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Abstract

Multipartite-entanglement tomography, namely the quantum Fisher information (QFI) calculated
with respect to different collective operators, allows to fully characterize the phase diagram of the
quantum Ising chain in a transverse field with variable-range interaction. In particular, it recognizes
the phase stemming from long-range (LR) antiferromagnetic interaction, a capability also shared by
the spin squeezing. Furthermore, the QFI locates the quantum critical points, both with vanishing and
nonvanishing mass gap. In this case, we also relate the finite-size power-law exponent of the QFI to the
critical exponents of the model, finding a signal for the breakdown of conformal invariance in the deep
LR regime. Finally, the effect of a finite temperature on the multipartite entanglement, and ultimately
on the phase stability, is considered. In light of the current realizations of the model with trapped ions
and of the potential measurability of the QFI, our approach yields a promising strategy to probe LR
physics in controllable quantum systems.

1. Introduction

The experimental realization of quantum simulators [ 1, 2] has made a significant progress in the recent years
[3-10]: systems of trapped ions [11, 12], ultracold atoms and molecules [ 13—15] and superconducting circuits [16]
are currently able to simulate important models of quantum physics. A notable example is the long-range (LR)
quantum Ising chain in a transverse field, which has been realized with up to ~50 spins [8, 9]. The experiments are
rapidly approaching the point where the outcomes cannot be efficiently computed on a classical machine. We thus
need methods for the reliable benchmarking of quantum simulators [17, 18]. These might be given, for instance, by
detecting specific properties of the ground state of the system that can be accessed without full state tomography.

The measurement of alocal order parameter is a standard example of such benchmarking: it signals the
onset of a dominant order in the system when tuning a control parameter that rules the competition between
non-commuting terms in a many-body Hamiltonian. It has thus been used to detect a variety of quantum phase
transitions (QPT's), in analogy to the detection of thermal phase transitions. This approach, however, provides
no information about quantum correlations in the considered system. Moreover, alocal order parameter cannot
distinguish between topologically trivial and nontrivial phases [19].

Another approach, which has emerged in the last decades [20—22], is to characterize the system via the
bipartite entanglement (BE) properties of the ground state. Entanglement between two parts of a many-body
system is a pivotal figure of merit and it is analyzed typically via the Von Neumann entropy [20-25] or the
entanglement spectrum [26-30]. An alternative approach to BE is the study of the two-body reduced density
matrix [31-33], also quoted as pairwise entanglement. BE has attracted large attention because it can be
efficiently computed [20] and it is a resource required for classical simulations of many-body systems with
numerical methods [22, 34]. It has been shown that in several short-range (SR) one-dimensional models BE
diverges logarithmically with the system size at criticality, whereas it does not scale in any gapped phase [20-22].
Instead, for LR models such a violation of the area law is found also in gapped phases [35-38]. Yet, not only it s
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difficult to experimentally extract BE in large systems [18] but, furthermore, alogarithmic scaling might be hard
to distinguish from a constant behavior in systems of relatively small size.

Here we consider a further possible approach to benchmark a quantum simulator. This is based on the
susceptibility of the ground state |1/)) to unitary transformations ¢~190 generated by some operator O and
parametrized by the real value ¢, as given by the quantum Fisher information (QFI) [39—41]. The QFI Fy[p, 0]
of a generic state /) quantifies the ‘spread’ of the state over the eigenstates of O (notice that Flp, 0] = 0ifand
onlyif [0, p1 = 0)and, in particular, it reduces to the variance Fy[|1)), O] = 4(AO)? for pure states.
Importantly, the QFI is a witness of multipartite entanglement (ME) [43, 44] for local operators 0, asin the case
of this manuscript, F[p, O] > Nk detects k-partite entanglement among N spins [42, 45, 46]. In particular, ME
is able to capture the richness of multiparticle correlations of many-body states beyond BE. The QFI ofa
quantum states calculated with respect to different operators O provides a ‘multipartite-entanglement
tomography’ that gives information not only about ME, but also about global properties of the correlation
functions [47-51]. The QFI is thus able to recognize different phases and QPTs of a many-body model.

In the present paper, we illustrate these ideas for the Ising chain with variable-range interactionin a
transverse field. We show how multipartite-entanglement tomography based on the QFI can give information
about—and distinguish— the paramagnetic (PM), ferromagnetic (FM) and antiferromagnetic (AFM) phases of
the model. For ordered phases, the optimal choice of operator O is given by the order parameter of the
transition, characterized by diverging fluctuations, and giving a Heisenberg scaling of the QF]I,

Follvgs)s O] ~ N2.For disordered phases there is an important difference between the SR and LR regimes:

while in the SR case the QFI is extensive, F, [|1/)gs> R O] ~ N, inthe LR case the QFI is superextensive,
Follvgs)s O] ~ NPwith1 < 3 < 3/2. This scaling law is directly related to the presence of power-law decaying

correlation functions, where O here is a suitable collective operator—generally different from the order
parameter—that maximizes the QFI in this regime. Interestingly, the LR disordered phase is also recognized by
the spin-squeezing parameter. We discuss the change of scaling of the QFI at the critical points when
interactions change from SR to LR, suggesting the breakdown of conformal invariance and capturing the mean-
field limit of the model. We finally extend our analysis to finite temperature [52] and show that the large
entanglement found in the ground state of the LR disordered phase is robust against temperature being
protected by a finite energy gap. Our results can be readily tested in current experimental systems. In particular,
the finite-size power-law scaling of the QFI is thus able—even at experimentally available sizes (N & 50)—to
detect the appearance of LR phases and to characterize QPTs beyond nearest-neighbor interaction. It is indeed
worth pointing out that the QFI can be experimentally addressed: it is related to dynamical susceptibilities [49]
and Loschmidt echo [53], and lower bounds can be obtained from the variation of statistical distributions of a
measured observable [45, 54], squeezing parameters [55-58], quantum coherence [59] and fidelity

measures [60].

