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1 Introduction

There are two distinct ways of introducing CP violation (CPV) in unified gauge theories,

namely, breaking CP at the Lagrangian level or breaking it spontaneously. At present,

there is clear evidence that the CKM matrix is complex [1], even if one allows [2] for the

presence of New Physics beyond the Standard Model (SM). Therefore, in viable models of

spontaneous CPV the vacuum phase(s) have to be capable of generating a complex CKM

matrix. There are models which fulfill this requirement, the simplest ones [3, 4] involve the

introduction of at least one vector-like quark.

The idea of spontaneous CP violation was originally suggested by T. D. Lee in the

framework of a two-Higgs-doublets model (2HDM) [5], with no extra symmetry intro-

duced in the Lagrangian, apart from the gauge symmetry. This original model has the

disadvantage of leading to too large scalar mediated Flavour-Changing-Neutral-Currents

(FCNC). Large FCNC can be naturally eliminated by imposing natural flavour conser-

vation (NFC) [6, 7], but, with two Higgs doublets, one then loses the possibility of CP

violation in the scalar sector. It was later pointed out that, within the three-Higgs-doublet

model (3HDM), NFC is compatible with CP violation in the Higgs sector, either explicit [8]
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or spontaneous [9, 10]. A short review of the early results can be found in [11], for a more

in-depth treatment of CP violation in multi-Higgs models see [12].

Already these first examples hint at an intriguing interplay between a horizontal sym-

metry group G and the two forms of CPV in the scalar sector. In 2HDM, the imposition of

NFC through a Z2 symmetry eliminates the possibility of CP breaking in the scalar sector,

both explicit and spontaneous. In the above mentioned three Higgs doublet model, the

introduction of a Z2 × Z2 symmetry guarantees NFC while at the same time allowing for

either explicit or spontaneous CPV in the scalar sector. A similar situation was found for

3HDM equipped with the ∆(27) horizontal symmetry group [13, 14], the minimal model

that features the so-called geometric CP violation.

Recently, a complete analysis has been finalized of all possible discrete symmetry

groups of the 3HDM scalar sector [15, 16] and of all possible forms of their spontaneous

breaking [17, 18]. All cases were in line with the generic observation mentioned above: if

a horizontal symmetry group forbids explicit CPV in the scalar sector, then it also auto-

matically prevents spontaneous CPV at the minimum. Conversely, if a symmetry group

allows for explicit CPV, then it also allows for spontaneous CPV.

With numerous examples confirming this intriguing observation, one may wonder

whether this is a truly general phenomenon with no exceptions, or, on the contrary, it

is just a generic trend which can be violated by certain more complicated Higgs sectors.

Even if this phenomenon is not universal, it is worth investigating in which broad classes

of models this conjecture holds.

In this work, we prove that this conjecture holds in multi-Higgs-doublet models

equipped with abelian (rephasing) horizontal symmetry groups. There is one minor modifi-

cation, though, which we will need to make in order to avoid a somewhat exotic possibility:

we pay attention to the explicit CP conservation or violation in the neutral part of the

potential. With this modification, we show the conjecture to be valid for any multi-Higgs-

doublet model equipped with any rephasing symmetry group.

The structure of this paper is as follows. In section 2, we start with a qualitative dis-

cussion of various forms of CP violation originating from the scalar sector. We illustrate

this discussion with several examples from 2HDM and 3HDM. Then, in section 3, we intro-

duce a convenient formalism of treating rephasing transformations, and use it in sections 4

to prove the conjecture for CP -conserving case. For the CP -violating case considered in

section 5, the conjecture is also valid provided we focus on the neutral scalar sector only.

We also discuss here the exotic possibility of explicit CP -violation which arises from the

charged Higgs sector. In section 6, we summarize our results. Finally, appendix contains

a proof of certain mathematical statements mentioned in the main text.

2 Interplay between symmetries and CP

2.1 General remarks

The generation of CP -violation in the scalar sector is linked with the presence of complex

parameters and complex vacuum expectation values (vevs) of the neutral Higgs fields.

However, one has to be aware of various subtleties which arise in the presence of extra
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symmetries of the Lagrangian, beyond the gauge symmetry. Although many of them have

been already discussed in the literature, we want to dwell on them before venturing into a

general analysis.

Let us start with a qualitative discussion of the generation of explicit and spontaneous

or CP -violation in the scalar sector. A multi-Higgs potential contains various terms which

link different Higgs fields and which carry complex coefficients λi. Schematically,1 they

sum up to

V ∼
∑

i

Ai cos(phases + ψi) , (2.1)

where “phases” stands for phases of complex Higgs fields, ψi is the phase of λi, and Ai is a

prefactor. If it happens that all coefficients are real, then all ψi = 0 or π, and the potential

V ∼
∑

i

Ai cos(phases) , (2.2)

becomes symmetric under “phases” → “−phases”, that is, under the usual CP -

transformation.

