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ABSTRACT 

The semileptonic decay of spin-l/2 baryons is examined in the spectator quark- 

model, with special attention given to Ab + A,ev and nb + &ev. The polariza- 

tion of the virtual-W and of the daughter baryon is also considered, along with 

the joint angular distribution between the charged lepton and the daughter baryon 

polarization vector. The Ab decays with about equal mixtures of transverse- to 

longitudinal-W polarization while the fib decays with predominately longitudinal- 

W polarization. These reactions are representative of two qualitatively differ- 

ent classes: decays involving baryons whose spectators are spin-singlets and those 

whose spectators are spin-triplets. 
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1. Introduction 

There has been much effort lately in calculating semileptonic decays of mesons. 

Eventually one hopes to extract the KM-mixing angles and probe the quark structure of 

hadrons. The quark model has been reasonably successful in describing both inclusiverg 

and exclusive processes. 2-5 These calculations agree quite well for decays like D+ + 

IC’e+I/, and B + D*e+v, and they even predict the correct longitudinal to transverse 

D* ratio. If these calculations are in fact reliable, and give accurate values for the form 

factors, then Kobayashi-Maskawa matrix elements may be extracted. 

Last year, however, a serious discrepancy between the quark model and experiment 

arose in the decay of charmed mesons. Both the rate and the polarization ratio in the 

D + IC*e+v, calculation are in conflict with experiment. The calculation2j3 predicts 

comparable D -+ K*e+V, and D --+ lire+v, rates and about equal longitudinal and 

transverse production of Ii’* final states. The experiment6 shows, however, that the 

rate for D + K*e+V, is about half that for D + li’e+v,, and that li’* final states are 

predominantly longitudinal. 

This has inspired several attempts to re-examine the quark model and the underlying 

assumptions involved in the calculations. ‘-’ Although ad hoc adjustments of form factors 

can be made to fit the data,l’ there is no compelling theoretical motivation for doing this. 

In many of the models considered, a nonrelativistic approach was adopted. While this 

could be justified for heavy quarks, it is dubious for the light spectators. It is important to 

know whether the failure of the quark model might simply be relativistic effects that have 

not been considered, or something more fundamental. It is a little puzzling, however, 

if the failure is just due to relativistic effects. The li” system is less relativistic than 

the I< system, so naively one should expect even better agreement with experiment 

for D --+ JC*ee+Y, than for D -+ ICe+v. However, there is an important difference- 

D --+ lC*e+v, involves a quark-spin flip while D -+ ICe+v, does not- and this might be 

enough to substantially change the wave function from the naive quark model form. 
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It is important to study other hadronic systems and see how the quark model fares. 

The strongly stable baryons are ideal for this, and data should soon be available. In 

this paper I give special attention to the semileptonic decays of A, and C12, for Q = b, c. 

For completeness I also present results for C, and E*. The angular distribution of the 

charged lepton and the polarization of the virtual W is examined. I also give the joint 

angular distribution between the charged lepton and the daughter baryon polarization 

vector. This should provide enough information to determine the helicity form factors 

independently, which may indicate where the quark model might be breaking down, if in 

fact it does. 

2. Kinematics 

This paper examines exclusive semi-leptonic decays of spin-l/2 baryons and in par- 

ticular -the angular distribution of the charged lepton, which I take to be a massless 

electron. Much of this section is a standard exercise; it is presented elsewhere11,12j10 and 

is repeated here for completeness and to establish notation. 

Figure 1 shows this process for a parent baryon with a generic heavy quark Q that 

decays into a baryon with a lighter, but still relatively heavy, quark Q. For the process 

A4 + mefi the decay rate is given by 

dr(K t m,teiT) = + rn,lefi) I2 dII3 , (2-l) 

where 

dI13 = (2n)46(4)(P - k -p -p’) n d3kf 
f (2432Ef ’ 

and 

p (s’s) A(Ms + m,feij) = s V&L HP , 

(24 

(2.3) 
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Fig. 1. The semileptonic decay of a heavy quark Q into a lighter quark q 
and a virtual W, which becomes a charged lepton and neutrino. 

with VQ~ being the Kobayashi-Maskawa matrix element appropriate to the Q -+ q tran- 

sition and where the product is over all final-state momenta. I am using a somewhat 

redundant notation where M,(m,t) refers to the parent (daughter) baryon of mass M(m) 

and spin component s(s’). The parent has four-momentum P, the daughter k, the e and 

v have p and p’ respectively. The virtual W carries four-momentum q = p + p’. It should 

be kept in mind that the spin-quantization axes for the parent and daughter baryons are 

not necessarily chosen the same. 

