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Abstract 

The QCD factorization in SIDIS is considered in close analogy to the the analysis 
of Drell-Yan process. The special role of the (weighted) average over produced 
hadron transverse momentum is stressed. The case of Single Spin Asymmetry due 
to the Collins-type fragmentation function is analyzed and its twist-3 nature is 
uncovered. The analysis of the sources of imaginary phases and respective cuts 
in hadronic kinematic variables leads to the effective character (non-universality) 
of T-odd distribution functions, contrary to universality of T-odd fragmentation 
functions. 

1. Introduction 

Semi-inclusive Deep Inelastic Scattering is currently one of the main sources of the exper­
imental information on spin asymmetries (in particular, Single Spin Asymmetries). The 
application of transverse momentum ( kr) dependent Collins fragmentation function in 
combination with chiral-odd transversity distribution provides a reasonable description of 
experimental data [1]. 

At the same time, the status of QCD factorization is not very clear. Indeed, the 
rigorous results for semi-inclusive processes are based on the approach of Altarelli, Ellis 
and Martinelli, where the leading order radiative corrections to the semi-inclusive cross­
sections integrated over hadron transverse momentum Pr are shown to be reduced to 
the anomalous dimensions of distribution and fragmentation function. This program is 
far from being accomplished in the case of Collins function, where integration should 
be of course the weighted one. As to the (unintegrated) kr-dependent functions, some 
discussions of factorization by J. Collins also exist [2]. 

The serious conceptual problem of factorization at low Pr, which will be the main 
object of our investigation, is the difficulty in identifying the short distance subprocess. 
This contrasts to the case of large Pr, where it is just the hard parton (gluon) balancing 
this large Pr which is providing the subprocess of interest. 

This problem was solved in the case of Drell-Yan (DY) process by A.V. Efremov and 
A.V. Radyushkin more than 20 years ago [3]. It was shown that the integration over Pr 
provides an effective "propagator" of heavy photon constituting the hard subprocess. 

Here I am applying the similar approach to the case of SIDIS. The resulting pic­
ture is even simpler: the effective propagator corresponds now to the quark so that the 
factorization of Pr-integrated SIDIS happens to be an analog of the factorization in DIS. 
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By considering the weighted kT averages, this approach can be easily generalized to the 
case of spin-dependent and T-odd fragmentation functions. For the later the definition 
in the coordinate space is suggested which does not require any specification of intrinsic 
kT and is free from the ambiguities of the twist definition for that case. As a result, the 
analog of Collins function is of twist 3, although it reproduces some of the results with 
the the standard kT-dependent definition. 

I would like to dedicate this paper to my teacher, Anatoli Vasilievich Efremov, on the 
occasion of his 70th birthday. As it was already mentioned, and will be also clear from 
what follows, it is essentially based on h.is works and ideas from various years, including 
the factorization in DY process, twist 3 approach to single spin asymmetries, and the his 
current work on the asymmetries in SIDIS. 

2. Factorization in PT averaged DY and SIDIS 

Let us recall the approach of Efremov and Radyushkin to the DY N(pi) + N(p2 ) --+ 
-y"(q)+X process. It is based on the following representation of the transverse momentum 
averaged hadronic tensor (Fig 1 a, b): 

(1) 

The photon "propagator" in the r .h.s. marks the appearance of the hard subprocesses 
(Fig 1 b), so that the dominant contribution to (1) is provided by the region z2 ,..., O in 
the coordinate representation. 

As a result, at the leading twist level 
only the bilocal (anti)quark correlators 
q;(z) contribute 

W1w(P1, P2, q) 

= f (~:~4 eiqzTr[q1(z)'y"112(z)'Y"], (2) 

and one may assume their following stan­
dard parametrization: 

1 d) 

Q;(z) = p; I dyeix;pzq;(x;), 

0 

i = 1, 2 (3) Figure 1: Generation of hard subprocess by 
transverse momentum integration in DY process 
(a,b) and SIDIS (c,d) . where q;(x;) are the (anti)quark distribu­

tions in the colliding hadrons. Performing 
the integration over z one is recovering the 
DY formula: 