If some of ψi do not vanish, then this generic argument does not apply. However,

the presence of nonvanishing ψi, that is, of complex parameters of the potential, does not

necessarily lead to explicit CP -violation. This can be seen by recalling that in multi-Higgs

model with N scalar doublets, the most general CP transformation that leaves invariant

the kinetic part of the lagrangian is

φi
CP−−→ Uijφ

∗
j , φ†i

CP−−→ U∗
ijφ

T
j , (2.3)

where U is an arbitrary N × N unitary matrix acting in the Higgs doublet space. If we

were limited only to the kinetic term, then any of these transformations could play the role

of “the CP -transformation”, and in this respect the usual definition, with U = I is not a

unique choice.

The Higgs potential does not have to be invariant under all, or even any, of general

CP transformations of form (2.3). There is explicit CP violation in the scalar sector if

and only if there exists no choice of U which leaves invariant the full scalar lagrangian. If

such a choice exists, then one has CP invariance in spite of some ψi being non-zero. Very

schematically, this symmetry, which is usually called generalized CP (gCP) symmetry,

exploits the compensation of phase changes coming from the usual CP transformation and

the unitary transformation U :

cos(phases + ψi)
usual CP−−−−−−→ cos(−phases + ψi)

U−→ cos(phases + ψi) . (2.4)

We stress again that the use of general CP transformations is essential to show that

complex coefficients do not automatically lead to explicit CP violation. Below, we give a

well-known example of such situation, the A4-symmetric 3HDM.

1This expression can be viewed as the value of the potential calculated at classical values of neutral com-

ponents of the scalar doublets and omitting the charged ones. We deliberately oversimplify the description

here to make the main idea as transparent as possible.
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Another useful tool to study the CP properties of the scalar lagrangian consists of

Higgs-basis CP -odd invariants [12, 19–21]. Although many examples of these invariants

can be written down, their use in multi-doublet models faces the mathematical challenge of

determining the complete basis of algebraically independents invariants. For 2HDM, this

basis was constructed, and invariants indeed turned out to be a useful tool in phenomeno-

logical analyses. Beyond two doublets, this problem has not been solved.

Spontaneous CP -violation occurs if there exists a set of (generalized) CP symmetries of

the scalar lagrangian but none of them leaves invariant the vacuum field configuration [12].

Using eq. (2.3) and the fact that a CP -invariant vacuum implies CP |0〉 = |0〉, one derives

that, in order for the vacuum of the multi-scalar model to be CP invariant, the following

condition has to be satisfied:

Uij〈0|φj |0〉∗ = 〈0|φi|0〉 . (2.5)

For real vacua, this condition is trivially satisfied with U = I. However, it may also be

satisfied for complex vacua if the lagrangian contains a gCP symmetry with a non-trivial U .

Technically, spontaneous CP -violation arises if several terms of form (2.1) or (2.4) are

present in the potential. When minimizing the potential, we do not always have enough

freedom to set all cosines to −1. The clash among these requirements can give non-trivial

phases to vevs, so that the vacuum violates the initial CP symmetry. But once again, this

conclusion is not universal: in certain cases, the phases of vevs can take special values (also

known as calculable phases), and, similarly to (2.4), their sign flip can be compensated by

an extra transformation, as shown in (2.5). In other cases, calculable phases do lead to

spontaneous CP violation, a phenomenon known as “geometrical CP -violation” [13, 14].

A further insight into the complexity of the problem was given in [22, 23]. There, the

phenomenon of geometrical CPV in models beyond 3HDM was explored and it was clearly

shown that calculable phases do not always lead to spontaneous CPV.

2.2 Examples from 2HDM and 3HDM

To illustrate the non-trivial interplay between horizontal symmetries and CP properties,

let us start with the Z2-symmetric 2HDM, where the symmetry transformation is given by

the sign flip of one of the doublets. The renormalizable potential contains only one term

with a complex coefficient: λ5(φ
†
1
φ2)

2 + h.c. One can rephase one doublet to make λ5 real,

as in (2.2), which proves that the model is explicitly CP conserving (CPC).

Next, suppose that λ5 > 0. Then, the minimum of the potential requires that there

be a relative π/2 phase between the doublets: (v1, iv2). However this vacuum is still not

CP -violating. One way to see it is to rephase, before minimization, the second doublet by

π/2: φ2 = iφ′
2
. We would get the same potential but with negative λ5, whose minimum

is attained at purely real vevs. The second way of seeing it is to observe that the vacuum

(v1, iv2) is invariant under a gCP transformation, the usual CP followed by the Z2 trans-

formation. Thus, the presence of a gCP symmetry in the vacuum signals the absence of

spontaneous CP violation (CPV), since the criteria (2.5) can be satisfied.

