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Abstract: We review briefly the perturbative treatment of the
infrared problem and then argue that, for theories with self
couplings, the situation in a non-perturbative approach is vastly
different from that in QED. 1In particular, we explic&tly demon-
strate the impossibility to excite a hard gluon in (g”). because
of successive splitting. In our view, this is equivalent to hard
gluon confinement.

Résum€: Nous donnons un compte-sendu bref de la méthode de
perturbation du probléme infrarouge. Ensuite nous constatons que,
dans les théories avec self-couplage, la situation des méthodes
non-perturbatifs est vastement differente que celle-la de QED. En
particulier, nous_montrons l'impossibilité de 1l'excitation d'un
gluon dur dans (9~ )g, 3 cause de "splitting" consécutif. A notre
avis, celui-ci est équivalent au bornage des gluons durs.

*Work supported in part by the U.S.E.R.D.A.
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I. INTRODUCTION

I would like to give a discussion of the infrared problem
relevant to the effort in understanding the structure of non-
abelian gauge theor;}thich is being actively pursued with the
promising outlook that it has to do with fundamental hadronic
interaction.

According to the lore , the non-abelian gauge theory pos-
sesses certain peculiar features. For example, it is argued that
while the fundamental fields introduced are quarks and gluons,
they cannot become asymptotic. Various conjectures have been made
to give theoretical justification for this confinement postulaté?)
They all are based on some assumed infrared behavior of the theory.
I would like to give a summary of a detailed calculation of the 3
infrared behavior of m3 in six dimensions done by Chang and mys;lg
and then advocate a specific mechanism for gluon confinement.

To lead to a self contained exposition of this subject, I
shall first give a brief description of the problem and what has
been done in the past year or so, which basically showed that
there is order by order cancellation of infrared singularities(4)
as in quantum electrodynamics QED.

Then I shall spend most of the time to give you some of the
results obtained by Chang and myself to show that for theories
with self couplings, such as nonabelian gauge theory, there are
distinct differences from QED. In particular, I shall explicitly
show that the true infrared behavior cannot be obtained via naive

perturbative approach. Finally, I will discuss the problem of

gluon confinement.
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II. 2ZERO MASS PROBLEM

Now, what is the dinfrared problem - a better word is probably
the zero mass problem - and why is it important for us to deal
with it? Let me first state the problem. Essentially, the zero
mass problem is a study of degenerate systems. When we are given
a system with massless particles, then there are two situations
which can give rise to degenerate states:

(1) Infrared: if we have a particle with mass m and energy
E, then a state with this same particle together with an indefinite
number of low momentum massless particles is degenerate in energy
with it.

(2) @allinear: groups of parallel moving massless particles
in the same direction of total momentum E are degenerate in energy
i.e. if

> > >
Py i Py «+e +-- P
such that n
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then they all have the same energy
n
v E, = E
— i
i=1

for an arbitrary n.

The study of degenerate systems is not a novelty in quantum
mechanics. The most relevent works in relation to our study here
are done by Kinoshita, Lee, and Nauenberg in the form of a theoégk.
What it states, in the field theory language, is that if the mass
renormalization constant in a theory is not singular in the mass-

less limit of certain mass parameters, the n there exist ensembles

[i], [j] such that the transition rates
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are finite. What this means in QED is that if we imagine the pho-
ton to have a mass for a moment, we must make sure that the elec-
tron mass is finite when the photon mass is made to vanish. The

6)

emsembles here are the well known Block-Nordsieck states.

Here comes the importance of such study: As far as the theory is
concerned, these emsembles are the only states of any physical
interest to us. Therefore, it is necessary to construct them

first to form the state space before we can extract out the

relevant physics.
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III. PERTURBATIVE APPROACH

There have been several demonstrative examples of infrared
cancellations in low orders. Let me proceed to describe an example
which is very similar to QED and thus should be familiar to most,
of us. This is the quark quark scattering.

Specifically, I take a set of quarks interacting with a set
of non-abelian gauge fields governed by a Lagrangian

1 a a a ,b,c\2
s = - ={3 n% - + A°A
£ 4<au SRV L Y v>

I OV Y 0 SUGRLE R
WH(F e, -9 A) vy
.C

=1 €abec 2
The ¢'s are real and totally antisymmetric. The symmetry here
is the color symmetry. The dynamics will be called quantum chromo-
dynamics QCD.

For quark quark scattering, the situation is quite like that
in QED. Recall that there the second order correction to electron

. . . R !
electron scattering cross section is finite, if we don't just

consider the effects due to virtual correction

N,
- AN AA—4 etc.
— |

but also soft emission

‘&\W etc.

In words, what it means is that since it is very easy to emit soft
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photons, the probability of emitting no photon is zero; whereas if
we allow soft photons to be emitted then we obtain a finite prob-
ability.