2. The model

We study the one-dimensional quantum Ising chain in a transverse field, with variable-range interaction and
open boundary conditions. The corresponding Hamiltonian is

A N-1 N s@50) L\
A= Jsin0) ziz'a + Jcosf> 5, 6]
] i=1

i=1 j=i+1 li —

where N is the number of spins (in the following we assume even N), 51" is the Pauli matrix for the ith spin (i = 1,2,
..., N) along the direction n,and 7 > 0 sets the energy scale. The parameter § € [—/2, /2] rules the competition
between the transverse external field of magnitude 7 cos 6 and the spin—spin interaction of strength 7sin 6. The
decay power o > 0 specifies the range of the spin—spin interaction, which is FM for § < 0 and AFM for 6 > 0. For
a — 00, equation (1) reduces to the well-known quantum Ising model with nearest-neighbor interaction [61, 62].
For a = 0, equation (1) corresponds to a chain with infinite-range interaction, formally equivalent to the Lipkin—
Meshkov—Glick model [63]. For finite values of o, equation (1) is a paradigmatic model to study the physical effects
induced by LR interaction. Indeed, various theoretical works pointed out that this model displays many interesting
and peculiar features [64, 65], ultimately connected to the effective violation of locality [66, 67], including the semi-
algebraic decay for correlations in gapped regimes [35, 37, 68], the related violation of the area law for the Von
Neumann entropy [35, 36] and anomalous distribution for the entanglement spectrum [35, 66], and the breakdown
of conformal invariance at criticality [69, 70]. Moreover, new phases displaying these features, but not belonging to
the classification schemes for SR systems, have been identified theoretically in this model [35, 37, 71]. The interesting
physics associated to LR interaction concerns also fermionic lattice systems, characterized by nontrivial topological
invariants [36-38, 69, 72—77]. Notably, for these systems, BE is known to characterize only partially the LR regimes,
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Figure 1. Phase diagram of the Ising chain in the f—« plane. Colored regions highlight different phases, as recognized by both a
suitable order parameter and entanglement property (see main text). For « < 1and # < 0 (hatched region), the thermodynamic
limitis not defined. The solid black lines, separating the ordered phases from the disordered one, mark a vanishing mass gap in the
thermodynamic limit, they interpolate the numerical data 0 (blue dots) and 07 (orange dots). Triangles are known results in the
literature for the FM transition (blue triangles, [85]) and AFM transition (red triangles, [35]), see also [86]. The red lines show the
position of the FM critical points as calculated by a perturbative expansion at the first order (solid) and at the second order (dashed) in
0 — 0. The horizontal dashed line denotes a massive critical line at = 1, separating the short-range paramagnetic (PM) phase from
the long-range (LRPM) one.

not being able to distinguish in general the different LR phases [38, 74], while ME appears to be more indicative
[50-52].

Recently, the Hamiltonian (1) has been experimentally implemented with up to N & 50 spins. This has been
performed using trapped ions [5-8], Rydberg atoms in a cavity [9, 10], and ultracold spinless atoms in an optical
lattice [3]. In trapped-ion experiments, the tunable decay power « can be adjusted in the range 0 < o < 3.

3. Phase diagram

The phase diagram of the model shown in figure 1 is determined by the competition between the two non-
commuting terms in equation (1): the longitudinal exchange interaction and the transverse magnetic field.

3.1. Critical lines

For any fixed «, the Ising chain hosts two QPTs driven by the control parameter 6. Each QPT separates a
magnetically disordered phase from an ordered one, according to the spontaneous symmetry breaking of the
spin-flip Z, invariance of the Hamiltonian (1) in the thermodynamic limit. This behavior results in two lines of
critical points 0_ () < 0and 67 () > 0, where transitions from a PM phase to FM and AFM phases take place,
respectively. For & > 0, both the critical lines signal second-order QPTs. The model is analytically solvable in
two limit cases: for nearest-neighbor interaction (&« = 00) within a Jordan—Wigner transformation [78]; and for
infinite-range interaction (o = 0), within a Bethe ansatz [79, 80] and in the thermodynamic limit [81]. In the
case o = 00 the exactlocation of the critical points is well known [62]: 0. (co) = —m/4 and 8 (c0) = 7 /4. For
a = 0, instead, the fully-connected chain has a second-order FM transition at @ = 0[82, 83] and a first-order
AFM transition at § = 7/2 [84]. For any finite value of o, the emerging QPTs at finite N are signaled by a
minimum of the mass gap Apn(c, ), as a function of 6. In order to locate the transitions, we determine

Gf,(a) = ming Ay (0, «) for N = 10...120 and extrapolate the asymptotic value for N — oo by afit. The
numerical results are reported as dots in figure 1. The qualitative shape of the critical lines 6 («) (blue dots) and
67 () (orange dots) noticeably differ each others as a consequence of the distinct effect of the spin—spin
interaction.

For 6 < 0, the LR interaction enforces the FM order, even at strong magnetic fields: at fixed «, the PM phase
progressively shrinks when increasing N, and it disappears in the large-Nlimit if v < 1. In this regime (§ < 0
and o < 1), a perturbative calculation of the mass gap Apat first order for small values of the control parameter
6 (see appendix B) provides 6 y(a) = —1/N!'~%fora < 1and Oy(a) = —1/logN for a = 1, ensuring that
0. (a) = 0for @ < linthe thermodynamic limit, as indicated by the red solid line in figure 1. We argue that the
location of numerical results (blue dots) out of # = 0 is a numerical artifact of the finite-size analysis. The
predictions of the perturbative calculation for o > 1 are also shown in figure 1 as red lines: in the
thermodynamic limit we predict 6 (o) = —1/( (c) at first order (solid line) and 0_(at) = —(v/3 — 1)/¢ ()
at second order (dashed line) in 6, where (() is the Riemann zeta function.
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For § > 0, instead, the LR interaction strongly frustrates the AFM order: frustration entails a preference for
the system to endure in the disordered phase, even at low magnetic fields. Consequently, the AFM critical point
shifts towards larger values of § as « decreases. In particular, the fully-connected chain « = 0 becomes
completely frustrated and the corresponding AFM phase has a vanishing extension, reducing to the single
point 07(0) = 7 /2.

Finally, we notice that many studies, based on different numerical methods, have investigated the AFM and
FM critical lines [35, 37, 85-91]. Our numerical results agree well with the literature. In particular, in figure 1, for
comparison, we report the the location of the PM-to-FM QPT based on scaled exact diagonalization in the FM
regime (for @ 2 1) [85], and the location of the PM-to-AFM QPT based on maxima of the half-chain Von
Neumann entropy (for o 2 0.5) [35].

3.2. Quantum phases

The characterization of the different phases bounded by §_ () and 6 (cv) is primarily done in terms of suitable
order parameters that recognize the onset of the dominant FM and AFM order. We can distinguish three phases,
see figure 1.

3.2.1. FM phase
For sufficiently strong FM interaction, —7/2 < 6 < 6_(«), the system exhibits an ordered FM phase, where the
Z, symmetry is spontaneously broken in the limit N — oo. The order is detected by the longitudinal

magnetization &, = (1) fz|¢gs>, where [, = %Zfi ) 62(” . ®, is nonvanishing in a finite chain provided that an

irrelevant Z, symmetry-breaking perturbation h &%), with b — 0, is added to the Hamiltonian (1). If such a
perturbation is not added, in the limit § — /2 the ground state is the Greenberger—Horne—Zeilinger (GHZ)
state [gs) = ATEN 4 12N / 2 for all values of a, while in the N — oo limit this state becomes degenerate
with I’(/}és> = (TN — 112N / V2. Here and in the following, |1 ), and | | },, denote the eigenstates of &,.