The leptonic and hadronic currents are given by 

LP = u&(1 - y5)v, ) (2.4) 

~(s’s) ’ = (0 1 Jcad(o) IP,,) . (2.5) 

If the final state leptons are e+v instead, the order of the spinors in the lepton current 

must be changed. The hadronic current can be constructed from Lorentz invariant form 

factors and the four-vectors of the problem. Writing Jiad = VP - AC”, I define 

(kl VP(O) IJ’) = %n [4n2h” + s+(q2)(P + k)’ 

+ s-(q2)(P - v]%f 7 P-6) 
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lkl A’“(O) Ip) = f&n [a(q2)ypys + a+(q2)(P + k)p”y5 

+ 4q2)(J’ - k)%]u, , (2.7) 

where q2 = (P - k)2 and uM (urn) is the spinor associated with the parent (daughter) 

baryon and spin labels have been suppressed. It is convenient to use dimensionless 

kinematic variables y = q2/M2 and z = P . p/M’, scaling to the parent baryon mass. 

Neglecting the mass of the electron, the kinematically allowed limits of y are from 0 to 

(1 - m/M)? 

In the parent rest frame I denote quantities by a tilde, and reserve the notation 

Ee, Em, etc., without the tilde, for quantities in the ei;/ center-of-mass frame (eo frame) 

where the amplitude will turn out to have a simple angular dependence. Let -k define 

the direction of the positive z axis and let 0, be the angle of the electron relative to this 

axis in-the es frame, with the y axis oriented perpendicular to the decay plane defined 

by the-m, e, and v momenta, as shown in Fig. 2(a) (note that k and k are anti-parallel). 

In the eC frame the natural variables are the electron energy, 

E,=E,=+ (2.8) 

and cos 8,. On the other hand, in the parent rest frame the natural variables are 

and y = q2/M2 . 

The mass-shell relation P2 = (q + k)2 = M2 may be used to obtain expressions for 

the energy and momentum of the parent and daughter baryons, respectively: 

&=$[l-$+,I, (2.10) 

(2.11) 
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Fig. 2. Coordinate system for semileptonic decay of a heavy baryon: 
(a) the decaying virtual W and (b) the decaying daughter baryon. 

and 

I p I=I k I= wd5 

in the ec frame; whereas in the parent rest frame 

and 

IfiI=IC, 

where 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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The connection between the natural variables in the two frames is made complete by 

expressing the angular variable in the eP frame, cos 8, = - cos O,, in terms of variables 

in the parent rest frame and evaluating P . p in the two frames; one finds 

Ii- Mx=~,=~coso,+~ I- “[ $+y]. (2.16) 

The Feynman amplitude is Lorentz invariant and it is convenient to split the phase 

space into Lorentz-invariant pieces so that it takes a particularly simple form: 

d”3 = C4f)5 Ir’ dy dR, do, , (2.17) 

where d& is the solid angle of the electron in the efi frame and dfi, is the solid angle 

of the final baryon in the parent rest frame. This gives the differential decay rate: 

drsts 1” 1 A,,, I2 , 
dy d& dfi2, = 2 (4~)~ 

(2.18) 

where the- baryon spin dependence is emphasized. 

The amplitude in the eC frame becomes, after summing over electron and neutrino 

spins, 

1 A,!, I2 E I A( MS + m,jeij) I2 = z 1 v,, 12 Lq$‘“~fp t ) (2.19) 

and for a massless electron the only non-zero components of the lepton tensor are spatial: 

where 7 = +l for efi and 77 = -1 for e+v final lepton states and 6 is a unit vector along 

the charged-lepton direction in the es frame. 

It is useful to expand the spatial components of the hadronic current in terms of a 

helicity basis (effectively that of the virtual W): 

H(S’S) = H!“‘“)&+ + f&w& + f$‘s)p() ) (2.21) 
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where ek = Jz ‘(72-i?) and 60 = 2. Putting Eqs. (2.20) and (2.21) into Eq. (2.19) gives 

G 1 A,!, I2 = 2 I V,, I2 4M2y ;(I - 77 cos Q2 I H+ I2 +;(I + q cos Q2 I He I2 

+ sin2 6, I Ho I2 + i sin2 6,( H+HT + H;H-) 

- -$ sin 8,(1 - 7 cos 0,) (H+H,* + H;Ho) 

- -$ sin8,(1 +~cos~~) (H-H,* + HZHg) . 1 (2.22) 

The angular dependence in this equation is entirely a reflection of the V - A character 

of the IV -+ eu amplitude. The baryon spin-sums have not yet been performed and the 

spin-dependence of the helicity amplitudes, Ht:), has been suppressed. When spin is to > 

be emphasized, daughter and then parent spins are listed. I will average over the parent 

spins, which will be taken along the z-axis; however, I will at first consider the daughter 

polarization along an arbitrary direction i. Since the parent and daughter are back-to- 

back in the efi frame, a positive-helicity daughter corresponds to spin-up along --z. It 

is then better to express 2 in terms of polar and azimuthal an angles, 0’ and $*, in the 

helicity frame shown in Fig. 2(b).r3 

It remains to relate the helicity amplitudes H!$’ to the form factors defined in 

Eqs. (2.6) and (2.7). I normalize the spinors so that uu = 1 and use the y-matrix 

conventions of Ref. 14. Letting $s and xs be two component Pauli-spinors along z and 

