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1. Introduction

One of the important successes of string theory is that onelstain a statistical derivation of
the thermodynamic (macroscopic) Bekenstein-Hawkingogtiof certain supersymmetric (BPS)
black holes in terms of a microscopic state counting [1].sdtate counting is reliably computed
at weak coupling, whereas the computation of the thermadijmantropy is performed at strong
coupling. Even though microscopic and macroscopic erggopre computed in different regions
in the coupling constant space, they can nevertheless bparedhin a meaningful way since they
only depend on the quantized charges of the black hole umhsideration.

An important feature of these supersymmetric black holdisasthey are supported by scalar
fields (often called moduli fields). In the black hole backgrd these scalar fields vary radially as
one moves from spatial infinity to the horizon of the blackeh@nd they get attracted to specific
values at the horizon which are determined by the black H@eges. These values are independent
of the asymptotic values of the fields at spatial infinity. sTlsi the so-called attractor mechanism,
which was first noted in the context of supergravity [2—5] #imeh generalized to theories with
higher-derivative terms in [6, 7]. As a result, the macrgacantropy is entirely determined in
terms of the black hole charges.

Much of the success in the matching of microscopic and maops entropies is tied to
supersymmetry. There are, however, examples of extremmaBRS black holes for which the
microscopic entropy based on state counting agrees witkhdgrenodynamic entropy [8]. Thus,
it appears worthwhile to study generic features of extrematl necessarily supersymmetric black
holes. One such feature is the attractor mechanism, whigtt @nly a property of BPS black holes,
but is also present for extremal non-BPS black holes [9 —TRg attractor behaviour is encoded
in so-called attractor equations, which can be obtainedkbemizing a so-called entropy function
[11]. Moreover, the value of this function at the extremuralgs the thermodynamic entropy of
the extremal black hole.

In the following, we review the entropy function of [11] fotatic extremal black hole solu-
tions in four space-time dimensions, using the approact3jfjased on electric/magnetic duality
covariance. Then, following [14], we specialize to the casN = 2 supergravity theories and we
display the associated attractor equations at the tweatart level. We also briefly discuss the
entropy function for BPS black holes in the presence of aatedlass of higher-curvature inter-
actions. We display a few solutions to the attractor equatidescribing extremal black holes in
heterotic string theory. We refer to [13] for a detailed dission of these issues.

2. Entropy function and electric/magnetic duality covariance

Let us consider static extremal black hole solutions to tngagons of motion of a general
system of abelian vector gauge fields, scalar and mattes foeldpled to gravity in four space-time
dimensions. Following [11], we take the near-horizon getynef such a black hole to be of the
form AdS x S%. Thus, we consider near-horizon solutions with spherigairaetry, which may be
written as

ds? 4y = guudxHdx” = vy [ —r?dt? or® Vo (dB? + sir? 6. dg?
(4) = Guv =Vi + 2 +V2 + 5
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I
Fil =€,  Foy' = j—nsine. (2.1)

Here theFuV' denote the field strengths associated with a number of abgéiage fields. Thé-
dependence d¥9¢' is fixed by rotational invariance and tipb denote the magnetic charges. The
fields€ are dual to the electric charges. In addition to the consialas €', v; andv, there may be
a number of other fields which for the moment we denote calielgtby u,.

As is well known theories based on abelian vector fields dbgestito electric/magnetic dual-
ity, because their equations of motion expressed in territsecdual field strength's,

0¥
Guvi = V9| Euvpo a7 (2.2)
po

take the same form as the Bianchi identities for the fielchgfilesF,,,'. Adopting the conventions
wherex! = (t,r, 0, ¢) andg, gy = 1, and the signature of the space-time metric equals-, +, +),
it follows that, in the background (2.1),

Gogy1 = —V1V2 sinf % = —VqV> Sinf g ,

.07 Z
Gr“ - —V1V2 S|n9 dF—w - —47TV1V2 0—p| . (23)

These two tensors can be writtencasin0/(4m) and f|. The quantitiesy and f; are conjugate to
p' andée, respectively, and can be written as

0.
a(ep,vu) = _4"V1V2a_el’

fi(e p,v,u) = —4mvivo (2.4)

<z
-
Theq, are constant by virtue of the equations of motion and coaredo the electric charges.

Electric/magnetic duality transformations are induceddagting the tensor‘éw' andGyy by

a constant transformation, so that the new linear comluingtare all subject to Bianchi identities.
Half of them are then selected as the new field strengths defineerms of new gauge fields,
while the Bianchi identities on the remaining linear conaions are regarded as field equations
belonging to a new Lagrangian defined in terms of the new figlehgths. In order that this
dualization can be effected the rotation betweeen the temsast belong to Sgn+ 2;R), where
n+ 1 denotes the number of independent gauge fields. Hencestits to new quantities', G )
and(&, f|), where

p=ulyp’+2,
G =V a+Wy p’, (2.5)

and likewise for(€, f;). HereU';, V7, W; andZ" are constant reg¢h+ 1) x (n+ 1) submatrices
subject to

Uulv—wz=viu-z'w=1,
uw=w'u, Zz'v=VTz, (2.6)

IHere and henceforth we assume that the Lagrangian deperids ahelian field strengths but not on their space-
time derivatives. We also assume that the gauge fields apgelarsively through their field strengths.
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so that the full matrix belongs to &n+ 2;R) [15]. Since the charges are not continuous but will
take values in an integer-valued lattice, this group sheuthtually be restricted to an appropriate
arithmetic subgroup.