The FM phase for o < 1 (hatched region in figure 1) deserves a comment since, here, the energy is
superextensive. In this case, the thermodynamic limit is not well definite. Yet, we do not encounter special
difficulties in characterizing this regime within our numerical studies at finite N. In particular, the ground state
for @ = —m/2 is the same for every value of & > 0. Furthermore, as discussed below, the QFI is superextensive
in the FM phase (above and below o« = 1) with the same scaling exponent.

3.2.2. AFM phase

For sufficiently strong AFM interaction, 07 (o) < 6 < /2, the system hosts an ordered AFM phase,

where the staggered longitudinal magnetization ®&" = <1/)gs|f z( 5 1)) acts as the order parameter, with

fZ(St) =N (- 1)'6. In particular, at § — /2, the ground state of a finite-size chain is the Néel state

[Vgs) = [UT):11)2 YEN/2 (1), |T>Z)®N/2]/ﬁ forany « > 0.For a = 0, instead, each spin is coupled with all
the others via the same strength, regardless of their mutual distance: the ground state at @ = /2 becomes the
symmetric Dicke state (often also indicated as twin-Fock state) [tgs) = Sym[|T)?" /2| | \2N/2], given by the
equally weighted superposition of all possible permutational symmetric combinations of N/2 spin-up and N/2
spin-down particles (for an even number of spins). It should be noticed that for § > 0, the energy of the ground
state is extensive for all values of &« > 0, even for & = 0and 6 = /2. This fact allows for a proper definition of
the quantum phasesevenat o < 1.

3.2.3. PM SR and LR phases

A disordered PM phase is displayed by the system for weak spin—spin interaction, both in the FM and in the AFM
regime, 0 (o) < 0 < 0% («a). The polarization provided by the transverse external magnetic field dominates
over the spin—spin interaction and determines the structure of the ground state. In particular, at @ = 0, the
ground state is given by the coherent spin state [gs) = (IT), — [1))®N / 2N/2 = | Y9N polarized along the —x
direction by the magnetic field. In the following, we distinguish a PM SR phase from a LR one. This distinction is
not based on an order parameter since the spin-flip Z, symmetry is preserved: ®, = 0 and ®*Y = 0, in the full
PM phase. Instead, for 0 < 6 < (‘)j(a) and a < 1, alogarithmic violation of the area law for the Von Neumann
entropy has been found in [35], and shown not to originate from finite-size effects. The analogy with critical
gapless systems motivated the introduction of an effective central charge [35], that has also been used as a tool for
probing the phase diagram [37]. Finally, by means of a Jordan—Wigner transformation, the LR Ising chain can be
mapped into a LR interacting fermionic chain [37], that, only in the PM regime at & < 1, turns out to be
characterized by the appearance of massive edge modes [37], similar to the ones found in the LR Kitaev chain
[36]. All these peculiar features induce to conjecture the existence of anew PM phase at« < 1[37], bounded
from above by a transition with nonvanishing mass gap at « & 1. This PM gapped phase, still preserving the Z,
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symmetry, will be quoted here and in the following as long-range paramagnetic (LRPM) phase, to distinguish it
from the ordinary PM phase occurringat o 2> 1.

In spite of the above theoretical clues, no valid observable for the experimental detection of the conjectured
LRPM phase has been identified so far, mainly because BE is challenging to be observed in extended systems (see
e.g. [14,92]). A similar open question holds for the nature of the AFM transitions at 8, (cv): from the scaling of
the Von Neumann entropy, the breakdown of conformal invariance induced by the LR interaction has been
suggested [37]. However, no detection criterion for observing the spontaneous breakdown of the conformal
symmetry has been available so far to our knowledge. A promising method based on the inspection of the finite-
size scaling of the ground-state energy density was suggested [36], but its reliable use is currently forbidden by
the limited size in experimental realizations of the LR Ising chain [8, 9].

4. Multipartite-entanglement phase diagram

In order to characterize the phase diagram of the Hamiltonian (1) beyond the analysis of order parameters and
BE, we study here the QFI and its lower bound given by the spin-squeezing parameter.
The QFI of a generic state p = Y-, p,|k) (k|, relative to an arbitrary operator O, is given by (see the recent
reviews [39—41] and references therein)
A A (P — Pp
Falip, 01 = 25 L= P o p, @
Kk Px Tt Pu
in terms of eigenstates |k) and eigenvalues p;, of the density matrix p. The QFI Fy[p, O] is related to the
distinguishability between two nearby quantum states p and p(¢) = e 19?pe'? via the Uhlmann fidelity
Tr[pY2p(0)p /2] =1 — éFQ [p, O1¢* + O(¢*): the QFI thus quantifies the susceptibility of p to unitary

parametric transformations. For pure states 1)), equation (2) reduces to the variance

Follv), 01 = 4((¢10°1) — (¢10w)*) = 4 (AO)™ 3)
Notice that Fg[p, O] = 0ifand only if [0, p] = 0: the QFI thus quantifies the ‘spread’ of the state over the
eigenstates of O.
Importantly, the QFI is a witness of ME [43, 44]. Specifically, for collective operators O = 3 ; 0; (ilabeling
the lattice sites) the violation of the inequality
A Fqlp, O]

ol 01 = =E2= < & @)

signals (k + 1)-partite entanglement (1 < k gAN — 1) between spins’, where f, is indicated as QFI density In
particular, separable states p,, satisfy f,[2,, Ol < 1[42]. Moreover, states with N — 1 < f,[p, O] < N are
genuinely N-partite entangled, fo = Nbeing the ultimate (Heisenberg) bound [42—44].

