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Abstract 

The Poynting vector produced by crossing the Coulomb 

field from a charged particle with a distant external magnetic 

field gives rise to a physical angular momentum which most be 

included in applications of angular momentum conservation and 

quantization. Simple examples show how the neglect of the return 

flux in an infinite solenoid or in two-dimensional models can lead 

to unphysical effects, how the Dirac charge quantization is 

obtained and can be modified by the presence of additional long 

range forces, and why the origin must be excluded in describing 

the motion of a point charge in the field of a fixed point 

mo"opole. 
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The renewed interest in magnetic monopoles [1,2] has called 

attention to peculiar problems arising in the application of the conservation 

and quantization of angular momentum to the motion of a charged particle in an 

exte,rnal magnetic field [3,4] like that of a solenoid [5,6,7] or monopole 

[8,9.101- Errors arise when the angular momentum in the electromagnetic field 

approaches a finite constant value either at very large distances or at very 

small distances and is not taken properly into account. In particular, one 

must not overlook contributions from the return magnetic flux which completes 

a flux loop outside a solenoid, often at large distances outside the orbit of 

the charged particle under consideration. This paper considers several 

paradoxes and presents simple and general results based only on the 

conservation and quantization of angular momentum and the description of the 

momentum density in the electromagnetic field by the Poynting vector. Those 

results therefore hold in any theory or model which incorporates these 

principles, and are independent of the formalism used; e.g. the Schroedinger 

equation [lo], the Dirac equation, non-Abel&an gauge field theory [l], or 

descriptions using strings [ll] or sections [12]. 

Consider a point charge +e located at the origin in the presence of 

an arbitrary external magnetic field %("r). The angular momentum in the 

crossed electric and magnetic fields is [8] 

$= II 4vc 
: x 1% x %(:)I d3r = L i % x [; x i(T)] d3r/r3. 

4nc (1) 

In cases where the magnetic field % is only in the z-direction, as in models 

with one or more infinite solenoids or in two dimensional models, Eq. (1) can 

easily be evaluated to give 



3 

FZ = 2 111 
(x2 + Y*) BZ(x,y) 

(x +y*+z)l 
= -& 2 2 3 2 dx dy dz Tii& 

where 

$ = j/ Bz(x.y) dx dy 

(*a) 

(*b) 

is the total magnetic flux. 

A striking feature of this result is that the value of the angular 

momentum depends only upon the charge e and the total magnetic flux $, and is 

independent of the spatial distribution of the flux. This is the physical 

basis underlying the paradoxes arising at large and small distances. The 

angular momentum (2a) remains constant and finite even when the flux is all 

pushed out to infinity or when the flux is concentrated in a tiny region 

around the origin. This angular momentum must be carefully considered in the 

limiting cases where flux is pushed out to infinity or where a magnetic source 

is located exactly at the origin and must have zero angular momentum. 

The constancy of the angular momentum at small and large distances 

is a general feature of electromagnetism and is independent of the simple 

geometry used to derive Eq. (*a). This can be seen by noting that the 

expression (1) is invariant under the scale transformation 

B(T) + K*B(&) 

where K is an arbitrary scaling factor. Thus for example if &"r) is produced 

by an assembly of magnetic monopoles, the angular momentum in the crossed 

fields is unchanged by scale transformations which move all the monopoles out 
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to infinity or move them all arbitrarily close to the origin. 

Our first paradox applies Eq. (2a) to the system of a deuteron at 

the origin and an infinitely long solenoid located beyond the moon. The total 

angular momentum of the system is 

3=x+3+3 (3) 

where 3 denotes the sum of the spins of the neutron and proton, and t denotes 

the mechanical orbital angular momentum (': x m %)rel in the deuteron.* 

Since the value of the flux is not restricted to particular values, 

the electromagnetic angular momentum F, is not restricted to integral or half- 

integral multiples of fi. This leads to the following paradox: 

1. If the total angular momentum of the system is required to be an 

integral or half-integral multiple of fi, the allowed values of the relative 

orbital angular momentum, the centrifugal barrier, and the binding energy of 

the deuteron all depend upon the field of the solenoid beyond the moon. If 

the centrifugal barrier in the deuteron for the value Lz = n/2 is so high that 

no bound state exists, it becomes possible to break up a deuteron on earth by 

turning on a small magnetic field beyond the moon. 

2. If the dynamics of the deuteron are required to be independent 

of what is happening beyond the moon by requiring Lz to be an integral 

multiple of yl, then the total angular momentum of the system takes on peculiar 

values which are not integral or half-integral multiples of E. 

