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Introduction

The present interest in longitudinal and transverse instabilities of space charge dom-
inated particle beams in synchrotrons and storage rings has been strongly stimulated
by the heavy ion fusion research project, and the growing attention toward dif-
ferent high-current beams applications. The proposal of a European Study Group on
an Ignition Facility [1, 2] is based on the large potential of high current accelerators
for energy production [3]. Along with this proposal, a parallel development of driver
design and beam dynamics experiments and computer simulation have become a crucial
issue. The SIS/ESR (SchwerIonenSynchrotron/Experimentier-SpeicherRing – Heavy Ion
Synchrotron/Experi-mental Storage Ring) facility at the Gesellschaft für Schwerio-
nenforschung (GSI-Darmstadt) has proved to be a suitable tool to carry out such
“accelerator tests”: in particular, important progress has been possible with cooled high
longitudinal phase space density beams in the ESR [2].

The issue of collective instabilities directly relates to the development of high current
storage rings in a heavy ion fusion driver [4]. During storage of a coasting beam for
several milliseconds, there is the concern that currents exceeding the “Keil-Schnell cir-
cle threshold” by a large factor might be subject to the longitudinal instability. The
mechanism of this phenomenon can be qualitatively explained as a resonant interaction
of the beam particles among themselves and with the surrounding environment [5, 6].
In fact, beam particles interact via the direct space charge field – as it is also possibly
modified by the finite conductivity of the walls of the vacuum chamber – and through the
electromagnetic fields induced in the environment surrounding the beam. When a small
coherent (or even incoherent) disturbance occurs in the beam structure, longitudinal and
transverse electromagnetic fields are induced, which will perturb the particles trajectories
through the Lorentz force. In the highly relativistic case, these fields sensibly trail behind
the “source” particles, and this explains the name of “wake fields” [7]. The fields, and in
turn the beam perturbation, can self-amplify each other, such that an instability occurs
resulting into beam degradation and loss.
The beam environment not only consists of a smooth stainless steel vacuum pipe, but also
comprises ceramic and ferrite structures built inside the vacuum chamber, along with some
other elements or irregularities such as clearing electrodes, bellows, pipe discontinuities,
etc. These complex geometrical wall configurations with different material properties are
responsible for generating non-uniform fields which can all contribute to the coherent
beam instability.
The longitudinally unstable evolution of a beam can be seen and monitored by a pick-up
as a modulation in the beam current profile, whose amplitude grows exponentially in time
and comes to saturation after a few e-folding times. One of the most undesired effects of
the longitudinal instability is the increase of the beam momentum spread, which according
to the special application may reach up to an unacceptable level. For example, in drivers
for heavy ion inertial fusion, beams with very small momentum spread are needed for the
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final focusing.
One of the challenging questions in beam physics is whether a high-current machine must
necessarily operate under conditions where the beam is linearly stable, or it might in-
stead operate with a linearly unstable beam provided that either the instability saturates
with an acceptable distortion in the beam distribution function or the residence time is
short enough to limit the blow-up induced by the instability. Thus an understanding of
nonlinear effects due to space charge, which arise after the initial perturbation has grown
outside the range of validity of linear, small-amplitude analysis, is fundamental in the
development of high power beam sources.
Beam instabilities were encountered early in the history of accelerators and colliders.
It was noted that, beyond certain beam density thresholds, the space charge tends to
blow up, and to degrade the beam. Nevertheless, so far there had been no experimental
evidence of the occurrence of longitudinal instabilities in space charge dominated beams
below transition energy, with low γ. Though the theory of instabilities is well established,
the validity of the perturbative linear theory in this special case was never checked in
further detail. The ISR (Intersecting Storage Ring) experiments on the longitudinal
instability driven by an RF cavity were performed at relativistic energies [8] and com-
pared with numerical simulation [9]. As space charge was negligible at those energies,
the connected findings are not directly applicable to the situation in heavy ion fusion.
Another experiment was done with protons at the energy of 70 MeV/u [10]: observation
of microwave signals during stripping injection into the ISIS synchrotron gave evidence
of some growth of an initial (linac) modulation, but no quantitative analysis of the effect
was possible. Cooler rings experiments had shown that currents can exceed the “circle
criterion” by a factor as large as 10, yet with the friction effect of the electron cooling
continuously present [11].
A first cycle of dedicated measurements in order to excite longitudinal instabilities on
a coasting beam has been carried out at the ESR – as the measurements that will be
described and interpreted in this work. There it was possible to clearly observe the beam
going unstable on the second harmonic under the effect of its interaction with a cavity
tuned on the multiple n = 2 of its revolution frequency [2]. But still, no quantitative
analysis was possible because of the lack of precise information about the cavity eigenfre-
quency during the measurements.
An alternative study of the space charge dominated regime entirely in time domain has
recently been undertaken in a linear electron channel with resistive walls [12]. This ex-
periment has confirmed the growth rate for the unstable slow wave and the damping rate
for the stable fast wave obtained from the linear cold fluid theory. The fully developed
nonlinear stages of the instability have been less extensively investigated up to the present
study. Saturation, decoherence effects, and energy-spread overshoot have been predicted
by simulating numerically a high energy coasting beam interacting with a resonant RF
cavity in the absence of space charge effects [9].

This PhD work essentially reports about the latest cycle of measurements made at the
ESR, aiming at proving and interpreting the longitudinal instability of intense and electron
cooled ion coasting beams below transition, which interact with a narrow-band impedance
(in our case, a slightly detuned cavity). The main ideas, and novelties with respect to all
the experiments previously done on the same subject, have been:

• to excite the longitudinal instability on a space charge dominated beam (intense and
cooled down to a very low momentum spread via electron cooling) by means of an
RF cavity inside a storage ring (the ESR was our tool for the investigation of this
issue);
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• to dispose of a precise control of the cavity eigenfrequency, such that it was always
possible to know how big a cavity impedance was acting on the beam at the different
stages, and consequently how quick an instability should have been expected out of
such an impedance. Unfortunately, this option needed an active feedback control
through a small external voltage oscillating in the cavity, which had to be taken into
account for a correct interpretation of the results of the measurements.

The experimental environment of GSI, in which the measurements have taken place, and
the project of a heavy ion inertial fusion driver, which has basically triggered this renewed
enthusiasm towards the question of beam instabilities, are widely described in Chapter 1.
High intensity operation of the SIS and ESR is unanimously recognized as a common goal
for the GSI experimental program in general, and a heavy ion fusion program in particular.
Therefore a careful investigation of the possible drawbacks that arise when dealing with
high currents becomes a crucial point for successful further machines development.

Chapter 2 contains the full revised linear theory of longitudinal instabilities for coast-
ing beams. The longitudinal coupling impedance is introduced in order to model the
interaction between beam and surrounding environment. By using the impedance formal-
ism the kinetic equation is solved with a perturbative approach starting from a coasting
beam equilibrium. Stability criteria in the impedance plane are given for some momentum
distribution functions of the beam.

After having laid the basis for an understanding of the phenomena connected with an
unstable interaction beam-beam-cavity in the ESR, in Chapter 3 the experiment is pre-
sented, and the data acquisition is discussed. All experimental observations are carefully
noted, both those related to the linear phase of the instability, which are completely ex-
plained by means of the small-amplitude analytical theory, and those characteristic of the
nonlinear phase that require further investigation.

Chapter 4 contains a full comparison between theory, experiment and computer simu-
lations for the linear phase of the instability dynamics. The rise times extrapolated from
each of these three approaches are confronted, and found out to be in very good agreement.
In particular, the problem of the finite voltage at the cavity gap, which was present as the
ESR measurements were carried out, is addressed from the theoretical point of view, and
implemented numerically.

In the early stage of the instability, the beam behaves as a non-neutral plasma and its
dynamics can be therefore described using a fluid approach. Such a model, which can
explain phenomena like wave steepening and production of higher harmonics, is developed
in Chapter 5. The description starts from the Vlasov equation for the longitudinal
dynamics already used in Chapter 3, and integrates it in the velocity space with the
classical method of the distribution function moments. The fluid model is of course applied
to the ESR measurements, so that comparisons between the results obtained from the
different approaches (fluid, kinetic, and particle-in-cell simulations with the PATRIC code)
and the data observed at the ESR may be drawn. These comparisons make clear how far
the proposed macroscopic model provides a correct description of the beam dynamics and
what nonlinear effects it can thoroughly explain.

Chapter 6 casts a first attempt insight into the late stage of a longitudinally unstable evo-
lution, where nonlinear resonant particle-wave interactions become important. By making
use of numerical simulations based on a Fokker-Planck direct integrator, the influence of
electron cooling and space charge are discussed, as well as the evolution of the momen-
tum spread is calculated. A general view on the long term dynamics of the longitudinal
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distribution function of an intense particle beam which is subject to a cavity driven insta-
bility is qualitatively discussed (with and without space charge, with and without electron
cooling).

The longitudinal stability of an ion beam that undergoes laser cooling has become of great
interest since the proposal for a heavy ion fusion driver has been presented, because the
option of using this unconventional technique, which would improve the beam quality to
meet the final focusing requirements, appears promising. When applying laser cooling
to high current beams, though, one has to pay attention because the beam distribution
function gets strongly deformed during the process of cooling, and this might give rise
to instabilities of the type two-streams. A kinetic modeling of an ion beam undergoing
laser cooling is presented in Chapter 7. Furthermore, the stability of such a beam is
also studied by means of a quasi-linear approach. Eventually, the implementation of laser
cooling in the codes for the longitudinal dynamics is explained and employed to check the
small-amplitude analysis as well as to simulate the high-current laser cooling experiment
planned at the ESR.

In summary, the present work relates about experimental and theoretical investigation on
electron-cooled coasting beams – with the issues connected to the actual measurement
techniques, as well – and moves the first steps into the stability study of a laser cooled
beam as promising option to be used in the design of a heavy ion fusion driver.



Chapter 1

High current beam studies and

heavy ion inertial fusion

Thermonuclear fusion of hydrogen isotopes to helium appears to be a sufficiently clean and
abundant long-term energy source of mankind. The climatic effects of CO2 as recognized
to-day, have led many Governmental Authorities to envisage the replacement of fossil fuel
by new energy sources, this quite apart from the limitation of existing reserves.
Since the beginning of heavy ion inertial fusion research at GSI (Gesellschaft für Schwerio-
nenforschung - Institute for the Research on Heavy Ions) in the early 80’s, it has been clear
that its challenging accelerator issues would have much in common with the high-current
development of the future GSI accelerator facility. In heavy ion fusion the aim has been
set to achieve the necessary beam power for the heaviest ions to ignite fusion pellets with
DT fuel for energy production. For this ambitious long-term goal and the more near-term
GSI development, mutual benefit is expected from the fact that in both cases basically
non-relativistic energy beams are needed, for which space charge effects play an important
role with respect to intensity thresholds and effective control of phase space dilution. Fur-
thermore, it is also clear that the operating experience of already existing high-intensity
synchrotrons would be an essential learning platform (though not sufficient) to answer
the issues of a heavy ion fusion driver – nearly lossless ring injection under space charge
conditions, control of longitudinal and/or transverse instabilities, crossing of resonances
by space charge, RF bunching and final focusing, adequate diagnostics tools.
High intensity operation of the SIS (SchwerIonenSynchrotron) and ESR (Experimentier-
SpeicherRing) is unanimously recognized as a common goal for the GSI experimental
program in general, and a heavy ion fusion program - at modest scale - in particular. The
latter would be composed of:

• Plasma physics target experiments with cylindrical targets to be heated to
temperatures between 10 and 50 eV by means of the highest possible beam intensities
or phase space densities available from the SIS/ESR. In the Inertial Fusion Program,
this activity essentially addresses questions connected with the converters and the
beam-target interface.

• Beam physics experiments in the SIS and ESR to obtain an adequate under-
standing of instabilities and space charge induced resonances, and assist in identify-
ing appropriate measures for their control.

• Development of computer simulation to interpret measurements and allow ex-
trapolations to future parameters. Particle-in-cell codes (both transverse and lon-
gitudinal dynamics), direct integrators of the kinetic equations on a phase space
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grid, and a map-based 2-dimensional code for the transverse plane have been devel-
oped and applied to different issues related to the beam evolution in space charge
dominated regime.

1.1 The experimental environment

The GSI operates a quite complex accelerator structure for heavy ions, which consists of
the linear accelerator UNILAC (UNIversal Linear ACcelerator), the synchrotron for heavy
ions SIS, and the experimental storage ring ESR. As the knowledge of the experimental
environment is indispensable for the understanding of accelerator physics experiments, in
this section we will essentially describe the accelerator facility, and we will lay the stress
on some among its special features. The measurements presented in this work have been
carried out at the ESR. Hence, a more detailed description of the ESR will be given in the
following, with its most important properties and technical parameters, insofar as they
will be needed for a full comprehension of this work.

1.1.1 Accelerator facilities at GSI

Since 1975 GSI has been operating an accelerator facility for ions having masses spanning
between 4He and 238U. The heavy ions synchrotron SIS and the experimental storage ring
ESR have been put into operation since 1990 as a first upgrade of the structure. Fig. 1.1
shows a global overview of the accelerator facility of GSI.

The ions that must be accelerated are produced first in one of the ion sources (Penning,
Chordis, or Mevva depending upon the desired ion species) from one of the two injectors.
After a first bending section for charge and mass separation, the ions are injected into
the UNILAC. The first part of the UNILAC consists now of a new 36 MHz high current
injector (made up of RFQ’s - Radio Frequency Quadrupoles), which should be able to
produce an accelerating voltage 2.5 times stronger than the one formerly obtained with
the Wideroe structures on the same path length. The energy of the ions at the end of
this section must be ∼ 1.4 MeV/u, before they get further ionized through a stripping
foil. The advantages of the new high current injector with respect to the former Wideroe
structure are essentially:

• More particles can be accelerated through this section because lower charge state
ions can be brought up to the desired energy level, being the accelerating voltage up
to 2.5 times bigger (the ion sources always produce lower charge state ions in larger
amounts);

• Any space charge inconvenience across this section is limited thanks to the lower
charge state of the transported ions, in spite of their higher number.

The pre-accelerated ions will be then converted to a higher charge state by means of
a stripping foil, and subsequently injected into the following Alvarez-accelerator, which
works at a frequency of 108 MHz (4×27 MHz). The final energy of the UNILAC is nor-
mally 11.4 MeV/u, but it may as well be differently set by simply choosing a different phase
relation between the fields oscillating in subsequent HF-cavities. After 110 m acceleration,
the beam is according to necessity injected into one of the three low energy experimen-
tal areas, or it is bent into the transfer channel towards the Schwer-Ionen-Synchrotron SIS.

The linear accelerator UNILAC works as injector machine for the heavy ion synchrotron
SIS (circumference 217 m, energies reached up to 2.1 GeV/u for ions with Q/A = 0.5).
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Figure 1.1: Global overview on the GSI accelerator complex.
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In fact, the ions that have reached the energy level of 11.4 MeV/u either are shot into
the SIS over one single revolution (single-turn injection), or they get accumulated therein
over several revolutions (multi-turn injection). The injection energy is sufficient to get the
light ions (up to Z' 28) fully stripped by means of a “Stripping Target” situated before
the injection point; heavier ions are not completely ionized at this stage. In the SIS the
ions are eventually accelerated to the beam energies which are required for the respective
experiment. The magnetic rigidity of the SIS is Bρ = 18 Tm, and thus the maximum
energy that can be reached is limited to 2.1 GeV/u for lighter particles, whereas it strongly
depends upon ion mass and its charge state for heavier not fully ionized particles (for
instance, 1 GeV/u can be reached for U73+).

After acceleration and extraction from the SIS, it is possible to finally guide the beam to
one of the different experimental areas, or inject it into the storage ring ESR, or send it
to the treatment area for the heavy ion therapy for cancers [13]. According to the appli-
cation, the beam can be extracted from the SIS either quickly (within one revolution), or
slowly (over some seconds). There exist two possibilities of beam transfer from the SIS
to the ESR or to the experimental areas: either the beam goes directly, or it is guided
through the fragment separator FRS [14]. There the fragments coming from a production
target can be selected according to their masses or charges, in order to produce in this
way beams of exotic particles. Along the line which connects the SIS to the ESR, one
more Cu Stripping-Target of medium thickness (0.01 to 0.1 g/cm2) is also installed, which
is able to strip off all the electrons even from heavier ion sorts if the energy of the beam
is high enough.

In the ESR [15], ions suitable for experiments in the fields of atomic or nuclear physics,
as well as for beam physics measurements and observations, can be stored for quite long
times. Besides an electron cooler, a Gas-Jet-Target and a Nd:YAG-laser beam are also
available there. Details about the ESR and its characteristics will be given in the next
subsection 2.1.2. After being stored in the ESR, the beam can eventually be re-injected
from the ESR to SIS for further acceleration, or it might as well ejected and directed to
the experimental areas.

1.1.2 The Experimental Heavy Ion Storage Ring ESR

The layout of the ESR with its major components is shown schematically in Fig. 1.2 and
the most important ring parameters are listed in Table 2.1. With respect to detailed
information on design considerations and technical parameters described in Ref. [16], only
a brief overview on characteristic features of the ESR is given here:

• The maximum magnetic bending power of B × ρ = 10 Tm makes the ESR ca-
pable to accept fully stripped uranium ions at a maximum specific ion energy of
560 MeV/u. At present, the beam energy is limited for electron-cooled ion beams
to values ≤ 400 MeV/u, because the maximum accelerating voltage at the electron
cooler is restricted to about 210 keV.

• The large momentum acceptance (∆p/p)max of about 2.5% (in the usual ion optical
mode) makes the ring well suited for beam accumulation by applying the RF-stacking
technique [17] as well as for accepting multi-component beams containing ions of
rather different magnetic stiffness [17] – very useful for Schottky mass spectrometry
[18].
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Figure 1.2: Overview of the heavy ion storage ring ESR and list of its main components.
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Circumference 108.36 m
Magnetic rigidity 0.5 – 10 Tm
Ion species C+6 to U92+, radioactive beams
Energy range 3.0 – 560 MeV/u for U92+

3.0 – 840 MeV/u for ions with Q/A = 0.5
Maximum beam current 20 mA
Horizontal betatron tune Qx ' 2.31
Vertical betatron tune Qy ' 2.30
Transition point γt ' 2.7
Full momentum acceptance (∆p/p0)max ≈ 2.5%

Bending magnets:
Number × angle 6 × 60o

Bending radius 6.25 m
Used aperture (h× v) 220 × 70 mm2

Quadrupole magnets:
Families × no. 10 × 2
Field gradient 0.31 – 6.1 T/m
Used aperture (h× v) 300 × 120 mm2

Sextupoles (families × no.) 2 × 4
Working pressure in the pipe 5 × 10−11 mbar

Table 1.1: Overview on technical and physical parameters for the ESR.

• Large transverse acceptances in connection with the large (∆p/p)max are, in addi-
tion, helpful for efficient injection and storage of “hot” secondary beams of nuclear
fragments delivered by the FRS.

• Electron cooling is routinely applied at the ESR [19] for beam cooling in the longi-
tudinal as well as transverse directions. Because the electron cooling time amounts
to up to several minutes for “hot” fragment beams delivered by the FRS, additional
stochastic pre-cooling is foreseen to speed up the cooling. Commissioning of the
stochastic cooling system has recently started [21].

• A supersonic gas jet of about 4 mm diameter crossing the circulating ion beam
in vertical direction is applied as internal target [22]. At maximum jet density of
approximately 1×1013 cm−3 luminosity values between 1027 cm−2 s−1 for secondary
(fragment) beams and 1030 cm−2s−1 can be attained. The internal target was used
for example in the experiments described in Ref. [18] to produce projectile-near
nuclear fragments by projectile-fragmentation reactions.

• The average ultra-high vacuum pressure is typically 5×10−11 mbar (without internal
target operation). Beam life-times of up to several hours are achieved, depending on
the charge state of the stored ions and the electron cooler current. The beam loss
rates are determined by radiative recombination between ions and cooler electrons
rather than by interaction with residual gas atoms.
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• Extremely sensitive non-destructive beam diagnostics is available with Schottky di-
agnosis and BTF (Beam Transfer Function) measurements. The ESR Schottky
diagnosis system [23] is sensitive to a single stored highly charged ion.

The ESR is arranged as a doubly mirror symmetric stretched hexagon with a design
circumference of 108.36 m, half the circumference of the SIS. The two long straight sections
are provided for electron cooling – possibly laser cooling – and internal experiments around
the internal target apparatus. The six 60o-bending magnets are fed in series by a single
power supply. The bending field can be varied by 1 T/s from 0.08 T at 170 A excitation
current to 1.6 T at 3600 A. The beam focusing is performed by 20 quadrupole magnets
arranged in 4 triplets (two in either of the arcs) and 4 doublets (two in either of the two
long straight sections). Highly flexible ion optics is achieved by means of 10 independently
controlled quadrupole power supplies. In terms of synchrotron lattice parameters, the
ring may be operated either far below transition (i.e. γt < γ) with maximum momentum
acceptance, or at γt = γ with essentially reduced (∆p/p)max. As we can see from Fig.
1.2, the ESR has two cavities that can be used for beam bunching. These are cavities
loaded with ferrite, such as to be able to sustain even relatively low frequency fields for
the beam bunching at low harmonic numbers. The presence of the cavities is fundamental
for the understanding of our work, since they can be source of passive interaction with the
circulating beam, and they may cause instabilities. In the ordinary ESR operation, one of
the two cavities is constantly kept short circuited, whereas only the other one is constantly
used for bunching purposes: indeed, for a more detailed study of the self-bunching too, as
follows in the next chapters of this work, just the effect of one cavity has been used.

1.2 Possible scenario for the GSI upgrade

In this section we discuss the accelerator development which is integrated into an overall
high-intensity upgrade of the GSI accelerator complex.
The requirements of the proposed accelerators for plasma physics and the long-term goal
of inertial fusion have been defined as:

1. An increase by at least one order of magnitude in the specific power deposition in
a plasma target above the 1-2 TW/g. This would lead to a significant increase of
the plasma temperature with large volumes (mm-size) heated by heavy ions. The
expected temperatures in the 50 eV region would open an interesting regime of
plasma physics dominated by hydrodynamics and dense plasma effects. Radiation
physics gradually comes into play between 50 and 100 eV, with efficient transfer into
radiation occurring for temperatures above 100 eV.

2. A milestone in the development of an accelerator on the path towards inertial fusion
application, capable of producing bunched beams of several tens of kJ energy. As a
comparison, the HIDIF-study of an ignition facility (see next section) has considered
144 bunches of 20 kJ energy per bunch stored in a set of storage/accumulator rings
[4].

The study of hot dense matter generated by heavy ion beams is an alternative to laser
produced plasmas with application to the field of basic science (properties of dense ionized
matter, strongly coupled plasmas, astrophysical applications) as well as inertial confine-
ment fusion. A characteristic of heavy ion heating is the volume energy deposition in
matter of solid density, whereas lasers predominantly deposit their energy on the surface
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up to the critical energy. It is believed that this specific feature lends itself to quite dif-
ferent experimental conditions and ranges of parameters which warrant extra investments
and efforts in the context of the GSI future plans. The physics program should address
the following issues:

• Interaction of heavy ions with dense plasmas including stopping and atomic physics
issues.

• Elementary processes in plasmas (with astrophysical applications), such as high pres-
sure physics, phase transitions, hydrodynamics, equation of state and opacity mea-
surements.

• Inertial fusion related questions connected with converters and beam-target interface.

It is evident that high current beams need producing and storing in circular machines be-
fore they can be focused onto a target. This need naturally raises all the issues connected
with the storage of high currents in rings (see next section).
As option for the next-facility, we shall briefly discuss here a high rep-rate booster plus
accumulator/cooler ring (AR) (Fig. 1.3). In this option a high charge state ion beam is
assumed and accelerated in the rapid cycling booster synchrotron (this could be the SIS
speeded up to 1 Hz). In order to achieve a performance better than that of the SIS, it
is clearly necessary to have some kind of stacking procedure in the following accumula-
tor/cooler ring, which avoids the usual phase space dilution. The following possibilities
are considered:

• A non-Liouvillian stacking of 5-10 batches from the booster into the AR using foil
stripping of Xe47+ at 1.1 GeV/u [24]; a similar procedure has recently been pro-
posed for the TWAC-project at ITEP assuming 1000-turn stacking over 15 min [25].
Careful optimization of the ion (charge state, mass) with respect to foil interaction
and foil heating needs to be done, but preliminary calculations look promising.

• A barrier bucket stacking of 5–10 batches of U28+ (limited by intensity and life time
effects) from the booster, and removing the phase space dilution by electron cooling;
this requires experimental verification of electron cooling at intensities as high as
1012.

In the first case the necessary linac current with the new high-current injector can be
expected to be 14 emA of Xe47+ (with 8 pmA of Xe2+ from a Cordis-source, stripped
to 1.2 pmA at 1.4 MeV/u and to 0.3 pmA at 11 MeV/u). This is stacked at 11 MeV/u
(10× multiturn, already reaching the space charge limit) into the synchrotron (assumed
with radius 35 m). The resulting 9.1× 1010 ions would be accelerated to 1100 MeV/u and
merged into a single bunch of 2.1 kJ. For a bunching factor Bf = 0.4 the resulting tune
shift is 0.017. If 10 such batches can be stacked by foil stripping in the AR, the tune shift
of the final Xe54+ bunch adopts the value ∆Qh,v ≈ 0.22. For the non-Liouvillian action
in the AR it would be preferable to have as high as possible a rep-rate for the booster
synchrotron in order to avoid phase space blow-up (by space charge effects) during the
accumulation process. For a rep-rate of 16 Hz the stacking of 10 batches would require
0.6 sec, which appears reasonable for the estimated tune shift ∆Qh,v ≈ 0.22 at the end
of the stacking process. The final compression from 500 ns (after stacking) to 35 ns pulse
length would, however, lead to a significant space charge effect, which needs further de-
tailed study in order to check the realistically attainable compression.
The critical issues that need investigating are essentially connected with the foil heating
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Figure 1.3: Schematic view of non-Liouvillian foil stacking with electron cooling stacking
option.

(since the desired large specific energy deposition in the target means high energy deposi-
tion in the foil, as well), and with the beam intensity correlated degradation of emittance
and momentum spread over the stacking process (due to space charge and intra-beam
scattering).

1.3 Heavy ion driven ignition facility

In energy strategies for the next century considered in a global frame (Rio 1992) and
within the European Community (Decision by the Council of Ministers for Energy and
Environment, 1990), a stabilization or, if possible, a decrease of CO2 pollution is foreseen.
However, both the potential of energy savings and the replacement potential by renewable
non-fossil energies are limited.
Research on controlled fusion, initiated already in the fifties, has followed two distinct
approaches, that is a quasi-continuous process where the required plasma is confined by
strong magnetic fields, Magnetic Confinement Fusion, and a process based upon successive
micro-explosions where the necessary conditions are created in the implosion of a hydro-
gen filled pellet triggered by high power irradiation, Inertial Confinement Fusion. Both
laser and particle beams can be used to explore the physics of inertial confinement fusion.
With respect to energy production in a reactor, there is a world-wide consensus to-day
that energetic heavy ion beams are a most promising solution to the driver problem. An
attractive feature of ICF in general is the separation of driver and fusion reaction chamber.
While both approaches to fusion have been investigated world-wide, means and efforts in
Europe have gone into the development of large installations for magnetic confinement,
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Figure 1.4: Efficiency consideration for a heavy ion ICF power plant.

such as Tokamaks and Stellarators. The progress of inertial fusion research was severely
impaired by constraints of classification due to the military relevance of pellet implosion
and radiation hydrodynamics. It is only since the end of 1993 that substantial parts of
pellet physics results are being declassified. Nowadays, the feasibility in principle of both
approaches is no longer in doubt, but a comparison of the technical merits and cost as-
pects of both approaches must be considered before a choice can be made for future fusion
power generating plants.
In the period end 1994/early 1995, a number of European laboratories decided to set up
a collaboration in the field of Heavy-Ion Driven Inertial Fusion (HIDIF Collaboration -
the achronym stands for Heavy Ion Driven Ignition Facility). It is the aim of this inter-
laboratory “study group” to work out a conceptual design for an inertial fusion “Ignition
Facility”, where beams of single-charge heavy ions (typically A = 200) would be used to
investigate target high temperature plasma physics, and eventually drive DT pellets to
low-gain fusion burn. It is worth noting that the accelerator issues of HIDIF have a con-
siderable overlap with the high current issues of the GSI facility (GSI is the coordinating
member of the collaboration).