Here, we numerically study the QFI of the ground state |1)i;) of the Hamiltonian (1) (see appendix A for details

on the numerical methods), with respect to ordinary, j; = %Zfi . ?fl(i), and staggered, fl(St) = %Zi (= l)i&l(i),
collective spin operators. A central step in this calculation is the relation between the QFI relative to the collective
operators and the connected correlation functions C{* = <wgs|&,(’)&l(] ) [es) — (sl |gs) <1/)g5|51(] ) [gs)
[49,50]:

1 ¢ (1 )
and
f |1/)gs> (St)] = N E( 1)1 ]C(tj) ©
ij=1

It should be noticed that different operators yield different values of the QFI. The calculation of the QFI for different
operators provides a ‘tomographic survey of ME’ for the given quantum states [in particular of the ground state of the
Hamiltonian (1)] that is able, as illustrated below, to fully characterize the phase diagram. We optimize the QFI by
calculating the optimal eigenvalue of the 6 x 6 covariance matrix Cov(A, B) = 2(AB + BA) — 4(A) (B), where

A, B = Ji. 1,2 J, ;S)t,)z The optimal QFI is obtained by calculating the maximum eigenvalue of this matrix. We find

 MEis quantified by the number of particles in the largest nonseparable subset [41, 93]. A pure state of N particles is k-separable (also
indicated as k-producible in the literature) if it can be written as [ti_sep) = [¥n) @ [¥n,) @ ... ® [Phny,), where [¢)y;) isastate of N} < k
particles that does not factorize and Y"1 | N; = N. A mixed state is k-separable if it can be written as a mixture of k-separable pure states. A
state that is k-separable but not (k — 1)-separable is called k-particle entangled: it contains at least one state of k particles that does not
factorize.
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Figure 2. Scaling power of the QFI density, dlog f,, /dlog N (left panel, color scale), and of the inverse spin squeezing parameter,
dlogéy?/dlogN (right panel, color scale), for the ground states of the Ising chain (1) on the 6~ plane. The black dashed lines mark
the minimum of the mass gap. The vertical white line corresponds to @ = 0, where f, = 1. The asymptotic scaling of the QFI with Nis

Lo . . . . . o A(st) . ;
highlighted in the different regions, using the coznpactA notation f, g = folltgs), Lyl and fz(st) = fQ[Wgs), ]zst }, while the spin
squeezing parameter is calculates as sz = N(A])? / (Jx)*. Inboth panels N = 50.

that, depending on the values of the parameters  and «, see figure 2, the optimal operators are ]A),, ]; or fZ(St). We thus
restrict our discussion below on these operators. Notice that J, is the order parameter of the PM-to-FM QPT and /. Z(St)
is the order parameter of the PM-to-AFM transition, while ]} isnot an order parameter. The J; operator is never
optimal: in particular, we find f,, [|¢g), Ji] = 0at = 0, since in this case the ground state is eigenstate of J,, and
folltgs), L] = 1for = +m/2.

We also analyze the Wineland spin-squeezing (WSS) parameter [41, 55, 56]

N (A, )?
@ = )
K (Jn))?

defined in terms of first and second momenta of the collective spin operators Ji.In equation (7), njand n are
orthogonal directions chosen in order to minimize fﬁ. A state is said to be spin squeezed along the direction n |

if §§ < 1. This inequality is also a criterion for entanglement [94] and has been extended to witness ME [95]. The
inverse of the spin-squeezing parameter (7) is a lower bound of the QFI [39—41]: for any state p we have

N / ff{ < Fylp, ]An’i], where ', is a direction orthogonal to both n | and n. Notice that for pure states the
inequality N / 512{ < Folly), fnl] =4(A ]A,,’L )? follows from the Heisenberg uncertainty relation. The spin
squeezing is also related to the correlation function of collective spin operators and, for finite { ]AnH>, has the scaling
properties of (AJy, ).

The investigation of ME in the ground state of the Ising chains, as witnessed by the QFI and the WSS, has
been limited so far to the two extreme cases of nearest-neighbor & = 00 [48, 49, 96] and infinite-range o = 0
interaction [47, 96]. Several works have analyzed the QFI and the WSS in the ground state of the bosonic
Josephson junction, which formally corresponds to the fully connected Ising model restricted to the Hilbert
subspace of states that are symmetric under particle exchange [41, 49, 97]: see [41, 98—100] for experimental
investigations in Bose—FEinstein condensates. Notice that the ground state of the Hamiltonian (1) foraw = 01is
indeed given by symmetric states.

In the following we provide a study of the model (1) in the full range 0 < o < oco. We find that the QFI
witnesses ME, fo > 1,forany a > 0and = 0, when calculated with respect to the optimal operators reported
in figure 2(a). Instead, on the line # = 0, the ground state is separable (for any «), and the QFI does not overcome
thebound f, = 1.Inthe PM phase for § > 0, ME is also witnessed by the spin-squeezing parameter, as shown in
figure 2(b). We point out that, while the figure is obtained at N = 50, we have checked the qualitative stability of
the phase diagram as Nincreases up to N ~ 200: the change of behavior around ov = 1 becomes sharper.
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|96 fo

Figure 3. Panels (a) and (b): the solid lines show the QFI density fz’y = fQ [gs)s fw] and f Z(S‘) = fQ [1gs) fz(m] as a function of 6. The
black dashed line is the inverse spin-squeezing parameter calculates as §§ = N(AL)? / ( ];)2 for @ > 0and fZR =N(A fy)z / (];)2 for

0 < 0.The vertical gray dashed lines indicate the position of the critical points, extrapolated in the limit N — oco. Values of the QFI
density in the gray region (correspondingto f > 1) are only possible for entangled states. In panels (c) and (d) we plot the derivative
off, .and fz(so with respect to 8. Here N = 50, panels (a) and (c) refer to « = 3, while (b)and (d) to v = 0.5.

4.1. FM regime

For < 0 the QFI is maximized when calculated with respect to the operator J,, which is the order parameter of
the PM-to-FM QPTs, see figure 3. In the FM phase, § < 0 (cv), we find the power-law scaling f;, [|¢/gs), Ll ~N
for any o, with a prefactor that depends on 6. In particular, at @ — —m/2, where the ground state is given by the
GHZ state, the Heisenberg limit fQ [[gs) J.] = N isrecovered. It should be noticed that fo [1gs) L] ~ Nin
the FM phase both above and below o = 1 despite the superextensive energy scaling in the LR regime.
Conversely, the QFI is only extensive in the PM phase, fo [1*gs)» L1 ~ O(1). Still, the QFI witnesses ME: we find

fQ [1gs)» J.1 > 1lin the full PM phase. The PM-to-FM QPT at 0 (a) marks a change of scaling of the QFI with N.

The derivative of the QFI with respect to 6, de [1*gs) A / d6 is thus characterized by a pronounced maximum at
0 = 6. (), see figure 3, that diverges in the thermodynamic limit.

