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Abstract : We review briefly the perturbat ive treatment of t he 
infrared problem and then argue that , for theor ie s  with s e l f  
coupling s ,  the s ituat ion i n  a non-perturbat ive approach i s  vast ly 
d i f ferent from that in QED . In partic ular , we explic�tly demon
s trate the impo s s ib i l ity to excite a hard gluon in ( �  ) 6 because 
of s ucces s ive splitt ing . In our view, this is equivalent to hard 
g l uon confinement . 

Resume : Nous donnons un compte-sendu bref de la methode de 
perturbat ion du probleme infrarouge . Ens uite nous constatons que , 
d ans les theories avec s e l f-couplag e ,  la s ituation des methodes 
non-perturbat ifs est vastement d i f ferente que celle-la de QED .  En 
partic ulier,  nous

3
montrons l ' impo s s ib i l ite de ! ' excitation d ' un 

g l uon dur d ans ( �  ) 6 , � c ause de " s pl itting " consecut i f .  A notre 
avi s ,  celui-ci est equivalent au bornage des gluons durs . 

*Work s upported in part by the u . s . E . R. D . A .  
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I .  INTRODUCTION 

I would like to g ive a d i s c us s ion o f  the in frared prob lem 

rel evant to the e f fort in unders tand ing the struc t ure o f  non
( l )  

abe l ian gauge theory,  wh ich is be ing act ively purs ued with the 

promis ing outlook that it has to do with fundamental hadronic 

interact ion . 

Accord ing to the lore , the non- abe lian gauge theory pos-

ses ses certain peculiar feature s .  For example , it i s  argued that 

wh ile the fund amental fields introduced are quarks and g l uons , 

they cannot become asymptot ic . Var ious conj ectures have been made 
( 2 )  

_ to g ive theoret ical j us t i fication for this confinement postula te .  

They a l l  are based on some a s s umed in frared behavior o f  the theory . 

I would l ike to g ive a s u mmary o f  a detailed calcu lation o f  the 
3 . . ( 3 ) 

in frared behavior o f  � in s ix d imens ions done by Chang and mys e l f  

and then advoc ate a speci fic mechan i s m  for g l uon confinement . 

To lead to a s e l f  contained expos i t ion o f  this s ub j ect , I 

s h a l l  first g ive a brie f descr iption o f  the problem and what has 

been done in the past year or so, which bas ically s howed that 
( 4 )  there is order b y  order c ance l lat ion o f  in frared s ingularit ies 

as in quantum e lectrodynamic s QED . 

The n I shall s pend mos t  o f  the t ime to g ive you some o f  the 

r e s u lts obtained by Chang and mys e l f  to show that for theories 

with s e l f  coupling s ,  s uc h  as  nonabel ian gauge theory , there are 

d i st inct d i f ferences from Q ED .  I n  part ic ular , I s h a l l  exp l ic it ly 

s how that the true in frared behav ior cannot be obtained via naive 

perturbative approach .  Fina l l y ,  I w i l l  d i scuss the problem o f  

gl uon con finement . 
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II . ZERO MASS PROBLEM 

Now, what is the infrared prob lem - a better word is probably 

the zero ma s s  problem - and why is it important for us to deal 

with it? Let me first s tate the prob lem.  Es sent ially , the zero 

mas s  problem is a study o f  degenerate systems . When we are g iven 

a system with ma s s le s s  partic les , then there are two s ituat ions 

which c an give rise to degenerate s tate s : 

( 1 )  Infrared : i f  we have a part ic le with mas s  m and energy 

E ,  then a s tate with this s ame part icle together with an inde finite 

number of low momentum mas s le s s  part icles is degenerate in energy 

with it . 

( 2 )  Cbll inear : groups of paral lel moving mas s le s s  part icles 

+ 
in the s ame d irect ion o f  tot al momentum P are degenerate in energy 

i . e .  i f  

s uch that n 

i�l 

-;. 
P2 • • • • • •  

+ p 

t hen they a l l  have the s ame energy 
n 
\ 

i=l 

for an arbit rary n .  

The s t udy o f  degenerate systems i s  not a nove lty in quantum 

mechanic s . The mos t  relevent works in relat ion to our study here 

( 5 )  
are done by Kinoshita , Lee , and Nauenberg in the form o f  a theorem .  