Next, we define the reduced Lagrangian by the integral ofutiédgrangian over the horizon
two-spheres?,

Flepwu) = [dods /gl 2.7)
We note that the definition of the conjugate quantiteand f; takes the form,
0.7 0.7
-7 fl=——" . 2.8
ai 5d | ap (2.8)

It is known that a Lagrangian does not transform as a funatimter electric/magnetic duali-
ties. Instead we have [16],

o 1 ~ 1
y(éa f),V,U)+ E[élql + f| f)l] = LO}\(G, p,V,U)+ E[elch + f| pl] . (29)

so that the linear combinatiof (e, p,v,u) + 3[€'q + fi p'] transforms as a function. It is easy to
see that the combinatiogiq, — f; p' transforms as a function as well, so that we may construct a
modification of (2.7) that no longer involves tHgand that transforms as a function under elec-
tric/magnetic duality,

&(q,p,vu) = —ZF(ep,v,u)—€q, (2.10)

which takes the form of a Legendre transform in view of the faguation (2.8). In this way we
obtain a function of electric and magnetic charges. Theedfdransforms under electric/magnetic
duality according to§(q, p,v,u) = &(q, p,v,u). Furthermore the field equations imply that tje
are constant and that the actignetdr &, is stationary under variations of the fieldandu, while
keeping thep' andgq; fixed. This is to be expected &sis in fact the analogue of the Hamiltonian
density associated with the reduced Lagrangian density, @ least as far as the vector fields are
concerned. The constant values of the fielgsandu, are thus determined by demandigigo be
stationary under variations gfandu,

08 08
N oau (2.11)
The function 21&(q, p,v,u) coincides with the entropy function proposed by Sen [11]e &qua-
tions (2.11) are the so-called attractor equations anchéiretodynamic entropy is directly propor-

tional to the value o at the stationary point,

Fmacrd P,0) 0 & (2.12)

attractor

The precise proportionality factor is a priori undefined degends on various normalization con-
ventions used for the Lagrangian and the charges. The almwation of the entropy function
applies to any gauge and general coordinate invariant bgga, and, in particular, also to La-
grangians containing higher-derivative interactions.e EBmtropy computed by (2.12) is Wald’s
entropy [17] which, in the absence of higher-derivativeeiattions, reduces to the area law of
Bekenstein and Hawking.
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In the absence of higher-derivative terms, the reduceddragan.# is at most quadratic in
€ andp' and the Legendre transform (2.10) can easily be carriedFrtinstance, consider the
following Lagrangian in four space-time dimensions (weyotbncentrate on terms quadratic in
the field strengths),

o= -iVIg{ M FL FHY - ARy FL (2.13)

whereF;,' denote the (anti)-selfdual field strengths. In the contéstie paper the tensof' =
+iFg,' = 3(Fu' £iFgy') are relevant, where underlined indices refer to the tangeate. From
(2.13) and (2.1), we straightforwardly derive the assedatduced Lagrangian (2.7),

1(ivp (AN =) ap’  dimved (W — A )ye’) 1 _
O‘\_ 2 - _——
7= 4{ 411V Vi ze (’/V—FL/V)IJ p. (214)

It is straightforward to evaluate the entropy function (@.ih this case,
V1 -

&= “8mv, (ar — Atk P [(Im A7)~V (a5 — A5 ph) (2.15)

which is indeed compatible with electric/magnetic dualltypon decomposing into real matrices,
i.M3 = W3 —ivyy, this result coincides with the corresponding terms in thealed black hole

potential
1 p pu+vutv vput
Ve = = (p,a)" 4 , M= - e (2.16)
=3P <q> ( ptvooptt
discussed in [9], and more recently in [12]. Namely, setting- v, (which enforces the vanishing
of the curvature scalar) we obtath= (411) 1 Vgy.

3. Application to N = 2 supergravity

We now give the entropy function fod = 2 supergravity coupled to abelianN = 2 vector
multiplets at the two-derivative level. Here we follow theneentions of [7], where the charges
and the Lagrangian have different normalizations thanampttevious section.

