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Abstract. Simulation of beam cooling usually requires performing certain integral transformations every time step or so, 
which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic 
cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of 
the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are 
discussed.     
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INTRODUCTION 

Simulation of beam cooling usually requires 
intensity effects to be taken into account. For 
stochastic cooling, computation of the beam response 
requires Hilbert transformation of the distribution 
function being repeated many times for the simulation 
process. If the beam is intense enough, intra-beam 
scattering (IBS) and instabilities normally have to be 
taken into account both for stochastic and electron 
cooling scenarios.  

From a computational point of view, intensity 
effects require integral transformations of the evolving 
distribution function to be repeated every time step or 
so, which puts a heavy burden on the CPU. The 
cooling scenario is characterized by many parameters. 
Some of these parameters have to be optimized, other 
have to be below some tolerances. One of the main 
purposes of the modeling is to find these optimal 
points and limits. Solving problems like that requires 
numerous cut-and-try runs of the modeling program 
for various points in a multi-dimensional space of 
parameters. That is why the program has to be 
sufficiently fast, taking not longer than a few minutes 
per a single run. To meet this goal, all the mentioned 
composites of the beam evolution have to be computed 
at a proper compromise between the duration and 
accuracy. This paper describes some ideas which the 
author found useful in his  computations for electron 
cooling projects of antiprotons in the Recycler, FNAL 
[1] and heavy ions in RHIC, BNL [2]. 

GUESS METHOD OF INTEGRAL 
TRANSFORMATION 

General Description 

Imagine that you have to calculate an integral like 

∫
∞
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where  f(v) is  a distribution function, or its derivative, 
or something related to the distribution function, and 
K(u,v) is a given kernel, which might have an 
integrable singularity, usually at u = v. Such integrals 
appear in stochastic cooling as the dispersion integrals 
(Hilbert transformations), and for intra-beam 
scattering as the friction force and diffusion 
coefficient. These singular integrals have to be 
calculated numerically at every point of the phase 
space (for every u), and at every (or so) time step, 
which puts a heavy burden on the CPU and could 
result in unacceptably long run time. If so, a proper 
approximate method of taking the integral is required.    

The result of integration depends on the specifics 
of the distribution function, and could vary a lot from 
one distribution to another. However, for many 
problems, the distribution function has some a priori 
known features. For example, let’s take it as an even 
function with a single maximum at zero argument.  
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The distribution function of the given type can be 
characterized by some set of parameters, like its 
standard deviation (rms value), higher moments, 
maximal derivative of any order, scalar products with 
some basis functions, etc. The more parameters – the 
fuller is the kept knowledge of the function.  A general 
rule for the choice of parameters is trying to minimize 
their mutual correlations. Let the symbol 

,...),( 21 aaa =
r

 mean a list of these parameters of 

the distribution, or the input function )(vf  of the 

transformation Eq. (1).  

How can the output of this transformation )(uχ  

be characterized by its own list of 

parameters ,...),( 21 AAA =
r

, so that it could be 
restored with sufficient accuracy from this list? A 
possible way to get this output parameterization is the 
analytical fitting. Namely, some combination of 

standard mathematical functions ),( AuF
r

 with 

unknown coefficients A
r

 can be tried to approximate 
the output function for one or another representative 
input function. After several cut-and-trials, a 
reasonable compromise between the accuracy and 
simplicity of this analytic fitting can be achieved. For 
every specific input, the coefficients A can be found 

by minimizing the error [ ]2
),(∑ −

i ii AuF χ
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  on 

some grid iu , with )( ii uχχ = . This procedure 

gives the sought parameterization of the output 

function, and the mapping Aa
rr

→ .  

The point is that after some preliminary job, the 

output parameters newA
r

 for any new input function 
newf  can be found from the input parameters newa

r
 

without doing the integral of Eq. (1). 

To do that, let some reasonably representative 

sampling of the input functions αf  be taken, and a 

mapping table αα Aa
rr

→  be built. Then, this table 
can be transformed into a list of functions   

{ },...),...,(,...),,()( 212211 aaAaaAaA ≡
rr

        (2) 
by means of any standard numerical interpolation 
procedure. After that, Eqs. (2) give an alternative 

procedure for the mapping Aa
rr

→ , where no 
integration is required. This way of getting the output 
is much faster than the direct integration in Eq. (1), 
while its accuracy can be improved with better choice 

of the fitting function ),( AuF
r

, as well as change 

and increase of the number of the parameters a
r

 and 

A
r

.      