What i t  state s , i n  the field theory languag e ,  i s  that if the ma ss 

renorma l izat ion constant in a theory is not s ingular in the mas s-

less l imit o f  certain mas s parame ters , the n there exist ensembles 

[ i ] , [ j ] s uch that the transit ion r ates 
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i d i ] j d j ]  
are finite . What this means in QED is that i f  we imagine the pho-

ton to have a mas s  for a moment , we must make s ure that the e lec-

tron mas s  is finite when the photon mas s  is made to vanish . The 

( 6 ) 
emsembles here are the we l l  known Block-Nords ieck state s .  

Here come s  the importance of s uch study : As far a s  the theory is 

concerned , these emsembles are the only states o f  any phys ical 

interest to us . Ther e fore , it is nec e s s ary to construct them 

first to form the state space be fore we can extract out the 

re levant phys ic s .  
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III. PERTURBAT IVE APPROACH 

There have been s everal demonstrat ive examples of infrared 

cancel l,at ions in low orders . Let me proceed to describe an example 

which is very s imilar to QED and thus should be famil iar to most. 

of us . This is the quark quark s c atter ing . 

Spe c i fically,  I take a set o f  quarks interacting with a set 

o f  non-abe lian gauge fields governed by a Lagrangian 

c 
i _1__ 8 abc 2 

The e ' s  are real and totally ant isymme tric . The symmetry here 

is the color symmetry . The dynamics w i l l  be cal led quantum chroma-

dynamics QcD .  

For quark quark scatter ing , the s it uat ion i s  quite l ike that 

in QED . Rec a l l  that there the second order correct ion to e lectron 

1 . . . . . ( 7 ). 
e ectron scattering cros s s ection is finite , if we don ' t  j ust 

consider the e ffects d ue to v irtual correction 

H H H � eto . 

b ut also s o ft emiss ion 

etc . 

In word s ,  what it means is that s ince it is ve�y easy to e mit soft 
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photons ,  the probab i l ity of emitt ing no photon is z ero ; whereas i f  

w e  allow s oft photons to be emitted then we obtain a finite prob-

ab i l it y .  

Note that i n  QED, because the photons don ' t  carry any charge , 

the initial and the final s tates have de finite charge . 

we now t urn to QCD .  I t  turns out that as ide from a few 

technical detail s ,  we can per form the s ame calculat ion for quark 

quark scatte r ing . However , in order to have a finite cross s ect ion 

we need to make an observation, namely that the color stat ic charge 

is gauge dependent and in fact an infrared d ivergent quant ity . 

Bes ides ,  g l uons carry c olors as we l l .  Thu s ,  for instance if we 

ass ume the color symmetry to be SU ( 2 ) , then the quark quark 

scattering cross s ection has both I = O and I = 1 contents 

We do not obtain finite CT
I=o or CT I=l ·  rt i s  only the s tat is t ic al 

s um which is finite . 

We have here a c ur ious s i t uat ion that the combination 

+ + 
CT ( pp+pp ) + CT ( pp+ppp 0 )  + CT ( pp+pnp ) + CT ( pp+npp ) 

which has the channel quantum number I = I, 1
2

= 1 ,  is infinite , 

but the s um 

CT ( pp+pp ) + CT ( pp+ppp 0 )  + CT ( pp+pnp
+

) + CT ( pp+npp
+ ) 

+ CT ( nn+nn ) + CT ( nn-�nnp 0 )  + CT ( nn+npp
-

) + CT ( nn+pnp
- ) 

+ CT ( np+np) + u ( np+npp 0 )  + CT ( np+nnp
+

) + CT ( np+ppp- ) 

+u ( pn+p n )  + CT ( pn+pnp 0 )  + CT ( pn+nn p
+

) + u ( pn+ppp
-

) 

+CT ( np+pnp 0 )  + CT ( pn + npp 0 )  

wh ich has mixed channel quantum numbers , is finite . 

1 7 0 



From s uch s i mple examples , we c an estab l i s h ,  among other 

thing s , some results : 

( 1 )  Coherent states do not have de finite color contents and 

only color b l ind rates are finite . 