2 respectively, a short calculation gives the spatial components of the current in the ev 

frame as 

V("') = xi, [ - (2kg+Fo + gF+) e. - igF- 6 xGo] qSs , (2.23) 

A(“‘“) = xs’ [UFO 8 + [2a( 1 - Fo) - 2ka+F-I(& . cso> ~~1 $s , (2.24) 
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where 

(Em+m)(Ell.i+M) 1’2 

4Mm 1 [ E k+ 

m 7-n 
fE rM 

M I , (2.25) 

(Em+m)&+M) 

4Mm 
l-(E + :;r +M) 

m m M 1 ) (2.26) 

with k = -keo, and k given by Eq. (2.12). Explicitly, H(s’S) = V(“‘) - A(s’S) givesI 

H(f*) = -fi h, eri4’12 sin $ $0 f fi H* eki$*i2 cos g 6% ) (2.27) 

H(fFf) = -4 H, er’d*/’ sin $ fZr f fi h* e*‘d’/’ cos g $0 , (2.28) 

where 

Hh E +Fo FgF-] , (2.29) 

h* E *$[2a(l-;Fo) - 2ka+F- =F (2kg+Fo + gF+) 1 . (2.30) 

Comparison with Eq. (2.21) gives Ht,:‘. When i = -60 the spin and helicity of the 

daughter particle are the same. Notice that (s’s) = (&&) produces purely transverse Ws 

while (s’s) = (*r) p ro d uces purely longitudinal Ws. Using Eq. (2.18) and averaging 

over the initial spin gives the rate: 

dl?,r 

dy do, dflm = 
G; 1 V,, I2 KM2y 

w5 
;(l -~cos&)~ (l+s’LcosB*) 1 H+ I2 

+ ;(l + ?1cos0,)2 (’ -‘Fse*) 1 H- 12 

+ [Ih-I2 (‘ws>s8*) + lh+12 (‘+s~os”*)] sin20, 

+ Ils’ [sin O,( 1 - 7 cos B,)(cos d* sin 13*)] H+ h- 
a 

+ 17”1 [sin8,(1 + 17 cos B,)(cos $* sin O*)] H-h+ 
Jz > 

. (2.31) 
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The H*h, terms are from transverse-longitudinal W-polarization interference. Notice 

that there is no transverse-transverse interference. This means the signs of H* can be 

determined relative to h,, but the overall sign is arbitrary. This equation simplifies 

somewhat if the daughter helicity-frame is chosen: 

dI’,l G; 1 V,, I2 KM2y 1 

dy dR, dfi, = ew5 
$1 - 77 COS&)~IH~‘)~~ 

+ i(l +~cos~,)~IH?I~ + 
2 

sin28,1H,$s’)12 1 7 (2.32) 

where 

H!“‘) = H& &Q , (2.33) 

(2.34) 

Note that for daughter polarizations of s’ = +1(-l), th e virtual-W is either longitudi- 

nally pplarized or has transverse helicity components of +l( -1) . The longitudinal to 

transverse ratios are very process specific. Generally speaking, for decays in which the 

spectators are spin-singlets and the heavy quark carries the baryon spin, as in A* --t A,ev, 

positive daughter-helicity gives dominant transverse polarization of the virtual-Ws while 

negative daughter-helicity gives dominant longitudinal-W polarization. The situation is 

quite different for decays in which the spectators are spin-triplets, as in Cb t C,ev, where 

longitudinal polarization always dominates. This will be made clear in the next section. 

The spin independent rate is formed by summing over the final state helicity: 

dr G; 1 V,, I2 KM2y 1 

dy dR, dfi, = w5 
$1 - 7 cos Q2 1 H+ I2 

where 

+ i(l + 17 cos 0,)2 I H- I2 + sin2 8, I HO I2 , (2.35) 

Hf G f [UFO FgF-] , (2.36) 
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Ho iz { [2u(1-;Fo) -2ku+F-]2+(2kg+Fo+gF+)2}‘” . (2.37) 

The above helicity amplitudes should not be confused with the H-+,0 in Eq. (2.22), in 

which the spin-dependence (s’s) was suppressed for notational simplicity. Note especially 

that, when UFO and gF- have the same relative sign, IH-I > IH+l. This is a reflection 

of the V - A character at the quark level. 

Besides examining just the angular distribution of the electron, it will be useful to 

integrate over all angles and consider only the momentum transfer distribution: 

dr -= 
dY 

G’ I v~6~3”M2y (I H+ I2 + I He I2 + I Ho 12) . (2.38) 

It will be useful to define longitudinal and transverse rates, IL and IT, that involve only 

1 H+ I2 + 1 H- I2 and 1 HO I2 respectively. The labels “longitudinal” and “transverse” 

refer to the polarization of the virtual W. IL is characterized by baryon spins (s’s) = 

(f~) with a sin2 8, electron distribution, while IT is characterized by spins (s’s) = (&&) 

and a (l~q cos 0,)2 electron distribution. Now all that remains is to calculate the Lorentz- 

invariant form factors in some model. This is addressed in the next section. 