This procedure of the integral transformation 
without actual computation of the integral can be 
called as a “guess method”. The method consists of the 
following steps: 

1. Description of the input function f(v)  by a 
list of the input parameters a

r
, like 

moments, max derivatives, etc. 

2. Description of the output function )(uχ  
by its list of parameters. After some way 
along the learning curve, a good candidate 
for that description is usually found 

),()( AuFu
r

≅χ . 

3. Doing calculations for a finite set of the 
input functions, and getting a mapping 

table αα Aa
rr

→ . 

4. Interpolation of the table obtained at the 
previous step by means of a numerical 
interpolator, and getting the mapping as a 

list of functions )(aA
rr

.   

5. Using this list of functions whenever the 
integral transformation (1) is  needed, and 
getting the result as 

))(,()( aAuFu
rr

=χ .   

The entire procedure 1 – 5 is a construction of a 
“guess machine”. It is not fully formalized. Step 1 
requires good choice for the input function parameters. 
Step 2 requires good idea about the output description 
by means of a combination of standard mathematical 
functions. However, both not-so-formal steps are 
usually getting more and more efficient after several 
cuts and trials. In principle, there are no limits of the 
guess accuracy: it is increased with better choice and 
higher number of the input and output parameters. 

As soon as the guess machine is constructed, its use 
makes tremendous saving of the CPU time for the 
integral transformation, reducing it typically by about 
two orders of magnitude.    



Example: Dispersion Integral 

A dispersion integral appears whenever the beam 
response is important. For example, for pure 
longitudinal dynamics it has a form  

 dv
vu
vf

u ∫ −
′

≡
)(

)(χ  (3) 

where )(vf ′  is a derivative of the distribution 
function, and the principal value of the integral is 
assumed. An example of a process where these 
integrals have to be calculated millions of times is 
stochastic cooling, and this  puts a significant burden 
on the CPU time.  

For this example, the dis tribution function )(vf  is 
assumed to be a monotonic function of the absolute 
value of the velocity || v . The following parameters  
for this function are suggested: rms width 

2vv ≡σ , a maximum of the derivative maxf ′ , 

and the argument where this maximum occurs 0v .  In 

fact, the width vσ  can be treated as a scaling 

parameter, and be excluded by re-scaling of the 
argument. After that, only two parameters for the 
maximum derivative remain as the input function 
characteristics: 

 vv vafa σσ /, 02
2

max1 =′= .               (4) 

After some cut-and-tests, the following 
combination was accepted for the analytical match of 
the integral Eq. (3):     
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 At first glance, this formula might seem more 
complicated than it really is. Indeed, the factor G 
vanishes both at small and at large u; thus, it only 
corrects results in the intermediate region. So, the 
factor before the square bracket in F describes the 
integral in limits of small and large arguments. Taking 
into account that both F and G must be even functions 
of u, there are not so many relatively simple 
possibilities for reflection the integral behavior at the 

limits and for matching in the intermediate range of u. 
Note that Eq. (5) is just a possible analytical fit of the 
integral (3), some compromise between the accuracy 
and complexity of the result. 

After the descriptive parameters for the input and 
output functions are fixed by Eqs. (4, 5), it is time to 
collect “empirical data”, getting the specific values of 
the output coefficients A for various input 
representatives. These representatives should be 
constructed as different from each other as possible,  
i. e. covering as wide as possible area in the space of 
the input parameters a, belonging though to the fixed 
class of monotone smooth functions. When the table of 
such data is getting to be as long as 15 – 20 rows, the 
generated data can be considered sufficient, the 
interpolator applied, and the guess machine is ready. 
After that, this machine can be tried for a new 
representative, and if the accuracy is seen as good 
enough, the guess integrator can be used. Here, I am 
not going to present the list of my 20 representative 
functions; instead, a typical example of agreement 
between the guessed and actual behavior of the 
integral (4) for some test function is shown in Fig. 1. It 
is seen that disagreement is maximal at the 
intermediate range of parameters; the maximal error is 
~20%. Any definition of an average error would give 
not more than a few percent, which was sufficient for 
my purposes. If needed, the agreement could be 
improved, introducing more parameters, or modifying 
the fitting function.      
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FIGURE 1.  Dispersion integral (solid) and its guess (dash) 
based on 20 representative mappings. This is an example of 
typical agreement between the two.    