A more intricate situation takes place in 3HDM equipped with various discrete symme-

try groups G. Consider first the abelian group Z4, which is, for 3HDM, the minimal group
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preventing both explicit and spontaneous CPV [17, 18]. In the basis where the generator

of Z4 is a4 = diag(i, −i, 1), the phase-sensitive part of the Higgs potential contains only

two terms:

V1(Z4) = λ1(φ
†
1
φ2)

2 + λ2(φ
†
1
φ3)(φ

†
2
φ3) + h.c. (2.6)

We have two complex coefficients and we can rephase two doublets with respect to the third.

This freedom is sufficient to make both coefficients real, which proves that Z4 automatically

leads to explicit CPC. This example makes it clear that if there is a sufficiently small number

of phase sensitive terms, one can use the rephasing freedom to arrive at (2.2).

Proving that Z4 prevents spontaneous CPV is less trivial [17, 18]. One can substitute

a generic vev alignment 〈φ0i 〉 = vie
iξi/

√
2 into (2.6), differentiate it with respect to phases,

and check the consequences for different assumptions about the number of zero vevs.

• If all vi 6= 0, then ξ1 and ξ2 are opposite and are multiples of π/4, which implies ex-

istence of a gCP symmetry of the vacuum. A similar situation takes place for v3 = 0.

• If v1 or v2 = 0, then the relative phase of the remaining two vevs can be arbitrary,

which formally constitutes a CP -violating solution, but one can show that it is a

saddle point, not a minimum.

• If two vevs are zero, the residual phase is unphysical and can be set to zero by a

U(1) transformation.

Once again, the counting of terms plays an important role. If we have a sufficiently small

number of terms, then we can find the phases which set all of the non-zero terms to −1.

This leads to calculable phases which inherit some residual symmetry.

Now consider 3HDM with three phase-sensitive terms, so that one cannot make all

coefficients real. Even in this case there is room for explicit CPC as in (2.4). For example,

in the A4-symmetric 3HDM, the phase sensitive part takes form

V1(A4) = λ
[

(φ†
1
φ2)

2 + (φ†
2
φ3)

2 + (φ†
3
φ1)

2

]

+ h.c. (2.7)

with complex λ. This potential is invariant under sign flips of individual doublets and under

their cyclic permutations. The model is explicitly CP -conserving, with the gCP symmetries

being usual CP followed by an exchange of any pair of doublets, which provides an example

of the situation (2.4). Also, when minimizing the A4 potential, one can have complex vevs

but still there always remains a gCP symmetry respecting the vacuum alignment. Thus,

A4 prevents both explicit and spontaneous CP violation.

One might suspect that this example lacks CPV because the potential contains only one

overall complex coefficient. Consider another similarly looking situation, ∆(54)-symmetric

3HDM. Its phase-sensitive potential is

V1(∆(54)) = λ
[

(φ†
1
φ2)(φ

†
1
φ3) + (φ†

2
φ3)(φ

†
2
φ1) + (φ†

3
φ1)(φ

†
3
φ2)

]

+ h.c. (2.8)

with complex λ. It is symmetric under any permutations of doublets and under the order-3

rephasing diag(1, ω, ω2), where ω ≡ exp(2π/3), which form the group ∆(54). This model
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does not have any gCP symmetry and is, therefore, explicitly CPV. Its CPC version allows

for the spontaneous CPV, which is known since 1984 as the geometrical CPV [13, 14].

Thus, ∆(54) allows for either explicit or spontaneous CP violation.

In order to clarify the origin of so distinct CP -properties in similarly looking models,

let us introduce a convenient notation. Take the i-th term from the phase-sensitive part of

the potential V1 and rephase all doublets by their own αj , j = 1, . . . , N . The term picks up

an extra phase which can be generically written as
∑

j dijαj . The integer-valued matrix

dij can be easily written for any model just by looking at the potential. In particular, for

the two cases of 3HDM considered above, we have

d(A4) =







−2 2 0

0 −2 2

2 0 −2






, d(∆(54)) =







−2 1 1

1 −2 1

1 1 −2






. (2.9)

These matrices make it clear why the two models are so different in their CP consequences.

The matrix d(A4) enjoys the following property: if we flip the overall sign, then, by an

appropriate permutations of columns and rows, we can recover the original matrix. It is

this property that enables the transformation (2.4). The matrix d(∆(54)) does not have

this feature: −d is essentially different from d and cannot be recovered by permutations.

Therefore, transformation (2.4) is impossible.

As for the spontaneous CPV, we are not aware of an equally simple argument. We can

only state that the exact minimization of A4 and ∆(54) potentials leads to vevs with very

rigid structures [17, 18]. In the case of A4, this rigid structure inherits a gCP, while in the

∆(54) case, the vev alignment, despite being rigid, allows for spontaneous CPV.

These and all other examples in 2HDM and 3HDM, despite various intricacies, are all

consistent with the observation that CPV comes in pairs, meaning that if the horizontal G

prevents explicit CPV, then it also prevents spontaneous CPV. If G allows explicit CPV,

then, in its explicitly CP conserving version, it allows for spontaneous CPV. Intrigued by

this seemingly robust correlation, we start a systematic investigation of how general it is.