3. The conventional treatment using the Schroedinger equation and a 

vector potential which remains finite at infinity correctly shows no effect on 

*We treat the deuteron as if its center of mass is held at the 
origin. A more accurate treatment would confine the deuteron to 
a sphere. The result is the same. 
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the deuteron from the field of the solenoid at large distances. However, it 

has no consistent definition of the total angular momentum to include the 

angular momentum (2a) in the crossed fields, which is a physical effect and 

cannot simply be ignored. 

The paradox remains when the Hamiltonian is rotationally invariant 

about the z-axis and the total angular momentum in the z direction is a 

constant of the motion, since the result (2a) also applies for a cylindrically 

symmetric configuration of several concentric solenoids of very large radius, 

tailored to give any desired cylindrically symmetric field at large distances. 

The paradox is resolved by correcting the improper treatment of the 

finite flux at infinity. Consider the infinite solenoid as the limiting case 

of a long finite solenoid. A return flux exists outside the solenoid and 

moves out to infinity as the length of the solenoid is increased. Eqs. (2) 

show that the total angular momentum in the fields including the return flux 

is zero. Since the contribution of the return flux remains finite as the 

length of the solenoid approaches infinity, contradictions arise when the 

return flux is ignored in the infinite limit. The apparent unphysical effects 

of fields at large distances disappear when the contributions of return flux 

are properly included. 

For the long finite solenoid the treatment with the Schroedinger 

equation and the vector potential is known to include all effects of the 

angular momenta in the crossed fields [3,4]. This is most easily seen in the 

convenient gauge where div ?I = 0 and A(m) = 0. In this gauge the total 

angular momentum (3) is the generator of rotations and the additional angular 

momentum introduced by the vector potential is exactly equal to the angular 

momentum in the crossed fields, 
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Tx (e/c)A = P if div 1 = h(m) = 0. (4) 

If the fields are rotationally invariant the Hamiltonian is manifestly 

rotationally invariant and the total angular momentum (3) is conserved. 

Equation (4) holds for any field configuration which is a solution 

of Maxwell's equations, produces this value of the vector potential at the 

position of the particle and vanishes sufficiently rapidly at infinity. This 

formalism therefore implicity includes the angular momenta in the return 

fluxes at large distances which are required by Maxwell's equations to close 

all flux loops and make the fields go to zero at infinite distance, even when 

these return fluxes are not specified in the statement of the problem. The 

paradox arises only when the angular momentum in the crossed fields is 

calculated directly from the Poynting vector as in Fq. (2) for systems with 

finite flux at infinity and no return flux. 

This analysis leads to the following conclusions: 

1. The angular momentum in the field is a physical angular momentum 

which must be included in the total angular momentum. In a rotationally 

invariant system it is this total angular momentum which is conserved, and 

which generates rotations and is therefore quantized. 

2. The contributions from the angular momentum in the return flux 

from a long solenoid remains finite and cannot be ignored in the limit of an 

infinitely long solenoid, or in extrapolating the results of a two-dimensional 

model to three dimensions. 

3. The conventional formalism with the vector potential for 

describing the motion of charged particles in magnetic fields includes the 

contributions from crossed fields to the angular momentum properly if the 

fields decrease rapidly enough at infinite distance. If the Hamiltonian is 
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invariant under totations, the total angular momentum operator (3) generates 

rotations and is conserved. It includes not only the mechanical angular 

momentum 1, which enters the dynamics via the centrifugal barrier, but also 

the angular momentum in the fields given by Eq. (4). However, inconsistencies 

in the treatment of rotations and of angular momentum quantization and 

conservation arise if fields at infinity are not properly treated. All these 

physical results are independent of the choice of gauge, but they are most 

transparent in the gauge (4) where the Hamiltonian is manifestly rotationally 

invariant. 

Another example where these conclusions are particularly significant 

is in the motion of an electron in the field of an infinitely long solenoid. 

All the correct dynamics are again in the solution of the Schroedinger 

equation using the appropriate vector potential [4]. However, peculiar 

results are obtained when the mechanical angular momentum of the electron is 

interpreted as being the total angular momentum of the system, without taking 

into account the angular momentum in the return flux which is present when the 

infinite solenoid is considered as the limit of a finite solenoid. There is 

no paradox and no peculiar value of the total angular momentum if the angular 

momentum of the field is properly computed and includes the contribution from 

0 the return flux. The angular momentum in the crossed fields is calculated in 

a manner similar to Eqs. (1) and (2), with corrections when the origin is 

taken to be the center of the orbit of the particle rather than the position 

of the particle. In this case, there are three regions of physical interest: 

I. The electron is completely outside the return flux of the 

solenoid (or where the field has decreased to a negligible value as some power 

of the distance). This occurs in all practical cases of remote solenoids. 

The angular momentum and total flux (2) are zero, since the integral of the 
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magnetic field includes all of the return flux. The solenoid has no effect on 

the motion or angular momentum of the electron. 

