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I. DESCRIPTION OF THE PROBLEM 
We shall discuss a non-relativistic movement of 

the particle in an external electromagnetic field 

Frequencies ωn are considered large but limited 
by the following condition: 

ωn  
mc3 (1.2) ωn  e2 (1.2) 

where m is the mass, e is the charge of the particle, 
and c is the velocity of light in vacuum. In this case, 
as is known1), it is possible to neglect the retarding 
force due to the self-radiation of the particle and 
to write the non-relativistic equation of motion 

where η = e/m. 
Our task is to find an approximate solution of 

Eq. (1.3) in the case of slightly inhomogeneous 
electromagnetic fields, i.e. under the assumption 
that (,t) and (,t) are slowly changing functions 
of co-ordinates. 
Let us try to represent a solution of Eq. (1.3) as 

a superposition of a smooth motion r (0)(t) and a 
rapidly changing (by direction or velocity) motion 
(1)(t) 

The method of obtaining an averaged equation 
of motion described hereinafter is analogous to that 
proposed by P. L. Kapiza2,3) for the analysis of 

the oscillations of a pendulum with vibrating suspen­
sion. An application of this method to the motion 
of particles in electromagnetic fields is described 
in other papers4-10). 
Let us put the following limitations to the solution, 

Eq. (1.4) and the field of Eq. (1.1) 
(0) 

~ 
(1) 

1 (1.5) c ~ c 1 (1.5) 

(0) 
~ 

(1) 

1 (1.6) ωLE 
~ 

ωLE 
1 (1.6) 

(1) 

1 (1.7) LE 
1 (1.7) 

where LE is the characteristic distance at which the 
amplitude of the external field undergoes noticeable 
changes 

LE ~ | 
Ε | ~ L H ~ | 

Η |·(1.8) LE ~ | E | ~ L H ~ | H |·(1.8) 

Condition (1.6) means that the transit time of 
the particle in the zone where the field is noticeably 
inhomogeneous exceeds considerably the period of 
the high-frequency field 2π/ωn. Due to the condition 
of Eq. (1.6) amplitudes of the rapidly changing 
part of the solution Eq. (1.4) are proposed to be 
small (in the scale LE). Inequalities (1.6) and (1.7) 
are also at the same time criteria of the slow space 
variation of the fields. It is clear that in this sense 
a field may be slightly inhomogeneous, or essen­
tially inhomogeneous, depending on the nature of 
the motion (1.4) which in its turn is determined by 
this field. 
Assuming beforehand that conditions (1.5), (1.6), 

(1.7) are fulfilled we shall search for solutions of 
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Equation (1.3) satisfying them. For this purpose let us represent the field Eq. (1.1) as a series of a 
small parameter, Eq. (1.7), keeping in the expansion only terms of the first and second orders. 

(1.9) 

where ri, rj are components of the radius vector along the orthogonal co-ordinate directions. Substitution 
of Eq. (1.9) into Eq. (1.3) gives the following equation: 

It is taken into account here that 

Equation (1.10) is the starting equation in examin­
ing the motion of particles in slightly inhomogeneous 
fields. The possibility of its further simplification 
depends on the relation between the amplitudes of 
vectors of the electric and magnetic fields. The motion 
in purely static and quasi-static fields is discussed, 
for example, in the papers by Hellwig11) and 
Bogolyubov and Mitropolskij12). Our attention 
will be focused on the systems with high-frequency 
fields. We shall assume, in particular, that the 
motion takes place in the zones where E~H or 
EH. (As it will become clear from the following, a 
particle cannot be held inside zones where Ε H and in­
evitably will get into zones where E ~ H and where its 
movement goes on in conformity with the Equation 
(2.5). About the nature of the motion of particles in 
the zone HE see, for example, the paper by Vedenov 
and Rudakov13).) 
One may easily see that the conditions (1.5), (1.6) 

and (1.7) are not independent. Thus, at L E~ = λ/2π 

(a typical case for high-frequency distributed systems) 
limitations (1.5) and (1.6) become equivalent and, if we 
take into account that r(1)~ηE/ω, then the inequality 
(1.7) will also come to (1.6). Hence, in Equation 
(1.10) which is as valid as Eq. (1.3) is, only to the 
terms of the first order /c inclusive, it is necessary 
to leave out of the sequence the terms of second 
order according to any of the parameters given in 
Eqs. (1.5), (1.6) and (1.7). This circumstance will 
simplify considerably further calculations. 

