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Abstract
Multipartite-entanglement tomography, namely the quantumFisher information (QFI) calculated
with respect to different collective operators, allows to fully characterize the phase diagramof the
quantum Ising chain in a transverse fieldwith variable-range interaction. In particular, it recognizes
the phase stemming from long-range (LR) antiferromagnetic interaction, a capability also shared by
the spin squeezing. Furthermore, theQFI locates the quantum critical points, bothwith vanishing and
nonvanishingmass gap. In this case, we also relate thefinite-size power-law exponent of theQFI to the
critical exponents of themodel,finding a signal for the breakdown of conformal invariance in the deep
LR regime. Finally, the effect of afinite temperature on themultipartite entanglement, and ultimately
on the phase stability, is considered. In light of the current realizations of themodel with trapped ions
and of the potentialmeasurability of theQFI, our approach yields a promising strategy to probe LR
physics in controllable quantum systems.

1. Introduction

The experimental realization of quantum simulators [1, 2]hasmade a significant progress in the recent years
[3–10]: systems of trapped ions [11, 12], ultracold atoms andmolecules [13–15] and superconducting circuits [16]
are currently able to simulate importantmodels of quantumphysics. Anotable example is the long-range (LR)
quantumIsing chain in a transversefield, which has been realizedwith up to∼50 spins [8, 9]. The experiments are
rapidly approaching the pointwhere the outcomes cannot be efficiently computedona classicalmachine.We thus
needmethods for the reliable benchmarking of quantumsimulators [17, 18]. Thesemight be given, for instance, by
detecting specific properties of the ground state of the system that canbe accessedwithout full state tomography.

Themeasurement of a local order parameter is a standard example of such benchmarking: it signals the
onset of a dominant order in the systemwhen tuning a control parameter that rules the competition between
non-commuting terms in amany-bodyHamiltonian. It has thus been used to detect a variety of quantumphase
transitions (QPTs), in analogy to the detection of thermal phase transitions. This approach, however, provides
no information about quantum correlations in the considered system.Moreover, a local order parameter cannot
distinguish between topologically trivial and nontrivial phases [19].

Another approach, which has emerged in the last decades [20–22], is to characterize the system via the
bipartite entanglement (BE) properties of the ground state. Entanglement between two parts of amany-body
system is a pivotal figure ofmerit and it is analyzed typically via theVonNeumann entropy [20–25] or the
entanglement spectrum [26–30]. An alternative approach to BE is the study of the two-body reduced density
matrix [31–33], also quoted as pairwise entanglement. BE has attracted large attention because it can be
efficiently computed [20] and it is a resource required for classical simulations ofmany-body systemswith
numericalmethods [22, 34]. It has been shown that in several short-range (SR) one-dimensionalmodels BE
diverges logarithmically with the system size at criticality, whereas it does not scale in any gapped phase [20–22].
Instead, for LRmodels such a violation of the area law is found also in gapped phases [35–38]. Yet, not only it is
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difficult to experimentally extract BE in large systems [18] but, furthermore, a logarithmic scalingmight be hard
to distinguish froma constant behavior in systems of relatively small size.

Here we consider a further possible approach to benchmark a quantum simulator. This is based on the
susceptibility of the ground state gsy ñ∣ to unitary transformations e Oif- ˆ generated by some operator Ô and

parametrized by the real valuef, as given by the quantumFisher information (QFI) [39–41]. TheQFI F O,Q r[ ˆ ˆ ]
of a generic state r̂ quantifies the ‘spread’ of the state over the eigenstates of Ô (notice that F O, 0Q r =[ ˆ ˆ ] if and

only if O, 0r =[ ˆ ˆ] ) and, in particular, it reduces to the variance F O O, 4Q
2yñ = D[∣ ˆ ] ( ˆ ) for pure states.

Importantly, theQFI is awitness ofmultipartite entanglement (ME) [43, 44] for local operators Ô, as in the case
of thismanuscript, F O Nk,Q r >[ ˆ ˆ ] detects k-partite entanglement amongN spins [42, 45, 46]. In particular,ME
is able to capture the richness ofmultiparticle correlations ofmany-body states beyondBE. TheQFI of a
quantum states calculatedwith respect to different operators Ô provides a ‘multipartite-entanglement
tomography’ that gives information not only aboutME, but also about global properties of the correlation
functions [47–51]. TheQFI is thus able to recognize different phases andQPTs of amany-bodymodel.

In the present paper, we illustrate these ideas for the Ising chainwith variable-range interaction in a
transverse field.We showhowmultipartite-entanglement tomography based on theQFI can give information
about—and distinguish— the paramagnetic (PM), ferromagnetic (FM) and antiferromagnetic (AFM) phases of
themodel. For ordered phases, the optimal choice of operator Ô is given by the order parameter of the
transition, characterized by diverging fluctuations, and giving aHeisenberg scaling of theQFI,
F O N,Q gs

2y ñ ~[∣ ˆ ] . For disordered phases there is an important difference between the SR and LR regimes:

while in the SR case theQFI is extensive, F O N,Q gsy ñ ~[∣ ˆ ] , in the LR case theQFI is superextensive,

F O N,Q gsy ñ ~ b[∣ ˆ ] with 1 3 2b< . This scaling law is directly related to the presence of power-law decaying

correlation functions, where Ô here is a suitable collective operator—generally different from the order
parameter—thatmaximizes theQFI in this regime. Interestingly, the LR disordered phase is also recognized by
the spin-squeezing parameter.We discuss the change of scaling of theQFI at the critical points when
interactions change fromSR to LR, suggesting the breakdown of conformal invariance and capturing themean-
field limit of themodel.Wefinally extend our analysis tofinite temperature [52] and show that the large
entanglement found in the ground state of the LRdisordered phase is robust against temperature being
protected by afinite energy gap. Our results can be readily tested in current experimental systems. In particular,
thefinite-size power-law scaling of theQFI is thus able—even at experimentally available sizes (N 50» )—to
detect the appearance of LR phases and to characterizeQPTs beyond nearest-neighbor interaction. It is indeed
worth pointing out that theQFI can be experimentally addressed: it is related to dynamical susceptibilities [49]
and Loschmidt echo [53], and lower bounds can be obtained from the variation of statistical distributions of a
measured observable [45, 54], squeezing parameters [55–58], quantum coherence [59] andfidelity
measures [60].