4.2. AFM regime
The AFM regime is richer than the FM one. In the AFM phase, for § > Gj'(a) and o > 0, the QFIis maximized

when calculated with respect to O = . Z( % which is the order parameter of the PM-to-AFM QPT. Similarly as

above, this QPT is associated to a divergence of the derivative of the QFI with respect to 6, d}i2 [10gs)» fz( St)] /dé,

see figure 3. In the AFM phase, the QFI has a superextensive scaling: we find f, (1Y) fz(“)] = c(a, 0) N with

c(a, ) < 1. Inparticular, for @« = 00, the analytical calculation of the correlation functions [78] provides

c(00, 0) = (1 — cot?)!/* . Inthelimit — 7/2, where the ground state is the Néel state, the Heisenberg limit

c(a, 0) = 1isstrictly saturated for all values of > 0, see figure 4(a) for a plot of fQ (1*gs) fz(m] asa function of N

in the AFM phase. At @ = 0 the ground state is instead given by the symmetric Dicke state and we have c(a, §) =
1/2 + 1/N.
Inthe PM phase, 0 < 6 < 07 (a), the QFI has two clearly distinguished behaviors, see figures 2 and 3. For SR

interaction, a > 1, we find an extensive QFL, f,[[¢/g), fz(St)] ~ O(1)and f; [|11ys), J,] ~ O(1), see figure 4(b):

the quadratic term in the Hamiltonian (1) is responsible for ME (fo > 1), but the entanglement depth does not
scale with the system size. In particular, for & = 00, the QFI is maximized when calculated with respect to

o= fz(so forall values of 0 < 6 < 67 («). There, the correlation function Cz(;’j) ~ (=1) e~ li=11/¢ induces

fQ [gs), fz(st)] ~ 2(1 — e~ V/¢)~1, in virtue of equation (5), where £ is the (finite) correlation length. On the

contrary, in the LRPM phase at o < 1, the QFI is maximized by O = ]}, thatis not the order parameter
of the PM-to-AFM QPT. Here, the QFI has a superextensive scaling. For v = 1, we find the logarithmic
behavior f,[[¢ygs), J,1 ~ log N analytically suggested by a perturbative calculation, see appendix B, and
tested by numerical calculations up to N = 200, see figure 4(c). For & < 1 we find a power-law behavior
fQ [1gs)» ]}] ~ NA@ where 0 < B(a) < 0.5, see figure 4(d). In particular, a variational ansatzat o = 0
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Figure 4. Finite-size scaling of the QFI (dots) with N. Different panels are: (a) @ = 1and § = 1.47 (AFM phase); (b) & = 3 and

0 = 0.1 (PM phase); (c)« = 1and § = 0.1 (transition between PM and LRPM phases); (d) « = 0.1 and # = 0.1 (LRPM phase). The
blue solid lines are fits: (a) f(s‘) 0.99N" 0 (b)f, = 1.12 — 0.13/N°%*, (¢) f, =1+ 008logN,(d)f, =1+ 0. 17NO -4 For
comparison, the fits up to N = 50 provide the same values of the fitting parameters for the panels (a)—(c), within a 10~ % precision,
while for panel (d) we obtainf, = 1 + 0.12 N2 In all panels, the red dashed lines are analytical predictions obtained with a
perturbative approach and valid for sufficiently small N, see appendix B.

predicts f, [1¢gs), J,1 = VN tan 6, see appendix C, in very good agreement with the numerical calculations for
large N.

The super-extensiveness of the QFI directly stems from the power-law tail in the algebraic decay of the
correlation functions Cg,’j )[35, 37]. Interestingly, the behavior of the QFI in the PM phase is fully captured by the

spin-squeezing parameter: we find £ ;> = ( Ji)?2 / (N(AL)?) ~ fo [|Y)gs) J, ], as shown in figures 2 and 3(b).

4.3. Crossing the massiveline o = 1

>Here we focus on the PM phase 0 < 6 < 6. in the AFM regime. As discussed above, and shown in figure 2,
when crossing the massive line &« = 1, the scaling of the QFI with N changes from extensive (fora > 1) to
superextensive (for av < 1). This result can be taken as a strong indication for a gapped QPT occurringat o = 1
from a SR phase to a LR phase. This is a consequence of the change of behavior of the correlation function that is
captured by the QFIL. More explicitly, assuming fy = fo [1*gs) > ]A},] ~ a(a) x N9, asobtained from our
numerics, we find

df,
=y Nﬁ(@)(m + a(a)mlogz\])_ (8)
da da da
d
For 0 < 6 < 6, wehave B(cr) = 0for o > 1.In this case, the derivative equation (8) reduces to i = M that
df
does not scale with N. Conversely, for & < 1wehave 3(a) = 0andwefind y ~ NB@ (assumlng da(“) = 0

and neglecting logarithmic corrections). In figure 5 we plot df , obtained numencally (without any assumptlon
on the the functional form of f,), as a function of o (panel (a)) and as a function of N (panel (b)). Both panels

suggest (despite the system sizelimited to N = 100) a sharp change of behavior around o = 1: while 2=
increases with Nfor o < 1, it remains approximately constant for o > 1.

To gain more insight into the behavior of —* atlarge N'we consider the results of the perturbative calculation
for  — 0", see appendix B: we have

de[l"/)gs>: jy] _ s N -1 0 dGn (@) ©)
do \ N da
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Figure 5. Derivative of fQ [[tgs)> fy] with respect to o as a function of & (a) and N (b) for § = 0.1.

where, to leading order in N,

d¢ (@)
don(@) ) da
da 1
(a — D(a —2)

fora > 1

(10)
N'=%logN for0 < a <1

((«) being the Riemann zeta function. This analysis supports the numerical findings: i increases with N for
a < 1,whileit does not scale with Nfor & > 1. A similar behavior as in equation (9) is Tevealed by the fidelity
susceptibility, again obtained from a perturbative calculation, see appendix B. It should be noticed, however,
that the condition of validity of perturbation theory, § Gy(a) < 1, sets an upper limit for the validity of
equation (9): for fixed @ < 1, the finite-size scaling for & < 1is only guaranteed when N < §~1/(=)
Namely, from equation (9) we cannot claim a superextensive scaling in the thermodynamic limit.

Summing up, our numerical and analytical results allow to locate the boundary between the SR and LR
regimes at « = 1, also improving the precision of previous studies [37].

5. QFI along the massless critical lines

The QFI is also useful to probe directly conformal invariance along the critical lines (), see figure 6. Indeed,
the QFI density fQ [1tlgs)» 0] being here the order parameter of the transition) scales with the systems size at
criticality as fQ [*gs) O] ~ N9286 (d = 11in our case), where Ay is the scaling dimension of O [49]. At
criticality and for one-dimensional quantum systems, conformal invariance fully constrains the set of possible
Agp(seee.g. [101,102]).