2. AVERAGED EQUATIONS OF MOTION IN A 
MONOCHROMATIC ELECTROMAGNETIC 
FIELD 

We shall begin with the simplest case. Let us 
assume that the field Eq. (1.1) is purely monochromatic. 
Then the following will be obtained directly from 
Equation (1.10) for a rapidly oscillating motion, 
taking into account the infinitesimal terms of the 
first order 
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Here the function (t) is treated as a parameter 
and the sign of {}α determines the operation of sepa­
rating harmonics, frequencies of which are given 
in the index. 
The solution of Eq. (2.1) may be found with the 

required accuracy by the perturbation method and 
has the following form: 

The first braces in Eq. (2.2) contain terms written 
in complex form changing with time at a frequency 
ω: the second braces contain terms which, in the 
actual form, change at a frequency 2ω; we have 

Substitution of Eq. (2.2) into (1.10) and averaging 
over a period 2π/ω brings one to the averaged equa­
tion for (t); in this case it appears that the terms 
{}2ω, in the approximation (/c), do not give any 
contribution to the averaged force: their contribu­
tion is essentially of the second order when the initial 
Equation (1.10) is already incorrect. Omitting the 
infinitesimal terms of the second order in all the 
parameters of Eqs. (1.5), (1.6) and (1.7) we obtain 

where 

We shall call function Φ ( ) the high-frequency 
potential. As F/|Φ|~(0)/ωLE the averaged motion 
appears to derive from a potential with an accuracy 
to the terms of the first order. (Precisely this case 

is discussed in our papers4, 6, 7) and in papers by 
Boot et al.8,9). 
In this approximation Equation (2.5) has a clear 

physical sense: instead of the exact equation for the 
particle Eq. (1.3) we discuss an approximated Equa­
tion averaged (over the period) of the oscillator 
(quasi-particle). 

The averaged force acting upon this oscillator is 
composed of the ponderomotive force of the inhomo¬ 
geneous electric field acting upon the electric dipole = (1) 

and of the Lorentz force acting upon the current 
element = (1) 

Combining Eqs. (2.9) and (2.10) we obtain the 
following equation 

= - Φ (2.11) 
which is a particular case of Eq. (2.5). Naturally 
the above derivation of this equation, does not 
contain any new statement but permits the adopted 
approximations, to be followed in sequence. 

3. AVERAGED EQUATIONS OF MOTION IN 
MULTI-FREQUENCY FIELDS 

It is not difficult to make a generalization of Equa­
tion (2.5) to a system with multi-frequency fields, 
static fields included. Further, for simplicity, 
we shall confine ourselves to accounting only for the 
main terms in the averaged Equation (2.5), i.e. to 
deal, practically, with the generalization of Equation 
(2.11). 
In case the outside field is presented as a super­

position of several monochromatic fields, the fre­
quencies of which differ from zero and satisfy the 
requirements of Eqs. (1.6), (1.7) the oscillatory motion 

(1)(t) may be written in a form analogous to that 
of Eq. (2.8), namely 
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Now, when substituting into Eq. (1.10) and averag­
ing relative to time it becomes necessary to take 
into account the cross terms containing products 
of fields with various frequencies. The latter disappear 
only upon averaging over an interval of time exceeding 
greatly the periods of all the "partial" oscillations 
2π/ω, as well as the periods of all the combination 
frequencies 2π/ωn±ωm which should also satisfy 
the condition of Eq. (1.6). The averaged equation 
will then coincide with (2.11) and the high-frequency 
potential Φ, which it contains, is composed of poten­
tials corresponding to the "partial" fields. 

Φ = 
Ν 
Φn = (η/2)2 

Ν | En |2. (3.2) Φ = Σ Φn = (η/2)2 Σ 
| En |2. (3.2) Φ = Σ Φn = (η/2)2 Σ 
| 

ωn 
|2. (3.2) Φ = 

n = 1 
Φn = (η/2)2 

n = 1 

| 

ωn 
|2. (3.2) 

This principle of the superposition of potentials 
avoids the different frequencies used in the papers 
by Knox14,15) and broadens considerably the pos­
sibility of making potential simplifications of arbitrary 
kind. 
The case is a little different when static fields are 

present. We shall explain this by means of two 
examples. 
Let a monochromatic high-frequency field be 

added to a slightly inhomogeneous electrostatic 
field 

= ( ) + ( ) ( ) . (3.3) 