( 2 )  Coherent states for a ' quark ' cons ist o f  the quark and an 

inde finite number of s o ft g luons . ( Block-Nord s ieck) 

( 3 ) Coherent s tates for a ' hard g l uon ' cons ist of an indefin

ite number of parrallel moving hard g l uons and an inde finite 

number of s o ft g l uons . 

( 4 )  Static quant i t ie s ,  except for quark mas s ,  s uch a s  color 

magne t ic moment , color charge , etc . cannot be de fined on shel l .  

I n  part icular , renorma lization s ubtractions have t o  b e  done 

o f f  she l l . 

This program o f  perturbative finiteness to a l l  orders have 

been pushed forward much furthe r .  
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IV .  NON PERTURBATIVE APPROACH 

Now I would l ike to describe some of the work be ing carried 

( 3 ) 
out by Chang and mys e l f  in the past few months . 

We have s een that one can construct s tates s uch that infrared 

and coll inear s ingular ities cancel out order by order in QCD . In 

other words ,  there does not seem to be anything improper to assert 

that mathemat ically i t  i s  consistent to have these states . 

What about dynamic ally? Can we produce s uch states? In 

partic ular , can we prepare a hard gl uon? 

Let me describe the following pict ure . If we start out with 

one g l uon of some energy E > 6E = energy resolut ion , s ince it can 

cascade , we may end up with many many g luons . If this number i s  

extremely large , then t h e  energy o f  each one of them may be s ma l l  

enough to be below t h e  energy resolut ion . They a l l  become 

undetectab l e .  I f  in fact the s oft g l uons always chew up all the 

hard energy this way, the mechani s m  i s  tantamount to g luon 

con finement if 6E c an be made as s mall as we pleas e .  I n  this 

v iew the solf gluons are acceptable s ince they are needed to 

construct the coherent s tate s .  

One further ques t ion we want t o  pursue i s  thi s . Lately, there 

h as been quite a bit of activit y in doing leading 0n s um calcul

at io� 8Jo inves t igate the infrared behavior o f  QCD . In s uch an 

approach,  one expands a phys ical quantity A in power series o f  the 

coupling constant g 

n=O 

and for each A
n

' one keeps only the most divergent term ( us ually 

it is a power o f  0n ) as the s o ft c utoff is removed . We want to 

show that s uch an approach is mis lead ing and does not re flect the 
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true infrared behavior of the theory . 

I want to use the fol lowing example to persuade you that we 

c annot use naive perturbation to obtain a meaning ful answer . 

Let us cons ider the case when a quark pas ses by an external 

s inglet field . Because of accelerat ion , gluons will be s hed . 

Let \ M0 1 2 be the probab i l ity of the quark emitt ing one gluon with 

energy >6E , going into a color bl ind counter with angular 

resolution 60 

We can also find out the inc lus ive probabil ity o f  detect ing an 

arbitrary number of g l uons by this counter of energy resolution 

6E and angular resolution 60 . The calc ulat ion was actually 

done by Chang and Tybursk�9 �n the leading 071 s um method . They 

concluded that the best way to do it is to go to the light cone 

gauge,  where the diagrams which g ive the dominant contributions in 

each order are 

where 

�- - - �� 
r" 

+ 

+ etc . 

In fact , to obtain the dom inant term in the probab i l ity , we need 

only the d iagonal terms when we square the amplitudes ,  which g ive 

1 
I Mo 1

2 
7 � I Mo 12 

-----=-----=( 1-c g207160 0716E ) 2 
p 

( 1 )  
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c here depends on the Cas imir operator , and P is the momentum 

trans fer . 

This result is rather unphys ic a l .  As we let 6E and 6ro�o , 
the inc lus ive probab i l ity actual ly blows up firs t ,  because of the 

pole , and then d ies away . Phys ically it makes no sense whatsoeve r ,  

s ince a s  6E i s  lowered , we should b e  able to detect gluons in a 

wider spectrum and as we decrease 60 , we wo uld be ab le to see the 

additional gluons which move c losely to e ach othe r .  Mathemat ica lly , 

it is also humbug because it involves such formal sum 

m=l 

m- 1 m x 1 

in which the l imit x � � is of interest to us . 