1.3.1 Basic Principles

Installations for ICF consist of three basic constituents: a reactor chamber, in which
a pellet with a few milligrams of D-T fuel is ignited; a driver providing powerful beams
(photons, light or heavy ions) to drive the pellet implosion; a beam guidance system linking
the driver to the reactor chamber. Energy production by ICF requires the use of targets
containing a few milligrams of a deuterium-tritium mixture, which can achieve an energy
multiplication (target gain) G > 10/η, η being the driver efficiency (see Fig. 1.4). In
order to achieve the ignition of the DT fuel, we know that according to the Lawson
criterion the fusion product nτT must approximately equal 5 × 1015 cm−3 sec keV (n
being the ion density of the hydrogen plasma, τ its confinement time, and T its ion
temperature): the implosion of the fuel is necessary in order to get the condition for
the ignition satisfied, and thus a good quality of the implosion is needed. In ICF it is
customary to measure the quality of confinement by means of the product of the mass
density and radius of the burning fuel, ρR. The needed energy gain can be attained by
simultaneously achieving central fuel ignition and ρR ≈ 3g/cm2, implying compression of
the fuel to about 200–300 g/cm2, or more than 1000 times the liquid density. Typically,
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Figure 1.5: Indirectly driven reference target proposed for HIDIF. The heavy ion beams
are converted into x-rays by two Be converters. The fusion capsule implosion is driven by
the symmetrized radiation (courtesy of R. Ramis).

this requires transferring a specific energy of about 50 kJ/mg to the fuel. As a consequence
of implosion symmetry and hydrodynamic stability considerations, the primary approach
to heavy ion fusion is indirect drive. This scheme makes use of a target with cylindrical
or spherical hohlraum, in which the fusion capsule implosion is driven by the symmetrized
radiation (see Fig. 1.5). Extended simulations suggest that an energy gain G ≈ 50–
100 can be achieved by delivering on target E =3–6 MJ of 6-10 GeV heavy ion beams,
focused within 6 ns (maximum required pulse length) on two opposite spots with radius
r ≈ 1.7 mm. In the following the two-converter target concept by Ramis has been modified
to a high-gain (G = 100) version requiring 5 MJ energy and spot radius of 5 mm and pulse
length of the main pulse of 10 ns, possibly even slightly longer. A spherical hohlraum
with 6 MJ and G = 78 was developed by Basko employing a P4 illumination geometry
with beams in 4 cones at ±20o and ±60o, and a focal spot of 6 mm. Of course, the
loosening of the conditions on the focal spot and the final pulse length are extremely
important as they determine a lower complexity of the driver that must be used to guide
the beamlets to the target. The requirements on the final momentum spread become less
stringent. The peak power needed at the target is of the order of 300–500 TW; efficient
x-ray production demands specific power deposition P ≈ 104 TW/g in the elements that
convert the beam energy into radiation. Attainment of such values of P is the main
challenge to the accelerator, and constrains the ion range R, its energy E0, the particle
current I, and the focal spot area F according to:

P =
E0I

RF
. (1.1)

The choice of R and F is based on the requirement that transport and focusing of the
beams should be possible by conventional quadrupoles and beams propagating in vac-
uum. This suggests to use the heaviest ions (A ≈ 200), with a kinetic energy 5–10 GeV
(β0 ≈ 0.2–0.3), which in low-Z matter have a range of R = 0.04–0.1 g/cm2.
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Two alternative accelerator concepts for heavy ion fusion are presently under study. In
Europe most of the efforts have focused on the RF linac/storage ring approach, which is
the basis of the proposal in Ref. [1]. In the United States, the induction linear accelerator
is being developed at the Lawrence Berkeley Laboratory [26].

The RF linear accelerator provides the necessary kinetic energy of the ions. The pulse
current is raised to the level of kiloamperes by several steps of current multiplication in
storage and buncher rings. The transport limits for high currents in vacuum are mostly well
understood, and in any case they are still object of theoretical and experimental detailed
studies, as the problem of instabilities is in this work. Hence, there is high confidence
that after final bunch compression to typically few nanoseconds, a current of 50 kA can
still be transported to the reactor chamber over long distances through magnetic focusing
channels that maintain the beam quality. A possible scenario for the driver is discussed
in the next subsection.

1.3.2 The driver Accelerator Architecture

The HIDIF driver has a number of characteristic features, which are summarized in the
following:

• charge state +1 to reduce space charge effects;

• three ions species (for telescoping) are accelerated in the same linac and stored in
different rings;

• 16 ion sources of each species;

• four funneling stages for RFQ’s and DTL’s and one main high-current DTL linac up
to 10 GeV, and a total pulse current of 400 mA (optionally IH structure);

• one set of storage rings with super-conducting dipoles;

• simultaneous two-plane multi-turn injection into storage rings to minimize septum
losses;

• multi-turn injection into RF barrier buckets;

• after filling of all storage rings, adiabatic pre-bunching within rings;

• final bunch compression (fast) in induction bunchers with multiple beam lines to
obtain the required 6 ns pulse length;

• final switch-yard including delay lines and merging of different ion species for tele-
scoping and synchronous arrival at target;

• conventional focusing using super-conducting quadrupoles in matrix array;

• vacuum transport through target chamber.

The envisaged linac peak current of 400 mA and the gaps between different barrier buckets
as well as the switching of the linac beam to different storage rings and to different ion
species leads to a total pulse duration of 1.5 ms [4], which is also the duration of the RF
power cycle. As a result, the average linac current in this period is 192 mA.
The scenario is modular in the sense that the total energy can be upgraded by using
further storage rings (requiring a longer beam pulse from the linac) and a larger number
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Figure 1.6: HIDIF layout for reference energy of 3 MJ.

of final beam lines. In the present scenario, we assume 12 bunches per storage ring, which
is equivalent to a stored energy of 250 kJ per ring.

The full scenario is shown in Fig. 1.6 for the reference case with 3 MJ requiring a total of
12 storage rings. Single-charged ions of three atomic species are accelerated in the same
linear accelerator to identical momenta, and stored and bunched in a set of 4 storage
rings per species. The bunches are synchronized by delaying them in sets of delay lines
(one set per storage ring) so that they coincide per species in time at the entry into the
induction bunchers. Each bunch will at this stage travel on a separate trajectory, each
induction buncher carrying 24 beam lines in parallel. In the final transport towards the
target, one bunch of each of the three species will be deflected into a common beam line.
The number of beam lines converging on the reaction vessel is now 48, which is reduced
by a factor of three with respect to a single ion species scenario. The length of the final
transport is determined by the condition that the bunches impinge on the target with
minimum length (fast bunch rotation in longitudinal phase space); the relative timing of
the species at ejection from the storage rings must be such that the three species arrive
simultaneously at the target.

The issue of space charge makes it necessary to model key issues by means of computer
simulations and/or by carrying out experimental investigations and checks on the existing
machines. Linac studies for acceleration of beams above 10 MeV/u have been made, show-
ing that the conditions for current, emittance and momentum spread (ε = 1.2 mm mrad
and (∆p/p0)FWHM ≤0.1%) can be satisfied. The problem of the lossless injection of the
space charge dominated linac beam into the storage rings with a large factor of current
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multiplication (≈ 100) is crucial, and therefore presently investigated. The successive fill-
ing of several storage rings requires a debunched beam to be held for 102–103 revolutions
at an intensity where it is normally considered to go unstable due to resonance crossing, or
to the ring and space charge impedances. The latter is the issue that is carefully consid-
ered throughout this work. Check of the linear theory and interpretation of the nonlinear
phase for longitudinally unstable evolutions are given in the next chapters in order to be
able to gain a deeper knowledge of this kind of mechanisms and the way they modify the
beam structure (their action is anyway never destructive because it does not lead to beam
losses but only to a degradation of the beam quality – which might be undesirable or tol-
erable). Other problem areas concern the final focusing (minimization of geometrical and
chromatic aberrations in the lenses for the final transport to the reaction chamber, special
care that the beamlets do not feel excessive mutual repulsion due to their low energy),
and the target physics as well as the reaction chamber design.
For an Ignition Facility driver, hereafter follows a summarizing list of the issues that need
in general addressing:

• Control of phase space dilution and beam loss due to resonances, instabilities or
mismatch.

• Alignment, impedance corrections, shaping of phase space distributions and other
measures to avoid beam quality reduction below the reactor requirements.

• Effect of dilution or beam loss on diagnostics, operational reliability and beam per-
formance at the target.

• Verification of the assumed high efficiency (25%) and operational reliability.

• Test of certain components, like superconducting dipole magnets, kickers, septa, etc.
under reactor driver conditions.

• Test of alternative concepts for final focusing (pulsed lenses, matrix lenses, plasma
lenses).

• Pulse shaping to match the high-gain targets (timing of beams, shaping of individual
beams by RF-manipulation)

• Study of non-Liouvillian techniques (i.e., circumventing the invariance of phase space
by changing the charge state of the ion, electron or laser cooling) in order to improve
the final phase space density.



Chapter 2

Linear theory of longitudinal

instabilities in coasting beams

The performance of most machines is limited by coherent instabilities. This is one of the
most important collective effects that prevent the current from being increased above a
certain threshold without the beam quality getting inevitably spoilt. An intense cooled
beam (high intensity contained in a small phase volume) is practically always unstable.
A small density perturbation, which can be due either to previous beam manipulations or
even to simple statistical noise (related to the discrete nature of the beam current), can
exponentially grow and drive the whole beam into an unstable process. In phase space
the beam blows up and becomes hot.

In this chapter a model for describing longitudinal instabilities is fully developed in the
case of small amplitude perturbations on coasting beams. This constitutes the necessary
theoretical background to allow the understanding of the measurements analyzed and
discussed in the next chapters.

2.1 The issue of the longitudinal instabilities

The study of coherent longitudinal instabilities of coasting particle beams below transition
has recently received new attention in connection with research on high-current circular
machines considered for heavy ion inertial fusion and other applications. In high current
storage rings, the longitudinal instability develops if a resistive impedance component is
present and the axial momentum spread decreases below a certain threshold value [5, 6].
The longitudinal instability may cause an unacceptable increase in the beam momentum
spread. This instability can be suppressed via Landau damping if the longitudinal momen-
tum spread is sufficiently high. Unfortunately, this can conflict with other requirements.
For example, in drivers for heavy ion fusion, beams with small momentum spread are
needed for final focusing and thus the actual limitation coming from the longitudinal
instability is a key design issue [2]. One of the challenging questions in beam physics
is whether a high-current machine must necessarily operate under conditions where the
beam is linearly stable: it could be acceptable to operate with a linearly unstable beam
provided that either the instability saturates with an acceptable distortion in the distri-
bution function, or the residence time in the machine is short enough to limit the growth
induced by the instability [27]. Therefore, a full understanding of both linear and non-
linear effects due to intense space charge – the latter arising after the initial perturbation
has grown outside the range of validity of the small-amplitude analysis – is fundamental
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in the development of high power beam sources.

Insofar as this kind of applications are considered, experimental and theoretical study
of the longitudinal instability is to be carried out on heavy ion space charge dominated
beams, which are typically at non-relativistic energies: the main difference, compared
with the case of high energy beams, consists in the large coupling impedance introduced
by space charge, which is typically of the order of kOhms and causes a far more critical
dependence of the beam dynamics on the resistive part of the global impedance.

The longitudinal instabilities of coasting beams have been studied extensively within the
framework of linearized kinetic theory over several decades [5, 6]. Experimentally, plenty
of relevant work has been done at the ISR (Intersecting Storage Ring) [8] and in other
machines above the transition energy, where space charge effects are anyway negligible. A
detailed study of the space charge dominated regime has only recently been undertaken
in a linear electron channel with resistive walls [12]. This experiment has confirmed the
growth rate for the unstable slow wave and the damping rate for the stable fast wave
obtained from linear cold fluid theory. The fully developed nonlinear stages of the in-
stability have been less extensively investigated to date. Saturation, decoherence effects,
and energy-spread overshoot have been predicted by simulating numerically a high energy
coasting beam interacting with a resonant RF cavity [9] in the absence of space charge
effects.

In the ESR, experiments with Ca20+ and C6+ have been done, aiming at a careful in-
vestigation of the transition from stable regime to instability for a high-current beam.
Preliminary observations and results were already drawn out in 1996, after the first mea-
surements with a Ca20+ beam had taken place. Out of these data, one could clearly see
the beam current signal blow up, and distinguish the linear phase of the exponentially
increasing amplitude from the subsequent instability saturation [28]. A more quantitative
analysis was not possible then because of a lack of more precise information about the cav-
ity eigenfrequency as the beam was caused to become unstable on the second harmonic due
to the cavity contribution to the global longitudinal impedance. With the data recorded
in the beam time of February 1997, a more accurate investigation has been made possible
by a good knowledge of the working conditions during the data acquisition. Thanks to
that, the RF cavity-driven longitudinal instability of a cooled, coasting C+6 intense beam
below transition energy (γ ' 1.36), with I0 ∼= 0.3 mA and (∆p/p0)FWHM = 1.1 · 10−5,
has been studied in great detail [29, 30] (see next chapters). Measurements were taken for
several and known values of the machine’s longitudinal coupling impedance.
The way longitudinal instability changes the profile of the beam line density along the
ring is shown in Fig. 2.1 (the plotted data come from these latest ESR measurements).
At the early stage of the instability, one mostly observes a sinusoidal modulation signal,
whose amplitude grows exponentially as predicted by the linear kinetic theory (see, for
example, Fig. 2.1a, which shows the beam current along the ring for a cavity impedance
Żcav = 1096 + i437 Ω). When the perturbation reaches large amplitude, significant higher
order harmonics are produced, leading to a steepening of the density profile as well as to
saturation of the instability growth (Fig. 2.1b). The effects of the instability in the veloc-
ity space are not easy to deduce experimentally, because the Schottky diagnosis becomes
much more difficult to use when a coherent signal appears on the beam current. Neverthe-
less, the momentum distribution evolution can be investigated via numerical simulation
and results will be briefly discussed in Chapter 7.
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Figure 2.1: Charge line density along the ESR at two different instants when the cavity
was detuned with ∆f = 6.7 kHz and the beam current was I0 = 0.28 mA.

2.2 Longitudinal dynamics of a coasting beam under the

action of its self-field

2.2.1 The Vlasov equation

Here we will essentially review the kinetic description for the longitudinal motion of a
coasting beam interacting with itself and the environment when one takes into account
relativistic and dispersive effects in a self-consistent way. In the following (Sec. 3 of this
chapter, Sec. 4 of next chapter, and the whole chapters 6 and 7) this model will be widely
used as a starting point to derive information about the different stages in the evolution
of an arbitrary coasting beam under the action of its self-fields.

Let us consider a coasting beam moving in a circular machine, (i.e., a storage ring or
a circular accelerator), with nominal longitudinal velocity U0, particle momentum p0,
particle kinetic energy ε0, and nominal circular “equilibrium” orbits having radius r0;
C0 = 2πr0 is the circumference length. In the following we use the symbols θ and r for
the azimuthal and radial coordinates, respectively (see Fig. 2.2). Furthermore, ω will
denote the angular frequency, ω = θ̇; with ω0 = U0/r0 is the nominal angular frequency.
We neglect the coupling between longitudinal and transverse motion of the particles, and
assume that the generic particle is always on a circular equilibrium orbit. The cross
sectional distribution of the particles in the beam is assumed to be constant (or, at least,
a known function Q(x, y) of the cross sectional coordinates), also independent of azimuth;
we are thus neglecting betatron oscillations except insofar as they contribute to the cross
sectional distribution. For a given bending field the radius r of the orbit of the generic
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particle depends on its energy ε, r = r(ε); the revolution frequency ω of the particle
depends also on its energy ε, as specified by the frequency dispersion of the ring ω = ω(ε)
(as explained in Ref. [31]).

θ

s

PU Electrodes
Longitudinal

Central beam nominal
closed orbit

r
0r

Displaced orbit

Figure 2.2: Coordinates system along the beam orbit in the storage ring.

A deviation ∆ε in energy from the nominal energy ε0 causes an increase ∆r of the orbit
radius given by

∆r

r0
=

α

β2
0

∆ε

ε0
,

where β0 = U0/c and α (momentum compaction factor) is a property of the guiding field
and is typically much smaller than unity. The change ∆ω in the revolution frequency is

∆ω

ω0
= − η

β2
0

∆ε

ε0
,

where η = 1/γ2
t − 1/γ2

0 is the slip factor, γt = 1/
√
α is the transition gamma and γ0 =

(1 − β2
0)−1/2 [31]. Below the transition energy m0c

2γt, the slip factor is negative and the
revolution frequency increases with energy. High current storage rings like ESR operate
below transition energy, namely γ0 < γt; thus for these machines the slip factor is negative
and no negative mass instability is to be expected.

The equations for the longitudinal motion of the single particle in a circular structure
can be written in terms of the variables (θ, ε) – the azimuthal co-ordinate along the ring
circumference and the single particle energy – as















dθ

dt
= ω(ε)

dε

dt
= qE[θ, r(ω); t]rω

, (2.1)
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where E = E(θ, r; t) is the longitudinal electric field due to applied focusing, space charge,
and to the interaction of the beam with the surroundings, and q is the electric charge of
the particle. The variables θ and ε are not conjugate variables.
Now we make the following ansatz: in the neighborhood of the nominal orbit, the longi-
tudinal component of the electric field depends on the radial coordinate r as 1/r, namely

E(r, θ; t) = −φ(θ; t)

2πr
, (2.2)

where the “potential” function φ is independent of the radius. Under the assumption of
long wavelength perturbations (compared with the characteristic transverse dimension)
the expression (2.2) describes with sufficient accuracy the distribution of the longitudinal
component of the electric field in an actual ring.
We introduce a new variable conjugate to θ defined as

w(ε) = 2π

∫ ε

ε0

dε

ω(ε)
(2.3)

and the equations for θ(t) and w(t) are














dθ

dt
= ω(w)

dw

dt
= −qφ(θ; t)

. (2.4)

Therefore, if we introduce a distribution function for the beam in longitudinal phase space
(θ, w), say g = g(θ, w; t), this will be a solution of the kinetic equation

∂g

∂t
+ ω(w)

∂g

∂θ
− qφ(θ; t)

∂g

∂w
= 0 . (2.5)

We neglect here collisional phenomena because they do not play a considerable role on
the time scale of the instability we are interested in. Finally, we want to reformulate this
kinetic description of the beam in terms of a position-velocity phase space. Consequently,
we introduce the variables s and v

s = r0θ

v = r0ω
(2.6)

and let f(s, v; t) be the distribution function of the beam in the (s, v)-phase space. The
distribution function f(s, v; t) is related to the distribution function g(θ, w; t) through the
transformation

f(s, v, t) =
1

r20

∣

∣

∣

∣

dw

dω

∣

∣

∣

∣

g(θ, w, t) . (2.7)

Under the assumption of a small relative energy spread of the beam particles, we may
replace ω by ω0 in the integral (2.3) and the frequency dispersion of the ring may be
approximated as

ω(∆ε) ∼= ω0 + κ0∆ε , (2.8)

where ∆ε = ε−ε0, κ0 = −ηω0/(β
2
0ε0), ε0 = m0c

2γ0 and m0 is the rest mass of the particles.
Using these approximations we obtain

w(ε) ∼= 2π(ε− ε0)/ω0 , (2.9)

and f ∼= (2π/r2
0 |κ0|ω0)g. Therefore the distribution function f(s, v; t) satisfies the Vlasov

equation
∂f

∂t
+ v

∂f

∂s
− q

m∗

φ(s, t)

2πr0

∂f

∂v
= 0 . (2.10)
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To derive Eq. (2.10) we have used the relation p0 = β2
0ε0/U0 and we have introduced the

“effective” particle mass

m∗ def
= − p0

U0η
. (2.11)

Note that below transition m∗ is positive because the slip factor η is negative. Finally,
we have to specify the form of the driving term φ present in the Vlasov equation (2.10).
In general φ(s, t) is made up of two independent contributions: an external voltage acting
on the beam, which can represent either an oscillating bunching field associated with an
RF cavity or a residual field detuned with respect to the beam revolution frequency, and
a self-voltage coming from the interaction of the beam with the beam itself and with
the surrounding environment. In the following, we shall describe the latter contribution
with the impedance formalism (see next subsection) and neglect the possible presence of
external applied voltages (except for Section 5.4).

2.2.2 Longitudinal field created by the beam: the longitudinal coupling

impedance

Given the periodicity of the structure to which we refer, both φ(s, t) and the beam current
along the ring, defined as

I(s, t) = q

∫ ∞

−∞
vf(s, v, t) dv , (2.12)

are certainly periodic in the space coordinate s of period C0. Thus we can expand both
of them in Fourier series:

φ(s, t) =
∑

n φn(t) exp(in s
r0

)

I(s, t) =
∑

n In(t) exp(in s
r0

)
(2.13)

Assuming that the response of the environment to the beam excitation is linear and time-
invariant, one can think of the self-induced voltage as functional linear relation between the
current that generates it, I(s, t), and a single particle wake field, which can be precisely
calculated according to how the environment is modeled [7]. The relation between the
beam current spatial spectrum and the spatial Fourier transform of the self-induced voltage
is therefore

φn(t) =
∑

m

znm(t) ∗ Im(t) , (2.14)

which in frequency domain becomes

φ̃n(ω) =
∑

m

Żnm(ω) · Ĩm(ω) , (2.15)

where the Żnm(ω) simply represent the Fourier transform of znm(t).
In order to conveniently re-write this relation, we first need to make a few observations
about the structure of the n-th harmonic current spectrum that appears in (2.15). First
of all, it is possible to show that Ĩn(ω) exactly corresponds to the n-th harmonic of the
time signal detected by a longitudinal pick-up monitor located at an arbitrary section
along the ring circumference. As the proof of this statement is quickly carried out in the
following for a single particle signal, its validity can be immediately extended to beams of
many particles non-interacting with each other (when the interaction amongst particles
becomes not negligible, the motion of each of them changes because of that, and a different
description is required [32]). We consider one single particle having charge q and moving
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along a circular orbit with radius r0 (particle velocity v0), and a pick up signal monitor
placed somewhere along its path. The signal delivered by the PU electrodes is

IPU(1)(t) = q
∑

n

δ(t − nT0) , (2.16)

whereas the beam current along the ring is written as:

I(1)(s, t) = qv0

∑

m

δ[s− s(t) − 2πmr0] = qv0

∑

m

δ[s− v0t− 2πmr0] . (2.17)

In the above formulae T0 is the particle revolution period, T0 = 2π/ω0 = 2πr0/v0. Fourier
transforming (2.16), we obtain:

ĨPU(1)(ω) = q
ω0

2π

∑

n

δ
(

ω − n
ω0

2π

)

. (2.18)

Expansion in Fourier series of the current signal (2.17) with respect to the periodic variable
s yields

I(1)(s, t) =
∑

n

I(1)
n (t) exp(ins/r0) , (2.19)

where the coefficients I
(1)
n (t) can be evaluated as:

I(1)
n (t) =

qv0
2πr0

∫ 2πr0

0

∑

m

δ(s− v0t− 2πmr0) exp(−ins/r0)ds =
qv0
2πr0

exp(−inv0t/r0) .

(2.20)
At this point it is straightforward to obtain:

Ĩ(1)
n (ω) =

qω0

2π
δ
(

ω − n
ω0

2π

)

, (2.21)

and from here, after comparison with the spectrum of the pick-up signal, Eq. (2.18):

ĨPU(1)(ω) =
∑

n

Ĩ(1)
n (ω) . (2.22)

This proves that Ĩn(ω) in Eq. (2.15) can be regarded as the n-th harmonic of a signal
detected by a pick-up monitor. But such a signal can be easily evaluated and besides, it
is known from experiments: it has a very narrow band centered around the frequency nω0

(one or two narrow peaks, according to whether the beam is space charge dominated or
not – see, for instance, Fig. 2.3 with simulated spectra around the 5th harmonic both for
a beam made up of non-interacting particles and for a space charge dominated beam); its
width is directly related to the beam momentum spread, or to other relevant parameters
like the space charge impedance (this is the principle on which the whole Schottky diagnosis
is based) [32]; and it is in general, at least up to very high harmonic numbers, far smaller
than the band-width of any impedance acting on that harmonic — even narrow-band
cavity impedances. The reason why the current spectrum has narrow bands centered at
nω0 is the following: a spatial perturbation with harmonic number n in the beam frame
produces a signal oscillating in time at frequency nv0/r0 in the laboratory frame, where
v0 is the beam mean velocity.

For example, one might consider the ESR beam with which our measurements have been
carried out: the beam momentum spread was around 10−5, causing a spread in the revo-
lution frequencies of ' 8 Hz, whereas the cavity impedance acting on the first harmonic
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is just a few kHz wide (in Fig. 2.4 one can see the measured Schottky spectrum as well as
the calculated one [30]). On higher order harmonics there was the space charge reactance
alone acting, or broad band impedances at any rate (see following subsections), which are
enough smeared along the frequency axis, that they can be reasonably approximated as
constant in the close neighborhood of each multiple of ω0.

We first seek to divide the contributions to the self-induced potential into a part due to
the uniform, not varying in space, structure surrounding the beam (the vacuum chamber,
carrying along thus the space charge plus the effect of the finite conductivity of the pipe),
and a part due to the concentrated discontinuities, like RF-cavities (see Fig. 2.5):

φ(s, t) = φ(unif)(s, t) + φ(cav)(s, t) . (2.23)

To do that, we need to assume that these self-produced fields do not influence each other:
in other words, the space charge field does not see the discontinuities, and the field induced
in the cavity cannot propagate in the beam pipe because it is below cut-off. Because of
the space invariance of the structure considered when calculating the “smooth” part of

the field, we expect that znm(t) = z
(unif)
n (t)δnm and thus the relation between the spatial

Fourier coefficients of the expansion in the space variable s will be of the kind:

φ(unif)
n (t) = z(unif)

n (t) ∗ In(t) ⇒ φ̃(unif)
n (ω) = Ż(unif)

n (ω)Ĩn(ω) . (2.24)

In the next subsections indeed, we figure out the expression of the space charge impedance,
and there it will be proved that z(sc)n = zsc(n)δ(t), such that the space charge induced
field appears in the form:

φ(sc)(s, t) =
∑

n

zsc(n)In(t) exp

(

in
s

r0

)

. (2.25)

Furthermore, for low harmonic numbers, the resistive wall impedance introduced by the
finite conductivity of the beam pipe depends only upon ω, Ż(RW)n(ω) → ŻRW(ω), and in
the frequency domain (2.24) becomes:

φ̃(RW)n(ω) = ŻRW(ω)Ĩn(ω) ≈ ŻRW(nω0)Ĩn(ω) ,

having considered the shape of the Ĩn(ω), as discussed above.

It is clear as a consequence, that the global self-induced field due to space charge and to
the resistivity of the beam pipe can be written as:

φunif =
∑

n

Ż(nω0)In(t) exp

(

in
s

r0

)

, (2.26)

having defined Ż(nω0)
def
= zsc(n) + ŻRW(nω0).