If the characteristic distance L0, at which this 
field changes considerably, satisfies the condition 

r(1) ~ r
(1) E0 1 (3.4) 

LE 
~ L0 E1 1 (3.4) 

then the equation for the fast oscillating motion 
written as 

- η() = η()eiωt (3.5) 

will have the following solution with an accuracy 
of the order of ~ r

(1) E0 
: 

of the order of ~ L0 E1 
: 

= -(η/ω 2)()e i ω t + (η/ω2)2()eiωt. 
By substituting Eq. (3.6) into Eq. (1.10) and taking 

into account Eq. (3.4), after averaging over the 
period 2π/ω, we obtain 

= - Φ + ½ ( η 3 / ω 4 ) R e { [ ( ) ] + 
(3.7) 

+ [()rot]} 
where 
Φ = (η/2ω)2||2 + ηØst 

(3.8) 

= - Ø
st. 

(We are supposing that the frequency ω and its 
subharmonics are far from the free frequencies 
of the homogeneous Equation (3.5).) 
The expression on the right hand side of Eq. (3.7) 

cannot be readily represented in the general case 
as a potential vector. 
Let us discuss the second example. Let the system 

contain the monochromatic high-frequency field 
and a slightly inhomogeneous magnetic-static field 

( ) = ( ) + ( ) (3.9) 
Assuming r(1) L0 we shall conserve, however, 

in the averaged equation terms of order /c•r(1)/L0•H0/H1, 
i.e. at L0~LE we shall consider that 

r(1) H0 1. (3.10) 
L0 H1 

1. (3.10) 

This means that the static field intensity may exceed 
considerably the amplitude of the variable field. 
Let us introduce the orthogonal trihidron of 

unit vectors , , , directing along the lines 
of and marking the -components with the index 
"||", and the orthogonal vectors—with the index ┴. 
We shall represent the latter as a sum of vectors 
with a right and left circular polarization 

= () + () 
(3.11) 

= () + () 
whereupon = 

E ( + ) 

( - ) = 
√2 

( - ) 
(3.12) 

= 
E(-) 

( - ). = √2 ( - ). 
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Then the equation for the rapidly oscillating 
motion may be written from Eq. (1.10) as 

- ωH[ ] = η ( ) e i ω t + η ┴()e i ω t. 
(3.13) 

It is evident, that generally speaking, the fast 
oscillating motion will contain oscillations with the 
field frequency ω and also with the cyclotron frequency 
ω Η = ηΗ0/c 

(t) = (t) + (t) + (t). (3.14) 
Therefore, depending on the relation between the 

frequencies ω and ω Η it is necessary if ω ωΗ, to 
first average over 2π/ω and the motion rωH(1)(t) may be 
then added to the smooth motion (t), or, if ω ωΗ, 
to first average over 2π/ωΗ and combine rω(1)(t) 
to the smooth motion (t); then, in the obtained 
drift equation, one has to average anew over the 
period 2π/ω as well as over the period of all the 
difference frequencies. However, as the equation 
for (t) before its averaging over 2π/ωΗ has a 
free solution itself which corresponds to the rotation 
of the particle at a cyclotron frequency, we may in the 
second case formally include the solution of (t) 
into the non-averaged part of the solution (t): 

(t) = (t) + (t) (3.15) 
and discuss only the forced solution of Eq. (3.13), 
where ω Η is a slowly changing function of the co­
ordinates. 
Let us write this solution in the component form 

along the co-ordinate directions , , as 

= a1 + a2 + a3  

a1 = iη 
( 

Ε┴(+) - Ε┴(-) 

) 
a1 = ω√2 ( ω + ω Η 

- ω — ω Η ) 

a2 = -
η 
( 

Ε┴(+) + E┴
(-) 

). 

a2 = -ω√2 ( ω + ω Η 
+ ω - ω Η ). 

a3 = - (η/ω2)E|| (3.16) 
Substitution of Eq. (3.16) into Eq. (1.10) with 

further averaging over the period 2π/ω leads, after 
a number of calculations treated in detail in another 
paper7) to the averaged equation for 
2π/ω 

- ωH[] = - Φ + 1 / m ( ) (3.17) 

where 

Φ = (η/2ω)2{||2 + ω 
| | 2 + 

ω ||2} Φ = (η/2ω)2{||2 + ω + ω Η 
| | 2 + ω — ω Η 

||2} 
(3.18) 

= + = 
e 
[] = 

eω Im[] = + = 2c [] = 4c Im[] 
(3.19) 

i.e. 