3. Form Factors 

The basic idea is to use the nonrelativistic quark model to mock up the baryon 

states. The hadronic current is then calculated assuming the two light quarks are just 

spectators, so the weak hadronic current acts only on the heavy quarks with the usual 

V - A form. The quark-model current is then compared with the parameterized current 

given by Eqs. (2.6) and (2.7) to obtain the form factors at maximum q2 (in which the 

daughter is at rest frame in the parent rest-frame). A pole dominance model is then used 

to extend the q2 behavior. This approach is taken in Ref. 4 and I adopt it here. 
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The vector and axial vector currents (2.6) and (2.7) are now evaluated in the parent 

rest frame. Since comparison with the quark-model currents will be made near maximum 

q2, the nonrelativistic form of the spinors is used and only leading order in the daughter 

momentum is kept. A short calculation gives: 

qs = xi, [g + (M + m)g+ + (M - m)S-] q4 , (34 
- V,!, = xi, [ ( 

i&Xii $+“+-“-)ic+xg $9) 1 
AtIs = xi, [ ii - (M + m)ii+ - (M - m)ii-] gSs , 

L’s = xl,[ ~~]&j. 

(3.2) 

(3.3) - 

(34 

Again, the tilde signifies the parent rest frame, 4s and x’, are two component Pauli 

spinors- for the parent and daughter baryon with spin along z and i respectively, and the 

bar over form factors means evaluation at maximum q2. 

The current is now evaluated at the quark level. The parent baryon contains a 

heavy quark Q and two light quarks, which I simply refer to as u-quarks. Isospin 

and other flavor labels for the light di-quark system will usually be suppressed. The 

heavy quark has momentum ps and the two lighter quarks have momentum p1 and pZ. 

While technically incorrect, a nonrelativistic approximation for the light di-quarks is rea- 

sonable since they are only spectators. The normalized parent baryon state vector is 

IM(P,s)) = d@ J d3pn d31 &(~n, 9 c x:1s2sB 

x Iu(P&; 4~4; Q(P,,s,)) , (3.5) 

where plz is the relative momentum of the two light quarks and 1 is the relative momentum 

of Q and the light quark’s center-of-mass, as shown in Fig. 3. The quark momenta in 

Eq. (3.5) are related to the integration variables and the baryon momentum by 
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Fig. 3. Relative momenta of a three-quark system. 

pq=z2P-1, 
M 

p1 = m, 
M 

P-p,,+m,l, 
ml2 

m2 pz = 2 P + PI2 - - 1) 
ml2 

where-m, is the heavy quark mass, m 12 = m, + m, is the sum of di-quark masses, and 

ii2 = mg + m,,. It should be kept in mind that the baryon mass, M, and this “weak 

binding mass,” fi, are not equal, although they are relatively close. It is also useful to 

invert the above equations: 

p = Pl + p2 + PQ, 

Pl2 =ZP2-$P1, 

lzrnQ  --gp1+ * mg p2 - y$ ps . 

W-0 

(3.10) 

(3.11) 

There are corresponding relations for the daughter baryon with the appropriate 

changes of mass and momentum. Also, the spin-sum in (3.5) has implicit flavor sum- 

matio,n, which has been suppressed for notational simplicity. Since isospin symmetry 

is almost exact, Fermi-statistics requires the flavor-spin wave function to be symmet- 

ric in the u and d quarks (assuming relative S-wave spatial distributions and that only 
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overall color singlets are allowed). For the i’- octet, I will assume slight SU(3) flavor 

breaking. The two octets of mixed symmetry in the Clebsch-Gordan decomposition of 

3 x 3 x 3 = 10 + 8, + 8, + 1, are combined with the corresponding spin-doublets of 

mixed symmetry in 

1113 
zxzxz=z+ (i),+ (i), ' 

to form the baryon flavor-spin wave function (the subscripts S and A refer to the sym- 

metry of the two spectator quarks): 

IB) = cos 8, IS, i), + sin 8, 18, i), . (3.12) 