2. Themodel

We study the one-dimensional quantum Ising chain in a transverse field, with variable-range interaction and
open boundary conditions. The correspondingHamiltonian is

H
i j
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whereNis the number of spins (in the followingweassume evenN), i
nŝ
( ) is the Paulimatrix for the ith spin (i=1, 2,

K,N) along the directionn, and 0 > sets the energy scale. The parameter θä[−π/2,π/2] rules the competition
between the transverse externalfield ofmagnitude cos q and the spin–spin interactionof strength sin q. The
decay power 0a specifies the rangeof the spin–spin interaction,which is FM for θ<0 andAFMfor θ>0. For
a  ¥, equation (1) reduces to thewell-knownquantumIsingmodelwithnearest-neighbor interaction [61, 62].
Forα=0, equation (1) corresponds to a chainwith infinite-range interaction, formally equivalent to theLipkin–
Meshkov–Glickmodel [63]. Forfinite values ofα, equation (1) is a paradigmaticmodel to study the physical effects
inducedby LR interaction. Indeed, various theoreticalworks pointed out that thismodel displaysmany interesting
andpeculiar features [64, 65], ultimately connected to the effective violation of locality [66, 67], including the semi-
algebraic decay for correlations in gapped regimes [35, 37, 68], the related violation of the area law for theVon
Neumann entropy [35, 36] and anomalous distribution for the entanglement spectrum [35, 66], and the breakdown
of conformal invariance at criticality [69, 70].Moreover, newphases displaying these features, but not belonging to
the classification schemes for SR systems, have been identified theoretically in thismodel [35, 37, 71]. The interesting
physics associated toLR interaction concerns also fermionic lattice systems, characterized bynontrivial topological
invariants [36–38, 69, 72–77]. Notably, for these systems, BE is known to characterize only partially the LR regimes,
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not being able to distinguish in general the different LRphases [38, 74], whileMEappears to bemore indicative
[50–52].

Recently, theHamiltonian (1) has been experimentally implementedwith up toN≈50 spins. This has been
performed using trapped ions [5–8], Rydberg atoms in a cavity [9, 10], and ultracold spinless atoms in an optical
lattice [3]. In trapped-ion experiments, the tunable decay powerα can be adjusted in the range 0α3.

3. Phase diagram

The phase diagramof themodel shown infigure 1 is determined by the competition between the two non-
commuting terms in equation (1): the longitudinal exchange interaction and the transversemagnetic field.

3.1. Critical lines
For any fixedα, the Ising chain hosts twoQPTs driven by the control parameterθ. EachQPT separates a
magnetically disordered phase from an ordered one, according to the spontaneous symmetry breaking of the
spin-flipZ2 invariance of theHamiltonian (1) in the thermodynamic limit. This behavior results in two lines of
critical points 0c q a-( ) and 0cq a >+( ) , where transitions from aPMphase to FMandAFMphases take place,
respectively. Forα>0, both the critical lines signal second-orderQPTs. Themodel is analytically solvable in
two limit cases: for nearest-neighbor interaction (a = ¥)within a Jordan–Wigner transformation [78]; and for
infinite-range interaction (α=0), within a Bethe ansatz [79, 80] and in the thermodynamic limit [81]. In the
case a = ¥ the exact location of the critical points is well known [62]: 4cq p¥ = --( ) and 4cq p¥ =+( ) . For
α=0, instead, the fully-connected chain has a second-order FM transition at θ=0 [82, 83] and a first-order
AFM transition at θ=π/2 [84]. For any finite value ofα, the emergingQPTs at finiteN are signaled by a
minimumof themass gapΔN(α, θ), as a function of θ. In order to locate the transitions, we determine

min ,N Nq a q a= Dq( ) ( ) forN=10...120 and extrapolate the asymptotic value for N  ¥ by afit. The
numerical results are reported as dots infigure 1. The qualitative shape of the critical lines cq a-( ) (blue dots) and

cq a+( ) (orange dots)noticeably differ each others as a consequence of the distinct effect of the spin–spin
interaction.

For θ<0, the LR interaction enforces the FMorder, even at strongmagnetic fields: atfixedα, the PMphase
progressively shrinkswhen increasingN, and it disappears in the large-N limit if 1a . In this regime (θ<0
and 1a ), a perturbative calculation of themass gapΔN atfirst order for small values of the control parameter
θ (see appendix B)provides N1N

1q a = - a- -( ) forα<1 and N1 logNq a = -- ( ) forα=1, ensuring that
0cq a =-( ) for 1a in the thermodynamic limit, as indicated by the red solid line infigure 1.We argue that the

location of numerical results (blue dots) out of θ=0 is a numerical artifact of the finite-size analysis. The
predictions of the perturbative calculation forα>1 are also shown infigure 1 as red lines: in the
thermodynamic limit we predict 1cq a z a= --( ) ( ) atfirst order (solid line) and 3 1cq a z a= - --( ) ( ) ( )
at second order (dashed line) in θ, where ζ(α) is the Riemann zeta function.

Figure 1.Phase diagramof the Ising chain in the θ–α plane. Colored regions highlight different phases, as recognized by both a
suitable order parameter and entanglement property (seemain text). For 1a and θ<0 (hatched region), the thermodynamic
limit is not defined. The solid black lines, separating the ordered phases from the disordered one,mark a vanishingmass gap in the
thermodynamic limit, they interpolate the numerical data cq

- (blue dots) and cq
+ (orange dots). Triangles are known results in the

literature for the FM transition (blue triangles, [85]) andAFM transition (red triangles, [35]), see also [86]. The red lines show the
position of the FMcritical points as calculated by a perturbative expansion at the first order (solid) and at the second order (dashed) in
θ→0. The horizontal dashed line denotes amassive critical line atα=1, separating the short-range paramagnetic (PM) phase from
the long-range (LRPM) one.
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For θ>0, instead, the LR interaction strongly frustrates the AFMorder: frustration entails a preference for
the system to endure in the disordered phase, even at lowmagnetic fields. Consequently, the AFMcritical point
shifts towards larger values of θ asα decreases. In particular, the fully-connected chainα=0 becomes
completely frustrated and the corresponding AFMphase has a vanishing extension, reducing to the single
point 0 2cq p=+( ) .

Finally, we notice thatmany studies, based on different numericalmethods, have investigated the AFMand
FMcritical lines [35, 37, 85–91]. Our numerical results agreewell with the literature. In particular, infigure 1, for
comparison, we report the the location of the PM-to-FMQPTbased on scaled exact diagonalization in the FM
regime (forα1) [85], and the location of the PM-to-AFMQPTbased onmaxima of the half-chain Von
Neumann entropy (forα0.5) [35].

3.2.Quantumphases
The characterization of the different phases bounded by cq a-( ) and cq a+( ) is primarily done in terms of suitable
order parameters that recognize the onset of the dominant FMandAFMorder.We can distinguish three phases,
see figure 1.

3.2.1. FMphase
For sufficiently strong FM interaction, 2 cp q q a- < -( ), the system exhibits an ordered FMphase, where the
Z2 symmetry is spontaneously broken in the limit N  ¥. The order is detected by the longitudinal
magnetization Jz zgs gsy yF = á ñ∣ ˆ ∣ , where Jz i

N
z

i1

2 1s= å =
ˆ ˆ ( ). zF is nonvanishing in afinite chain provided that an

irrelevantZ2 symmetry-breaking perturbation h z
Nŝ( ), with h 0 , is added to theHamiltonian (1). If such a

perturbation is not added, in the limit θ→π/2 the ground state is theGreenberger–Horne–Zeilinger (GHZ)
state 2z

N
z

N
gsy ñ = ñ + ñÄ Ä∣ (∣ ∣ ) for all values ofα, while in the N  ¥ limit this state becomes degenerate

with 2z
N

z
N

gsy¢ ñ = ñ - ñÄ Ä∣ (∣ ∣ ) . Here and in the following, nñ∣ and nñ∣ denote the eigenstates of nŝ .
The FMphase for 1a (hatched region infigure 1)deserves a comment since, here, the energy is

superextensive. In this case, the thermodynamic limit is not well definite. Yet, we do not encounter special
difficulties in characterizing this regimewithin our numerical studies atfiniteN. In particular, the ground state
for θ=−π/2 is the same for every value of 0a . Furthermore, as discussed below, theQFI is superextensive
in the FMphase (above and belowα=1)with the same scaling exponent.

