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1. Introduction

One of the important successes of string theory is that one can obtain a statistical derivation of
the thermodynamic (macroscopic) Bekenstein-Hawking entropy of certain supersymmetric (BPS)
black holes in terms of a microscopic state counting [1]. This state counting is reliably computed
at weak coupling, whereas the computation of the thermodynamic entropy is performed at strong
coupling. Even though microscopic and macroscopic entropies are computed in different regions
in the coupling constant space, they can nevertheless be compared in a meaningful way since they
only depend on the quantized charges of the black hole under consideration.

An important feature of these supersymmetric black holes isthat they are supported by scalar
fields (often called moduli fields). In the black hole background these scalar fields vary radially as
one moves from spatial infinity to the horizon of the black hole, and they get attracted to specific
values at the horizon which are determined by the black hole charges. These values are independent
of the asymptotic values of the fields at spatial infinity. This is the so-called attractor mechanism,
which was first noted in the context of supergravity [2 – 5] andthen generalized to theories with
higher-derivative terms in [6, 7]. As a result, the macroscopic entropy is entirely determined in
terms of the black hole charges.

Much of the success in the matching of microscopic and macroscopic entropies is tied to
supersymmetry. There are, however, examples of extremal non-BPS black holes for which the
microscopic entropy based on state counting agrees with thethermodynamic entropy [8]. Thus,
it appears worthwhile to study generic features of extremal, not necessarily supersymmetric black
holes. One such feature is the attractor mechanism, which isnot only a property of BPS black holes,
but is also present for extremal non-BPS black holes [9 – 12].The attractor behaviour is encoded
in so-called attractor equations, which can be obtained by extremizing a so-called entropy function
[11]. Moreover, the value of this function at the extremum yields the thermodynamic entropy of
the extremal black hole.

In the following, we review the entropy function of [11] for static extremal black hole solu-
tions in four space-time dimensions, using the approach of [13] based on electric/magnetic duality
covariance. Then, following [14], we specialize to the caseof N = 2 supergravity theories and we
display the associated attractor equations at the two-derivative level. We also briefly discuss the
entropy function for BPS black holes in the presence of a certain class of higher-curvature inter-
actions. We display a few solutions to the attractor equations describing extremal black holes in
heterotic string theory. We refer to [13] for a detailed discussion of these issues.

2. Entropy function and electric/magnetic duality covariance

Let us consider static extremal black hole solutions to the equations of motion of a general
system of abelian vector gauge fields, scalar and matter fields coupled to gravity in four space-time
dimensions. Following [11], we take the near-horizon geometry of such a black hole to be of the
form AdS2×S2. Thus, we consider near-horizon solutions with spherical symmetry, which may be
written as

ds2
(4) = gµνdxµdxν = v1

(

− r2 dt2 +
dr2

r2

)

+v2

(

dθ2 +sin2 θ dϕ2
)

,
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Frt
I = eI , Fθ ϕ

I =
pI

4π
sinθ . (2.1)

Here theFµν
I denote the field strengths associated with a number of abelian gauge fields. Theθ -

dependence ofFθ ϕ
I is fixed by rotational invariance and thepI denote the magnetic charges. The

fieldseI are dual to the electric charges. In addition to the constantfieldseI , v1 andv2 there may be
a number of other fields which for the moment we denote collectively by uα .

As is well known theories based on abelian vector fields are subject to electric/magnetic dual-
ity, because their equations of motion expressed in terms ofthe dual field strengths,1

Gµν I =
√

|g|εµνρσ
∂L

∂Fρσ I , (2.2)

take the same form as the Bianchi identities for the field strengthsFµν
I . Adopting the conventions

wherexµ = (t, r,θ ,ϕ) andεtrθ ϕ = 1, and the signature of the space-time metric equals(−,+,+,+),
it follows that, in the background (2.1),

Gθ ϕ I = −v1v2 sinθ
∂L

∂Frt
I = −v1v2 sinθ

∂L

∂eI ,

Grt I = −v1v2 sinθ
∂L

∂Fθ ϕ I = −4π v1v2
∂L

∂ pI . (2.3)

