution to a new solution. However, this produces a problem with the physical

meaning of spacetime points. If we are able to apply limitless number of diffeomorphisms to

the “hole” then how do we distinguish between points inside the region of spacetime? So one

must make a decision at this point: either (1) spacetime points cannot be viewed as physically

distinguishable by themselves or (2) we must abandon general covariance. However, if we introduce

particles into this picture we can arrive at a satisfactory result. Suppose that there is one event

attributed to the interaction of two test particles inside the hole. Is that event and point in

spacetime still indistinguishable from the other points in the hole? By introducing this additional

information, when we apply a diffeomorphism to the spacetime and to matter, we are able to still

physically distinguish the point at which the two test particles interact from all other points in the

spacetime. As such, we arrive at significant result in GR–any two spacetime points are physically

indistinguishable unless there is additional information about the motion of test particles which

distinguishes them. So is GR a theory of spacetime points and relations between spacetime point?

No. It is not directly a theory of spacetime points at all but a theory of relations between events

involving dynamical fields. Spacetime events rather than points on a spacetime manifold make up

the physical observables of the theory.

Indistinguishability of spacetime points on a curved geometry void of stress-energy forms

the core of the conceptual separation between quantum theory and GR. The problem stems from

how each theory incorporates time. The background independence in GR tells us that spacetime is

invariant under the group of diffeomorphisms that act on the entire spacetime. However, quantum

theory in the Hamiltonian formulation manifestly requires that there be some notion of an evo-

lution parameter for the variables being quantized which would lead to the ability to distinguish

between different instances of the evolution. Meanwhile, the equivalent framework of Feynman’s

path integrals12 only requires a distinction of ‘paths’ between two fixed boundaries. However, the

problem of distinguishing a global time evolution parameter is not eliminated. It is transformed
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into a problem of identifying the unique paths over which one integrates. In either case, the prob-

lem of 4-diffeomorphism invariance represents a challenge to the overall program of producing a

quantum theory of gravity. Below we will briefly state some of the methods commonly used to

circumvent the problem of time in both the Hamiltonian and Feynman quantization schemes.13

Some of the first approaches to quantum gravity, instituted some notion of a (3+1)-

dimensional split in GR in order to follow standard Hamiltonian quantization procedures familiar

from particle physics. Yet doing this breaks the group of 4-diffeomorphisms into disjoint groups

of diffeomorphisms on the spatial slices and diffeomorphisms in time. However complications arise

from applying the Hamiltonian constraint for time evolution and the diffeomorphism constraint

which constrains how slices are able to shift from one slice to the next. One approach is to enforce

the constraints prior to quantization. While this method attempts to quantizes the dynamical

degrees of freedom, it is not clear that the full dynamical Hilbert space of quantum gravity can be

produced from effectively classical solutions. Moreover, this method relies strongly on the embed-

ding of the spatial slices, but it appears that there is no unique way of performing this embedding

or that the solutions are independent of the embedding variables.

Another option is to quantize the constraint equations and use the constraint operators

to reduce a dynamical Hilbert space Hdyn to the physical Hilbert space Hphys. This produces

problems in defining Hdyn and an appropriate inner-product in it. The interested reader is referred

to the more thorough account of the problem of time by Kiefer13 or Isham.14

How one chooses to implement evolution and hence time into a quantum theory of gravity

determines how the constraints are implemented on the states of the Hilbert space. However,

one option is to avoid selecting out a canonical notion of evolution and instead focus on the

possible “paths” of the quantum system between an initial and a final state. This other class

of quantization procedures can sometimes be viewed as a ‘timeless’ option for quantum gravity.

In the Feynman path integral approach the goal is to define an appropriate partition function

and transition amplitude for the quantum system. The amplitude associated with the transition

from a state, |s〉, at proper time, t, to a another state, |s′〉, at proper time, t′, is defined by a

superposition of the quantum paths connecting the two boundary states. We define the amplitude

of each quantum path by 1
N

exp
[
− i

~

∫
Ldt

]
.12 Here the amplitude is given by the action associated

with the configuration of each unique path with 1
N

used as a normalization factor. This approach

manifestly retains the invariance under 4-diffeomorphisms of classical GR since there is no a priori

split of the 4-geometry into a (3+1)-dimensional geometry. However, with this inclusion of the full

symmetry class of the classical theory one has to determine how to integrate over various geometries.
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The main problem with the path integral approach is thus contained in the difficulty in defining an

appropriate measure for integration. This is most directly circumvented by imposing discretization

from the beginning in which case a measure can be defined15 or the measure is reduced to a

problem of combinatorics.16 Another concern in producing a continuum path integral formulation

in quantum gravity is the explicit dependence on Wick rotations to Euclideanize the action. This

again corresponds to the problem of time in that if we allow the background 4-geometry to be

dynamical then such a Wick rotation is ill-defined in the continuum. This too has shown great

progress in discrete quantum gravity17 where causality (thus Lorentzian signature) is enforced in

a dynamical building of spacetime topology. We will save a full discussion on the methods of

discrete quantum gravity for §2.2. The path integral formally produces a well-defined construction

of 4-dimensional GR and provides a conceptually simple framework for discrete quantum gravity.

However there are still mathematical challenges in forming practical definitions a theory of quantum

gravity based on path integrals.

2.1.3 Causality

Another important conceptual foundation to classical and quantum relativity is the inclu-

sion of a causal structure into the theory. It is not clear how strongly causality should be encoded

into quantum spacetimes; however, one is free to choose whether any given model should imple-

ment local causal principles weakly or strongly. It is known that strong causality naturally leads to

fixed-topology spacetimes,18;19 which, in turn, leads to the possibility of a (3+1)-dimensional split.

Moreover it is clear from classical physics and observation that some form of global causality must

emerge in an appropriate macroscopic limit. Moreover, it can be shown that a continuous causal

structure on spacetime can give most of the geometric properties–up to a factor setting a global

length scale–in addition to the topology of the spacetime.18;20 What this seems to imply is that if

a causal ordering can be defined in a theory of quantum gravity then almost all metric information

is already encoded in a such a theory. It is useful to describe–albeit in a hand-waving fashion–how

this comes about. One can think of the causal structure of the spacetime as defining a light cone

at every point on the manifold and then setting ordering relations between points. This creates a

partial ordering of points such that all the points satisfy properties of a poset (partially ordered set);

• Reflexitivity: If x ≺ x, then x = x.

• Transitivity: If x ≺ y and y ≺ z, then x ≺ z for all x, y, z.

• Non-Circularity: If x ≺ y and y ≺ x, then x = y for all x, y.
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Once this poset is embedded into a manifold, one can attempt to recover the topology and conformal

structure of the spacetime.21;22 This can be seen by constructing tangent null cones at every point

from the causal structure of the poset. The homeomorphisms for the poset then take null geodesics

to null geodesics which makes them C∞-diffeomorphisms. Moreover, these C∞-diffeomorphisms

preserve the local light-cone structure which makes conformal diffeomorphisms as well. Finally,

since the local light-cone determines the local metric up to a conformal factor, we are able to

use the poset structure of a spacetime to infer the local differential structure of spacetime, up to a

conformal factor. How is this done? One approach is to build in spatial relations that are consistent

with the causal structure. Once a global length scale is assumed, the relative measures of distances

and angles can be deduced from the local light cone structure. This is an amazing result since

we are not required to put any geometric information into the causal structure in order to recover

almost all of the differential information about the manifold. A more thorough examination of

how one can explicitly build the geometric content of a spacetime from the causal structure can be

found in work by Penrose23 or Sorkin.24

However, the continuous approach with poset or causal structure provides no intrinsic

method for determining the complete spacetime structure. As we will examine later, there is at

least one approach that claims to be able to use the causal nature of spacetime to reconstruct

nearly the entire differential structure of the manifold–this approach is often referred to as Causal

Sets or Causal Networks.20 However, Causal Sets require one to infer a natural length scale from

a framework beyond the scope of this theory. One proposal is to determine global scale factors

from the dynamics of quantum particles embedded and defining the causal structure.4;20 Since

the phase of quantum particles provides a natural measure of the proper time, these phases give

an external measure of the conformal scale of spacetime. This is the point of view illustrated in

Chapter 1 and one we will see in §2.2.6. We must ask whether poset structure should be put in

by hand or is it better to resort to histories of particles and fields to tell us the partial ordering

of events in spacetime. We suggest here that using the properties of particles, e.g. their causal

nature and the internal evolution of phase, one can construct the entirety of the geometric content

of spacetime, and this ability is granted to us by the profound connection between causality and

geometric structure.
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2.1.4 Symmetry and Geometry

We have highlighted what we claim are some of the core characteristics of GR that are

applicable to approaches to quantum gravity. However, it is also important to inject a short discus-

sion of the role of invariance properties in fundamental theories of nature since we expect quantum

gravity to exhibit some, if not all, of the symmetries of the classical gravitational field. Symmetry

properties describe expected conservation laws of the fundamental theory, such as conservation of

energy, via Noether’s theorem.25 In classical mechanics this is often seen in the relation between

conservation of energy and time translation invariance or conservation of angular momentum and

rotational invariance. As we understand these invariance principles, their conservation properties

also lend themselves to a more unified and geometric interpretation through simple topological

identities.

The basic premise behind invariance principles in dynamical theories hinges on the action

principle for the dynamical field being described. We define the action functional for a dynamical

field to be

I =

∫
∏

µ

dxµ L
(
qi(xµ), qi

,µ(xµ)
)

(2.2)

where L is assumed to be a scalar, real function of the canonical dynamical variables qi which may

depend on the spacetime coordinates xµ. Symmetries of the field are expressed as transformations

applied to the action

I → I‘ := I[δqi] = I[qi + δqi] (2.3)

which leave the action unchanged

δI := I ′[δqi] − I[qi] = 0. (2.4)

In modern field theories, we examine the invariance of the action under transformations generated

by the action of elements of a Lie group on the field. The Lie algebra corresponding to these

transformations forms the invariance algebra of the field. In the case of the Standard Model, it is

typically understood that the invariance group is that of U(1) × SU(2) × SU(3). Once we know

the groups that generate symmetries of the action, we can also define conserved quantities for the

field, as identified in Noether’s theorem. Supposing that g is a generating element of the symmetry
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group of a field, then the conserved current associated with the field’s action can be given by

Jµ =
δI

δqi
µ

δqi

δg
(2.5)

This provides an important result for classical fields as it provides a unique relationship between

the algebra associated with a field and the invariant quantities of the field. We will see below that

we can also translate this into a geometric picture for cases of physical importance, such as GR,

electrodynamics, and Yang-Mills fields.

In the example of GR, we have already discussed how the field is invariant under elements

of the diffeomorphism group Diff(M) associated with the manifold. It can be shown that the

generators of diffeomorphisms on spacetime define the symmetry transformations that lead to the

conservation of energy-momentum, when Einstein’s equations are assumed to hold. This conserva-

tion can also be formulated in terms of the “boundary of a boundary is zero” principle26 (BBP)

which takes the algebraic nature of the symmetries and gives them a geometric interpretation. In

the BBP, a vanishingly small region of spacetime is decomposed into its 3-dimensional boundaries.

These are in turn decomposed into their 2-dimensional boundaries. The integral over this boundary

of the boundary is then topologically guaranteed to be trivial. This provides a glimpse at how a

more fundamental theory can give new insight into symmetries of dynamics in nature. In partic-

ular, it shows us how the invariance group of GR, Diff(M), which gives rise to the conservation

properties of fields in spacetime and of spacetime itself can be viewed concretely in terms of the

geometric interpretation of the field.

Moreover, the Standard Model picture of particles is based on the representation of fields

which are invariant under transformations of the underlying symmetry group of spacetime. We will

often refer to these as the external symmetries of particles as they are the symmetries due to the

particles’ motion in spacetime. The invariance of the field’s action with respect to these symmetries

gives rise to the already understood conservation properties found in GR. As such, we see that

requiring this symmetry is a natural assumption that makes the particle fields and gravitational

field compatible with one another. However, many fields also possess gauge symmetries, or internal

symmetries, which are symmetries of the field degrees of freedom. The internal symmetries of a

theory often possess a geometric interpretation similar to that in GR. In Yang-Mills theory, the

invariance with respect to SU(2) leads to a manifold interpretation of the internal space for the

field. In this view, invariance can again be written in terms of the “boundary of a boundary is

zero.” Here the fundamental variables of the field can be viewed as connections on the principle fibre
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bundle (PFB) and the field itself is viewed as the curvature associated with the PFB. The symmetry

of the field is then expressed in terms of changing the coordinates or applying diffeomorphisms on

the PFB associated with the field. This geometric view provides an alternative understanding of

the symmetries of the field that goes hand-in-hand with the algebraic structure of the field itself.

This brief account shows the dual nature of symmetries in physical theories. We can

already see how the invariance of dynamical fields is inextricably linked to both the geometric and

algebraic analysis of the fields. The algebraic picture gives insight through group actions on the

action principle for a field, while the geometric picture relates invariances to geometric moves or

properties of the manifold defining the field. The goal in developing a theory of quantum gravity is

to incorporate these symmetry properties as much as possible while also providing a possible path

towards unification of the internal symmetries of distinct fields. Symmetries are a vital component

in physical theories as they point to the conserved quantities of the theory, whether it be energy-

momentum or charge/current density. As such, they also provide crucial clues on how to connect

existing theories or how to develop new models.

2.2 Approaches to Quantum Gravity

Background independence, local causal structure, and diffeomorphism invariance provide

some of the fundamental properties of classical GR. Any model of quantum gravity should be able

to recover these core features and the classical notion of spacetime no matter how the underlying

notion of gravitational quantum dynamics is defined. However, one is often forced to implement one

of these features more strongly or from the very beginning in order to define exactly what it means

to quantize a theory of spacetime. The approaches to quantum gravity can be coarsely categorized

into background independent and background dependent theories. If GR is to be the classical

limit of a quantum theory of gravity, then it seems likely that a quantum theory should retain

the background independence established in the continuum theory. We, therefore, will focus on

background independent approaches to quantum gravity in this thesis. However, for an introduction

to non-background independent or perturbative approaches to quantum gravity reader is pointed

towards one of the many excellent overviews of string theory.27;28 Among background independent

theories we also make a distinction between canonical quantization techniques which often start

with the continuum but must circumvent the ‘problem of time’ and path integral quantization

which is most readily applied to discrete theories. We will first discuss one of the more prominent

models, Loop Quantum Gravity (LQG), which will be the only direct quantization of continuum
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GR in this thesis. Following LQG we will explore fundamentally discrete path integral–or ‘sum

over geometries’–approaches to quantum gravity. These discrete approaches provide a wide variety

of methodology in how one quantizes the geometry and so we will attempt to distill the salient

properties of each of these in this chapter.

2.2.1 Loop Quantum Gravity

Canonical quantization of GR has the unique problem of identifying how one implements

the diffeomorphism invariance of spacetime on the Hilbert space of quantum spacetimes. This

can either be done by initially imposing the constraint equations and quantizing the result or by

quantizing the constraints and identifying states which are annihilated by the quantum constraints.

Here we will overview the LQG canonical quantization of GR which uses an approach analogous to

quantization of SU(2) Yang-Mills fields. The LQG approach attempts to circumvent the problems

with identifying an a priori direction of time by defining the gravitational fields in terms of a

gauge-invariant connection on the 3-manifold spatial slice in such a way that many of previously

discussed problems appear to vanish. We will try to provide a short introduction to the primary

concepts associated with LQG here, but more thorough accounts of LQG are found in Rovelli’s

Quantum Gravity8, Gambini and Pullin’s reference for loops in gravity and Yang-Mills theories29,

or Thiemann’s review of the mathematical foundations of LQG30. Our treatment will follow a

conglomeration of the work presented in these expositions.

The LQG approach to quantizing gravity takes the underlying principles of the Arnowitt-

Deser-Misner (ADM) formulation of gravitation31 by using an embedding of a 3-dimensional spatial

slice, M, and defining the dynamics for the geometry of the slice. However, the ADM formalism

treats the components of the 3-metric and their conjugate momenta as the canonical variables,

whereas LQG defines connections of holonomies–or paths of parallel propagation–and their con-

jugate momenta as the canonical variables. This is done by introducing a triad bundle, ei
a(x),

on the 3-manifold instead of a metric at every point. With the use of the triad in the (3+1)-

dimensional split we require the triad variables obey 3 sets of constraints: (1) the SU(2) Guass law

constraints which require that the triad be invariant under arbitrary rotations within the M, (2)

the diffeomorphism constraints which require that the frame bundle be invariant under arbitrary

active diffeomorphism on M, and (3) the Hamiltonian constraint which acts as the generator of

evolutions for the triad. One then defines a connection compatible with the triad, ωi
a, which is
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used to construct covariant differentiation on M;

∂[ae
i
b] + ǫijkω

j

[ae
k
b] = 0. (2.6)

However, in building the canonical pair of connections and their canonical momenta, we supplement

the triad with the extrinsic curvature, Ki
a, to define a canonical pair {ei

a,K
i
a}. Using the old

canonical pair, we define the Barbero connection32;33 as

Ai
a = ωai + βKi

a (2.7)

where β is, in general, a complex parameter known as the Immirzi parameter34. When we set

β = i we obtain the self-dual connection. We will assume that Ai
a is the self-dual connection from

here on. We also find that the canonical conjugate momenta to the self-dual connection are the

densitized triad variables Ea
i = 1

2ǫ
abc
ijke

j
be

k
c . So far everything is still classical and the next step is

to cast this formalism into a quantum mechanical representation. When we do this we elevate the

canonical pair to the level of operators on the space of functionals of the connection, Ψ[A]. We

choose a representation such that the operators for the canonical pair are given by

Âi
aΨ[A] = Ai

aΨ[A] (2.8)

1

8πG
Êi

aΨ[A] = −i~ δ

δAi
a

Ψ[A]. (2.9)

However, we have yet to define a Hilbert space for the functionals Ψ[A]. It was found that a useful

representation of Hilbert space can be obtained from using holonomies of the connection

U(A, γ) = P exp

∫

γ

A (2.10)

where γ is an oriented path in M.8 These holonomies define elements of the su(2) Lie algebra in

addition to being functionals on the space of smooth 3-dimensional connections. Moreover, if we

generalize to smooth functions of holonomies f (U(A, γ1), . . . , U(A, γn), where {γi} is an ordered

collection of paths, then we can define the linear vector space of all Ψ[A] such that

Ψ[A]γi,f = f (U(A, γ1), . . . , U(A, γn)) . (2.11)

Moreover, an inner-product can be consistently defined on this space of functionals. Additionally,
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it has become common to define closed holonomy or loop and knot states. Loop states are partic-

ularly useful in LQG since the equivalence class of knot states help define a discrete orthonormal

basis of the kinematic Hilbert space of diffeomorphism invariance states, Hdiff . This basis can be

constructed from knot states along with colorings of their nodes and links. These states are often

referred to as spin-knot, or s-knot states. Moreover, multi-loop states have been found to help diag-

onalize geometric observables.8 However, the linear vector space formed by functions of holonomies

is not closed under the norm induced by any known inner-product, particularly the inner-product

which gives observables as self-adjoint operators. As such, one defines an extended Hilbert space,

Hfull that closes the vector space under the norm. The Hilbert space Hfull produced does not

define the physical Hilbert space, Hphysical, rather the physical subspace is defined by the set of all

functionals Ψ[A] that are annihilated by the constraint equations. The remainder of the completed

Hilbert space, Hfull\Hphysical, contains diffeomorphic- and SU(2) gauge-invariant extensions of

Hphysical. While the loops approach to quantum gravity is often likened to a quantized SU(2)

Yang- Mills field theory, we must note one key difference. This quantization of GR also incorpo-

rates the 3-dimensional diffeomorphism group of the manifold M which must be taken into account

when defining the physical subspace of the Hilbert space. In continuous SU(2) Yang-Mills theories,

the reduced physical subspace of SU(2)-invariant functionals is still a non-separable Hilbert space

which produces problems in the quantization of Yang-Mills theory on the continuum.8 In the case

of LQG, diffeomorphism invariance helps reduce the Hilbert space further into a separable physical

subspace. In fact, LQG is more akin to a lattice Yang-Mills theory where the lattice loops are not

definite loops but loops invariant under 3-dimensional diffeomorphisms.29

With a Hilbert space defined and the physical Hilbert space identified (conceptually) we

need only define an orthonormal basis for the full Hilbert space. One way of doing this is to construct

a basis from spin network states. The basis can be constructed by building a directed graph Γ with

links, j, and vertices, v. To the links we assign irreducible representations ρj of SU(2), meanwhile

we assign an intertwiner, ιv, to the vertices. The intertwiner, ιv, acts as a junction between the

irreducible representations on the links, ρj , entering and exiting a given vertex, v. To be more

precise, a Hilbert space is built at each vertex which consists of a tensor product of the Hilbert

spaces associated with the representations of SU(2) assigned to the links. The intertwiner then

becomes one element of an orthonormal basis in the vertex Hilbert space. We define an entire spin

network by adopting a particular graph, Γ, with L links, jl, and N vertices, vn and write this as a
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spin network triple (Γ, jl, vn). The state of such a spin network is then given by

Ψ(Γ,jl,vn)[A] = 〈A|Γ, jl, vn〉 =
⊗

l

ρjl
(U(A, γ)) ·

⊗

n

ιn (2.12)

where the direct product of intertwiners are suitably contracted with the direct product of repre-

sentations of the links of the graph since the intertwiners occupy a space that is exactly dual to

the space of the links. These states define for us a collection of kinematic states for LQG but the

dynamics of the theory is still lacking.