3.2.2. AFMphase
For sufficiently strongAFM interaction, 2c q a q p<+( ) , the systemhosts an orderedAFMphase,

where the staggered longitudinalmagnetization Jz z
st

gs
st

gsy yF = á ñ∣ ˆ ∣( ) ( )
acts as the order parameter, with

J 1z i
N i

z
ist

1 s= å -=
ˆ ( ) ˆ( ) ( ). In particular, at θ→π/2, the ground state of afinite-size chain is theNéel state

2z z
N

z z
N

gs
2 2y ñ = ñ ñ + ñ ñÄ Ä∣ [(∣ ∣ ) (∣ ∣ ) ] for anyα>0. Forα=0, instead, each spin is coupledwith all

the others via the same strength, regardless of theirmutual distance: the ground state at θ=π/2 becomes the
symmetric Dicke state (often also indicated as twin-Fock state) Sym z

N
z

N
gs

2 2y ñ = ñ ñÄ Ä∣ [∣ ∣ ], given by the
equally weighted superposition of all possible permutational symmetric combinations ofN/2 spin-up andN/2
spin-down particles (for an even number of spins). It should be noticed that for θ>0, the energy of the ground
state is extensive for all values of 0a , even forα=0 and θ=π/2. This fact allows for a proper definition of
the quantumphases even at 1a .

3.2.3. PMSR and LR phases
Adisordered PMphase is displayed by the system for weak spin–spin interaction, both in the FMand in the AFM
regime, c cq a q q a< <- +( ) ( ). The polarization provided by the transverse externalmagnetic field dominates
over the spin–spin interaction and determines the structure of the ground state. In particular, at θ=0, the
ground state is given by the coherent spin state 2z z

N N
x

N
gs

2y ñ = ñ - ñ = ñÄ Ä∣ (∣ ∣ ) ∣ polarized along the−x
direction by themagnetic field. In the following, we distinguish a PMSRphase from a LR one. This distinction is
not based on an order parameter since the spin-flipZ2 symmetry is preserved: 0zF = and 0z

stF =( ) , in the full
PMphase. Instead, for 0 cq q a< < +( ) and 1a , a logarithmic violation of the area law for theVonNeumann
entropy has been found in [35], and shownnot to originate from finite-size effects. The analogywith critical
gapless systemsmotivated the introduction of an effective central charge [35], that has also been used as a tool for
probing the phase diagram [37]. Finally, bymeans of a Jordan–Wigner transformation, the LR Ising chain can be
mapped into a LR interacting fermionic chain [37], that, only in the PMregime atα1, turns out to be
characterized by the appearance ofmassive edgemodes [37], similar to the ones found in the LRKitaev chain
[36]. All these peculiar features induce to conjecture the existence of a newPMphase atα1 [37], bounded
fromabove by a transitionwith nonvanishingmass gap atα≈1. This PMgapped phase, still preserving theZ2
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symmetry, will be quoted here and in the following as long-range paramagnetic (LRPM) phase, to distinguish it
from the ordinary PMphase occurring atα1.

In spite of the above theoretical clues, no valid observable for the experimental detection of the conjectured
LRPMphase has been identified so far,mainly because BE is challenging to be observed in extended systems (see
e.g. [14, 92]). A similar open question holds for the nature of the AFM transitions at cq a+( ): from the scaling of
theVonNeumann entropy, the breakdown of conformal invariance induced by the LR interaction has been
suggested [37]. However, no detection criterion for observing the spontaneous breakdown of the conformal
symmetry has been available so far to our knowledge. A promisingmethod based on the inspection of the finite-
size scaling of the ground-state energy density was suggested [36], but its reliable use is currently forbidden by
the limited size in experimental realizations of the LR Ising chain [8, 9].

4.Multipartite-entanglement phase diagram

In order to characterize the phase diagramof theHamiltonian (1) beyond the analysis of order parameters and
BE,we study here theQFI and its lower bound given by the spin-squeezing parameter.

TheQFI of a generic state p k kk kr = å ñáˆ ∣ ∣, relative to an arbitrary operator Ô, is given by (see the recent
reviews [39–41] and references therein)

F O
p p

p p
k O k, 2 , 2Q

k k

k k

k k,

2
2år =

-

+
á ¢ñ

¢

¢

¢

[ ˆ ˆ ]
( )

∣ ∣ ˆ∣ ∣ ( )

in terms of eigenstates kñ∣ and eigenvalues pk of the densitymatrix r̂. TheQFI F O,Q r[ ˆ ˆ ] is related to the
distinguishability between two nearby quantum states r̂ and e eO Oi ir f r= f f-ˆ ( ) ˆˆ ˆ via theUhlmann fidelity

F OTr 1 ,Q
1 2 1 2 1

8
2 3r r f r r f f= - +[ ˆ ˆ ( ) ˆ ] [ ˆ ˆ ] ( ): theQFI thus quantifies the susceptibility of r̂ to unitary

parametric transformations. For pure states yñ∣ , equation (2) reduces to the variance

F O O O O, 4 4 . 3Q
2 2 2y y y y yñ = á ñ - á ñ º D[∣ ˆ ] ( ∣ ˆ ∣ ∣ ˆ∣ ) ( ˆ ) ( )

Notice that F O, 0Q r =[ ˆ ˆ ] if and only if O, 0r =[ ˆ ˆ] : theQFI thus quantifies the ‘spread’ of the state over the

eigenstates of Ô.
Importantly, theQFI is a witness ofME [43, 44]. Specifically, for collective operators O oi i= åˆ ˆ (i labeling

the lattice sites) the violation of the inequality

f O
F O

N
k,

,
, 4Q

Q r
r

º[ ˆ ˆ ]
[ ˆ ˆ ]

( )

signals (k+1)-partite entanglement ( k N1 1  - ) between spins6, where fQ is indicated asQFI density. In
particular, separable states sepr̂ satisfy f O, 1Q sep r[ ˆ ˆ ] [42].Moreover, states with N f O N1 ,Q r- < [ ˆ ˆ ] are
genuinelyN-partite entangled, fQ=N being the ultimate (Heisenberg) bound [42–44].