INTEGRALS FOR IBS DIFFUSION AND 
FRICTION  

Intra-beam scattering (IBS) is described by Landau 
collision integral [3] which has to be added to the 
Vlasov equation. Landau collision integral has the 
Fokker-Planck structure; an evolution of the 
distribution is described as 
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where the Poisson bracket [ H, f ] is the Vlasov part, 
and the Landau collision term on the right hand side is 
to be calculated with the friction and diffusion as 
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where all the symbols are of conventional meaning, 
and relativism can be easily included if needed.  

Scattering term leads to a slow evolution, while the 
Vlasov term describes fast oscillations. To get rid of 
this fast motion, a transfer to the action-phase 
variables and the phase averaging are needed. It leaves 
only the scattering terms, but both friction and 
diffusion are expressed as  5D (coasting beam) or 6D 
(bunched beam) integrals over the evolving 
distribution. Every such integral is a strongly varying 
function in the 3D space of actions. Direct 
computation of these integrals normally takes too long, 
so approximations are required. Conventionally, the 
distribution is assumed to be Gaussian for all the 3 
degrees of freedom, and growth rates of the beam rms 
values are calculated, as it was done by Piwinski and 
Bjorken-Mtingwa. This approach is insufficient when 
deviations from the Gaussian shape are significant. 
Often, the distribution is far from Gaussian if cooling 
is applied. That is why evolution of cooled beams 
actually requires solution of the kinetic equation. This 
“detailed” IBS treatment is especially important, when 
tails of the distribution are of interest, as it is for the 
losses and lifetime problems. Two cases can be 
pointed out, when the friction force and diffusion 
coefficients Eqs. (8) can be reduced to 1D integrals. 

Longitudinally Cold Beams 

Let the beam longitudinal temperature be much 
smaller than the transverse ones. In this case, IBS is 
essentially reduced to the longitudinal diffusion due to 

transverse-to-longitudinal heat transfer, and the 
problem reduces to evolution of the longitudinal 
distribution. The only integral to be calculated is the 
longitudinal diffusion coefficient as a function of 
transverse and longitudinal amplitudes. Let it be 
assumed that the transverse distribution is Gaussian, 
and the beam is round transversely. Then, for a 
bunched beam, the diffusion coefficient is written [4]: 
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Here xσ is the beam transverse rms size, xu  is the 

rms transverse velocity of the beam particles in the 
beam frame, zmymxm vvv ,,  are the velocity 

amplitudes at the given point of 3D phase space, and 
all the velocities are in the units of the speed of light c.  

With this result, the only value to be integrated is the 
longitudinal phase average of the bunch linear density 
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The diffusion coefficient of Eq. (9) does not assume 
anything specific about the longitudinal profile )(zλ , 
it can be arbitrary.  The only integral transformation 
which has to be performed every few time steps is 

z
λ , Eq. (10). Being 1D, this integral can be taken 

by the guess method, described above. The IBS 
diffusion coeffic ient of Eq. (9) was obtained in Ref 
[2], where equilibrium was studied between IBS and 
longitudinal electron cooling of relativistic bunched 
beams in RHIC. Due to strong dependence of the 
cooling rate on the particle 3D amplitudes, this 
dependence has to be kept both in the IBS diffusion 
and cooling rate.  

Stochastic Cooling Against IBS 

Longitudinal stochastic cooling is normally 
independent of the transverse degree of freedom. That 
is why the entire 3D distribution function can be 
considered as factorized in this case, with the Gaussian 



transverse distribution. For this “semi-Gaussian” 
model, the problem reduces to 1D longitudinal 
Fokker-Planck equation. The diffusion coefficient and 
the friction force of this equation are given by 1D 
longitudinal integrals. Kernels  of these integral 
transformations are determined by the transverse 
temperature; the results  are presented in Ref. [4]. Note 
that these 1D integrals can be also taken by the guess 
method.     
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