This paper is devoted to the broad class of NHDM models in which G is an abelian group,

represented by rephasing. More elaborate cases with non-abelian groups, represented by

rephasing and permutations, are postponed for future study.

3 Rephasing symmetries and CPV

We start with a brief reminder of how rephasing symmetries of the scalar sector in N -

Higgs-doublet model (NHDM) can be efficiently analyzed [24]. The Higgs potential is

split into phase-independent part V0, which is symmetric under [U(1)]N including the

overall rephasing, and the phase-sensitive part V1. The latter contains m terms with

complex coefficients λi, i = 1, . . . ,m, as well as their conjugates. Next, we evaluate V1 at

quasiclassical values 〈φ0i 〉 = vie
iξi/

√
2; for example,

λ1(φ
†
1
φ2)(φ

†
1
φ3) + h.c.→ 1

2
|λ1|v21v2v3 cos(−2ξ1 + ξ2 + ξ3 + ψ1) , (3.1)
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where ψ1 is the phase of λ1. Then we write the argument of the cosine of the i-th term as

dijξj + ψi, where the integer-valued matrix dij picks up the phases for each term. In the

above example, d1j = (−2, 1, 1, 0, . . . , 0). Note also that the powers of vi in front of the

cosine can also be written as
∏

j v
|d|ij
j , where entries of the matrix |d|ij are just absolute

values of the corresponding entries of dij . With this notation, V1 takes at the quasiclassical

values of the Higgs fields the following compact form:

V1 =
m
∑

i=1

|λi|





N
∏

j=1

v
|dij |
j



 cos(dijξj + ψi) . (3.2)

Rephasing symmetries are such shifts of phases ξj which leave each term in (3.2) invariant.

They arise as the solutions of the system

dijαj = 2πni , (3.3)

with any integer ni. The full rephasing symmetry group of a model is given by all solutions

of this system.

Solving this system, reconstructing the group, and analyzing its solutions is efficiently

done with the Smith normal form technique developed in [24] for the scalar sector and

in [25] for Yukawa sector in NHDM. Here, we do not need this technique, apart from the

proof of a technical statement given in the appendix. However, we will exploit the following

important properties of the matrix dij .

• The matrix dij is a rectangular m×N matrix (m rows, N columns). The value of m

can be larger or smaller than N , but it is always true that rank d ≤ N − 1, because,

in each row, the sum of all entries must be zero (the numbers of φ and φ† are equal

in each term). The consequence is that there is always a solution of (3.3) in the form

of αj = α(1, 1, . . . , 1) with arbitrary α. These solutions form the U(1) group of

overall rephasing, which is a part of the hypercharge symmetry group and is always

present for any Higgs potential. When we impose rephasing symmetries, we mean

extra solutions of (3.3) in addition to this trivial one.

• If rank d < N − 1, there exist other solutions to dijαj = 0, that is, other subspaces

annihilated by dij . They lead to continuous symmetries of the model. These sym-

metries either remain unbroken after EWSB, or, when broken, they lead to massless

scalars. In either case, the situation is not related to the problem we consider. Thus,

we are interested in models with rank d = N − 1.

Now, there are several options for m.

• m < N − 1 leads to rank d < N − 1, and we disregard this case.

• m = N − 1 will constitute our main CP -conserving case. The rectangular (N − 1)×
N matrix d is then a full rank matrix, which means that all its rows are linearly

independent. In addition, by removing a column, one can arrive at a square (N −
1)× (N − 1) matrix d′ which is invertible.
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• m = N will constitute our main CP -violating case. The N rows of the matrix are

now linearly dependent: that is, there exist coefficients ci not all being zeros such

that cidij = 0 for all j.

• m > N , which makes the model even more CP -violating, with extra complex free

parameters and extra possibility to get non-zero phases. This situation does not give

anything new with respect to the previous case.

In the recent work [26], the conditions for the spontaneous CPV were derived within

a spurion formalism, which is close in spirit to ours. Each phase-sensitive term of the

potential comes with its coefficient, which plays the role of a spurion; thus, the number of

spurions Ns is equal to our m. The number of linearly independent charge vectors denoted

in [26] by r corresponds to our N−1. The necessary condition for spontaneous CPV derived

in [26] is Ns > r, which is compatible with our classification. We think, however, that the

formalism we use, based on left and right spaces of dij , is more elegant and allows us to reach

conclusions about the interplay between rephasing symmetries and various forms of CPV.