W""(M2 ,xF) = 
(g""(P1P2) - pfp~ - ~Pn x j dx1dx2t5(sx1x2 - M 2)t5(x1 - x2 - xF)Q1(x1)q2(x2) (4) 
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The corresponding treatment of SIDIS N(pi) + 7•(q) --+ h(p3) + X, which is the main 
subject of this paper, is completely analogous (Fig. 1 c,d), except that integration over 
the produced hadron, rather than photon momentum should be performed. For spin­
independent case: 

Wµ"(q2, xB, z) = j d4p3o(pDo(P1P3 - z)Wµ"(p1,p3, q) 
P1Q 

D . I d4
p3 Wµ"( )"(PtP3 ) --+ isc, -

2 2 P1,p3, q u -- - z 
7rp3 P1Q 

(5) 

The "propagator" 1 / p~ in this representation does not contain the large "mass" , so 
it is not immediately clear what large parameter provides the light-cone dominance. In 
fact, it is also the photon "mass", and to see that one may assume this dominance and 
write the following expression 

W µ"( ) -/ d4t -iqtT [' (t) µD' (t) "] P1,p3,q - (27r) 4 e rq1 'Y 'Y • 

Here D(t) is the cutvertex describing the fragmentation of quark to hadron, 

(6) 

[ I 

D(t) = p3 I ~:2 eipat/z' D(z'), (7) 
0 

where D(z) is the spin-averaged fragmentation function. Let us now perform the integra­
tion over t and p3 similar to the DY case. The resulting expression is 

Wµ"(q2,xB,z) = (gµ"(piq) - 2xprpr- qµpr-q"~)Disc,jdx 2 ( 
1 

)
2
qi(x)zD(z). 

7r XP1 + q 
(8) 

The effective propagator now assumed the form completely similar to standard DIS case 
leading to the very similar expression: 

Wµ"(q2,xB,z) = (gµ"(p1q)- 2xprpr- qµpr- q"~)-2
1 

q1(xB)zD(z). (9) 
P1Q 

This proves a posteriori the self-consistency of the form (6). The possibility to prove 
the standard factorization only in such a way does not seem surprising. Indeed, there 
is another contribution with the same asymptotic behaviour, where the initial and final 
particles are described by the common non-perturbative object, fracture function [4]. 
Note, that due to the momentum sum rule for the fragmentation functions which has a 
partonic form due to the factor 1/z2 in (7) 

~ j dzzD;(z) = 1, (10) 
• 

they provide the compete description of the SIDIS. The corresponding cross-section, in­
tegrated over z and summed over all hadron species, is equal to the DIS one. As a result, 
fracture function contribution should be considered as a complementary, rather than the 
additive one, in order to avoid the double counting. In other words, one may speak about 
the fragmentation-fracture duality, when the factorization to the· separate distribution 
and fragmentation functions is spoiled at low z, while in average, due to (10), these con­
tributions are equal. This property may be used for developing of the phenomenological 
models of the fracture functions. 
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3. Weighted PT averages and spin-dependent SIDIS 

Let us pass to the SSA in SIDIS involving the Collins fragmentation function . We use its 
analog in the coordinate space [5], so that the corresponding contribution to cutvertex 
takes the form: 

I 

H(t) = iMaµvP~Zv J ~:ei(pat)/zf(z), 
0 

(11) 

where M is the parameter of the order of jet mass, while incoming quark is described by 
transversity distribution 

I 

h(z) = a,,v'YsPiSv j dzei(piz)"'h(x), 

0 

where S is the target polarization. 
The unintegrated hadronic tensor is now the following 

(12) 

(13) 

while the definition of the integrated tensor is ambiguous. The simplest possible way is 
to integrate over PT like in the spin-independent case: 

~W"v(q2 ,xB,z) = jd4p36(pi)64 (P1P3 - z)~W"v(P1,p3,q) 
P1Q 

(14) 

Substituting here (11,12,13) and performing integration overt one arrives at the expression 

~W"v(q2, xB, z) = M j d4p36(pndxdz
1 

8"6(xp1 + q - p3/z
1

)h(x)z
1 

I(z
1

)) 

Tr['Ys.P1Sry"(Pa'Yabv]6(PlP3 
- z) . (15) 