This last example is certainly a s t rong enough motivation for 

us to perform a non-perturbat ive calcu lat ion to ascertain th e true 

infrared behavior . Now, because of g auge invariance ,  it is quite 

impos s ible for us to truncate the non-abel ian theory and obtain a 

c losed set of equations which we can solve , yield ing results which 

c an be trus ted . What we do instead is  to look at a theory which 

has the general kinematics I described before : namely,  we want a 

theory which is asymptot ically free , which has cascading effect s ,  

and which has more o r  less the same s ingular structure in the soft 

emiss ion limit . Th is is the �3 
theory in s ix dimens ions .( l O )  

Perhaps we should add a few words . It is not that we be l ieve 

( �3 ) 6 is a candidate for fundamental hadronic interact ion . The 

philosophy here is l ike us ing ( �3 ) 4 to understand the mechanism 

for generating Regge behavior in the high energy limit . Thus , we 

place at the j uncture more empha s is on finding a v iable mechan ism 

than on quant itative agreements .  As for the s ix dimens ional 

aspec t ,  we may not find it so obj ect ionable if we are reminded 
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that in QCD there is a der ivative for each trilinear vertex . The 

e f fective phase space volum e is s ix d imens ional . 

There is one d i f ference wh ich I must point out ,  though. QcD 

has both infrared and coll inear s ing ularities , whereas ( cp3 ) 6 has 

only col l inear s ingularities . As we shal l see , this does not 

change the d i ffic ulty I described ear l ier i f  we do lead ing 0n 
s um .  

Now the problem w e  post for ourse lves is : What i s  the inc lu-

s ive probab i l ity for a virtual gluon of t ime l ike momentum p to 

d issoc i ate into an arbitrary number of real phys ical gluons ? 

I would in the following establish a language which is dis-

t inct from naive perturbation, because it is in the way that we 

c an free ourselves from the old way of doing th ings . 

Let me cons ider only trees . Then , the g l uon field satis fies 

the 

or 

1 . 1 f . ld . ( 1 1 ) c a s s ic a  ie equation 
2 2 A 2 ( - o  + µ l x  = g + 2 x 

x Gs + � G x2 

( 2 )  

( 3 ) 

where 

G 1 ( 4 ) 

I have introduced a mas s  for the gluon field as a cutoff 

parameter .  I could d o  i t  with dimens ional regular izat ion . How-

ever ,  this way is more s uitable for later discuss ion . 

Now , to calc ulate the production probab i l ity 

+ 

we can regard x as a field operator and replace 
( - )  ( + ) Gs -.. i:p o or cp o 
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( ± )  -
( ± ) 

+ l. ( x ( ± ) l 2 ( 5 )  X -cp0 2 

rp6 is a free creation or an annihilation operator . The inc lus ive 

d is soc iation probability is 

F ( x-y ) 

2 F (p ) 

Using Eq ( 3 ) we have 

F (x-y ) = (cp�+ ) (x ) cp�- ) ( y ) ) 

2 p <0 
( 6 )  

( 7 ) 

+ (1) 2 J dx1dy1G (x-x1 ) G ( y-y1 ) (x ( + ) (x1
T x ( - \ y1} > 

We are going to expand (X (+ ) 2 x ( - ) 2 ) into a series of AGF 

the first few terms of which are 

( 8 )  

It is best to represent this kind o f  expans ion in graphs . 

Let me denote 

<x ( + ) (x ) x ( - ) (y ) ) = -0 0--------x y 

Then the integral equation is of the form 

1 7 6 
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+ 

+ 

+ 0 
8 ( ;\  ) 

This set of graphs is the s ame as th at we would obtain if we 

write down the proper s e l f  energy and make maximal unitarity cut s ,  

i . e .  retain nothing but the trees a fter the cuts . The vertices 

are to be the bare one s ,  but the propagators are fully dressed .( 12 ) 

If we keep only the first term in Eq. ( 8 )  and subs itute into 

Eq. ( 7) and then Eq.  ( 6) ,  we obtain an integral equation 

1 
( 9 ) 

which can be written in the invariant mas s variables s 2 -p 

1 7 7 



where 

s F ( s ) µ2 2'/f o ( s -µ
2 ) + 

1 "A  ( s , o1 , o2 ) 
s2 

2 2 2 g = fc /3 84Tf 

3/2 

(_g:_) 2 r d o1 d o2 
2'Tf J 01 02 ( 10 ) 

o1 F ( o1 ) o2 F ( o2 ) e vs -/o1 .../0'2l 

( 11 ) 

o1 and o2 are the squares o f  the invariant mas ses of the cascaded 

blobs . 