For exact SU(3) fl avor symmetry, the octet mixing angle 8, = r/4. I will be interested 

only in B = A, C and E. For bottom and charmed baryons (Q = b or c), the wave 

functions are a little simpler. For isospin zero (A,), the spectators are spin-singlets, and 

for isospin. one (CQ), they are spin-triplets. For baryons with flavor SSQ, the s-quark 

spectators are spin-triplets. However, because of SU(3) flavor breaking, the spectators 

in SUQ may be spin-singlets (Z,) or spin-triplets (al,). Of course, the physical mass 

eigenstates are linear combinations of ZQ and Zb, but since they are in different spectator- 

quark spin representations, the mixing is small. l6 I have omitted the charge labels, since 

in the spectator model all members of a given isomultiplet have the same amplitude. The 

bottom and charmed baryon states are, using an obvious short-hand mnemonic: 

lAQ~s) = lUdr~=o~; Q) X:1, , 

IcQd) = b&=,1; Q) x,“,, , 

I’,, ‘> = I=; Q) X(“,, , 

IzQ, s> = k Q) X:1, , 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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where the singlet spin-state is 

x,s, = 
{ 

$[I+-+) - I-++)]; s=+$, 

&[I+--) - I-+-)]; s= -$, 
(3.18) 

and the triplet spin-state is 

1 

x,“,, = 

{ 

-+.[I+-+) + I-++) - 21++-)]; s=+z, 

+$[I+--) + I-+-) - +-+)I; s=-$, 
(3.19) 

with the ordering Is~s~sQ). Note that xfl, and x,“,, are symmetric and antisymmetric 

under spectator-quark interchanges, respectively. 

To find the hadronic quark-model current, the current operator JLad(0) is sandwiched 

between the parent state Eq. (3.5) and the corresponding daughter state. In the spectator 

model, _ 

(qI J,kAO) IQ> = Q(P~,s~) ~‘(1 - ~5) Q(P,, ss). (3.20) 

The relative momentum variables of the daughter baryon will be denoted with primes, 

and momentum conservation of the spectator quarks in the parent rest frame gives 

i-5:, = PI2 , (3.21) 

(3.22) 

and 

ijQ = -I ) (3.23) 

fi,=ic-I. (3.24) 

The hadronic matrix element becomes (I have dropped the tilde from the integration 

variables): 
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H(“‘) p = (m, ~‘1 JL’d(0) IM, s) 

d3P12d31 $;(P:,, 1’) $M(plZ, 9 (~‘1 Jp Is) , (3.25) 

where 

(~‘1 J’ IS) E Cxi:s2s, &S2SQ Cdfiq,sp) ~‘(1 -YS) Q(CQ,sQ) - (3.26) 

In the derivation of Eqs. (3.25) and (3.26), the di-quark spectators give delta func- 

tions of quark momenta, and the (my/k)3 f ac or is simply the Jacobian that converts t 

an integration over the relative momenta pi, and 1’ to an integration over di-quark mo- 

menta for the daughter baryon. In the approximations below I drop the (m,,/ti)k term 

in Eq. (3.22), and this induces an ambiguity in this Jacobian factor. If the relative mo- 

menta-of the daughter were integrated over in Eq. (3.25), rather than the parent, there 

would be a factor of (mQ/k)3 instead. In the spectator model the di-quark masses 

should not effect the rate, so I take them light enough to neglect these factors. This 

can be better justified by considering an elastic vector interaction, such as electromag- 

netism. The Ward identity gives the correct normalization of the vector form factor at 

zero recoil. Considering a baryon with only one electrically charged heavy quark and 

using the state normalization given in Eq. (3.5), th e f orm factor normalization must be 

g(y,,,) = dm, and the (mq/11;L)3 f ac or should in fact be dropped, and I adopt the t 

same prescription for weak transition currents below. 

To find the quark-model currents, I use the nonrelativistic form of the spinors in 

Eq. (3.26), keeping terms linear in momentum, and then substitute this into Eq. (3.25). 

I drop terms proportional to m,,/th in the argument of dk, and assume flavor indepen- 

dence, $m = $M = 4. By parity, the terms linear in 1 integrate to zero, giving 
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TABLE I 

Spin and flavor factors. 

1 ’ sin& 
z 

-l/3 l cos &I 
3 

where I have used the shorthand notation 

&‘s> = ox::.,,, x:&SQ l&Q) * 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The only thing left to do now is choose particular baryons, evaluate Eqs. (3.27)- 

(3.30), and then make comparisons with Eqs. (3.1)-(3.4) for various spin choices. 
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Ignoring flavor for the moment and using Eqs. (3.18) and (3.19), one can show 

(xph) = xi, K4 A, where E = 1 when the spectators are spin-singlets and [ = -l/3 

when they are spin-triplets. When flavor is considered, a factor NmM given in Table I, 

comes from Eq. (3.12) and the explicit octet flavor states of mixed symmetry. For the 

baryons considered in this paper, Eqs. (3.27)-(3.30) take the form 

v,9, = s Nm, &s , (3.32) 

(3.33) 

(3.34) 

iis’s = m NmM xi, [@I 4s , (3.35) 

1 if the parent/daughter di-quarks are spin singlets and [ = - where t = l/3 if they are 

spin triplets (there are no singlet to triplet transitions in the spectator model). 