Here, wenumerically study theQFI of the ground state gsy ñ∣ of theHamiltonian(1) (see appendixA for details

on the numericalmethods), with respect to ordinary, Jl i
N

l
i1

2 1s= å =
ˆ ˆ ( ), and staggered, J 1l i

N i
l

ist 1

2 1 s= å -=
ˆ ( ) ˆ( ) ( ),

collective spinoperators.A central step in this calculation is the relation between theQFI relative to the collective
operators and the connected correlation functions Cll

i j
l

i
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j
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i
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[49, 50]:
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It shouldbenoticed that different operators yielddifferent values of theQFI. The calculationof theQFI for different
operators provides a ‘tomographic survey ofME’ for the givenquantumstates [in particular of the ground state of the
Hamiltonian (1)] that is able, as illustratedbelow, to fully characterize thephase diagram.Weoptimize theQFIby
calculating the optimal eigenvalue of the 6×6 covariancematrix A B AB BA A BCov , 2 4= á + ñ - á ñá ñ( ˆ ˆ) ˆ ˆ ˆ ˆ ˆ ˆ , where
A B J J, ,x y z x y z, , , ,

st
=ˆ ˆ ˆ ˆ( )

. TheoptimalQFI is obtainedby calculating themaximumeigenvalueof thismatrix.Wefind

6
ME is quantified by the number of particles in the largest nonseparable subset [41, 93]. A pure state ofN particles is k-separable (also

indicated as k-producible in the literature) if it can bewritten as ...k N N Nsep M1 2y y y yñ = ñ Ä ñ Ä Ä ñ∣ ∣ ∣ ∣‐ , where Nly ñ∣ is a state of N kl 
particles that does not factorize and N Nl

M
l1å == . Amixed state is k-separable if it can bewritten as amixture of k-separable pure states. A

state that is k-separable but not (k−1)-separable is called k-particle entangled: it contains at least one state of k particles that does not
factorize.
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that, dependingon the values of theparametersθ andα, seefigure 2, the optimal operators are Jŷ , Jẑ or Jz
stˆ( )
.We thus

restrict ourdiscussionbelowon these operators.Notice that Jẑ is the orderparameter of thePM-to-FMQPTand Jz
stˆ( )

is the orderparameter of thePM-to-AFMtransition,while Jŷ is not anorderparameter.The Jx̂ operator is never

optimal: in particular,wefind f J, 0Q xgsy ñ =[∣ ˆ ] atθ=0, since in this case the ground state is eigenstate of Jx̂, and

f J, 1Q xgsy ñ =[∣ ˆ ] forθ=±π/2.
We also analyze theWineland spin-squeezing (WSS) parameter [41, 55, 56]

N J

J
, 7n

n
R
2

2

2
x =

D
á ñ

^



( ˆ )
ˆ ( )

defined in terms offirst and secondmomenta of the collective spin operators Jl̂. In equation (7),nPandn⊥are
orthogonal directions chosen in order tominimize R

2x . A state is said to be spin squeezed along the directionn⊥
if 1R

2x < . This inequality is also a criterion for entanglement [94] and has been extended towitnessME [95]. The
inverse of the spin-squeezing parameter (7) is a lower bound of theQFI [39–41]: for any state r̂ we have
N F J,Q nR

2 x r ¢̂[ ˆ ˆ ], where n¢̂ is a direction orthogonal to bothn⊥andnP. Notice that for pure states the
inequality N F J J, 4Q n nR

2 2x yñ = D¢ ¢
^ ^

[∣ ˆ ] ( ˆ ) follows from theHeisenberg uncertainty relation. The spin

squeezing is also related to the correlation function of collective spin operators and, for finite Jná ñˆ , has the scaling

properties of Jn
2D ^( ˆ ) .

The investigation ofME in the ground state of the Ising chains, as witnessed by theQFI and theWSS, has
been limited so far to the two extreme cases of nearest-neighbor a = ¥ [48, 49, 96] and infinite-range 0a =
interaction [47, 96]. Several works have analyzed theQFI and theWSS in the ground state of the bosonic
Josephson junction, which formally corresponds to the fully connected Isingmodel restricted to theHilbert
subspace of states that are symmetric under particle exchange [41, 49, 97]: see [41, 98–100] for experimental
investigations in Bose–Einstein condensates. Notice that the ground state of theHamiltonian(1) forα=0 is
indeed given by symmetric states.

In the followingwe provide a study of themodel (1) in the full range 0  a ¥.Wefind that theQFI
witnessesME, fQ>1, for any 0a and 0q ¹ , when calculatedwith respect to the optimal operators reported
infigure 2(a). Instead, on the line θ=0, the ground state is separable (for anyα), and theQFI does not overcome
the bound fQ=1. In the PMphase for θ>0,ME is alsowitnessed by the spin-squeezing parameter, as shown in
figure 2(b).We point out that, while thefigure is obtained atN=50, we have checked the qualitative stability of
the phase diagram asN increases up toN≈200: the change of behavior aroundα=1 becomes sharper.

Figure 2. Scaling power of theQFI density, f Nd log d logQ (left panel, color scale), and of the inverse spin squeezing parameter,

Nd log d logR
2x- (right panel, color scale), for the ground states of the Ising chain (1) on the θ–α plane. The black dashed linesmark

theminimumof themass gap. The vertical white line corresponds to θ=0, where fQ=1. The asymptotic scaling of theQFIwithN is

highlighted in the different regions, using the compact notation f f J,z y Q z y, gs ,yº ñ[∣ ˆ ] and f f J,z Q z
st

gs
styº ñ[∣ ˆ ]( ) ( )

, while the spin

squeezing parameter is calculates as N J Jz xR
2 2 2x = D á ñ( ˆ ) ˆ . In both panelsN=50.
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4.1. FM regime
For θ<0 theQFI ismaximizedwhen calculatedwith respect to the operator Jẑ , which is the order parameter of
the PM-to-FMQPTs, see figure 3. In the FMphase, cq q a< -( ), we find the power-law scaling f J N,Q zgsy ñ ~[∣ ˆ ]
for anyα, with a prefactor that depends on θ. In particular, at θ→−π/2, where the ground state is given by the
GHZ state, theHeisenberg limit f J N,Q zgsy ñ =[∣ ˆ ] is recovered. It should be noticed that f J N,Q zgsy ñ ~[∣ ˆ ] in
the FMphase both above and belowα=1 despite the superextensive energy scaling in the LR regime.
Conversely, theQFI is only extensive in the PMphase, f J, 1Q zgs y ñ ~[∣ ˆ ] ( ). Still, theQFIwitnessesME:wefind

f J, 1Q zgsy ñ >[∣ ˆ ] in the full PMphase. The PM-to-FMQPT at cq a-( )marks a change of scaling of theQFIwithN.

The derivative of theQFIwith respect to θ, f Jd , dQ zgsy qñ[∣ ˆ ] is thus characterized by a pronouncedmaximumat

cq q a= -( ), see figure 3, that diverges in the thermodynamic limit.

4.2. AFMregime
TheAFMregime is richer than the FMone. In the AFMphase, for cq q a> +( ) andα>0, theQFI ismaximized

when calculatedwith respect to O Jz
st

=ˆ ˆ( )
, which is the order parameter of the PM-to-AFMQPT. Similarly as

above, this QPT is associated to a divergence of the derivative of theQFIwith respect to θ, f Jd , dQ zgs
st

y qñ[∣ ˆ ]( )
/ ,

see figure 3. In the AFMphase, theQFI has a superextensive scaling: wefind f J c N, ,Q zgs
st

y a qñ =[∣ ˆ ] ( )( )
with

c , 1a q( ) . In particular, for a = ¥, the analytical calculation of the correlation functions [78] provides
c , 1 cot2 1 4q q¥ = -( ) ( ) . In the limit θ→π/2, where the ground state is theNéel state, theHeisenberg limit

c(α, θ)=1 is strictly saturated for all values ofα>0, see figure 4(a) for a plot of f J,Q zgs
st

y ñ[∣ ˆ ]( )
as a function ofN

in the AFMphase. Atα=0 the ground state is instead given by the symmetric Dicke state andwe have c(α, θ)=
1/2+1/N.