When the contribution of the RF-cavity is taken into account, we assume that the field
produced in there depends solely on the beam current at that particular location, and can
be written as (Fig. 2.5):

φcav(s, t) = I(s = 0, t) ∗ zcav(t)Π∆(s) , (2.27)

where Π∆(s) is a function whose value is (2πr0)/∆ in the interval (0,∆) – ∆ being the
length of the cavity, ∆ � r0 – on the s axis, and 0 everywhere else. As we know from the
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Figure 2.3: Simulated Schottky spectra from a C+6 beam with a momentum spread close
to 10−5 and energy 340 MeV/u: the signal is taken around the 5th harmonic of the
revolution frequency, but it is reproduced in lower frequency due to the bigger time step
chosen for both simulations. In the above spectrum the beam current was chosen to be
0.036 mA and consequently space charge effects are not dominant and also the momentum
spread is directly related to the width of the Schottky band; in the spectrum below, on
the other hand, the current was one order of magnitude higher, and both slow and fast
wave are sensibly excited via space charge, with consequent deformation of the spectrum,
which becomes double-peaked.
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Figure 2.4: Schottky spectra from an ESR C+6 beam around the 34th harmonic of its
revolution frequency. Above: measured signal. Below: evaluated signal [36].

previous considerations, the current at the location s = 0 can be written as sum of different
time signals having each a band centered around mω0, and in addition the function Π∆

can be expanded in Fourier series. This yields:

φcav(s, t) =

[

∑

m

Im(t) ∗ zcav(t)
]

∑

n

αn exp

(

in
s

r0

)

(2.28)

Since the Im(t) go as exp(−imω0 t), the total field will be a superposition of different
waves having phase velocities (m/n)r0ω0. Amongst them, we only choose those that are
in phase with the beam, that means those having phase velocities v0 = r0ω0, as the ones
that can significantly affect the beam dynamics because their effect does not average to
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s=2 π r 0s=0

vacuum chamber

cavity

Figure 2.5: Schematic view of the accelerator environment as it influences the beam dy-
namics through the self-induced fields.

zero: this requires the condition m = n to be verified. Thus, the effective self-induced
RF-cavity field will eventually appear as:

φcav(s, t) ≈
∑

n

αn[In(t) ∗ zcav(t)] exp

(

in
s

r0

)

, (2.29)

which, for low harmonic numbers (n� 2πr0/∆), can be again put into the form

∑

n

[In(t)Żcav(nω0)] exp

(

in
s

r0

)

, (2.30)

since the Fourier transformed coefficients of the expansion (2.29) are φ̃(cav)n(ω) =

Ĩn(ω)Żcav(ω) ≈ Ĩn(ω)Żcav(nω0), and moreover αn ≈ α0 = 1.
This diversion has been necessary to conclude that one does not commit a major mistake
when, limiting oneself to considering the kinds of beam interactions above discussed, one
re-writes (2.14) as

φn(t) ' Ż(nω0)In(t) , (2.31)

which yields

φ(s, t) =
∑

n

Ż(nω0)In(t) exp(ins/r0) , (2.32)

where
Ż(nω0) = zsc(n) + ŻRW(nω0) + Żcav(nω0) . (2.33)

The relation (2.32) will be always used in the following in order to express the self-field in
a consistent way. Impedances are either beam characteristics (space charge impedance) or
machine parameters (all the others, since they only depend on the ring properties), and
with the Schottky and BTF analysis they can be satisfactorily estimated for each ring and
in whatever working conditions [32, 33, 34, 36].

2.2.3 Space charge and cavity impedances

The self-field follows Maxwell’s equations with the boundary conditions imposed by the
environment. It is obvious that:

- the detailed environment seen by the beam is different for different machines and changes
around the circumference of a given ring.
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Figure 2.6: Ion beam propagating in a perfectly conducting pipe.

- one cannot expect to analytically express exact solutions for the electromagnetic field
with handy formulae.

In view of this, in this subsection we will first of all consider the simplest type of environ-
ment and use the resulting electromagnetic field expression to show how the definition of
coupling impedance applies. The second step will be to take into consideration the inter-
action beam-cavity and describe it: this is specially remarkable in the present context for
the experimental part connected with this work.
Therefore, we start by considering a round beam of radius rb traveling in a straight line –
its mean velocity being v0 = β0 c – along the axis of a circular pipe of radius rp. To make
things easier, we shall assume a perfectly conducting pipe and also limit our analysis to
long wavelength perturbations of the beam current, in such a way that the fields created
do not propagate inside the structure and vary only over long distances compared with
the beam pipe radius. The starting point is the full set of Maxwell’s equations:

∫

γ

~E · ŝ ds = − d

dt

∫

Sγ

~B · n̂ dS

∫

Σ

~E · n̂ dS =
1

ε0

∫

VΣ

ρ dτ

∫

γ

~B · ŝ ds = µ0

∫

Sγ

[

~J + ε0
∂ ~E

∂t

]

· n̂ dS

∫

Σ

~B · n̂ dS = 0 .

(2.34)

Applying Gauss’s law to the cylinder in Fig. 2.6 and assuming that the contributions to
the flux through the bases of the cylinder is negligible, we obtain

Er(r) =















ρ

2ε0

r2b
r

if r > rb

ρ

2ε0
r if r ≤ rb

, (2.35)

whereas Ampere’s law applied to the perimeter of one of the cylinder’s bases gives

Bϕ(r) =















µ0Λv0
2πr

if r > rb

µ0Λv0
r

2πr2
b

if r ≤ rb

, (2.36)
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provided that one neglects the contribution of the time derivative of the electrical field
~E in the global balance of the current densities. Here we have introduced the beam line
density Λ(s, t) = ρ(s, t)πr2

b, which is linked to the local current by the simple relation:
I(s, t) ' v0Λ(s, t). Next step is to use Faraday’s law on the rectangular oriented path in
Fig. 2.6:

Es(r = 0)∆l = − d

dt

∫

S
Bϕ(r) dS +

∫ rp

0
Er(r, s = 0) dr −

∫ rp

0
Er(r, s = ∆l)dr =

= −µ0v0g∆l

4π

∂Λ

∂t
+

Λ(s = 0)g

4πε0
− Λ(s = ∆l)g

4πε0
. (2.37)

In the last passage we have defined the g-factor referred to the field on the longitudinal
axis: g = 1 + 2 ln(rp/rb). But this definition can be generalized and made independent of
the choice r = 0 by redefining a g-factor transversely averaged: g = 0.5 + 2 ln(rp/rb) [31].
Since for the continuity equation applied to the beam it is

∂Λ

∂t
= −∂I

∂s
' v0

∂Λ

∂s
,

from (2.37) we finally write the expression of the longitudinal electric self field averaged
all over the transverse plane:

Es(s, t) = − g

4πε0γ2
0

∂Λ

∂s
. (2.38)

As we know, every beam line density perturbation is in the form: Λ(s, t) =
∑

n Λn(t)
exp(ins/r0), and therefore (2.38) becomes:

Es(s, t) =
1

2πr0

∑

n

[

− ign

2ε0γ
2
0β0c

In(t)

]

exp(ins/r0) . (2.39)

Comparing (2.32) and (2.39), it is possible to deduce the right expression for the space
charge impedance at low frequencies (well below the cut-off frequency of the beam pipe),
that is:

z(sc)n = − igZ0n

2γ2
0β0

⇒ Żsc(ω) = − igZ0

2γ2
0β0

ω

ω0
. (2.40)

Using expression (2.38), we can quickly find out “a posteriori” what is the range of validity
of the two approximations made in the evaluation of the field. It is easy to show that
neglecting the contribution of the flux through the bases of the cylinder in Fig. 2.6 is
equivalent to requiring that

∣

∣

∣

∣

Λ

ε0
∆l

∣

∣

∣

∣

�
∣

∣

∣

∣

∂Es

∂s
∆lπr2

p

∣

∣

∣

∣

, (2.41)

whereas having neglected the contribution of the displacement current in the evaluation
of the global flux of current density to obtain the (2.36) needs:

|µ0Λv0| �
∣

∣

∣

∣

πr2pε0µ0
∂Es

∂t

∣

∣

∣

∣

. (2.42)

Both conditions are equivalent to the single

|Λ| �
∣

∣

∣

∣

∣

gr2p
4γ2

0

∂2Λ

∂s2

∣

∣

∣

∣

∣

. (2.43)
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If one assumes the line density to have a longitudinal profile like ∼ exp(is/λ), the above
condition immediately re-writes as:

λ� rp or, in terms of harmonic number, n� r0
rp

, (2.44)

having taken into account that we are dealing with a non-ultrarelativistic beam (γ0 ∼ 1)
and the g-factor is also in general at least around 4–5.
For shorter wavelengths, that means for higher harmonic numbers, this expression is not
valid any longer, and the space charge impedance rapidly vanishes in the range above the
cut-off frequency of the beam pipe.

Resonating objects placed along a ring are a major problem for the effects they may have
on a beam which keeps crossing them as it circulates therein. Particles well separated in
time are coupled by such objects: this is because the response of very good resonators to
the beam excitation, namely the wake field, stays undamped for a long time. RF cavities,
for instance, which are designed and used on the very purpose to keep a longitudinal field
inside of them in order to accelerate or bunch the particle beam, are the most frequent
sources of narrow-band impedances. For their applications, they are generally tuned to
resonate at the fundamental frequency hω0, but their eigenfrequency may be as well driven
far away from such values, as we will see. The impedance of an RF cavity is often written
as

Żcav =
Rs

1 + iQ

(

ω

ωr
− ωr

ω

) , (2.45)

where Rs, Q and ωr are respectively the shunt impedance of the cavity, its quality factor
and its eigenfrequency. The proof that expression (2.45) really is the Fourier transform of
the wake field can be found in Ref. [7]. Anyhow, it is not very hard to convince oneself
that the field induced by a beam crossing a cavity may act back on the beam itself and
amplify the harmonic component of the current that had previously excited it. Of course
the closer is the cavity eigenfrequency to a multiple of ω0, the larger the amplitude of the
induced field will be (the beam current spectrum has significant harmonic contributions
at these frequencies, in fact): consequently the more dangerous the effect of the self-field
on the beam will also be. This is exactly what Eq. (2.45) contains plus information about
the phase relation between self-bunching field and beam current longitudinal distribution.
The parameters Rs and Q relative to a certain machine can be deduced from a series of
BTF measurements taken for known values of the cavity eigenfrequency. For example, all
the measurements made at the ESR have clearly shown how close to reality this model-
ing of the interaction between beam and cavity is [35]. Figure 2.7 shows both real and
imaginary part of the cavity impedance for the ESR, having used the previously measured
values Rs = 1270 Ω and Q = 50.

A good knowledge of the key parameters so far introduced (Żsc, Rs, Q, ωr) greatly con-
tributes to having a good control on a wide range of unwanted unstable evolutions that
can occur in a beam. In particular, if one limits oneself to consider these two impedances
alone acting on a given beam – which is indeed very close to reality some times, like in the
ESR measurements that will be described in the next chapters – then a compact way to
summarize the whole question of the longitudinal instability of a coasting beam in a ring
is shown in Fig. 2.8. An initial beam current perturbation produces fields that act back on
the beam and modify the current in the way that Vlasov equation predicts; this “updated”
current will be then the source of “updated” fields, and the loop closes with that. The
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Figure 2.7: Longitudinal impedance of the ESR cavity.

situation in Fig. 2.8 might be a regime situation, where no growing signal is generated
and kinetic mechanisms contained in the black box Vlasov never let the induced fields go
above a certain level, or it might as well represent a time evolving situation, where the
action of the self fields enhances the initial perturbation and self bunching sets in.

2.2.4 Other contributions to the longitudinal impedance

In order to give a satisfactory inventory of all significant components to a ring impedance,
which can be handily employed to explain the great majority of longitudinal unstable
phenomena, we finally have to mention and briefly describe two more contributions: the
resistive wall impedance, used to account for the finite conductivity of the beam pipe,
and the broad band impedance, which allows accounting for the effect of the numerous
“non-idealities” present along the beam path (any box or local enlargement in the beam
tube which can resonate).

For the contribution coming from the finite conductivity σ of the beam pipe, there exist
essentially two regimes [37]. At very low frequencies, when the skin depth δ is larger than
the wall thickness δw, the impedance seen by the beam is:

ŻRW(nω0) =
1

σ

r0
rpδw

(2.46)

At high frequencies, the wall is thicker than the skin depth. It can be shown that the
previous formula must be amended by replacing δw by δ and multiplying by (1 + i) (an
imaginary term appears),

ŻRW(nω0) = (1 + i)
Z0β0δ0

2rp

√
n , (2.47)

where δ20 = 2/(µ0σω0) and δ2 = δ20ω0/ω. The transition between the two expressions
occurs when δ = δw. The energy lost in the wall is drawn from the beam, which is
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Figure 2.8: Circuital model for the electromagnetic problem of the interaction beam-beam
and beam-cavity.

consequently decelerated. As far as instabilities are concerned, the resistive wall impedance
is not a source of big worries in the longitudinal direction, whereas it essentially affects
the transverse motion [38].
The last component of the impedance comes from the several changes of the cross section,
kickers, pick-up electrodes, etc. It is obvious that these structures can trap some energy in
form of magnetic field energy, and therefore behave like an inductance at low frequencies.
This has been measured on existing machines [37]. From measurements one has also
learned that, when no special care is taken, the vacuum chamber is essentially resistive
at frequencies around the pipe cut-off frequency. This is due to the fact that the path
followed by the return current is very complicated and the resistance is high when the
vacuum chamber wall is not smooth, or correctly shielded along the longitudinal axis. It
has also been observed that the resistive part drops at frequencies higher than the cut-off
frequency. The object to represent all the above observations with a simple impedance
model is a broad band resonator with a resonant frequency around the vacuum pipe cut-off
frequency. This can give in general overall satisfactory results. To a certain extent, most
experimental results drawn from existing rings have been correctly fitted by assuming the
existence of such a component with Q ' 1 and a shunt resistance Rs adjusted to obtain
the good value of the low frequency inductance [37]. Concerning orders of magnitudes,
the full range

0.2 Ω ≤ |ŻBB|
n

≤ 50 Ω

has been found. The lowest values are achieved in modern machines. At present, a
considerable effort is being put into designing very smooth chambers: unavoidable changes
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of the cross section are systematically shielded and are no longer seen by the beam. For
such low-Q objects, the impedance curve varies slowly with frequency and the resonator
bandwidth is large. Therefore the wake field dacays rapidly. It is a local interaction that
can only couple particles close to each other along the longitudinal axis.
Broad band impedances may significantly affect the beam longitudinal dynamics and give
rise to microwave instabilities if the beam is space charge dominated: this is because,
in spite of the low values of impedances associated with the broad band component,
for quite high space charge impedances and also very high harmonic numbers a tiny little
resistive part might be sufficient to drive a very quick instability. In the situations we have
considered throughout this PhD work, this was not essential to be taken into consideration,
since the dominant effect was a cavity driven instability on a low harmonic number. The
problem can be however numerically studied employing a particle-in-cell code for the
simulation of the beam longitudinal evolution (see next chapter). With this respect, one
has to pay attention that, in the range where the broad band impedance normally acts,
the approximation given by (2.32) might fail and one needs to go back to the more correct
relation (2.15); and moreover, the beam has to be longitudinally sampled in such a way
that even high harmonic oscillations (at least those in which one is interested) can be
correctly resolved. All the issues connected to the accurate simulation of a very high
frequency instability need to be carefully studied yet, and this is indeed a very challenging
question for future deepening and work.

2.3 Linear analysis of the Vlasov equation

This section will be devoted to showing the way we obtain a dispersion relation between the
harmonic number of a perturbation in the beam current (we deal, in fact, with a spatially
periodic structure) and its complex frequency (complex, because we are mainly interested
in searching for non-steady-state situations, in which current perturbations get damped
or amplified). For this purpose, a harmonic analysis of the linearized Vlasov equation,
which makes use of the Fourier transform, is possible but, given the non-steady-state
nature of the problem, hereafter we will prefer to use the Laplace transform approach,
which appears to better suit the initial value problem. The starting point is anyway the
Vlasov equation (2.10) together with (2.32) that specifies the shape of the self induced
voltage. The impedance should in general be the sum of the four contributions already
introduced; but in practical cases, for each harmonic number, at least two or three of them
are negligible with respect to the other(s):

Żtot = Żsc + Żcav + ŻRW + ŻBB . (2.48)

Before starting with the linearization of the Vlasov equation (2.10), it is convenient to
re-write it in the rest frame of the beam by performing the following change of variables:

x = s− v0t
u = v − v0

⇒ ∂

∂s
→ ∂

∂x

∂

∂v
→ ∂

∂u

∂

∂t
→ ∂

∂t
− v0

∂

∂x
(2.49)

Consequently the Vlasov equation in the new co-moving coordinates will be

∂f

∂t
+ u

∂f

∂x
− q

m∗

φ(x, t)

2πr0

∂f

∂u
= 0 (2.50)

where:
φ(x, t) =

∑

n

Żtot(nω0)In(t) exp(inx/r0) (2.51)
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I(x, t) =
∑

n

In(t) exp(inx/r0) = qv0

∫ ∞

−∞
(v0 + u)f(x, u, t) du

It is useful to remark here that the In(t) that appear in this relation are different from
the In(t) that we have considered up to now only insofar as they do not contain the
term exp(−iω0t), which is now included in the exponential term of the Fourier expansion.
Anyway this is completely legitimate, as we have already once pointed out how each In(t)
is actually a narrow-band signal centered around nω0. The new In(t) are the same as the
old ones, only shifted to the low frequencies range. They express, in other words, the only
slow collective motion of the beam, and hide the beam’s much quicker revolutions around
the ring.

2.3.1 Dispersion relation

We assume the longitudinal distribution function of the beam to be sum of an equilibrium
coasting-beam part and a small perturbation

f(x, u, t) = f0(u) + δf(x, u, t) = f0(u) +
∑

n

δfn(u, t) exp(inx/r0) , (2.52)

and of course the harmonic components of the current will be given by:

In(t) ≈ qv0

∫ ∞

−∞
δfn(u, t) du I0 =

∫ ∞

−∞
f0(u) du , (2.53)

the perturbations in the velocity being anyway far smaller than the beam’s mean velocity
all along the ring circumference. If we substitute the ansatz (2.52) and the self induced
potential (2.51) in the Vlasov equation in the beam rest frame (2.50), and then neglect
the second order terms – which means we are linearizing this equation – we obtain:

∂δf

∂t
+ u

∂δf

∂x
− q

m∗

∑

n Żtot(nω0)In(t) exp(inx/r0)

2πr0

df0

du
= 0

∂δfn

∂t
+

inu

r0
δfn − q2v0Żtot(nω0)

m∗2πr0

df0

du

∫ ∞

−∞
δfndu = 0 . (2.54)

In order to solve Eq. (2.54), we first transform it into the Laplace domain by defining

Fn(p, u)
def
= Lapl[δfn(t, u)] (2.55)

Fn(p, u) − δfn(0, u)

p+ iun/r0
− q2v0
m∗2πr0

df0/du · Żtot(nω0)

p+ iun/r0

∫ ∞

−∞
Fn(p, u) du = 0 ,

and then integrate on the velocity space. In this way we get:

∫ ∞

−∞
Fn(p, u) du = Υn(p) =

∫ ∞

−∞

δfn(0, u)

p+ iun/r0
du

1 − q2v0Żtot(nω0)

m∗2πr0

∫ ∞

−∞

df0/du

p+ iun/r0
du

=
N(p)

D(p)
. (2.56)

Of course Υn(p) represents the Laplace transform of the n-th harmonic of the perturbation
on the beam current:

Υn(p)
def
= Lapl[In(t)] .

The next step consists now in going back to the time domain after inversion of the Laplace
transform in (2.56). As we know, a Laplace transform must be analytical in a half-plane
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Figure 2.9: Vertical line for the correct inversion of the Laplace transform in (2.56).

σ > σc, where σc is the convergence abscissa of the Laplace transform. The function that
defines Υn(p) is in fact analytical in the half-plane σ > 0. It has got a clear discontinuity
across the imaginary axis (when p crosses this axis, namely when Re(p) changes sign, both
N(p) and D(p) are discontinuous since in the integrals which they contain the contribution
of the pole gets suddenly left out). This means that any inversion of the (2.56) that is
carried out on a line belonging to the convergence domain (see Fig. 2.9) is correct and
leads to the right result:

In(t) =
1

2πi

∫

C0

Υ(p) exp(pt) dp . (2.57)

Nevertheless, we might want to express the solution in the time domain as the sum of the
residues of the poles of Υn(p) in the whole complex plane:

In(t) =
∑

k

Res[Υn(p) exp(pt), pk] =
∑

k

exp(pkt)[(p− pk)Υn(p)]p=pk
(2.58)

In this case the analytical continuation of Υn(p) must be correctly considered and thus
the integrals present in N(p) and D(p) must be substituted by themselves plus the pole
contribution through the residue, as Re(p) reverses its sign (which corresponds to changing
in the integrals the integration path from the real axis to the Landau path, as shown in
Fig. 2.10). The pk that appear in Eq. (2.58) are the solutions of the equation

D(p) = 1 − q2v0Żtot(nω0)

m∗2πr0

∫

L

df0/du

p+ iun/r0
du = 0 , (2.59)

and here it has been tacitly assumed that N(p) does not have poles itself on one side, and
moreover that Eq. (2.59) has got only first order solutions.

Altogether, the dynamics of the current perturbation In(t) is fully determined by the
solutions of (2.59) – which is often referred to as dispersion relation as it links the harmonic
number of the perturbation n to its complex frequency p – and its properties of being
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Figure 2.10: Landau path for the evaluation of the dispersion integral in (2.59) (dashed
line – it depends on the location of the pole in the complex plane).

stable or unstable only depend upon the sign of the real part of these solutions. If there
exists one single pole having a positive real part, then the n-th harmonic perturbation
is expected to grow unstable. And besides, these poles always appear in couples and
generally have a non-zero imaginary part, this meaning that there are at least a couple of
waves propagating along the beam, one of which (always the “slow” one indeed, namely
the one with a negative frequency shift) can be unstable. In most books and references,
the dispersion relation is obtained from a kind of Fourier analysis and consequently one
finds iω instead of p. It is clear that in this case the condition of instability will be given
by Im(ω) < 0. Anyhow, the physical content of the derivation is of course no different, and
besides, the rigorous mathematical approach given here has the advantage of thouroghly
legitimating the Landau prescription for the evaluation of the integral in (2.59) (which
would have otherwise required the use of different considerations to be explained [39]).
When solving the dispersion relation, one finds out that a finite region of the impedance
plane exists, in which the beam is stable, and which is the smaller, the colder and the more
intense the beam is. It is straightforward to prove that if we take into consideration a
monochromatic beam, that is a beam with zero momentum spread – or, it would be a more
correct definition, with zero revolution frequency spread1 – this stability region shrinks
down to a half imaginary axis and the beam will be expected to become unstable for any
resistive impedance acting on it. The analytical formulae for the frequency shift and the
instability growth rate can be easily evaluated starting from the dispersion relation (2.59)
and using the distribution f0(u) = δ(u) (the integration is carried out by parts, so that
the derivative df0/du disappears):

∆ωr = ±ω0

[

1

2Ż∗

(

√

Re[Ż]2 + Im[Ż]2 − Im[Ż]

)]

∆ωi = ±ω0

[

1

2Ż∗

(

√

Re[Ż]2 + Im[Ż]2 + Im[Ż]

)]

(2.60)

with Ż∗ =
2πm∗β2

0c2

qnI0
.

1A beam with zero revolution frequency spread can be obtained, in spite of its having a finite energy
spread, by simply operating a ring at the transition point. Setting the beam energy equal to the transition
energy of the machine, in fact, one makes the slip factor η vanish, and the revolution frequency spread of the
beam goes to zero, too, because the effect of the different momenta of the particles is exactly compensated
by the dispersion due to the different orbits that different particles follow. For some applications it is
desirable to operate a storage ring in an energy isochronous mode, when the flight time of the circulating
ions only depends on their mass-to-charge ratio. This allows, for instance, precise mass measurements by
measuring the flight time of the ions for multiple turns using a special timing detector [18, 40].
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These formulae can be useful as they give rough estimates of the instability rise time
when the impedance acting on the beam is much larger than the stability region size.
Nevertheless they can be sensibly improved if one considers the effects of the momentum
spread at least at the first order, as will be shown later on in Section 6.2.

At any rate, the physical meaning of the existence of a wide stability region when the beam
momentum spread is considered, is clear from the fact that, in the dispersion integral, the
contribution of the residue in the pole must be accounted for (directly or separately added,
as is prescripted by the Landau integration path in Fig. 2.10). This residue carries the
slope of the velocity distribution function at the wave phase velocity, and thus represents a
sort of kinetic wave-particle effect connected with the particles that travel with velocities
in phase with the wave (for all the other particles it does not really matter, because the
net effect of the wave sliding over them will however average to zero on reasonable time
scales). As we know from the kinetic theory of plasmas [41], this might lead to collisionless
damping of the self-induced wave, if the number of particles slightly quicker than the wave
is larger than the number of those slightly slower. This statement can be proven just
by making an energy balance [41, 42] and figuring out how in such a situation the beam
absorbs energy from the wave and consequently the wave gets damped. The phenomenon
is well-known as Landau damping and, of course, it requires the right slope of the velocity
distribution function at the phase velocity of the wave in order to significantly affect the
overall beam dynamics.

2.3.2 Normalization of the dispersion relation and use of the stability

charts

Next step will be to bring the relation (2.59) into a dimensionless form, independent of
beam and machine parameters. In order to achieve this, we need first of all to define
new parameters and functions which allow extracting dimensionless groups. The velocity
spread S might be thought of as related to the half width half maximum of the distribution
function f0(u),

S = δu1/2 ,

or to its standard deviation:

S = δuσ with δuσ =

(
∫ ∞

−∞
u2f0(u) du

)1/2

Moreover we introduce the dimensionless variables

x = u/S and y =
ipRo

nS
,

and the dimensionless function

G(x) =
2πSR0f0(xS)

N
, (2.61)

N being the total number of particles circulating in the machine (it is necessary to divide
by N in order that the new defined function satisfies the condition of integral along the
real axis equal to one).
After introducing a dispersion integral,

ID(y)
def
= −i

∫

L

1

y − x

dG

dx
dx , (2.62)
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and the complex number

T (n) = U + iV =
qI0Żtot(nω0)

2πm∗β2
0c2η2n(δp/p0)2

, (2.63)

the dispersion relation may be immediately re-written in the more compact form:

−T (n)ID(y)sign(η) = 1 , (2.64)

which becomes, when the beam is below transition energy:

T (n)ID(y) = 1 or U + iV =
1

ID(yr + iyi)
. (2.65)

What we finally reach in this model is therefore a complex function of a complex vari-
able, which is analytic and thus represents a conformal mapping of the complex plane
y = yr + iyi in the plane T = U + iV [6]. Given n, we can plot in the plane T the
two families of curves corresponding to yr =const. and yi =const., so that for known
beam and machine parameters one can determine a point in the plane T = U + iV , the
so-called working point, and figure out whether the beam is to be expected to be stable
(the working point lies in a region entirely covered by curves with yi < 0, i.e. the stability
region) or unstable (the working point lies on a curve with yi > 0 and in this case an initial
perturbation would grow in time and lead to self-bunching). The border between stable
and unstable region is the curve with yi = 0, which is therefore defined stability boundary
and strongly depends on the actual distribution of the beam in the velocity space. In Fig.
2.11 Lorentzian, Gaussian and quartic distribution functions are plotted along with their
corresponding stability boundaries in the (U, V ) plane. For what we have stated in the
previous subsection, it is clear that a higher number of particles that populate the tails
of the distribution function tends to enhance the stability region because there are more
particles involved in the Landau damping process: the result is that the curves y i = 0
tend to open in their upper part towards the region of capacitive-dominated impedances
and the stability region will in fact enclose a bigger area. A drastic reduction of the size
of the stability region occurs when the velocity distribution function is not single-peaked
but has got bumps, dips, or is multi-stream. This is due to the fact that such a structure
of the distribution function does not allow Landau damping for a more or less wide set
of wave phase velocities. Figure 2.12 shows for instance a Gaussian distribution with a
dip and the relative stability boundary: the stability region is only limited to the inner
part of the small loop that surrounds the origin, as the rest of the “onion” is filled by the
instability curves that curl around the origin, too, but in bigger turns.