Comparing Eqs. (3.32)-(3.35) with Eqs. (3.1)-(3.4) g ives the following set of equa- 

tions for the form factors at maximum q2: 

jj+(M+m)jj++(M-m)g-=2/41mNmM, (3.36) 

- 
&+ij+-Q-z- rnN mM 7 mq 

(3.37) 

(3.38) 

E-(M+m)Si +-(M-m)a-=dKmEN,,, 
mq 

For the axial-vector form factors, there are two equations in three unknowns, 

so unfortunately they are not completely determined; I will take a+ as a free 

parameter. Note from Eq. (2.36) that Hh are independent of a+, so the transverse rate, 
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characterized by baryon spins (s’s) = (k&t> and a (1 F 7 cos 8,)2 electron distribution, 

can be predicted with no fitting to data. Solving the above equations for the vector form 

factors & gives 

while (3.39) and (3.40) give the constraint equation 

(M+m)ii++(M-m)n-=-dm E-1 [N,,. 
( > 

(3.41) 

(3.42) 

Ref. 16 derives form factor constraints in the infinite quark-mass limit. In this limit 

a new heavy-quark flavor symmetry emerges since the long wave length properties of the 

light quarks become independent of the heavy quark mass. For decays in which [ = 1, as 

in Ab --+ hceu, Ref. 16 shows the amplitude is determined by one universal form factor- 

in the notation of this paper, g = a, g* = 0 and a& = 0. In the infinite quark-mass limit, 

in whieh m/m9 + 1, Eqs. (3.38) and (3.40) give the first of these relations (g = a) and 

Eq. (3.41) gives the second (g* = 0). Actually, the results of Ref. 16 are reproduced only 

at the end point, and a pole dominance assumption gives an extrapolation to arbitrary 

q2. While Eq. (3.42) d oes not alone imply a& = 0 in the infinite quark-mass limit, it 

is consistent with this, which suggests that smaller values of a+ should be preferred for 

decays in which 5 = 1. Ref. 16 derives somewhat weaker constraints for decays in which 

[ = -l/3, as in fib ---f Q,ev. In the notation of this paper, the relations (45) and (48) of 

Ref. 16 become (M+m)ti++(M-m)Si- = 0 and (M-m)g++(M-m)s- = O,l’ andin 

the infinite quark-mass limit Eqs. (3.42) and (3.36) re d uce to these constraints. Unlike 

the t = 1 case, the vector form factors & are no longer small; however, small values of 

the axial form factors tif are allowed since the right hand side of Eq. (3.42) vanishes in 

the infinite quark-mass limit. Unfortunately, Ref. 16 gives no indication of the preferred 

a& values as it did for A0 and EQ decays. However, another constraint equation for a& 
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may be found by extending the calculation that leads up to Eq. (3.42) to second order in 

L.l* Including the next-to-leading order terms in k, the axial three-vector current (3.4) 

becomes: 

ii t s’s = Xs’ a i+-[ a+ -a-] (3.43) 

The form factor a, above, is not yet evaluated at maximum q2. The current must now be 

calculated at the quark level. As in deriving Eq. (3.35), the terms of order m,,/G and 

l2 will be dropped. The terms linear in 1 again integrate to zero and the quark-model 

calculation, in next to leading order, gives: 

A s/s = m Nm, xi, I [ ( 1 + 

Comparing Eqs. (3.43) and (3.44) for s’s = f~ (longitudinal virtual Ws) gives: 

(3.45) 

This just gives a negligible E # 0 correction to a. Next, making the comparison for 

s’s = ff (transverse virtual Ws) and using Eq. (3.45), a new constraint equation is 

found: 

a+ - a- = 0 . (3.46) 

It should be emphasized that Eq. (3.46) only represents a best guess, since in going to 

second order in the daughter momentum there are relativistic corrections I have ignored. 

Finally, using Eqs. (3.42) and (3.46), 

ii&=-,/$ (g-1) JN,,. (3.47) 

Note that in the infinite quark-mass limit, this second order calculation gives ah = 0. 

This is in agreement with Ref. 16 for decays in which < = 1. Furthermore, this result 
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suggests that ah remain small even for decays in which [ f 1, although gk may become 

large for such decays. 

In summary, the form factors at the maximum q2 end-point are: 

(3.48) 

(3.49) 

(3.50) 

(3.51) - 

Again it should be emphasized that Eq. (3.51) re p resents only a best guess, and I will at 

times continue to keep si+ a free parameter. Also, recall that none of these caveats apply 

for transverse-W rates, which are independent of a+. 