Note that in QED, because the photons don't carry any charge,
the initial and the final states have definite charge.

We now turn to QCD. It turns out that aside from a few
technical details, we can perform the same calculation for quark
quark scattering. However, in order to have a finite cross section
we need to make an observation, namely that the color static charge
is gauge dependent and in fact an infrared divergent quantity.
Besides, gluons carry colors as well. Thus, for instance if we
assume the color symmetry to be SU(2), then the quark quark

scattering cross section has both I = 0 and I = 1 contents

We do not obtain finite Oreo OF Or_1- It is only the statistical
sum which is finite.

We have here a curious situation that the combination
o (pp>pp) + U(pp>ppP°) + O(pppnp’) + 0(pp*npp+)
which has the channel quantum number I = I, Iz=l, is infinite ,
but the sum
9(pp>pp) + O(pp>ppP°) + 0(pp>pnp’) + o (pp>npp’)
+o(nn»nn) + O(nn»nnp°) + o(nn>npp ) + O(nn>pnp )
+0(np>np) + O(np*npp°) + o(np+nnp+) + 0(np>ppp )
+0(pn>pn) + O(pn>pnp°) + O(pn>nnp’) + o (pn>ppp )
+0 (np>pnP°) + J(pn > npp°)

which has mixed channel quantum numbers, is finite.



From such simple examples, we can establish, among other
things, some results:

(1) Coherent states do not have definite color contents and

only color blind rates are finite.

(2) Coherent states for a ‘'quark' consist of the quark and an

indefinite number of soft gluons. (Block-Nordsieck)

(3) Coherent states for a 'hard gluon' consist of an indefin-

ite number of parrallel moving hard gluons and an indefinite

number of soft gluons.

(4) Static quantities, except for quark mass, such as color

magnetic moment, color charge, etc. cannot be defined on shell.

In particular, renormalization subtractions have to be done

off shell.

This program of perturbative finiteness to all orders have

been pushed forward much further.
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v. NON PERTURBATIVE APPROACH

Now I would like to describe some of the work being carried
out by Chang and myselé3£n the past few months.

We have seen that one can construct states such that infrared
and collinear singularities cancel out order by order in QCD. In
other words, there does not seem to be anything improper to assert
that mathematically it is consistent to have these states.

What about dynamically? Can we produce such states? In
particular, can we prepare a hard gluon?

Let me describe the following picture. If we start out with
one gluon of some energy E > AE = energy resolution, since it can
cascade, we may end up with many many gluons. If this number is
extremely large, then the energy of each one of them may be small
enough to be below the energy resolution. They all become
undetectable. If in fact the soft gluons always chew up all the
hard energy this way, the mechanism is tantamount to gluon
confinement if AE can be made as small as we please. In this
view the solf gluons are acceptable since they are needed to
construct the coherent states.

One further question we want to pursue is this. Lately, there
has Dbeen quite a bit of activity in doing leading gn sum calcul-
ation“?o investigate the infrared behavior of QCD. In such an
approach, one expands a physical quantity A in power series of the
coupling constant g

@

\ud 2
a=" (g9)" a

. n
n=0

and for each An' one keeps only the most divergent term (usually
it is a power of Jn ) as the soft cutoff is removed. We want to

show that such an approach is misleading and does not reflect the
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true infrared behavior of the theory.

I want to use the following example to persuade you that we
cannot use naive perturbation to obtain a meaningful answer.

Let us consider the case when a quark passes by an external
singlet field. Because of acceleration, gluons will be shed.
Let |MO|2 be the probability of the quark emitting one gluon with
energy >AE, going into a color blind counter with angular

resolution AQ

We can also find out the inclusive probability of detecting an
arbitrary number of gluons by this counter of energy resolution

AE and angular resolution AQ. The calculation was actually

done by Chang and Tyburskggkn the leading gn sum method. They
concluded that the best way to do it is to go to the light cone
gauge, where the diagrams which give the dominant contributions in

each order are

Y= — —— 5 ot Yo - —

where

.

’ e
IITTITTILI = i -*~<fﬁf+ ““"(i:? + etc.
~

In fact, to obtain the dominant term in the probability, we need

only the diagonal terms when we square the amplitudes, which give

2

2
Mo 17 >~ [My]
0 ol " e gzmAQ %A_E)2 (1)
P
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c here depends on the Casimir operator, and P is the momentum
transfer.

This result is rather unphysical. As we let AE and AG~0,
the inclusive probability actually blows up first, because of the
pole, and then dies away. Physically it makes no sense whatsoever,
since as AE is lowered, we should be able to detect gluons in a
wider spectrum and as we decrease AQ, we would be able to see the
additional gluons which move closely to each other. Mathematically,
it is also humbug because it involves such formal sum

-]

< m-1 1

m x = 5
m=1 (1-x)

in which the limit x > = is of interest to us.