In the kinematic theory there is no direct connection to the dynamical operators except

to identify states which are annihilated by the constraint operators. This is only done to identify

physically significant states out of the full Hilbert space of LQG. Dynamics is defined by how the

Hamiltonian transforms one physical s-knot state into another. However, the full dynamics of LQG

require techniques outside of the canonical theory as we will see in the coming subsections. We

start with evolution of the states. In the (3+1)-dimensional formalism of GR, the Hamiltonian

can be represented as the sum of the diffeomorphism and the Hamiltonian constraints. The proper

time evolution is thus defined as the integral of the evolution operator from a slice of τ = 0 to a

slice of τ = 1 where the integral is over the lapse and shift functions:

Û(T ) =

∫

T

dNdNa exp

[

−i
∫

Ĥ(N,Na, τ)

]

(2.13)

We will not go into detail on the properties of this operator acting on spin network states,35 but we

will state that this time evolution operator acts, in an expansion of the operator with zero lapse, to

either map links and edges to diffeomorphically equivalent links and edges or to add an edge and

two vertices to the spin network when the Hamiltonian constraint fully acts on a node of the spin

network. This produces the remarkable result that the transition amplitude between 3-geometries,

(3)Gi and (3)Gf , is given by a sum over topologically inequivalent mappings from the spin network

on (3)Gi to the spin network on (3)Gf .35

One of the important features of LQG is that geometric operators for volume, area and

length are all represented by quantum operators with discrete eigenspectra. An example of this

underlying discreteness comes from an attempt to define a gauge-invariant operator from the con-

jugate momenta. To do this, we follow Rovelli’s construction8 and break a given 2-dimensional

surface into N smaller surfaces such that the area of these surfaces goes to zero as N increases and

the union of all of these surfaces still recovers the entire surface. We can then define an operator
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A(S) as

Â(S) = lim
N→∞

√

Ê2(SN ). (2.14)

This operator is analogous to the definition of the area of a surface in Riemannian geometry. The

operator Ei(S) acting on a holonomy breaks the holonomy into two at the point of intersection

between the holonomy and the S. When Êi(S) acts on a spin network state with spin j twice, it

returns ~
2j(j+1) for each place the spin network state puncture the surface. As such, the action of

Â on a spin network state can be seen as a measurement of flux of a spin-network state through the

surface S. Therefore we can assign the physical meaning of this operator as the area of a surface

punctured by a spin network. The calculation of the action of this gauge-invariant operator on a

spin network state relies on the fact that for any sufficiently large number of cells on S the spin

network will only intersect each cell once. This gives an eigenspectrum for the area operator

Â(S)|S〉 =
8πG

c3
~β

∑

l∈S∪Γ

√

jl(jl + 1)|S〉. (2.15)

This immediately tells us that area is a quantized observable with a discrete spectrum and a

minimum eigenvalue. One can further construct a volume operator36 and a length operator37

which are characterized by discrete eigenspectra as well.

LQG is a fully background independent theory which incorporates, at a minimum, 3-

dimensional diffeomorphism invariance, a standard feature of Dirac quantization procedures. How-

ever, it is often argued that the fiducial choice in a foliation of the 4-dimensional manifold is

arbitrary and affect the physical properties of the dynamics. It is not clear to the author whether

or not one is still able to resurrect any sense of 4-diffeomorphism invariance once the arbitrary

(3 + 1)-dimensional split has been made. It is also not clear how one obtains a correct classical

limit from this formalism. Indeed, one would hope to be able to construct a low-energy limit from

this approach , but the lack of a preferred or emergent concept of classical time makes it difficult

to define what it even means to take a low-energy limit. Furthermore, a full understanding of the

dynamics of the 3-geometry still requires the quantum relativist to resort to other methods to begin

to grasp what it means to define a transition amplitude from one 3-geometry to another. Below

we will examine one method for doing just this.
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2.2.2 Spin Foams

An intimately related approach to LQG is that of spin foams–the name will become an

obvious choice shortly–which has helped shed light on the issue of dynamics for states in LQG. As

stated before, one of the core problems with LQG was that the canonical framework did not include

an explicit method for calculating transition amplitudes from one 3-geometry, |s〉, to another, |s′〉.
It is now known that one can gain some understanding of the evolution of the spin networks by

deviating from the canonical quantum theory and resorting to an approach analogous to Feynman’s

path integrals.12 Originally, spin networks were developed as an attempt to describe spacetime

combinatorially,38 using angular momentum. Later, Ponzano and Regge39 used a similar approach

on triangulated 3-manifolds to produce a 3-dimensional theory of quantum gravity.40 We now

know that these two approaches are fundamentally related.8 For the purposes of this manuscript

we will emphasize only the fundamental concepts along with a description of the 2-dimensional

spin network relation to physical geometry.

The modern formalism for spin foams and spin networks often takes the results of LQG and

attempts to build a propagator from one 3-geometry to another. Since it isn’t known how to do

this explicitly within the context of the canonical quantization, it is convenient to use Feynman’s

path integral treatment of the propagator. The basic premise behind path integral is that the one

can calculate the propagator by summing (integrating) over intermediate steps in a increasingly

large number of time steps between the two states. But let us put this into a little formalism in the

context of geometry. We define the propagator between a two 3-geometries, |s〉 and |s′〉 at proper

times of t and t′ respectively, as

K(si, sf ) =
〈

sf

∣
∣
∣e−

i
~

R

H(t−t′)
∣
∣
∣ si

〉

(2.16)

where H is the Hamiltonian constraint operator for LQG. We then take the proper time interval

t − t′ and break it up into N non-overlapping intervals. One typically lets N → ∞ but for this

example we will only require that N be suitably large. In addition, we know from LQG that the

spectrum of states satisfying the Hamiltonian constraint is produced by a discrete spectrum of

spin networks.8 Therefore, we can define the propagator as a sum over matrix elements of the

Hamiltonian between intermediary states;

K(si, sf ) =
∑

s1,s2,...sN−1

〈

sf

∣
∣
∣
∣
e
− i

~

R

t′

tN−1
H(t−t′)

∣
∣
∣
∣
sN−1

〉〈

sN−1

∣
∣
∣
∣
e
− i

~

R tN−1
tN−2

H(t−t′)

∣
∣
∣
∣
sN−2

〉
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Figure 2.2: The Generalized Action of the Hamiltonian on a Trivalent Node of a Spin Network:
The Hamiltonian operator acts on a trivalent node of a spin network by introducing two additional
nodes with links connecting the original node with the new nodes. (a) We see the action of the
Hamiltonian operator on a single trivalent node in (a). The history of this action on the trivalent
node is represented in (b) where we see the introduction of a vertex in the spin foam history as the
edge is split and expanded into three new edges.

= · · ·
〈

s1

∣
∣
∣e

− i
~

R

t

t1
H(t−t′)

∣
∣
∣ si

〉

. (2.17)

We see from this expression the nature of spin foams as a sum over geometries that lead us from

one spin network to another. This represents the formal core of spin foams, but the final piece

of the puzzle is to evaluate the action of the Hamiltonian on spin network states. The action of

the Hamiltonian operator has been found to act on trivalent spin network nodes in a remarkably

straightforward manner.41 We can represent it pictorially as expanding a single trivalent node into

three trivalent nodes as in Figure 2.2. This is given explicitly by the relation

Ĥ |s〉 =
−i
~

∑

nǫs

Nn

∑

l,l′,l′′

ǫl,l′,l′′tr
(

hγ
−1
xn ,lhαxn,l′,l′′

[
V(n∗), hγxn ,l

])

|s〉 . (2.18)

where V(n∗) is the volume operator associated with the region dual to n, Nn is the lapse function

at n, and the hγ,l’s are operators that add holonomies to the graph. These latter operators act on

the nodes in the following way: the hγ,l acts to add a link over l and therefore leaves l essentially

unchanged while the hα,l′,l′′ acts to superpose links on l′ and l′′ and then connecting these two

links at a finite distance down l′ and l′′. We see immediately that this transforms the node n into

three nodes n, n′, and n′′ as in Figure 2.2.8 It is important to note here that a general spin network
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may contain nodes of higher valence than 3 (more than three links meeting at the node) but these

nodes are known to have a decomposition (via recoupling theory) in terms of trivalent nodes.8 As

such, we will only consider the action on trivalent nodes in general. With these basic ingredients in

place we can construct a spin foam, or at the very least a history of a spin foam. The first step is

to reinterpret the spin network elements, nodes and links, from their spatial geometric meaning to

objects in spacetime. This is done by translating the spin network forward in time. Thus the nodes

become edges and the links become 2-dimensional faces in the spin foam history. We define the

fundamental objects in spin foams to be “two-complexes,” Γ, which are individual histories of spin

networks, i.e. spin networks together with an ordering, with faces given irreducible representations

of SU(2) and edges given intertwiners between the faces meeting at the edge. Using these histories

we can construct a Feynman-like sum-over-histories

Z =
∑

Γ

w(Γ)
∑

ρf ,ιe

Av(ρf , ιe) (2.19)

where we sum over the two-complexes, Γ and Av(ρf , ιe) is the amplitude associated with the ver-

tex that depends on the representations of the faces and edges adjacent to the vertex. While we

now have formal expressions for the transition amplitude and the partition function, it is still not

completely unambiguous in how one uses these. Both rely on the specific form of the Hamiltonian

used–we have given one example. However, one could easily choose another form for Hamiltonian

and possibly obtain different transition amplitudes associated with individual vertexes. Disre-

garding these problems for now, we will carry on to the connections with identifying relations to

simplicial spacetimes.

One typically makes the connections to triangulations as a result of linking the theory more

concretely with traditional physics of spacetime. In the spin foam formalism, we define only abstract

spin networks without any notion of a spacetime manifold and expect these to define the geometry

of spacetime. It is convenient to help recover the notion of spacetime by embedding spin networks

into a geometric construct that relates more clearly with the spacetime geometry of classical GR.

One can do this by embedding a spin network into a triangulated geometry as will be described in

the next chapter and was first introduced by Regge.42 This is done in 2-dimensional geometry by

defining spin networks as the circumcentric dual 1-skeleton, ∆∗, to a triangulated 2-dimensional

manifold, ∆. These circumcentric dual skeletons, ∆∗, are natural objects in triangulated mani-

folds as we will see in Chapter 3. One could alternatively take any spin network in its trivalent

decomposition and construct a triangulation dual to the spin network via the methods of Voronoi
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and Delaunay dual tessellations.43 For a triangulated 2-manifold, each link of the spin network is

dual to a link of the triangulation while each node is dual to a triangle in the triangulation. The

duality of the edges of the spin network and the triangulation allow us to define representations of

SU(2) to each edge of the triangulation. The spins associated with links of the spin network define

the lengths of the edges in the triangulation44 (in higher dimensions the spins associated with spin

network links define the volume of the (n − 1)–simplex dual to the links). Here again we see how

the formalism for the quantum system imposes a discretized spacetime with a minimal length scale

defined by the theory.

This can also be extended 3-dimensional gravity by taking a 3-dimensional simplicial lattice.

Here, the edges of the dual lattice represent trivalent nodes of spin networks and vertexes of the

dual lattice become 4-valent vertexes of the spin foam. Calculating the vertex amplitude amounts

to just contracting the trivalent intertwiners associated with the edges adjacent to a vertex, v. This

gives us a vertex amplitude that is precisely the Wigner-Racah 6j-symbol. Thus we can define a

path integral for the spin foam as

Z =
∑

{j}

∏

face, f⊂∆∗

dim(ρf )
∏

v







j1 j2 j3

j4 j5 j6






(2.20)

where ρ(f) is again the representation associated with a face of the dual lattice and the last product

is over the 6j-symbols associated with v’s. This is exactly the result arrived at by Ponzano and

Regge39 for the amplitude associated with 3d simplicial quantum gravity. We begin to see the

converging relation between LQG, spin foams, and simplicial gravity. This is necessary step if we

are to make any connection with the classical limit in the future as the simplicial representation

makes the direct connection to spacetime geometry. In the coming subsections we see additional

interpretations of quantized gravity in terms of discrete structures.

2.2.3 Group Field Theory

Background independence and local diffeomorphism invariance seem to indicate one need

not only consider local geometry, as in Spin Foams, but also the topology of a spacetime in quan-

tum gravity. In discrete 3-dimensional quantum gravity, it has been found that the dynamical

variables are not local variables at all, but global variables defining the topological structure of

spacetime.8 Therefore it has been suggested that spin foams be generalized to include dynamic

topology in addition to dynamic geometry.35 The spin foam model just outlined is suited primarily
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as a sum-over-geometries quantization of spacetime. This has been extended to include the sum-

over-topologies in group field theories (GFT).45 A n-dimensional GFT is a quantum field theory

of a field with n arguments gi valued in some group G. In n = 4, the complex-valued field with

G = SO(3, 1) can be viewed as the second quantization of a tetrahedron with the n triangles

bounding the tetrahedron acting as the arguments of the field.45 The action of this field, with the

goal of making connections to spin foams, is given by

IGFT =
1

2

∫

dgidḡiφ(gi)K(giḡ
−1
i )φ(ḡi) +

λ

5!

∫

dgIjφ(g1j)φ(g2j)φ(g3j)φ(g4j)φ(g5j)V(gIj ḡ
−1
Ij )

(2.21)

where capital latin indices label the tetrahedra and K and V are kinetic and interaction (respec-

tively) functions that are chosen to fit a given model. The interaction term is often viewed as the

interaction of (n+1)-simplexes that meet to form a n-simplex, ie. 5 tetrahedra that meet to form

a 4-simplex in this example. This action creates an ordinary quantum field theory and is often

treated perturbatively like most other quantum field theories. This is done by writing the partition

function as a sum over Feynman graphs, Γ, for the field;

Z =

∫

Dφ exp [−IGFT [φ]] =
∑

Γ

λN

C[Γ]

∑

jf ,ie

∏

f

dim(jf )
∏

v

{15j}v

︸ ︷︷ ︸

Z[Γ]

(2.22)

with C[Γ] a factor from the symmetry of a given graph and the underbraced term is the partition

function for the given Feyman graph. We see immediately that the GFT partition function gives

both a sum over geometries–from Z[Γ]–and a sum over topologies–from the sum over graphs.

Moreover, the Z[Γ] is known to coincide with a 4-dimensional topological field theory known as

BF theory.46 BF theory is the direct generalization of the 3-dimensional action for gravity which

discretizes to give the Ponzano-Regge model and 3-dimensional spin foams. This is a crucial

understanding since it has been found that the 3-dimensional BF theory is actually a topological

theory–the only dynamical variables turn out to be global variables.8 We should point out that

even the GFT approach seems to indicate a direct interpretation of quantum gravity in terms of

discrete simplicial structures. It is also seen that there is a strong connection between GFT’s and

spin foams with GFT’s acting as the more general framework for spin network graphs. From here

we will take a step in an alternative direction and redefine the underlying fundamental structure

of spacetime not as tetrad variables or connections but rely to the underlying causal structure of

spacetime to define quantum gravity.

29



Chapter 2: Classical and Quantum Spacetimes

2.2.4 Causal Networks

While background independence, causal structure and symmetries are expected to be pre-

served in quantum gravity, we are free to choose which of these serves as the underlying fundamental

structure. We saw in LQG and Spin Foams that the fundamental structure of spacetime was given

by the geometric variables–the triad and connection. These directly implemented the local sym-

metries of GR on 3-dimensional space and sought to evolve each 3-geometry. An alternative is to

assume that local causal structure is fundamental to dynamics of spacetime, not the symmetries

of the spacetime. In this view, the symmetry relations and background independence are addi-

tional features that must be recovered in the final formulation of the theory but are not directly

implemented in the axiomatic foundations. This is the conceptual road to causal networks.

The formalized framework implements causality through locally-finite posets, which are

often referred to as causal sets or causets.20 In addition to the properties for a poset, a locally-

finite poset assumes that there are a finite number of elements between any two points of an ordered

pair;

Locally F inite : card{z|x ≺ z ≺ y} <∞, ∀x, y (2.23)

With this last property, causets become strictly discrete collections of points with an ordering

relation. We view the elements of a causet as a collection of events in spacetime and the ordering

relation as a causality relationship between two events. However this creates an abstract structure

without any direct geometric meaning. As with spin foams, geometric interpretation requires the

abstract graph or causet to be embedded into a manifold. With causets one must first ask whether

a given causal set can be faithfully embedded into a chosen manifold. A faithful embedding of

a causet, C, into a manifold, M , is one which preserves the causal ordering, i.e. an embedding

i : C →M is said to be faithful if

∀x, y ∈ C; x ≺ y =⇒ i(y) ∈ I+(i(x)) (2.24)

where I+(i(x)) the set of points in the causal future of x embedded in M . In addition, the elements

of C must be uniformly distributed in M , and the typical length scale of the embedding should be

the minimum length scale of M . Of course there are some clear concerns that are open in causal

sets: (1) does an M exist such that a given causet C can be faithfully embedded into M and (2)

given a causet which can be faithfully embedded into two distinct manifolds M and M ′, are M

and M ′ similar up to variations at the small scale? These two questions are still formally open but
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will not be a primary concern of this brief discussion. It will suffice to state these and move to the

the practical constructions in causets.

As was stated in the discussion on causality, a strong causal structure in a manifold can

be used to define the entire geometric structure of a Lorentzian geometry up to a global conformal

factor. The faithful embedding of a causal set defines a causal structure on the manifold since the

requirements of the embedding ensure a dense embedding of causal elements and ensures that the

partial ordering is maintained. However, we can only determine the conformal geometry from this

embedding. The original proposal for causets as spacetime20 suggested that a volume element for

the causet can be used to give the conformal factor. Such a construction should necessarily rely

on information from non-gravitational sources, i.e. atomic radii, proper time, etc., to accurately

give meaning to a density of causal elements such that one could translate between a number of

events to spacetime volume. With this information given, one would be able to reconstruct the

entire spacetime metric,19 either by triangulating the embedded causet or some other suitable

construction of metric components.