Now; to extend the q 2 behavior beyond the end point, a pole dominance model is 

assumed. The g form factor, for example, scales as 

9(Y) = yy-Tr:“” s , (3.52) 

where yrnal: = (1 -m/M)2 and Yres = (mfQ/M)2, with rn& being the mass of the first ex- 

cited Qq-vector meson resonance above the parent baryon mass. For simplicity, 1 assume 

all the form factors scale using the same resonance mass. This is a practical assumption, 

since the masses of such resonances are not measured well enough to distinguish their 

parity and charge conjugation. 
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4. Model Results 

This section gives numerical results for various exclusive decay modes. For the 

+ process Ai + A, e -ti,, I take the mass of A, to be m = 2.28 GeV, the appropriate KM- 

matrix element Vbc = 0.046, and the charmed quark mass m, = 1.8 GeV. The masses of 

Ab and the &-vector resonance used for the pole-dominance model are uncertain. I take 

iU = 5.5 GeV and a pole mass m* = 6.0 GeV as ball-park figures. The rates are rather 

insensitive to the exact pole mass, and a variation in m* of about 5% gives a variation 

in the rates of typically 5%10%. Of course the absolute rates are very sensitive to the 

value of the parent-baryon mass since (2.38) is proportional to M4m. When M is better 

known, one can simply rescale the rates found below by (AJbbetter/Mold)4, to an accuracy 

of about 10%. The form factors at maximum q2 are S = 9.00 GeV, a = 7.09 GeV and 

j+ = -0.174. For a+ = 0, the exclusive rate and the longitudinal- to transverse-w 

ratio is I’(Aa + A,ev) = 5.7 x lOlo set-r and I’,/I’, = 1.1. Figs. 4-5 show the rate 

and the longitudinal to transverse ratio as a function of a+. Note that for values of a+ 

close to zero, there are approximately equal mixtures of transverse- and longitudinal-W 

polarization. The total exclusive rate, along with the longitudinal and transverse rates, 

across the Dalitz plot are shown in Fig. 6 for ZZ+ = -0.17 (the second order prediction). 

The transverse rate is independent of a+, and Fig. 7 illustrates the sensitivity of the 

longitudinal width across the Dalitz plot for a range of a+. Note that the sensitivity 

is greatest for lower values of y = q2/A4 2. This is because the kinematic factor Ii’ in 

Eq. (2.15) vanishes at maximum q2, which washes out all dependence on a+. 

Tables II and III contain a summary of other processes. The rates presented there 

use the order-k2 calculation for a+. There are two qualitatively different cases: when 

the spectators are spin-singlets (t = 1) and when they are spin-triplets (t = -l/3). 

Figs. 4-15 summarize the exclusive rates, longitudinal to transverse ratios and Dalitz plot 

behavior for two representative decays, Ab + A,eu and fib -+ &.ev. Other decays are 

qualitatively similar to one of the previous two, depending on the spin of the spectators. 
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Fig. 4. Rate for Ab + A,eu. 
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Fig. 6. Total exclusive rate along with 
longitudinal- and transverse-W rates for 
Ab + Al,eu. The CC* signify f W-helicity, 
and the second order prediction of 
ii+ = -0.17 was used. 
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Fig. 5. Longitudinal- to transverse-W 
ratio for Ab + A,eu. 
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Fig. 7. Longitudinal rate sensitivity 
upon Z+ for Ab -+ A,eu. 
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TABLE II 

Kinematic Parameters. The * above a mass indicates large experimental uncertainty. 

” 
-c --iZeu 2.46 1.31 0.51 2.8’ 0.975 

TABLE III 

Form Factors and Rates. The value of a+ is the second order k prediction. 

Process 

A,tAeu 

C,-+Ceu 

” 
-C +Zeu 

a+ 

-0.17 

0.079 

0.11 

-0.24 

-0.48 

0.18 

-0.58 

9.0 7.1 

-3.4 -2.5 

-4.1 -2.7 

10.3 7.6 

4.0 1.8 

-1.5 -0.66 

4.6 1.8 

g+ 1 (lolo~(&) / (lol:~c-l) / rL’rT 
-0.17 5.9 2.7 1.2 

1.8 4.3 0.37 10.7 

1.8 1 5.4 I 0.44 11.2 

-0.24 1 7.2 I 3.3 I 1.2 

-0.48 1 9.8 I 3.8 I 1.6 

1.38 1 10.2 I 0.65 14.8 

-0.58 1 8.5 I 3.1 1.7 

Note that for baryons whose spin is carried by the heavy quark (f = l), the long 

tudinal polarization is from one to two times greater than the transverse polarization- 

with bottom baryons tending to equal longitudinal and transverse mixtures and charmed 

baryons tending to predominately longitudinal mixtures. When the spectators are in a 

spin triplet, as in R,, the longitudinal polarization dominates by at least a factor of lo! 
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Fig. 8. Total exclusive rate along with Fig. 9. Same as above, but for a daughter 
longitudinal- and transverse-W rates for of polarization s’ = -. 
Ab t A,eu with a + polarized daughter. 
The T* signify f W-helicity, and the second order prediction of a+ = -0.17 was used. 
In this and the following figure, 2!‘+ is given by a dash-dotted line and Z”- by a dash- 
double-dotted line. 
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Fig. 10. Rate for Q, t &eu. Fig. 11. Longitudinal- to transverse-W 
ratio for fib + &eu. 