4 CP -conserving case

4.1 Generic arguments

Suppose that the rephasing group G is such that it allows exactly m = N − 1 different

terms in V1, and that rank d = N−1. Then, the model is explicitly CP -conserving. Indeed,

start with cosine arguments dijξj + ψi and rephase the doublets ξj 7→ ξj + δj , keeping one

doublet (which can be labeled to be the last one) unchanged: δN = 0. The arguments of

the cosines change to dijξj+d
′
ijδj+ψi, where d

′
ij is the square m×m matrix obtained from

d by removing the last column. Since d′ is invertible, the system d′ijδj +ψi = 0 always has

a solution. Thus, one can always rephase the doublets to make all coefficients real.

Next, we want to prove that, in this case, there is also no room for spontaneous CP -

violation. Let us introduce the shorthand notation

V1 =
m
∑

i=1

Ai cos(dijξj) , Ai ≡ |λi|
N
∏

j=1

v
|dij |
j . (4.1)

Differentiating V1 with respect to ξj , j = 1, . . . , N , we get the phase stationarity condition,

which is equivalent to setting to zero the following 1-form:

dξV ≡ −(A1s1, . . . , Amsm) · d ·







dξ1
...

dξN






= 0 , (4.2)

where si ≡ sin(dijξj). Since it holds for all directions dξj , we get

∑

i

Aisi dij = 0 ∀ j = 1, . . . , N . (4.3)
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Since matrix dij has rank m, its m rows are linearly independent. Therefore, if a linear

combination of these rows is zero, as written in (4.3), then all coefficients must be zero:

Aisi = 0 ∀ i = 1, . . . , m . (4.4)

Next, the analysis splits into two cases: if all vi 6= 0, or if some vi = 0. In the former

case, each Ai 6= 0, and (4.4) simply means that all si = 0. Then, we obtain

dijξj = 0 or π mod 2π ∀ i = 1, . . . , m ,

⇔ dijξj = −dijξj mod 2π ,

⇔ ξi = −ξi + αi , (4.5)

where αi is a solution of the system dijαj = 0 mod 2π. But we know that all solutions

of this system form the rephasing symmetry group, see (3.3). Therefore, phases of vevs

ξi satisfy (4.5) with αi being a symmetry transformation. As a result, vevs are invariant

under some gCP: 〈φj〉 7→ eiαj 〈φj〉∗ = 〈φj〉, and no spontaneous CPV occurs.

If some vevs are zero, the analysis becomes more complicated. The presence of zero

vevs means that some among m conditions (4.4) are satisfied by Ai = 0, which places no

restriction on the sines. However one can exploit the fact that the matrix d affects both

Ai and si, namely, if vj is present in some Ai, then its phase ξj is present in si. Then, one

can extract from dij a submatrix d̃ij , which corresponds only to those conditions for which

si = 0 and which couple only to doublets with non-zero vevs. Note that all rows of d̃ are

also linearly independent. The phases of these non-zero vevs then satisfy

d̃ijξj = −d̃ijξj mod 2π , (4.6)

which is analogous to (4.5) but has fewer conditions and fewer phases involved. In the

appendix we show that two possibilities can take place. Either there are too few conditions

on sines, and in this case we either have massless scalars or a saddle point, or the number

of conditions is just right to fix phases ξj , but then there remains a residual rephasing

symmetry with angles αj , which satisfy ξj = −ξj + αj .

The overall conclusion is that whatever values vi take, a minimum always contains a

residual generalized CP symmetry. Thus, spontaneous CP violation cannot take place.

4.2 Illustrations

In the simplest example of this kind, Z2-symmetric 2HDM, V1 = λ5(φ
†
1
φ2)

2 + h.c. The

matrix dij = (−2, 2) has m = 1 row and N = 2 columns, and the solution of dijαj = 2πni
gives αj = (0, π), up to overall rephasing. Clearly, the model is explicitly CP -conserving

because we are able to rotate away the phase of the complex parameter λ5. If we look for

a minimum with non-zero vevs, we set sin(2ξ2 − 2ξ1) = 0, from which we can obtain real

solutions (v1, ±v2) and complex solutions (v1, ±iv2), which still respect a gCP symmetry.

In the more elaborate case of Z4-symmetric 3HDM with the potential (2.6), the

matrix d is

d =

(

−2 2 0

−1 −1 2

)

. (4.7)
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Explicit differentiation and solution of the system of equations shows that, if all vevs are

non-zero, one can obtain complex vevs of the following types [17, 18]

(±v1eiπ/4, ±v2e−iπ/4, v3) , (±iv1, ∓iv2, v3) . (4.8)

In any case, complex conjugation can be compensated by applying a transformation from

the Z4 symmetry group. If one assumes, instead, that v1 = 0, then the phase conditions

disappear and one gets (0, v2e
iξ2 , v3) as a viable solution of the phase stationarity condi-

tion. However in this case ∂2V/∂ξ2
2
= 0 and ∂2V/∂ξ2∂v1 6= 0; therefore, this vev alignment

corresponds to a saddle point [17, 18]. One can also check other zero vev alignments and

observe that in all cases the model is CP conserving, both explicitly and spontaneously.