Note that because all the propagators are all time l ike in 

the tree approximation and we always have an even number of them 

in each term when we calculate the inc lus ive d is s oc iat ion probab il-

ity, our result due to truncation is  a lower bound to the true 

probab il ity . 

we are interested in the l imit of µ?0, keeping s finite . 

However , because s and µ are the only two s cales in the tree 

approximat ion , the l imit is  the s ame as s?oo but µ finite . We 

should neverthe less keep the true limit in mind , which is  essential 

when we deal with renormalization. 

Let me de fine 

and 

p f (p ) = sF ( s ) 

Then Eq. ( 10 ) becomes 

1 7 8 

\ 3/2 
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We don ' t  know of any way to solve this equation exact ly . I f  

we a r e  to iterate this equation in the coupl ing constant g and 

retain only the lead ing term in en ( p/µ ) ,  we obtain a result s imilar 

to Eq. ( l ) in QCD 

s F ( s )  = l 
2 

2 2 ( 1  - }ir en ( s/µ ) ) 

( leading 0n s um )  

( 1 4 )  

the val idity o f  which i s  be ing inves t igated , I w i l l  return t o  this 

point l ater . For a l l  it is worth , this also shows that ( �
3

) 6 

has s imilar infrared structure as QCD in this approac h .  

We want to make the fol l owing obs e rvation : f ( p )  2 0 for 

p 2 0 because it is a probab i l ity .  There fore , if we replace the 

kerne l ( A/ s2 )
3/2 

in Eq. ( 13 ) ,  wh ich is a positive semi-de finite 

quantity in the al lowab le kinematic region , b y  another pos itive 

semi-de finite kerne l K ( p , q
1

, q
2

) and cal l the corresponding so lut ion 

( 13 )  
f '  ( p )  then 

f '  ( p )  ?: f ( p )  i f  > K ( p , ql , q2 ) <  ( A/s 2
)

3/2 2 0 ( 1 5 )  

we can eas i ly derive the inequalitie s  

1 2 ..L. 2 ( 1  -
q

l 
q

2 2 
2 p 

- -p l s 
( 16 )  

Hence the funct ion f ( p )  i s  bounded from above by f
u b

( p )  which 

We d e fine the Laplace trans form as 

and 

- b r"' - "'p ub 
fu ( 13 )  = dp e � f ( p )  

µ 

( 1 7 )  

( 1 8 ) 
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'( 1 9 } 

Then, we have a di fferent ial equation a fter the trans form 

dz ub 2 
1 b 2 

-- = g_ e-x + - ( Z u 
) dx rr x ( 2 0 )  

The large p behavior i s  controlled by the s ma l l  x region and v ice 

ver s a .  Because o f  th i s , the boundary cond it ion for the function 

z ub i s  that 
2 

z
ub

( x )  + g_ 
rr 

-x 
e ( 2 1 )  

which i s  a s tatement that we should recover the one part icle pole 

for sma l l  p. When x is s mall Eq (20 ) i s  approximated by 

( 2 2 ) 

which has the s o l ution 

z ub _ __ l __ 

{i;nX - {i;nXO ( 2 3 )  

We c an show that the pos i t ion o f  the pole 

2 
for sma l l  g 

( 2 4 )  

for large g2 

The n ,  us ing Eq. ( 2 3 )  we take the inverse Laplace trans form to 

obtain for p/µ >> 1 

F
ub 

( s )  � 

Note that XO is non 

rr2 XO 
2 
g 

pµ 

analyt ic 

( x  
e o 

p/µ ) 
( 2 5 )  

to 2 
near g 

( 14 )  
= O .  Also,  in this 

approac h ,  we c an recover the re s ult o f  Eq. ( 1 4 )  provided ( g
2

/rr ) 

2 
{l;n ( p/µ )  < 1 and g /rr << 1 . 