II. The electron is in a region where there is a finite magnetic 

field due to the solenoid, either in the center of the solenoid or in the 

return flux. The electron feels a Lorentz force and exchanges momentum and 

angular momentum with the field. Angular momentum is conserved between the 

electron and the crossed fields, and the total,angular momentum always is an 

integral or half-integral multiple of H. 

III. The electron is in a field-free region between the solenoid 

and the return flux. The electron feels no Lorentz force. When the origin is 

chosen to be the center of the solenoid, the angular momentum in the crossed 

fields within the solenoid obviously vanishes in the limit of an infinitely 

thin solenoid. When the return flux is neglected this leads to the erroneous 

conclusion that the total angular momentum in the crossed fields is zero and 

not related to the vector potential by l?q. (4). Detailed calculations 141 

show that the angular momentum in the fields is all in the return flux, agrees 

with Eqs. (2a) and (4), and can take on any value depending upon the value of 

the flux. However, the allowed values of the mechanical angular momentum of 

the electron also depend upon the flux and are required to be just the right 

peculiar values to make the total angular momentum equal to an integral or 

half-integral multiple of fi. This dependence of the electron dynamics on the 

flux elsewhere is commonly known as the Aharonov-Bohm [13] effect. If the 

strength of the magnetic field is changed; i.e. by changing the current 

through the solenoid, the electron experiences a torque by the well-known 

betatron effect and its angular momentum and the angular momentum in the field 

are both changed by exactly the same amount in opposite directions to keep the 

total angular momentum constant. 
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When the electron is moved from the external region (I) through the 

return flux region (II) into the field-free region (III), angular momentum is 

exchanged between the electron and the field and is completely conserved 

between them. There is no torque on the solenoid, nor any angular momentum 

transfer between the electron and the solenoid 14-61, in contrast to the 

erroneous conclusions obtained by improper extrapolation from a two- 

dimensional model [7]. 

Further paradoxes arise in treating the angular momentum and 

statistics for n identical composite systems each consisting of a particle of 

charge e and a flux-tube or solenoid with flux $ and no return flux 171. The 

total electromagnetic angular momentum is -n(n-l)e$/4nc and arises from the 

Poynting vectors from the coulomb fields of the charges and the magnetic 

fields of solenoids in different composites. This angular momentum is 

independent of the choice of origin or the distances between systems. The n- 

dependence implies that allowed values of angular momentum are changed by 

introducing composites beyond the moon. Such contradictions arise when return 

fluxes are not introduced in a consistent fashion, with a return flux attached 

to each composite system and included in the permutations which define the 

statistics. 

We next consider the case of the motion of an electron in the 

presence of a magnetic monopole beyond the moon. Evaluation of Eq. (1) for 

this system gives the well known result [8-lo] 

FZ = eg/c (5=) 

where g is the monopole charge and the z axis is along the line between the 

two particles. This angular momentum is independent of distance as expected 
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from the scale invariance of Fq. (1). Both the long-range and short-range 

behavior have interesting implications. Here the necessity to restrict the 

values of the total angular momentum to either an integral or a half-integral 

multiple of fi leads to the Dirac quantization condition [ll] for electric and 

magnetic charges, 

eg/Kc = integer or half integer. (5b) 

The close analogy between the monopole and the solenoid problems can 

be seen by examining the motion of an electron in the presence of a monopole- 

antimonopole pair separated by a large distance. In the Dirac description of 

the pair, with a string singularity in the vector potential along a line 

joining the pair [ll], the magnetic field outside the string is equivalent to 

the field of an infinitely thin solenoid joining the pair. We can again 

define the three regions discussed above for the electron-solenoid problem. 

Here, all the physics is in the monopole fields outside the string, which is 

analogous to the return flux in the solenoid problem. The Dirac quantization 

condition (5b) is exactly the same as the Aharonov-Bohm condition to make the 

flux in the string unobservable in any field-free region. The magnetic field 

in the solenoid, i.e. along the string, is unobservable when condition (5b) is 

obeyed. 

For the physical solenoid beyond the moon, the flux inside the 

solenoid and the return flux outside contribute with opposite signs to the 

angular momentum in the crossed fields of the solenoid and a distant electron, 

and there is no constraint on the allowed values of the solenoid flux. For 

the monopole beyond the moon, there is only the magnetic flux emanating from 

the monopole source and no physical return flux. The flux carried by the 
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Dirac string is fictitious. The condition that angular momentum must be 

quantized in units of H/2 thus leads to the quantization condition (5b) on the 

charges, which is equivalent to the condition for the unobservability of the 

fictitious string flux by an Aharonov-Bohm experiment. 