P1Q 

The derivative acting to the 6-function appeared due to the z factor in (11). It should 
be transferred to one of the p3-dependent factors. One can easily see that its action 
on the 6(pn and fia in the trace does not contribute (in the latter case due to anti­
symmetrization denoted by square bracket). The only other possibility is its action on 
the other 6-functio.n fixing the produced particle momentum fraction z. The resulting 
form of hadronic tensor is not explicitly transverse, which should be imposed by requiring 
the validity of equations of motion for (11). However, the relevant terms are proportional 
to q", qv and do not contribute to the cross-section after contraction with leptonic tensor1• 

(16) 

1 Neglecting the genuine twist 3 contributions will lead, after taking to the account the equations of 
motion, to the zero result for the observable in question. 
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where T = l; + l 1 is the average momentum of initial and final leptons. This expression 
in the target rest frame correspond to the azimuthal asymmetry, proportional to sinip8, 
ip8 being the azimuthal angle between the direction of transverse polarization and lepton 
scattering plane. 

Note also, that integration over z should lead to the zero result for the each type of 
the produced hadron due to the sum rule 

fo 1 

dz(zI(z))' = 0. (17) 

The behaviour of I at large at small z must guarantee the convergence this sum rule, as in 
the z-integrated cross-section the only 6-function, providing the non-zero result is absent 
at all. Note that integration over z should lead, after summation over all of the hadrons to 
the inclusive DIS cross-section (which for spin-independent case was guaranteed by (10)), 
where the T-odd asymmetry is absent. Here we see, that this actually happens for each 
hadron specie separately, which is easy to understand, as the z integration is sufficient in 
order to eliminate the kinematical variables producing the imaginary phase required for 
T-odd asymmetry, as will be discussed in some detail in the next section. 

Let us now pass to the another definition, corresponding to weighted average, which 
allows the consideration of other azimuthal angles: 

6.n Wl'"(q2
, xs, z) = f d4pa8(p;)(pan)8(p1p3 - z)6.Wl'"(pi,p3, q), (18) 

P1Q 

where n is the unite transverse 4-vector(np1 = nq = 0, n2 = -1). It is now obvious, that 
the derivative in 

6.n Wl'"(q2, x8 , z) = iM f d4p3(p3n)8(p;)dxdz' 8"8(xp1 + q - Pa/ z')h(x)z' I(z')) 

Tr['Ys.P1B1µ[Pa'Yo]'(]6(P1P3 
- z). (19) 

P1Q 

should be transferred only to the p3 entering this weighting factor, so that 

6.nW,~w(q2,xs,z) = 
Mxsh~2s)zl(z) (2XsPhvJnSp1 + PifvSqn + q"fµnSp 1 _ 3µfvp 1qn _ n"fµqSp 1 ) ( 20) 

Let us note that this expression satisfies the electromagnetic gauge invariance. Moreover, 
it is actually equal to the standard expression for the contribution of Collins function, 
except that the role of intrinsic transverse momentum is played by the auxiliary transverse 
vector n so that the correspondence to standard expression, making also the mentioned 
gauge invariance obvious, is: Tr[P1B/s'Yl'ftan1"] ---+ Tr[P1S1s1µ.Pakr1"]. This does not 
change the azimuthal dependence, as the weighted integration corresponds to azimuthal 
average: 

< du( 1Ph) cos( 1Ph - 1Pn) >= cos 1Pn < du( 1Ph) cos( 1Ph) > +sin 1Pn < du( 1Ph) sin( 1Ph) > . 

As a result the azimuthal dependence of cross-section like siniph, coscph is transferred to 
the same dependence on the angle 'Pn, and I(z) corresponds to the moment o( the Collins 
function: ( ) I 2 kf 2) I z,..., dkfM

2
Hi(z,kr. (21) 
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The factor M 2 in the denominator of the r.h.s. is exactly the one resulting from the 
various appearance of Min the definitions of Hand I [5]. 