Now , let me construct a lower bound . c a l l  the solution by 

the replacement 

1 8 0 

; \ \ 3 /2 + ( 1  -
q

l + q2 ) 3 .71 p 
( 2 6 )  



Flb Its Laplace trans form satis fies the equation 

and 

2 
2 lb = _g__ e -x + 6 

Tr 4 
x 

We can show the following : 

x ;; 0 :  z
1b = 140 ( l/ (en ( x/x

0
J J

4
) 

2 
0nX0 

= -Tr/g 

XO 
= &n (l /Tr ) - 40n (en ( g

2 /v ) J 

From Eq. ( 2 8 ) '  we obt ain for p/µ >> 1 

Flb (s ) 
2 x 4 

7 0 ( p/µ )
2 - Tr 0 = 2 -2- 3 g µ 

By assuming 
(x p/µ )  

F ( s) = A pn e 0 
, p/µ >> 1 

for 

for 

e 
( x

o 
p/µ )  

( 2 7 ) 

( 2 8 ) 

2 small g 

large 2 g 
( 2 9 )  

( 3 0 )  

( 3 1 )  

and s ubstituting this into Eq. ( 13 ) ,  we c an determine A and n for 

a given x
0

• We have in fact 
1 3 sv

2 5 /2 A = 2 ( x
o

/µ )  , 
g 3/27r 

n = 1/2 

Because of Eq. ( 2 4 ) and Eq. ( 2 9 ) , we know that 

for small g2 

2 for large g 

( 3 2 )  

( 3 3 ) 

It is obv ious that the true behavior ( Eq. ( 3 1 ) )  bears no 

resemblance to Eq. ( 14 ) , a result obtained by leading en sum method . 
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V .  CONJECTURE ON CONFINEMENT 

I want to make an observation and a conj ecture based on 

results of Eq. ( 31 ) and Eq. (3 3 ) .  From F ( s ) , we c an calculate 

the average mu l t iplic ity , i . e .  the average number of g l uons which 

the orig inal g l uon d i s s o c i ates into 

(n ) 2 .iL F ( s )  = g 2 
;,g 

( 3 4 )  

2 _a__ ( xo p /µ )  
- g 2 

(Jg 
S iEce 

e-0/g 2 2 d TT 
<<l --2 x - 4 g 0 

(lg g 
1 2 >>l - 2 g 

( 3 5 )  

g 

we have 

TT e-rr/g 2 · -�-J/2 2 (n ) - 2 µ 2 /  g << l 
g 

I 1/2 ( 3 6 )  
i s  2 "'! 1 - : g >>l \ µ 2 ) 

we c an ask a crucial que st ion : What i s  t he energy carried 

away by all the s o ft g l uons with energy ,_µ? The answer is t hat 

it must be gre ater than 

L i m  µ (n ) "'! TT -TT/g2 
fs 2 

<<l 2 e g µ 70 g ( 3  7 )  

'= rs 2 >>l g 

In both cases , it is a f inite fract ion o f  the total energy.  In 

pa rticular,  we are interested in the large c oupl ing l imit , because 

we are deal ing with an in frared unstable theory . In this case , 

a l l  o f  the energy of a hard g luon d i s s ipates into s o ft one s ,  

wh ich in fac t are not moving at a l l . We c an also calc ul ate the 
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mult ipl ic ity distribut ion , and a Gaus s ian with almost zero width 

res u lts . This i mp l i e s  that the probab i l ity o f  having s o ft g l uons 

to chew up the hard energy is unity . I f  we agree that the s o ft 

g l uons are nece s s ary components in construct ing coherent states ,  

then we have provided a mechani s m  for confinement . 

What about the quark s ?  I have not dealt with them s o  far , 

but we may env i s ion a mechani s m  for the ir confinement . In order to 

knock a quark out , we must kick it w ith s ometh ing , which means 

acce leration . The quark w i l l  then rad iate g luons , which are al l 

s o ft and at rest relative to the quark because o f  the prev ious 

cascad ing proce s s e s . It is pos s ib le that the e f fective mas s  o f  

t h i s  quark and t h e  g igantic c loud o f  s o ft g l uons around it become s  

practically in finite . The quark j us t  c an ' t  come out ! 

I should contrast this with the s ituat ion in QED . There , the 

Brems strahlung mean mult ipl ic ity is (n ) � e 2w ( p/µ ) , where p is 

the momentum trans fer and µ is the infrared c uto f f .  There fore , 

2 
the mean energy taken by the s o ft photons is µ (n )  � µ e £Jri ( p/µ ) , 

which c an be made as s ma l l  as we please by decreas ing the c utoff 

µ .  This , o f  course , agree s  with o ur notion that electrons c an 

h ave wel l  d e fined energy .  