For the AFM transition, we probe the scaling of fQ [Vgs)s ), ot )] with the systems size Nalong 07 (c), while for

the FM transition we probe the scaling of f(} [gs)» A along 6 (). In both cases, such a scaling is known to be

constrained by conformal invariance to N°'%, corresponding to Ay = 1/8, the scaling dlmensmn of the

magnetization operator in the Ising universality class, ruled by the conformal central charge ¢ = - 2 [101,102].
Figure 6 shows

(1

asa function of v along 0_ () (panel (a)) and 6. («) (panel (b)), as determined numerically from a finite-size
analysis of our data for N = 10...120. The error bars are mainly due to the numerical indeterminacy in finding
the critical point #(«), identified here as the minimum of the mass gap.

5.1.Scaling along the FM critical line
Along 0. (o), the conformal scaling holds for « 2 3, see figure 6(a). This is consistent with the results of [64]
where it has been shown that for v > 3 the phase transition is in the universality class of the SR Ising transition,
see also [85, 91]. Actually, taking into account corrections beyond mean-field, the threshold for the onset of the
SR universality class can be putat o = 2.75[89, 106, 107].

For a < 3, we find that 5(«) decreases downto 3 = 0 atw = 1. The scaling of the QFI density for
1 < a < 3 canbe obtained from a Landau—Ginzburg approach. We introduce the effective action

9
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Figure 6. Scaling power for the QFI density, 3X(a) = dlog To / dlog N, along the critical massless lines. (a) Scaling 3 («v) along

0_ () (blue dots). In the hatched region the thermodynamic limit is not definite: here 3. (c) & 0. The solid blue line is the mean-field
prediction 57 () = (o — 1) /2, which is expected to be accurate for 1 < o < 5/3 (light gray region). The scaling for the nearest-
neighbor Isingmodel 3. = 3/4 (horizontal dashed line) is expected to hold for « > 2.75 (dark gray region). Open squares are the
scaling of the spin-squeezing parameter dlog £;* /dlog N. (b) Scaling 3/ (cv) along 0 («t) (red dots) as a function of a. The dashed
lineis 8 = 3/4. Open squares are the scaling of the spin-squeezing parameter dlog § EZ / dlog N. The inset shows the scaling power
() obtained directly from power-law fits on the correlation functions (5?5 N/2+N/9))  NA(@=145 4 function of N (green
dots) and (5N / DN / 20y ~ pB@=1a5a function of rat N = 120 (purple circles). These results are consistent, within error bars,
with the values of 3/ () obtained from the analysis of the QFI (orange region, corresponding to the values shown in the main figure).
For comparison, we report the results of [35] (red triangles). In both the panels, the error bars are mainly due to the uncertainty on the
location of the critical points.

S = [drdrldi(n (=07 + 08 )6x 1) + g 166 DI + ol DI, (12)

where ¢ (x, t) represents, at the low-energy effective level, the order parameter ®, = (1) ];|¢gs>, gisacoupling
constant, and 0] denotes the fractional derivative. This action can be justified by a renormalization group
procedure, suitably modified for LR models [70, 75], and it is known to be dominant, in therange 1 < o < 3
[85, 103], with respect to the conformal Landau—Ginzburgaction [101, 104]

§= [dx dtl (e (=07 + 0D 1) + g 1666 DI + o(lox, DI, (13)

The action (12) predicts the breakdown of the conformal invariance [owned instead by (13)] [75]: for instance,
beyond the Lorentz (Euclidean) rotational invariance, the invariance under dilatations (¢, x) — A (¢, x) is lost,
substituted by an ‘asymmetric’ version counterpart (t, x) — (A t, Ae’1 x). This fact is also associated to an
anomalous dynamical exponent z = “— L [85], if the interaction terms ~O(|p(x, t)|*)are neglected. More
importantly, (12) implies the behavior for the time-independent correlations [105]

(gl (0, 006 (6, 0)[tgs) ~ xl% (14)

Exploiting the relation (5) between the QFI and the two-points correlation functions, we have

a—1

f[lwgs>a jz] ~ Nz (15)

giving 8. () = (o — 1) /2. This result agrees well with our numerical calculations, see figure 6(a).
Equation (15) is also recovered taking into account the relation Ay = —(1 — 1 — z) /2, and using the
mean-field critical exponents nmf =3 — qandZ™ = (a — 1)/2 calculated in [85], giving BZ’mf (o) =
1 —2A2f =2 — ™ — 2™ = (o — 1) /2. This prediction is expected to be accurate for « < 5/3[85]. For
larger values of «, the deviation from equation (15) is probably a clue that a more careful renormalization group
treatment is required, such to properly account the interplay between (12) and (13), as well as the interaction
terms ~O(] ¢ (x, t)|*), able to change the dynamical exponents.

In figure 6(a), we also show the scaling of the spin-squeezing parameter §§ = N(A ]} )? / ( ]Ax>2 at 0 (o). We
find dlog&,,* /dlog N = 0 for all values of a: differently from the QFI, &> does not scale at the transition point.

5.2.Scaling along the AFM critical line
Along 0 (o)) we find 37 (o) ~ 3/4 for a 2 0.5, see figure 6(b). For a < 0.5, 37 increases smoothly up to

BT = lata = 0. Notice that the scaling folltes), fz(st)] ~ N at0f(0) = /2 is analytically known and

recovered by our numerics. In figure 6(b) we also report the scaling of the spin-squeezing parameter
& = N(AL)?/(J)*. Wefind dlog £;? /dlog N = 0 for a > 1, whileitincreases for e < 1.

10
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In [35] the scaling of (5N/25N/2+N/5))  N=2A: has been analyzed on the AFM critical line ) (cv), as a
function of Nand for values « > 0.3. The coefficient A, has been found to depart from the SR value A, = 0.25 for
« /2 2.25, then decreasing and reaching A, = 0.2 at @ & 0.5. The scaling coefficient A, can be directly related to
the scaling of the QFI: 3 = 1 — 2A,. Theresultsfor 1 — 2A_ found in [35] are reported as triangles in the inset
of figure 6(b) and compared to the values obtained in our numerical calculations (orange regions, corresponding to
the data of the main panel). They agree with our results exceptin therange 1 < o S 2 where theyare
systematically above our findings. As a check of our numerical calculations, the inset of figure 6(b) shows the
scaling 3(a) obtained from the finite-size scaling of correlation functions (N2 5 (N/2+N/5)) , NB@) -1 (green
dots) and from the power-law decay (5~ /2N 2+ D) ~ rA@=1for N = 120 (purple circles). We see that the
values of 3(c) extracted in both cases are consistent with 37 () obtained via the analysis of the QFI. We thus
conclude that the slight discrepancy within our numerical results and those of [35] is most likely due to the
uncertainty in locating the critical point 8 (). It should be noticed however, that the interesting regime, where
(7 is notably different from the SR scaling, is found for values of o < 0.5, that were not analyzed in [35].