In the PMphase, 0 cq q a< < +( ), theQFI has two clearly distinguished behaviors, see figures 2 and 3. For SR
interaction,α>1, we find an extensiveQFI, f J, 1Q zgs

st y ñ ~[∣ ˆ ] ( )( )
and f J, 1Q ygs y ñ ~[∣ ˆ ] ( ), see figure 4(b):

the quadratic term in theHamiltonian (1) is responsible forME ( fQ>1), but the entanglement depth does not
scale with the system size. In particular, for a = ¥, theQFI ismaximizedwhen calculatedwith respect to

O Jz
st

=ˆ ˆ( )
for all values of 0 cq q a< < +( ). There, the correlation function C e1zz

i j i j i j, ~ - x- - -( )( ) ∣ ∣ induces

f J e, 2 1Q zgs
st 1 1y ñ ~ - x- -[∣ ˆ ] ( )( )

, in virtue of equation (5), where ξ is the (finite) correlation length. On the

contrary, in the LRPMphase at 1a , theQFI ismaximized by O Jy=ˆ ˆ , that is not the order parameter
of the PM-to-AFMQPT.Here, theQFI has a superextensive scaling. Forα=1, we find the logarithmic
behavior f J N, logQ ygsy ñ ~[∣ ˆ ] analytically suggested by a perturbative calculation, see appendix B, and
tested by numerical calculations up toN=200, see figure 4(c). Forα<1wefind a power-law behavior
f J N,Q ygsy ñ ~ b a[∣ ˆ ] ( ), where 0 0.5b a< ( ) , see figure 4(d). In particular, a variational ansatz atα=0

Figure 3.Panels (a) and (b): the solid lines show theQFI density f f J,z y Q z y, gs ,yº ñ[∣ ˆ ] and f f J,z Q z
st

gs
styº ñ[∣ ˆ ]( ) ( )

as a function of θ. The

black dashed line is the inverse spin-squeezing parameter calculates as N J Jz xR
2 2 2x = D á ñ( ˆ ) ˆ for 0q and N J Jy xR

2 2 2x = D á ñ( ˆ ) ˆ for
θ<0. The vertical gray dashed lines indicate the position of the critical points, extrapolated in the limit N  ¥. Values of theQFI
density in the gray region (corresponding to fQ>1) are only possible for entangled states. In panels (c) and (d)weplot the derivative
of fy,z and f z

st( ) with respect to θ. HereN=50, panels (a) and (c) refer toα=3, while (b) and (d) toα=0.5.

7

New J. Phys. 21 (2019) 033039 MGabbrielli et al



predicts f J N, tanQ ygsy qñ =[∣ ˆ ] , see appendix C, in very good agreementwith the numerical calculations for
largeN.

The super-extensiveness of theQFI directly stems from the power-law tail in the algebraic decay of the
correlation functions Cyy

i j,( ) [35, 37]. Interestingly, the behavior of theQFI in the PMphase is fully captured by the

spin-squeezing parameter: wefind J N J f Jx z Q yR
2 2 2

gsx y= á ñ D » ñ- ˆ ( ( ˆ ) ) [∣ ˆ ], as shown infigures 2 and 3(b).

4.3. Crossing themassive line 1a =
>Herewe focus on the PMphase 0 c q q< in the AFM regime. As discussed above, and shown infigure 2,
when crossing themassive lineα=1, the scaling of theQFIwithN changes from extensive (forα>1) to
superextensive (for 1a ). This result can be taken as a strong indication for a gappedQPToccurring atα=1
froma SRphase to a LRphase. This is a consequence of the change of behavior of the correlation function that is
captured by theQFI.More explicitly, assuming f f J a N,y Q ygsy aº ñ » ´ b a[∣ ˆ ] ( ) ( ), as obtained fromour

numerics, wefind

f
N

a
a N

d

d

d

d

d

d
log . 8

y

a
a
a

a
b a
a

= +b a ⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )( )

For 0 c q q< , we haveβ(α)=0 forα>1. In this case, the derivative equation (8) reduces to
f ad

d

d

d

y =
a

a
a
( ) that

does not scalewithN. Conversely, forα<1we have 0b a ¹( ) andwefind N
fd

d

y »
a

b a( ) (assuming 0ad

d
¹a

a
( )

and neglecting logarithmic corrections). Infigure 5we plot
fd

d

y

a
, obtained numerically (without any assumption

on the the functional formof fy), as a function ofα (panel (a)) and as a function ofN (panel (b)). Both panels

suggest (despite the system size limited toN=100) a sharp change of behavior aroundα=1: while
fd

d

y

a
increases withN for 1a , it remains approximately constant forα>1.

To gainmore insight into the behavior of
fd

d

y

a
at largeNwe consider the results of the perturbative calculation

for θ→ 0+, see appendix B: we have

f J N

N

d ,

d
8

1 d

d
, 9Q y Ngs y

a
q

a
a

ñ
=

-[∣ ˆ ] ( ) ( )

Figure 4. Finite-size scaling of theQFI (dots)withN. Different panels are: (a)α=1 and θ=1.47 (AFMphase); (b)α=3 and
θ=0.1 (PMphase); (c)α=1 and θ=0.1 (transition between PMand LRPMphases); (d)α=0.1 and θ=0.1 (LRPMphase). The
blue solid lines arefits: (a) f N0.99z

st 1.00=( ) (b) fy=1.12−0.13/N0.94, (c) f N1 0.08 logy = + , (d) fy=1+0.17N0.54. For
comparison, the fits up toN=50 provide the same values of thefitting parameters for the panels (a)–(c), within a 10−2 precision,
while for panel (d)we obtain fy=1+0.12 N0.62. In all panels, the red dashed lines are analytical predictions obtainedwith a
perturbative approach and valid for sufficiently smallN, see appendix B.
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where, to leading order inN,

N N

d

d

d

d
for 1

1

1 2
log for 0 1

10N

1

 a
a

z a
a

a

a a
a

»
>

- -
< <a-

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )

( )( )

( )

ζ(α) being theRiemann zeta function. This analysis supports the numerical findings:
fd

d

y

a
increases withN for

α<1, while it does not scale withN forα>1. A similar behavior as in equation (9) is revealed by thefidelity
susceptibility, again obtained from a perturbative calculation, see appendix B. It should be noticed, however,
that the condition of validity of perturbation theory, 1Nq a ( ) , sets an upper limit for the validity of
equation (9): forfixed 1q  , the finite-size scaling forα<1 is only guaranteedwhen N 1 1q a- - ( ) .
Namely, from equation (9)we cannot claim a superextensive scaling in the thermodynamic limit.

Summing up, our numerical and analytical results allow to locate the boundary between the SR and LR
regimes atα=1, also improving the precision of previous studies [37].

5.QFI along themassless critical lines

TheQFI is also useful to probe directly conformal invariance along the critical lines cq
(α), see figure 6. Indeed,

theQFI density f O,Q gsy ñ[∣ ˆ ] (Ô being here the order parameter of the transition) scales with the systems size at

criticality as f O N,Q
d

gs
2 Oy ñ ~ - D[∣ ˆ ] ˆ (d=1 in our case), where OD ˆ is the scaling dimension of Ô [49]. At

criticality and for one-dimensional quantum systems, conformal invariance fully constrains the set of possible

OD ˆ (see e.g. [101, 102]).