5 CP -violating case

5.1 Generic arguments

Suppose now that a rephasing symmetry group allows for exactly m = N phase-sensitive

terms in the Higgs potential. The matrix dij is then a square N × N matrix with rank

N−1. If one starts with (3.2) with arbitrary phases ψi, then it will be impossible to rephase

them away. Indeed, for that one would need to solve system dijξj = −ψi for ξi. But since

d is not invertible, this is impossible for generic ψi. One can, however, make all ψi equal.

Thus, this symmetry group is compatible with explicit CP violation in the Higgs sector.

Now, consider its explicitly CP conserving version, in which all ψi are set to zero.

Differentiating V1 with respect to phases still leads to (4.3). But now, in addition to the

previous solution with all Aisi = 0, we can have a non-trivial solution with not all Ai and

si being zero (we call it a non-zero solution). This solution is unique up to an overall factor

because the matrix d has a one-dimensional kernel.

Now, the mere fact that there exists a stationary point with non-zero Aisi automat-

ically makes it CP -violating. Indeed, suppose there is a gCP transformation based on a

rephasing symmetry αj which is still preserved at the minimum. It acts on vev phases by

ξi 7→ −ξi + αi = ξi, which means dijξj 7→ −dijξj = dijξj . This can happen only when all

dijξj = 0 or π, so that all si = 0, which contradicts the definition of a non-zero solution.

Therefore, in such a solution, no residual gCP symmetry exists, and we obtain spontaneous

CP violation.

5.2 Illustration

Again, to give an illustration, consider the original Weinberg’s model [8], the Z2 × Z2

3HDM symmetric under sign flips of individual doublets. The phase-sensitive part of the

potential is

V1(Z2 × Z2) = λ1(φ
†
1
φ2)

2 + λ2(φ
†
2
φ3)

2 + λ3(φ
†
3
φ1)

2 + h.c. (5.1)

with complex λi. The matrix d takes the same form as in the A4 case (2.9), which is

not surprising because A4 is just an extension of Z2 × Z2 by the cyclic permutation

group Z3. The model now contains three complex parameters λi which cannot be made

simultaneously real, and, unlike the A4 case, one cannot use permutations and resort

to (2.4). Thus, the model is explicitly CPV.

– 10 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
6

In its explicitly CPC version [9, 10], we proceed with minimization and have a non-zero

solution of (4.3) in the form

A1s1 = A2s2 = A3s3 . (5.2)

For a region of vevs and λ’s which satisfy certain triangle inequalities [9, 10, 12], this

solution does exist, and it displays spontaneous CP violation.

5.3 A peculiar source of CP -violation

In the above derivation, we showed that if a non-zero solution to (4.3) exists, then it is

spontaneously CP -violating. Does such a solution always exist, at least for some parame-

ters of the model? The main line of arguments proceeds as follows. Solving (4.3) leads to

certain relations among Aisi, for example, (5.2). Let us pick up generic phases and generic

vevs; then one can adjust the absolute values of the coefficients λi in each Ai term to fulfill

these conditions. Thus, the chosen vev alignment gives the desired non-zero CPV solution

for the model with adjusted coefficients.

However, there remains one peculiar possibility in which this main argument fails.

Considering it in detail below, we arrive at a novel possible way the CP violation can be

generated by the scalar potential.

Consider a model with four doublets and with the following phase-sensitive terms

V1 = λ1(φ
†
2
φ1)(φ

†
3
φ1) + λ2(φ

†
1
φ4)(φ

†
2
φ4) + λ3(φ

†
1
φ3)(φ

†
4
φ3) + λ4(φ

†
3
φ2)(φ

†
4
φ2)

+λ5(φ
†
1
φ2)(φ

†
3
φ4) + λ6(φ

†
1
φ4)(φ

†
3
φ2) + h.c. (5.3)

with complex parameters λi. This model has the symmetry group Z5 generated by the

following transformation:

a5 = diag
(

η2, 1, η4, η
)

, where η5 = 1 . (5.4)

The potential (5.3) contains all renormalizable terms consistent with this symmetry. The

matrix dij is:

d =



















2 −1 −1 0

−1 −1 0 2

−1 0 2 −1

0 2 −1 −1

−1 1 −1 1

−1 1 −1 1



















, rank d = 3 . (5.5)

Note that the last two rows are identical because the corresponding terms transform in

exactly the same way under rephasing of doublets. This model is clearly of the CP -

violating class due to a large number of complex coefficients. In its CP conserving version,

with real λi, one can apply the results of the previous subsection and find spontaneously

CP -violating minimum. One can construct several different non-zero solution of (4.3):

solution 1 : A1s1 = A2s2 = A3s3 = A4s4 = 0 , A5s5 = −A6s6 6= 0 , (5.6a)

solution 2 : A1s1 = A2s2 = A3s3 = A4s4 6= 0 , A5s5 = A6s6 = 0 , (5.6b)

solution 3 : A1s1 = A3s3 = A5s5 6= 0 , A2s2 = A4s4 = −A6s6 6= 0 , (5.6c)
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and their linear combinations. However, we know that, by construction, s5 = s6, and that

A5 and A6 contain exactly the same vev combinations. It is possible to satisfy A5s5 =

−A6s6 6= 0 only if λ5 = −λ6. Thus, a generic Z5 symmetric 4HDM does not allow for

solution 1 given by (5.6a). Luckily, other solutions exist, so that there remains a possibility

for spontaneous CPV. Thus, this model, too, complies with the main observation.