= 
eω (||2 - ||2) (3.20) = 4c (||2 - ||2) (3.20) 

= eω Ιma3( — ) (3.21) 
= 

2c Ιma3( — ) (3.21) 

Thus, in the general case the right hand side of 
Eq. (3.17) appears to be non-potential due to the 
appearance of the additional force due to the action 
of the inhomogeneous magnetostatic field upon the 
time independent magnetic dipole, Eq. (3.19), deter­
mined by the rotation of the particle at a frequency 
ω. This force is absent in the case of a purely homo­
geneous magnetic field. (The presence of causes 
a precession of the dipole in the homogeneous 
magnetic field but it does not lead to a displacement 
under the approximation considered of the centre 
of oscillations and therefore, the precession move­
ment is averaged and falls out from the equation 
for (t). It is absolutely necessary to take into 
account the precession when examining the move­
ment in the quasi-stationary magnetic field (H1 E1) 
and in the homogeneous constant magnetic fields. 
For example see the paper by Vedenov and 
Rudakov13). 
The right hand side of Eq. (3.17) derives also from a 

potential for a3 = 0, i.e. when . In such a field 
there is only a rotation of the particles in a plane 
perpendicular to the lines of H0. 
Let us clarify, at last, the meaning of the left 

hand side of Eq. (3.17). As already mentioned, 
for ω |ωΗ| the function (t) is a slow time function 
(in the scale 2π/ω), and averaging over 2π/ωΗ is 
of no special interest; the Equation (3.17) may then 
be used as a usual averaged equation without any 
reservations. When ω tends to ωΗ, as in the case of 
ω ωΗ, averaging over the period 2π/ωΗ (and relative 
to the periods of the combination frequencies) is 
absolutely necessary. As is known, this averaging 
brings us to the equation of the drift approximation. 
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In this case the Equation (3.17) practically reduces 
to the following: 

- ω H [ ] = - Φ + 1 () + 1 () - ω H [ ] = - Φ + m () + m () 
(3.22) 

where 

= 
e R e [ ] = -ω Η ||2 = 4c R e [ ] = - 4 

||2 

(t) = rωH(1) ( + )eiωHt (t) = √2 ( + )eiωHt 

and (t) is a slowly changing function of time. 
In the same way it is possible to obtain the averaged 

equations of more complex systems and also to 
draw their generalization on account of infinitesimal 
terms of the next order according to parameters 
of Eqs. (1.5)-(1.7), as was made in Section 2 in the 
example of a single-frequency field. 

4. THE INTEGRAL OF AVERAGED ENERGY 

The averaged equations of motion are essentially 
simpler than the initial equations (1.10); their right 
hand side is not time dependent and in some cases 
may even be a vector potential. The latter circum­
stance permits to obtain the first integral of motion 
in the general form. We shall explain this, first, 
by the example of motion in the single-frequency 
field. Multiplying Eq. (2.11) by and integrating 
we find 

+ Φ() = const. (4.1) 2 + Φ() = const. (4.1) 

This expression should be interpreted as an integral 
of the averaged energy. As a matter of fact, substitut­
ing the value from Eq. (2.8) into Eq. (2.6) we can 
give the relation (4.1) the following appearance 

( ) 2 
+ 
()2 

= ( ) 2 
+ ||

2 
= const. (4.2) 2 + 2 = 2 + 4 = const. (4.2) 

Thus, the sum of the kinetic energy of the smooth 
motion (t) and the kinetic energy of the rapidly 
oscillating motion (averaged over the time) is con­
served. The most intensive oscillations at the fre­
quency of the external field take place at a full stop 
of the particle (in the scale of the smooth motion), 

i.e. for = 0. This ability to transform the 
energy of the progressive motion of the particle 
into that of oscillatory motion without energy contribu­
tion from the external field is the basis of all the 
proposals for using slightly inhomogeneous high-frequency 
fields in various devices. In this case an 
important role is played by the independence of the 
potential Φ(r), and hence of the averaged movement 
of particles, from the sign of their charge. 
It is interesting to note that the integral Eq. (4.1) 

is also valid for Equation (3.5), as it is not difficult 
to prove the validity of the equality 

( ) = 0. 