So far, there is no quantum in this construction of quantum gravity. Thus far, we have

only outlined the general procedure for relating a causal network to a manifold’s geometry. We

have yet to define quantum dynamics to this theory of causality. To do so we would need some

notion of probability amplitudes bounded by some compact boundary, or alternatively we would

need to define a notion of quantum evolution of the causal set, i.e. define a causet Hamiltonian.

One method of doing this requires us to define some new terminology. First, we define the causal

future (past) of x ∈ C as the set of all elements y ∈ C such that there is a time-like curve with

past (future) endpoint of i(x) and future (past) endpoint of i(y). We will denote this causal future

as I+(x) and the causal past as I−(x). An acausal set A ⊂ C is a collection of elements of C that

are not causally related to one another. An acausal set A is said to be the complete future (past)

of some event p when every event in I+(p) (I−(p)) is related to some event in A. Moreover, two

acausal sets A and B are said to form a complete pair when A is the complete past of B and B is

the complete future of A.47

Using this new taxonomy of causal and acausal sets, we can form the poset of acausal sets.

This poset is formed by all acausal sets of C with an ordering relations A → B which means that

A and B form a complete pair. The quantum poset is constructed by identifying to each event x

of the causal set a finite dimensional Hilbert space H(x). The Hilbert space of an acausal set is
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defined to be the tensor product of the Hilbert spaces of all events that make up the acausal set;

H(A) =
⊗

xi∈A

H(xi). (2.25)

This is directly given in the quantum theory since the Hilbert spaces cannot be related through

evolution as the events are not causally related. Evolution can be formally defined on the poset of

acausal sets by defining an evolution operator Eab between acausal sets that form a complete pair

Eab : H(A) → H(B). (2.26)

Using this scheme the properties of a poset are translated into the language of evolution operators:

Reflexitivity : Eaa = Ia (2.27)

Transitivity : EabEbc = Eac (2.28)

Non − circularity : EabEba = Ia ⇔ Eab = Eba = Ia. (2.29)

Using these evolution operators a transition amplitude, or sum over causets, is assigned a quantum

amplitude to each causet that connects two acausal sets:

ACi→Cj
=

∑

m

ACm
(E) =

∑

m

∏

E(Cm). (2.30)

A perhaps more intuitive quantum evolution scheme is to associate unitary evolution to the nodes

of a causet and Hilbert spaces to edges. We say this is more intuitive since we typically think of

an event in spacetime as an interaction between fields which generate a change of state, and thus a

mapping from one Hilbert space to another. We will see an example of this implementation in the

form of the Computational Unvierse in §2.2.6. We have already seen a concrete version of quantum

causal sets in the form of spin foams. In spin foams, the Hilbert spaces are given by the space

intertwiners connection representations of SU(2), and the evolution is that of spin networks.

This provides an intuitive framework which locally encodes the causal structure throughout

the spacetime. We have shown that there are also schemes for implementing quantization for

the causal structure. However, to obtain complete, physical information about the geometry of

spacetime the causal networks require additional information about length scales or volume that

presumably comes from dynamics of matter in the causal set and the addition of new structure
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from which one can reconstruct the metric at an event. We already see how discretization of

spacetime events and the inclusion of matter into quantum gravity assist in the interpretation and

reconstruction of quantum histories of spacetime. However, there are still some unsolved questions

and a lack of concrete constructions in the quantum dynamics using causal sets. In the rest of this

chapter we will explore similar approaches that we hope can shed light on how causal structure,

simplicial geometry, non-gravitational sources fit together to form a more complete picture of

quantum gravity

2.2.5 Simplicial Quantum Gravity

Simplicial quantum gravity actually encompasses many distinct models of quantum grav-

ity that can are based on a simplicial representation of the quantum geometry. In the previous

subsection we emphasized that simplicial representations of spacetime can be naturally introduced

as a way to make abstract graph representations more physically concrete. In this subsection, we

highlight the other end of the spectrum with the simplicial geometry taking over the role as the

determiner of geometric dynamics. There are two primary candidates for quantum gravity that

follow this route: (1) quantum Regge Calculus (qRC) and (2) (Causal) Dynamical Triangulations

(CDT).

The first of these, qRC, quantizes gravity by using the Regge action;

IRegge =
∑

hinges,h




Area of

hinge, h








Deficit Angle of

hinge, h



 (2.31)

to build a discrete Feynman path integral for the geometry. In the continuum, building such a path

integral was formally straightforward but virtually impractical since defining a consistent choice

of a measure in the path integral is currently beyond our reach. However, the situation is greatly

simplified when one makes the transition from continuum to discrete dynamics–this may be yet

another indication that a continuum formulation of quantum gravity is misleading when it comes

to developing a physical theory. In the discrete case, the measure for the path integral is defined as

a measure over squared edge-lengths such that they satisfy the triangle inequalities and appropriate

higher dimensional analogs.15 One then defines the simplical path integral as

∫ ∞

0

∏

l

dl2Θ[l2]eIRegge[l
2] (2.32)
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where Θ[l2] is a step function that is non-zero when the edges satisfy the above criteria. The

transition amplitude between geometries is obtained by defining the boundaries of the path in-

tegral and integrating over all edge lengths of a given simplicial 4-geometry bounded by the two

states. There have been several calculations along these lines carried out mainly by Hamber and

Williams;48 however, these calculations and formalism have only been implemented with respect to

a Euclidean action. It is still not clear whether the Euclidean action for qRC formally equivalent to

the path integral for Lorentizian spacetimes. Indirect evidence for the inequivalence of Lorentzian

and Euclidean path integrals has been found in the (causal) dynamical triangulations approach dis-

cussed below. We will see in the coming discussion that the inclusion of causal structure–natural to

Lorentzian signature spacetimes–produces significantly distinct path integrals from the Euclidean

path integral without causality constraints.49 We must, therefore, entertain the question as to

whether or not a Euclidean path integral for gravity is provides qualitatively similar results to

quantum Lorentzian spacetimes. It is also worth noting here that the issue of Euclidean versus

Lorentzian path integral approaches can also be investigated from a dynamical perspective where

one might attempt to develop a dynamical theory of spacetime signature.50 However, we will not

develop this line of thought further in this thesis. Instead, we will examine the results from dynam-

ical triangulations and emphasize the distinction between results with Euclidean and Lorentzian

signature path integrals.

This brings us to the question of how one builds spacetime quantum histories without re-

sorting to Euclidean measures. One way to do this is to implement causality as the spacetime

history is developed–that is to say that we insist that there is no ambiguity in the causal structure

at any point in the geometry.49 CDTs are implementations of the causal nature of Lorentzian space-

time to the previously developed Euclidean dynamical triangulations (DT). The implementation of

causality as a selection criteria for simplicial geometries is motivated by the large-scale and classical

limit sought. One should hope that in the large-scale limit–as edge lengths are suitably taken to

zero–the simplicial geometry should give a classical limit in which a causal structure emerges with

a dimension equal to the observed dimension of our universe. However, geometries that include

topology change, an indication of acausal spacetimes, may not generally lead to a recovery of some

large-scale sense of causality.49 This was generically true in Euclidean DT and appears to be a

generic feature of DT and CDT. Therefore, the CDT path integral directly excludes any topology

changing geometries from the set of physical spacetimes. The DT quantum histories exhibited

additional unphysical characteristics that preclude the viability of obtaining a coherent classical

limit–crumbled or polymeric collections of simplexes. In particular, these curmbled or polymeric
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phases exhibited large-scale dimensionality, the Hausdorff dimension,49 of either two or infinity,

not four as one should expect in order to obtain a classical limit that matches our universe. How-

ever with the addition of causality criteria this dimensionality problem seems to have vanished and

causality fixes the large-scale dimensionality to the dimensionality of the underlying simplexes.17;51

How does one build such a CDT quantum history and what is the path integral associated

with a set of boundary conditions? The framework here is analogous to the qRC path integral. The

basic premise remains the same–sum the Regge amplitudes eIRegge for each physical triangulation

that connects two triangulated 3-geometries. The main difference is in how one defines the set

of unique triangulations bounded by the two 3-geometries. The qRC approach took the point of

view that we should integrate over all collections of squared edge lengths for a fixed simplicial

complex as long as all physical criteria (the triangle inequalities and higher dimensional analogs)

are satisfied. The CDT dynamics are based on fixed edge-lengths while changing how simplexes

are ‘glued’ together–changing the simplicial complex for fixed topology. We can thus state the

two underlying constraints on CDT: (1) any triangulation must be free of topology change–causal

structure must be preserved–and (2) fix the edge lengths of a given simplicial complex such that

all simplexes are regular (equilateral) simplexes. The first we have already discussed. The second

assumption is a matter of simplification of the dynamical theory to constrain the state space of the

theory to one with a combinatorial measure. With both these constraints of the theory we use the

Regge action (along with the constraint on the edge lengths) to define the path integral;

Z =
∑

triangulations, T

1

C(T )
exp [−κ4N4(T ) + κ2N2(T )] (2.33)

where N2, N4 are the number of triangles and 4-simplexes, respectively, κi are analogous to the

gravitational and cosmological constants, and C(T ) is the order of the automorphism group of

simplicial complex. This factor plays the important role of ensuring that one doesn’t over count

triangulations that are topologically and diffeomorphically equivalent. To see the meaning of the

factor C(T ) we emphasize that triangulations related by elementary moves, called Pachner moves,

are diffeomorphically equivalent triangulations with distinct but related incidence matrices.52;53

It seems likely that there will be some composite theory of simplicial spacetime that fully

accounts for the sum over different simplicial complexes and a sum over possible edge lengths

within a given simplicial complex. Currently, these two approaches are quite separate and each are

characterized by their own strengths. The CDT approach gives a path integral which is conceptually

simple but incorporates only regular simplexes. The qRC approach accounts for non-uniform edge
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lengths but is less conceptually simple in developing a measure for the path integral. However, if

CDT’s are to fully incorporate the expected dynamics of our universe, one should expect that the

uniformity of edge lengths be relaxed and replaced by the determination of edge lengths by non-

gravitational sources. In the next subsection we will explore a proposed model in which dynamics

are fully derived from an underlying material quantum system.

2.2.6 The Computational Universe

While many paths toward quantum gravity seem to imply that geometric content of quan-

tized geometry exists unto itself without any reliance on external sources, it appears possible that

this is not the only choice one can make. In LQG, Spin Foams, causal sets and simplicial quantum

gravity the geometry of spacetime or its underlying abstract structure is dynamically independent

(contains independent degrees of freedom) from non-gravitational sources. This is fundamentally

averse to the view of gravitation outlined in Chapter 1–that the dynamics of quantum system can-

not be inextricably separated from the concept of measurement using physical, material devices.

One of the first suggestions known to the author to completely base the construction of the space-

time geometry on the dynamics of a quantum non-gravitational system was proposed by Lloyd.4

The original proposal by Lloyd can be viewed as a model of a quantum causal history with the

evolution operators inheriting form from an underlying quantum computational system.

The construction starts with a directed quantum network built of links and nodes as in

Figure 2.3. To each link we assign a Hilbert space for the qubit traveling along the link. To each

node we assign a quantum gate that operates on the qubits entering the node. We assume that

each node is 4-valent (2 qubits in and 2 qubits out) and that there is no evolution of the qubits

along the links. So far, the picture is somewhat similar to spin networks except here the assignment

of a representation of SU(2) to a link comes from the representation of the qubit associated with

that link. Each quantum network defines multiple histories for the qubits by taking all possible

evolutions through the gates of each qubit. One then embeds each quantum history into the

simplicial complex of a manifold using the following critera: (1) each node gets embedded into a

vertex , (2) each edge is embedded as a null edge, and (3) and each node whose action in the history

is the identity is removed as in Figure 2.3. The dynamics on the embedded graph are captured

by the stress-energy tensor associated to the graph. This is defined by associated kinetic terms,

γl, to the edges and the interaction potentials to the vertices. Any edges and vertices which are

not associated with the quantum graph are treated as fictitious and thus receive γ = 0 and no
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Figure 2.3: A Gate in the Computational Universe: A simple binary gate–a swap gate that rotates
the qubits by a phase eiφ or acts as the identity–in the computational universe can be broken up
into the possible histories corresponding to the actions of the gate on the binary qubits. When no
direct transformation takes place on the qubits the gate is removed and the qubits are said to not
interact at all. As such, there is vertex for such a gate in the corresponding history and the qubits
are unaware of the presence of each other.

interaction potential. We thus obtain quantum dynamics embedded into the topological structure

of a manifold and all that is left is to solve for the local geometry. For quantum dynamics, one

simply solve the inhomogeneous Einstein-Regge equations using the local stress-energies1 defined

by the quantum network.
∑

h⊃L

1

2
L cot (θh,L)ǫh = κTLL (2.34)

This methodology provides for a clear determination of quantum probability amplitudes and tran-

sition amplitudes since the probability for any given history is simply the product of the probability

for each outcome at each node in that history. Furthermore, the transition amplitude is defined as

the sum of all the probability amplitudes for the histories with the given boundary conditions.

In principle this proposal is extendable to any system of discrete quantum dynamics. How-

ever, the exact implementation will necessarily vary. To see why this is so, we can replace the quan-

tum network by a system of N interacting quantum fermions. With these interacting fermions, we

have a well-defined stress-energy tensor, and we can define an appropriate simplicial lattice defined

by the piece-wise linear world-lines of the particles. However, Einstein’s equations are solutions

to the classical equations of motion for spacetime and along with local conservation of energy-

momentum imply that the particles obey classical paths as well.18 As such, we cannot arbitrarily

1The local stress-energy defined in the equations of motion are characterized a by a tensor with components

directed along an edge L. We will not examine why the stress-energy takes this form at this time as this is the

principle result derived in Chapter 3.
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insist that the system automatically satisfy Einstein’s equations for all paths.

A counter proposal is to allow the quantum particles to partially define the geometry. We

take the world lines of the particles to define the proper length of the time-like line embedded in

the simplicial complex. These lengths may or may not be classical solutions to the Einstein-Regge

equations by themselves. However, a generic assortment of quantum particles will not fully complete

the simplicial lattice, and we are left with edges which do not correspond to any dynamics of the

quantum particles. However, the quantum dynamics do build a causet on the spacetime. Therefore,

we are allowed, in principle, to reconstruct the entire geometry of the spacetime directly from the

time-like edges of the quantum system. Lloyd has suggested that this be done by simply requiring

that additional edges of the simplicial complex vary such that the Einstein-Regge equations (with

the particle world-line edges of fixed length) be solved.5 Moreover, the causet defined by the

quantum particles is supplemented with information about the conformal scaling of the geometry

by the proper times of the particles. We see that one path is to reconstruct a quantum spacetime

by de-emphasizing the dynamical degrees of freedom of the gravitational field and relying on the

quantum system to define the quantum histories. It is the hope that in the large scale, this freezing

out of local dynamical degrees of freedom is not seen and the geometric degrees of freedom are

largely reestablished. However, there is still much more work to be done in this regard and the

model’s construction is still in progress. In particular, we seek to understand exactly how one

incorporates generic fields into the spacetime lattice. This question is the core theme of this

manuscript.

2.2.7 Topological Quantum Field Theories

GFT’s and CDT’s have provided evidence that the dynamics of quantum spacetime should

include reference to paths of different topologies. We will now explore a more encompassing theory

of topological dynamics, topological quantum field theory (TQFT), which explores this more fully.

TQFT’s were first axiomatized by Atiyah54 and have been found to include 3-dimensional gravity

and spin foams. A TQFT is characterized by a functor Z which assigns to each (n-1)-dimensional

compact oriented manifold, Σ, a Hilbert space Z(Σ). The vectors in this Hilbert space are all

n-dimensional compact oriented manifolds that contain Σ as their boundary. More formally, this

functor Z is a mapping between catgeories–from d-cobordims to Hilbert spaces. The functor must

satisfy several axioms as well:

1. Z(Σ−) = Z(Σ)∗
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2. Z(Σ ∪ Σ′) = Z(Σ)
⊗
Z(Σ′)

3. Given M = M1 ∪Σ2 M2 with M1 bounded by Σ1 and Σ2 and M2 bounded by Σ2 and Σ3,

Z(M) = Z(M2)Z(M1) ∈ Homomorphisms(Z(Σ1), Z(Σ3)).

4. Z(∅) = C

5. Z(Σ × I) is the identity endomorphism of Z(Σ)

The first of axiom states that an oppositely oriented manifold gets mapped by Z to the dual space of

Z(Σ). The second defines how we map a disjoint union of two different (n-1)-dimensional manifolds,

while the third prescribes how to map a composite cobordism to a composite Hilbert space. The

last two enforce non-triviality for the functor Z. From a physical standpoint we must make a

connection from these axioms to the spacetimes they are meant to describe. First let us motivate

the functor Z. From the path integral formulation of the quantum gravity we know that the main

goal is to define transition amplitudes between two (n-1)-dimensional boundaries of spacetime. The

functor Z helps us by defining the category of spacetimes that contain one such boundary. We

can then use the axiom for the mapping of a disjoint union of two boundaries to define the Hilbert

space of spacetimes containing both boundaries. This is the Hilbert space over which the path

integral should be evaluated. Moreover, the third axiom above describes how one should define a

multi-layered path integral–a path integral with two end-point boundaries and one (or multiple)

pre-defined intermediate slice(s). However, the last axiom greatly limits the dynamics allowed in

TQFT’s. To see this, we first point out that Z(Σ × I) is interpreted as the time evolution of the

boundary Σ. The last axiom tells us that the time evolution must be the identity endomorphism

and thus there can be no local dynamics on Σ. If this were not the case, the Hilbert space given by

Z(Σ) would not be trivially mapped to itself. Thus, TQFT’s encompass the category of theories

of quantum gravity that model quantum spacetimes with global dynamics. We have seen that this

includes 3-dimensional spin foams and BF theory. For the purposes of this thesis, we wish to only

introduce the reader to the main concept behind this approach as it helps shed light on another view

of quantum dynamics of spacetime. We believe that this provides direction in how one constructs

simplicial quantum spacetimes since the lesson is that the physical meaning in a TQFT comes

from the collection of all manifolds that contain the end points of the path integral. This gives

further evidence that a simplicial path integral should be one that accounts for different simplicial

complexes for the 4-dimensional spacetime manifold as well as different edge lengths. However, it

should be noted that TQFT’s are theories of only the spacetime manifold; thus, they are theories of
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vacuum GR. The topological aspect of TQFT is therefore non-inclusive of the local dynamics which

seem to come from being able to physically identify different points on the spacetime manifold. This

ability is directly linked to the interaction between non-gravitational sources and the gravitational

field.

2.3 Quantum Gravity is Discrete Gravity

We have identified some of influential ideas in developing approaches to quantum gravity:

Mach’s Principle, background independence, causality, and incorporation of symmetries. Since

there is no guiding experimental evidence to direct development of quantum gravity, one must

make a decision about what a quantum gravity model must incorporate from the beginning. The

choice in which founding principle guides the development of a theory impacts the conceptual form

the theory takes. For example, if one chooses to incorporate causality as the fundamental structure

of the theory, then it naturally appears that a directed graph becomes the underlying foundation

of the theory. However, given such a choice one can to some extent still recover or insist on the

alternative conceptual features.