For the AFM transition, we probe the scaling of f J,Q zgs
st

y ñ[∣ ˆ ]( )
with the systems sizeN along cq a+( ), while for

the FM transitionwe probe the scaling of f J,Q zgsy ñ[∣ ˆ ]along cq a-( ). In both cases, such a scaling is known to be
constrained by conformal invariance toN3/4, corresponding to 1 8OD =ˆ , the scaling dimension of the

magnetization operator in the Ising universality class, ruled by the conformal central charge c 1

2
= [101, 102].

Figure 6 shows

f

N

d log

d log
11c

Q

c

b a =
q q a



= 

( ) ( )
( )

as a function ofα along cq a-( ) (panel (a)) and cq a+( ) (panel (b)), as determined numerically from afinite-size
analysis of our data forN=10...120. The error bars aremainly due to the numerical indeterminacy infinding
the critical point cq a( ), identified here as theminimumof themass gap.

5.1. Scaling along the FMcritical line
Along cq a-( ), the conformal scaling holds forα 3, see figure 6(a). This is consistent with the results of [64]
where it has been shown that for 3a the phase transition is in the universality class of the SR Ising transition,
see also [85, 91]. Actually, taking into account corrections beyondmean-field, the threshold for the onset of the
SRuniversality class can be put atα=2.75 [89, 106, 107].

Forα 3, wefind that b a( ) decreases down to 0b = atα=1. The scaling of theQFI density for
1α3 can be obtained froma Landau–Ginzburg approach.We introduce the effective action

Figure 5.Derivative of f J,Q ygsy ñ[∣ ˆ ]with respect toα as a function ofα (a) andN (b) for θ=0.1.
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S x t x t x t g x t o x td d , , , , , 12t x
2 1 4 4ò f f f f= -¶ + ¶ + +a-[ ( )( ) ( ) ∣ ( )∣ (∣ ( )∣ )] ( )† ( )

wheref (x, t) represents, at the low-energy effective level, the order parameter Jz zgs gsy yF = á ñ∣ ˆ ∣ , g is a coupling
constant, and x¶g denotes the fractional derivative. This action can be justified by a renormalization group
procedure, suitablymodified for LRmodels [70, 75], and it is known to be dominant, in the range 1 3 a
[85, 103], with respect to the conformal Landau–Ginzburg action [101, 104]

S x t x t x t g x t o x td d , , , , . 13t x
2 2 4 4ò f f f f= -¶ + ¶ + +[ ( )( ) ( ) ∣ ( )∣ (∣ ( )∣ )] ( )†

The action (12) predicts the breakdown of the conformal invariance [owned instead by (13)] [75]: for instance,
beyond the Lorentz (Euclidean) rotational invariance, the invariance under dilatations (t, x)→λ (t, x) is lost,
substituted by an ‘asymmetric’ version counterpart t x t x, ,

2
1l l a-( ) ( ). This fact is also associated to an

anomalous dynamical exponent z 1

2
= a- [85], if the interaction terms O x t, 4f~ (∣ ( )∣ ) are neglected.More

importantly, (12) implies the behavior for the time-independent correlations [105]

x
x

0, 0 , 0
1

. 14gs gs 1 1
2

y f f yá ñ ~
- a-∣ ( ) ( )∣ ( )

Exploiting the relation(5) between theQFI and the two-points correlation functions, we have

f J N, 15zgs
1

2y ñ ~ a-[∣ ˆ ] ( )

giving 1 2cb a a= --( ) ( ) . This result agrees well with our numerical calculations, see figure 6(a).
Equation (15) is also recovered taking into account the relation z1 2O hD = - - -( )ˆ , and using the
mean-field critical exponents ηmf=3−α and zmf=(α−1)/2 calculated in [85], giving c

,mfb a =- ( )
z1 2 2 1 2

O
mf mf mfh a- D = - - = -( )ˆ . This prediction is expected to be accurate forα<5/3 [85]. For

larger values ofα, the deviation from equation (15) is probably a clue that amore careful renormalization group
treatment is required, such to properly account the interplay between (12) and (13), as well as the interaction
terms O x t, 4f~ (∣ ( )∣ ), able to change the dynamical exponents.

Infigure 6(a), we also show the scaling of the spin-squeezing parameter N J Jy xR
2 2 2x = D á ñ( ˆ ) ˆ at cq a-( ).We

find Nd log d log 0R
2x »- for all values ofα: differently from theQFI, R

2x- does not scale at the transition point.

5.2. Scaling along theAFMcritical line
Along cq a+( )wefind 3 4cb a »+( ) forα 0.5, see figure 6(b). Forα 0.5, cb

+ increases smoothly up to

1cb =+ atα=0.Notice that the scaling f J N,Q zgs
st

y ñ ~[∣ ˆ ]( )
at 0 2cq p=+( ) is analytically known and

recovered by our numerics. Infigure 6(b)we also report the scaling of the spin-squeezing parameter
N J Jz xR

2 2 2x = D á ñ( ˆ ) ˆ .We find Nd log d log 0R
2x »- forα 1, while it increases forα 1.

Figure 6. Scaling power for theQFI density, f Nd log d logc Qb a =( ) , along the criticalmassless lines. (a) Scaling cb a-( ) along
cq a-( ) (blue dots). In the hatched region the thermodynamic limit is not definite: here 0cb a »-( ) . The solid blue line is themean-field
prediction 1 2cb a a= --( ) ( ) , which is expected to be accurate for 1<α<5/3 (light gray region). The scaling for the nearest-
neighbor Isingmodel 3 4cb =- (horizontal dashed line) is expected to hold for 2.75a (dark gray region). Open squares are the
scaling of the spin-squeezing parameter Nd log d logR

2x- . (b) Scaling cb a+( ) along cq a+( ) (red dots) as a function ofα. The dashed
line isβ=3/4.Open squares are the scaling of the spin-squeezing parameter Nd log d logR

2x- . The inset shows the scaling power

b a( ) obtained directly frompower-law fits on the correlation functions Nz
N

z
N N2 2 5 1s sá ñ ~ b a+ -ˆ ˆ( ) ( ) ( ) as a function ofN (green

dots) and rz
N

z
N r2 2 1s sá ñ ~ b a+ -ˆ ˆ( ) ( ) ( ) as a function of r atN=120 (purple circles). These results are consistent, within error bars,

with the values of cb a+( ) obtained from the analysis of theQFI (orange region, corresponding to the values shown in themain figure).
For comparison, we report the results of [35] (red triangles). In both the panels, the error bars aremainly due to the uncertainty on the
location of the critical points.
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In [35] the scaling of Nz
N

z
N N2 2 5 2 zs sá ñ ~+ - Dˆ ˆ( ) ( ) has been analyzedon theAFMcritical line cq a+( ), as a

function ofN and for valuesα 0.3. The coefficientΔzhas been found todepart from the SRvalueΔz=0.25 for
α≈2.25, thendecreasing and reachingΔz=0.2 atα≈0.5. The scaling coefficientΔz can bedirectly related to
the scaling of theQFI: 1 2c zb = - D+ . The results for 1−2Δz found in [35] are reported as triangles in the inset
offigure 6(b) and compared to the values obtained inour numerical calculations (orange regions, corresponding to
thedata of themainpanel). They agreewith our results except in the range 1α2where they are
systematically above ourfindings. As a check of our numerical calculations, the inset offigure 6(b) shows the
scalingβ(α)obtained from thefinite-size scaling of correlation functions Nz

