Fermilab FERMILAB-TM-2115 June 2000

he

MAD parsing and conversion code

Dmitri Mokhov!, Oleg Krivoshee%, Elliott McCrory?,
Leo Michelott? and Francois Ostigdy
lUniversity of lllinois at Urbana-Champaign
2Fermi National Accelerator Laboratory

June 14, 2000

Abstract

We describe design and implementation issues while developing an em-
beddable MAD language parser. Two working applications of the parser are
also described, namel)AD—C++ converter and C++ factory. The report
contains some relevant details about the parser and examples of converted
code. It also describes some of the problems that were encountered and the
solutions found for them.

1 Introduction

The MADI1] lattice description language became lingua francaof computa-

tional accelerator physics. Any new developments in accelerator physics compu-
tational codes and libraries had the requirements to read and understand lattice
descriptions written in MAD. The goal of our code is to produce embeddable
parser which is able to read, parse and store in memory lattice descriptions, with
the ability to generate output compatible with the MXYZPLTK[3] lattice descrip-
tion plus the ability to work directly as a C++ factory module.

2 Design Issues

2.1 General Constraints

MAD language as described in [2] is not well suited for parsing using standard
tools like Lex and YACC. Possible alternatives are to write hand-coded parser or
to use Lex and YACC but put some restrictions on possible MAD input files. Our
preference is to use industry standard tools and second alternative was chosen. We
wanted the parser to be usable not only in C++ libraries, but also as module linked
to C or Fortran codes, so C language was chosen as least common denominator to
write the parser. Therefore it is possible now to link parsing code to any libraries
and tools that are required to read and understand the MAD format.

The other design decision came directly from MAD language definition and
parser requirements. Because in MAD variables, and thus beam element defini-
tions, could be altered at any point, the only sensible way to build parser is to
make it a two-stage program. First stage is reading the MAD input file and do
the parsing stage in memory. The second stage of the parser is designed to gener-
ate actual output in C++. Such design also has greater flexibility, because output
module (second parser stage) could be modified, used to produce C++ object on
the fly (C++ factory) and altered in any way required by the task on hands.

2.2 First stage - the parser itself

The first stage, which uses the lexer that is built with Lex (in its Flex[4] incar-
nation), recognizes MAD keywords, identifiers, numbers, strings, and comments
from regular-expression-based rules. It returns corresponding tokens and seman-
tic values to the parser. The parser, written in YACC (we are using the Bison[5]
flavor of YACC), contains the grammar for MAD definitions and uses it to recog-
nize those definitions and store them into internal data structures. Because lex and
YACC communicate with each other via tokens, one of the parser problems is to
take into account the possibility to use shortened directives, e.g HKICKER could
be shortened (and often is) to HKICK. We did not offer generic way to handle
shortened names and directives, but choose to handle several very common cases
separately. Namely, shortened versions of HKICKER, VKICKER, KICKER and
MONITORSs are recognized now. If there is any demand to handle other shortened
directives it can be handled by altering the lexer and parser in very simple and
non-intrusive ways. Because of general constraints, the parser stores in memory
all the constants, variables, beam element definitions and beam line definition. In

order to keep as much information as possible for further processing, all constant
and variable definitions that include expressions are parsed and kept as expression
trees, not as calculated values. Expression tree allows us either to calculate the
expression value or produce output expression in the same way it was written in
MAD input file.

2.2.1 Parserinternals

The MAD parser itself contains four major tables for storing constants, variables,
beam element definitions and beam lines. Because there is a requirement to do
fast O(1) search, hash tables were chosen as the container for tables. The com-
ments are stored in an array of strings, because there is no requirements for fast
search. Because C is the implementation language, we use data structures from
Glib library[6]. The general parser scheme is shown below.