We focused here on many of the background approaches and distilled out the conceptual

path to each. But how do these models relate to one another and are there some converging ideas

behind them? LQG appeared as the only canonical approach to quantization discussed in this

overview. It’s primary objective was to follow Dirac quantization on the (3+1)-dimensional split

of spacetime using a set of geometric variables which explicitly incorporate the gauge symmetry

on the spatial slices. Here, symmetries play the vital role in the development of the theory and

causal structure becomes inherent by way of the (3+1)-dimensional formulation. Spin foams and

GFT’s followed a similar path by directly and explicitly incorporating a gauge group on a spatial

slice; however, the quantization procedure used follows the Feynman path integral view of quan-

tum mechanics. We link these together at this stage since we have seen that the GFT approach

encompasses the spin foam framework. If one wishes to incorporate causal structure in a more

austere manner while letting symmetries play less of a forefront role, then there are a number of

approaches to choose from. Causal Networks assume the underlying foundation of spacetime is

embodied by the direct graph providing the temporal ordering of events in spacetime. There the

causal structure is clearly the root of the formalism; however, the recovery of the local SO(3, 1)

symmetry is obtained in the details of how these points of “sprinkled” in a given manifold.55 The

Computational Universe follows a similar path though the implementation is dramatically differ-
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ent. Here the embedding of the causal ordering follows a procedure closely linked to RC. The final

approach that directly incorporates causal structure is that of CDT’s. CDT’s encode the local light

cone directly into the fundamental building blocks of a simplicial lattice and restrain the theory

to well-defined mappings of causal structure from one simplex to another. In both CDT’s and the

Computational Universe there is inherent reliance on the methods of RC and it is still debated how

well this preserves the local Lorentz invariance and diffeomorphism invariance. Then there were the

class of TQFT’s which take background independence to its logical conclusion: define the Hilbert

space of geometries between two states to be the category of spacetimes with those boundaries.

In TQFT’s the primary focus is directly on background independence while causal structure and

incorporation of symmetries appears to be related to specific implementations of a TQFT.

One of the resultant features of many of these models is that individual states of the

theories relies on a discretization of the spacetime. In some, such as CDT’s and Causal Networks,

the discretization is explicit. In others, such as LQG and GFT, the discretization comes through in

the interpretation of states of the formalism. Either way, a simplicial representation of spacetime

appears to be a theme throughout the background independent quantum gravity approaches. It,

therefore, seems plausible that in order to grasp the incorporation of matter into quantum gravity,

one should begin by understanding how matter naturally finds a role in a given discretization of

spacetime, i.e. a given simplicial lattice history of the quantum theory. The rest of this thesis will

take this route and explore how matter can most naturally be included in an arbitrary, but single,

simplicial spacetime.
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The Geometry of Simplicial Spacetimes

My work always tried to unite the true

with the beautiful, but when I had to

choose one or the other, I usually chose

the beautiful.56

–Hermann Weyl

One has a plethora of options in how to approach the dynamics of quantum gravity based

on which properties of spacetime one identifies as most fundamental. Many of these approaches

either included a simplicial geometry directly into the dynamical structure or used a simplicial

lattice to give geometric meaning to the underlying dynamics. Henceforth in this manuscript we

will not assume any particular model of quantum gravity. We will only assume that the fundamen-

tal structure of spacetime geometry is the piecewise-linear geometry originally described by Tullio

Regge.42 In this description–called Regge Calculus (RC)–an n-dimensional spacetime is inherently

discretized into flat, Minkowski n-simplexes, e.g. triangles in two dimensions and tetrahedra in 3 di-

mensions. This is most clearly viewed as a finite-sized implementation of the Principle of Equivlance

wherein we alter the assumption that there be some small neighborhood which acts like Minkowski

spacetime to some small but finite neighborhoods which act like Minkowski spacetime. Here we

stated the Principle of Equivalence in terms of geometry instead of in terms of special relativity so

as to explore the interplay between the motion of material bodies with the underlying geometry.

The continuum Principle of Equivalence allows one to choose a small enough neighborhood such

that the underlying motion of test particles follow geodesics of Minkowski spacetime. The discrete

Principle of Equivalence defines such neighborhoods a priori and allows the length scale of these

neighborhoods to be determined by dynamics. For test particles in an otherwise vacuum spacetime,

we should thus expect particles to follow straight-lines on the interior of the flat building blocks.

Curved geodesics arise from discontinuous shifts of parallel world-lines to converging world-lines as

the two paths pass around a conic singularity in the lattice spacetime. Thus for the purposes of this

chapter, we will allow the Principle of Equivalence to be understood in either terms of geometry

or the motion of test particles, as the two are interchangeable in this context.
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Given this conceptual framework, we must now translate this into a discrete formulation

of Einstein’s equations. In the next section we will outline the geometric content of this discrete

formulation of GR. This will include an overview of the inclusion of curvature into RC and a

definition of the Regge action. We will then use this formulation to construct the Regge analog

of the Einstein tensor before evaluating the contracted Bianchi identity on the lattice spacetime.

This will provide a foundation for understanding how the structure of vacuum RC can be used to

incorporate non-graviational sources naturally into lattice spacetimes.

3.1 The Geometric Structure of RC

The goal of RC is to define the local degrees of freedom of the gravitational field into

the geometric content of a piecewise linear (PL) spacetime manifold. The metric tensor field,

equivalently the frame bundle, define the geometry of spacetime in the continuum, and one must

find a way to encode that content into the edges, faces, or volumes of the PL-manifold. Regge’s core

insight was that one need only use the edge lengths of a lattice to define the gravitational degrees

of freedom. However, this places limitations on the type of PL-manifold used in RC. For example,

if one attempts to use a polytope tiling of a curved n-dimensional manifold–such as a hypercubic

lattice on a 4-dimensional spacetime–then edge lengths alone are insufficient to define the geometry.

Instead, the n-polytope lattice generally requires one to define additional variables, such as angles,

to fully specify the local geometry. However, as Regge emphasized, one can construct a piecewise

linear manifold from simplicial building blocks such that only the edge lengths of each n-simplex

are needed.42 Once the edge lengths are identified, one can make a 1-1 correspondence between the

n(n+1)
2 independent components of the metric and the n(n+1)

2 edge lengths of a n-simplex.

ea

µ(x)
︸ ︷︷ ︸

frame bundle

⇐⇒ gµν(x)
︸ ︷︷ ︸

metric field

⇐⇒ {li}
︸︷︷︸

edge lengths

(3.1)

This completely determines the geometry of each simplex and how simplexes are connected together.

If we require that each n-simplex be a representation of Minkowski spacetime, then we recover the

finite-sized Principle of Equivalence in a PL manifold representation of spacetime.

However, the simplicial lattice of RC is not the only meaningful geometric structure in

a discrete theory of gravity. It is often suggested that the circumcentric dual to the simplicial

lattice is also natural,57–67 and possibly fundamental, to RC, for an overview see the work by the

author and Miller.68 We will explore the roles of the circumcentric dual in the coming sections;
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however, we can now state some geometric facts about the interplay between the simplicial lattice

and its circumcentric dual. The circumcentric dual lattice is the unique lattice such that there is

a (n-d)-dimensional polytope dual to each d-simplex in an n-dimensional PL-manifold. Moreover,

the cells in the circumcentric dual are mutually orthogonal with the corresponding elements of

the simplicial lattice. This provides for significant simplification of geometric results in RC since

it allows for factoring 4-dimensional variables into a set of 2-dimensional quantities in each the

simplicial and circumcentric dual lattices. Moreover this provides a unique factoring of the PL-

manifold into flat and curved neighborhoods. Since the simplexes of the PL-manifold serve as the

manifestation of the Principle of Equivalence, the circumcentric dual n-volumes cannot also take on

this fundamental role. In general, these dual cells will embody finite-sized neighborhoods capturing

the local geometry of the hinges containing a given vertex. We will see in the next section exactly

how this comes about as we construct the curvature and geometric action for RC.

3.2 Curvature and Gravitation in RC

No discussion of GR would be complete without an explanation of how curvature is in-

corporated into the representation of spacetime. In RC, the curvature is concentrated at the

(d-2) - dimensional hinges of the simplicial lattice, but how does this curvature come about? One

measure of the curvature can be obtained by parallel transport of a vector–a physical gyroscope

approximates this fairly well–around a closed loop. The rotation of a vector upon completion of

transport around a loop defines the Guassian curvature, K, of the surface of transport. This pro-

vides a good measurement of the curvature of a 2-dimensional surface, but a different measure

of curvature is needed in higher dimensions. To see this we examine how many independent 2-

dimensional planes occupy a given surface. In 2-dimensions, the answer is clearly one. As such

there is only one independent component of the curvature of the surface. In 3-dimensions we find

3 distinct planes for transport of vectors which, in principle, transform a vector differently. This

is encoded in the Riemann curvature tensor, Rµν
αβ . However, in an Einsteinian space, such as

RC, the twice contracted Riemann curvature tensor, Rµν
µν = R, is proportional to the Guassian

curvature. Therefore, the parallel transport of a unit vector, ~̂r, around a closed loop with enclosed

area, Aloop in an Einsteinian space is given by

(n)R = n(n− 1) · (n)K =
n(n− 1)

Aloop

· δr̂ (3.2)
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where (n)R is also called the Riemann scalar curvature. The factor of n(n− 1) comes about from

the number of ways one can embed a plane into a n-dimensional spacetime. For undirected 2-

dimensional planes one can choose
(
n
2

)
= n(n−1)

2 unique orientations in a n-dimensional manifold.

When we assign orientation to the loop we obtain the total n(n − 1) ways to embed the oriented

2-dimensional plane into a n-dimensional spacetime.

Moreover, the curvature of RC, when present, appears in a unique way. First, parallel

transport of a vector around a hinge, h, of the simplicial lattice comes back untransformed. Only

when a vector is transported in a closed loop which lies in the plane orthogonal to h does the

vector ordinarily come back rotated. How much does it rotate when transported around the loop?

This is where RC is especially simple as a geometric theory. Only a vector with components in

the plane of h and parallel transported around a closed loop orthogonal to h will ordinarily come

back rotated and by an amount equal to the deficit of the rotated vector from 2π. To see this we

take the hinge, h, and all d− 1 facets hinging on h. In general, these will form a curved collection

of (d − 1)-simplexes. If we flatten them out by breaking apart the collection at a facet, then the

collection will split by an amount equal to the deficit angle associated with h. This deficit angle

is defined as the deficit from 2π of the sum of the angles between the (d − 1)-dimensional faces

hinging on h;

ǫh = 2π −
∑

i

θi (3.3)

When the vector is transported around the loop encircling h, the vector will accumulate an observed

net rotation of 2π − ∑
θi. This definition of curvature implies that the curvature associated with

h is a conic singularity. This occurs since any loop orthogonal to h–no matter how vanishingly

small–will result in the same rotation of the vector. Clearly this results in a curvature which can be

as large as one chooses despite the well-definined notion of rotation of the vector. One possibility is

to define an area that is more naturally associated with h than any other hinge, the circumcentric

dual polygon, h∗. Using the dual area, A∗
h, as the loop of parallel transport we obtain the Regge

expression for curvature associated with h;

(d)Rh = d(d − 1) · (d)Kh =
d(d− 1)

A∗
h

· ǫh. (3.4)

We see immediately that the Riemann scalar curvature depends on quantities that originate from

both the simplicial and dual lattices. As an example, the hinges in 4-dimensions are the triangle

faces of the simplicial lattice. The deficit angle associated with the hinge h is defined with respect
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Figure 3.1: Deficit Angles in Simplicial Geometry: A vector parallel transported in the plane
orthogonal to the (d-2)-dimensional hinge will ordinarily come back rotated by an amount equal to
the deficit angle associated with the hinge. The deficit angle is defined to be the deficit of the sum
of the angles on the hinge from 2π. In (a) we see the 2-dimensional case where the hinge is vertex
and the θi are the angles between any adjacent edges containing h. In (b) we see the triangle hinge
for a 4-dimensional simplicial lattice. The vector parallel transported around h∗ will still come
back rotated by an amount equal to ǫh.

to the hyperdihedral angles between tetrahedra containing h. The area dual to h, A∗
h, is defined

as the area of the polygon connecting the circumcenters of the tetrahedra containing h. Parallel

transport of the vector around the polygonal loop dual to h brings the vector rotated by ǫh as in

Figure 3.1.

To turn this collection of simplexes into a theory of gravitation, we also define the Hilbert

action of RC.67 In Eq. (3.4) we have the Riemann scalar curvature associated with a given hinge

of the simplicial lattice in terms of geometric quantities. This invariant measure of the geometry

of a manifold plays a vital role in the definition of dynamics in GR. The continuum Hilbert action

for GR is given by the integral of the scalar curvature over the manifold. Therefore, the Regge-

Einstein-Hilbert action is thus given by the sum over the scalar curvature associated with each

hinge in the simplicial lattice times an appropriate 4-volume for the hinge. How does one define

such a 4-volume? One way is to define a new tessellation of the manifold using a hybrid between

the circumcentric dual and simplicial lattices. The hyrbid cell is defined by connecting the vertices

of the hinge to each vertex of the dual area and the volume is given by the n-dimensional version
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Figure 3.2: Hybrid Building Blocks in RC: The RC hybrid block that is essential to the construction
of the Regge-Einstein-Hilbert action of Eq. (3.6) is constructed from elements of the simplicial and
circumcentric dual lattices. The main construction of these cells comes from connecting the vertexes
of the triangle hinge, h–the bold triangle above–with the vertexes of the dual to the hinge, h∗–
the bold polygonal region above. These cells completely tile the spacetime and retain the rigidity
inherited from the simplicial lattice.

of 1
2base× height;

Vhybrid, h =
2

n(n− 1)
AhA

∗
h (3.5)

as is illustrated in Figure 3.2. Using the hyrbid volume and the scalar curvature for each hinge, we

obtain the action for RC

IRegge =
1

16πG

∑

h

RhVhybrid, h =
1

16πG

∑

h

n(n− 1)

A∗
h

ǫh · 2

n(n− 1)
AhA

∗
h =

1

8πG

∑

h

ǫhAh. (3.6)

One apparent result from this construction is that all reference to the circumcentric dual lattice

is cancelled precisely because of the orthogonal decomposition of the 4-volume associated with a

hinge. Thus we find that the circumcentric dual is an important tool in understanding the structure

of RC, but it does not make its appearance explicit when studying the dynamics of the vacuum

theory.

Field equations for gravitation can be obtained by varying the action with respect to the

fundamental variables of the theory. In the continuum, the action can be varied with respect to

the metric components of the tetrad variables to get Einstein’s field equations

Gµν ≡ Rµν − 1

2
gµνR = 8πGT µν . (3.7)
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Since edge lengths of the Regge lattice replace the metric components as fundamental variables,

we take the variation of the Regge action with respect to the edge lengths.

δIR =
∑

hinges, h

δ(Ah)ǫh +
∑

hinges, h

Ah�
�>

0
δǫh = 0 (3.8)

However Regge showed that the variation of the deficit angle is exactly zero.42 Therefore, only the

first term remains and field equations result from only varying the areas of the triangle hinges.

Varying the area with respect to an edge, L, returns an expression that depends on L and the

interior angle opposite L;

δIR
δL

=
∑

hinges, h

δAh

δL
ǫh =

∑

h⊃L

1

2
L cot (θhL)ǫh = 0 (3.9)

where the sum is taken over each triangular hinge h sharing edge L and θLh is the interior angle

of h opposite L. This results in the vacuum form of the Regge-Einstein equations. Comparison

with the continuum, we preliminarily identify the expression above as an analog of the Einstein

tensor for RC. In the next section we will provide geometric derivation of the Einstein tensor in the

simplicial lattice as further evidence for this identification. However, we notice that so far there is

no connection with matter. The stated goal of this thesis is to make such a link and identify an

appropriate form of the stress-energy tensor such that

∑

h⊃L

1

2
L cot (θhL)ǫh = κ




Flow of

Stress − Energy



 (3.10)

As such, we will follow the geometric construction of the Einstein-Regge tensor with an analysis of

its symmetry properties. This will provide the necessary link to understanding how stress-energy

flows in the simplicial lattice such that the coupling of source to field protects conservation of

source.

3.3 The Regge-Einstein tensor and the Cartan moment of rotation

To begin our geometric derivation we follow E. Cartan and examine the moment of rotation

trivector. It is well known69 that the dual of the moment of rotation trivector generates the Einstein

tensor. Since vacuum GR is defined by setting the Einstein tensor to zero, the dual moment of

rotation also generates the vacuum Regge equations. The Cartan moment-of-rotation trivector
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is defined through a moment arm, dP , reaching from a fulcrum to a rotation bivector. Each

triangle hinge, h, in the simplicial spacetime has an associated rotation bivector, Rh, located at

the circumcenter, C, of the hinge h. The orientation of Rh is in a 2-plane, h∗, orthogonal to the

hinge, h. The bivector is formed by two unit vectors separated by the usual RC deficit angle, ǫh.

It is convenient to locate the fulcrum at one of the two endpoints of edge L. We denote

this fulcrum vertex as V , and by construction it is one of the vertexes of hinge h. This freedom

of choice is guaranteed by the ordinary Bianchi identity, as we show below. This is in contrast

to previous derivations of the Regge equations using the Cartan approach, where the fulcrum was

taken halfway along edge L.66;68;70

With the fulcrum at V we can decompose the moment arm associated with hinge h into

two vectors (Fig. 3.3),

(MomentArm)Lh = PL + dPLh (3.11)

where PL = 1
2L is the vector from the fulcrum V to point O, located at the center of edge L. This

is also the center of three-dimensional circumcentric polyhedron L∗, defined to be dual to edge L.

The other component of the moment arm, dPLh, is the vector from O to the circumcenter C of the

hinge. This gives us two vectorial contributions to the moment arm: one (PL) is common to all

2-dimensional faces h∗ of the dual polyhedron L∗, and another (dPLh) is distinct for each of these

2-dimensional faces. The contribution common to all faces of L∗ can be factored out of the sum of

moments of rotations, so that

∑

h⊃L

(PL + dPLh) ∧Rh = PL
︸︷︷︸

common

∧
∑

h⊃L

Rh +
∑

h⊃L

dPLh ∧Rh. (3.12)

The resulting sum over all rotations around L∗ is simply the ordinary Bianchi identity for RC,42;66

∑

h⊃L

Rh = O(L2). (3.13)

In Eqs. (3.12-3.13) the sum over the hinges, hL, sharing edge L could have equally been taken over

the bounding polygons, h∗, of the dual polygon V ∗
L . There is a one-to-one correspondence between

the h and h∗.

Using the approximate ordinary Bianchi identity42 we are justified in removing the common

contribution to the moment arm in our sum over the moments-of-rotation. We see that the ordinary

Bianchi identity allows us to freely choose the position of the fulcrum. A natural choice for the
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fulcrum is the vertex V , and we use V ∗ to denote the dual 4-polytope to this vertex. Then each

edge L emanating from vertex V has the moment arm PL = 1
2L, which is directed along edge L.

Since each edge L is dual to a corresponding 3-polytope L∗, the effective moment arm is




Effective

Moment Arm



 = dPLh =
1

2
L cot θLh n̂, (3.14)

which is the segment from O to the circumcenter, C, of the hinge as in Figure 3.3.

Lh

M
om

en
t A

rm

dP

N

O

V

C

*L

dP

L

Figure 3.3: Hinges and the Moment Arm: In the simplicial lattice each edge is common to multiple
hinges h (left). The circumcentric 3-volume L∗ dual to edge L has 2-dimensional boundaries dual
to each of the hinges h (right). The parallel transport of a vector around the perimeter of these
dual areas will result in a net rotation by an angle equal to the deficit angle, ǫh, associated with
the hinge, h. The moment of rotation is given by a moment arm PL + dPLh wedge the rotation
associated with the parallel transport around the dual area. However, the first term does not
contribute as it is equal to zero by the ordinary Bianchi identity. On a given hinge, the effective
moment arm is the vector from the edge to the center of rotation, i.e. the circumcenter of the hinge
C, which has length (1/2)L cot θLh.

We are now in a position to explicitly reconstruct the Regge equation associated to an edge

L, and to construct the corresponding Regge-Einstein tensor. To define the moment of rotation

trivector associated to hinge h and edge L we need both the moment arm and the rotation bivector.

Parallel transport of a unit vector around t)he 2-dimensional face h∗ dual to the hinge h returns

a unit vector rotated by an amount equal to the deficit angle, ǫh, associated with the hinge.