TheN = 2 vector multiplets contain complex physical scalar fieldsol we denote bx', 1 =
0,...,n. Atthe two-derivative-level, the action for the vector tiplets is encoded in a holomorphic
function F(X) [18]. The coupling to supergravity requires this functianbe homogeneous of
second degree, i.65(AX) = A2F(X). The gauge coupling functiong(; in (2.13) are given in
terms of derivatives of (X),

ImF|KImFJ|_XKX'-

=FRy+2i
My =Rt A XN

(3.1)

whereR = dF (X)/dX' andFj = 9%F (X)/aX'aX’.
Imposing the vanishing of the Ricci scalar, i.e. settmg= v», the resulting entropy function
(2.15) can be brought into the equivalent form [19, 13],

& =13(Y,Y,p,q) + INV(2 - Rk 2X) (2, - F oY), (3.2)

Nl
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where

ZY.Y,p,0) =i (YR =Y'R)—a (X' +¥Y)+p(R+F), (3.3)
and
2 = p iy =Y,
2 =q+i(R-R). (3.4)
Here theY' are related to th&' by a uniform rescaling anf denotes the derivative &(Y) with
respect tor'. Also Ny =i(Fj — Fyj), whereF; = d°F (Y)/aY'aY?.

Varying the entropy function (3.2) with respect to the scéildsY' yields the attractor equa-
tions

(21— Ry 2Y) - 'é (2k — P ZM)NEPFooN@ (2 — Ry #M) =0, (3.5)

whereFpig = 93F (Y)/dYPaY! 9YQ. The attractor equations determine the horizon value of the
in terms of the black hole charg¢p',q;). Because the functioR (Y) is homogeneous of second
degree, we have;xYX = 0. Using this relation one deduces from (3.5) that — Fyx #X) Y7 =
0, which is equivalent to

i(Y'R-Y'R)=pR-qY'. (3.6)

Therefore, at the attractor point, we have
s=iY'R-Y'R). (3.7)
With the normalizations used in this section, the entropgdpreads

ymacro( p, Q) =2né& (3-8)

attractor

Supersymmetric (BPS) black holes are the subset of extrelaei holes satisfying [4, 20]
2 =2"=0, (3.9)
which manifestly solves (3.5). Their entropy reads
“macro= TTZ|attractor- (3.10)

As an example, consider &h= 2 supergravity Lagrangian based on the holomorphic functio

Yly2y3

F(Y) =~

(3.11)

which arises in heterotic string compactifications k8 x T2. Consider first a BPS black hole
carrying the non-vanishing charges

o=-Q, p'=Q,  p=p’=P, (3.12)
with PQ positive. Solving the BPS equations (3.9) yields the atitracalues
1 i i
Yo=2P , Yi== Y2=yv3=_pP 3.13
2 ) 2 Q 9y 2 ) ( )
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and computing the entropy (3.10) gives
Fmacro= 2TTP Q. (3.14)
Next, consider a non-supersymmetric black hole with namiskdng charges [21]
Go=p'=Q, p’=p°=P, (3.15)

with PQ positive. Solving the attractor equations (3.5) yieldsftiilwwing attractor values,

1 i i
Y _4P , Y 4Q , Yo=Y 4P, (3.16)
and the entropy (3.8) is computed to be
Fmacro= 2TTP Q. (3.17)

4. Inclusion of R2-interactions

It is possible to incorporate higher-order derivative liattions involving the square of the
Weyl tensorCypcq into the discussion given above. This class of higher-ontteractions can be
dealt with by including th&l = 2 Weyl multiplet into the functiofr and preserving its homogeneity
according to

FAY,A2Y) = A2F(Y,Y). (4.1)

Here Y denotes the square of the rescaled anti-selfdual Tiglavhich belongs to the Weyl multi-
plet. In the presence of these higher-curvature intenagtithere are thus additional terms in the
Lagrangian proportional to the square of the Weyl tensan gitwitational coupling functions en-
coded inFy = dF(Y,Y)/dY. These higher-curvature terms lead to a modification [14ol&he
entropy function (3.2).

Let us consider BPS black holes in the following. Then, it barshown that the fieltl takes
the valueY = —64 at the horizon, and that the Ricci scalar continues tcstanmie.v, = v, [6]. The
resulting entropy function takes the form [13]

& =13(Y,Y,p,q) + INY (2 — Fx 2%) (2, - FyL 2) | (4.2)
where now
SY,Y,p,a) =i (YR -Y'R) -2 (YA = YR) —q(Y' +Y)+ P (R +F), (4.3

and wherd= = F(Y,Y). The BPS attractor equations for the scalar fields contiatmavte the form
9, = 27 =0, and the entropy is given by

ymacro( P, CI) =2n& =Tz . (4.4)
attractor attractor
As an example, consider the holomorphic function
Yly2ys '
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which arises in heterotic string compactificationsk® x T2. Consider, in particular, a black
hole with non-vanishing chargep and p'. In the absence d®%-interactions, i.e. whe@ = 0, its
entropy vanishes. In the presencé¥finteractions, however, its entropy (4.4) is non-vanigtand
proportional to\/|gopt|. This black hole corresponds to a perturbative heteratiisgsstate whose
state degeneracy is in precise agreement with/x o for large charges [22]. This two-charge
black hole thus constitutes an example of a black hole fockwhigher-curvature interaction terms
are crucial, and for which there exists a string theoreticrasicopic description which precisely
reproduces its macroscopic entropy to leading order.
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