Imagine now that we truncated the potential (5.3) by leaving out the λ3 and λ4 terms.

Then, we would have a 4HDM model with four phase-sensitive terms. By applying the gen-

eral results of the previous subsection, we deduce the possibility for explicit CP -violation.

But there will be no room for spontaneous CP violation because solutions 2 and 3 given

in (5.6b) and (5.6c) are unavailable. In this case we would obtain a counterexample to

the general trend: a symmetry-driven model with explicit CPV but no spontaneous CPV.

However, this explicit CPV would be of a peculiar kind. The truncated potential can be

rewritten as

V1 = λ1(φ
†
2
φ1)(φ

†
3
φ1) + λ2(φ

†
1
φ4)(φ

†
2
φ4) + λ′5(φ

†
1
φ2)(φ

†
3
φ4)

+λ6

[

(φ†
1
φ4)(φ

†
3
φ2)− (φ†

1
φ2)(φ

†
3
φ4)

]

+ h.c. (5.7)

By rephasing doublets, one can make λ1, λ2, λ
′
5
real, while λ6 stays complex. But this

complex coefficient stands in front of an expression with zero vacuum expectation value.

This term introduces explicitly CPV effects only through the charged Higgs sector and

never through the neutral one, at least at the tree-level. If one focuses on the neutral Higgs

sector exclusively, the λ6 term in (5.7) is absent. The matrix d has one row less, it falls into

the CPC case considered earlier, and the absence of spontaneous CPC is then compatible

with the general arguments.

We stress that the example considered in this subsection, with the full Z5-symmetric

potential (5.3), is not a counterexample to our general observation. We tried to construct a

counterexample realizing the above idea with even more Higgs doublets, but we could not

find any. It remains to be checked whether a such an example can be constructed at all.

6 Discussion and conclusions

It has been known for a long time that imposing an extra horizontal symmetry in multi-

Higgs models can affect CP -violation (CPV) coming from the scalar sector. It was also

noticed that in all known examples the following correlation is valid: if a symmetry group

prevents explicit CPV, then it also prevents spontaneous CPV, and if a symmetry group

allows for explicit CPV, then it also allows for spontaneous CPV in the explicitly CP -

conserving version. All known examples in 2HDM and 3HDM go along with this observa-

tion, so it is natural to ask how general this feature is.

In this work, we started to systematically investigate this old and intriguing observa-

tion. We proved this trend to be valid for abelian groups and any number of doublets.

Our formalism also offers a more transparent view why various forms of CPV are present

or absent in specific models considered in literature.

When investigating the CP -violating part of the observation, we noticed a peculiar

possibility of explicit generation of CP -violation via the charged Higgs sector. Such a
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model would possess “hybrid” CP -properties: despite being explicitly CP -violating, it

remains explicitly CP -conserving within the neutral Higgs sector alone and it does not

allow for spontaneous CPV. Although we have not succeeded in building a full model that

realizes this idea, we leave it as an open possibility.

If such an example is found, constituting a counterexample to the original general

observation, we may slightly modify the conjecture to eliminate this clash. The corrected

conjecture reads: if a symmetry group prevents explicit CPV in the neutral Higgs sector,

then it also prevents spontaneous CPV; if a group allows for explicit CPV in the neutral

sector, then it also allows for spontaneous CPV. In this work we proved this modified

conjecture for any abelian (rephasing) symmetry group. Whether it holds for non-abelian

groups such as permutation groups, remains to be investigated.

Note added. While the paper was under review, we found an explicit example realizing

the peculiar form of CP -violation described in section 5.3. It is based on 4HDM with the

following potential:

V1 = λ5(φ
†
1
φ2)

2 + λ′5(φ
†
3
φ4)

2 + λ6(φ
†
1
φ3)(φ

†
2
φ4) + λ′6(φ

†
1
φ4)(φ

†
2
φ3) + h.c.

The model is invariant under the symmetry group Z4 × Z2 generated by a2 =

diag(1,−1, 1,−1) and a4 = diag(1, 1, i,−i). It allows for explicit CPV induced by the

charged Higgses but not for spontaneous CPV.
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A Symmetries of a submatrix

Here, we give a detailed proof that, in the explicitly CP -conserving model protected by a

rephasing symmetry group, there remains a generalized CP symmetry even if some vevs

are zero.