However, taking into account terms of the next 
order of Eqs. (1.5)-(1.7) does not permit the interpreta­
tion of Eq. (4.1) as the integral of the averaged 
energy, as the relation between r and E, given by the 
expressions Eq. (2.2), is now essentially different. 
The same condition is observed in the systems with 

the inhomogeneous high-frequency and the homo­
geneous magnetostatic fields where the integral 
Eq. (4.1) may be given the following form: 

+ ||2 + ||2 + Winteract = constant. (4.3) 2 + 4 + 4 + m = constant. (4.3) 

where 

Winteract = = 
ωΗω ( | | 2 - | | 2 ) m = m = 4 ( | |

2 - | | 2 ) 

is the interaction energy between the magnetic dipole, 
Eq. (3.19), and the field H0. Hence, it is necessary 
in this case to also include in the energy integral 
additional terms connected with the interaction 
between the moving oscillator and the external 
field. This makes it impossible to transform fully 
the kinetic energy of the smooth motion into the 
kinetic energy of the oscillatory motion. 

5. POSSIBLE APPLICATIONS 
An investigation of the solutions of the averaged 

equations permit one to obtain quite a visible outline 
of the particle motion in the general form, and, 
hence, to analyse from a sufficiently general point 
of view the problem of applicability of the inhomo­
geneous high-frequency fields in controlling the 
movement of charged particles. 
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Thus, a high-frequency optics for charged part­
icles can be created and in particular the high-frequency 
electronic optics. 
If the conditions Eqs. (1.5)-(1.7) are observed 

and the averaged Equation (2.11) is valid, then the 
following expression can bz taken as the electron-optical 
index of refraction. 

n() = √ν02 - Φ ( ) . ( 5 . 1 ) 

(When we speak of the electronic optics, we 
have in mind that in principle all the statements 
refer to the movement of any charged particle, as 
well as, within certain approximations, to the move­
ment of clusters of the quasineutral plasma.) 
This index of refraction is independent of the 

charge sign because of Eq. (2.6), but depends on the 
initial velocity ν0, which is defined by Eq. (5.1) as 
the velocity of particles at points where Φ() = 0. 
In the high-frequency fields as well as in the multi fre­
quency fields, even arbitrary different distributions of 
the index of refraction, Eq. (5.1), occur. Consequently, 
an analogous high-frequency distribution may be 
created corresponding to any non-relativistic static 
electron-optical device. Naturally, almost all the 
methods of calculations for such devices must be 
transferred from static optics to the high-frequency 
optics. 
There are however important differences. From 

the point of view of distribution of n() the high-frequency 
systems are more numerous due to the 
less strict limitations on Φ(). In particular, with 
the help of the high-frequency potential we may 
have absolute wells and absolute peaks—a situation 
which is impossible in electronic optics with purely 
electrostatic controlling fields without space charge. 
On the other hand, the high-frequency systems are 
more limited than the static ones mainly due to the 

approximate nature of the averaged description of the 
movement of particles. Firstly, this makes the 
oscillating "undetermination" of the averaged tra­
jectory inevitable and, hence, limits the accuracy 
of the electron-optical image (~ηΕ/ω2) and secondly, 
it does not allow the use of particles with relativistic 
velocities. Lastly, the high-frequency methods of 
controlling the movement of particles are worse 
than the static methods from energy considerations. 
In order to form the required high-frequency field, 
high, and sometimes even gigantic, power sources 
(> 108 W) should be necessary. Therefore, these 
methods may be applied only when the static ones are 
unsuitable for certain reasons, or when the presence of 
the high-frequency field is at any rate required for 
other purposes. A good example is the control system 
of the quasineutral plasma clusters or electronic 
instruments designed for the amplification and 
generation of powerful high-frequency oscillations. 
With the help of the high-frequency fields it is 

possible to make reflecting mirrors for charged 
particles or plasma clusters16, 17) as well as lenses. 
By forming two-dimensional wells of the high-frequency 
potential Φ, it is possible to build a system 
focusing the plasma beams5, 18, 19), and inside 
three-dimensional wells to localise plasma clusters4, 6, 8, 9, 10, 14, 15). 
By displacing potential wells 
with the plasma located inside, it is possible to 
obtain an acceleration of the latter20, 21). (This 
problem is discussed in detail in another of our 
reports "Plasma acceleration in slightly inhomogeneous 
high-frequency fields", see p. 167). At 
last, to make a coherent selection of particls passing 
towards a gradually increasing potential barrier 
at the moment when their full speed becomes zero, 
it is possible to transform the whole kinetic energy 
of the beam into the high-frequency energy, thus 
building a high-frequency oscillator by using this 
principle22, 23). 
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