These two tensors can be written asqI sinθ/(4π) and fI . The quantitiesqI and fI are conjugate to
pI andeI , respectively, and can be written as

qI (e, p,v,u) = −4π v1v2
∂L

∂eI ,

fI (e, p,v,u) = −4π v1v2
∂L

∂ pI . (2.4)

TheqI are constant by virtue of the equations of motion and correspond to the electric charges.
Electric/magnetic duality transformations are induced byrotating the tensorsFµν

I andGµν I by
a constant transformation, so that the new linear combinations are all subject to Bianchi identities.
Half of them are then selected as the new field strengths defined in terms of new gauge fields,
while the Bianchi identities on the remaining linear combinations are regarded as field equations
belonging to a new Lagrangian defined in terms of the new field strengths. In order that this
dualization can be effected the rotation betweeen the tensors must belong to Sp(2n+2;R), where
n+ 1 denotes the number of independent gauge fields. Hence this leads to new quantities(p̃I , q̃I )

and(ẽI , f̃I ), where

p̃I = U I
J pJ +ZIJ qJ ,

q̃I = VI
J qJ +WIJ pJ , (2.5)

and likewise for(eI , fI ). HereU I
J, VI

J, WIJ andZIJ are constant real(n+1)× (n+1) submatrices
subject to

UTV −WTZ = VTU −ZTW = ,

UTW = WTU , ZTV = VTZ , (2.6)
1Here and henceforth we assume that the Lagrangian depends onthe abelian field strengths but not on their space-

time derivatives. We also assume that the gauge fields appearexclusively through their field strengths.
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so that the full matrix belongs to Sp(2n+2;R) [15]. Since the charges are not continuous but will
take values in an integer-valued lattice, this group shouldeventually be restricted to an appropriate
arithmetic subgroup.

Next, we define the reduced Lagrangian by the integral of the full Lagrangian over the horizon
two-sphereS2,

F (e, p,v,u) =
∫

dθ dϕ
√

|g|L . (2.7)

We note that the definition of the conjugate quantitiesqI and fI takes the form,

qI = −
∂F

∂eI , fI = −
∂F

∂ pI . (2.8)

It is known that a Lagrangian does not transform as a functionunder electric/magnetic duali-
ties. Instead we have [16],

F̃ (ẽ, p̃,v,u)+
1
2
[ẽI q̃I + f̃I p̃I ] = F (e, p,v,u)+

1
2
[eI qI + fI p

I ] . (2.9)

so that the linear combinationF (e, p,v,u)+ 1
2[eI qI + fI pI ] transforms as a function. It is easy to

see that the combinationeI qI − fI pI transforms as a function as well, so that we may construct a
modification of (2.7) that no longer involves thefI and that transforms as a function under elec-
tric/magnetic duality,

E (q, p,v,u) = −F (e, p,v,u)−eI qI , (2.10)

which takes the form of a Legendre transform in view of the first equation (2.8). In this way we
obtain a function of electric and magnetic charges. Therefore it transforms under electric/magnetic
duality according toẼ (q̃, p̃,v,u) = E (q, p,v,u). Furthermore the field equations imply that theqI

are constant and that the action,
∫

dtdr E , is stationary under variations of the fieldsv andu, while
keeping thepI andqI fixed. This is to be expected asE is in fact the analogue of the Hamiltonian
density associated with the reduced Lagrangian density (2.7), at least as far as the vector fields are
concerned. The constant values of the fieldsv1,2 anduα are thus determined by demandingE to be
stationary under variations ofv andu,

∂E

∂v
=

∂E

∂u
= 0. (2.11)

The function 2π E (q, p,v,u) coincides with the entropy function proposed by Sen [11]. The equa-
tions (2.11) are the so-called attractor equations and the thermodynamic entropy is directly propor-
tional to the value ofE at the stationary point,

Smacro(p,q) ∝ E

∣

∣

∣

attractor
. (2.12)

The precise proportionality factor is a priori undefined anddepends on various normalization con-
ventions used for the Lagrangian and the charges. The above derivation of the entropy function
applies to any gauge and general coordinate invariant Lagrangian, and, in particular, also to La-
grangians containing higher-derivative interactions. The entropy computed by (2.12) is Wald’s
entropy [17] which, in the absence of higher-derivative interactions, reduces to the area law of
Bekenstein and Hawking.
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In the absence of higher-derivative terms, the reduced LagrangianF is at most quadratic in
eI and pI and the Legendre transform (2.10) can easily be carried out.For instance, consider the
following Lagrangian in four space-time dimensions (we only concentrate on terms quadratic in
the field strengths),