We are free to choose which vevs we want to set to zero; the final conclusion should not

depend on this choice. Let us denote the number of such zero vevs by n0. We rearrange

the doublets so that the zero vevs come at the end:

vi = (v1, v2, . . . , vN−n0
, 0, . . . , 0) . (A.1)

We will collectively call the doublets with zero vevs the “inert space”.

We exploit the fact that matrix d affects both Ai and si: if vj is present in some Ai,

then its phase ξj is present in si. The presence of zero vevs means that some among m
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conditions (4.4) are satisfied by Ai = 0, which places no restriction on the sines. Let us

rearrange m conditions Aisi = 0 in such a way that the first ms conditions have non-zero

Ai and, therefore, are satisfied by si = 0, while the remaining ma conditions are coupled to

the inert space and are satisfied by Ai = 0, placing no restriction on si. Then, the matrix

d takes the block form

d =

(

d̃ 0

B C

)

, (A.2)

The first N − n0 columns of d, which form the matrices d̃ and B, are coupled to the non-

inert space, while the last n0 columns are coupled to the inert space. The phases of the

non-inert vevs are defined by ms conditions si ≡ sin(d̃ijξj) = 0, which translates to

d̃ijξj = −d̃ijξj mod 2π , (A.3)

with i = 1, . . . , ms and j = 1, . . . , N − n0. This is analogous to (4.5) but has fewer

conditions and fewer phases involved. Note also that all rows of d̃ are linearly independent.

Numbers ms and n0 are, in principle, independent: they reflect our arbitrary choice

of which inert space we want to test. However, exploring matrix d̃, we arrive at a similar

classification of cases as before.

• If ms < N −n0− 1, which includes the case of ms = 0 (recall the Z4 3HDM example

with v2 = 0), then there are too few conditions to fix the remaining non-inert phases.

Then, some phases of non-inert vevs, ξk, remain free parameters, and we obtain a

continuum of stationary points. Second derivatives along these directions are also

zero: ∂2V/∂ξ2k = 0. Depending on whether the off-diagonal hessian elements such

as ∂2V/∂ξk∂vi, where vi is from the inert space, are zero or not, we obtain either

massless physical scalars or a saddle point. Either situation is non-physical.

• If ms = N − n0 − 1, then d̃ inherits from d the property of being full rank and

having only one more column than rows. Since the overall phase of all doublets can

be changed at will, we fix the phase of one of the vevs, which we label to be the

first one, and consider the reduced matrix d̃′ without the first column. Then, d̃′ is a

square invertible matrix. Just like in the previous subsection, we can write

d̃′ijξj = −d̃′ijξj ⇔ ξj = −ξj + α̃j , j = 1, . . . N − n0 , (A.4)

where α̃j is a rephasing symmetry of first ms terms. We show below that α̃j always

corresponds to a symmetry of the full matrix d, if restricted to the non-inert space.

Therefore, in this case, too, we have a residual gCP symmetry.

• Finally, situation ms > N − n0 − 1 is impossible. We would have ms rows which,

on the one hand, are vectors in space with dimensionality less than ms, but on the

other hand, must be linearly independent.

The overall conclusion is that whatever are the values vi, a minimum always contains a

residual generalized CP symmetry. Thus, spontaneous CP violation cannot take place.
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It remains to be proven that solution (A.4) always produces a symmetry of the full

matrix d. Start again from the block form (A.2) and, by applying elementary steps on

columns and rows (sign flip, exchanges, and addition), bring the matrices d̃ and C to their

Smith normal forms, see details in [24, 25]. In this procedure, we do not mix inert and

non-inert spaces, and do not mix conditions si = 0 with conditions Ai = 0. The matrix d

then takes the partially diagonalized form

d =























0 d1
. . .

dms

c1

B
. . .

cn0























, (A.5)

with non-zero diagonal entries di and with a generic matrix B. The system d̃ijα̃j = 2πñi
is decoupled, and its solutions are arbitrary sums of α̃j = 2π/dj with integer coefficients

for the non-inert doublets and arbitrary αj for inert doublets. Thus, each discrete solution

of d̃ijα̃j = 2πñi comes with the n0-dimensional torus of solutions with arbitrary phases in

the inert space. For example, αj of the form

αj =



























0
...

0
2πnms

dms

β1
...

βn0



























(A.6)

is a solution of the upper half of the system dijαj = 2πni for any β1, . . . , βn0
.

Now, in order to extend it to the lower half, we can adjust n0 parameters βk to satisfy

n0 conditions Bkms
·2π/dms

+ckβk = 0. As the result, for each solution d̃ijα̃j = 2πñi, we get

a single solution of dijαj = 2πni, and these two solutions coincide in the non-inert space.

Different solutions do not need to form a closed group within the inert space; they are

just required to agree with the symmetry transformations in the non-inert space. Thus,

existence of solution (A.4) always implies a residual gCP transformation in the vacuum

belonging to the original symmetry group.
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