When an instability is predicted because of a working point lying outside the stability
region, it is possible to evaluate from the yr-yi charts both the frequency shift and the rise
time of the unstable wave:

∆ωr =
nSRe(y)

R0
=
nSyr

R0
(2.66)

∆ωi =
nSIm(y)

R0
=
nSyi

R0
⇒ τinst =

1

∆ωi
(2.67)

Stability boundary and some instability trajectories are plotted in Fig. 2.13 for a Gaussian
distribution function.
In practice, it is customary to make use of an impedance plane rather than of the universal
T = U + iV . The working point is in this case the normalized impedance of the machine,
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namely the ratio between the longitudinal coupling impedance and the harmonic number
(Żtot(nω0)/n):

Ż0 · T (n) =
Żtot(nω0)

n
with Ż0 =

2πm∗β2
0c2η2

qI0

(

δp

p0

)2

,

Żtot(nω0)

n
= Ż0

1

ID
. (2.68)

The characteristic resistance Ż0 may be evaluated from the beam parameters, as well as
the curves yr =const. and yi =const. are known provided that the velocity distribution
function of the beam is known. In order to investigate the stability of a coasting beam,
all that one has to do is therefore to scale the plane T = U + iV with Ż0, and then put in
Ż(nω0)/n as working point. In many applications, the Keil-Schnell circle criterion [43] is
widely used as an approximate check of the beam stability. This criterion requires that,
in order for the beam to be stable, the inequality

(

δp

p̄

)2

HWHM

>
FqI0

4β2
0η

2γ0m∗c2

∣

∣

∣

∣

∣

Żtot(nω0)

n

∣

∣

∣

∣

∣

(2.69)

should be fulfilled. As we can see from Fig. 2.11, where the Keil-Schnell circle is plotted
along with the actual stability boundaries for different distributions, the use of the in-
equality (2.69) might strongly underestimate the stability region of the beam, especially
when the working point is strongly capacitive (maybe space charge dominated) and lies
very close to the imaginary axis (very low resistive part). Therefore, beams which are ex-
pected to be unstable according to the Keil-Schnell criterion turn out to be stable because
of Landau damping caused by the tail population. Experiments have clearly shown that
the space charge impedance can exceed up to 10 times the Keil-Schnell critical impedance,
without the beam becoming unstable as an effect [28, 30].



Chapter 3

Measurement of the longitudinal

instability at the ESR

We have investigated experimentally the longitudinal instability of a coasting beam in the
ESR far beyond the stability boundary and for several working points in the longitudinal
impedances plane. The longitudinal coupling impedance was varied, in fact, by tuning the
eigenfrequency of an ESR cavity to different values. For the eigenfrequency regulation a
small RF cavity gap voltage was necessary throughout the whole measurement process.
The development of special software analysis routines along with the appropriate choice
of the sampling frequency for the beam current signal has enabled us to observe the beam
dynamics up to 1000 ms with a much improved time resolution.
In this chapter the measurements are presented and the data acquisition is discussed. All
experimental observations are carefully pointed out for a further, deeper understanding of
the different phases in the evolution of an unstable beam.

3.1 Experimental and technical features for instability mea-

surements

The ESR is a machine that gives unique possibilities to study coherent instabilities since
very intense beams can be stored therein, and moreover their energy spreads and transverse
emittances can be successfully decreased down to very low values employing the electron
cooler which is along one of the long straight sections of the ring (see Sec. 2.1.2). For the
first time in 1996, experiments were already successfully carried out in the ESR, which
showed how a longitudinal instability could be driven in a very intense and cold beam –
space charge dominated, one could say – by means of a cavity tuned in the vicinity of
the second harmonic of the beam revolution frequency [28]. These measurements, which
were made with Ca+20 and C+6 ion beams, allowed the observation of the transition from
stability to instability, and were realized according to the following procedure:

phase 1: the beam was injected, stored and cooled via electron cooling while the RF
cavity was kept strongly detuned.

phase 2: started with turning off the electron cooler and simultaneously shifting of the RF
cavity eigenfrequency to the double of the beam revolution frequency, or neighboring
values.

Provided that the cooling in phase 1 was sufficiently good (one had to be able to observe
the double-peaked Schottky spectrum, indicating the achievement of a very high phase

43
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space density and a large space charge impedance acting on the beam), it was possible
to observe the longitudinal instability excited by the resistive part of the impedance of
the RF cavity (made sensibly different from zero in phase 2). The signal delivered by
the beam to a pair of longitudinal pick-up electrodes is proportional to the beam cur-
rent modulation: having monitored such a signal over some 200 ms, one could see the
exponentially growing amplitude of the current modulation in the linear regime of the
instability with a rise time of roughly 20 ms, and the phase of nonlinear saturation. No
long term evolution could be observed then. Besides, no satisfactory comparison with the
linearized theory could be quantitatively drawn, because the cavity eigenfrequency was not
precisely known. This caused the longitudinal coupling impedance to be unknown, as well.

Anyhow, the success of this first set of measurements in producing at the ESR a beam
that did grow unstable over a reasonable time scale, has strongly encouraged setting up a
second beam time dedicated to the longitudinal instability. Its main goal was supposed to
be: taking and storing data over a longer time (up to 1 s for each unstable evolution thanks
to the undersampling technique that will be explained later on), and moreover having a
precise control of the cavity eigenfrequency for each of the working conditions in which
the instability would be excited. The advantages coming from these two conditions are
evident: first, a long observation time gives a clear picture of the nonlinear phase in the
instability evolution and of all the related phenomena; secondly, the precise knowledge of
the cavity eigenfrequency allows the evaluation of the impedance acting on the beam for
each measurement, so that connections can be established between the different working
points in the impedance diagrams and the linear as well as the nonlinear phases of the
beam evolution.
Unfortunately, it was known from the beginning that the feedback controlling system for
the cavity eigenfrequency would require the presence of a small residual voltage at the
cavity gap, which would perhaps significantly influence the beam dynamics in some cases.
The idea was to ignore anyway, in first approximation, the presence of this external electric
field oscillating in the cavity, because it would be kept always quite strongly detuned with
respect to the beam, and consequently would not be expected to sensibly change the
charge line density. This point will be widely discussed in the next chapter (Secs. 5.3 and
5.4), where analytical and numerical results concerning the dynamics of a beam under the
action of self-fields and a residual voltage are presented. There it will become clear up to
which extent to ignore the small finite voltage can be considered a good approximation,
and when, on the other hand, severe changes must be expected in the instability evolution
because of its presence.
Preliminary calculations based on the linear theory of the instabilities showed that, if the
beam delivered to the ESR for these measurements had been C+6 at 340 MeV/u with
a current spanning from few tenths of mA to some mA and a momentum spread of the
order of 10−6, an instability on the first harmonic would appear and grow the quicker, the
closer the cavity eigenfrequency would be tuned to the beam revolution frequency. The
growth times required for the experiment to deliver reliable results should be in the few
tens milliseconds region, such that:

1. the instability could be considered not to be significantly affected by the electron
cooling, at least in its linear phase (characteristic cooling time is some hundreds of
milliseconds).

2. the instability would be also slow enough that the ramping time of the cavity (15 ms)
could be neglected for its development from the eventual working point.
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For a favorable data acquisition, it was evident that a traditional sampling technique could
not be chosen, or else this would have required an amount of data to store so large, that it
would have become impossible to follow the beam evolution over a period as long as 1 s.
As a matter of fact, a C+6 beam at 340 MeV/u in the ESR has a revolution frequency of
1.886633 MHz: this means, if we had wanted to resolve one lap with some 100 samples
in order to have a resolution up to the 50th harmonic – which is not much, anyway, but
large enough for our purpose to excite an instability on the first harmonic – the acquisition
of 188.6 Megasamples for each 1 s beam evolution would have been needed. Considering
that the measurement was to be repeated for at least 10 different working conditions, the
amount of data eventually stored would have grown really huge (using a 8 bit precision,
a minimum of nearly 2 Gbyte only on this experiment). So, the idea has been used to
undersample our current signal at 2 MHz (even below the Nyquist minimum frequency
for the reconstruction of the signal, which is twice the frequency of the signal [44]); this
technique utilizes samples from subsequent turns in order to reconstruct the wave form
over one turn, and is expected to work without loss of information because the beam
profile does not change much over several hundreds turns due to:

• The momentum spread is very small, corresponding to a velocity spread in the order
of 500 m/s. After 100 turns, the quickest particles will have moved about 60 mm in
the longitudinal direction, which is negligible with respect to the 108 m circumference
of the ESR, and does not cause a sensible variation of the beam line density.

• With a period T0 = 0.53 µs, 100 turns correspond to about 0.053 ms. Thus, the
dynamics of the slow unstable wave can be still correctly resolved, as it must have a
time scale of the order of tens of milliseconds.

In fact, it is pretty straightforward to figure out that sampling the signal at 2 MHz, 17.64
data samples would be needed to resolve one period. Of course this resolution, which
would indeed be enough to analyze an instability rising on the first harmonic, prevents
the observation of possible much higher harmonics generation, and moreover does not
allow a very detailed reproduction of the bunch shape. That’s why a special software
analysis routine was developed (off-line) to “interleave” a series of n · 17 consecutive data
samples (each i-th series is then shifted by the fractional part of i · (1 − 0.64) = i · 0.36
samples during the interleave), such that the beam line density can be reconstructed with
a very high time resolution of more than 100 MHz. The advantage of this method is that
the beam signal could be taken over the long time interval of 1000 ms, by simultaneously
giving the possibility to perform high accuracy zooms on the beam signal in the off-line
analysis. With the “interleaving” procedure that guarantees high resolution even with a
very low sampling frequency, the whole set of parameters, both concerning the physics
of the experiment and its technical part, was eventually fixed. In the next section, the
measurement process will be described in all details.

3.2 Measurement process

The longitudinal instability in the ESR was basically excited by varying the longitudinal
coupling impedance of the ESR cavity and observing a longitudinal pick-up signal (Fig.
3.1). The total impedance acting on the beam consists of a real part, which is mainly the
resistive part of the cavity impedance, and an imaginary part, which is given by the sum
of the imaginary part of the cavity impedance and the space charge reactance (≈ −700 Ω
per harmonic) from the beam itself [35, 30].
After injection of about 300µA C6+ ions (Ekin = 340 MeV/u) we decreased the beam
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Figure 3.1: Scheme of the experiment performed at the ESR.
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momentum spread using the ESR electron cooler, which was optimized for longitudinal
cooling. Simultaneous transverse heating minimized intra-beam scattering effects and
enhanced the longitudinal cooler efficiency [45]. For the very cold beam the longitudinal
Schottky spectrum is strongly deformed (Fig. 2.4). Nevertheless the momentum spread
can be calculated from the deformation of the spectrum [46]. During the cooling pro-
cess the eigenfrequency of the cavity was kept detuned |∆f | ≈ 70 kHz away from the
beam first harmonic, f0 = 1.886633 MHz. After an equilibrium momentum spread of
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(∆p/p0)FWHM = 1.1 · 10−5 had been reached and the beam had been observed to be
stable in this situation of detuned cavity, the eigenfrequency of the ESR cavity was tuned
close to the revolution frequency of the beam by a linear (in time) frequency ramp within
15 ms (Fig. 3.2). The difference between the beam revolution frequency and the cavity
eigenfrequency, ∆f = f0 − fr, determines the impedance acting on the beam (following
the cavity resonance curve, Fig. 2.7). The ESR cavity has a quality factor of Q ≈ 50
and a shunt impedance of about Rs ≈ 1.3 kΩ [35]. As was already pointed out, the
eigenfrequency regulation system requires a finite RF voltage of 320 V at the cavity gap,
which was continuously present during the measurements.
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Figure 3.3: Impedances diagram for the ESR measurements. The cavity detuning curve
is drawn according to the shown direction as ∆f spans between −∞ and ∞.

For the interpretation of the measurements, we plot the cavity detuning curve on the
stability diagram of the longitudinal instability in the complex impedance plane [6]. The
beam is unstable outside the onion-shaped stability boundary of a Gaussian distribution
(Fig. 3.3). When the cavity eigenfrequency is brought sufficiently close to the beam revo-
lution frequency, the impedance working point in the longitudinal stability diagram ends
up far outside the stability boundary and the beam becomes unstable. The longitudinal
beam signal was then measured over about 1000 ms by sampling the signal of a longitu-
dinal beam monitor at 2 MHz using the digital signal analyzer LeCroy LC534L. Fig. 3.4a
shows the measured beam envelope for a small eigenfrequency detuning of ∆f = −2 kHz,
which corresponds to a large cavity coupling impedance of about (1285 + i136 )Ω. The
eigenfrequency ramp starts at t = 30 ms and lasts 15 ms; so we observe that, within 5 ms
after completion of the ramp, the beam gets quickly unstable. In Fig. 3.4b the cavity
eigenfrequency was detuned by ∆f = −17.4 kHz, with a corresponding cavity impedance
of (700.3 + i648 )Ω, causing therefore an instability that shows up far later and with a
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Figure 3.4: Beam envelopes up to 400 ms for ∆ffin = −2 kHz (a) and for ∆ffin = −17.4 kHz
(b). The cavity eigenfrequency gets tuned to ∆ffin during the time interval 30 − 45 ms.

much longer rise time.

3.3 Experimental observations during the unstable evolu-

tion of the beam

The analytical theory predicts that due to the positive resistive cavity impedance the
longitudinal instability arises on the slow wave, which corresponds to the plasma wave
running backwards in the beam frame. This may be seen in Figs. 3.5a and 3.5b. In
these two pictures the beam evolution is represented in form of the so-called waterfall
diagrams: that is to say, the line density of the beam along the ring (here an azimuthal
coordinate θ is chosen for that) is plotted in several instants, and the time difference
between two subsequent traces is a multiple of the revolution frequency of the beam
(actually, it is a multiple of fr − f0, with fr sampling frequency of the signal, because one
of the effects of the undersampling is the reconstruction of the signal in low frequency).
In Fig. 3.5a the beam modulation splits up into a higher harmonic order oscillation from
t = 200 ms. If the cavity eigenfrequency was tuned close to the beam, we observed in
almost all measurements that the beam does not stay unstable just on the first harmonic,
but gets also excited at much higher harmonics. The frequencies that correspond to these
instabilities reach up to 40 MHz (they arise at 190 ms in Fig. 3.5a). It is well-known that
the ESR injection kicker has several resonances in this frequency region [47]. All beam
modulations that appear at frequencies different from the fundamental mode are due
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to nonlinear effects in the instability dynamics, since they are absent if the fundamental
mode is stable. The mechanism of these nonlinearities will be widely discussed throughout
the next chapters.
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Figure 3.5: Waterfall diagrams for the two cases in Fig. 3.4. Here the beam line density
traces along the ring are plotted over one another at several instants in the interval 50–
350 ms.

We studied the modulation signal of different measurements (with different coupling
impedances). At the early stage of the instability we always observed symmetric sinusoidal
modulation signals growing in amplitude (Fig. 3.6a and 3.6b), whereas in the nonlinear
region asymmetric bunch shapes occurred (Fig. 3.6c), and sometimes triangular later on.
The wave front steepening (Fig. 3.6c) is a common feature of waves in nonlinear regime
[42] (see also Chapter 6). As expected due to our “undersampled” data, in the measured
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Figure 3.6: ∆ffin = −17.4 kHz: sinusoidal bunch shapes occurring in the linear phase
of the instability (first two pictures) and steepened wave front at the time of maximum
amplitude (third picture).

bunch signal the large slope appears at an earlier time. After steepening, the unstable
wave always reached its saturation level. From this point on, a residual coherence could be
in all cases observed to persist on the beam, oscillating some times in a sort of recurrent
fashion. This is clear both in the envelope and waterfall diagrams of Figs. 3.7 and 3.8.
This means that even after saturation, the beam structure never goes back to the pure
coasting beam, constant along the longitudinal direction and smooth in the velocity space,
but stays coherent. This subject will be reconsidered in Chapter 8, where a comparison
with long term simulations is drawn and widely discussed.
In fact, it is this coherent long-lived structure of the beam line density that does not allow
applying the methods of the Schottky diagnosis anymore on a beam which has undergone
a longitudinal instability at some point in its history. Actually, this is the main reason
why from these data we cannot extract information about the evolution of the beam in
the velocity space. For the purpose, simulations will be of much help, and also recently
new forms of investigation always using Fourier analysis are being under study in order to
be able to get this kind of useful insight when analyzing beam instabilities.
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Figure 3.7: Beam current evolution over 1 s (current modulation envelope on the left side
and waterfall diagram on the right side) for the case ∆f = 6.7 kHz.
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Chapter 4

Interpretation of the linear phase

By using the linear kinetic theory and the particle-in-cell code PATRIC [48, 49], the
longitudinal instability observed in the ESR has been investigated for different values of the
longitudinal impedance of the machine. The numerical investigations show that initially
the instability grows exponentially as predicted by the linear theory. Theoretical and
measured instability rise times have been confronted with the simulated ones and a good
accord between them is found. When the perturbation reaches large values, significant
high order harmonics are produced: steepening of the density profile as well as saturation
of the instability growth appear first, and turbulence later on. These phenomena will
be object of a far more detailed analysis in the next chapters. Analytical and numerical
studies with a small RF voltage applied at the detuned cavity gap have also been carried
out in order to meet the conditions in which the actual measurements were made at the
ESR.

4.1 The simulation program PATRIC

The code for beam simulation PATRIC (PArticle TRacing In Cell) [48] allows following
the evolution of a given particle distribution in the phase space under the action of ex-
ternal as well as self-induced electric fields. In this context, as particle distribution in the
phase space we simply mean an ensemble of discrete, point-like charges, whose number,
order of charge and mass can be freely chosen, and whose motions are ruled by the laws
of classical mechanics and electrodynamics. In order to be able to follow the dynamics
of this ensemble, the code makes use of a discretized form of the equations of motion for
the each particle. From the Vlasov equation written in the co-moving frame (2.50), it is
possible to easily deduce the equations of the longitudinal motion, which can take into
account both relativistic and frequency dispersion effects; moreover, the equations for the
transverse dynamics that are employed in this description are quite straightforward as the
motion is non-relativistic and assumed not to be coupled with the longitudinal degree of
freedom. It is natural to use for the longitudinal motion the ion beam rest frame, because
this introduces a strong simplification in the computation and has the advantage to show
anyway all the phenomena in which we are interested.
PATRIC has been constructed in a severely modular fashion in such a way as to make it
easier for the user to add new modules and integrate new functions. The parameters re-
quired for the beam simulations are entered through a configuration file, which is in ASCII
format and is read by the code in the beginning of each simulation. All the dimensional
quantities are required to be entered in SI-units, unless otherwise specified. The program
is written in C-language and runs under the platform VMS.
The latest version of PATRIC has largely profited from all the work previously done
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throughout the years. The routines for the calculation of the space charge distribution via
the Area-Weighting method as well as the discretization of the equations of motion follow-
ing the Leapfrog-method [50, 51], were first implemented in the SCOPRZ (Space Charge
OPtics in RZ-geometry) code by I. Hofmann and I. Bozsic [49]. For the solution of the
Poisson equation, the fast Poisson solver by U. Schumann and R. Sweet is employed [52].
The development of PATRIC in C-language has been subsequently made by G. Kalisch
[35] and U. Oeftiger (smoothing of the fields for the reduction of the granularity noise,
upgrade of the Area-weighting technique, etc.). As collective forces were already included
in the capabilities of the code, for our study of the coasting beam instability, we have only
needed to add the action of an external off-resonance voltage acting on the beam in order
to better reproduce the conditions in which our measurements were taken.

4.1.1 Beam dynamics

PATRIC describes the motion of macro-particles in the ordinary six-dimensional phase
space. The projections of this space on the corresponding two-dimensional subspaces
define the longitudinal, horizontal and vertical phase planes.
The possible electric potentials considered are limited to the axially symmetrical case.
The (transversely) azimuthal information is lost in this kind of representation, and that’s
why many times this model is referred to as a 2 1

2 -dimensional model.
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External fields

+

Figure 4.1: Principle of the numerical beam simulation along a discrete time axis. For each
iteration step, the updated phase space distribution of the beam is constructed starting
from the previous one and from the fields acting on the particles (a part of which might
also depend on the particles distribution at the previous time step).

The simulation process goes through time steps of length ∆t: the state of the beam at the
time instant tn+1 = tn + ∆t is iteratively computed from the output-state at the instant
tn = n∆t (see Fig. 4.1). For each simulation step the electric fields are calculated at
the grid points of an r-z net previously set, their values at the particles’ actual locations
are extrapolated by means of the Area-weighting method, and eventually the particles
are accordingly moved after the principles of Newtonian mechanics. Longitudinally, the
condition of periodicity in s of period C0 = 2πr0 is applied, whereas if a particle reaches
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transversely to a bigger distance than rpipe, it is considered lost (it hits the wall).
To solve the time and space discretized set of equations of motion

ẋ = vx ; v̇x = − 1

mI

∂

∂x
(Uext + Ucoll)

ẏ = vy ; v̇y = − 1

mI

∂

∂y
(Uext + Ucoll)

ṡ = vs ; v̇s = − 1

m∗

∂

∂s
(Uext + Ucoll)

, (4.1)

the well-know Leapfrog method is employed, which has the advantage of minimizing any
artificial emittance growth. Positions and velocities of the macro-particles are herewith
determined not at the same time instants, but shifted of ∆t/2 [51].
The number of grid points can be freely chosen at the beginning of each simulation, such
as to be adapted to the particular needs. The Area-weighting method is indeed used twice
by PATRIC in each simulation step: first, in order to determine the space charge smooth
distribution starting from the positions of the particles, and the second time when the
electric fields, which are given at the grid points, have to be extrapolated back to the
points where the particles stand [51].

4.1.2 External potentials

External fields are necessary for beam focusing. In real synchrotrons and storage rings, the
beam is transversely focused by the action of quadrupolar fields which are ordered along the
desired trajectory in an alternate fashion (as for the sign of the magnetic field gradients) so
as to achieve horizontal as well as vertical focusing. In the PATRIC simulations, this real
structure is neglected and the beam is continuously radially focused by the action of an
ideal field having potential Urad ∝ r2 (smooth approximation [31]). Of course, this means
that one has to give up any more detailed description of the effects of the real transverse
dynamics, such as chromaticity or frequency dispersion. Only the global η effect is in
any case taken into account in the longitudinal dynamics, thanks to our considering in
the longitudinal equation of motion the effective mass of the ion m∗ instead of its real
relativistic mass.
For the longitudinal beam focusing, an RF electric field is required that oscillates on a
multiple h of the revolution frequency of the beam (this harmonic number depends upon
how many bunches must be kept orbiting in the ring). In real machines, this field is applied
only at the cavity gap, but being the synchrotron frequency always by far smaller than
the revolution frequency of the particles, one can make the approximation that the field is
smeared all along the ring without committing major mistake. For the study of stationary
bunches, originally only stationary sinusoidal fields were considered possibly acting on the
beam (bunching fields causing no net beam acceleration). But since our problem required
the study of the beam dynamics under the action of an off-frequency external field, too,
the option to simulate a beam with a non-stationary electric field has been also added in
the code. In our system co-moving with the particle beam, we have therefore in general a
sinusoidal field

Ulong ∝ cos

(

h

r0
x− ∆ω t

)

(4.2)

as function of the longitudinal “local” coordinate x and time t, its period being one single
bucket length 2πr0/h.
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4.1.3 Collective fields

The collective fields are used to model the totality of the interactions among beam parti-
cles, and of the beam particles with the surrounding environment (on a macroscopic scale,
anyway, that is disregarding at this stage collisional effects). For this kind of study, the
concept of impedance introduced in the previous chapters is of major help (Sec. 3.2.2).
It can be naturally used, in fact, to calculate these self-induced fields, and subsequently
have them act on the beam particles in order to determine their motion.
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Figure 4.2: Here we see the partition of space in cells along the longitudinal direction.
The contribution of each beam particle to the smooth charge density at the grid points is
calculated according to the Area-weighting method, as well as the field evaluated at the
grid points is extrapolated back at the particles location with the same procedure.

The space charge field indeed need not go through the computation via the impedance
model, which would be correct only to some extent (see Sec. 3.2.3), but simply uses
the potential that solves the Poisson equation for the given particles distribution, and
therefrom derives the longitudinal electric field which acts back on the particles. After
having determined the charge spatial distribution at the grid points with the method of
the Area-weighting at each time step, the Poisson equation

∇2Usc = − ρ

ε0
(4.3)

is solved by a fast Poisson solver with the assumption of axisymmetric system inside a
perfectly conducting cylindrical pipe [52]. The derivation of the field from the potential
is then straightforward, and the last step consists in evaluating the field at the particle
points from the one at the grid points – again with the method of the Area-weighting
(Fig. 4.2).

For the interaction beam-cavity, which has been so far the one implemented in the code,
the concept of impedance is employed. The beam current signal over one period is Fourier
transformed with an FFT algorithm, and the harmonic component corresponding to the
number on which (or in the vicinity of which) the cavity is supposed to be tuned, is
multiplied by the cavity impedance. The resulting complex number gives amplitude and
phase of the sinusoidal field acting back on the beam particles. In order to carry out this
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computation, essential parameters like the cavity eigenfrequency, its shunt resistance and
its quality factor, must be entered through the configuration file of the code.
For the beam diagnosis, observables like beam line density and velocity distribution are
stored every m time steps, and eventually give a clear picture about the beam evolution
over the pre-defined simulation time. An option for the Schottky analysis on the beam
has been also set up, in order to be able to draw Schottky spectra from the simulations
and try to gain a deeper insight into the method itself, which has been used so far mainly
for diagnosis on stable coasting or bunched beams [32, 53].