Furthermore, the rotation bivector lies in the plane h∗, perpendicular to the hinge.
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The dual of the Einstein tensor is expressible in terms of the moment of rotation trivector,69

∫

V ∗

∗G =

∫

∂V∗

⋆ (dP ∧R) = 0, (3.15)

where the Hodge dual only acts in the space of values, i.e. on the moment of rotation trivector. In

RC the moment of rotation trivector consists entirely of the parallelepiped formed by the moment

arm dPLh and the two vectors defining the rotation bivector,








Bivector

dual to

hinge h








= Rh =

∗
(

L ∧ −−→
V N

)

2Ah

ǫh, (3.16)

which lies in the plane orthogonal to the triangular hinge h. This hinge is defined by the vectors

L and
−−→
V N , and has area Ah. The star dual of the parallelepiped returns a vector of length ǫh and

parallel to edge L.

We can now construct the moment-of-rotation trivector. The dual moment of rotation

associated with a hinge h containing the edge L is








Dual Moment

of Rotation

for hinge h








L

= ⋆ (dPLh ∧Rh) −→ 1

2
L cot θLh

︸ ︷︷ ︸

Moment Arm

ǫh
︸︷︷︸

Rot′n

. (3.17)

The total dual moment of rotation over the Voronoi 3-volume L∗ is then found by adding contri-

butions from all hinges which share the edge L,

∫

∂V∗

⋆ (dPLh ∧Rh) −→ 1

2

∑

h⊃L

L cot θLh ǫh. (3.18)

In the Cartan description of Einstein’s theory26;69;71 the Einstein tensor associated with a

three dimensional region is the dual of the total moment of rotation tri-vector per unit three-volume.

The two components of the Einstein tensor describe the orientation of the three volume, and the

orientation of the moment of the rotation tri-vector. In RC there is one equation per edge L, as

can be seen when the Cartan moment of rotation is calculated over the Voronoi three-volume L∗.66

The orthogonality between the simplicial (Delaunay) lattice and its circumcentric dual (Voronoi
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lattice) yields an Einstein tensor which is doubly projected along edge L. That is,








Integrated Einstein

Tensor associated

with edge L








=

∫

V ∗

⋆G −→ GLL L∗

L
L, (3.19)

which is directed along edge L and has magnitue GLLL
∗.

Combining Eqs. (3.15), (3.18) and (3.19) establishes the relationship between the Regge

equations and the integrated simplicial Einstein equations,66

GLL L
∗ =

1

2

∑

h⊃L

L cot θLh ǫh. (3.20)

This effectively defines the simplicial Einstein tensor GLL at edge L.

Finally, we note that the simplicial Einstein tensor along the edge L, constructed using

the sum of moments of rotations for the dual 3-volume L∗, is simply the geometric portion of the

familiar Regge equation.

3.4 Contracted Bianchi Identity in Discrete Geometry

Symmetries play a crucial role in understanding the physics behind our models for dynam-

ical fields as they identify invariants and constraints of the theory. In GR, we know of no higher

symmetry in spacetime than that of the contracted Bianchi identity (CBI). The CBI is the source

of diffeomorphism invariance inherent in the gravitational field and the spacetime manifestation of

conservation of stress-energy. This guarantees that the source of the gravitational field–material

and bosonic fields–are automatically conserved. Recall that the driving aim of this thesis is that

spacetime and matter are not wholly separable in fundamental theory of gravity. Rather we must

view them as intimately linked. Thus, we will develop here the contracted Bianchi identity for

lattice spacetime.

We know no shorter route to derive the contracted Bianchi identity than by using the

topological tautology that the boundary of a boundary is zero, i.e. the boundary-of-a-boundary

principle (BBP). The BBP appears twice over in each of nature’s four fundamental interactions,

once in its 1-2-3-dimensional form, and once in its 2-3-4-dimensional form.26;69

The BBP has been used in RC to obtain a discrete version of the contracted Bianchi

identity.66;72–74 However,the interpretation of this conservation law has been a source of some
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debate, particularly over the exactness of the identity. While the topological principle itself is exact

and thoroughly studied in RC,74 the transition from a continuum to a discrete spacetime forces one

to apply these topological identities to non-infinitesimal rotations. Unlike the infinitesimal rotation

operators in the continuum, finite rotations do not ordinarily commute. The transition from the

continuum to the discrete case must be handled with care. We emphasize that the derivation

presented here will not ordinarily produce an exact identity, due to the non-commuting nature of

finite rotations. Nevertheless what one loses in exactness one gains in simplicity. In particular, the

integrated Einstein tensor is doubly projected along its edge and this allows one to write down the

CBI as a Kirchhoff-like conservation principle. These identities are second-order convergent66 and

valid locally at any event in a spacetime.

The contracted Bianchi identity for RC has clear implications for the coupling of energy-

momentum to the lattice as well as to our understanding of diffeomorphism invariance in RC.

Furthermore, if we expect the quantization of spacetime to produce an inherently discrete spacetime,

then grasping the meaning of the BBP in a discrete theory becomes essential to understanding

the quantum theory of gravity. RC serves naturally as an underlying framework since simplicial

spacetimes provide one of the most elegant and universal descriptions of discrete spacetime.75

In §3.4.1 we review the BBP and its role in the fundamental forces of nature. The impor-

tance of this identity stems from its purely topological foundation. The Cartan construction of the

moment of rotation trivector in RC is reviewed before applying the BBP directly to the simplicial

lattice in §3.4.2. We conclude in §3.5 with our future plans to couple a generic stress-energy tensor

to the geometric content of the Regge lattice.

3.4.1 Boundary of a Boundary Principle: The Guiding Topological Principle

In any fundamental field theory (electrodynamics, Yang – Mills, general relativity) source

conservation is introduced in such a way that it is satisfied for any field. This is equivalent to

saying that it does not impose any restrictions on the field itself, but rather puts constraints on

the source of the field (charge in electrodynamics, energy–momentum in general relativity). This

feature is conditioned only by the requirement that the field is described as the curvature of a

connection on the appropriate vector bundle that is responsible for the correct implementation of

the field symmetries.76

The universality of this feature follows from the fact that it is induced by (but not totally

reduced to) the simple topological identity that the boundary-of-a-boundary is equal to zero.71
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Application of this principle to spacetime is achieved by associating to it a chain complex (say by

simplicial or any other triangulation) with the standard boundary operator based on the rules of

orientations of the boundaries. As an example, we can examine a discrete representation spacetime

wherein the spacetime geometry is tiled by 4-dimensional polytopes. The geometry interior to

each of these infinitesimal polytopes is irrelevant and, for pictorial representations, can be thought

of as flat Minkowski geometry. Let us examine one of these polytopes, V ∗, which is the local

neighborhood of an event, V . This polytope is bounded by 3-dimensional polyhedra (Figure 3.4).

Any two adjacent polyhedra on the boundary of V ∗ share a common 2-dimensional face. In other

words, in this 4-dimensional region of spacetime, no 2-dimensional polygonal faces are exposed.

In general relativity, any flow of stress-energy (or equivalently the dual of the Cartan moment of

rotation) into one of the 3-dimensional bounding polyhedra is exactly compensated by an equal

flow of stress-energy (Cartan moment of rotation) out of an adjacent polyhedron. This guarantees

conservation of source in V ∗.

For each V ∗, one would like to sum over each of its unexposed 2-dimensional boundaries

– the meeting place of two of the polyhedral boundaries of V ∗ (Figure 3.5). These polyhedral

boundaries induce opposing orientations on each of the 2-dimensional faces. Therefore when one

sums over all of the 2-boundaries of all the 3-boundaries, two contributions are found for each

polygon each of equal magnitude but opposite orientations. These identically cancel one another

leaving the boundary-of-a-boundary identically equal to zero.

In applications to continuum field theories the boundary of a boundary relation of the

chain complex is translated into the relation co-boundary of a co-boundary of the dual de Rham

co-chain complex of differential forms. The exterior derivative acts as the co-boundary operator.71

This duality is established by adding rotations caused by parallel translations of vectors around

the 2-faces (or Cartan moments of these rotations) of an infinitesimal 3-simplex (or 4-simplex

for moments of rotations). These rotations are expressed as products of Riemannian curvature

tensors on each face and the oriented element of area associated with the face. This operation,

when applied to finite structures, is ambiguous and cannot be performed in a consistent way. The

ambiguity arises for two reasons: finite rotations do not commute, and tensor quantities are being

computed at different points (on different faces) and then added. These difficulties disappear in

the infinitesimal limit.

In particular, in general relativity, application of 1-2-3 dimensional BBP reduces to com-

puting the sum of rotations caused by parallel transport around all 2-faces of a 3-simplex. When

expanded in Taylor series with respect to displacements along the edges69 it produces terms of
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Figure 3.4: The Polyhedral Boundary of a 4-polytope: This illustration shows the 2-dimensional
projection of a typical 4-dimensional polytope, V ∗, of the circumcentric dual (Voronoi) spacetime.
It is dual to a vertex, V , of the simplicial (Delaunay) spacetime. This 4-polytope is bounded
by six polygons (shown exploded off into the perimeter of the polytope). These 4-polytopes are
ordinarily not a 4-simplex nor are their bounding polyhedra. The orientation of V ∗ induces an
orientation on each of its polyhedral faces, L∗. The orientation of each polyhedron consequently
induces an orientation on each its polygonal faces. However, each 2-face is shared by two polyhedra
thereby inducing equal and opposite orientations on it. In this sense, none of these polygonal faces
are exposed and their orientations cancel. This is the origin of the BBP principle in its 2-3-4
dimensional form.
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Figure 3.5: BBP as a Geometric Identity: Here two adjoining faces of the 3-dimensional boundary
of a 4-dimensional volume are depicted with their induced orientation. The orientation of the 2-
dimensional area is seen to be opposite for the adjoining 3-volumes such that in the sum over the
boundary of the boundary these areas cancel one another. Furthermore, if a vector ~U is parallel
transported around the area adjoining the two 3-volumes, then the vector will ordinarily come back
rotated. When the area is associated with the left 3-volume, the vector ~U comes back rotated as
~U

′

, but when the area is associated with the right 3-volume it will come back as ~U
′′

. The rotation
in both cases is in the same plane and rotated by the same amount, but in opposite directions of
rotation.

second and the third order (the higher orders are of no interest in this computation). The ambi-

guity caused by parallel transporting tensor quantities to a common point (necessary for addition)

introduces errors of the fourth and higher order. These errors can be neglected. The requirement

that the second order term vanishes leads to the conclusion that the Riemannian curvatures on

the faces of the 3-simplex are not linearly independent, while the requirement that the third order

term vanishes implies the ordinary Bianchi identities.

Likewise, application of 2-3-4 dimensional BBP amounts to adding Cartan moments of

rotation over all 3-faces of a 4-simplex (or polytope). The Taylor series expansion proceeds as

before, with terms up to the third order disappearing because of relations imposed by the 1-2-3

dimensional form of the BBP. The errors generated by the ambiguity of parallel translation are

now of the fifth and higher order. The CBI arises from the fourth order term of the expansion.

3.4.2 Discrete Bianchi Identities

RC is based on a lattice of flat 4-dimensional simplexes that form a curved PL manifold. The

curvature is concentrated as conical singularities on each of the co-dimension 2 triangular hinges.
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To define the curvature we need to associate an “area-of-circumnavigation” to each triangular

hinge. This provides a finite area over which we can distribute the curvature. Fortunately, the

circumcentric dual lattice has been shown to arise naturally in RC and provides an appropriate

area.58–64;67;68;70;77 Correspondingly, it has been shown that the circumcentric 3-volumes naturally

define the moment-of-rotation operators and discrete RC equations.66 We postulate here that the

circumcentric 4-volume (V ∗) dual to a vertex (V ) defines a natural domain to apply the Cartan

BBP in its 2-3-4-dimensional form. Consequently the BBP in RC becomes the “co-boundary of

the co-boundary” principle, although the geometric underpinnings are exactly the same.

In this section we derive the discrete form of the contracted Bianchi identity. We begin by

emphasizing the central role that the Cartan moment-of-rotation trivector and the circumcentric

dual lattice play in this derivation. In particular, we begin by re-expressing the familiar Regge

equations in the Cartan prescription. This leads naturally to a Kirchhoff-like identity at each

vertex inherently linked with the topological boundary-of-a-boundary identity. We will conclude

with an analysis of the convergence properties of the identity with the typical lattice edge length

L.

3.4.3 The Contracted Bianchi Identity

As shown above, the Regge equation and corresponding simplicial Einstein (or Regge-

Einstein) tensor is naturally defined relative to the dual polyhedron L∗. It is therefore natural to

define the 4-dimensional polytope V ∗ dual to the vertex V as the domain upon which we apply the

Cartan BBP in its 2-3-4 dimensional form. To demand no net creation of source (∇·G = ∇·T = 0)

in this spacetime region is to embody the essence of the contracted Bianchi identity.

As in the continuum (Sec. 3.4.1), we can provide a finite sum (“integral”) representation of

the contracted Bianchi identity associated to the dual polytope V ∗ by summing over its polyhedral

3-boundaries L∗. By construction, each polyhedral 3-boundary of the dual polytope L∗ is dual

to one of the edges L of the simplicial lattice emanating from vertex V . This defines the domain

of integration for the BBP. This completes two steps towards the BBP in RC, defining both the

domain and the integrand (Sec. 3.3) for the BBP in RC.

The final step in deriving an expression for the conversation of moment of rotation in RC

is achieved by summing over the dual 3-volumes L∗ that bound the 4-volume V ∗, which is dual to

vertex V . However, care must be taken in evaluating this sum. Despite our choice of a common

fulcrum, we have still decomposed the total moment arm into two vectors (one strictly in the
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tangent space of the vertex V , and one at the center of edge L). Yet, RC provides a simple solution

to what could be problematic. Both of these vectors lie in the tangent space of their associated

hinge h. As such, the decomposition of the total moment arm becomes the standard decomposition

of a vector in flat Minkowski spacetime. Summation over terms at a common point can be achieved

in two equivalent, but separate approaches: (1) by parallel transporting the effective moment arm

prior to inclusion in the moment of rotation trivector, or (2) parallel transporting the net moment

of rotation trivector. We will consider the second approach.

In RC the integrated Einstein tensor (3.20) is not only evaluated along the edge L, it is also

directed along L. Since each simplicial edge L is by definition a geodesic in the lattice, any vector

parallel transported along L will maintain a constant angle with respect to L. We take advantage

of this property and individually transport each of the RC moment-of-rotation trivectors from the

center of their respective edges to the vertex V which is common to all of these edges. We are then

free to sum these moment-of-rotation vectors at V . Repeating this procedure across the lattice

yields a 4-vector identity at each and every vertex V ,








Net Moment

of Rotation

at vertex V








=
∑

L⊃V

∑

h⊃L

1

2
L cot (θLh) ǫh. (3.21)

This is the simplicial form of the net moment of rotation at vertex V , and must vanish

by the 2-3-4 dimensional form of the BBP. However, as we have mentioned, the finite rotation

operators do not ordinarily commute. This is important because we must apply our rotations in a

given order. Nevertheless, the non-commutativity of the rotation operators can be made as small

as one wishes by suitably refining the lengths of the simplicial lattice. Here, suitable refinement of

the lattice is taken in the sense described in78 where constant curvature barycentric subdivision is

employed to refine the edge lengths by introducing new simplicial blocks and distributing curvature

over the new subdivision of the simplexes. Under such refinements, the commutators for rotations

scale as the deficit angles squared. Moreover, the deficit angles scale as the edge length squared

as can be seen via their relation to the curvature (Curvature) = K = ǫh/A
∗
h. Consequently, the

deficit angles scale as O(L2) and the commutators for rotations scale as O(L4). This second order
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convergence is the origin of the approximation being implemented. Therefore,

∑

L⊃V

∑

h⊃L
︸ ︷︷ ︸

δ◦δ≡0

1

2
L cot (θLh) ǫh + O(L5) = 0. (3.22)

This is the RC formulation of the CBI. The first term in this expression scales with O(L4), since

the deficit angles ǫh scale as O(L2). The contracted Bianchi identity is not identically zero because

small, finite rotations do not necessarily commute. Consequently, the final term scales with both

the edge length L and the rotation commutator [ǫh, ǫh′ ], yielding an overall O(L5) behaviour in the

error term.

Two features are apparent in the discrete CBI. First, it has the form of a Kirchhoff-like con-

servation law. The analysis presented in this manuscript completes the derivation of this Kirchhoff-

like property of the CBI. We have reduced the results of previous calculations from a non-local,

boundary-valued sum to a vertex-based conservation equation. This was accomplished by utilizing

the freedom we have in choosing the fulcrum for each of the moment of rotation trivectors, here

we have chosen the vertex V common to all of the faces of the dual polytope V ∗. Equivalently,

this can be understood by our ability to parallel transport the moment of rotation trivector from

the midpoint Oi the edge Li to the vertex V . No higher order corrections than corrections already

discussed in this manuscript are introduced. It is this understanding of the relation between the

CBI give rise to conservation of source which is vital to understanding how source can be coupled

to the lattice. Second, the appearance of a 4-vector identity at each vertex signals that there are ex-

actly four “approximate” diffeomorphic degrees of freedom per vertex in the simplicial lattice. This

last point has been important for understanding the dynamical degrees of freedom in RC,66;72;73

and the resulting approximate diffeomorphism freedom has been utilized to solve the initial value

problem.79

3.5 Regge Calculus Beyond the Vacuum

In applications to both classical and quantum gravity RC has, for the most part, been

dominated by studies of the vacuum solutions. There have been some clear departures from this to

study the coupling of source to arbitrary lattices,80–82 although these methods have not provided

a generic approach or understanding to incorporating non-gravitational fields into the lattice. Nor

has there previously been developed a generic framework for the formulation of conservation of
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Figure 3.6: The Kirchhoff-like Form of the Contracted Bianchi Identity in RC: On the left is an
exploded view of the edges meeting a vertex V and their dual 3-volumes, L∗. The first step towards
the Kirchhoff-like conservation principle is constructing the total moment of rotation for each of the
dual 3-volumes, L∗. On the right is a depiction of the flow of moment-of-rotation, or equivalently
flow of stress-energy along each of the edges, L meeting at the vertex V . The flow of moment-of-
rotation entering or leaving vertex, V , is conserved to second order in the lattice spacing, L. Since
the Einstein equations, and their RC equivalent, equates the moment-of-rotation with the stress-
energy, this contracted Bianchi identity can be viewed as a circuit-like conservation law. Here the
“wires” of the circuit are the edges of the simplicial lattice, and the “current” in each of the wires
is the doubly-projected stress-energy tensor TLL along the given edge L emanating from vertex V .

source in the lattice. We chose to first study the geometric properties of the Einstein tensor so

as to first fulfill conservation of source wired to field in RC. We know of no better way to study

these properties than through the topological identity embodied in the BBP. Applying the moment-

of-rotation trivector to the framework of the BBP has allowed us to better understand how the

symmetries of the Einstein tensor are manifest in the lattice of RC.

We have found that the conservation of moment-of-rotation takes a form which is ideally

suited for applications to matter: the CBI in RC become a Kirchhoff-like conservation principle

for the edges emanating from a specific vertex. With this and Einstein’s equations, we obtain an

approximate conservation equation for energy-momentum on the lattice,

∑

L⊃V

GLLL
∗ =

∑

L⊃V

κTLLL
∗ ∼= 0. (3.23)

In particular, the doubly projected stress-energy along the edges emanating from a vertex must sum

to zero, to at least second order in the length scale of the lattice. While not exact, this gives the

interpretation of a Kirchhoff-like conservation principle for the geometry, and (with Einstein’s equa-

tions) the flow of energy and momentum (Figure 3.6). As a result, we obtain a set of vertex-based
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constraints for edge-based expressions that constrain energy-momentum. This exercise indicates

that energy-momentum is naturally wired to the simplicial lattice at each vertex, and is naturally

wired to each edge in its coupling with the simplicial field equations.