L0 = −1
4 i
√

|g|
{

NIJ F+
µν

I F+µνJ− ¯NIJ F−
µν

I F−µνJ
}

, (2.13)

whereF±
µν

I denote the (anti)-selfdual field strengths. In the context of this paper the tensorsF±
rt

I =

±iF±
θϕ

I = 1
2(Frt

I ± iFθϕ
I) are relevant, where underlined indices refer to the tangentspace. From

(2.13) and (2.1), we straightforwardly derive the associated reduced Lagrangian (2.7),

F =
1
4

{

iv1 pI ( ¯N −N )IJ pJ

4π v2
−

4iπ v2 eI ( ¯N −N )IJ eJ

v1

}

−
1
2

eI (N + ¯N )IJ pJ . (2.14)

It is straightforward to evaluate the entropy function (2.10) in this case,

E = −
v1

8π v2
(qI −NIK pK) [(ImN )−1]IJ (qJ − ¯NJL pL) , (2.15)

which is indeed compatible with electric/magnetic duality. Upon decomposing into real matrices,
iNIJ = µIJ − iνIJ , this result coincides with the corresponding terms in the so-called black hole
potential

VBH =
1
2
(p,q)T

M

(

p
q

)

, M =

(

µ + ν µ−1ν ν µ−1

µ−1ν µ−1

)

, (2.16)

discussed in [9], and more recently in [12]. Namely, settingv1 = v2 (which enforces the vanishing
of the curvature scalar) we obtainE = (4π)−1VBH.

3. Application to N = 2 supergravity

We now give the entropy function forN = 2 supergravity coupled ton abelianN = 2 vector
multiplets at the two-derivative level. Here we follow the conventions of [7], where the charges
and the Lagrangian have different normalizations than in the previous section.

TheN = 2 vector multiplets contain complex physical scalar fields which we denote byXI , I =

0, . . . ,n. At the two-derivative-level, the action for the vector multiplets is encoded in a holomorphic
function F(X) [18]. The coupling to supergravity requires this function to be homogeneous of
second degree, i.e.F(λX) = λ 2 F(X). The gauge coupling functionsNIJ in (2.13) are given in
terms of derivatives ofF(X),

NIJ = F̄IJ +2i
ImFIK ImFJLXK XL

ImFMN XM XN , (3.1)

whereFI = ∂F(X)/∂XI andFIJ = ∂ 2F(X)/∂XI ∂XJ.
Imposing the vanishing of the Ricci scalar, i.e. settingv1 = v2, the resulting entropy function

(2.15) can be brought into the equivalent form [19, 13],

E = 1
2Σ(Y,Ȳ, p,q)+ 1

2NIJ(QI −FIKP
K)(QJ − F̄JLP

L) , (3.2)

5
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where
Σ(Y,Ȳ, p,q) = −i

(

ȲIFI −YI F̄I
)

−qI(Y
I +ȲI )+ pI(FI + F̄I) , (3.3)

and

P
I ≡ pI + i(YI −ȲI) ,

QI ≡ qI + i(FI − F̄I) . (3.4)

Here theYI are related to theXI by a uniform rescaling andFI denotes the derivative ofF(Y) with
respect toYI . Also NIJ = i(F̄IJ −FIJ), whereFIJ = ∂ 2F(Y)/∂YI ∂YJ.

Varying the entropy function (3.2) with respect to the scalar fieldsYI yields the attractor equa-
tions

(

QI −FIJ P
J)−

i
2

(

QK − F̄KM P
M)NKPFPIQNQL(

QL − F̄LN P
N)= 0 , (3.5)

whereFPIQ = ∂ 3F(Y)/∂YP∂YI ∂YQ. The attractor equations determine the horizon value of theYI

in terms of the black hole charges(pI ,qI ). Because the functionF(Y) is homogeneous of second
degree, we haveFIJKYK = 0. Using this relation one deduces from (3.5) that

(

QJ−FJK PK
)