4.2 PATRIC simulations of unstable coasting beams:

comparison with the linear theory

In this section, the PATRIC code is used in order to simulate some unstable beam evo-
lutions. First of all, the results of these simulations will be compared with the prediction
of the well-known linear theory (see Chapter 3), and at the same time all the nonlinear
featuring will be pointed out for deepening in the next couple of chapters. This is mainly
done in order to show the excellent accord existing between theory and simulations in the
ideal case, and consequently the reliability of the predictions from the PATRIC code in
matter of beam instabilities. The unstable situations that we are going to consider in the
following, directly come from the points experimentally investigated in the ESR. The only
difference is that in this first approach we have reproduced ideal conditions in which the
finite voltage at the cavity gap is ignored and the current has been assumed to be con-
stant and equal to 0.366 mA for all simulation points (which was not the case during the
measurements, when the current spanned between 0.27 mA to 0.36 mA). That’s why now
the only comparison will be drawn between theory and simulations, whereas in the next
section, when the simulated dynamics is corrected to take into account the real conditions,
experimental points will be also considered in the analysis.
Let’s start with briefly summarizing the parameters for the simulations. The beam of C6+

ions at Ekin = 340 MeV/u can be assumed Gaussian shaped in the velocity distribution,
and the total impedance is changed by varying the RF cavity eigenfrequency fr in a range
of few tens of kHz in the neighborhood of the beam revolution frequency f0. The beam and
machine parameters are: I0 = 0.36 mA, f0 = 1.886633 MHz, (∆p/p0)FWHM = 1.1 · 10−5,
η = −0.367.
In the ESR the only significant contribution to the environment impedance comes from
the space charge and the RF cavity [35]:

Ż = Żsc + Żcav ,

Żsc(nω0) = −inXsc ,

Żcav(nω0) =
Rs

1 + iQ

(

nω0

ωr
− ωr

nω0

) . (4.4)

Xsc (space charge reactance of the beam) does not depend on the wave number n in the
long wavelength limit - n� (r0/rb), where rb is the beam radius; Rs, Q and ωr = 2πfr are,
respectively, the shunt resistance, the quality factor and the fundamental eigenfrequency
of the RF cavity. For our analysis we assume the ESR values: Rs = 1.3 kΩ, Q = 50 [35]
and we set Xsc = 700Ω [30].
The stability diagram and the cavity detuning curve that correspond to this situation are
shown in Fig. 3.3. Since Q� 1 and the cavity is tuned in proximity of the beam revolution
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frequency f0, the contribution of the cavity impedance to the total machine impedance
is negligible for n ≥ 2. Thus, for n ≥ 2, Ż(nω0) is purely capacitive and it is only due
to space charge. For these perturbations the pair (R0U,R0V ) corresponding to the total
machine impedance lies always inside the stable area (the machine operates below the
transition energy). As a consequence, all the perturbations with n ≥ 2 are stable. Let us
consider now the perturbation with n = 1. For ∆f < −35 kHz and ∆f > 45 kHz, where
∆f = f0 − fr is the detuning frequency of the cavity, the working point again lies inside
the stable area: in these conditions the first harmonic perturbation is stable too. On the
other hand, for −35 kHz< ∆f < 45 kHz the working point lies outside the stable area
and thus the perturbation is expected to be exponentially unstable.
When the initial perturbation has grown to large values, the linear theory becomes inade-
quate. With PATRIC not only small perturbations can be studied, but also the evolution
of the instability can be followed into its nonlinear region. Several different working points
on the cavity detuning curve have been simulated. Fig. 4.3 shows the phase space plots, the
line density profiles and the averaged (along the ring circumference) velocity distribution
functions, for ∆f = −17.4 kHz, when the longitudinal instability appears and develops in
time.
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Figure 4.3: Numerical simulation for ∆f = −17.4 kHz. Longitudinal phase space plots
(a), line density profiles (b), and averaged velocity distribution functions (c), at t = 150 ms
and t = 263 ms
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In the first phase of the instability evolution (see t = 150 ms) the sinusoidal perturbation
grows exponentially and propagates backwards, as predicted by the linear kinetic theory.
When the perturbation amplitude has grown to large values, high order harmonics are
produced, and saturation and wave steepening occur (see t = 263 ms). In particular in
Fig. 4.4 the time evolution of the amplitude of the 1st, 2nd and 3rd spatial harmonics of
the current and an exponential fitting of the first harmonic amplitude are represented. In
the early phase of the instability the first harmonic amplitude grows exponentially. The
rise time estimated in this way, roughly 45 ms, agrees very well with that obtained by
using the impedance diagram.
In Fig. 4.5a the e-folding times 1/|∆ωi| obtained from the linear kinetic theory are directly
compared with those extrapolated from the simulations for different values of the detuning
parameter ∆f . In Fig. 4.5b the simulated and the theoretical slow wave frequency shifts
∆ωr versus ∆f are also plotted. As predicted by the linear theory the e-folding time
1/|∆ωi| and the frequency shift ∆ωr versus ∆f curves are not symmetric with respect to
the origin (the origin corresponds to a perfectly tuned cavity): for Im(Żcav) > 0 the rise
time is lower and the wave is slower than for Im(Żcav) < 0.
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Figure 4.4: First, second and third current harmonic amplitudes versus time for ∆f =
−17.4 kHz.

From the simulation, it is evident that the first harmonic amplitude of the current grows
exponentially (Fig. 4.4) and the averaged velocity distribution function does not show
noteworthy changes (see t = 150 ms in Fig. 4.3c) as long as the second and third order
harmonics stay negligible. The exponential growth of the first harmonic drives the growth
of the higher order harmonics (Fig. 4.4) and the steepening of the wave front profile, which
gives rise to a sharp gradient in the saturation phase of the instability (see t = 263 ms
in Fig. 4.3b). The steepening of the wave front and the sharp gradient in the saturation
phase have been clearly observed in the measurements in the ESR (cfr. previous chapter).
From the phase space plot, it is also evident that in the saturation phase, the instability
develops a bucket where most of the particles end up getting trapped (see t = 263 ms
in Fig. 4.3a). As a consequence, the mean value of the corresponding averaged velocity
distribution function decreases and the beam slows down, as well as the velocity spread
increases (see t = 263 ms in Fig. 4.3c). Later on, the phase space distribution becomes
turbulent.
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4.3 Beam simulations with an off-frequency voltage in the

cavity

For a satisfactory comparison of the PATRIC results with the experimental observations at
the ESR, we need to carry out the simulations including the external voltage for the cavity
eigenfrequency feedback control, which was present during the measurements. But before
that, it is useful to show how the comparison between theory and measurements would
look like, if we applied the bare linear theory without taking into account the presence
of the voltage in the cavity. Afterwards, we will go through a first correction to that by
simply using the PATRIC code, which is able to simulate this extra-voltage, and in the
next section a theoretical analysis of the full problem will be eventually attempted.

The rise times for the different measurements were extrapolated by means of a Fourier
analysis on the beam current signal. As shown in Fig. 4.6, the interleaved beam signal over
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Figure 4.6: Rise time extrapolation from the experimental data. The first harmonic
current component is extrapolated through a spectral analysis at many subsequent time
instants. On the left, six periods of beam current and Fourier transform of this signal
are represented; on the right, is the zoom of the beam current spectrum at very low
frequencies, which allows the estimation of the first harmonic value.

6 periods was Fourier transformed via an FFT, and hence the beam first harmonic1 could
be evaluated at many subsequent time instants; from exponential interpolation of the beam
first harmonic time profile, the growth times were calculated for all the measurements. As
theory predicts, an asymmetry with respect to the sign of ∆f was observed in the rise times
of the instability. We evaluated the rise times from the early stage of the beam instability
by performing an exponential fit through several beam modulation first harmonic signals
analyzed at different time points of the beam evolution. In Fig. 4.7 we have plotted the
measured rise times together with those predicted by the analytical theory of longitudinal
instabilities, having assumed a Gaussian momentum distribution. There is a significant
discrepancy with the theoretical predictions for the measurement results at very large
detuning frequencies. Here the total impedance is very close to the stability boundary. In
this region tiny deviations in the beam parameters (such as the actual beam momentum
distribution) or slight inaccuracies in the impedance value (due for instance to a cavity
quality factor Q not precisely known or to different contributions to the total impedance
that had been neglected so far) strongly affect the predicted rise times and may even
let a stable beam be expected unstable or vice versa. The measurement points for small
cavity detuning frequencies are more reliable and show rise times around 20 ms. As seen
in Fig. 4.7, the analytical theory predicts rise times that are larger for small detuning

1Actually, the 6th component of the spectrum had to be looked at, because of the choice of analyzing
over 6 periods in order to make a better resolution between the dc component and the first harmonic in
which we were interested.
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frequencies, whereas there is better agreement a bit farther away from the center. Our
computer simulation results suggest to explain this discrepancy by taking into account
the finite cavity gap voltage of 320 V, which was needed for the eigenfrequency regulation
system of the cavity.
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Figure 4.7: Measured rise times and comparison with the theory.

But for a fair check of the experimental results, we must necessarily employ the numerical
approach with PATRIC. In fact, if with a small voltage at the cavity gap the analytical
theory does not hold anymore, the PATRIC code is on the other hand able to simulate it.
We have found out that for large detuning frequencies (few tens of kHz) the external
voltage signal has little effect on the phase space distribution of the beam and almost no
effect on the instability rise time. On the contrary, it produces a more significant phase
space modulation (with some amount of line density modulation, see Fig. 4.8) when the
cavity eigenfrequency is nearer to the resonance with the beam.

In the latter case, as a result, the instabilities become evident prior to and faster than
without the RF voltage applied. The shapes of the rising beam density modulation (sinu-
soidal in the beginning and with a sharp slope backwards in the beam frame later on, Fig.
4.9) in all cases perfectly match the measured bunch signals (one can confront Fig. 4.9
with Fig. 3.6, where snapshots have been taken at the same times in the beam evolution).
In the simulations we also have obtained maximum self-bunching peak currents of ≈
400− 530µA, that are in good agreement with the 360− 550µA observed in the measure-
ments.

Fig. 4.10 shows the instability rise times derived from the ESR measurements, along
with the ones evaluated from the PATRIC simulations and the curve resulting from the
analytical theory. The estimations from PATRIC confirm a reduction in the rise times
caused by the external signal nearby the central part of the detuning curve.
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Figure 4.8: Beam modulation in the longitudinal phase space for small detuning, ∆f =
−2 kHz (left), and for large detuning, ∆f = −17.4 kHz (right).
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Figure 4.9: Evolution of the beam line density during an instability: growth of the slow
wave and its saturation and steepening.

4.4 Theoretical modeling of the residual voltage

The first goal of the model presented in this section is to show how the phase space plots
shown in Fig. 4.8 can be theoretically explained by means of a kinetic approach. For
this very purpose, self-fields can be neglected, and the beam response to the action of
the residual voltage alone is studied in detail. Only subsequently, a linear analysis of the
evolution under the action of self-fields is carried out starting from the phase space mod-
ulated configuration, which was proven to be consistent with the presence of an external
off-frequency voltage. With this procedure, it will become eventually clear when and how
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much the residual voltage perturbs the results of the classical theory, and what changes
are to be expected for different values of the frequency offset.

4.4.1 Solution without self-fields

The starting point is the Vlasov equation in the beam frame

∂f

∂t
+ u

∂f

∂x
+
qE(x, t)

m∗

∂f

∂u
= 0 , (4.5)

where the electric field that represents the driving term is not the self-induced term like in
Eqs. (2.50) and (2.51), but is an external voltage not stationary over the beam. Besides,
the beam is assumed to be initially a coasting beam: its velocity distribution might be
taken to be Gaussian, but this not a necessary condition for the development we are
presenting here:



















E(x, t) =
V0

2πr0
cos

(

x

r0
− ∆ω t

)

f(x, u, t = 0) = f̃(u) e.g., f̃(u) =
1√

2πσu

exp

(

u2

2σ2
u

)

. (4.6)

As the simulations suggest (looking at the snake-shaped phase space distribution that
appears to be the solution of this problem), a good attempt for proceeding consists in
defining first:







ξ =
x

r0
− ∆ω t

U = u− ∆v(t) cos[ξ(x, t) + θ(t)]

, (4.7)

and seeking then a solution in the form:

f(x, u, t) = f̃(U) , (4.8)
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which certainly satisfies the initial condition f(x, u, t = 0) = f̃(u) if ∆v(0) = 0, whatever
is θ(0). Substituting the ansatz (4.8) in the Vlasov equation (4.5), we obtain:

∆v(t)

(

dθ

dt
− ∆ω

)

sin(ξ + θ) − d∆v

dt
cos(ξ + θ) + u

∆v(t)

r0
sin(ξ + θ) +

qV0

m∗2πr0
cos ξ = 0 .

At this point, we expand the terms in sine and cosine, and we separately equal their
coefficients to zero. This procedure yields:



















∆v(t)

(

dθ

dt
− ∆ω

)

cos θ(t) +
d∆v

dt
sin θ(t) +

u∆v(t)

r0
cos θ(t) = 0

∆v(t)

(

dθ

dt
− ∆ω

)

sin θ(t) − d∆v

dt
cos θ(t) +

u∆v(t)

r0
sin θ(t) +

qV0

m∗2πr0
= 0

. (4.9)

This couple of equations still depends on u, and thus it would not allow a closed solution
of the problem for the dynamics of ∆v(t) and θ(t), unless we make use at this stage of the
approximation ∆ω � u/r0. In fact, this is absolutely legitimated, at least in our case, if
we take into consideration the values relative to the measurements about which we have
reported in this work: |∆ω|/(2π) ∼ 2000 − 30000 Hz and |u|/(2πr0) ∼ 0 − 28 Hz. Using
this approximation, Eqs. (4.9) become:



















−∆v(t)

(

∆ω − dθ

dt

)

cos θ(t) +
d∆v

dt
sin θ(t) = 0

−∆v(t)

(

∆ω − dθ

dt

)

sin θ(t) − d∆v

dt
cos θ(t) +

qV0

m∗2πr0
= 0

. (4.10)

The set of equations (4.10) can be numerically solved. But before that, it might be
interesting to find out from these equations that an eventual regime situation is reached,
in which the phase space distribution along the ring oscillates sinusoidally at a fixed
velocity amplitude and with constant phase velocity r0 · ∆ω (this is what we actually do
expect after the results of the PATRIC simulations with the off-frequency voltage). Such
a situation would require that the following conditions are satisfied:

lim
t→+∞

∆v(t) = ∆vfin lim
t→+∞

θ(t) = θfin =⇒ lim
t→+∞

d∆v

dt
= 0 lim

t→+∞

dθ

dt
= 0 . (4.11)

From the former of the (4.10), one would expect:

∆vfin = 0 or cos θfin = 0 ⇒ θfin = ±π/2 ,

whereas it is straightforward from the latter to realize that it cannot be ∆vfin = 0 and
consequently, since it has to be θfin = ±π/2:

∓∆vfin∆ω +
qV0

m∗2πr0
= 0 ⇒ ∆vfin = ± qV0

m∗2πr0
· 1

∆ω
(4.12)

This expression for the final ∆v can be put in a different form,

|∆vfin| =
|η|qV0

2πp0

( ω0

∆ω

)

,

which is the formula that can be read in Ref. [29], too.
At any rate, this regime analysis – which, we would like to point out here, does not mean
that the system comes to an equilibrium time-independent situation – allows us to draw
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the conclusion that under the action of an external off-frequency voltage alone2 the beam
will eventually reach this configuration (θfin = π/2):

f∞(x, u, t) = f̃

[

u− qV0

m∗2πr0∆ω
cos

(

x

r0
− ∆ω t+

π

2

)]

=

= f̃

[

u+
qV0

m∗2πr0∆ω
sin

(

x

r0
− ∆ω t

)]

(4.13)

If the choice θfin = −π/2 had been made, there would have consistently resulted ∆vfin =
−qV0/(m

∗2πr0∆ω), and hence the expression (4.13) would stay unchanged. Besides, there
is another important observation to make about the initial condition for θ(t). As it must be
∆v(0) = 0, from the former equation of the (4.10) one would obtain either d∆v/dt(0) = 0
or sin θ(0) = 0. But d∆v/dt(0) = 0 is inconsistent with the latter equation (as long as
there is a non-zero voltage oscillating at the cavity gap), and so it must be:

sin θ(0) = 0 ⇒ θ(0) = 0

Of course, one can easily check that the choice θ(0) = π would have not changed the
subsequent development predicted by the Eqs. (4.10), consistently with the uniqueness of
the solution of the problem.
The set of differential equations (4.10) has been numerically solved with the 4th order
Runge-Kutta algorithm, and for this purpose it needed to be recast in explicit form:



















d∆v

dt
=

qV0

m∗2πr0
cos θ(t)

dθ

dt
= ∆ω − qV0

m∗2πr0

sin θ(t)

∆v(t)

. (4.14)

The initial conditions to be coupled with this system are, as we know

∆v(t = 0) = 0 θ(t = 0) = 0 ,

which determine the time derivatives in t = 0:

d∆v

dt
(t = 0) =

qV0

m∗2πr0

dθ

dt
(t = 0) = ∆ω − qV0

m∗2πr0
lim

t→0+

sin θ(t)

∆v(t)

. (4.15)

The limit in the second of the (4.15) is to be calculated with the De L’Hôpital theorem,

lim
t→0+

sin θ(t)

∆v(t)
= lim

t→0+

cos θ(t)
dθ

dt
d∆v

dt

=

dθ

dt
(t = 0)

qV0

m∗2πr0

,

so that, plugging this into the second of Eqs. (4.15):

dθ

dt
(t = 0) = ∆ω − dθ

dt
(t = 0) ⇒ dθ

dt
(t = 0) =

∆ω

2
,

2Of course, provided that the frequency offset is large enough with respect to the beam revolution
frequency spread, approximation ∆ω � u/r0
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and we finally get the correct value for the time derivative of θ(t) in t = 0, which is essential
for the numerical computation. Fig. 4.11 shows the time evolution of ∆v(t) (a) and of θ(t)
(b), and we can see that, as expected, after a transient of some tens of milliseconds, in
which both functions exhibit very high amplitude oscillations (they are anyways tolerable
because they damp and cannot lead to beam losses meanwhile), they both end up coming
to their asymptotic values that exactly correspond to those evaluated with the regime
analysis performed above.
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Figure 4.11: ∆v(t) (above) and θ(t) (below), when the sinusoidal off-frequency voltage,
Vext = 350 V with a ∆f = −2 kHz, is abruptly applied on a uniform coasting beam from
t = 0. After a transient with large amplitude oscillations, their values eventually come to
the expected regime values.

The strong oscillations present in the first part of the phase space evolution are essentially
due to the fact that we have assumed to start from a uniform coasting beam in t = 0, and
we have abruptly applied the external voltage in that very same instant. On the other
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hand, it would be more reasonable to choose as driving term in the Eqs. (4.10) a voltage
that rises linearly from zero to its final value, and the uniform coasting beam distribution
given at t = 0 would then be consistent with the zero voltage at the same time instant.
Such a voltage ramp has been performed in the PATRIC simulations with the external
voltage, too, in order to avoid the transient with high amplitude phase space oscillations.
Under this assumption, Eqs. (4.10) become



















d∆v

dt
=

qV (t)

m∗2πr0
cos θ(t)

dθ

dt
= ∆ω − qV (t)

m∗2πr0

sin θ(t)

∆v(t)

(4.16)

with V (t) =
V0

T
t · [1(t) − 1(t− T )] + V0 · 1(t− T ) ,

where T is the time interval on which the voltage is ramped, assumed to be of the same
order of magnitude as the transient time – some 15-20 ms – in both our numerical analyses
(PATRIC simulations and integration of Eqs. (4.16)). The numerical solution of these
equations (Fig. 4.12) shows indeed that the maximum amplitude ∆vfin is reached smoothly,
with no strong oscillations, as well as the phase θ soon damps down to its final value. In
Fig. 4.13, one can see the space-time profile of ∆v(x, t) from t = 0 to the completion of
the voltage ramp, and a little further. The growing sinusoidal shape exactly matches that
observed in the PATRIC simulated phase space distributions all along the voltage ramp.

4.4.2 Linear analysis with self-fields

Now we have our starting point for a perturbative study of the Vlasov equation with
self-fields and an external signal oscillating in the cavity. We only have to assume that
every development due to the action of the self-induced fields appears far later than the
regime is reached due to the external signal. This is exactly the case in our measurements,
because there the regime takes 10-15 ms to be reached, whereas the instability that rises
from pure statistical noise takes at least 3-4 times that (for the working points where it
grows faster). Under this assumption, for the beam distribution function

f(x, u, t) = f̃(u+ ∆vfin sin(x/r0 − ∆ω t)) + δf(x, u, t) = freg(x, u, t) + δf(x, u, t) ,

the Vlasov equation will be:

∂freg

∂t
+
∂δf

∂t
+ u

∂freg

∂x
+ u

∂δf

∂x
+

+

[

qV0

2πr0m∗
cos

(

x

r0
− ∆ω t

)

+
q

2πr0m∗

∑

n

Ż(nω0)In(t)

]

(

∂freg

∂u
+
∂δf

∂u

)

= 0 (4.17)

In this equation we may cancel the terms that represent the “dynamic equilibrium”
of freg(x, u, t), and also introduce the usual assumption for small-amplitude analysis
|∂δf/∂u| � |∂freg/∂u|:

∂δf

∂t
+ u

∂δf

∂x
+

qV0

2πr0m∗
cos

(

x

r0
− ∆ω t

)

∂δf

∂u
+

q

2πr0m∗

∑

n

Ż(nω0)In(t) · ∂freg

∂u
= 0 .

(4.18)
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Figure 4.12: ∆v(t) (above) and θ(t) (below), when the sinusoidal off-frequency voltage,
Vext = 350 V with a ∆f = −2 kHz, is ramped from zero to its final value within 20 ms
(on a uniform coasting beam in t = 0). Contrary to what happened in the case where the
voltage was abruptly applied, the value of ∆v smoothly follows the driving voltage ramp
and eventually comes to its expected regime value, whereas the phase θ(t) goes through a
much shorter oscillatory transient and quickly comes to its regime value.

Furthermore, we use the following expansions in Fourier series (possible thanks to the
periodicity of the functions):

freg(x, u, t) = f̃(u+ ∆vfin sin ξ) =
∑

m

ϕm(u) exp(−imξ) ,

∂freg

∂u
=
∑

m

∂ϕm

∂u
exp

[

−im

(

x

r0
− ∆ω t

)]

,

δf(x, u, t) =
∑

n

δfn(u, t) exp

(

−in
x

r0

)

.
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Figure 4.13: ∆v(x, t) for an external voltage ramped over 20 ms (same case as in Fig.
4.12). It is clear from this picture that the phase space modulation regularly grows during
the ramping time and eventually leads to the snake-shaped distribution which was first
observed in the PATRIC simulations.

Thus, Eq. (4.18) assumes the complicated form:
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r0
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= 0 ,

and we are interested in the evolution of the first harmonic (n = 1) of the perturbation,
because the impedance has a real part sensibly different from zero only on the first har-
monic in our case. Consequently, we separately equal to zero the term n = 1 from the
equation above:

∂δf1

∂t
− i

u

r0
δf1 +

qV0

4πr0m∗

∂δf2

∂u
exp(−i∆ω t)+

+
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Ż(nω0)

∫

δfn du
∂ϕm

∂u
exp(im∆ω t)









= 0 .

(4.19)
At this point, we need to make one last assumption: the dynamics of the perturbation
δf1(u, t) evolves on a time scale much bigger than τ = 1/∆ω - this condition is certainly
met in the ESR experiment, where τ is always in the order of few tenths of a millisecond,
whereas the perturbation has a characteristic time constant τpert of some tens of millisec-
onds. In this approximation, we can imagine to average Eq. (4.19) on a time which is long
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compared to τ , but short with respect to τpert. This yields a new equation for the slow
dynamics of the first harmonic perturbation:

∂δf1

∂t
− i

u

r0
δf1 +

q

2πr0m∗
Ż(ω0)

∫

δf1 du
∂ϕ0

∂u
= 0 . (4.20)

From this equation, we easily get to the same dispersion relation that we would obtain
in the ordinary case for the complex frequency of the first harmonic perturbation, with
the only difference that, instead of having the uniform coasting beam velocity distribution
f̃(u), we have the new function ϕ(u), which actually represents the beam’s initial velocity
distribution:

ϕ(u) =
1

2π

∫ 2π

0
f̃(u+ ∆vfin sin ξ) dξ =

1

2πr0

∫ 2πr0

0
f̃

[

u+ ∆vfin sin

(

x

r0
− ∆ω t

)]

dx .

(4.21)
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Figure 4.14: Velocity distribution functions averaged all along the beam. On the left is
the double peaked distribution relative to a cavity detuning ∆f = −2 kHz (a), and on the
right is the almost unchanged distribution for ∆f = −17.4 kHz (b).

This means that what mostly determines the stability of the beam still remains the phase
space distribution averaged in the longitudinal coordinate along the ring. This consider-
ation is well enough to explain why, for small frequency detuning, there is a reduction of
the rise time of the expected instabilities: the distortion induced on the velocity distri-
bution function for small detuning (|∆ω| below few kHz) is very strong and causes the
formation of a dip in the center (see Fig. 4.14a), whilst for stronger detuning (|∆ω| above
10 kHz) there is no big change in this distribution (Fig. 4.14b). This altered feature of
the distribution function produces a loss of Landau damping, as we know from Sec. 3.3.2,
and consequently the instability appears and grows much quicker than in the case where
the structure of the beam is uniform and coasting. Actually, the loss of Landau damping
is also quite clear from the kinetic point of view: if the phase space distribution of the
beam is modulated like in Fig. 4.8a, a slow wave having phase velocity in the range of the
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beam’s local velocity spread cannot feel the benefits of the Landau damping mechanism,
since it always interacts with a much smaller number of particles3. In other words, there
is no chance of slowing down the instability thanks to some amount of Landau damping,
because the kinetic structure of the beam does not permit it.
These considerations satisfactorily support the drop in the rise times observed in the ex-
periments with respect to the classical linear theory for the cases when the cavity was
eventually tuned very close to the beam revolution frequency.

3Besides, this slow unstable wave also interacts with particles having the “wrong” slope in a fraction
of the ring, and this might even cause an enhancement of the instability if the balance of energy exchange
along the ring is globally favorable to the wave



Chapter 5

Early nonlinear evolution

As we have discussed in Chapter 4, from the measurements that we have carried out at
the ESR, one can clearly observe both phenomena typical of the linear beam evolution,
which are fully explained within the perturbative small-amplitude kinetic model (e.g., the
exponential growth of the slow wave), and strongly nonlinear phenomena like generation
of higher harmonics, asymmetric wave steepening, and wave growth saturation. In the
current chapter, a one-dimensional fluid model is successfully developed and employed in
order to give a satisfactory explanation of the growth of the slow wave as well as of the
nonlinear steepening and higher harmonics generation. Taking into account the effects of
the initial momentum spread of the beam through a modified space charge impedance, the
model predicts with high accuracy the rise time and the frequency shift of the unstable
wave (which would otherwise be more or less strongly underestimated in a purely cold-
fluid model, according to the formulas in Section 3.3.2). Subsequently, nonlinear convective
effects are shown to give rise to wave steepening and harmonic generation. Predictions of
the fluid model are compared to experimental data and with those obtained under a full
kinetic model as well as from the particle-in-cell code PATRIC [48].

5.1 Fluid model

Recently, a fluid model has been proposed to describe transverse equilibrium and stability
properties of an unbunched, continuously-focused intense ion beam [54]. Furthermore, for
space charge dominated beams, the mechanism of the longitudinal instability in coasting
beams is intrinsically of fluid nature (see, for example, Ref. [31]). Therefore, our attempt
has been to look into collective nonlinear fluid effects, such as convection, in order to give
a physical explanation of the observed nonlinear phenomena in a longitudinally unstable
beam.
Making use of the fluid model, it is possible to describe the initial phase of the instability
growth when the operating point of the machine is far outside the stability region corre-
sponding to the equilibrium velocity distribution of the beam. This limit of validity is due
to the fact that in the fluid model Landau damping is completely absent [5, 6, 31]. The
mechanism of beam stabilization due to Landau damping gives rise to a finite stability re-
gion in the impedance plane that cannot be predicted by a model where the wave-particle
interaction is not taken into account. In other words, we must never expect that a fluid
model can predict the existence of a stable beam when the resistive part of the impedance
is different from zero, as occurs in kinetic theory. Even far outside the stability boundary
the cold fluid model underestimates the rise time and the absolute value of the frequency
shift that characterizes the unstable wave.
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In this chapter, we will show that far outside the stability boundary the effect of the beam
initial momentum spread plays the same role as the beam space charge impedance. In
particular, we show that this effect cannot be neglected when the threshold impedance of
the Keil-Schnell criterion (see, for instance, Ref. [31]) is of the same order of magnitude
as the total impedance. This result suggests the use of a cold fluid model with a modified
space charge impedance to take into account the effects of the initial momentum spread
of the beam. This model foresees with high accuracy the instability rise time, frequency
shift, wave steepening and higher harmonic generation.
The model is applied to the ESR storage ring, so that comparisons between the results
obtained from the different models (fluid, kinetic, and particle-in-cell simulations with the
PATRIC code [48]) and the data observed at the ESR may be drawn. These comparisons
make clear how far the proposed macroscopic model provides a correct description of the
beam dynamics and what nonlinear effects it can thoroughly explain.