N
z

N N2 2 5 1s sá ñ ~ b a+ -ˆ ˆ( ) ( ) ( ) (green
dots) and from thepower-lawdecay rz

N
z

N r2 2 1s sá ñ ~ b a+ -ˆ ˆ( ) ( ) ( ) forN=120 (purple circles).We see that the
values ofβ(α) extracted inboth cases are consistentwith cb a+( ) obtained via the analysis of theQFI.We thus
conclude that the slight discrepancywithin our numerical results and those of [35] ismost likely due to the
uncertainty in locating the critical point cq a+( ). It should benoticed however, that the interesting regime,where

cb
+ is notably different from the SR scaling, is found for values ofα 0.5, thatwerenot analyzed in [35].
The results reported infigure 6 strongly suggest the breakdown of conformal invariance along cq a+( ) and

cq a-( ) due to the LR interaction in (1), at small-enoughα. The same breakdown has been previously inferred in
[37], based on the scaling of theVonNeumann entropy. Oppositely to this quantity, theQFI density can be
measured experimentally, yielding a direct way to probe the breakdownof conformal invariance in critical
quantum systems.

6.ME atfinite temperature

The calculation of theQFI can be straightforwardly extended tofinite-temperature states, using equation (2) and
assuming thermal equilibrium e Tr eT

H T H Tr = - -ˆ [ ]ˆ ˆ , whereT is the temperature and the Boltzmann kB is set
to kB=1 [49, 52, 108]. TheQFI is obtained here by full numerical diagonalization of theHamiltonian (1) for
fixed system sizes N 20 . The decay of theQFI density withT characterizes the robustness ofME in the various
phases. In [52] it has been shown that

f O

f O T

,

,
tanh

2

1 e

e
, 16Q T

Q T

T

T
0

2
r

r
m

m n
D +

+

-D

-D
⎜ ⎟⎛
⎝

⎞
⎠

[ ˆ ˆ ]

[ ˆ ˆ ]
( )

whereμ and ν indicate the degeneracy of the ground state and the first excited state, respectively, andΔ is the
mass gap, namely the finite difference between the ground-state energy and the energy of the first excited state in
the thermodynamic limit. Equation (16) identifies a temperature regime below a crossover temperature of the
order ofΔ, where theQFI density is at least constant, lower bounded by its zero-temperature limit.

Figures 7(a)–(c) show theQFI density in the θ–α phase diagram at different temperatures (color scale, where
T is expressed in unit of themagnetic coupling in equation (1)), with thewhite regions corresponding to
f 1Q  . In the FMandAFMordered phases, the zero-temperatureQFI ismuch larger than in the PMphase, see
figure 7(a). Yet, this large value is lost abruptly for arbitrary small temperatureT (in the thermodynamic limit),
reaching [52]

f O
N

O O O,
2

2 , 17Q T 0
2 2

gs gs
2

gs gs
r y y= D + D - á ¢ ñy y ñ ¢ ñ[ ˆ ˆ ] (( ˆ ) ( ˆ ) ∣ ∣ ˆ∣ ∣ ) ( )∣ ∣

which ismuch lower than f O,Q gsy ñ[∣ ˆ ]. In equation (17), gsy ñ∣ and gsy¢ ñ∣ are the two quasi-degenerate ground

states in the FMandAFMphases. The discontinuity between f O,Q gsy ñ[∣ ˆ ] and f O,Q T 0r [ ˆ ˆ ] is due to the
presence of a spontaneous symmetry breaking of the spin-flipZ2 symmetry atT=0, resulting in a quasi-
degeneracy of the ground state (that becomes an actual degeneracy in the thermodynamic limit only). In
figure 7(b) and (c)we see that theQFI in the FMandAFMphases at finite temperature is not high enough to
witnessME. TheQFI density remains high only close to the critical lines and,most interestingly, in the LRPM
phase. Indeed, in the LRPMphase the ground state is nondegenerate also in the thermodynamic limit, as well as
in the PMphase, so that, according to equation (16), the superextensiveMEwitnessed by theQFI atT=0, for
0 cq q< + and 1a , survives up to temperaturesT≈Δ. The typical decay of theQFI density in the LRPM
andPMphases, compared to the lower bound equation (16), is shown in figures 7(d) and (e), respectively.

Infigure 8we plot the thermal phase diagram θ–T of theQFI density for different values ofα. The colored
region corresponds to fQ>1, where theQFIwitnessesME,while f 1Q  in thewhite region.We clearly
distinguish two ‘lobes’ on the FMandAFM sides of the phase diagram.On the basis of the results above, we
argue that the FM lobe (at θ<0) disappears in the thermodynamic limit for 1a due to the disappearance of
the PMphase. The boundary of the AFM lobe (at θ>0) for small values of θ is well reproduced by the condition

1R
2x = (dashed line) corresponding to the thermal loss of spin squeezing. Figure 8 also clearly shows the sharp
decrease of theQFI in the FMandAFMphases at vanishingly small temperatureT 0  [52].
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Weconclude this section noticing that, due to the absence of edge states, even in the open chains, the
discussion about the phase stability against temperature, performed by the scaling of theQFI density and based
on equation (16), does not suffer of deviations from edge contributions, similar to those hypothesized in [109].

Figure 7.The upper panels show theQFI density f O,Q Tr[ ˆ ˆ ] as a function of θ andα forT=0 (a), T 0.05 = (b) and T 0.2 =
(c). In the colored region theQFI densitywitnessesME, since fQ>1, while in the white regions f 1Q  . The operators chosen to
calculate theQFI on the θ–α plane are the same used at zero temperature in section (4). The black dashed lines signal theminima of the
mass gapΔ. The scarce appearance of the LRPMphase is a consequence of the very limited size of the chain adopted here,N=10.
The lower panels show theQFI density (dots) as a function ofT, comparedwith the analytical bound equation (16) (solid line). In
panel (d), θ=π/4 andα=0.5 (LRPMregion), in panel (e), θ=π/4 andα=3 (PMregion). The vertical dashed line isT=Δ.

Figure 8.QFI density f O,Q Tr[ ˆ ˆ ] (color scale) offinite temperature states Tr̂ , on the θ–T plane. Different panels correspond to
different values ofα.ME is witnessed in the colored regions. A sudden decay from the high values atT=0 is observed in the FMand
AFMphases, due to the quasi double-degenerate ground state. TheQFI is optimized for any θ, andT. As examples, the two insets in

the panels forα=0.5 andα=3 display the optimal operators on the θ–T plane: blue for Jẑ , yellow for Jŷ and red for Jz
stˆ( )
. The black

dashed line 1R
2x = encloses the area where the spin-squeezing parameter is able to detect entanglement. The black circlesmark the

position of the critical points. In all the panels,N=10.
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The present study suggests the potential relevance ofQFI for the study of the interplay of temperature and
disorder [113–115].