The results reported in figure 6 strongly suggest the breakdown of conformal invariance along 6. («) and
0 (a) due to the LR interaction in (1), at small-enough a. The same breakdown has been previously inferred in
[37], based on the scaling of the Von Neumann entropy. Oppositely to this quantity, the QFI density can be
measured experimentally, yielding a direct way to probe the breakdown of conformal invariance in critical
quantum systems.

6. ME at finite temperature

The calculation of the QFI can be straightforwardly extended to finite-temperature states, using equation (2) and
assuming thermal equilibrium p = e H/T / Tr[e H/T], where Tis the temperature and the Boltzmann kg is set
to kg = 1[49,52, 108]. The QFI is obtained here by full numerical diagonalization of the Hamiltonian (1) for
fixed system sizes N < 20. The decay of the QFI density with T characterizes the robustness of ME in the various
phases. In [52] it has been shown that

TolPr O]A >tanh2(é) 1 + e*A/T’ (16)
folPr— Ol 2T p+ve AT
where ;1 and vindicate the degeneracy of the ground state and the first excited state, respectively, and A is the
mass gap, namely the finite difference between the ground-state energy and the energy of the first excited state in
the thermodynamic limit. Equation (16) identifies a temperature regime below a crossover temperature of the
order of A, where the QFI density is at least constant, lower bounded by its zero-temperature limit.

Figures 7(a)—(c) show the QFI density in the 6—« phase diagram at different temperatures (color scale, where
T'is expressed in unit of the magnetic coupling .7 in equation (1)), with the white regions corresponding to
fo < 1.Inthe FM and AFM ordered phases, the zero-temperature QFI is much larger than in the PM phase, see
figure 7(a). Yet, this large value is lost abruptly for arbitrary small temperature T (in the thermodynamic limit),
reaching [52]

A 2 A A A
folbr—p O1 = ﬁ“AO)f%J + (A0 — 2 (Ul Ol ), (17)

which is much lower than fQ [1*gs) > O]. In equation (17), [1)gs) and |wfgs> are the two quasi-degenerate ground

states in the FM and AFM phases. The discontinuity between fo [1*gs) Oland folbr—o Ol is due to the
presence of a spontaneous symmetry breaking of the spin-flip Z, symmetryat T = 0, resulting in a quasi-
degeneracy of the ground state (that becomes an actual degeneracy in the thermodynamic limit only). In

figure 7(b) and (c) we see that the QFI in the FM and AFM phases at finite temperature is not high enough to
witness ME. The QFI density remains high only close to the critical lines and, most interestingly, in the LRPM
phase. Indeed, in the LRPM phase the ground state is nondegenerate also in the thermodynamic limit, as well as
in the PM phase, so that, according to equation (16), the superextensive ME witnessed by the QFlat T = 0, for
0 < 0 < 07 and a < 1,survives up to temperatures T ~ A. The typical decay of the QFI density in the LRPM
and PM phases, compared to the lower bound equation (16), is shown in figures 7(d) and (e), respectively.

In figure 8 we plot the thermal phase diagram 6—T of the QFI density for different values of «. The colored
region corresponds tofo > 1, where the QFl witnesses ME, while f, < 1in the white region. We clearly
distinguish two ‘lobes’ on the FM and AFM sides of the phase diagram. On the basis of the results above, we
argue that the FM lobe (at @ < 0) disappears in the thermodynamic limit for o < 1 due to the disappearance of
the PM phase. The boundary of the AFM lobe (at § > 0) for small values of 6 is well reproduced by the condition
& = 1(dashedline) corresponding to the thermal loss of spin squeezing. Figure 8 also clearly shows the sharp
decrease of the QFI in the FM and AFM phases at vanishingly small temperature T/ J — 0[52].
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Figure 7. The upper panels show the QFI density fQ [prs Olasafunctionof@and afor T = 0(a), T/J = 0.05(b)and T/ J = 0.2
(¢). In the colored region the QFI density witnesses ME, since fo > 1, while in the white regions f,, < 1. The operators chosen to
calculate the QFI on the - plane are the same used at zero temperature in section (4). The black dashed lines signal the minima of the
mass gap A. The scarce appearance of the LRPM phase is a consequence of the very limited size of the chain adopted here, N = 10.
The lower panels show the QFI density (dots) as a function of T, compared with the analytical bound equation (16) (solid line). In
panel (d), 0 = m/4and o = 0.5 (LRPM region), in panel (¢), § = w/4and a = 3 (PMregion). The vertical dashed lineis T = A.
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Figure 8. QFI density f,[(r, O] (color scale) of finite temperature states Pr>on the 0—T plane. Different panels correspond to
different values of or. ME is witnessed in the colored regions. A sudden decay from the high values at T = 01is observed in the FM and
AFM phases, due to the quasi double-degenerate ground state. The QFI is optimized for any , and T. As examples, the two insets in
the panels for « = 0.5and o = 3 display the optimal operators on the —T plane: blue for J,, yellow for ]} and red for fZ(St). The black
dashed line & = 1 encloses the area where the spin-squeezing parameter is able to detect entanglement. The black circles mark the

position of the critical points. In all the panels, N = 10.

We conclude this section noticing that, due to the absence of edge states, even in the open chains, the
discussion about the phase stability against temperature, performed by the scaling of the QFI density and based
on equation (16), does not suffer of deviations from edge contributions, similar to those hypothesized in [109].
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The present study suggests the potential relevance of QFI for the study of the interplay of temperature and
disorder [113-115].

7. Discussion and conclusions

The scaling of the QFI calculated with respect to different collective operators yields a characterization of the full
phase diagram of the LR Ising model that can be probed in current quantum simulators, even for alimited

(N < 50) number of spins. This approach provides a clear signature of many physical effects that characterize
the model, as the presence of a LRPM phase at o < 1, the change of the scaling along the critical massless lines
for small values of « and a probe of the mean-field regime. The LRPM phase is particularly interesting. Here, ME
can be also captured by the spin-squeezing parameter, that largely simplifies experimental detection and
characterization of the state. The large ME (namely, superextensive QFI and inverse spin-squeezing parameter)
found in the ground state is robust against temperature, being protected by an energy gap that remains finite in
the thermodynamic limit. Furthermore, the LPRM phase can be addressed by preparing the ground state at

0 = 0and adiabatically increasing the coupling strength, without crossing any QPT. Finally, we recall that the
QFI studied here and the spin-squeezing parameter are directly related to metrological usefulness of a quantum
state, see [41] for a recent review. Therefore, we can conclude that the ground state of the LR Ising model,
especially in the robust LRPM phase, can be a resource for entanglement-enhanced metrology.
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Appendix A. Numerical methods

The Ising Hamiltonian (1) is analytically treatable only in the special case of nearest-neighbor interaction

(av = 00). In this case, exact results for the correlators appearing in equation (5) can be found for a close chain in
the thermodynamic limit, see [101] and references therein. Instead, when considering arbitrary interaction
range o, we must rely on numerical results. For short chains N < 20 we performed an exact diagonalization to
find the full spectrum and energy eigenstates, from which a derivation of the energy gap, order parameter,
fidelity susceptibility and QFI is possible. For N > 20, we utilized an algorithm based on the density-matrix
renormalization group [110, 111], an iterative variational technique optimized for the convergence of the
ground state that provided us with all the spin—spin correlations, by which we could evaluate the QFI via the
relation (5), up to about N = 200.

