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Abstract

We study an inflationary scenario with a vector field coupled with an inflaton field
and show that the inflationary universe is endowed with anisotropy for a wide range
of coupling functions. This anisotropic inflation is a tracking solution where the
energy density of the vector field follows that of the inflaton field irrespective of
initial conditions. We find a universal relation between the anisotropy and a slow-roll
parameter of inflation. Our finding has observational implications and gives a counter
example to the cosmic no-hair conjecture.

1 Introduction

Recent developments of precision cosmology have yielded a slight shift of an inflationary paradigm, and
we are now forced to look at fine structures of fluctuations such as spectral tilt, non-gaussianity, parity
violation, and so on. Those precise predictions of inflationary scenarios will provide a clue to understand
fundamental physics when they are compared with observations.

In this paper, we focus on a role of a vector field in the early universe. Here, there is a prejudice
that the vector hair is negligibly small and it is legitimate to ignore the backreaction of magnetic fields
to geometry. However, in the context of the precision cosmology, we should not neglect the backreaction
if it is around a percent level [3]. Hence, it is important to quantify how small it is. Based on this
observation, we study an inflationary scenario where the inflaton is coupled with the kinetic term of a
massless vector field. Interestingly, we find a tracking behavior of the energy density of the vector field.
As a consequence, we show that there exist sizable vector hair quite generally. That yields a percent level
anisotropic inflation.

2 Basic equations

We consider the following action for the gravitational field, the inflaton field ¢ and the vector field A,
coupled with ¢:

s = [atey=a| gt 50,000 - Vo) - (FHORF | (1)
where g is the determinant of the metric, R is the Ricci scalar, V(¢) is the inflaton potential, f(¢)
is the coupling function of the inflaton field to the vector one, respectively. The field strength of the
vector field is defined by F},, = 9,4, — 0,A,. Thanks to the gauge invariance, we can choose the gauge
Ap = 0. Without loss of generality, we can take x-axis in the direction of the vector. Hence, we take
the homogeneous fields of the form A, = ( 0, A,(t), 0, 0) and ¢ = ¢(t) . Note that we have assumed
the direction of the vector field does not change in time, for simplicity. This field configuration holds the
plane symmetry in the plane perpendicular to the vector. Then, we take the metric to be

ds? — —dt? 1 20 |:ef4a(t)dz2 1 e20(D) (dy2 +dz2) } ’ 2)
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where the cosmic time t is used. Here, e® is an isotropic scale factor and o represents a deviation from
the isotropy. With above ansatz, one obtains the equation of motion for the vector field which is easily
solved as A, = f2(¢)e=*"*9py4, where an overdot denotes the derivative with respect to the cosmic
time ¢t and p4 denotes a constant of integration. Substituting this into other equations, we obtain basic
equations

& = d2+%2 %¢2+V(¢)+%f_2(¢)6_4a_40 7 (3)
KZPZ

G = =347+ RV(e) + — A (@)Y, (4)

5 .y H2p?4 -2 —4a—40

o = _30¢U+Tf (9)e ; (5)

$ = —3ad—V'(®)+ A () f (@)t (6)

where a prime denotes the derivative with respect to ¢.

From Eq.(3), we see the effective potential Vog = V + p? f~2e71*779/2 determines the inflaton
dynamics. As the second term is coming from the vector contribution, we refer it to the energy density of
the vector. Let’s check if inflation occurs in this model. Using Egs.(3) and (4), equation for acceleration
of the universe is given by & + &2 = —262 — %qﬁg + %2 [V — %f’ge"la"‘”] We see that the potential
energy of the inflaton needs to be dominant for the inflation to occur. Now, we assume the energy
density of the vector can be negligible compared to that of the inflaton for the inflaton dynamics. Then,
we examine when the anisotropy is not diluted during inflation. From Eq.(5), it is apparent that the
fate of anisotropic expansion rate ¥ = ¢ depends on the behavior of coupling function f(¢$). In the
critical case f(@) oc e~2%, the energy density of the vector field as a source term in Eq.(5) remains almost
constant during the slow-roll inflation. Using slow-roll equations &? = K;V(qﬁ), 3ah = —V'(¢) , we
obtain da/d¢ = ¢/ = —k*V(4)/V'($) . This can be easily integrated as o = —x2 [ V/V'd¢ . Here, we
have absorbed a constant of integration into the definition of . Thus, we obtain

fme = e Fds (7)

For the polynomial potential V' o ¢™, we have f = e"*#’/m _ Given the critical case (7), we can parame-
terize the coupling function as [2]:

f _ e2cm f%dqﬁ , (8)

where ¢ is a parameter.

Naively, the energy density of the vector field grows during inflation when ¢ > 1, which is the case
we want to consider. It would not be possible to neglect the vector field in this case. Let us see what
happens if the vector field is not negligible.

3 Tracking Anisotropic Inflation

To make the analysis concrete, we consider chaotic inflation with the potential V(¢) = m?¢?/2 (n = 2).
For this potential, the coupling function becomes f(¢) = e"’®*/2_ Tt is instructive to see what happens
by solving Egs.(3)-(6) numerically. In Fig. 1, we have shown the phase flow in ¢ — $ space where we can
see two slow-roll phases, which indicates something different from the conventional inflation occurs. In
Fig.2, we have calculated the evolution of the anisotropy ¥/H = &/ for various parameters ¢ under the
initial conditions v/cr¢; = 17.

As expected, all of solutions show a rapid growth of anisotropy in the first slow-roll phase. However,
the growth of the anisotropy eventually stops at the order of a percent. Notice that this attractor like
behavior is not so sensitive to a parameter c.