At the same time, the weighting with the factor IPTI plays the crucial role, and the 
attempt to use other dependence would lead to the senseless singular expression. Post­
poning the further detailed studies of this expression, let us compare the two definitions 
of SSA from the point of view of their twist. While (16) contains extra factor q2 in 
the denominator, coming from the differentiation of the relevant o-function, explicitly 
signalling on the twist-3 effect, it is absent in the formula (19). However, its twist 3 
character is expressed in the fact, that the dimension of tl1 e factor IPTI in the definition 
of the weighted integral is carri d by M, rather than larg scale Q. So one may consider 
that BB a suppres.9ion wlt.h respe t lo the naive expect.ation only. This situation is quite 
general. 1£ we consider the higher twists for the spin independent Drell-Yan case which 
was our starting point and consider the kinematical higher twist corrections, manifested 
in the extra regular dependence of (anti)quark distributions on space-time interval z2 : 

I I 

Q;(z) =p; J dyeix;pyq;(x;,M2z2
) = Lan(M2z2)n J dyeix;pyq;(x;), (22) 

0 n 0 

where, as before, the (logarithmic) dependence on the factorization scale µ, resulting in 
the extra argument mu2z2 is not shown. To probe the higher twist contribution one may 
define the weighted average 

wµvm(M2,xF) =I d4qo(q2 - M2)wµv(p1,P2,q)(qn)2m"' M2m L:ata;n-k (23) 
k 

The most important property is the finiteness of all the qr = qn moments, implying 
that the cross-section decreases faster than any power of QT· So, the partial resummation 
of higher twists provides the natural explanation of the exponential falloff of the cross­
sections. 

4. T-odd distribution fragmentation and fracture functions: ef­
fectiveness and universality 

Let us compare the above presentation with the complementary mechanism of genera­
tion of Single Spin Asymmetry in SIDIS, namely the Sivers function. As it wus already 
discussed earlier [6], the key role is played by the requirement for t.he ex.istf:l..nce of the 
imaginary phase to have the T-odd observables in T-iuvariant theories (while in the case 
of real T-violation their role is assumed by complex couplings). The Sivers function can 
b only effective, (such a notion firs t suggested in [7]) 0[ non-universal (like it is referred 
(; now [2]), in the sense, that this imaginary phase emerges in the interaction, involving 
also lhe hard scattering and depending on its type. In other words, the respective cut, 
providing the imaginary phase, involves both hard and soft variables. 

Let us compare [6] in more detail the possible non-perturbative i.nputs from the point 
of view of these imaginary cuts. The most widely known objects are parton dist:ri butions, 
describing the fragmentation of hadrons to partons and related to the forward matrix 
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elements Ex < PIA(O)IX >< XIA(x)IP >=< PJA(O)A(x)JP > of renormalized non­
local light-cone quark and gluon operators. As they do not con ain any variable, providing 
the cut and correspon ling imaginary phase (to put it in the dramatic manner1 the proton is 
stable), the T-odd distribution functi ns can not appear in the framework of the standard 
factorization scheme. At the same time, they may appear effectively, when the imaginary 
phase is provided by the cut from the hard process, but may be formally attributed to the 
distribution [7]. Another way of treating the final state interaction, found in t.be explicit 
model calculations [8], as it was recently stres;ed by J.C. Collins [9], and elaborated by 
Belitsky, Ji and Yuan [16] is provided by the path-ordered gluonic exponential. Howew..r, 
in all cases, the T-odd distribution cannot be universal, as the imaginary phase appearance 
depends on the subprocess it is convoluted with. Practically, the dependence on the 
subprocess enters through the specific choice of light cone vector playing the crucial role 
for the sign of the Sivers function contribution. 

Let us also mention in this connection, that the similar to [8] calculation was performed 
earlier in twist-3 QCD [11] for the crossing related process of dilepton photoproduction. 
That result, when continued to the region Pr,...., M, will also not have any power suppres­
sion and looks formally as a twist 2 one. 

As soon as the twist notion for Sivers function , like for any /cr-dependent function is 
ambiguous, we may write it also in the coordinate space as 

I 

< p, Sl¢(O)'Y",,P(z)Jp, S >= Mt:µSpz / dxeizpx J(x) . 