‘, 

Figs. 8-9 examine the Dalitz plot behavior of Ab + A,eu, for positively and neg- 

atively polarized daughters respectively. For s’ = +, the W-polarization is mainly 

transverse; and for s’ = -, there is about an equal longitudinal and transverse m ix- 

ture. The situation for &, + &eu is shown in Figs. 14-15. In this case, the virtual 
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Fig. 12. Total exclusive rate along with Fig. 13. Longitudinal rate sensitivity upon 
longitudinal- and transverse-W rates for ii+ for fib + R&v. 

&, + &eu. The Th signify f W-helicity, 
and the second order prediction of a+ = -0.08 was used. 

_ TABLE IV 

Exclusive rates and longitudinal to transverse ratio for polarized daughter baryons. 

Daugl 

lib + A, e u 

& + cc e u 

&, + f& e u 

sb + & e u 

A,+Aeu 

C,-+Ceu 

" 
-C +Zeu 

0.85 

2.7 

3.4 

0.99 

0.85 

6.5 

0.67 

;er Hel. s’ = + Daughter Hel. s’ = - 

(1O12X-') 
L/h 

(lolo:ec-l) ( lO1zd) 
L/L 

0.55 0.56 5.0 2.2 1.3 

0.07 36.8 1.6 0.30 4.5 

0.08 41.2 2.0 0.36 4.6 

0.34 0.93 7.8 2.8 1.8 
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Fig. 14. Total exclusive rate along with Fig. 15. Same as above but for a daugh- 
longitudinal- and transverse-W rates for ter of polarization s’ = -. 
&, + &eu with a + polarized daughter. 
The T* signify f W-helicity, and the second order prediction of 2+ = -0.08, was used. 
In this and the following figure, T+ is given by a dash-dotted line and T- by a dash- 
double-dotted line. 

W is predominately longitudinal, but much more so for positive helicity daughters. In 

both cases, s’ = + (s’ = -) polarized daughters are never seen with negative (posi- 

tive) helicity Ws. Table IV gives a summary of other processes for polarized daugh- 

ter states. The two processes represented in the figures are the most experimentally 

relevant. For example, the splitting between Cb and hb is probably greater than a pion 

mass, so semileptonic Eb decay has much too small a branching ratio to be measured. 

The &, and s1,, on the other hand, are stable to strong decays, and there is a good chance 

of observing their semileptonic modes and comparing to theory 

ACKNOWLEDGMENTS 

I would like to thank J. Bjorken and I. Dunietz for many useful discussions and 

suggestions. 

27 



REFERENCES 

IG. Altarelli et al., Nucl. Phys. B208, 365 (1982). 

2B. Grinstein, N. Isgur, and M. B. Wise, Phys. Rev. Lett. 56, 298 (1986); Caltech Report 

CALT-68-1311 (1986); B. G rinstein, N. Isgur, D. Scora, and M. B. Wise, Phys. Rev. 

D39, 799 (1989). 

3M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C29, 637 (1985). 

4T. Altomari and L. Wolfenstein, Phys. Rev. Lett. 58, 1583 (1987); Phys. Rev. D37, 681 

(1988). 

5J. G. Korner and G. A. Schuler, Z. Phys. C38, 511 (1988). 

6J. C. Anjos et al., Phys Rev. Lett. 62, 722 (1989). The Mark III result for the decay 

width is consistent with E691: J. M. Izen, SLAC-PUB-4753 (1988). 

7M. Bauer-and M. Wirbel, Z. Phys. C42, 671 (1989). 

8E. Golowich et al., Phys. Lett. B213, 521 (1988). 

‘N. Isgur and D. Scar a, Phys. Rev. D40, 1491 (1989). 

IoF. J. Gilman and R. L. Singleton Jr., Phys. Rev. D41, 142 (1990) 

llJ. G. Korner and G. A. Schuler, Mainz Report MZ-TH/88-14 (1988); Phys. Lett. B226, 

185 (1989). 

j21<. Hagiwara, A. D. Martin, and M. F. Wade, Phys. Lett. B228, 144 (1989). 

13The daughter helicity frame has --z polar and y and --z axes as a coordinate frame, and 

the usual polar and azimuthal angles 8 and 4 are related to 19* and d* by 6 = r + 8* and 

q4 = -p. 

14J. Bjorken and S. Drell, Relativistic Quantum Meclzunics, Vol. I. 

28 



I51 use the following conventions for Pauli-spinors along a direction i, defined by 

azimuthal and polar angles 8 and qk 

and 

( 

-e+12 sin f3/2 
x- = 

ei+12 cos d/2 ) ’ 

The daughter helicity-frame angles 0* and $*, given by 8 = 7r + 6’ and 4 = -qS*, should 

then used in the above spinors. 

“N. Isgur and M. Wise, Univ. of Toronto Report UTPT-90-03 (1990). 

17The relations between the form factors used here and those in Ref. 16 are: gk = & f 

EL a*=$&~ 2rnT 2rny g- -F, anda=G,. 

18T. Altomari and L. Wolfenstein, Carnegie Mellon University Report CMU-HEP-86-17 

(1986): 

29 