[MAD parser]

—/

Constants table Variablestable Beam elements table Beam linestable
name| constant* name| variable* name | beam element* name beam line*
name| constant* name | variable* name | beam element* name beam line*

As was mentioned above, almost all of the data structures that are created by
the parser to store MAD definitions come from the Glib library. Hash tables are
kept for storing information about constants, variables, beam elements, and beam
lines. In each hash table, the key is a pointer to the name of the object and the
value is a pointer to the corresponding structure. The name is the hash key in the
table for fast pointer retrieving during lookup. The tables below show all these
structures.

| Constant |
name
string value
algebraic expression
global line number
local file number
file name

| Variable |

name

algebraic expression

global line number

local line number
file name

| Beam Element |
name
kind
length
array of parameter
global line number|
local line number
file name

[72)

| BeamLine |
name
beam element list
counter
global line number
local line number
file name

N-ary trees from Glib are employed by the parser for storing algebraic ex-
pressions used by constants, variables, and beam elements. Doubly-linked lists
(GList pointers in Glib) are used for storing information about the elements of a
beam line. Finally, arrays of pointers (GPtrArray pointers in Glib) are used for

comments.

2.2.2 Whatin MAD is Handled

MAD constant definitions are parsed and stored in the relevant table. Con-
stants can be assigned algebraic expressions as well as string values. Built-
in constants from MAD T, etc.) are predefined.

All variables with arbitrary algebraic expressions as allowed by MAD syn-
tax are also parsed and stored in the table.

All beam element definitions are parsed, including exotic ones like matrix
and lump elements.

Beam line definitions are parsed and stored as well, including beam line
expressions: inversion, inclusion, and replication.

Finally, MAD comments are handled in simplistic way. Namely, because

it is impossible to analyze the comment, a very simple heuristic is used.
We associate the comment that is on the same line as a statement with that
statement and associate full-line comments with the statement right after it.

2.2.3 WhatIn MAD Is NOT Handled

224

Most importantly, the parser was designed for handling data definitions
only. Hence, MAD commands are not interpreted. The lexer understands
them, but the parser essentially throws them away by simply outputting a
message to the log file. The development direction include adding another
table for storing commands. The only exception is multiple include file han-

dling. MAD parser is able to handle arbitrary depth include files and collect

information about file names and local line numbers.

As mentioned above, only limited number of shortened directives are han-
dled. Fortunately, parser will produce error if there are any such cases pre-
sented.

Internal Massage Details

After MAD definitions are stored into internal data structures and before any out-
put takes place, there are several actions that need to be taken: checking for vari-
able loops, sorting, and dependence resolutions. Before the output takes place,

5

constants, variables, beam elements, and beam lines are sorted by the line number
on which they were defined in the MAD file. Then dependences are also checked
and resolved by re-arranging the order of the corresponding objects. Standard
Depth-First Search algorithm is used to walk the expression trees and check for
graph being acyclic.At the time of the writing, a circular definition (that is, a

loop) can be detected by running the dependency check, which will not properly
terminate in case of such a definition.

2.3 Parser Output Stage

After the parsing step is finished, the parser has all four tables available for further
processing. Using Glib supplemental function the user is able to pass through the
tables and construct C++ output or create the objects on the fly.

2.3.1 C++ output

One of the parser goals was the creation of C++ output file suitable for inclusion
into an Accelerator constructor in the MXYZPLTK[3] library. The conversion
MAD -> C++ is performed in four steps. First, all the constants are output, then
the variables, then the beam elements, and finally the beam lines. This is done both
for easier usage of the resultant C++ file and to better reflect the language structure
of MAD, even though the definitions might not be in such separate blocks in the
original MAD file. In addition, comments (changed from MAD to C++ style)
are also printed in all sections. It is worth mentioning that we produce the same
expression structure on output as it was in input file.