0 

(24) 

Like the coordinate analog of Collins function, it is also of twist 3. To prove the non­
universality of this T-odd distribution J(x), it is sufficient to consider its contribution 
to the integrated asymmetry in semi-inc)usive DIS (14), where the hadronic tensor is 
proportional to: 

D.W'""(q2, XB, z) = iM / d4p3o(p~)dxdz1 
8"o(xp1 + q - p3/z

1

)J(x)z
1 

D(z
1

))t:PaSp 

Tr['YP'Y"Pa'Y"]o(PiPa - z). (25) 
P1Q 

One may see that the non-zero result is now only due to the action of the derivative to 
the o(p~) and the resulting expression is 

D.W'""(q2 x z) = Mx1i (xB)zD(z) t..JJt:vsm + p" t:µSp1q) 
' B, 2(q2)2 V'J I ' (26) 

where we dropped the terms proportional to q", q", disappearing after contraction with 
the leptonic tensor. One may note the important difference with the similar expression 
(16), which is going to zero after the integration over z. Contrary to that, the current 
expression is non-zero after integration over z is performed. Performing in addition the 
summation over hadron species and taking into account the momentum sum rule (10), 
one is coming to the expression for inclusive DIS, 

D.W°""(q2 x ) = Mx1i(xB)(..JJe11Sp1q +p"e"sp,q) 
• B (2q2(2) Pl l ' (27) 
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clearly requiring real T-violation ([12]). This proves the non-universality of Sivers func­
tion. 

Let us note, for completeness, that the weighted average (18) receives the following 
contribution of Sivers function 

A w-µ11( 2 ) _ Mx1J(xB)zD(z) ((p[µ€v)nSp 1 + 9µv€Sqnp 1) 
'->n n q 'XB, z - 2 I . 

q 
(28) 

At the same time, the electromagnetic gauge invariance requires to consider the con­
tributions of quark-gluon correlators, leading to the appearance of any effective T-odd 
distribution, explicitly. Moreover, the fragmentation analog of Sivers function was also 
shown [13) to be entirely related to quark gluon correlators. 

Imaginary phase of the Collins function (or any other T-odd fragmentation function) 
constructed from the time-like cutvertices of the similar operators 

L < O/A(O)/P,X >< P,X/A(x)/O >, 
x 

should come from the cut with respect to the jet mass, simulating the T-violation. It is 
the same in the various hard processes, and T-odd fragmentation functions are therefore 
universal. The recent analysis [2) confirms this picture. 

The FRACTURE function (FF)[4), whose particular example is represented by the 
diffractive distribution (DD)[14), is related to the object 

L < P1/A(O)/P2,X >< P2 ,X/A(x)/P1 >, 
x 

combining the properties of FRAgmantation and struCTURE functions. They describe 
the correlated fragmentation of hadrons to partons and vice versa. Originally this term 
was applied to describe the quantities integrated over the variable t = (P1 - P2 ) 2 , while 
tbe fixed t oase is described by the so-called extended fracture functions [15). They may 
be also exteuded [16) to describe SSA in such processes. Namely, such functions can easily 
get the imaginary phase from the cut produced by the variable (P1 + k) 2• Due to the 
extra momentum of produced hadron P2 , the number of the possible T-odd combinations 
increases. Therefore, they may naturally allow for the T-odd counterparts. The T-odd 
fracture function may describe a number of SSA at HERMES and, especially, NOMAD 
(17) The necessity of fracture functions, in particular of T-odd ones, is seen from the 
property of factorization in SIDIS mentioned above. Namely, that the appearance of 
separate distribution and fragmentation function cannot be proved in general, but rather 
assumed and justified a posteriori. 

5. Conclusions 

The factorization in PT integrated SIDIS may be proved in a similar manner to the con­
sideration of Drell-Yan process by A.V. Efremov and A.V. Radyushkin. The essential 
difference, however, is that factorization to separate distribution and fragmentation func­
tion can not be proved in general, but rather justified a posteriori, leaving a room for the 
fracture function. · 
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This proof may be easily generalized for the case of kT-dependent fragmentation 
function, if the latter are defined in the co-ordinate space, when the explicit definition of 
the transverse momentum notion happens to be non-necessary. The respective analog of 
Collins function happens to be of twist 3 order, which is expressed in the fact, that the 
dimension of IPTI in the weighted average is carried by the soft parameter M, rather than 
Q. This property may be generalized for arbitrary power of IPTl 2n, so that the partial 
resummation of higher twist justifies the exponential decrease of cross-sections with PT. 
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