For applications of RC to pre-geometric quantum spacetime, one must necessarily formu-

late an appropriate stress-energy tensor arising from the quantum dynamics. For applications to

classical spacetimes a simplicial form of the stress-energy tensor must be constructed from the non-

gravitational sources. This work indicates that the stress-energy will most naturally be expressed

as a vertex-based tensor, and that its coupling to the RC equations will be through its double

projection on the edges of the lattice. We will see in the coming chapter how this insight presents

itself in the structure of RC and how we can construct a general framework for the coupling of

course to field in RC.
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Matter in Simplicial Spacetimes

Although we must never confound a

mathematical model of nature with nature

itself, it certainly appears that the modern

physicist finds a more realistic

representation of matter in an assembly of

particles than in a continuum.2

–J.L. Synge

The Geometrodynamic Steering Principle introduced in §2.1.1 elucidates the role of Mach’s

Principle in GR and is the core of modern understanding of the dynamical degrees of freedom in

GR. Any discretization of spacetime must describe the coupling of non-gravitational sources to the

gravitational degrees of freedom in addition to providing a description of the discrete spacetime.

Consequently, we have illustrated how naturally the contracted Bianchi identity appears in RC.

Only through this topological identity applied to the Einstein-Regge tensor can the automatic

conservation of source be ensured in lattice spacetimes. There were two key lessons one should glean

from this development of the conservation of source through the contracted Bianchi identity: (1) the

natural domain for Einstein’s equations in RC is defined through the locally defined circumcentric

dual lattice and (2) conservation of source is embedded in RC as a set of four Kirchhoff-like

conservation equations, accurate to second order in the edge lengths, at each vertex of the simplicial

lattice.

The formulation of non-gravitational source matching the discrete nature of RC requires

the circumcentric dual tessellation. This dual tessellation provides a concrete definition for the

topology over which stress-energy and its conservation are defined. Interestingly, the necessity

for the dual lattice only becomes important when non-gravitaitonal sources are included in RC.

In vacuum RC we found in Eq. (3.6) that all dependence on the dual lattice exactly cancelled

when contributions to the scalar curvature and the 4-volume at a hinge explicitly referenced the

circumcentric dual. However, we cannot in general expect this beneficial cancellation to occur when

one extends RC beyond the vacuum regime or when one analyzes other geometric structures in

RC, e.g. scalar curvature at a vertex,70 contracted Bianchi identity, or matter Lagrangians. When
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examining inclusion of non-gravitational sources, one must explicitly reference the flow of source

through domains of the spacetime, i.e. the boundary to a dual cell. Therefore, one should expect

the action for non-gravitational fields to be of the form;

I[·] =
∑

L

K.E.[·, L] × V ∗
L +

∑

v

Lint[·] × V ∗
v (4.1)

where K.E.[·, L] is the finite-differenced “kinetic energy” contribution to the action and Lint[·] is

the interaction term from the Lagrangian of interacting fields–to include mass terms for free-fields.

Clearly, one cannot expect there to be cancellations of the dual volumes (to edges or vertexes) in

an action for arbitrary fields since the dynamics of the field defined in K.E.[·, L] and Lint[·] will not

explicitly reference the circumcentric dual as was the case with the scalar curvature in Eq. (3.6).

This requires that we fully understand the circumcentric dual topology prior to the incorporation

of source into the Regge lattice. This will be the primary focus of §4.1 which will enable us to

incorporate matter into lattice spacetimes in §4.2.

4.1 The Topology of Matter in Simplicial Spacetimes

We have found that the inclusion of non-gravitational sources requires the complex of cells

dual to the simplicial lattice. Although not explicit in the vacuum Regge action the dual tessellation

appears naturally in the definition of geometric observables in RC.57–67 However, there has not

been a thorough study of the topological properties of the dual lattice. The systematic avoidance of

triangles and simplexes with large fatness parameters78 or waste functions83 is often carried out in

applications of RC for ease of computation and to avoid complications in determining convergence of

the triangulation. This systematically avoids many of the subtleties of using arbitrary triangulations

for the inclusion of source into RC. In the general case, one should carefully examine whether the

use of arbitrary simplicial lattices will provide physically appropriate topologies, such as providing

disjoint neighborhoods for distinct events in spacetime. If not, it will be necessary to define a

subset of all possible triangulations such that the dual tessellations will always inherit physically

meaningful characteristics.

Prior to studying the explicit properties of the circumcentric dual lattice, it is useful to

provide a rigorous definition of the dual tessellation. The circumcentric dual to a n-dimensional

simplicial lattice is defined with respect to the circumcenters of the d-dimensional simplexes, σ(d)

(d ≤ n): the circumcenter, c(σ(d)), of σ(d) is defined as the center of the d-dimensional circumsphere
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(circumhyperboloid) in a Riemannian (resp. pseudo-Riemannian). That is the circumcenter to each

vertex is the vertex itself, to each edge the circumcenter is the midpoint of the edge, and so on.

The dual to σ(d) is then defined by the duality operator84

⋆(σ(d)) =
∑

σ(d)⊃σ(d+1)⊃...⊃σ(n)

ǫσ(d)...σ(n) [c(σ(d)), c(σ(d+1)), . . . , c(σ(n))] (4.2)

where [a1, a2, . . . , an+1] is a n-dimensional simplex with vertexes given by the ai and the ǫσ(d)...σ(n)

is a pseudo-tensor whose purpose is to maintain proper orientation of the dual cells with respect to

the orientation assigned to the simplicial lattice. This definition provides a direct correspondence

between the d-dimensional simplexes and their (n-d)-dimensional dual cells, e.g. dual to a n-simplex

is a vertex and dual to a (n-1)-simplex is an edge.

Given this definition of the dual complex to σ(d) we are able to examine the properties of

the dual topology, given by the collection {⋆σn}. We seek those properties that are important for

us to understand the dual topology in RC. One physically meaningful property of a topology is

that the topology define disjoint open neighborhoods for distinct events in spacetime. If this were

not the case then two physically distinct events in spacetime would be described by subsets of the

manifold which are not altogether distinct. This provides difficulties in accurately defining physical

quantities such as densities of physical observables. A topology which provides such disjoint open

neighborhoods and covers the manifold is said to be a Hausdorff topology. Since RC is a theory

of events in spacetime which determine the spacetime, the topology induced by the lattice should

require no additional structure to form the topology of the discrete manifold. The dual topology

of the simplicial lattice defines the mathematical topology for the points and events, i.e. vertexes

of the simplicial lattice, in the spacetime. It is with respect to this topology that one assesses the

properties of functions on the spacetime. RC does not rely on a background smooth manifold with

respect to which one can refer to open neighborhoods of points; therefore, one must define a dual

topology having the properties expected of a physically relevant spacetime topology solely from the

triangulation and/or events of the PL-spacetime manifold.

If RC is to be a theory of events in spacetime with conservation of source preserved at the

events (vertexes of the simplicial lattice), then the topology assigned to the discrete collection of

events cannot exactly coincide with the simplicial lattice. It is only with respect to the circumcentric

dual that conservation of source and the contracted Bianchi identity are well-defined. Therefore, we

should expect to define circumcentric dual lattices as a Hausdorff topology. However it can easily

be shown in Euclidean geometry that a simple choice in triangulations where a rectangular region
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Figure 4.1: Dual Topologies in 2-dimensions: The dual topology to a simplicial spacetime is defined
by constructing the dual cells to each vertex of the simplicial lattice according to Eq. (4.2). These
dual cells do not ordinarily define a Hausdorff topology for the spacetime as can be seen above. In
(a) we present a non-Hausdorff dual topology in Euclidean geometry. In (b) we present a similar
example from the Minkowski plane. If we examine the dual to vertexes A and B closely, then we
notice that there is an overlapping region defined by the simplex [XYZ] in (a) and [BYZ] in (b).

is triangulated along the longest diagonal will give circumcentric dual cells to the vertexes which

overlap as in Figure 4.1. The situation is not averted in Minkowski spacetime as is also shown in

Figure 4.1. For the purposes of a fundamental theory of nature, this cannot be explicitly acceptable

as it points to regions of spacetime which, topologically, are not disjoint/distinct. Indeed, the dual

topology constructed via the circumcentric dual tessellation does not explicitly form a topology

either, as the dual tessellation is not closed under intersections of dual neighborhoods. Our aim

for defining a dual topology that is consistently defined for an arbitrary collection of events and

clearly the circumcentric dual cells do not meet this definition for an arbitrary triangulation of the

events. Since one should aim for a mathematically consistent description of discrete dynamics, we

cannot explicitly accept arbitrary triangulations that produce non-Hausdorff dual topologies in RC

when sources are incorporated.

Since arbitrary lattices will not ordinarily induce meaningful dual topologies, we must

identify a subset of all triangulations which will always produce Hausdorff coverings of the PL-

manifold. Since triangulations and their duals are most readily and concretely understood in

positive-definite metrics, we will describe such a subset in Euclidean geometry. This will be topic

of §4.1.1 wherein we explain the general properties of the space of Delaunay triangulations and their

dual Voronoi tessellations on Rm. We are then able to conjecture as to the possible formulation of
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Delaunay triangulations and their duals in Minkowski geometry. This will be done explicitly for

the Minkowski plane, M2, in §4.1.2. These will provide the basis for the point-set topology for the

vertex neighborhoods as we define the action and stress-energy on the simplicial lattice.

4.1.1 Delaunay Triangulations and Voronoi Tessellations

If an arbitrary lattice will not ordinarily produce a suitable dual topology, what triangula-

tions are sufficient for the incorporation of matter in RC. It is known that there exists a collection

of triangulations in Rn such that the circumcentric dual to the triangulation defines a unique, open

neighborhood to each vertex of the triangulation such that no two neighborhoods overlap.43 These

triangulations and their duals appear in the literature as Delaunay triangulations and Voronoi

tessellations, respectively. These tessellations have found various applications in physics, astron-

omy, sociology and other fields as evidenced by the various contributions to the Tessellations in

the Sciences.85 In this subsection we will outline the relevant definitions for Voronoi tessellations

and Delaunay triangulations and distill out the key characteristics of Voronoi tessellations that are

portable to arbitrary metrics. This will provide the necessary framework for us to generalize the

Euclidean and Riemannian Voronoi tessellations to Minkowski spacetime.

The oft-mentioned meaning of the Voronoi tessellations in positive-definite metrics is that

a Voronoi cell for a point pi ∈ P = {p1, p2, . . . , pn} is the set of all points in the manifold closest

to pi than any other member of P ;

V (pi) = {x | ‖x− xi‖ < ‖x− xj‖∀pj ∈ P}. (4.3)

This defines an open neighborhood around pi; however, this can also be extended to closed neigh-

borhoods, V (pi)

V (pi) = {x | ‖x− xi‖ ≤ ‖x− xj‖∀P} = V (p0)
⋃

∂V (p0). (4.4)

In each of these cases, one defines the distance between x and xi using the standard metric on

the manifold, i.e. ‖x − xi‖ =
√

gµν(x− xi)µ(x− xi)ν . The Voronoi cell can alternatively and

equivalently be defined by introduce the notion of a half-space between two elements of P . The

half space between pi, pj ∈ P is defined as

H(pi, pj) = {x | ‖x− xi‖ < ‖x− xj‖}. (4.5)
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Figure 4.2: Voronoi Tessellation in R2: The Voronoi tessellation for a set P = {p1, . . . , pn} is the
collection of neighborhoods associated to each pi. This figure illustrates the Voronoi tessellation for
a randomly generated set of points P on the Euclidean plane. Each neighborhood, V (pi), consists
of the points x which are closes to pi than any other member of P . As is clear from the figure,
these neighborhoods form a disjoint covering of the plane. Moreover each V (pi) is guaranteed to
be a convex set around the generator pi of the neighborhood.

This transforms the Voronoi cell definition in a set of relations using half-planes, i.e.

V (pi) =
⋂

pj∈P

H(pi, pj) (4.6)

By definition, these cells define a territory to each pi such that all points belonging to V (pi) are

closer to pi than any other pj ∈ P , as in Figure 4.2.

In addition to the remarkable feature that each cell defines a closest territory to each element

of P , the tessellation also induces a dual that is a triangulation of P . This dual triangulation to

the Voronoi tessellation is such that to every (n-1)-dimensional face of the Voronoi cell there is an

edge connecting the pi, pj ∈ P that generated the boundary corresponding to the face. That is

to say, given a sequence of points on a manifold, e.g. mailboxes, badger homes, spacetime events,

etc., one can automatically associate a natural triangulation of the those points defined via the

Voronoi tessellation. The duality relationship between the Delaunay triangulation and the Voronoi
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tessellation guarantees that the triangulation avoids, when possible, long, thin simplexes that do

not minimize the waste function83 or maximize the fatness parameter78 for a given P in fixed

position on some manifold. This can be seen more clearly if one examines the less instructive

but more intuitive definition of a Delaunay triangulation: the Delaunay triangulation in Rm for

a set P is the triangulation such that for any d-simplex, σ(d), the d-circumsphere for σ(d) only

contains the vertexes of σ(d) on its boundary or interior.43 This implies that any given choice of

simplex will attempt to fill as much of its circumsphere as possible given the fixed locations of the

elements of P , in direct analogy with the waste function used in Null Strut Calculus.83 However,

since the elements of P are in fixed position, this choice is only capable of being made with respect

to the incidence matrix which characterizes how members of P are linked together. The Delaunay

triangulation does not minimize the waste function by varying edge lengths as it is assumed that

the member of P are in fixed position.

Given these definitions, we are automatically able to select a subspace of all triangulations

which will guarantee that each circumcentric dual tessellation defines a Hausdorff topology for the

PL-manifold. This is guaranteed since it there is always a certain answer to the question of to

which pi ∈ P a given point on the manifold is closest for every point x on the manifold. The

answer to this question is always certain as the positive-definite metric provides no ambiguity in

the ordering of the distances between x and each pi. We therefore restrict our application of RC to

Delaunay triangulations as these are the only triangulations sufficiently suited to the incorporation

of matter at a fundamental level. This matches with the current choices in the literature of avoiding

elongated, thin simplexes, i.e. those which are not sufficiently spherical.

However, the definitions given thus far cannot carry full meaning directly in non-positive

definite metrics. Only in positive-definite metrics can one put a lower-bound on the distance

between two points or define a meaningful circumsphere. We must therefore find replacements for

these notions and in particular limit our steadfast reliance on the notion of closeness. What, then,

should be the guiding principles for Voronoi tessellations in arbitrary manifolds?

There are two essential properties of Voronoi tessellations that come directly from the

aforementioned definition and preserve the character of the tessellation: (1) the closed Voronoi cells

associated with P completely cover the manifold, M, that is every point on M must be included

in at least one V (pi), and (2) the collection of Voronoi cells, V = {V (pi)}, forms a collection of
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disjoint open neighborhoods, i.e. no two cells overlap;

(1)
⋃

i

V i = M

(2)
⋂

i

Vi = ∅
(4.7)

These properties ensure that the set V forms a discrete Hausdorff topology for the manifold. Fur-

thermore, we will also require that each pi belong to its own Voronoi cell, V (pi), to ensure that an

arbitrary disjoint covering is not created without reference to the point-set used to generate V . We

insist on one additional principle behind Voronoi tessellations: the Voronoi cell associated with pi

shall be defined with respect to geometric relations, e.g. metric distance, between pi and all other

pj ∈ P . Again, this requirement is to ensure maximal coincidence with the traditional meaning of

Voronoi tessellations despite the lack of direct correspondence to the Riemannian definition. These

requisite properties follow the traditional view of Voronoi diagrams for general metrics–at least from

the well-studied examples with positive-definite inner-products.43 Before moving on let us briefly

state how each of properties affects the Voronoi definition for a given metric. The requirement that

geometric relationships or ordering be used explicitly to construct the Voronoi cells amounts to the

requirement that one be able to define half-surfaces that separate a manifold between any two given

points. In the Euclidean case this is required to define the half-planes that are intersected to form

the Voronoi cell. The requirement that a generator pi belong to its own Voronoi cell can be seen as

the statement on how one chooses which half-surface is associated to the generator–the geometric

relations determine the boundary but do not automatically select which half-surface to assign to

the generator. The Hausdorff covering conditions then provide guidance on how one pieces together

the many half-planes associated with a given generator. In Euclidean geometry, these conditions

indicate that one need only perform a series of intersections. In more general cases, this may not

always be completely sufficient.

4.1.2 Voronoi Tessellations in Spacetime

If the Delaunay-Voronoi dual tessellations are indeed a sufficient structure for matter in

RC, then our hope should be that such triangulations and their duals exist in arbitrary metrics,

e.g. Lorentzian metrics. However, it has not been clear how one defines a Voronoi tessellation or

Delaunay triangulation in spacetime from first principles. We now explore how we can apply the

above principles of Voronoi tessellations to a random sprinkling on the Minkowski plane, M2. Since
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the Minkowski plane is only a tool to provide a simplified model of Voronoi cells in spacetime, it is

necessary to only use features of M2 that extend to higher dimension. This way the construction

will be sufficiently generic so as to allow for extension to higher dimension and possibly curved

geometries.

We first note that while it is common to define a Euclidean topology on M2, this does not

take into account the metric properties of the manifold that make M2 physically meaningful.86

Instead, the Minkowski plane has everywhere defined a light cone structure that demarcates space-

like, time-like and null distances. That is, we have two distinct classes of non-zero distances. It

was proposed by Zeeman86 that one could instead treat Minkowski spacetime as being described

by a finer topology generated by two distinct sets of topologies–assign Euclidean topologies to

each space-like surface and separately assign Euclidean topologies to each time-like direction. The

motivation for Zeeman appeared to be to create a topology that accounts for the intrinsic local

inhomogeneity in Minkowski spacetime, i.e. the demarcation of space- and time-like distances via

the local light cone at each point. This is the primary distinction between Minkowski spacetime and

Euclidean geometry that will be the focus of our construction of the spacetime Voronoi tessellations.

In addition, special relativity tells us that frames in Minkowski spacetime are physically

indistinguishable from one another. Therefore, any construction of a Voronoi tessellation in space-

time should also incorporate this observer independence, i.e. Lorentz invariance. This tells us

that for any two time-like separated events A and B that there exists at least one observer who

will observe A and B to be simultaneous. Likewise for two space-like separated events C and D

there will be an observer who observes C and D to occur with equal spatial separation from the

observer, i.e. occur at the same point but at different times. This property of flat spacetime should

be directly incorporated into a spacetime Voronoi tessellation so as to preserve Lorentz invariance.

We now define an algorithm to construct Voronoi cells for a spinkling of points on the

Minkowski plane. To simplify the exposition of this algorithm, we will only construct the Voronoi

cell for a single element pi ∈ P . One can then follow the algorithm for each element of P in-

dependently. We first incorporate Zeeman’s conception of the fine topology and ensure that our

definition respects the distinction between space-like and time-like separated points. To do so, we
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decompose P\pi into two disjoint sets1

Si[P ] = {pj ∈ P | ‖xi − xj‖ > 0}

Ti[P ] = {pj ∈ P | ‖xi − xj‖ < 0}
(4.8)

where Si contains the elements of P that are space-like separated from pi and Ti contains those that

are time-like separated from pi. However, this is not sufficient to define an observer-independent

Voronoi cell. Additional subsets are required to indicate events that are indistinguishable in either

a space-like or time-like sense, i.e.

S̃ij [P ] =
(

Si

⋂

Tj

)⋃

{pj}

T̃ij [P ] =
(

Ti

⋂

Sj

)⋃

{pj}.
(4.9)

The content of these sets is immediately clear e.g. S̃ij (T̃ij) contains all pk ∈ P which are space-

(time-)like separated from pi while also time-(space-)like separated from pj . We also add the point

pj for simplicity in the final definition of the Voronoi cell. These groupings of points allow us to

ensure that the Voronoi cell for pi will account for observers who see two time-(space-)like separated

events as simultaneous (spatially equidistant) since in the temporal (spatial) topology these two

events would be of equal time (equal distance and direction) from the observer passing through pi.