YJ =

0, which is equivalent to
i(ȲI FI −YI F̄I) = pI FI −qIY

I . (3.6)

Therefore, at the attractor point, we have

Σ = i(ȲI FI −YI F̄I) . (3.7)

With the normalizations used in this section, the entropy (2.12) reads

Smacro(p,q) = 2π E

∣

∣

∣

attractor
. (3.8)

Supersymmetric (BPS) black holes are the subset of extremalblack holes satisfying [4, 20]

QI = P
J = 0 , (3.9)

which manifestly solves (3.5). Their entropy reads

Smacro= π Σ|attractor. (3.10)

As an example, consider anN = 2 supergravity Lagrangian based on the holomorphic function

F(Y) = −
Y1Y2Y3

Y0 , (3.11)

which arises in heterotic string compactifications onK3×T2. Consider first a BPS black hole
carrying the non-vanishing charges

q0 = −Q , p1 = Q , p2 = p3 = P , (3.12)

with PQpositive. Solving the BPS equations (3.9) yields the attractor values

Y0 =
1
2

P , Y1 =
i
2

Q , Y2 = Y3 =
i
2

P , (3.13)

6
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and computing the entropy (3.10) gives

Smacro= 2π PQ . (3.14)

Next, consider a non-supersymmetric black hole with non-vanishing charges [21]

q0 = p1 = Q , p2 = p3 = P , (3.15)

with PQpositive. Solving the attractor equations (3.5) yields thefollowing attractor values,

Y0 =
1
4

P , Y1 =
i
4

Q , Y2 = Y3 =
i
4

P , (3.16)

and the entropy (3.8) is computed to be

Smacro= 2π PQ . (3.17)

4. Inclusion of R2-interactions

It is possible to incorporate higher-order derivative interactions involving the square of the
Weyl tensorCabcd into the discussion given above. This class of higher-orderinteractions can be
dealt with by including theN = 2 Weyl multiplet into the functionF and preserving its homogeneity
according to

F(λY,λ 2ϒ) = λ 2F(Y,ϒ) . (4.1)

Hereϒ denotes the square of the rescaled anti-selfdual fieldT−
ab which belongs to the Weyl multi-

plet. In the presence of these higher-curvature interactions, there are thus additional terms in the
Lagrangian proportional to the square of the Weyl tensor with gravitational coupling functions en-
coded inFϒ = ∂F(Y,ϒ)/∂ϒ. These higher-curvature terms lead to a modification [14, 13] of the
entropy function (3.2).

Let us consider BPS black holes in the following. Then, it canbe shown that the fieldϒ takes
the valueϒ =−64 at the horizon, and that the Ricci scalar continues to vanish, i.e.v1 = v2 [6]. The
resulting entropy function takes the form [13]

E = 1
2Σ(Y,Ȳ, p,q)+ 1

2NIJ (
QI −FIK P

K)(
QJ− F̄JLP

L) , (4.2)

where now

Σ(Y,Ȳ, p,q) = −i
(

ȲIFI −YI F̄I
)

−2i
(

ϒFϒ − ϒ̄F̄ϒ
)

−qI(Y
I +ȲI )+ pI(FI + F̄I) , (4.3)

and whereF = F(Y,ϒ). The BPS attractor equations for the scalar fields continue to have the form
QI = PJ = 0, and the entropy is given by

Smacro(p,q) = 2π E

∣

∣

∣

attractor
= π Σ

∣

∣

∣

attractor
. (4.4)

As an example, consider the holomorphic function

F(Y,ϒ) = −
Y1Y2Y3

Y0 −C
Y1

Y0ϒ , (4.5)
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which arises in heterotic string compactifications ofK3× T2. Consider, in particular, a black
hole with non-vanishing chargesq0 andp1. In the absence ofR2-interactions, i.e. whenC = 0, its
entropy vanishes. In the presence ofR2-interactions, however, its entropy (4.4) is non-vanishing and
proportional to

√

|q0p1|. This black hole corresponds to a perturbative heterotic string state whose
state degeneracy is in precise agreement with expSmacro for large charges [22]. This two-charge
black hole thus constitutes an example of a black hole for which higher-curvature interaction terms
are crucial, and for which there exists a string theoretic microscopic description which precisely
reproduces its macroscopic entropy to leading order.
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