Appendix B. Perturbative calculations

We have performed a perturbative calculation of the ground state for § — 0. At @ = 0 the ground state is given
by |¢(g2)> = ||)¢N. At first order in 6, we find the normalized state

1
— () — 8 Gu(@ ), (B.1)

A

where [¢©) = Sym[||)?V~2|])%?]is the unperturbed second excited state, given by the normalized symmetric
superposition of N — 2 particlesin || ), and two particlesin |1),, N, = 1 + 0*[Gn()]?,

[0 0)) =

N HN a T HN a—1
= = . B.2
G(a) =~ (B.2)

and Hy , is the Nth generalized harmonic number of order . In the limit N > 1, the calculation of Gy ()
involves handling hyperharmonic series, whose convergence is only attained for o > 1:
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() fora >1
1 log N fora=1
G(o) ~ —= A , (B.3)
—— N2 foro<ax<1
1-—a)2—

where {() is the Riemann zeta function. The perturbative expansion in equation (B.1) is thus obtained at fixed
0] < 1/logNifa = lor|f] < 1/N'~%ifa < 1, such to fulfill the condition of validity of perturbation
theory, 6 Gy(a) < 1.For a < 1, this approximation breaks down in the thermodynamic limit.

B.1. Ground-state energy and FM critical line
Using the nondegenerate perturbation theory it is also possible to evaluate the shift of the lowest energy levels
due to the (small) interaction term. Up to the second order in 6, we find Eész) /J = —N — 40?[Gn())? and

Ee(f)/j: 2—-N + 20,/8% On(a) — 12%92[@\](&)]2. Considering the form of Gy(a) for N > 1, at
a> lwefindAY =2 + 20¢(a) and AP =2 4 20¢(a) — 0*C*(c). The functional form of 0 () is

obtained, at first order, from A" = 0, and, at second order, from A® = 0. Results are reported in the main
textand in figure 1.

B.2. Quantum Fisher information
Using equation (B.1) it is possible to calculate the QFI for the different collective operators considered in the
main text:

-

8 A
N 02 [Gn ()] for O = J,
1+6 SN_IQN(Q) forO:fy
1-0 /s "L Gy forO=1.
folll(9)), O1 = 3 . (B.4)
2 p1guarr for 0 = ("
N
1-6 L On(@) foré—f(so
NN-1 y
8 A A(st)
1+0 | —— Gn(a) for O =],
VN - v
These predictions are in agreement with the behavior found numerically, see figure 4.
B.3. Fidelity susceptibility
Let us now evaluate, at fixed Nand 0 (such that 8 Gy(a) < 1) the fidelity between the ground states
corresponding to two close interaction ranges avand « + da: atleading order in 6,
02
Faarso =1 (WR 0, )[R O, a + b)) P~ 1 — T On(a + ) = Gu(@)F. (B.5)
This yields the fidelity susceptibility [112]
. IOg ‘7:04 a+da [ 8 ]2
= —2lim =22 = 02 —Gn(a) | . B.6
Xa bae—0 (60[)2 Oa N( ) ( )
We find that x,, asymptotically scalesas N2 =% (In N)? forlarge Nwhen o < 1, whereas it saturates toa
constant O(1) when o > 1.
Appendix C. Variational calculation
For o = 0 we use a variational ansatz to calculate the ground state and the QFIL. We rewrite equation (1) as
A .
— =], sinf + J; cos. C.1
2J D

It is well known that the model (C.1) can be studied by restricting to a basis of eigenstates {| 1) } of the collective
operator I (];W) = p|p), withy = —N/2, =N/2 + 1,..., N/2) made of N + 1 orthogonal states symmetric
under particle exchange. We search the ground state making use of the Gaussian variational ansatz
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N/2 o—p?/(40?)

|¢g5> = Z

———7Il)> C.2
u=—N/2 (27"‘72)1/4|M> (€2

where the width o is the sole variational parameter. We further assume N > 1and a sufficientlylocalized
wavepacket so to neglect border effects. We minimize the energy Egs = (g H|1g5)s

Egs
=& ~ o%sinf — Hcos@[l — i(02 — l)]esiZ, (C.3)
20 2 N2 4
wherewe haveused ./(N/2)(N/2 +1) =~ N / 2 and taken the continuous limit for p. Within the same
approximations, the QFI calculates as f [|1/y;), ]}] =N / (40%). The equation iig; = O gives
1 1 .
efsn%( N - — = —) cosf = sinf. (C4)
160* 8No? N

For 02 >> 1we can neglect the term e w2 in equation (C.4) and we obtain

N 1 ~
2N 1 and ) i1=+JI + Ntand, C5
o 1 7 — and  f[|[Yg), Jy] an (C.5)

recoveringo® = N/4and f [*gs) ];] = 1, respectively, at @ = 0. We can distinguish different behaviors and

limits. For 0 < € < 1/N (corresponding to the so-called Rabi regime for the Josephson junction [41, 97]), we
obtain g% = %( 1 — NT(}) and f[|1g), ];,] =1+ N%’, which is exactly the perturbative prediction reported in

equation (B.4) forae = 0.For 1/N <« tan§ < N (corresponding to the so-called Josephson regime [41, 97]),

2= ]62:“ 5 and thus f [|¢g), ]}] = +/N tan 0, in agreement with our numerical calculations

predicting a scaling N'/? of the QFI density, see figure 2. For tan 6 >> N (Fock regime [41, 97]), equation (C.5)
predicts ¢ = 0, corresponding to the symmetric Dicke state limit of equation (C.2), [thg) = | = 0), and for
this state the QFI is equal to f [|t)ys), ]}] =N / 2 4+ 1.Wecan thusroughlylocate a diverging derivative of the
QFI (signaling the critical point) at § = arctan N, thatis — /2 for N — oo.

we obtain o
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