In a fluid description, we shall examine the evolution of the macroscopic fluid properties
of the beam such as the number line density (see the Vlasov equation in Sec. 3.2.1)

n(s, t) =

∫ ∞

−∞
f(s, v, t) dv , (5.1)

the mean longitudinal velocity

U(s, t) =

∫ ∞

−∞
vf(s, v, t) dv

n(s, t)
, (5.2)

and the kinetic pressure

P (s, t) =

∫ ∞

−∞
m∗(v − U)2f(s, v, t) dv . (5.3)

The beam current I(s, t) is given by

I(s, t) = qn(s, t)U(s, t) ∼= qv0n(s, t) . (5.4)

In Eq. (5.4) we have approximated the actual averaged velocity of the beam with the
nominal mean velocity v0 because in real beams |U − v0| is very small compared with |v0|,
whereas |n−n0| can become the same order of magnitude as n0. Operating on the Vlasov
equation (2.10) with the moments technique, yields the continuity equation

∂n

∂t
+

∂

∂s
(nU) = 0 , (5.5)

the momentum equation

∂

∂t
(m∗nU) +

∂

∂s
[(m∗nU)U + P ] =

1

2πr0
qnφ , (5.6)

and the pressure equation

∂

∂t

(

P

n3

)

+ U
∂

∂s

(

P

n3

)

+
1

n3

∂Q

∂s
= 0 , (5.7)

where Q(s, t), defined as

Q(s, t) =

∫ ∞

−∞
m∗(v − U)3f(s, v, t) dv , (5.8)
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represents the longitudinal heat flow inside the beam. Now we assume that during the
beam evolution the heat flow is negligible within the beam, that is Q(s, t) = 0. In this
way we get a closure for the model (adiabatic assumption).
Similar to what we have already done in Sec. 3.3 directly on the Vlasov equation, it is
useful here to recast the fluid equations (5.5) -(5.7) in such a way as to hide the “fast”
component of the dynamics - namely the one associated to the beam orbiting in the ring, its
characteristic time being 2π/ω0 - and provide a description for the evolution of the “slow”
component alone. For this purpose, we perform the following linear transformation of
variables:

{

U = v0 + V

s = v0t+ x
. (5.9)

By applying this transformation to the equations (5.5)- (5.7) we obtain































∂Λ

∂t
+

∂

∂x
(ΛV ) = 0

∂V

∂t
+ V

∂V

∂x
+
q

Λ

∂

∂x
(RΛ3) = − q

2πr0m∗
ψ(x, t)

∂R

∂t
+ V

∂R

∂x
= 0

(5.10)

where Λ(x, t) = qn(x+v0t, t), V (x, t) = U(x+v0t, t)−v0, R(x, t) = P (x+v0t, t)/Λ
3(x, t),

the potential function ψ(x, t) is given by

ψ(x, t) =
v0Xsc

k0

∂Λ

∂x
+ v0

∑

m

Żcav(mω0)Λm(t) exp(−imk0x) , (5.11)

and

Λm(t) =
1

C0

∫ C0

0
Λ(x, t) exp(imk0x) dx ; (5.12)

the quantity Λ(x, t) represents the line charge density. The first term on the right hand
side of (5.11) is the potential due to the interaction of the beam with the pipe, assumed
to be perfectly conducting.
Due to the periodicity of the structure, the system (5.10) is to be solved with periodic
boundary conditions, Λ(x = 0, t) = Λ(x = C0, t), V (x = 0, t) = V (x = C0, t) and
R(x = 0, t) = R(x = C0, t).

5.2 Linear analysis of the warm-fluid model

To study the stability of the beam, we consider the linearized version of the set of Eqs.
(5.10)



































∂δΛ

∂t
+ Λ0

∂δV

∂x
= 0

∂δV

∂t
+

q

Λ0

∂δP

∂x
= − q

2πr0m∗
ψ(x, t)

∂

∂t

(

δP

Λ3
0

− 3P0

Λ3
0

δΛ

Λ0

)

= 0

; (5.13)

Λ0 and P0 are respectively the equilibrium line charge density and pressure along the
ring, whereas δΛ, δV and δP represent the perturbations. From the definition of P , it is
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straightforward to find out the relation between P0 and the beam’s initial velocity spread
∆uHWHM:

P0 =
m∗Λ0

2q ln 2
∆u2

HWHM . (5.14)

Observing that the third of the (5.13) easily provides

δP = 3P0
δΛ

Λ0
+ const. (5.15)

and using the expression (5.11) of the potential ψ(x, t), we finally find the system of
equations for δΛ and δV ,


















∂δΛ

∂t
+ Λ0

∂δV

∂x
= 0

∂δV

∂t
= − q

m∗

U0

2π

(

6πm∗P0

v0Λ2
0

+Xsc

)

∂Λ

∂x
− qv0

2πr0m∗

∑

m

Żcav(mω0)Λm(t) exp(−imk0s) .

(5.16)
From the second equation of system (5.16), it becomes clear that the influence of the pres-
sure term acts in the linear phase of the beam evolution exactly as a further contribution
to the space charge impedance seen by the beam. Thus, the effect of a finite pressure can
be taken into account by considering a

Xeq = Xsc +Xkin , (5.17)

in a fluid model with P = 0 (cold fluid model), where

Xkin = 6π

(

kT0

qI0

)

; (5.18)

T0 =
qP0

Λ0k
(5.19)

is the initial longitudinal temperature of the beam. A useful way of writing Xkin is

Xkin
∼= 3.1|Żth| , (5.20)

where

|Żth| = 0.7
2πp0β0c|η|

qI0

(

δp

p0

)2

HWHM

(5.21)

is simply the threshold impedance of the Keil-Schnell criterion [43]; as the initial velocity
distribution of the beam has been assumed to be Gaussian, the form factor is around 1.
Thus, the effect of the pressure cannot be neglected when the Keil-Schnell impedance is
the same order of magnitude as the space charge impedance.
If we give the perturbations a space-time dependence of the kind

δΛ(x, t) = Am exp[i(∆ω t−mk0x)] + c.c.

δV (x, t) = Bm exp[i(∆ω t−mk0x)] + c.c.
(5.22)

and we substitute them into Eqs. (5.13), we obtain for the complex frequency ∆ω =
∆ωr + i∆ωi

∆ωr = ±ω0

[

1

2Ż∗

(

√

Re(Ż)2 + Im(Ż)2 − Im(Ż)

)]1/2

∆ωi = ±ω0

[

1

2Ż∗

(

√

Re(Ż)2 + Im(Ż)2 + Im(Ż)

)]1/2
, (5.23)
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Figure 5.1: Comparison between the growth times (a) and the frequency shifts (b) obtained
from the warm-fluid model with those obtained from the kinetic and the cold fluid model.

where
Re(Ż) = Re[Żcav(mω0)] , Im(Ż) = Im[Żcav(mω0)] −mXeq , (5.24)

and the characteristic resistance Ż∗ is given by

Ż∗ = 2π
|m∗|v2

0

qI0
. (5.25)

Thus, the fluid model predicts a longitudinal exponential instability to appear whenever
the impedance is not purely capacitive (below the transition energy). Beam stability in
case of interaction with an impedance having a resistive part is never possible in this
model, because we are neglecting the wave-particle interaction and, hence, the stabilizing
mechanism of Landau damping. However, the results obtained from the fluid model are
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to some extent correct if the operating point on the stability diagram is far away from the
stability boundary, as was in the recent ESR measurements [30]. In fact, relatively to our
cavity detuning experiment, in Figs. 5.1a and 5.1b the growth times and the frequency
shifts for m = 1 predicted by the linear kinetic theory in a region far outside the stability
boundary are plotted along with those obtained from the fluid models with T0 = 0 and
T0 = 56 meV. The improvement achieved by considering the effect of the initial finite
temperature is impressive.
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Figure 5.2: Space-time evolution of the line charge density Λ(x, t) predicted by the
cold fluid model with corrected space charge impedance for ∆f = −17.4 kHz and
I0 = 0.366 mA.

5.3 Interpretation of the early nonlinear evolution at the

ESR

Due to the above results, the analysis of the longitudinal evolution of the ESR beam can
be performed by using a cold fluid model















∂Λ

∂t
+

∂

∂x
(ΛV ) = 0

∂V

∂t
+ V

∂V

∂x
= − q

2πr0m∗
ψ(x, t) .

, (5.26)

where we consider the corrected Xeq instead of the space charge reactance Xsc. We use
this model because we want to show that some nonlinear phenomena observed at the ESR
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Figure 5.3: Distribution of the line charge density at different times obtained from the
cold fluid model with corrected space charge impedance for ∆f = −17.4 kHz and I0 =
0.366 mA.
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Figure 5.4: Time evolution of the first, second and third spatial harmonics of the line
charge density obtained from the cold fluid model with corrected space charge impedance
for ∆f = −17.4 kHz and I0 = 0.366 mA.

are only caused by the nonlinear convective terms ∂(nV )/∂x and V ∂V/∂x.
The system (5.26) can be analytically solved only in the limit |∆f | → ∞, where the
longitudinal impedance of the machine is purely capacitive and the beam is stable. For
the more interesting unstable case, numerical solutions of the system (5.26) are needed.
The numerical solution of Eqs. (5.26) is based on the finite difference approximation of the
partial derivative operators. First of all, the equations are approximated in space using
the method of the central differences (the error vanishes like ∆x2 for ∆x → 0, where ∆x
is the width of the spatial grid). The spatial interval (0, C0) has been uniformly parted
into N intervals of width ∆x = C0/N . At the boundary grid points, the conditions of
periodicity of the structure are imposed. In all the simulations, we have parted the ring
circumference into up to 200 intervals. The Fourier integrals have been evaluated by using
the FFT (Fast Fourier Transform) algorithm. The resulting system of ordinary differential
equations in time has been then numerically integrated by a fourth order Runge-Kutta
algorithm (the corresponding error vanishes as ∆t4 as ∆t → 0). The time step ∆t has
been chosen to assure the stability of the numerical algorithm and to correctly resolve
the beam dynamics. The linear theory predicts in all cases under consideration frequency
shifts ≤ 10 Hz. Therefore, in all simulations, we have chosen a time step of 1 ms, which
allows a correct time resolution of the self-field and assures stability for the numerical
algorithm.

In Fig. 5.2 the space-time evolution of the line charge density for ∆f = −17.4 kHz and
I0 = 0.366 mA is shown. A slow wave growing in amplitude and getting steep to the
left side in the late phase of the instability is clearly observable. In Figs. 5.3 the line
charge densities at different phases of the beam evolution are represented: at 160 ms the
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Figure 5.5: Distribution of the mean velocity obtained from the cold fluid model with
corrected space charge impedance for ∆f = −17.4 kHz and I0 = 0.366 mA.

line density is still sinusoidal; at 280 ms the amplitude has grown so large that the wave
shape becomes strongly asymmetric with a sharp left edge; at 315 ms a strongly depleted
zone has formed. Higher order harmonics are produced late in the instability evolution,
as soon as the first harmonic has become high enough to significantly drive their growth
(Fig. 5.4); this is in agreement with what has been observed in the PATRIC simulations
[29], even though no saturation of the growth appears now. In Fig. 5.5 the distribution of
the fluid velocity is shown at 280 ms. In Fig. 5.6 the line density predicted by the fluid
model, after the instability has gone through its linear phase, is compared with the one
obtained from the particle-in-cell code PATRIC and with the experimental one from ESR,
both taken at the same moment of the instability evolution. The bunch shapes predicted
by the fluid model are in excellent accord both with simulations and measurements. The
agreement during the phase of the steepening between the solution of the fluid equations,
the measured data, and the relative PATRIC simulations, confirms that this phenomenon
is simply a fluid mechanism that need not be explained by looking in further detail into the
actual beam distribution in phase space. The steepening phenomenon is widely observed
in gases, fluids [57] and plasmas [58].
Finally, Fig. 5.7 shows the time evolution of the beam current first harmonic: the satura-
tion that clearly appears both in the experimental points and in the PATRIC simulation
is on the other hand completely absent in the fluid evolution. The fluid model is not able
to explain the saturation of the instability growth, because this phenomenon is due to res-
onant wave-particle interaction. As the instability grows, the electric potential associated
with the fundamental mode becomes more and more intense, and most of the particles are
trapped in the potential well: the conversion of untrapped particles into trapped particles
leads to a situation in which the growth of the unstable mode stops.
Exponential growth of wave amplitudes, their saturation due to trapping of particles,
and steepening of the wave profile due to the plasma nonlinearity, are also observed in
beam-plasma interactions in solar wind [59].
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5.4 Asymmetric wave steepening

In order to deeply understand the mechanism at the basis of the asymmetric steepening
we consider the limit |∆f | → ∞, for which analytical solutions exist. In this limit the
cavity impedance is no longer effective, Żcav → 0, and the machine impedance is purely
capacitive. Then the system (5.26) can be rewritten as















∂Λ

∂t
+

∂

∂x
(Λv) = 0

∂V

∂t
+ V

∂V

∂x
+ χ

∂Λ

∂x
= 0

, (5.27)

where the coefficient χ is defined as

χ
def
= − η

p0

ω0

2π

qv0Xeq

k0
. (5.28)

The parameter χ is positive definite if the particle beam is below the transition energy,
η < 0, whereas it is negative above the transition energy, η > 0. Here we consider only
the case η < 0, for which an analytical solution of the set (5.27) can be found.
A linearized solution of these equations is

Λ(x, t) = [F−(x− c0t) + F+(x+ c0t)] + Λ0

V (x, t) =
c0
Λ0

[F−(x− c0t) − F+(x+ c0t)]
, (5.29)

where F− and F+ are, respectively, the forward and the backward line charge density
waves and c0 is their propagation velocity

c0 =
√

Λ0χ . (5.30)
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The shape of the functions F± depends on the initial conditions for the line charge density
and the mean velocity,

F−(x) =
1

2

[

δΛ(x, t = 0) +
Λ0

c0
δV (x, t = 0)

]

F+(x) =
1

2

[

δΛ(x, t = 0) − Λ0

c0
δV (x, t = 0)

] . (5.31)

It is interesting to observe that by choosing appropriate initial conditions we can excite
either only a forward or a backward wave. For instance, by choosing δV (x, t = 0) =
−c0δΛ(x, t = 0)/Λ0 we excite the backward wave alone (slow wave). In this case we
obtain:

δV (x, t) =
c0
Λ0
δΛ(x, t) . (5.32)

From (5.32) one can get the idea of solving the nonlinear system (5.27) by assuming the
existence of a nonlinear algebraic relation between line charge density and mean velocity
of the beam, that is V = N(Λ). By substituting this ansatz in the Eqs. (5.27), we have



















∂Λ

∂t
+

[

N(Λ) +
dN

dΛ
Λ

]

∂Λ

∂x
= 0

dN

dΛ

∂Λ

∂t
+

[

N(Λ)
dN

dΛ
+ χ

]

∂Λ

∂x
= 0

. (5.33)

Since the system (5.33) is homogeneous in the unknowns ∂Λ/∂t and ∂Λ/∂x, a condition
for nontrivial solution is that

χ−
(

dN

dΛ

)2

Λ = 0 (5.34)

Therefore, we obtain for N(Λ)

V = N(Λ) = ±2
√

χΛ +K0 (5.35)

Now we want to concentrate on the solution that corresponds in the linearized model to
a purely backward wave, because it can be reliably reproduced in experiments and in
PATRIC simulations. Hence, we have to choose the determination with the minus sign in
the relations (5.35) and K0 = 2

√
χΛ0. We obtain

V+(x, t) = −2
√

χΛ+(x, t) + 2
√

χΛ0 . (5.36)

To excite this solution, we need suitable initial conditions. For small density amplitudes,
Eq. (5.36) returns Eq. (5.32) to the leading order.
Now we can derive the equation for the line density Λ(x, t). Substituting (5.36) in one of
the two fluid equations, we find the nonlinear first order wave equation:

∂Λ

∂t
− cs(Λ)

∂Λ

∂x
= 0 (5.37)

where
cs(Λ) = vs[3

√

Λ/Λ0 − 2] . (5.38)

Eq. (5.37) is to be solved with the initial condition for the line charge density profile.
Let us consider the unknown function Λ(x, t) in the plane (x, t). Then the expression
∂Λ/∂t − cs(Λ)(∂Λ/∂x) represents the total derivative of Λ(x, t) along a curve C having
the slope

dx

dt
= −cs(Λ) . (5.39)
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Figure 5.8: λ(x, t) at different times for a beam interacting with the space charge impe-
dance alone: analytical solution from the cold fluid model (a); numerical solution from
PATRIC code (b).

Thus the line charge density remains constant on C. It then follows that cs(Λ) remains
constant on C, and therefore the curve C must be a straight line in (x, t) plane with slope
cs(Λ(x, t = 0)) only depending on the initial conditions (see, for example, Ref. [57]).
Let us assume as initial condition for the charge line density profile Λ(x, t = 0) = Λ0 +
Λ1 cos(k0x). The solution of Eq. (5.39) is given by

Λ(x, t) = Λ0 + Λ1 cos [k0(x+ cs(Λ(x, t))t)] . (5.40)

The expression (5.40) describes implicitly a traveling wave with propagation velocities
cs = cs(Λ) depending on the value of Λ at a given point: the velocities of different elements
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of the profile are different. Since c′s = dcs/dΛ > 0, a crest in the charge density moves
quicker to the left than a valley. Furthermore, the peak of the crest comes to be faster
than any other region along the ring. This results in a stretching of the crest and hence
steepening sets in (Figs. 5.8a). The time instant at which ∂Λ/∂x becomes infinite is
given by tbreak =

√

(Λ0 − Λ1)/Λ0(2Λ0/3Λ1k0vs). Thus, for an arbitrarily small density
perturbation or in the limit of vanishing beam current, tbreak → ∞ and the steepening
cannot be observed. The predictions of the cold fluid model are compared to the simulated
density profiles resulting from PATRIC code (Figs. 5.8b). The slow wave keeps moving
backward and, within about 40 ms, gets steep on the left side with no further increasing
of its amplitude. Subsequently, the analytical solution (5.40) would ultimately break into
a triple-valued function and our description would consequently get not physically mean-
ingful any longer: the fluid model is inadequate when there are high spatial gradients,
because kinetic effects become very important even for extremely cold beams.

The role of space charge and of the nonlinear convective terms in the formation of steep-
ening is fundamental. Steepening is due to the resonance generation of higher order
harmonics, that is, of shorter wavelength harmonics. The fundamental harmonic drives
higher order harmonics through the nonlinear convective terms. Since the dispersion re-
lation with a purely capacitive impedance is linear, the higher order harmonics as well as
the fundamental one are characteristic modes of the system and, hence, constantly reso-
nant with the driving fundamental mode: thus, the harmonic amplitudes grow in time.
When kinetic effects are taken into account, higher order harmonics go off resonance before
t = tbreak, their growth saturates and a wave with a sharp descent forms. The importance
of the broad-band impedance nature of space charge in the steepening phenomenon has
been recently proven by simulating the evolution of a beam in which the space charge
impedance had been substituted by a reactive impedance concentrated on one single har-
monic number: no wave steepening was observed throughout over 1 s simulation time [60].
When the cavity is tuned close to the beam revolution frequency, the machine impedance
for the fundamental mode is not purely capacitive anymore, but it has a real part, which in
the limit case ∆f = 0 is equal to Rs. For higher order modes the machine impedance stays
almost purely capacitive because the cavity has a narrow band impedance and the space
charge is intense. The dispersion relation is almost linear with respect to the longitudinal
mode number, as in the limiting case |∆f | → ∞. As a consequence, the resistive part of
the impedance drives the exponential growth of the fundamental mode, and the convective
terms drive the growth of higher harmonics through the resonant wave-wave process. The
instability driven by the resistive part of the impedance produces perturbations in the line
charge density so intense that steepening appears after few e-folding times.

5.5 Final remarks

In conclusion, longitudinal instability experiments far from the stability boundary per-
formed for applications in high-current particle accelerators have clearly demonstrated
growth of the slow wave, steepening, generation of higher harmonics and saturation. The
theoretical analysis of the unstable evolution based on the fluid model explains and pre-
dicts the beam dynamics - the more successfully, the farther we are from the stability
boundary - not only in the linear phase of the evolution (by adding a corrective term to
the space charge impedance taking into account the effects of the longitudinal kinetic pres-
sure), but also later, when the unstable mode amplitude has grown so large that strong
nonlinear effects appear. If the beam is space charge dominated, the dispersion relation for
the waves is almost linear, higher order harmonics driven by the unstable mode through
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the convective terms stay resonant with it and wave steepening is produced within few
e-folding times. Nonlinear saturation of the instability growth occurs because most of the
particles end up trapped in the potential well of the wave; hence, this phenomenon cannot
be predicted starting from a fluid description of the beam evolution.
In future work a challenging application of the longitudinal fluid model could be to allow
identification of solitary waves, which have been theoretically predicted for high currents
particle beams in linear accelerators [56, 61].
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Chapter 6

Long term evolution of the

longitudinal instability

As observed in Chap. 4, any coasting beam longitudinal instability causes degradation of
the beam quality, and its effects do not simply disappear after the early nonlinear phases
but stay remarkable in the beam structure still for a long time. The study of the long
term development of the longitudinal instability is highly challenging and quite hard to
deal with, because all the related phenomena are strongly nonlinear and cannot be stud-
ied within the standard methods of the perturbative analysis. As we have already seen in
the previous chapter, some times well-established techniques coming from plasma physics
might be employed to gain a deeper insight into the nonlinear stage of the evolution. Al-
though many aspects of this dynamics are still mostly unknown and presently under study,
we will report in this chapter about the first steps taken into this direction. Analytical
models are still missing, but the use of numerical tools, together with a good diagnostics
on their results, can show us the features of the long term dynamics and, consequently,
the way that is to be followed for an analytical understanding. The long time character of
the collective phenomena in which we are interested pose high demands on the numerical
integration method. That’s why, besides the PATRIC code, which has been anyway up-
graded in order to account for electron and laser cooling and for intra-beam scattering, the
direct “noise-free” integration of the Fokker-Planck equation on a grid in the longitudinal
space has been developed as a new investigation tool [60]. This has successfully helped
simulate the long time behavior of experimental observables like the momentum spread or
the self-bunching amplitudes.
The effects of electron cooling and space charge are especially pointed out in the forth-
coming sections.

6.1 The Fokker-Planck equation and the numerical schemes

for its resolution

The beam longitudinal dynamics is satisfactorily described by the Vlasov equation as long
as we decide to neglect effects coming from artificial cooling (electron or laser cooling) or
from ion-ion collisions that cause diffusion (the so-called IBS, Intra-Beam Scattering). In
fact, the results obtained from the Vlasov theory are reliable, provided that all the studied
phenomena evolve on a time scale which is small with respect to the cooling and to the
diffusion times due to external actions or to collisions. But this limitation of the kinetic
description can be easily removed by simply adding to the RHS of the Vlasov equation
(2.50) a Fokker-Planck term that can account both for electron cooling - modeled as a
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pure friction force acting on the ions - and for IBS [42, 60]. For laser cooling, too, it is still
possible to demonstrate that a first derivative Fokker-Planck term is required in order to
take its effects into account [62]; nevertheless, hereafter we are not going into the details
of the laser cooling global effects on the beam longitudinal dynamics (see next chapter),
but we limit ourselves to discussing the effects of electron cooling and high space charge,
as they both were present in the measurements described throughout this work.
By adding a RHS different from zero to the Vlasov equation (2.50) according to the
prescriptions of the general kinetic theory for plasmas [42, 63, 64], we get

∂f

∂t
+ u

∂f

∂x
− q

m∗

φ(x, t)

2πr0

∂f

∂u
=

∂

∂u

(

Fe−cool

m∗
f

)

+D
∂2f

∂u2
, (6.1)

with the electron cooling force Fel−cool and the diffusion term coefficient D. In its simplest
form, Fel−cool is given by

Fe−cool = −m∗βfu (6.2)

with the friction coefficient or cooling rate βf . The diffusion coefficient to be used in
a given simulation can be easily calculated if we know both the cooling rate and the
equilibrium momentum spread. As a matter of fact, we know that, when the beam reaches
an equilibrium state due to the balance between electron cooling and IBS, the beam
velocity (and momentum) distribution is Gaussian, and has a spread that is linked to the
cooling and diffusion parameters by the relation:

σ2
u =

1

2πr0

∫ ∞

−∞
u2f0(u) du =

D0

βf
(6.3)

Being diffusion a process related to the frequency of the ion-ion collisions, it is quite
intuitive that it is strongly influenced by the distribution of the beam in the ordinary
space. Actually, the diffusion coefficient scales like the beam density, so that it is easy
to re-evaluate it throughout a simulation process, as the beam undergoes changes in its
configuration due to collective instabilities, cooling, and space charge.
As we have already widely discussed in Chapter 3, a linear model can be set up start-
ing from the kinetic theory (the model can even be improved by taking into account the
electron cooling term in the Fokker-Planck equation (6.1), and developing a perturba-
tive approach from that more complete equation), but its shortcoming is that it can just
provide us the initial rise time of the instability. In order to make reliable predictions
of inherently nonlinear experimental observables like the final momentum spread and the
self-bunching amplitudes during an instability, we need to go beyond the linear theory and
numerically integrate the Fokker-Planck equation together with the self-consistent electric
fields.
The first numerical integration scheme that we have already used, is the particle-in-cell
method (on which PATRIC is based): it makes use of a set of macro-particles randomly
loaded in the (r, θ, z) coordinates and pushes them at each time step according to the
external as well as to the calculated self-induced fields (see Chapter 5). It is worth men-
tioning here that actually the contributions of electron cooling and intra-beam scattering
have been added, too, following the approach given in Ref. [65]:

ut+∆t − ut =
q

m∗
E

t+∆t/2
tot ∆t− βfu+

√
3D∆tR1 . (6.4)

In this equation, βf and D are respectively the electron cooling rate and the diffusion
coefficient (which might be sensibly depending upon the beam density, and thus on time t),
and R1 is only a random number uniformly distributed between −1 and 1. The granularity
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noise inherent to the PIC scheme has the undesired effect of artificially heating the beam
(though this effect can be minimized by choosing a higher number of simulation particles,
or through a smoothing routine operating on the electric self-fields profile). On the other
side, one can take advantage of this noise caused by the fine structure of the system,
and predict the Schottky noise spectrum, which is one of the most important observables.
Anyhow, the problem remains that the long term evolution might be wrongly predicted
because of artificial heating effects that become significant as the simulation time increases.
A more elegant, but also more elaborate way to solve the Vlasov-Fokker-Planck equation
is the direct integration on a grid in longitudinal phase space (x, u). This approach is
‘noise-free’, if we disregard the computer noise for the moment. The direct integration has
the advantage of equally good resolution everywhere on the grid, whereas in the PIC code
it may happen that there are not enough macro-particles in a certain phase space region
to resolve a kinetic phenomenon (see for example [66]). In the followed integration scheme
the full time step is split in several steps. First the Vlasov part is evolved by means of
the well know time splitting scheme described in [67]. Let ∆t be the simulation time step,
then the splitting scheme for the Vlasov part is:

Step 1.

f∗(x, u, t+ ∆t) = f(x− u∆t/2, u, t) (6.5)

Step 2.

f∗∗(x, u, t + ∆t) = f ∗(x, u+
η

γ0m
E∗∆t, t+ ∆t)

Step 3.

f(x, u, t+ ∆t) = f ∗∗(x− u∆t/2, u, t)

The interpolation is done by means of cubic splines. The space charge field and the beam
loading field are updated using the fast Fourier transformed Λ and the equation

E∗
n =

v0
2πr0

ZnΛ∗
n (6.6)

In the case of the Vlasov equation, that means in the ‘collision-free’ case, f(x, u, t+∆t) is
the final distribution function. For the Vlasov-Fokker-Planck equation we still have correct
f for the friction and diffusion terms. Let f t

j be the distribution function resulting from
the Vlasov step at a grid point uj = j∆u along the velocity axis. The final distribution
function f t+∆t

j is calculated by using the time implicit scheme. This completes the time
step.

f t+∆t
j = f t

j +
∆t

2m∗∆u

(

F j+1
e−coolf

t+∆t
j+1 − F j−1

e−coolf
t+∆t
j−1

)

(6.7)

+
∆tD

(∆u)2

(

f t+∆t
j+1 − 2f t+∆t

j + f t+∆t
j−1

)

6.2 Long time beam dynamics

Simulations based on the method of the direct integration on a phase space grid have been
carried out to have a clearer insight in the long term evolution of the beam used in the
ESR experiments. In the above equation (6.6), two contributions to the total impedance
have been considered,

Zn = Zcav + Zsc =
Rs

1 + iQ(nω0/ωr − ωr/nω0)
− ingZ0

2β0γ2
0

. (6.8)
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Figure 6.1: Exponential growth and nonlinear saturation phase of the longitudinal in-
stability of the cooled coasting beam in the ESR driven by the RF cavity on the first
harmonic. The plot shows subsequent time traces from bottom to top over 0.8 ms (each
trace is the line density profile along the ring).