7.Discussion and conclusions

The scaling of theQFI calculatedwith respect to different collective operators yields a characterization of the full
phase diagramof the LR Isingmodel that can be probed in current quantum simulators, even for a limited
(N50)number of spins. This approach provides a clear signature ofmany physical effects that characterize
themodel, as the presence of a LRPMphase at 1a , the change of the scaling along the criticalmassless lines
for small values ofα and a probe of themean-field regime. The LRPMphase is particularly interesting. Here,ME
can be also captured by the spin-squeezing parameter, that largely simplifies experimental detection and
characterization of the state. The largeME (namely, superextensiveQFI and inverse spin-squeezing parameter)
found in the ground state is robust against temperature, being protected by an energy gap that remains finite in
the thermodynamic limit. Furthermore, the LPRMphase can be addressed by preparing the ground state at
θ=0 and adiabatically increasing the coupling strength, without crossing anyQPT. Finally, we recall that the
QFI studied here and the spin-squeezing parameter are directly related tometrological usefulness of a quantum
state, see [41] for a recent review. Therefore, we can conclude that the ground state of the LR Isingmodel,
especially in the robust LRPMphase, can be a resource for entanglement-enhancedmetrology.
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AppendixA.Numericalmethods

The IsingHamiltonian(1) is analytically treatable only in the special case of nearest-neighbor interaction
(a = ¥). In this case, exact results for the correlators appearing in equation (5) can be found for a close chain in
the thermodynamic limit, see [101] and references therein. Instead, when considering arbitrary interaction
rangeα, wemust rely on numerical results. For short chains N 20 we performed an exact diagonalization to
find the full spectrum and energy eigenstates, fromwhich a derivation of the energy gap, order parameter,
fidelity susceptibility andQFI is possible. ForN>20, we utilized an algorithmbased on the density-matrix
renormalization group [110, 111], an iterative variational technique optimized for the convergence of the
ground state that provided uswith all the spin–spin correlations, bywhichwe could evaluate theQFI via the
relation(5), up to aboutN≈200.

Appendix B. Perturbative calculations

Wehave performed a perturbative calculation of the ground state for θ→ 0. At θ=0 the ground state is given
by x

N
gs
0y ñ = ñÄ∣ ∣( ) . Atfirst order in θ, wefind the normalized state

1
, B.1Ngs

1
gs
0

2
0


y q y q a yñ ñ - ñ

a

∣ ( ) (∣ ( )∣ ) ( )( ) ( ) ( )

where Sym x
N

x2
0 2 2y ñ = ñ ñÄ - Ä∣ [∣ ∣ ]( ) is the unperturbed second excited state, given by the normalized symmetric

superposition ofN−2 particles in xñ∣ and two particles in xñ∣ , 1 N
2 2 q a= +a [ ( )] ,

N

N N

H H

8 1
B.2N

N N, , 1 a =
-

-
a a-( )
( )

( )

andHN,α is theNth generalized harmonic number of orderα. In the limit N 1 , the calculation of N a( )
involves handling hyperharmonic series, whose convergence is only attained forα>1:
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where ζ(α) is the Riemann zeta function. The perturbative expansion in equation (B.1) is thus obtained atfixed
N1 logq ∣ ∣ ifα=1 or N1 1q a-∣ ∣ ifα<1, such to fulfill the condition of validity of perturbation

theory, 1Nq a ( ) . For 1a , this approximation breaks down in the thermodynamic limit.

B.1. Ground-state energy andFMcritical line
Using the nondegenerate perturbation theory it is also possible to evaluate the shift of the lowest energy levels
due to the (small) interaction term.Up to the second order in θ, wefind E N 4 Ngs

2 2 2 q a= - - [ ( )]( )/ and

E N2 2 8 12N

N N
N

N Nex
2 1 2 2 2  q a q a= - + -- -( ) [ ( )]( )/ . Considering the formof N a( ) for N 1 , at

α>1wefindΔ(1)=2+2θζ(α) andΔ(2)=2+2θζ(α)−θ2ζ2(α). The functional formof cq a-( ) is
obtained, atfirst order, fromΔ(1)=0, and, at second order, fromΔ(2)=0. Results are reported in themain
text and in figure 1.

B.2.QuantumFisher information
Using equation (B.1) it is possible to calculate theQFI for the different collective operators considered in the
main text:
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These predictions are in agreementwith the behavior found numerically, see figure 4.

B.3. Fidelity susceptibility
Let us now evaluate, atfixedN and θ (such that 1Nq a ( ) ) thefidelity between the ground states
corresponding to two close interaction rangesα andα+δα: at leading order in θ,

, , 1
2

. B.5N N, gs
1

gs
1 2

2
2  y q a y q a da

q
a da a= á + ñ » - + -a a da+ ∣ ( )∣ ( ) ∣ [ ( ) ( )] ( )( ) ( )

This yields thefidelity susceptibility [112]
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Wefind thatχα asymptotically scales as N Nln2 1 2a- ( )( ) for largeNwhenα<1, whereas it saturates to a
constant 1( )whenα>1.

AppendixC. Variational calculation

Forα=0we use a variational ansatz to calculate the ground state and theQFI.We rewrite equation (1) as

H
J J

2
sin cos . C.1z x

2


q q= +

ˆ ˆ ˆ ( )

It is well known that themodel (C.1) can be studied by restricting to a basis of eigenstates mñ{∣ }of the collective
operator Jẑ (Jz m m mñ = ñˆ ∣ ∣ , withμ=−N/2,−N/2+1, ...,N/2)made ofN+1 orthogonal states symmetric
under particle exchange.We search the ground statemaking use of theGaussian variational ansatz
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where thewidthσ is the sole variational parameter.We further assume N 1 and a sufficiently localized
wavepacket so to neglect border effects.Weminimize the energy E Hgs gs gsy y= á ñ∣ ˆ ∣ ,
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wherewe have used N N N2 2 1 2+ »( )( ) and taken the continuous limit forμ.Within the same

approximations, theQFI calculates as f J N, 4ygs
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For 12s  we can neglect the term e
1

8 2-
s in equation (C.4) andwe obtain
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N
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recoveringσ2=N/4 and f J, 1ygsy ñ =[∣ ˆ ] , respectively, at θ=0.We can distinguish different behaviors and
limits. For N0 1q<  (corresponding to the so-called Rabi regime for the Josephson junction [41, 97]), we
obtain 1N N2

4 2
s = - q( ) and f J, 1y

N
gs 2

y ñ = + q[∣ ˆ ] , which is exactly the perturbative prediction reported in
equation (B.4) forα=0. For N N1 tan q  (corresponding to the so-called Josephson regime [41, 97]),

we obtain N2
16 tan

s =
q
and thus f J N, tanygsy qñ =[∣ ˆ ] , in agreement with our numerical calculations

predicting a scalingN1/2 of theQFI density, see figure 2. For Ntan q  (Fock regime [41, 97]), equation (C.5)
predictsσ=0, corresponding to the symmetricDicke state limit of equation (C.2), 0gsy mñ = = ñ∣ ∣ , and for

this state theQFI is equal to f J N, 2 1ygsy ñ = +[∣ ˆ ] .We can thus roughly locate a diverging derivative of the
QFI (signaling the critical point) at Narctanq = , that is θ→π/2 for N  ¥.
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