Now, we will give an analytic explanation of the numerical results and find a quite remarkable relation
between the anisotropy and a slow-roll parameter of inflation.
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Figure 2: Evolutions of the anisotropy X/ H for var-

Figure 1: Phase flow for ¢ is depicted. .
ious ¢ are shown.

As the energy density of the vector field should be subdominant during inflation, we can ignore ¢ in
Egs.(3), (4), and (6). However, in Eq.(5), all terms would be of the same order. Now, Egs.(3) and (6)
can be written as

. K2 T1. 1 1
a2 = ? §¢2 4 577,L2¢)2 + 5676&2(25274&27124 7 (9)
Q.ﬁ. = *3(54(1'5 — m2¢> + cn2¢e*m2¢2*4ap124 . (10)

Let’s see how the energy density of the vector field works in these equations. When the effect of the
vector field is comparable with that of the inflaton field as source terms in (10), we get the rela-

tion chpie’c”%Q*‘m ~ m?. If we define the ratio of the energy density of the vector field py =

pLeer 9" =4 /9 t0 that of the inflaton ps = m2¢?/2 as
2 —ckip?—da
R PA _PAcT T (1)
Pe m?¢?
we find the ratio becomes R ~ 1/ck?$? when the above relation holds. Since the e-folding number is
crudely given by N ~ x2¢?

and the scale observed through CMB corresponds to N ~ (O(100), we have typically k¢ ~ O(10).
Hence, the ratio goes R ~ 1072. Thus we find that the effect of the vector filed in (9) is negligible even
when it is comparable with that of the scalar field in (10).

It turns out that the above situation is not transient one but an attractor. Suppose that p4 is initially
negligible, R; < 1072. In the first slow-roll inflationary phase, the relation e™* $* x et holds as was
shown in (7). Hence, the ratio R varies as R oc ("1 As we now consider ¢ > 1, p, increases rapidly
during inflation and eventually reaches R ~ 1072, Whereas, when R exceeds 1072, the inflaton climbs
up the potential due to the effect of the vector field in (10), hence p4 will decrease rapidly and go back
to the value R ~ 1072, Thus irrespective of initial conditions, p4 will track ps.

The above arguments tell us that the inflaton dynamics after tracking is governed by the modified
slow-roll equations

-2 K2 2,2
« = Fm ¢) ) (12)
3(34(;5 = —m?p+ cnngper*C“%Q*M . (13)

We refer to the phase governed by the above equations as the second inflationary phase, compared to the
first conventional one. Using above equations, we can deduce

do 2 2ep% _ 22
¢% = HQ 7m214€ e da . (14)
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This can be integrated as e~ ¢’ —4a — m?(c — 1)/cr?*p? [1+ D674(C’1)”‘]_1, where D is a constant

2
of integration. This solution rapidly converges to e—er’ 9’ —da — 7?2122;% )

constant during the second inflationary phase. Substituting this result into the modified slow-roll equation
(13), we obtain the equation for the second inflationary phase

. Thus, we found p4 becomes

) 2
3 = —’%qs. (15)

This indicates that ¢ in the second phase of inflation is about 1/c times that in the first phase of inflation.
In Fig. 1, we can see the value of ¢ after the phase transition is about a half of that in the first phase,
which agrees with the analytical estimate for ¢ = 2.
2,2
Now let us consider the anisotropy. In the second slow-roll phase, Eq.(5) reads 36 = %e‘c’“%z_‘m.
where we have assumed o < ck?¢?, & < &d. Using this and Eqs.(12), the anisotropy turns out to be

determined by the ratio (11) as

) H2p1246—cr@2¢2—404 92

H = 962 = gR(t) . (16)

In the second inflationary phase, we can calculate the ratio as R(t) = % . Using this relation, we
can relate degrees of anisotropy to the slow-roll parameter as follows. Combining Eqs.(3) with (4), we

obtain & = —%2(;'52 — %26_CK2¢2_40‘])?4 where we have used 62 < £2¢? derived from Eqs.(12), (15) and
(16). Thus, the slow-roll parameter is given by
N 9
e= 2 (17)

a2 ck2g?’
where we used the results (12) and (15). Thus, combining Egs.(16) and (17), we reach a main result
O le—1

H 3 ¢

This remarkable relation shows a quite good agreement with the numerical results for in Fig.2.

€. (18)

4 Conclusion

We have proposed an inflationary scenario with anisotropy. Remarkably, we have find that degrees of
anisotropy are universally determined by the slow-roll parameter of inflation. Since the slow-roll param-
eter is observationally known to be of the order of a percent, the anisotropy during inflation cannot be
entirely negligible. Indeed, we can expect rich phenomenology as consequences of the anisotropy dur-
ing inflation such as the statistical anisotropy of CMB temperature fluctuations [4], and a correlation
between curvature and tensor perturbations [1]. These features should be detected through the anal-
ysis of temperature-B-mode correlation in CMB. Moreover, because of the anisotropy, there might be
linear polarization in primordial gravitational waves. This polarization can be detected either through
CMB observations or direct interferometer observations. These predictions can be checked by future
observations.

References

[1] S. Kanno, M. Kimura, J. Soda and S. Yokoyama, JCAP 0808, 034 (2008).
[2] J. Martin and J. Yokoyama, JCAP 0801, 025 (2008).

]

]
[3] A. R. Pullen and M. Kamionkowski, Phys. Rev. D 76, 103529 (2007).
[4] L. Ackerman, S. M. Carroll and M. B. Wise, Phys. Rev. D 75, 083502 (2007).
|

[5] M. a. Watanabe, S. Kanno and J. Soda, Phys. Rev. Lett. 102, 191302 (2009) [arXiv:0902.2833
[hep-th]].



	Introduction
	Basic equations
	Tracking Anisotropic Inflation
	Conclusion