Recall that a requisite property of a Voronoi cell is that the cell be dependent upon the

geometric relationships between the elements of P . This was required so that one could readily

define half-surfaces that belong to one generator or another. However, due to the demarcation

of distances defined in Minkowski spacetime, two notions of half-planes, Hs(pi, pj) and Ht(pi, pj)

naturally arise;

Hs(pi, pj) = {x | ‖x− xi‖ < ‖x− xj‖}

Ht(pi, pj) = {x | ‖x− xi‖ > ‖x− xj‖}.
(4.10)

These half-planes distinguish the space-(time-) like boundary between pi and another time-(space-

)like separated element of P . It is possible to use a single half-plane definition by taking the

absolute-value of the invariant metric distance; however, distinguishing between space-like and

time-like half-planes provides more clarity in the final definition.

1We will explicitly disregard null separated elements of P as these produce degeneracies in the Delaunay Trian-

gulations. In such a case where two elements of P are null-separated, then a choice of off-set of one of the points

will break the degeneracy and the definition given here follows naturally.
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The Hausdorff conditions require that we piece together these half-planes in such a way

that the collection {V (pi)} forms a disjoint covering of M2. The subsets of P formed above provide

a framework for deciding how the half-planes are incorporated into the Voronoi cell. To see how

this is done, we look at the sets S̃ij and T̃ij . These sets define the class of pk ∈ P for which there is

a class of observers passing through pi containing observers who measure some pair of points in S̃ij

(T̃ij) to be spatially (temporally) equidistant from pi. In order to keep V (pi) observer-independent

the elements of S̃ij (T̃ij) must be treated equally. This forces us to not intersect their half-planes

with respect to pi but to create a union of half-planes to define a PL boundary. This provides a

path towards defining V (pi): combine half-planes for classes of points which are space-(time-)like

separated from pi but spatially (temporally) indistinguishable, but intersect distinguishable classes

of points;

VMink.(pi) ≡




⋂

pj∈Si




⋃

pk∈S̃ij

Hs(pi, pk)








⋂




⋂

pj∈Ti




⋃

pk∈T̃ij

Ht(pi, pk)







 . (4.11)

An example of the result of this definition is shown in Figure 4.3. Two features are directly apparent

from the above definition: (1) the Euclidean definition of the Voronoi cell is obtained through the

standard Wick rotation of all temporal axes to spatial axes and (2) the Minkowski Voronoi cells

can in general no longer be defined as convex domains but will take on the more general geometric

form of star domains. To see (1) we simply examine the effect of Wick rotation on V (pi). When

the temporal axes are rotated to real spatial axes, there is no longer the clear distinction between

time-like and space-like distances. This removes all elements of P from Ti[P ] and creates the

equivalence Si[P ] = P\pi. Moreover, since no two elements in the Wick rotated set are time-like

separated we obtain the condition S̃ij = {pj} leaving the union over a single half-space. Hence,

under Wick rotation of Eq. (4.11) one recovers the standard planar Euclidean Voronoi definition:

VEuclid.(pi) =
⋂

pj∈P

Hs(pi, pj) (4.12)

To understand the origin of (2) it is useful to remark on some properties of convex sets–a more

complete accounting of the properties of the open sets discussed here can be found in Appendix A.

First, we shall state the obvious: a half-plane in the Minkowski or Euclidean plane defines an

infinite convex set. Second, the intersection of convex sets is again a convex set. In the planar

Euclidean Voronoi polygon, since only intersections of half-planes are taken, the only result allowed
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is a convex set surrounding the generator of the polygon. However, the planar Minkowski Voronoi

cells incorporate unions of half-planes which in general allow for infinite star domains with a convex

kernel defined by the intersection of the half-planes. How are we guaranteed that the intersection

of star domains are again star-shaped? In general, this is not true; however, when the kernels

of the intersecting star domains overlap, then there exists a linear relation in the intersected set

between a point in the intersection of the kernels to any point in the intersected star domain, i.e.

there exists a kernel to the intersection of star domains defined by the intersection of the kernels.

Since the kernel of each individual star domain is given by the intersection of the half-planes with

respect to pi, we ensure that the kernels overlap by at least one point, pi. This implies that our

Voronoi cells in the Minkowski plane will give star domains in the most general cases. This is a

vital property since conservation principles, e.g. the contracted Bianchi identity and conservation

of stress-energy, rely on the existence of exact, closed forms. When star-domains are the most

general type of domain in the topology we are guaranteed that all closed forms are exact via the

Poincaré lemma.87 Thus we preserve the existence of our invariance principles.

Figure 4.3: Planar Minkowski Voronoi Diagrams: An example of the planar Minkowski Voronoi
diagrams is presented above. We conjecture that this new definitions exhibit exactly the correct
properties expected of a Voronoi diagram. While an exact correspondence with the usually cited
meaning of a Voronoi diagram–the region closest to any pi ∈ P than any other point in P– is
lost, there remains a strong correlation between distance and the resultant Voronoi cell for pi. We
note that convexity of Voronoi cells is lost and replaced by the generalization to star domains.
This retains the vital geometric properties necessary for the definition of physical observables and
conservation properties.

We leave this definition at the stage of a conjecture for the time being. It should be proven

that for a distribution of points lying in general position that this definition of the Voronoi cell to

a vertex will produce a Hausdorff covering of the manifold; however, there are unique problems
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to providing such a proof in manifolds with non-positive definite metrics. One can construct a

series of computational examples to convince one’s self of these results for arbitrarily many and

randomly distributed elements of P . Instead, we will comment on extending this work to higher

dimension and curved geometries. The above construction has been explicitly carried out in the

Minkowski plane, M2; however, it was constructed in such a way that it could readily be extended

to higher dimensions. In the above construction we only rely on two properties of flat spacetime:

(1) there exists a well-defined light-cone structure separating space-like and time-like events at

every point and (2) distances are defined by the invariant measure using the Minkowski metric,

ηµν = diag(−,+, . . . ,+). In principle one could apply Eqs. (4.8 - 4.11) directly to Mn and still

preserve all of the properties described above. This, however, has not been directly tested and

requires a full proof for the Minkowski plane prior to further application to higher dimensions. The

extension of this algorithm to arbitrary Lorentzian geometries and causal structure is a topic for

future work which we only mention as a possibility in this thesis.

4.2 Flow of Fields and Matter in the Discrete Lattice

The contracted Bianchi identity not only identified the circumcentric (Voronoi) dual lattice

as the topological structure of RC, but it also illuminated how stress-energy should be embedded

on the lattice. We now take the insight gained from the conservation of source and apply it

directly to the discrete stress-energy tensor. Just as in the continuum, one should hope to identify

an underlying prescription for embedding a continuous field into spacetime and obtaining a stress-

energy tensor for it. In the classical theory, the components of the stress-energy tensor identify how

a given component of the 4-momentum flows through a surface of constant xµ, i.e. T µν provides

the flux of pµ through a surface of constant xν .69 In RC, there is a well-defined set of surfaces

bounding the dual 4-volume to a vertex through which one can identify the flux of 4-momentum.

As such there are four components of stress-energy per edge of the Regge lattice which identify the

flux of the 4-momentum through the dual L∗ to the edge, L. The stress-energy is thus projected

along the edge to which the stress-energy tensor is associated.

If a fundamental theory of nature is our goal, then an action principle is the most readily

identified path from particle dynamics to stress-energy. Indeed, we already have a well-defined

notion of an action principle for RC and it is fitting that we start with an action principle for the

matter in RC as well. The mapping from the action principle for the matter to the stress-energy
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is obtained in classical GR by varying the Lagrangian density with respect to the metric

T µν = (−g)− 1
2
δLfield

δgµν

(4.13)

or via variation with respect to the tetrad. This definition provides a clear and meaningful corre-

spondence between the dynamics of particles and fields and the the flow of stress-energy, particularly

when one adapts the view of the action defining the virtual paths of particles and fields in spacetime.

If we assign such meaning to the action, the Lagrangian density defines the local flow of the field

in a infinitesimal region of spacetime. Varying this with respect to the metric then tells us how

each component of the of momentum flows through the boundary of the local domain. In RC, the

variation is taken with respect to the edge lengths instead of the metric and so we obtain a direct

association between the action for a field and the stress-energy on the lattice;

TLLV
∗
L =

δIfield

δL
. (4.14)

This recovers the notion of an integrated measure of the flux of the components of the 4-momentum

through L∗. There is a clear direct correspondence between the stress-energy in the continuum and

the discrete stress-energy. We do not restrict the components of the stress-energy to surfaces of

constant xν since the 3-volumes dual to L provide a natural 3-volume over which one defines flux.

We thus have a notion of the stress-energy in RC.

Does this also provide guidance for the construction of an action principle for arbitrary

fields? Yes, it automatically instructs one how to go from definition of field to action principle to

stress-energy associated with an edge. However, we will follow the opposite direction since we so

far only know the structure of stress-energy in RC. It is already clear how energy-momentum is

embedded on the lattice and it is only required that a scalar action be constructed so as to mimic

the flow of the field and particles on the lattice.

Since Ifield is defined as a Lorentz scalar without any a priori reference to the discrete struc-

ture, any well-defined scalar action would produce a stress-energy tensor that is doubly-projected

along the edge, L. However, we have outlined some additional considerations that will aide in

understanding the action in RC. We identify that the discrete structure, either the simplicial or

the dual, should define the pathways for fields and particles. However, the previous results have

identified that the energy-momentum associated with a field flows along the simplicial 1-skeleton.

Given this view of stress-energy, one should hope that the action, as the definer of virtual paths
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of fields, should mimic the natural flow of the stress-energy of the field. How can one define the

action so as to best mimic the flux of energy momentum through the dual lattice? Embed the field

variables such that they are in 1-1 correspondence with the geometric structure of the simplicial

lattice, e.g. d-forms get mapped to d-simplexes. This ensures that the fields are defined only on the

simplicial skeleton such that the corresponding flux is directed on boundaries of simplexes alone.

Once the identification of the mathematical correspondence between the field structure and the

spacetime lattice is made, an assignment of a tangent space to the fields must be decided upon.

It is a natural option to associate fields directly to the simplexes as these automatically define

unambiguous tangent spaces. However, the interior of simplexes are a priori defined to have the

geometry of flat Minkowski spacetime–a vacuum solution to Einstein’s equation. And as Wheeler

once wrote

...that geometry cannot be a God-given perfection standing on high above the battles

of matter and energy. It is instead a participant, an actor, an object on equal terms

with the other fields of physics...Geometry can’t be part of physics in some regions and

not a part of physics in others.7

Here we have defined such a region; however, the flat subspaces of the Regge lattice are still in

full compliance with the dynamics of curvature coupled to matter and field when non-gravitational

sources are relegated to the boundaries of the simplexes. Rather than allowing geometry to not be

a part of physics on the interior of simplexes, we shift the dynamics from the interior of simplexes

to their boundaries. This automatically allows us to define a natural flow of field strength on the

simplicial lattice. Moreover, this is in direct agreement with the identification of the dual lattice

as the topology of matter in RC. By assigning the topology of fields to be the Voronoi cells, they

become naturally defined at the vertexes of the simplicial lattie. This automatically allows for the

identification of flux through the boundary of the circumcentric dual cell by describing the flow of

field strength along the simplicial 1-skeleton.

Given this discussion we define a procedure for describing discrete stress-energy in RC:

1. Map field variables to the geometric variables of the simplicial lattice: Taking the mathe-

matical structure of the field in the continuum, one should make the correspondence to the

exterior calculus structure of the Regge lattice, e.g. d-forms get mapped to d-simplexes. For

fields not defined via tensors, e.g. spinor fields, one need only map the simplicial geometric

variables into the representation of the field variables, see §4.2.1.
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2. Assign field strengths to vertexes: The natural domain of conservation of source is the cir-

cumcentric (Voronoi) dual to a vertex. We therefore assign field strengths and coupling of

fields over the dual volume which naturally assigns the field strengths to vertexes, i.e. the

“center” of the volume.

3. Flow of stress-energy is directed on edges: The Kirchhoff-like conservation principle provides

an explicit representation of the flow of the field energy-momentum through the boundary

of the Voronoi cell for a vertex. The kinetic contribution to the action is thus defined as a

finite-differencing of field strengths at adjoined vertexes.

These steps ensure that stress-energy are coupled to source so as to automatically ensure conserva-

tion while also providing direct correspondence between flow of energy-momentum and the virtual

paths of fields defined in the action principle. The outline above is sufficiently general so as to

apply to any field (e.g. scalar, vector, or spinor) and directly matches the scalar action defined

by Hamber and Williams.82 We show how this prescription for the stress-energy can be applied

to a field with non-trivial embedding into the discrete spacetime. It serves as an example of the

methodology and a first step towards describing fundamental fields in RC.

4.2.1 The Dirac Lagrangian

With regard to our current understanding of observable physical interactions, it is hard to

overstate the importance of fermionic fields (defined via Dirac spinors) in the universe. Of all the

known fundamental particles, fermions describe the majority of constituents of the ordinary matter

content of the universe. It is therefore necessary to prescribe exactly how fermions are embedded

into RC. This provides a unique challenge for describing stress-energy in the lattice since fermion

states are described by spinor representations of the double covering of the Lorentz group. Hence

we are required to map the edges, i.e. representations of the Lorentz group, to spinor states. By

providing a description of fermions in the lattice we are able to provide a non-trivial example of

the prescription given in the previous section.

A consistent mapping from the simplicial representation of the Lorentz group to its double

covering, SL(2,C), the spacetime must admit a spin structure, i.e. an orthonormal vielbein, or

tetrad in 4-dimensions, at every point. Moreover, a consistent mapping requires that there be a

continuous mapping from an oriented vielbein defined on one tangent space to the oriented vielbein

on another tangent space. This requires that the spacetime be orientable88 such that vielbeins can

be mapped into one another and still preserve the orientation of the volume form for each vielbein.
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For the purposes of this thesis we will map fermions only onto completely oriented simplicial lattices,

i.e. mappings from one simplex to another preserve orientation.

Since each simplex is a priori a subspace of flat Minkowski spacetime, it is guaranteed that

each simplex automatically permits a well-defined orthonormal frame on its interior. Moreover, we

assume that the lattice is oriented such that there is a consistent mapping of a tetrad in one simplex

to the tetrad in another simplex. RC therefore inherently admits a spin structure inside of each

simplex and a consistent spin structure over the lattice as a whole. However, our prescription above

requires the field be defined at the vertex where there is not an unambiguous choice in defining

a tangent space and hence an orthonormal frame. In this subsection we will examine the use of

vertex-based tetrads in the definition of spinor structure and how these can be used to construct a

vertex-based action for fermionic matter. This will provide an action which is internally consistent

and a more direct match with the underlying assumptions in RC.

Understanding the fermion action first requires an understanding of how spin- 1
2 represen-

tations of the double covering of SO(3, 1) can be represented via the spacetime lattice. To create a

concrete geometric picture we will frame the issue in the context of the Penrose spin-flag formalism89

then transition to arbitrary orthonormal and null frames. The Penrose spin-flag representation of

a 2-component spinor is based first and foremost on the identification of a null vector, la, with

a basis spinor, ξA, where lower-case latin letters represent abstract spacetime indices, upper-case

latin letter represent spin indices in the representation of SL(2,C) and dotted upper-case latin

letters indicate indices in the adjoint represenation of SL(2,C). If one first maps the null vector

into representation of SL(2,C) through the mapping:

lAḂ := la · σAḂ
a =




ct+ z x− iy

x+ iy ct− z



 (4.15)

where σ0 = I and ~σ are the Pauli matrices, then we make a correspondence between ξA and la;

lAB = ξAξ̄Ḃ. (4.16)

Under the standard inner-product of spinors using the anti-symmetric tensor as the metric, ǫABξ
AξB =

0 one sees immediately that this definition is consistent with the interpretation of la as a null vector.

However, we cannot identify ξA uniquely via this relation as the relative phase factor, ξ̃A = eiφξA,

leaves la unchanged. This implies that we need to define an additional set of conditions to pin down

the exact phase for ξA. Penrose’s solution to this is to introduce a unit spacelike-vector orthogonal
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to la which can be defined in terms to ξA and an additional basis spinor ηA:

yAḂ := yaσAḂ
a = ξAη̄Ḃ + ηAξ̄Ḃ. (4.17)

Viewing the set {ξA, ηA} as a basis in spin space we assign the standard normalization conditions:

ǫABη
AηB = 0 = ǫABξ

AξB (4.18)

ǫABη
AξB = 1 = −ǫABξ

AηB . (4.19)

With the addition of this new space-like vector we are able to define a spin basis complete with

appropriate phase. However, ηA is not a unique basis vector mate to our originally defined ξA since

an addition of a linear factor in ξA will still satisfy the normalization conditions above. However,

we need only pick one such space-like vector which is orthonormal to la to define a spinor mate

to ξA to complete the spin basis. We therefore find, a class of spin bases defined by a single null

vector and a collection of orthonormal space-like vectors. This collection of space-like vectors define

a ”flag” orthogonal to the null vector–the flag-pole–to create the spin-flag representation.69;89 This

provides us with a geometric picture of a spin basis in terms of a bivector, F ab = layb − yalb,

defined by the flag-pole and spin-flag. This is a natural geometric picture to use in RC, as has been

illustrated in the example of Null-Strut Calculus,90 since we can make a direct analogy between

the spin-flag bivectors and the hinges of 4-dimensional RC. However, it is not always the case that

we will have a null edge in every simplex in the spacetime lattice and so we require a more general

framework for the inclusion of spin structure in RC.

To generalize the spin-flag representation we will rely on the more familiar representation

of an orthonormal frame in terms of a spin basis. The procedure for obtaining a spin basis follows

the above geometric picture, except one now defines an orthonormal frame and inverts the frame

to obtain basis spinors. We use null tetrads consisting of two real null vectors, la and ka, and two

complex null vectors which are conjugate to one another, ma and ma to provide the most clear

connection between the tetrad and the spin basis. These vectors are designed such that the only

non-vanishing inner-products are

−laka = 1 = mama. (4.20)

Moreover, since these vectors are null, we can define simple relations between the tetrad and a spin

79



Chapter 4: Matter in Simplicial Spacetimes

basis:

lAḂ = ξAξ
Ḃ

kAḂ = ηAηḂ (4.21)

mAḂ = ξAηḂ

Yet we are only concerned with this null frame if it can be defined in the lattice. For the more

general case, we can build linear combinations of the null frame to link the spin basis to the simplex-

defined orthonormal tetrad. In the case of a simplex with a well-defined time-like vector and three

space-like vectors the linear mapping from null tetrad to standard orthonormal tetrad is given by;

ta =
1√
2

(la − ka)

xa =
1√
2

(la + ka)

ya =
1√
2

(ma +ma)

za =
i√
2

(ma −ma)

(4.22)

otherwise one must develop additional linear combinations to provide a direct link between the

edges and a spin basis. In principle, these are well-defined and only require some basic spinor

algebra and solving a linear system of equations mapping the tetrad to the spin basis.

The question remains how do we define a tetrad in the simplicial lattice at a vertex?

The argument made previously81 was that the vertex based definition of spinors provides undue

ambiguity in the definition of the tangent space and so the spin structure was argued to be naturally

located at the circumcenter of the simplexes. The underlying issue is whether one can consistently

define a tetrad for each term of the Lorentz invariant scalar action. How does one choose between

such tangent spaces and what is the mapping between two tangent spaces at a given vertex?