We remark here that the ESR beam, cooled down to a momentum spread of about 1.1·10−5

(a factor 1.8 below the threshold momentum spread for instability for a fully resistive
cavity impedance), was then driven unstable by tuning the cavity eigenfrequency near to
the revolution frequency. In Fig. 6.1 we can observe the measured exponential growth and
steepening and decay of the slow wave accompanied by smaller wave length structures.
The decay of the first wave is followed by the excitation of a second wave resulting in a
persistent coherent signal on the beam.

In the previous chapters, it was already shown that the measured instability growth times
and current profiles up to the first wave steepening are in good agreement with the particle-
in-cell PATRIC simulations. For these simulations, in which the interest was mainly con-
centrated on the initial phase of the instability, the effect of the electron cooling could
be neglected due to the large cooling time relative to the instability growth times. Now
we employ the direct integration method and focus on the long time behavior observed in
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Figure 6.2: Time evolution of the line density and velocity distribution obtained from the
simulations.

the experiment. In the simulations we start from the initial conditions in the experiment,
assuming a Gaussian distribution function. We ignore the residual RF voltage present
in the experiment. Therefore, the instability rise times will be slightly lower than in the
experiment, at least for those working points very near to the condition of perfect tuning
of the cavity eigenfrequency on the beam first harmonic. The cooling time chosen is 400
ms, which is much longer than the instability rise time (about 40 ms). The measured
initial equilibrium momentum spread together with the known cooling time gives us the
approximate IBS diffusion coefficient D, which will be used throughout the whole sub-
sequent simulation cycle. It is very interesting to look now at Fig. 6.2, and compare it
with the waterfall picture in Fig. 6.1. The similarity exhibited by the two evolutions is
impressive: not only in the linear phase and in the early nonlinear stage, but even later on
the simulation shows a persistent coherent signal on the beam in excellent agreement with
the experimental observation. The velocity distribution does not converge to a stationary
function either, but shows remaining fluctuations with a characteristic low-velocity ‘foot’.
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Figure 6.3: Contour plot of the distribution function together with the corresponding line
density and velocity distribution obtained from the simulation.

6.2.1 Influence of space charge and electron cooling in the phase space

structure of the beam

The simulation enables us to look at the detailed structure of the distribution function in
longitudinal phase space. In Fig. 6.3 snap shots of the distribution function together with
the line charge density Λ (divided by the initial coasting beam value Λ0) and the velocity
distribution are shown. First the slow wave steepens and decays by trapping particles in
the self-excited potential. The resulting hole structure has a life time of several 100 ms
before it starts to smooth out due to IBS. During this period the ‘hole’ causes localized line
density dilutions. The excited hole structure can be regarded as a collective mode, similar
to a traveling BGK wave [68] caused by non-linear Landau damping [69] in ideal plasmas.
In contrast to Ref. [70] we find that due to the presence of the resistive impedance a
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Figure 6.4: Normalized velocity spread change obtained from the simulation with and
without cooling and space charge. The lower horizontal line is the threshold velocity
spread for a Gaussian velocity distribution and the upper line the threshold velocity spread
following from the Keil-Schnell criterion.

pure stationary BGK solution cannot be reached, even in the absence of IBS. The holes
cause local current perturbations that continue to interact with the resistive impedance.
Consequently, after the first saturation stage a second hole structure is excited (see Fig.
6.3). This hole formation continues in a cascade.
In Fig. 6.4 the resulting rms momentum spread evolution is shown (with cooling). The
fluctuations of the momentum spread are caused by the continuous generation of holes
in connection with the cooling force. Although the cooling rate is much lower than the
instability growth rate, the saturated momentum spread fluctuates about a level which
is well below the instability threshold momentum spread predicted by the linear theory
for a Gaussian velocity distribution. The operating point after the saturation of the
instability lies well outside the stability boundary. This ‘non-linear stabilization’ is due
to the presence of the electron cooling. Momentum spread growth is caused by parti-
cle trapping, which is a non-linear phenomenon at finite self-bunching amplitude. The
threshold momentum spread is found by equating the rise time of the instability and the
cooling time. However, care must be taken since the rise time at a finite self-bunching
amplitude is much lower than during the initial linear stage. Therefore the momen-
tum spread can saturate much below the threshold value predicted by linear theory. To
demonstrate the effect of cooling we switch off cooling and diffusion in the simulation. The
resulting momentum spread (shown in Fig. 6.4) first seems to saturate about the thresh-
old momentum spread, but then starts increasing continuously with a nearly linearly slope.

This continuous momentum spread growth is due to the subsequent generation of new
long-lived holes structures. Fig. 6.5 shows the generation of a second ‘hole’ accompanied
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Figure 6.5: Contour plot of the phase space distribution function together with the cor-
responding line density and velocity distribution obtained from the simulation without
cooling and diffusion.
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Figure 6.6: Contour plot of the phase space distribution function together with the cor-
responding line density and velocity distribution obtained from the simulation with space
charge artificially “switched off”.

by short wavelength structures, caused by space charge induced instabilities at higher
harmonics. Without cooling and diffusion the wave steepening is more pronounced and
higher order harmonics are stronger populated. It is noted that without cooling the
momentum spread increase is accompanied by a decrease of the mean beam velocity.

In order to point out the effect of space charge on the time evolution of the instability
we consider the same initial operating point, but with a imaginary impedance acting at
harmonic n = 1 only. Thereby the space charge induced coupling of different harmonics
is switched off artificially. The resulting momentum spread (see Fig. 6.4), without cooling
and IBS, rapidly saturates at a level above the threshold momentum spread following
from the Keil-Schnell stability criterion [9]. This is the well known ‘overshoot’ behavior
described in several former works [71, 72]. In Fig. 6.6 a snap-shot of the distribution func-
tion can be seen showing how without space charge the self-bunching amplitudes during
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the exponential growth phase are much larger and no wave steepening occurs. In contrast
to the evolution including space charge the effect of the instability is more destructive and
no long-lived hole structures are observed. The instability causes the rapid filamentation
of the distribution function and within 900 ms a saturated, uniform line density results.

In summary we find a strongly modified time evolution of the instability for space charge
dominated beams in storage rings. With space charge the evolution is dominated by long-
lived hole structures and the ‘overshoot’ behavior of the momentum spread is suppressed.
Electron cooling can limit the momentum spread to values below the threshold value.



98



Chapter 7

Stability of intense laser cooled

coasting beams

In the framework of the heavy ion fusion driver study [2] and possible high current storage
and buncher rings for different applications, new interest arises on the issue of producing
intense beams with very low momentum spread by using unconventional techniques. Ap-
plying laser cooling on an ion beam could certainly help for this purpose [73, 74], provided
that, first, the cooling scheme is shown to be effective, and moreover it does not give rise
to possible instabilities as the process goes on. New laser cooling experiments are planned
to be carried out at the ESR (Experimental Storage Ring in GSI-Darmstadt), in order to
study this option from the experimental point of view. The idea is to cool a very intense
C+3 beam (number of particles reaching up to 1010), Ekin = 120 MeV/U, by using a suit-
able laser that overlaps the beam all along the longest of the straight sections of the ESR
(about 34 m). A preliminary investigation is useful to predict how the interaction between
the intense ion beam and laser light affects the beam dynamics. Neglecting collisions and
self-fields, we know that the beam could be ideally cooled down to the Doppler limit [74].
Therefore, only a more accurate analysis of laser cooling together with the effects of self-
induced fields and diffusion coming from intra-beam scattering, is able to show how far the
efficiency of the cooling process is maintained as we take into consideration more realistic
situations.
In order to set up a consistent model for a beam that undergoes laser cooling, we first
introduce the effects of laser light into a kinetic description of the ion beam evolution.
The starting point is the expression of the radiation-pressure force acting on the ions as
they propagate collinear to a laser beam, whose frequency fulfills the Doppler resonance
condition [74]. In this way, the beam’s longitudinal distribution function is found to satisfy
a kinetic equation, which can be analytically developed through a perturbative analysis,
or just numerically solved with the scheme already used for the Fokker-Planck equation
[60]. The laser force as well as the diffusional term that models intra-beam scattering are
also added to the forces that act on each single macro-particle in the particle-in-cell code
PATRIC. Both Vlasov and PATRIC simulations are used to validate the predictions of the
perturbative quasi-linear approach to the kinetic equation and to estimate the efficiency
of laser cooling for the planned ESR experiment.

7.1 Kinetic modeling of a laser cooled beam

The resonant interaction of an ion beam with laser light can be used for achieving longi-
tudinal and transverse phase-space cooling. Since the mechanism of laser cooling is such
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Figure 7.1: The principle of laser cooling. When a photon is spontaneously emitted by
the excited ion, the ion again recoils, but the average momentum transfer after many
spontaneous emissions is negligible, because the angular distribution of the emission is
symmetric.

that longitudinal cooling alone can be ideally realized in absence of any interchange be-
tween the degrees of freedom of the particles in the beam1, transverse cooling might occur
only if the machine in which the beam circulates is able to properly couple transverse
and longitudinal motions of the beam particles [75, 76]. In the following we are going to
take into consideration the only longitudinal effect of a laser light acting on an ion beam
all along an appositely designed section of a circular machine. As the interaction beam-
laser has no cooling effects in itself, different and opportune schemes must be employed
in order that the whole process actually results in damping of the longitudinal phase space.

Let us start now with some fundamental considerations concerning laser cooling of a coast-
ing or bunched beam by means of the spontaneous force. As we know, the compression of
the phase space density for a given particle ensemble, i.e. its cooling, requires the presence
of a “dissipative force”. Such a force might be originated by the dynamical effects felt by
an ion as it undergoes a sequence of photon absorption-reemission cycles. In order that
this can result into a net force acting on the ion in the desired direction, the reemission
processes must be spontaneous. As a matter of fact, if the resonant condition between the
transition frequency of the ion (assumed to be an ideal 2 level system, where only tran-
sitions between two well-defined states are possible) and the Doppler shifted frequency of
the laser radiation is met, the photon is absorbed and transfers to the ion the momentum
~

2π
λopt

– λopt being the wavelength of the electromagnetic wave in the ion rest frame – in
the direction of the light propagation; then the ion spontaneously re-emits the photon in
some unprecised direction within the solid angle 4π all around it, and thus might lose

1In reality, anisotropy between the degrees of freedom of the particles in an accelerator or storage ring,
always relaxes towards a situation where the temperatures are equal in all directions, due to the Coulomb
collisions
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Figure 7.2: Laser cooling with a constant auxiliary force: the whole ion distribution is
shifted towards the resonance with the laser, and as a result the ions are swept and confined
in the neighborhood of the stable point u∗.

some of the gained momentum or even gain some more. But since the recoil momentum
change connected to a sequence of absorption-reemission cycles averages to zero, the net
effect on the ion after undergoing many of these cycles will simply be that it stays with
the overall gained momentum (Fig. 7.1). If we consider a laser light propagating in the
same direction as the ion beam, it is easy to convince oneself that the resonance condition
that needs to be fulfilled is

ωopt = ωlasγ (1 ± β) , (7.1)

where the sign ± at the RHS depends upon whether the laser is co-propagating (-)
or counter-propagating (+) with the beam. Here we can define the function ∆(β) =
ωlasγ (1 − β) − ωopt, which represents the deviation from the resonance condition for an
ion of given velocity interacting with a co-propagating laser beam. The maximum rate
at which the momentum can be transferred within such absorption-spontaneous-emission
cycles in a closed two level system is given by the inverse of twice the life-time, i.e., half
the spontaneous decay rate Γ of the ionic transition. If the absorption time were sharply
depending on the condition (7.1), then the only particles having a β such as to fulfill that
relation could interact with the laser, and hence be accelerated or decelerated by a force
~

πΓ
λopt

. But taking into account the Lorentzian line shape of the transition - the absorption
rate of the ions does not depend on β according to δ∆ but following a Lorentzian profile -
we get the more correct formula for the laser cooling force [74]

FLC(β) = ~
πΓ

λopt

S

1 + S +

[

2∆(β)

Γ

]2 , (7.2)

with S being the ratio between laser intensity I and its saturation intensity Isat. By acting
on the ions of a coasting beam through the force (7.2), the laser burns only a narrow hole
into the velocity distribution and piles up the shifted ions at a slightly higher velocity.
This means that the laser force does not cool the beam longitudinally, unless we build
up a mechanism that successively shifts ions toward the resonance condition. In order to
achieve this, either the complete velocity distribution is slowly decelerated, as shown in
Fig. 7.2, or the laser is progressively tuned towards higher frequencies. In both cases the
effect may be described by a total force acting on each beam ion, which is the sum of the
laser force plus a constant, or linearly depending on β, decelerating force:

F‖(β) = Faux(β) + FLC(β) . (7.3)
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Figure 7.3: Possible cooling schemes with different auxiliary forces: (a) laser frequency
chirping, (b) constant auxiliary force, (c) linear auxiliary force.
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Figure 7.4: Principle of laser cooling of a bunched beam. The scanning time of the laser
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can be successively pushed towards the inner core of the bunch.

It is straightforward to see that this force (7.3) has a stable point (Fig. 7.3) such that

F‖(β
∗) = 0 ,

∂F‖

∂β

∣

∣

∣

∣

β∗
< 0 , (7.4)

which means that after the cooling process all the particles will be gathered around
v∗ = β∗c in a much narrower velocity span than the one in which they were spread before
(actually the final spread strongly depends upon the strength of ion-ion collisions, and/or
other heating mechanisms coming from the use of the laser itself [74]).

In order to cool a bunched beam, one can still use a single laser that must be initially
tuned to a frequency fulfilling the resonance condition with the outermost particles in
the bucket, and then shifted down to the center of the bunch, as shown in Fig. 7.4. The
laser frequency must be changed slowly enough that it can sweep all the ions from the
encountered synchrotron trajectories towards inner trajectories. In this way phase space
compression might be easily achieved and the bunch gets globally cooled. Actually, pre-
liminary studies based on computer simulations have clearly shown that this snow-plough
technique is not strictly necessary. The laser might be tuned near the center of the
bunch from the very beginning (Fig. 7.5); it will anyway sweep all the particles from the
outermost trajectories to the inner ones, simply because their synchrotron motions drive
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Figure 7.5: PATRIC simulation of laser cooling for a bunched beam (with a sinusoidal RF-
field on the third harmonic). Here the laser frequency has been kept fixed, such that only
the particles having a 2 Hz difference in their revolution frequencies with respect to the
nominal one interact with the laser and are induced to the inner synchrotron trajectories.

them into resonance with the laser at some point (in a coasting beam one cannot profit
from that, since the particles coast freely and have fixed velocities, not oscillating around
the average value). In Figs. 7.6 and 7.7, one can observe the efficiency of this method, by
comparing the details of the initial and the final states.

In storage rings, laser beam and ion beam are merged only within a fraction ηL of the
ring circumference. If the velocity change of the ions in a single passage through the laser
field is small compared to the natural line-width of the optical transition and the time
for such a single passage is anyway long enough for reaching stationary optical excitation
conditions, then we can substitute the real laser force, which is concentrated in the section
s0 to s0 + ηL2πr0, with the ring-averaged force continually acting on the ions without
committing a significant error:

〈FLC〉 = ηLFLC . (7.5)

In order to derive the kinetic equation describing the beam longitudinal dynamics, we
start from the equations of motion of the single particle, considering that the forces acting
on the ion are both the self-induced and the laser cooling ones:















dθ

dt
= ω

dW

dt
= qrE(θ, r, t)ω + ηLF‖(ω)ωr

. (7.6)

In these equations θ is the azimuthal coordinate along the ring, ω and W the angular
frequency of the ion and its energy, q is the ion charge, r the radius of the ion orbit and
E(θ, r, t) the beam self-induced electric field acting back on the ion. The first assumption
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is that the self-induced voltage V (θ, t) = 2πrE(θ, r, t) does not depend on r (cfr. Chapter
3). At this point, we can change the variables by defining

x1
def
= θ , x2

def
= 2π

∫ W0+∆W

W0

dW

ω(W )
, (7.7)

and in this way we obtain that Eqs. (7.6) become:







ẋ1 = ω(x2)

ẋ2 = qV (x1, t) + ηLF‖(x2)2πr(x2)

. (7.8)

Note that the orbit radius r depends on x2 since particles having different energies perform
slightly different orbits; this mechanism affects of course also the dependence on energy of
the angular frequency ω, as it is clear from the presence of the slip factor η in the relation
between these two quantities. As possible approximations, one might assume the orbit
radius independent of the ion energy, or alternatively a linear relation:

r(x2) ' r0 +
∂r

∂x2

∣

∣

∣

∣

x2=0

x2 .

After defining the two vectorial fields

x
def
=

(

x1

x2

)

v
def
=

(

ẋ1

ẋ2

)

,

it is straightforward to recognize that

∇x · v = ηL

(

dF‖

dx2
r + F‖

dr

dx2

)

,

hence the condition for the Vlasov equation to be valid is not verified. In any case, if
we introduce a particle distribution function in longitudinal phase space f(x1, x2, t) and
we use the conservation of the number of particles along a characteristic trajectory of the
system (in this problem each single ion does not undergo mechanisms like collisions, which
would cause instantaneous changes of the motion state)

d

dt

∫

Ω
f(x1, x2, t) dx1dx2 = 0, (7.9)

then we can develop further this relation, put it into local form, and finally find the relation
that f(x1, x2, t) must fulfill:

∫

Ω

∂f

∂t
dx1dx2 +

∫∫

∂Ω
fv · n̂ dS = 0

∂f

∂t
+ v · ∇xf + f∇x · v = 0 . (7.10)

Expanding each term in (7.10), we finally obtain:

∂f

∂t
+ ω(x2)

∂f

∂x1
+ 2π

[

qV (x1, t)

2π
+ ηLF‖(x2)r(x2)

]

∂f

∂x2
+

+ηLf(x1, x2, t)

(

dF‖

dx2
r(x2) + F‖(x2)

dr

dx2

)

= 0 . (7.11)
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After performing a double change of variables - x1 = θ stays unchanged while x2 is changed
into ∆W first and finally into ∆ω = ω − ω0, the equation will write

∂f

∂t
+ (ω0 + ∆ω)

∂f

∂θ
+ ω0κ0

[

qV (θ, t)

2π
+ ηLF‖(∆ω)(r0 + ξ∆ω)

]

∂f

∂∆ω
+

+ηLf(θ,∆ω, t)ω0κ0

[

dF‖

d∆ω
(r0 + ξ∆ω) + F‖(∆ω)ξ

]

= 0 , (7.12)

f(θ,∆ω, t) being the new distribution function in this modified longitudinal phase space,

k0
def
= −η ω0

β2
0W0

and ξ
def
= mαr0γ0

k0p2
0

. The last two passages that need to be carried out in order

to get this Fokker-Planck equation - for dissipative forces, not for collisional phenomena
- in the form we can use it for further analytical or numerical development, require its

setting into the new variables s-u first (with s
def
= r0θ and u

def
= r0∆ω), and then transform

into our usual co-moving frame (with the beam) by means of the definition of the new
space variable x = s− vt. The equation becomes so

∂f

∂t
+ u

∂f

∂x
+ v0k0

[

qV (x, t)

2π
+ ηLF‖

(

r0 +
ξ

r0
u

)]

∂f

∂u
+

+ηLf(x, u, t)v0k0

[

dF‖

du

(

r0 +
ξ

r0
u

)

+ F‖(u)
ξ

r0

]

= 0, (7.13)

and it might be well approximated if we assume r(u) ' r0:

∂f

∂t
+ u

∂f

∂x
+
qE(x, t)

m∗

∂f

∂u
+ ηL

∂

∂u

(

f
F‖

m∗

)

= 0 . (7.14)

In the last equationm∗ represents the effective ion mass already elsewhere defined (Chapter
3).
For a linear analysis of the Eq. (7.14) we assume that the beam longitudinal distribution
can be written as the sum of a slowly varying component - which is the equilibrium
distribution as it is changed by the action of the laser cooling - and a perturbation on a
certain harmonic:

f(x, u, t) = f0(u, t) + fn(u) exp[−i(kx− ω t)] + f−n(u) exp[i(kx− ω t)] (7.15)

It is clear that as long as we suppose that the spectrum of f0(u, t) does not significantly
overlap with the lines at ±ω, we lose important information about the beam dynamics
since we are not able to study properly the transition between stability and instability. In
fact, as the beam gets cooled and its working point moves toward the instability region,
there will be a time interval during which the instability that would appear is slow or of
the order of the velocity compression operated by the laser. This is absolutely not taken
into account when we make the assumption that the component f0(u, t) of the beam
distribution function is slowly varying with respect to the remaining alternative part (no
matter if ω has got a very small value). Accordingly, as a matter of fact, as long as the
beam is in its stability region, the alternative components are constantly damped and
the beam experiences only a reduction of its momentum spread through the action of the
laser cooling. Then, as soon as the beam working point on the impedance plane crosses
the stability boundary and causes an unstable motion to be excited, then all that we will
observe from this moment on will be the development of the instability because in any
case it will be faster than the action of the laser cooling going on. Anyhow, plugging the
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ansatz (7.15) into Eq. (7.14) and then separating its slowly changing part from the rapid
one, we finally obtain:


















∂f0

∂t
+ ηL

∂

∂u

(

f0

F‖

m∗

)

= 0

[

iω − iuk + ηL
d

du

(

F‖m
∗
)

]

fn exp[−i(kx− ω t)] = −q∂f0/∂u

2πr0m∗
Żtot(nω0)In

. (7.16)

Now, taking into account the periodicity in x of our structure - the wave number of the
perturbation k can be written as n/r0 because the wavelength λ = 2π/k must be a multiple
of the ring circumference - and that the perturbation on the n-th harmonic of the beam
current is (approximately) related to f by means of

I±n ' v0

∫

f±n du · exp[∓i(kx− ω t)], (7.17)

it is quite straightforward to find out that the second equation of the set (7.16) yields the
following dispersion relation

1 = −i
q2v0Żtot(nω0)

2πm∗n

∫

∂f0/∂u

u− ωr0
n

+ iηL
r0
n

d

du

(

F‖

m∗

) du , (7.18)

whose solution gives the frequencies associated to different perturbation wavelengths (har-
monic numbers n) and if they are stable or unstable, too. The f0(u, t) that appears in this
relation should be of course that function which satisfies the first of the (7.16): but, as its
changes are in any case slow, one can assume that the f0 keeps changing because of laser
cooling effects according to this equation as long as the beam doesn’t enter the instability
region defined by (7.18), and then the instability appears and the structure of the beam
is altered so that the perturbative analysis does not hold any longer after a while.
It is useful to note now that the dispersion relation which we have obtained with this
analysis is slightly different from the one that is usually solved for a beam that is not
under the action of a cooling force (it is similar anyway to the one that corresponds to
an electron cooled beam, and it would reduce to that if we simply exchanged the laser
cooling force F‖(u) with a friction force just proportional to the velocity u). This means
that the cooling does have an effect on the stability properties of the beam, as well, and
we can expect a sensible variation in the stability boundary with respect to the uncooled
case. The electron cooling has been proven to enlarge the stability region by opening the
stability boundary towards its upper part [46]. In order to find out how the laser cool-
ing force changes the stability boundary, a numerical solution of (7.18) for a given set of
parameters is needed. Care must be taken that the beam velocity distribution function
which has to be put into this equation is the one that results from the action of the laser
force plus decelerating force and so it does not stay Gaussian around u = 0 like in the
electron cooling case, but starts bump-in-tail and then gets different shapes which might
change the structure of the stability boundary much more than the extra term at the
denominator of the integrand. In other words, due to the snow plough effect of the cooling
force, the beam might turn unstable at any moment of the laser-sweeping process, making
ineffective the cooling action itself.
This evolution is studied next in great detail, and then also the results from numerical
simulations with the PATRIC code are shown. The main advantage that we get from
the use of the code is that it allows observing the beam dynamics under the effect of
both cooling forces and self-induced fields, and thus provides us a complete picture of the
process which has been so far analytically modeled just up to the linear phase.



108

-5200 -5000 -4800 -4600 -4400 -4200 -4000

0.25

0.5

0.75

1

1.25

1.5

1.75

-10000 -5000 5000 10000

10

20

30

40

f(u)

u [m/s]

f(u)

u [m/s]

Figure 7.8: Bump-in-tail distribution function, as it results from the action of the laser on
a displaced frequency. The details of the depleted zone are zoomed in.

7.1.1 Solution of the “laser corrected” dispersion relation

Eq. (7.18), together with the expressions of the components of the global laser cooling
force (7.2)-(7.3), is to be numerically integrated in order to predict the stability properties
of a laser cooled coasting beam (here is assumed that the beam intensity does not affect
the way beam and laser interact, but can only determine the strength of the self-produced
fields). On one side, we need some numerical values to plug into our relation, and for that
we will refer to the parameters belonging to an experiment carried out at the Heidelberg
TSR (Test Speicherring) [74], which will be listed in the following; on the other side,
we must use a beam distribution function along the longitudinal velocities axis, which
is consistent with the presence of the laser tuned at some frequency resonant with the
particles far apart in the lower tail of this distribution.