I n  the case when e ach g l uon can split into r components ,  that 

the multip l ic ity i s  not logarithmic can be s een from the fol l owing 
. ( 1 5 )  

s imple argument . Let e b e  the fraction o f  the orig inal mass 

which re s ides with each o f  the d aughters in the form o f  rest mass 

a fter each decay . The n ,  o ften n s teps , each d aughter has a mass 

� e
n

p ,  where p is the orig inal mas s .  The process ends when 

8
n

p = µ .  The total number of part icles in the final s tate is 

� r
n 

: ( p/µ ) ( -wr/we ) . What we have s hown is that in the strong 

coupl ing l imit , 8 - l/r . A l l  final part icles are then at rest 

with respect to the parent . 
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VI. REMARKS AND CONCLUS ION 

We have g iven an exp l icit calculat ion , which shows that the 

leading 0n sum method does not re flect the true infrared behavior 

3 of ( �  ) 6  or QCD .  From the nonperturbative result s , we have also 

unrave l led a dynamic a l  feature , namely the impo s s ib ility to excite 

any gluons of energy > µ , an infrared cutoff which can be made 

as s ma l l  as we please . In our view, this mechanism is tantamount 

to hard g l uon con finement . We also bel ieve that soft g l uons , 

while experimentally undetectab l e ,  are neverthe less necess ary 

ingredients to construct physical state s .  

To b e  s ure , we need many more invest igations to find out 

whether this is the mechani s m  Nature chooses for confinement . 
. 

Let me point out two : ( 1 )  What about radiative e ffect s ?  The 

folklore in that one consequence is to change the coupling constant 

into a running e f fective one . In the infrared l i mit , this becomes 

large . We have to do an analys i s  to see how it works in the 

time - l ike reg ion . Let me point out one aspect here . We know 

from low order calculation the reason that the e ffect ive coupl ing 

constant is large for s ma l l  momentum ( actually it has only been 

s hown to be s ma l l  for large space-like momentum) in ( �3 ) 6  is 

due to vertex correct ion . Thus , to account for rad iative e ffects , 

we need to look into equations o f  higher non- l inear ity than the 

one we have used so far , which contains s e l f  energy cuts only . 

( 2 )  What about the propos ition that only color s ing lets can be 

exc ited? We don ' t  know how this i s  to come about , because color 

symmetry is not a natura l symmetry in We need to turn to 

QCD for an answe r .  

I n  any ev ent,  the mechan ism we propose here for confinement 

is a phys ical one . we hope that further progress can be made in 
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the near future to ascertain its truth . 
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What 

( see 

example , i f  3 µ >p�2 µ , the s o l ution to E q .  ( 13 )  is 

"' 2 
p f ( p ) =.9:.__ 

2 'Tf 
c dq

1
dq

2vµ 6 ( q1-µ ) Vµ 6 ( q
2

-µ ) • 
µ 

2 2 2 (;\ ( p 
' ql

, q
2

) , 3 /2 
. 2 8 (p-q

l 
-q

2
) 

s 

we have c l a imed is s imply that 

2 r "'  dq
l 

d q
2 

trµ o ( q
1 -µ ) vµ 6 ( q

2 
-µ ) p f ( p )  s; g_ 

2 µ 'Tf 
Eq. ( 16 ) ) .  Now , the r ight hand s ide is 

e ( p-qc q
2

J 

the s o l ut ion 

Eq. ( 1 7 )  for this range of energy . It fo llows that 

ub 
f ( p )  s; f ( p )  

to 

We can construct a pro of along this l ine for any finite µ and p. 

The main point here is that we are cons idering a series of 

s equent ial decays . By increas ing or decreas ing the phase space 

for each decay ,  we certa inly s hould expect to obtain h ighe r  or 

lower rate , respective l y .  

14 . It is amus ing to note the instanton-l ike dependence on the 

coupl ing constan t .  W e  pres u mably have incl uded s ome c las s ical 

solut ions in our approach , in a way which i s  not complete ly under-

s tood by me . I thank H . - S .  T s ao for a discuss ion on this . 

1 5 . Th is is also known to A . H .  Mue l l e r .  
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