2.3.2 Conversion Problems

There are three main problems with converting from MAD to CFG(MXYZPLTK
input format, essentially C++), which are results of the absence of direct corre-
spondence between their elements. First, some elements (for example, MULTI-
POLE and YROT) are correctly stored in the memory but are printed as comments
to the CFG file. Second, other elements (for example, SOLENOID) are correctly
stored in the memory but are printed as instances of fictitious classes. Third, el-
ements like ELSEPARATOR and the collimators are replaced by drifts. Output
for the most elements includes comments that tell about the above problems and
changes. The comments also list the values of parameters that do not have equiv-
alents.

2.3.3 How To Run The Converter

After compilation there is only one executable to run, which is catledlcfg . If
executed with no arguments, it prints out a message telling how to use it:

Usage: mad2cfg mad_file [cfg_file]

There are no options right now. The input file always has to be specified, while
the output file argument is optional. If it is not specified, the CFG output will go
to STDOUT. Errors always go to STDERR.

2.3.4 C++factory

When using code in C++ factory mode there is no need to keep expressions stored
as trees. Therefore all expressions are calculated and their respective values are
used. After first step is done, we walk through the beam elements table and create
one object per each entry in this table. The third and last step is to create the
beamline and insert each beam element into relevant beam line via clone interface.
Then the initial beam elements table and madparser itself may be destroyed.

3 Tools Requirements

Several tools were used for developing and testing the MAD parser. The C-
language part of the parser code was written in and tested with GCC v.2.95 com-
piler. However, the code is written in fairly portable fashion (it passes gcc with
-Wall options without warnings) and we expect it to be compiled by any ANSI-
C-compatible compiler. The lexer was created using Flex v.2.5.4 scanner gener-
ator. It should be fairly compatible with AT&T Lex but may require minor code
changes. Bison v.1.27 parser generator was used to create the parser. Again, it
should be quite compatible with AT&T YACC, but some small changes in the
code may also be required. The program consists of many files which can be
compiled and linked using the provided makefile, which is written for GNU Make
v.3.77. In addition, C data structures for storing the information about MAD
objects were created using the library Glib v.1.2.4, found on the GIMP Toolkit
site http://www.gtk.org . All the tools mentioned above were made by GNU
projecthttp://www.gnu.org

4 Code Availability

The code for the parser is available via read-only anonymous CVS from the server
reboot.fnal.gov. In order to be able to connect, set your CVSROOT environment
variable to

:pserver.anoncvs@reboot.fnal.gov:/usr/local/cvsroot

Then execute “cvs login” with password “guest”. After the login is successfully
performed, you can get your private copy of the source files by executing “cvs
checkout madparser”. Then you should check GNUmakefile to see how include
parameters are set, since you might need to change them. Finally, run “make” to
compile and build the MAD parser. If you have question or want to have read-
write access to repository, please send e-mail to kriol@fnal.gov, who is currently
maintaining the code.

5 Conclusion

The MAD parser is fully functional, but there are certainly some features that can
be added to it. Most notable omission is the ability to parse MAD commands.
Parser was tested with several “real” lattices including Tevatron, Recycler and
NLC ones, several bugs were found and fixed.

References

[1] F.Christoph Iselin, “The MAD program(Methodical Accelerator Design) Ver-
sion 8.13/8”, Physical Methods Manual, CERN/SL/92, 1992.

[2] Hans Grotte, F.Christoph Iselin, “The MAD program(Methodical Accelera-
tor Design) Version 8.13/8”, User’s Reference Manual, CERN/SL/90-13(AP),
1990.

[3] Leo Michelotti et al, MXYZPLTK/Beamline class library,
http://www-ap.fnal.gov/~michelot/ , 1999.

[4] Vern Paxson, Flex, version 2.5.4. A fast scanner generator, Free Software
Foundation, 1999.

[5] Charles Donnelly and Richard Stallman, Bison, version 1.28. The YACC-
compatible parser generator, Free Software Foundation, 1999.

[6] Now part of Free Software Foundation GNOME project,
http:/www.gtk.org , 1999.