It is noteworthy that the argument leading to the quantization 

condition (5b) assumes that the electromagnetic field is the only long range 

field that can give a finite angular momentum to a system of two particles 

separated by large distances. If another long range field, such as color, can 

give a finite angular momentum to the system of a charged particle on earth 

and a monopole beyond the moon, then the quantization condition (5a) must be 

modified. The value of the monople strength reported by Cabrera is consistent 

with the Dirac quantization condition (5b) where e is the electronic charge. 

The apparent contradiction between Cabrera's result [2] and the fractional 

charge e/3 reported by La Rue et. al. [14] can be resolved if there is an 

additional unscreened long range field which is coupled to both particles. 

Another paradox arises when the charged particle and the monopole 

are at exactly at the same point. In this case the electric and magnetic 

fields are exactly in the same direction and the angular momentum in the field 

is exactly zero. However, the finite angular momentum (5a) must hold for any 

finite separation of the two particles. The angular momentum in the field 

thus has a singularity at the origin which must be reflected in any dynamical 

description. In the quantum-mechanical case this can be seen by examining the 

behavior of the wave function at the origin for a system of a point charge 

moving in the field of an infinitely heavy point monopole. 

The total angular momentum of the system 3 is again given by Eq. (3) 

with t and 3 now denoting the orbital angular momentum and the total spin of 

the particle - monopole system. Let $ ("x) denote the wave function for the 
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charged particle, obtained by solving some wave equation in the monopole 

field. It could be a Dirac spinor, a Pauli spinor, or some boson tensor. We 

need not assume any particular dynamics at this point. Our result follows 

only from kinematics alone. Then 

(3 - “s, *(ii, = (t + +F) *(;, . (‘3) 

Since the angular momentum in the fields % is parallel to the vector ': if 

x#O 

“x.(3 - 3) yJ(Ti) = Ti *P *C”x) = (eg/Hc) x * (‘0 (7=) 

At x = 0, both t and % vanish. Thus, from Eq. (6), 

(3 - 1, $(O) = (t + +F) Ji(O) = 0. (7b) 

If $I (",) is an eigenfunction of the total angular momentum and the total spin 

with the eigenvalues j and s, 

(3 -I- 3, * (3 - "s) *(O) = [j(j + 1) - s(s + l)] *(O) = 0. 

Thus 

*(O) = 0 unless j = 6 # 0. 

(Jc) 

(8) 

(The partial wave j = s = 0 is excluded by the condition (7a)). 
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The wave function for any state of a charged particle moving in the 

field of a fixed point multipole must therefore vanish at the origin as a 

result of the kinematics of angular momentum conservation, except for partial 

waves with j = s # 0, which occur only for integral values of F and of the 

quantization condition (5b). Even in this case the wave function is highly 

singular at the origin if it does not vanish there. The operator S is a 

matrix in spin space and is independent of "x. For any wave function which is 

an eigenfunction of Jz, Fq. (7b) shows that $ (0) is a spinor which is an 

eigenfunction of S, with the same eigenvalue. But Fq. (7a) shows that JI (R) 

must jump discontinuously to a spinor which is not an eigenfunction of Sz with 

the same eigenvalue. There is a discontinuous spin flip when the particle 

passes through the origin. This result is independent of the detailed 

dynamics; e.g. whether the wave function is obtained by solving the 

Schroedinger equation, the Dirac equation or has an additional spherically 

symmetric field which conserves angular momentum (e.g. if the monopole is a 

dyon and also has an electric charge). In simple models, this exclusion of 

the particle from the origin is brought about by the presence of a centrifugal 

barrier in the wave equation, which exists [lo] even for the case of j = 0. 

But the essential physics is in the discontinuity in the angular momentum of 

the crossed fields P at the origin. 

Additional insight into this problem at the origin is obtained by 

examining the classical orbit of a head-on collision of a point charge with a 

monopole of finite size described by a magnetic charge density confined within 

a finite radius. Since the charged particle moves along the radius and is 

parallel to the magnetic field, it experiences no force and goes through the 

monopole with constant velocity. The angular momentum in the crossed fields 

is directed toward the monopole and is zerd when the particle is at the 
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origin. But the transition from finite angular momentum to zero is now 

continuous, rather than singular, since the angular momentum begins to 

decrease when the particle approaches the monopole radius. At the same time 

there is a torque on the monopole charge density due to the magnetic field 

around the moving electric charge. The angular momentum in the field thus 

decreases to zero and then reverses sign as the particle goes through the 

monopole, and the monopole's internal angular momentum (spin) changes 

accordingly as a result of the torque. Since the two-body problem is 

completely symmetric with respect to electric and magnetic charge, the same 

situation would occur for a finite sized electric charge and a point 

monopole. This spin excitation might explain the possibility of spin flip in 

certain partial waves for the quantum-mechanical case with point particles 

[I513 as indicated by Eqs. (7). 
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