To choose a tetrad we examine the general form of the action and each of the terms included

therein. We have seen from Eq. (4.1) that the general form of the action contains two distinct

parts: (1) edge-based kinetic terms and (2) vertex-based interaction/mass terms. Therefore, our

main focus should be on the writing of spinors such that finite-differencing can be well-defined for

the field at adjacent vertexes. All vertex-based terms in the action are scalar invariants and require

only one to have a clear connection between distinct spin frames at a vertex. However, the edge-

based kinetic terms require a common tangent space for the two spinors being differenced. Again,
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we have a number of options for choice in tetrad which are common to the edge containing the

two vertexes as endpoints. One need only choose one such tetrad to perform the finite-differencing

and construct the scalar invariant for the field at the two adjacent vertexes. Moreover, the terms

in the action corresponding to vertex based quantities, such as mass or interaction terms, require

only that the tangent space chosen matches a simplex containing the vertex.

While the choices in tetrad are not unique, we expect there to be well-defined transfor-

mations between one choice and another if the action is truly to be a Lorentz scalar. This topic

has already been broached in the framework of geodesic deviation91;92 which is mainly concerned

with mapping vectors from one tangent space to another. In 2-dimensions the result obtained is

that two initially parallal vectors propagating on either side of a hinge will be seen to converge

with an angle of convergence equal to the deficit angle of that hinge. ǫh. However, for a single

vector, or spinor, being transformed from one tangent space to another there is no net rotation as

rotations only occur when the vector, tensor, or spinor traverses the conic singularity. To rotate a

spinor from one simplex at the vertex to another simplex hinging on the same vertex, one need only

transform from one tetrad to the other via a coordinate transformation. These transformations

are by definition transformations of basis on the vector space and hence leave the scalar action

invariant. These transformations encode the information on how the vector space in one simplex is

transformed into the vector space at the neighboring simplex, thus providing essentially the same

content as the spin connection in continuum curved geometries.

With the construction of basis spinors defined, we construct the Dirac spinors and the

resulting action. The Dirac spinors are defined in the Hilbert space of the direct sum of two

irreducible representations of SL(2,C) with bases given by {ξA, ηA} and {ξA
, ηA}. The Dirac

spinors are the well-known four component spinors given;

ψ =
(

αξA + βηB
)

⊕
(

δξ
Ȧ

+ γηḂ

)

. (4.23)

We now assign the Dirac action via the method obtained in §4.2;

I
[
ψ, ψ

]
=

∑

L

i

(

ψv|
L−
γa

L

ψv|
L+

− ψv|
L−

La
+ c.c.

)

−
∑

v

mψvψv. (4.24)

where L is the oriented edge and the vertexes, v|L+ and v|L− , are the vertexes at the endpoints of

L. This action, while a straight-forward embedding into the Regge lattice, provides a vertex-based

action which is consistent with the conservation of source and the resulting topology. Moreover, it is
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also consistent with the general construction of RC in defining building blocks which are untouched

subspaces of Minkowski spacetime. Moreover, each term in this action provides a scalar invariant

which requires that we need only ensure that there be a consistent tangent space for each term.

This provides the internally consistent Dirac action for RC which requires no references to masses

or field on the interior or any simplex. Fields are relegated to the boundary and we obtain the

requisite flow of field strength along the egdes of the simplicial lattice.

4.3 The Lattice Defines the Paths of Particles and Fields

Automatic conservation of source provides a natural guide for understanding how stress-

energy is embedded into the simplicial lattice of RC while making use of the geometric content of

the lattice. This suggested that the natural topology of RC is not the simplicial complex but the

circumcentric dual. However, we found that the circumcentric dual does not ordinarily produce a

Hausdorff topology for the PL-manifold that is consistent with conservation of source. There are,

however, a category of triangulations which always induce a Hausdorff dual topology–the Delaunay

triangulations.

In response to this observation, we define the Voronoi tessellation in Minkowski spacetime

from first principles which focuses directly on the light-cone structure of spacetime. The spacetime

Voronoi tessellations preserve the portable characteristics of the Voronoi tessellations as defined

in Euclidean geometry. However, the resultant Voronoi cells are found to produce regions which

are no longer convex but retain the necessary features required for conservation principles, i.e. the

domains are still star domains.

Given the Voronoi topology for a spinkling of points, we are able to embed the stress-energy

in a consistent fashion so as to preserve the Kirchhoff-like conservation law that results from the

contracted Bianchi identity. This has provided a direct description of the paths of particles and fields

in terms of the edges of the lattice. This prescription allows us to take an arbitrary field defined in

the continuum and embed it, using the geometric variables of the lattice, into the simplicial lattice.

The picture obtained is the flux of field strength, i.e. particles, along edges of the spacetime lattice

as defined directly into the action for the field. Since there is no explicit reference to anything

other than the simplicial structure, this prescription is sufficiently general for application to both

RC and simplicial representations of quantum gravity, e.g. spin foams and GFT.

This methodology has been applied to Dirac particles such that the fields are consistent

with the vertex-based topology and conservation of source. Moreover, we have addressed some

82



Chapter 4: Matter in Simplicial Spacetimes

of the underlying issues of assigning tetrads to vertexes in the action principle. It is found that

there is no internal inconsistency by defining tetrads at the vertex. We thus have a description

of Dirac fermions in terms of the simplicial lattice. However, it is still necessary to carry this

prescription forward to gauge fields in order to create a consistent picture for the Dirac field

coupled to electromagnetism.

In the coming chapter, we will illuminate a picture of RC in light of the results of this

chapter as a realization of the goal of a matter-dependent description of RC. We believe this

will shed more light on the approximate diffeomorphism invariance described by the Kirchhoff-like

conservation law and the issue of Lorentz invariance of discrete spacetimes. We believe that the

lessons learned from the incorporation of matter illuminate the role of matter in understanding

these approximate symmetries in discrete dynamical spacetimes.
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Regge Calculus as the Paths of Fields and Particles

But since the positions in space of the

material parts [of the universe] can be

recognized only by their states, we can also

say that all the states of the material

universe depend upon one another.93

–Ernst Mach

We have argued that discrete spacetimes provide a compelling description of classical and

quantum theories of gravity. In many models of quantum gravity the simplicial lattice serves not

as a direct, ontological geometric object but bridge between quantum gravity and the geometry of

spacetime. However, it has not been clear how the Geometrodynamic Steering Principle and the

determiners of inertia are manifest in suchdiscrete theories of spacetime. The work in this thesis

has attempted to bring the dynamics of the material and measurable universe to these models

by investigating the structures amenable to the inclusion of source in discrete spacetimes. While

the results of Chapters 3 & 4 are sufficiently general to be applicable to many different models of

discrete spacetimes, one could argue that it is in the connection with source in which RC can become

elevated to a complete dynamical picture of spacetime. We have seen how the edges are natural

descriptions for the flow of energy-momentum in the lattice and how vertexes become the foci for

interactions between fields. We now wish to examine the insight gained from this understanding

of matter in the lattice for the symmetry properties of discrete spacetimes.

It is still not well understood to what extent classical symmetries can be incorporated

into the discrete spacetime or how this affects the constraint algebra for the evolution of (3+1)-

dimensional formulations of discrete gravity. Can the association of particle dynamics with the

simplicial lattice shed light on these open issues? If we are to accept the approximate conservation

laws or open constraint algebras inherent to RC, then how are we to reconcile this with a classical

theory that exhibits exact symmetries and a well-defined constraint algebra?
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5.1 Towards an Understanding of Diffeomorphism and Local Lorentz Invariance in

Discrete Spacetimes

Through the CBI, the manifestation of diffeomorphism invariance in GR, we obtain an

approximate symmetry in RC due to non-commutativity of finite rotations. Since any discrete

spacetime is necessarily a theory of finite rotations, the lack of an exact identity should be expected

to be a generic feature of any such theory. However, the exactness of the diffeomorphism invariance

has been the subject of much debate. There have been efforts to identify variations of the Regge

action with respect to vertexes which leave the action invariant;94 however, these too have produced

inexact symmetries in the Regge action. The question remains whether or not exact diffeomorphism

invariance need be a property of the discrete spacetime or whether a discrete theory can incorporate

such an exact symmetry? We do not believe this to be so nor do we expect that this is ordinarily

possible for a given discretization.

Similarly, it has been a topic of debate about whether or not an imposed or derived minimum

length scale inherent in discrete spacetimes breaks local Lorentz invariance( LLI).55;95;96 In favor of

preserving LLI, it is argued that discrete structures in a Lorentzian spacetime require an inherent

randomness in the underlying structure of the spacetime so as to not choose any preferred reference

frame. This is the argument placed in favor Causal Sets since the embedding of the causet into a

spacetime manifold is done via a Poisson sprinkling which preserves the Lorentz symmetry.55 RC, on

the otherhand, cannot, in general, be said to be a “sprinkling” of vertexes via some random process

which can preserve LLI. Yet, the Regge lattice provides only one discretization of a spacetime to

which there may be many triangulations with the same coarse-grained limit. So again we have

a question on the meaning of a fundamental symmetry of spacetime and its manifestation in a

discrete theory.

These two issues represent a core question about the underlying structure of spacetime: if

a discrete structure is more fundamental than our classical notion of spacetime, should we expect

exact infinitesimal invariances? If not, how are these recovered in the classical limit? The one

statement that comes to mind on the question of diffeomorphism invariance is Wheeler’s adage,

“A Ford fender is still a Ford fender no matter how one paints coordinate lines on it.” In terms

of RC, this says that a simplicial representation is just one of many discretizations that result

in the same continuum limit. Although Regge’s original manuscript on RC was titled “General

Relativity Without Coordinates,” a chosen discretization with all edge lengths fixed represents a

choice of the “painting of coordinate lines” on the spacetime. By choosing a given simplicial lattice
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a partial gauge-fixing on the spacetime is already defined. But how does one make physical sense of

choosing one lattice over another to make this partial gauge-fixing? How can we make sense of this

choice of partially breaking the diffeomorphism invariance–evident by the approximate symmetry

that remains?

One possibility worth exploring is to acknowledge that when we select a particular trian-

gulation of the spacetime there are many “essentially equivalent” triangulations. But what can be

used to select one triangulation over another? This is where the main thrust of this thesis comes

into play. The idea proposed before4 and being pushed forward again here is that the motion of

particles allows us to associate a given triangulation to which some of the edges of the simplicial

lattice follow the world-lines of the interacting particles. We know from the “Hole Argument” that

the inclusion of additional information about the interaction of non-gravitational fields or gravita-

tional waves, on an otherwise diffeomorphically invariant spacetime, will identify spacetime points

which are completely distinguishable from one another. This reduces the diffeomorphism symmetry

and restricts the allowable transformation under which the full action is invariant. Moreover, the

motions of the interacting particles or fields select preferred frames of reference, given by the simpli-

cial building blocks with their minimum length scales, out from the sea of possible reference frames

(triangulations). This manifests itself in RC through the approximate Kirchhoff-like conservation

principle in which the finite rotations (LLI breaking) produce non-vanishing commutation relations

between rotations and a partial breaking of diffeomorphism invariance for the given triangulation.

Therefore, it appears that in order to fully investigate the issue of exact symmetry properties

in RC one must be able to explore the space of triangulations that give the same approximate

smooth manifold in an appropriate coarse-grained limit. A single triangulation of the spacetime

cannot provide the necessary framework to study exact symmetries since a partial gauge-fixing and

preferred path of particles is already selected out from the space of all possible paths of particles.

This is not altogether inconsistent with our continuum notions of symmetries and it would be

worthwhile to investigate the meaning of these partial symmetries more fully. However, to do

so would require a far better understanding of what it means to construct a complete class of

“equivalent” triangulations, something that is not well understood at this time and is a subject of

future research.
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5.2 Constraint Algebras in Discrete Theories

A related question to the invariance principles described above is whether or not one can

define a full constraint algebra in a canonical formulation of discrete theories.97 However, the

constraint algebra is directly related to the existence of exact symmetries in the dynamical system.

The principle here is that in GR the diffeomorphism invariance imposes four constraints on the

dynamical evolution, the Hamiltonian constraint and the Diffeomorphism constraints on the spatial

slices. When the exact symmetries hold, the constraints form a constraint algebra98 that constrains

the dynamical evolution such that the invariance properties hold on all future slices.

In the discrete theory, the constraints are not ordinarily exact, but we do have a sense of

approximate constraints which on the limit of small edge lengths provide the corresponding contin-

uum limit. Gambini and Pullin have provided an alternative way to look at these discretizations

in an effort to develop a “consistent discretizations” technique for classical and quantum gravity.99

In this procedure, one treats the choice in the lapse and shift for (3+1)-dimensional spacetimes as

a variables in the discrete theory and not as freely specifiable. This gives the theory new degrees

of freedom not present in the continuum theory. The variables are then solved with the full set of

equations of the theory. This amounts to giving the discretization more freedom to consistently

discretize the theory. The collection of solutions to these equations for a given set of boundary

conditions and sources then form the set of allowable discretizations of the theory. In RC, we

see this manifest in the lack of exact conservation equations tantamount to a “smearing” of the

constraints.

The constraint algebra is an issue directly related to the canonical (3+1)-dimensional for-

mulation of GR, but the underlying issues are the same. Any given discretization of the spacetime

will be a partial gauge-fixing of the spacetime which produces an incomplete constraint algebra.

This is directly analogous to the partial-gauge fixing in the full 4-dimensional discrete theory in

which the invariance properties become “fuzzy” symmetries on the individual spacetime lattice.

The issue of why these approximate identities appear readily in the canonical formulation is ex-

plicit in how the freedom of lapse and shift is removed and one must now solve for both lapse and

shift. In “consistent discretizations” these “coordinization choices” must now be satisfied in solving

for the dynamics of the theory.
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Chapter 5: Regge Calculus as the Paths of Fields and Particles

5.3 A View of Regge Calculus For Quantum Gravity

We have argued that a discrete spacetime must necessarily select choices of the gauge free-

dom to fit with a consistent discrete evolution that best preserves the constraints. We propose that

this makes sense from a physical level if the theory selects out paths for the source of the spacetime

curvature. The spacetime is partially gauge-fixed by the fields that determine the geometry of the

spacetime. The edges then become defined by the inertial motion of particles as they propagate

freely between interactions with other non-gravitational fields and particles. Indeed, one might say

that the degrees of freedom of the gravitational field are expanded only to then be forced to satisfy

the motion of particles of fields in the lattice. With this dynamics, the particles and fields select a

discretization that corresponds to their paths in the spacetime. This elevates the discretization to

an ontological existence out of the Hilbert space of triangulations.

However, not every edge in the triangulation need correspond exactly to the motion of

particles in the material universe. If we are to only allow the paths and interactions of particles to

define the simplicial structure, then we will, in general, not obtain a triangulation. Indeed we must

allow for additional edges to exist in the triangulation. These additional edges serve to rigidify and

completely determine the conformal geometry, much in the way that the causet structure requires

the addition of beams and struts to the predefined ordering of events to connect back to geometry.19

It seems likely that the natural role of RC in quantum gravity is through defining the relational

ordering of events between particles. We allow the time-ordering of events in the histories of the

particles to construct the partial ordered structure; however, a more rigid local structure–the light

cone structure– must be constructed in order to define the local conformal geometry. Moreover,

the local dynamics of the non-gravitational fields also allows for the definition of the conformal

scale–the missing information given only a partial ordering– thus, the entire local geometry can be

reconstructed from the assignment of particle paths to the simplicial lattice.

With this we can begin to make sense of the approximate nature of the symmetries of dis-

crete formulations of spacetime. We have a correspondence between the selected discrete geometry

and the dynamics of source to the geometry. This provides a selection rule for connectivities in

the simplicial lattice and solutions to the Regge equations determine the entire geometry given the

already defined incidence matrix. For this reason, one can say that RC may provide a natural and

consistent prescription for quantum gravity coupled to source, and that RC acts as the definer of

virtual paths of particles and fields in an emergent spacetime.
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Appendix A

Convex and Star Domains and their Properties

There are two categories of domains or sets that are important for our study of Voronoi

tessellations in Euclidean and Minkowksi geometries. We will explore their generic properties and

outline the basic facts related to the use of Voronoi tessellations as topologies for spacetime.

A.1 Convex Domains

A convex set or a convex domain, C is a collection of elements of a vector space, V, such

that for any two elements a, b ∈ C then for t ∈ [0, 1],

(1 − t)a+ tb ∈ C. (A.1)

In Euclidean Voronoi tessellations, the Voronoi cells are always guaranteed to be convex polygons,

i.e. convex domains with PL boundaries.43;100 From a geometric point of view, this says that a

convex set in a flat geometry–Euclidean or Minkowski–is one such that the line segment connecting

any two points in the set is also entirely contained in the set. It is clear from this definition that the

intersection of convex sets is again convex. To prove this, one need only prove it for two intersecting

convex sets and the generalization follows directly. Suppose we have two convex sets A and B in

the vector space V. Moreover, let the two points x and y exist in both A and B. By definition,

the line segment connecting x and y exists entirely in both A and B; therefore, the line segment is

also in the intersection A
⋂
B.

Half-spaces are also convex sets. This is clear since the half-space has only one linear

boundary, the boundary of the hyperplane, any points in the half-space are connected by a line

segment which at most lies on the hyperplane (which occurs only for points also on the hyperplane).

Therefore, the intersection of half-spaces is also a convex set by the above theorem.

The framework of convex domains can be easily extended to arbitrary geometries by con-

sidering geodesics between two points rather than straight line-segments. Such convex sets are said

to be geodesically convex. Here the boundaries of the geodesically convex domain are also geodesics

of the non-Euclidean geometry.
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Appendix A: Convex and Star Domains and their Properties

A.2 Star Domains

An extension of convex domains are star domains or star-convex sets. A star domain,43 S,

in a vector space V is one containing at least one x0 ∈ S such that

(1 − t)x0 + tx ∈ V, ∀x ∈ S & ∀t ∈ [0, 1]. (A.2)

In the context of the Voronoi diagrams, the Minkowski Voronoi cells will be star polytopes, i.e.

star domains with PL boundaries.100 The collection of all x0 ∈ S for which Eq. (A.2) remains true

is the kernel of the star domain. The kernel of a star domain can be constructed by identifying

the interior of each linear edge (containing the region of S local to the edge) of the boundary of

the domain a segment of a half-space. By considering the full half-space defined by a edge of the

boundary, the kernel of the star domain can be seen to be the intersection of all such half-spaces.

Via this construction, the kernel of a star domain creates a convex subset of the star domain. It

is therefore clear that a convex domain is also a star domain whose kernel is the entire convex

domain.

Unlike convex sets, the intersection or union or star domains does not ordinarily produce

another star domain. This is clear since the intersection of two star domains which overlap in

two disjoint neighborhoods not in the kernel of either domain will produce a domain which is not

connected. Hence, there can be no element of this intersection that can be linearly connected to

each point in the domain. This would produce a disjoint domain which clearly cannot be a star

domain. Similarly for unions if we consider two disjoint star domains. However, for any two star

domains, A and B, whose kernels overlap by at least one point x0 ∈ A,B, then A
⋂
B is also a

star domain. This proof of this is evident: since x0 is in the kernel of both A and B then for all

y ∈ A
⋂
B the segment (1 − t)x0 + ty ∈ A

⋂
B for all t in the unit interval since this line segment

entirely exists in both A and B.

As with convex sets, star domains are easily generalized to curved geometries by substituting

the line segment (1− t)x0 + tx by the geodesic connecting x0 and any y in the domain. In addition,

all properties of the star domains regarding unions and intersections automatically carry over to the

generalizations to curved geometries. Moreover, the kernel to a star domain in a curved geometry

remains a geodesically convex set.

The physical importance of star domains comes about in the proof of the Poincaré lemma:

for a star-shaped region U , a p-form on U is closed if and only if it is exact.88 This lemma is often
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stated for contractible domains as well, though this generalization of the star domain that is not

necessary in this context. It is sufficient, then, to say that if we have a star domain then the Poincaré

lemma holds exactly. This is essential for our models of spacetime since our conservation principles,

such as conservation of stress-energy, rely on the exactness of closed forms, i.e. dβ = ddα = 0.
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