Following what is contained in Ref. [74], we assume to have a beam of 107 Be+ ions,
circulating at 4% of the speed of the light (Ekin = 0.8 MeV/U) with an initial momentum
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Figure 7.9: Stability boundaries for a distribution function like the one shown in the
previous figure, with and without the contribution of the laser cooling extra term in the
dispersion integral.

spread of about 10−4 without electron pre-cooling. The wave length corresponding to the
optical transition for this kind of ions is λopt = 313 nm, and the spontaneous emission rate
of the excited upper level is Γ = 1.15× 108 s−1. Since the experiments were carried out at
the TSR, the machine average radius is r0 = 8.82 m, whereas the beam-laser interaction
fraction is given by ηL = 0.09. For the experiments reported in the mentioned paper, a
laser with saturation parameter S = 3 and a constant auxiliary force Faux = −7.9 meV/m
were employed.
As beam distribution function in the longitudinal phase plane, we choose to start from
a bump-in-tail distribution (Fig. 7.8), as it occurs after the laser has already swept all
the particles off the resonant velocity, and has accumulated them slightly ahead of it. As
a matter of fact, the laser takes only few tenths of a millisecond to push the ions from
the interaction region, whereas the auxiliary force shifts the whole distribution backwards
on a time scale of tens up to a hundred milliseconds. The bump-in-tail distribution can
be therefore regarded as a temporarily stationary configuration of the beam, on which
instabilities having few milliseconds e-folding time can develop. At any rate, for our
immediate theoretical understanding we need not take that into account, as our first goal
will be to find out the stability properties of a distribution function as the one shown in
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Fig. 7.8 when one does not neglect the laser force – which has the main role of building
and maintaining such a distribution function, indeed – in the study of the dynamics. If
we considered, in fact, such a velocity distribution function, and we evaluated its stability
boundary in the complex plane (n = 1, Im(ω) = 0) with the ordinary dispersion relation
reported in Chapter 3, Eq. (2.59), we would simply obtain the strongly deformed “onion”
with a side loop on the right side, as shown in Fig. 7.9 (full line). Stability would be lost
throughout a big slice of the internal region, and this is perfectly understandable from
the kinetic point of view. An interval of slow wave phase velocities cannot profit from
Landau damping because of the lack of particles in the “bumped” region: for this phase
velocities, the slow wave will be always unstable, no matter how small is the resistive
part of the impedance acting on the beam. The practical effect of such an instability
would be to develop an electric field that would very soon refill the dip, and let the beam
evolve towards a stable situation thanks to the re-gained regular velocity distribution. It
is evident that, if the laser is instead acting on the beam, the stability of the bumped
distribution function is expected to be enhanced, since the ions which would diffuse to fill
the hole due to the self-induced fields, will actually keep being pushed back by the action
of the laser. The stability diagram that one obtains by using the corrected dispersion
relation (7.18) is shown in Fig. 7.9 as a sequence of thick points. The expected stabilizing
effect of the laser is visible throughout the whole region of resistive impedances. For the
computation of this stability diagram in Fig. 7.9, special care has been needed, because
the function in the dispersion integral has five poles that must be calculated for each real
ω (because we are searching for the stability boundary, Im(ω) = 0 - in reality we set
Im(ω) = 1 in our computation) by solving the nonlinear equation:

u− ω
r0
n

+ i
r0
n

dFLC/du

m∗
= 0 . (7.19)
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The algorithm used for doing that has consisted first in figuring out the five roots for
ω = −1000 with the method of the function mapping (it is a complex equation, in fact),
and then using them as initial values for the subsequent numerical evaluations of the roots
as Re(ω) was varied little by little up to 1000. The paths of the poles in the complex plane
as Re(ω) was brought from −1000 to 1000 are shown in Fig. 7.10. The main difference
with respect to the ordinary case is that now the imaginary part of the poles also changes
when the real part of ω alone changes. This was not the case when the equation for the
poles was purely:

u− ω
r0
n

= 0 , (7.20)

because then, once the value of the imaginary part of ω had been fixed, also the imaginary
part of the pole was automatically fixed at the same value (see Fig. 7.11). As we can
draw out from Fig. 7.10, there are two poles that reverse their sign as Re(ω) spans in
(−1000, 1000), p1(ω) and p5(ω). As we can see after calculating the residues in both
these points, the contribution coming from the quasi-stationary pole p5(ω) is negligible,
whereas the contribution of p1(ω) plays a key role. By evaluating p1(ω) for Im(ω) >> 0
(very unstable case - all the poles that give a contribution in this case should be always
taken into account), one sees that p1 has an imaginary part definite positive, which means
that its contribution must be always accounted for, even after it crosses the real axis and
goes down for some values of ω. The physical meaning of this pole crossing the real axis
for some values of the slow wave frequency shift is not so clear as the Landau damping
becoming dominant for the pole crossing the real axis in the ordinary case. Anyway, this
is very likely to be associated with a particle-wave-laser interaction effect, as in the case
without laser cooling Landau damping, which is a pure particle-wave interaction, sets in
as the imaginary part of the pole reverses its sign (the real part of the pole changes sign,
indeed, if we refer to the formalism presented in Chapter 3). A deeper interpretation of
this phenomenon is presently still subject of study and further investigation.

Fig. 7.12a shows the beam velocity distribution after some 30 ms cooling, and the cor-
responding stability boundaries in both cases where we neglect the contribution of the
laser extra term in the dispersion relation and when it is taken into account, too. There
is clearly an enlargement of the stability region when the corrected dispersion relation
is solved; due to the steep structure of the distribution function in Fig. 7.12a the stable
region would normally shrink down to the almost invisible (in the considered scale) zone
around the origin of the impedances (Fig. 7.12b).

The meaning of these considerations is evident: thanks to the laser continuously acting
on the beam during cooling, high space charge impedances and even quite large resistive
impedances become tolerable, and they should not be expected to drive the beam unstable
because of two-stream, or similar, phenomena. The destabilizing effect which would be
produced by the distortion of the beam velocity distribution function is in fact compen-
sated by the laser that keeps on pushing ions away from the region with the dip.
Numerical check of these analytical conclusions is necessary, and reported in the follow-
ing section. But before, in the next subsection, we shall briefly discuss as a starting
point, the way laser cooling has been introduced into our simulation tools (PATRIC and
Fokker-Planck solver).

7.1.2 Numerical approach

Our particle-in-cell code PATRIC is a general tool to study the longitudinal dynamics
of space charge dominated beams under the influence of the ring environment modeled
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through a general impedance Żtot(ω) and arbitrary external RF fields. The beam is
represented by a number of macro-particles interacting via space charge and the ring
impedances (Section 5.1). External forces can be easily added when updating the macro-
particles velocities after one time step; intra-beam scattering (IBS) is also taken into
account following Ref. [65]. For the longitudinal motion one updates the velocity according
to:

ut+∆t − ut =
q

m∗
E

t+∆t/2
long ∆t+

F‖

m∗
∆t+

√
3D∆tR , (7.21)

where D is the diffusion constant, R represents a random number uniformly distributed
between −1 and 1, and F‖ is the laser cooling force (radiation pressure force plus auxiliary
force).

Another way to solve Eq. (7.14) along with a Fokker-Planck term taking into account of
collisions, is direct integration on a grid in longitudinal phase space (x, u) (cfr. previous
chapter).
Over one time step, first the Vlasov part must be evolved by means of the time splitting
scheme, and secondly, the distribution function f coming from the ‘collision-free’ part is
to be corrected for the cooling and diffusion terms. Let f t

j be the distribution function
resulting from the Vlasov step at a grid point uj = j∆u along the velocity axis. The
final distribution function f t+∆t

j is calculated by using the time implicit scheme. This
completes the time step.

f t+∆t
j = f t

j +
∆t

2m∗∆u

(

F‖j+1f
t+∆t
j+1 − F‖j−1f

t+∆t
j−1

)

+
∆tD

(∆u)2

(

f t+∆t
j+1 − 2f t+∆t

j + f t+∆t
j−1

)

(7.22)

7.2 Simulated evolution of a laser cooled coasting beam

In this section we will mainly use the tools previously discussed for a couple of applica-
tions.
First, the stability properties of a laser cooled beam at the very beginning of the cooling
process, which are to be read in the diagrams of Fig. 7.13, can be easily checked running
a beam simulation over a reasonably long time (few hundreds of ms) for points A, B, C
and D. These points in the impedance plane have been reached by having an adequately
detuned cavity act back on the beam. Simulating the beam evolution in these cases, we
observe that the beam keeps stable for points B, C and D. On the other hand, when the
working point is chosen to be A, an initial perturbation grows unstable over a 100ms time.
In the cases when the beam was stable, one could observe that the velocity distribution
stays bump-in-tail all over the simulation time: this confirms that no “diffusive” instability
appears, which would eventually develop a stabilizing tail, as quasi-linear theory foresees
[63]. This is not surprising, in fact, because (7.18) also accounts for the action of the
laser force, which can permanently counterbalance every diffusive mechanism over the dip.

Secondly, we can use the parameters of the experiment planned at the ESR (see in the
introductory section of this chapter) and simulate with them two different laser cooling
schemes: (a) constant auxiliary force and (b) linear force, which could be provided by the
electron cooler (Fig. 7.14). Fig. 7.15 shows how the beam momentum spread shrinks with
the cooling. Apparently both schemes, neglecting the effects of intra-beam scattering,
eventually lead to a one order of magnitude reduction in the spread. The fact that a final
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Figure 7.14: External longitudinal forces acting on the ions: (a) laser force plus constant
decelerating force and (b) laser force plus friction force.

cooled beam configuration is reached in both cases, means that, in spite of the high beam
intensity, no space charge induced instabilities are able to destroy the cooling process
before. The only differences are in the cooling time, which is far shorter when the linear
force is employed, and in the particles in the tail of the distribution, which would be lost
in the constant force scheme, as they lie outside its capture range, but would be gathered
instead with the other system. If we switch on diffusion due to ion-ion collisions, we soon
realize that the cooling scheme (a) becomes ineffective (it can nevertheless be successfully
employed if the band of the laser force is artificially broadened [77]), whereas system
(b) still works but only stops to a reduction of a factor about 1.6 in the spread (Fig.
7.16). Fig. 7.17 shows the velocity distribution functions as they eventually appear after
85ms cooling. A two fluids structure of the beam, made up of a cooled part and a hot
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Figure 7.17: Velocity distribution functions of the beam after 85ms of laser action.

background due to IBS, is evidenced in both cases: this was to be expected, in agreement
with earlier experimental observations at the Heidelberg TSR [78].

In conclusion, simulations of the beam evolution using a PIC scheme and/or numerical
integration of (7.14), validate the perturbative theory on one side, and are able to describe
laser cooling for intense ion beams, where space charge and IBS cannot be neglected, on
the other side. When no significant resistive impedance acts on the beam, no two-stream
instability occurs as the beam undergoes cooling, and a crucial role is played by diffusion
due to IBS, which strongly limits the cooling efficiency.
Simulations of laser cooling on bunched beams are planned as future work, with special
attention to square-well buckets, which have been proposed to study ordering phenom-
ena in cold ion beams [78]. Using the PATRIC code can significantly help interpret the
properties of the Schottky spectrum of such a beam.



Conclusions and outlook

Altogether the measurements carried out at the ESR have greatly helped to gain a far
deeper understanding in the dynamics of an intense coasting beam subject to longitudinal
instability. The experimental evidence has turned out to be not only a necessary tool
to test the validity of the linear theory of the longitudinal instability for a space charge
dominated beam below transition energy, but also a most valuable starting point for
modeling the beam evolution as it goes nonlinear. Computer simulations have been also
proven to be able to reproduce the beam dynamics in a very satisfactory way, and this
has confirmed their power of prediction and legitimated their importance in the design of
high-current machines and heavy ion fusion drivers. The diagnostics capabilities of beam
simulations are essential for the comprehension of the physical content of all phenomena
related to the longitudinal instability, since they allow the knowledge of the detail of the
beam phase space distribution at each step during an unstable evolution driven under
perfectly controlled conditions.

Within this PhD thesis the RF-cavity driven longitudinal instability excited at the ESR
has been described and interpreted in detail. For this purpose, the perturbative theory of
longitudinal instabilities has been revised, and further on a fluid model has been developed
and applied in order to explain some early nonlinear phenomena occurring in the unstable
dynamics.
The longitudinal beam signal in the ESR was monitored over 1 s after having tuned the
RF-cavity close to the beam revolution frequency. In this way the coupling impedance
acting on the beam could be varied within a span of controlled values. It was possible then
to reconstruct the resulting self-induced beam modulation signals with a very high time
resolution in the off-line analysis. A very good accord has been shown to exist between the
theoretical predictions and the recorded signals. A sinusoidal modulation on the beam first
harmonic was observed to grow exponentially in the first phase – as the small-amplitude
analytical theory predicts – then steepening and saturating, and eventually giving rise to
a residual coherent signal on the beam. The shape of these signals agrees with the results
from the particle-in-cell simulations with the PATRIC code. The instability showed rise
times that, far away from the stability boundary, have been estimated to be smaller than
those predicted by the ordinary linear theory. As suggested from the simulations carried
out with the particle tracking code, these shorter rise times have turned out to be due to
the finite cavity gap voltage needed for the eigenfrequency regulation system. The problem
of the off-frequency voltage oscillating in the RF-cavity, which in certain conditions can
enhance the unstable effect of the cavity alone, has been subsequently also analytically
approached: the modulation of the phase space structure of the beam induced by the
external voltage has been demonstrated, and the loss of Landau damping due to this
structure, as the amplitude of the modulation grows much bigger than the beam velocity
spread (i.e., for very low values of the cavity detuning), has been suggested as possible
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mechanism that may lead to a quicker instability.
The nonlinear evolution of a longitudinal instability is of interest, too, because:

• there is no beam loss on one side, and thus the conditions under which the longi-
tudinal instability saturates and eventually leads the beam to a different dynamical
equilibrium can be used for diagnostics purposes (e.g., to extrapolate beam parame-
ters like the momentum spread, or the longitudinal coupling impedance seen by the
beam) as well as for predicting whether the requirements on the beam quality can
be still met in spite of the unstable motion, or the instability must be by all means
avoided.

• on the other side, the physics of the nonlinear evolution is connected to a great
variety of plasma phenomena that can be uniquely observed and studied in detail
under these special conditions.

We have shown in this work that the theoretical analysis of the unstable evolution based
on the fluid model explains and predicts the beam dynamics - the more successfully, the
farther we are from the stability boundary - not only in the linear phase of the evolution
(by adding a corrective term to the space charge impedance taking into account the
effects of the longitudinal kinetic pressure), but also when the unstable mode amplitude
has grown so large that strong nonlinear effects appear. The role of space charge and
of the nonlinear convective terms in the formation of steepening has been recognized to
be fundamental. Steepening is due to the resonant generation of higher order harmon-
ics, that is, of shorter wavelength harmonics. The fundamental harmonic drives higher
order harmonics through the nonlinear convective terms. Since the dispersion relation
with a purely capacitive impedance is linear, the higher order harmonics as well as the
fundamental one are characteristic modes of the system and, hence, constantly resonant
with the driving fundamental mode: thus, the harmonic amplitudes grow in time. When
kinetic effects are taken into account, higher order harmonics go off resonance at some
point, their growth saturates and a wave with a sharp descent forms. The importance
of space charge in the steepening phenomenon has been also pointed out by simulating
the evolution of a beam in which the space charge impedance had been substituted by
a reactive impedance concentrated on one single harmonic number: no wave steepening
was observed throughout over 1 sec simulation time and besides, no saturation in the
momentum spread growth occurred, as the overshoot theory would have predicted. When
the cavity is tuned close to the beam revolution frequency, the machine impedance for
the fundamental mode is not purely capacitive anymore, but it has a non-vanishing real
part. For higher order modes the machine impedance stays almost purely capacitive
because the cavity has a narrow band impedance and the space charge is intense. The
dispersion relation is almost linear with respect to the longitudinal mode number, and as
a consequence, the resistive part of the impedance drives the exponential growth of the
fundamental mode, whereas the convective terms drive the growth of higher harmonics
through the resonant wave-wave process. The instability driven by the resistive part of the
impedance produces perturbations in the line charge density so intense that steepening
appears after few e-folding times. Nonlinear saturation of the instability growth occurs
because most of the particles end up trapped in the potential well of the wave; hence, this
phenomenon (wave-particle) cannot be predicted starting from a fluid description of the
beam evolution.
Subsequently, the influence of electron cooling and laser cooling on the beam stability
have been considered. For an electron cooled beam such that the electron cooling time
is far bigger than the growth time of an expected instability, it has been shown that the
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electron cooling does not significantly affect the linear phase of the instability evolution,
but instead becomes fundamental in the understanding of the following stages. The mo-
mentum spread saturates at a level which is even below the Keil-Schnell threshold, and a
strongly coherent structure remains on the beam – similarly to what was observed in the
ESR measurements, where the beam was kept electron cooled throughout the instability
development – not showing any relaxation towards a situation where possible impedance
effects are kinetically suppressed. The situation of a laser cooled beam is addressed differ-
ently, because there most concerns come from the deformation of the beam’s longitudinal
distribution function induced by the process and its possible causing a high-current beam
to go unstable. With the aid of a Fokker-Planck modified equation to take into account
the laser cooling force, we have found out that kinetic effects arise to stabilize the beam as
its two-stream structure would make it more sensitive to high space charge impedances.
Beam simulations have also given as a result that a very intense beam that undergoes laser
cooling is not subject to two-stream instabilities before the end of the cooling process. In
this case, it is intra-beam scattering that mostly limits the performance of the cooling.

Many extensions of the present work are possible as future challenges. Still dealing with
coasting beams, the effects of the broad band impedance in producing microwave insta-
bilities can be considered as next step. This requires the implementation in the beam
simulation codes of the beam interaction with very high frequency impedances having
bands which stretch out on many harmonics of the beam revolution frequency; moreover,
it triggers the search for new analytical models that might explain the beam evolution in
such cases. In particular, as broad band impedances are centered around the cut-off fre-
quency of the beam pipe, where the space charge impedance also drops to zero, it appears
that, at least in a well defined frequency interval still below the cut-off, the fluid model
can be applied and a solution is likely to be found in the framework of the Korteweg-de
Vries equation (known from plasma physics). Microwave instabilities are in any case an
issue that needs to be investigated, because beams having a very high phase space density
become specially sensitive to them.
Furthermore, the fluid model might be extended so as to take into account electron cool-
ing through a friction term. The main point is to check whether this would be enough
to predict the features of the dynamical equilibrium that is reached after a longitudinal
instability in an electron cooled coasting beam, or not. Also the identification of possible
solitary waves in certain working conditions could be allowed by a fluid description, and
the possibility of finding such a solution in proximity of the pipe cut-off frequency seems
not to be a long way off the study of the effects of the broad-band impedance about which
we have discussed not far above.
The study of the evolution of finite amplitude perturbations can be of help in order to
extract information about beam and/or machine parameters. The rate of the nonlinear
Landau damping, as well as its saturating at a finite value, can both be used for this
purpose. Actually, an ESR beam time dedicated to this question is foreseen in the next
future. Different scopes of these new measurements are planned to be an investigation
on the phase space dilution due to longitudinal instability (there would be tried to get
information about the evolution of the momentum spread by making use of the integrated
Schottky spectrum around a harmonic which is a long way apart from the the unstable
one) and measurement of the longitudinal diffusion constant due to intra-beam scattering.

Concerning bunched beams, work has to be done to study space charge effects when laser
cooling is applied, and to correctly interpret the Schottky spectra of beams confined in
square-well buckets. This is because recently square-well buckets have been proposed
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to study ordering phenomena in cold ion beams. Both analytical work and PATRIC
simulations can be utilized for the Schottky analysis on laser cooled bunched beams. It
is highly desirable to get a better understanding of these spectra, since they are the
physical observables of which we dispose, and much information is likely to be contained
therein. New beam measurements are planned to take place at the Heidelberg TSR (in
the Max Planck Institut) in order to investigate the issues of laser cooling applied to high-
current bunched beams. In view of that, efforts are presently being put on adequately
modeling the process in all its aspects. Preliminary work with this regard has been already
presented in Chapter 7 of this thesis, but a comparison with experimental data becomes
now indispensable to confirm these theoretical results and stimulate new developments.



Sintesi del lavoro e dei risultati

La fattibilità di strutture in grado di realizzare la fusione nucleare a confinamento inerziale
tramite bombardamento indiretto del target con ioni pesanti è strettamente connessa a
monte con la progettazione di macchine acceleratrici e guidanti (per fasci di ioni) es-
tremamente complicate e con requisiti molto stringenti sulle modalità di funzionamento.
Nell’ambito di tale studio di fisica realizzabilità, l’approfondimento di molteplici aspetti
di dinamica del fascio in strutture acceleranti e guidanti diventa necessario per poter
essere in grado di depositare sul target la potenza richiesta per innescare l’ignizione. Allo
scopo di minimizzare il numero di canali in cui i fasci di ioni vengono preventivamente
portati al livello di energia necessario perché possano poi essere convogliati sul pellet,
un requisito generale per i drivers finalizzati alla fusione inerziale è che ciascun canale
sia in grado di trasportare con perdite minime (sia di fascio che di qualità di fascio,
affinché la focalizzazione sul pellet possa avvenire nel rispetto dei parametri) fasci di ioni
ad alta densità nello spazio delle fasi. Il raggiungimento di densità molto spinte è però
teoricamente limitato da effetti di carica spaziale, i quali inevitabilmente, se trascurati
nella fase di progettazione, portano a perdite di particelle o degradazione della qualità del
fascio. Un’analisi accurata di tali effetti si affronta generalmente distinguendo i problemi
che nascono dal moto trasverso degli ioni nel fascio (tune shift indotto da carica spaziale,
instabilità coerenti di fascio di tipo dipolare o multipolare, etc.), e quelli che sono invece
associati al moto longitudinale (instabilità coerenti longitudinali, interazione fascio-cavità,
effetti del cooling etc.). In particolare, le instabilità coerenti di fascio, trasverse e longi-
tudinali, sono l’indesiderata conseguenza delle interazioni fra particelle appartenenti ad
un medesimo fascio, e delle stesse con i campi elettromagnetici indotti dal passaggio del
fascio nelle strutture circostanti.
Ciò premesso, si comprende dunque che l’interesse verso le instabilità coerenti si coniuga
naturalmente con le tematiche classiche di studio del Dipartimento d’Ingegneria Elettrica
dell’Università “Federico II” di Napoli, in quanto legato da un lato al progetto HIDIF per
la formazione di un gruppo di studio Europeo sulla fusione inerziale come motivazione di
base, e consistente dall’altro nel dover affrontare una serie di problematiche non lineari su
sistemi elettromagnetici complessi in cui campi e sorgenti di campo sono continuamente
soggetti a mutua azione.
Il contributo dato alla comprensione e all’interpretazione di questo tipo di fenomenologie
si è sviluppato in maniera naturale dall’impiego delle già note teorie perturbative lineari
per studiare le proprietà di stabilità di un fascio nell’anello di accumulazione presente al
GSI-Darmstadt (ESR, Experimentier-SpeicherRing) fino alla realizzazione di misure per
dimostrare la validità delle prevalutazioni teoriche e alla modellizzazione teorica di di-
namiche instabili o di fasci di ioni in condizioni particolari di funzionamento (per es., sotto
l’effetto del laser cooling). La rivisitazione della teoria delle instabilità coerenti di fascio
ha infatti consentito la determinazione dei parametri richiesti per indurre un’instabilità
longitudinale su un fascio nell’ESR e raccogliere cos̀ı dati sperimentali sull’evoluzione
lineare e non lineare di tale fascio. L’esperimento suddetto è stato realizzato nel Febbraio
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1997 e le osservazioni sono state pienamente all’altezza delle aspettative. I dati raccolti
con tali misure hanno poi fornito lo stimolo per una più adeguata descrizione del fenomeno
in modo da poter prevedere anche parte dell’evoluzione non lineare. Nel seguito, misure
ed interpretazione delle misure saranno spiegate in maggiore dettaglio in quanto materiale
su cui verte l’intero contenuto della tesi di dottorato.

Le instabilità longitudinali di fasci continui orbitanti in macchine circolari si manifestano
come un processo di self-bunching che può essere facilmente rilevato per mezzo di una
misura ed un monitoraggio continuo lungo un opportuno intervallo temporale della mo-
dulazione della corrente di fascio. Tale corrente, avente inizialmente la caratteristica di
corrente continua a parte il rumore Schottky dovuto alla sua effettiva natura discreta,
diventa poi sinuosoidale con ampiezza esponenzialmente crescente per un certo intervallo
di tempo (con un periodo spaziale che è proprio un sottomultiplo della circonferenza
dell’anello, in dipendenza del numero armonico su cui l’instabilità si sviluppa), fino a
saturarsi infine, e a manifestare peculiarità nell’evoluzione quali la formazione di un’onda
d’urto o la presenza permanente di un’oscillazione residua anche dopo che il processo in-
stabile è giunto a saturazione. I tempi di salita dell’instabilità previsti dalla teoria lineare
basata sullo sviluppo perturbativo dell’equazione di Vlasov sono stati valutati per diverse
condizioni di funzionamento e messi a confronto con quelli estrapolati dai dati sperimentali
rilevati nelle stesse condizioni. L’accordo trovato tra teoria lineare ed esperimento è stato
molto soddisfacente, e leggere discrepanze osservate in corrispondenza di alcuni punti di
misura sono state ampiamente giustificate a causa della presenza di un campo elettrico
esterno in cavità necessario per il sistema di regolazione della frequenza di risonanza – il
cui effetto non è considerato invece nella teoria. In effetti, simulazioni mirate al calcolatore
eseguite col codice a macro-particelle PATRIC sono state utilizzate per introdurre tale
campo esterno, e mostrare come il suo effetto sui tempi di salita delle instabilità potesse
proprio riprodurre le osservazioni sperimentali. Il problema di un campo esterno in cavità
è stato anche separatamente affrontato dal punto di vista teorico: la dinamica osservata
con le simulazioni è stata riprodotta, mentre una perdita di Landau damping dovuta al
nuovo tipo di distribuzione nello spazio delle fasi è emersa come ragione più plausibile
per giustificare la riduzione dei tempi di salita dell’instabilità quando la cavità era quasi
perfettamente accordata. In seguito, l’osservazione della formazione di un fronte d’urto
nella fase successiva a quella di crescita esponenziale dell’onda di corrente (osservazione
fatta sia direttamente nelle misure che nelle simulazioni PATRIC) ha stimolato la ricerca
di una spiegazione del fenomeno basata sull’impiego di un modello fluido comprensivo
dei termini non lineari convettivi, e chiuso con l’ipotesi di processo adiabatico (flusso
di calore nullo). La risoluzione numerica delle equazioni di tale modello ha riprodotto
fedelmente l’evoluzione della corrente di fascio sia nella fase lineare che nel successivo
svilupparsi di una marcato “wave steepening”. Altre fenomenologie associate alla tarda
fase di instabilità – gli effetti di carica spaziale e dell’electron-cooling di fascio sulla
saturazione dell’onda instabile o la dinamica sul lungo periodo dell’allargamento dello
spread in velocità – sono state studiate usando un integratore numerico dell’equazione di
Fokker-Planck, che possiede l’indiscusso vantaggio di un minore rumore grazie all’assenza
della granularità che caratterizza invece un codice a macro-particelle come il PATRIC.
Come si è evidanziato da tale analisi, l’overshoot previsto per la crescita del momentum
spread è seriamente limitato dal cooling, e non ha luogo se c’è una rilevante carica spaziale.

L’ultima parte di questo lavoro di dottorato riguarda l’effetto della tecnica del laser cooling
su opportuni fasci di ioni con un elevato numero di particelle. Prendendo spunto dagli
esperimenti svolti al TSR di Heidelberg negli ultimi 5 anni, l’effetto di un laser sulla
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dinamica longitudinale di un fascio è stato prima di tutto studiato in generale dal punto
di vista di modellizzazione teorica, e poi introdotto nei codici correntemente usati per
la simulazione di fasci (PATRIC e Fokker-Planck solver). Il risultato è che con questi
mezzi, molte informazioni si possono ricavare circa il laser cooling di fasci molto intensi,
poiché in essi la dinamica del cooling è per la prima volta affiancata all’azione dei campi
autogenerati. In questo modo si è certi di non finire per trascurare effetti che potrebbero
rivelarsi dominanti quando si considerano fasci molto intensi sottoposti a raffreddamento
laser. L’analisi contenuta in questa tesi mostra che le Instabilità di tipo “two-stream”,
che si sarebbero potute aspettare come conseguenza della deformazione cui è soggetta
la funzione di distribuzione del fascio quando il raffreddamento laser è applicato, sono
invece bilanciate dall’azione cinetica del laser stesso come si evidenzia dai diagrammi di
stabilità corretti. Fasci intensi possono verosimilmente essere raffreddati mediante uso di
un laser opportuno, e l’unico fattore che diventa determinante nel limitare le prestazioni
dell’operazione è la diffusione indotta da intra-beam scattering.
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[20] F. Nolden, Zur stochastischen Vorkühlung am ESR, PhD Thesis, Technische Universität
München, 1996.

131



132

[21] F. Bosch and B. Schlitt, Phys. Bl. 53, 27 (1997).

[22] A. Gruber, W. Bourgeois, B. Franzke, A Kritzer and C. Treffert, Nucl. Instr. Methods. Phys.
Res. A 282, 87 (1989).

[23] Uwe Schaaf, Schottky-Diagnose und BTF-Messungen an gekühlten Strahlen im Schwerionen-
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