This last example is certainly a strong enough motivation for
us to perform a non-perturbative calculation to ascertain the true
infrared behavior. Now, because of gauge invariance, it is quite
impossible for us to truncate the non-abelian theory and obtain a
closed set of equations which we can solve, yielding results which
can be trusted. What we do instead is to look at a theory which
has the general kinematics I described before: namely, we want a
theory which is asymptotically free, which has cascading effects,
and which has more or less the same singular structure in the soft
emission limit. This is the @3 theory in six dimensions}lo)

Perhaps we should add a few words. It is not that we believe
(¢3)6 is a candidate for fundamental hadronic interaction. The
philosophy here is like using (cp3)4 to understand the mechanism
for generating Regge behavior in the high energy limit. Thus, we
place at the juncture more emphasis on finding a viable mechanism
than on quantitative agreements. As for the six dimensional

aspect, we may not find it so objectionable if we are reminded

174



that in QCD there is a derivative for each trilinear vertex. The
effective phase space volume is six dimensional.

There is one difference which I must point out, though. OCD
has both infrared and collinear singularities, whereas (cpa)6 has
only collinear singularities. As we shall see, this does not
change the difficulty I described earlier if we do leading in
sum.

Now the problem we post for ourselves is: What is the inclu-
sive probability for a virtual gluon of time like momentum p to
dissociate into an arbitrary number of real physical gluons?

I would in the following establish a language which is dis-
tinct from naive perturbation, because it is in the way that we
can free ourselves from the o0ld way of doing things.

Let me consider only trees. Then, the gluon field satisfies

(11)

the classical field equation

2 2

(-az+u)x=§+%x (2)
or

_ 2 2

X =G +75 Gy (3)

where
1
G = — (4)
(—az+u2)

I have introduced a mass for the gluon field as a cutoff
parameter. I could do it with dimensional regularization. How-
ever, this way is more suitable for later discussion.

Now, to calculate the production probability

S ﬂﬂ“‘>-~\-\~ + e

~ ~ -

we can regard y as a field operator and replace

L (=) (+)

Gg ® g Orcoo
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X =®o

Wé is a free creation or an annihilation operator.

dissociation probability is

(+) . % (X(i))Z

(3)

The inclusive

Fix-y) = (oo )
2 _ 46 -ipsx 2 (6)
F(p) = dxe F(x) p <0
Using Eq( 3) we have
Poe-y) = (ol 00 ol )y
(7)

+(%)ZjdxldylG(x—xl)G(y—yl)(x(+)(xlgx(—kylg>

We are going to expand (¥

the first few terms of which

-) 2

TN LGN

It is best to represent

Let me denote

(X(+) (X) X(—) (y)) = x__o o—

(+)2X(_)2> into a series of )\GF

are

= 2F(x-y) F(x-y)

(8)
r

J

2
+45 dxldylG(x—xl)G(y—yl)-

-F(xl-yl)F(X—Yl)F(Xl-Y) + 0(x4)

this kind of expansion in graphs.

Yy

Then the integral equation is of the form
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This set of graphs is the same as that we would obtain if we
write down the proper self energy and make maximal unitarity cuts,
i.e. retain nothing but the trees after the cuts. The vertices
are to be the bare ones, but the propagators are fully dressedflz)
If we keep only the first term in Eq. (8) and subsitute into

Eq. (7) and then Eq. (6), we obtain an integral equation
2

2 2, 2 1
Pp%) =21 8(pTHT) 4 B ot s g
(p + ") )
6
X r ) R(p-n)?)
(2m)
which can be written in the invariant mass variables s = —p2
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do dcz

- 2 2 g, 2" 1 .
sF(s) = p"27 §(s-p”) + (ZW) J 5, 5,
(10)
3
Als:07,0,) /2 o
-\————;5————/ OlF(Gl) 02F(02) e(/Sj/OlWFGQ
where
g2 = 12/384W2
2,2, 2 (11)
)\(S,cl,az) = 8 +o7+0) - 25ol—2502—20102

9y and o, are the squares of the invariant masses of the cascaded
blobs.

Note that because all the propagators are all time like in
the tree approximation and we always have an even number of them
in each term when we calculate the inclusive dissociation probabil-
ity, our result due to truncation is a lower bound to the true
probability.

We are interested in the limit of p>0, keeping s finite.
However, because s and p are the only two scales in the tree
approximation, the limit is the same as s+« but p finite. We
should nevertheless keep the true limit in mind, which is essential
when we deal with renormalization.

Let me define

p =5, aq =457, q =145, (12)
and
pf(p) = sF(s)

Then Eqg. (10) becomes

2 -2
PE(p) = Tha(p-p) + ?5 jp dg; 4q, £(q;) £(q,)-
(13)
A 3/2
v ( 2 ) 8(p-q;-d,)
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We don't know of any way to solve this equation exactly. If
we are to iterate this equation in the coupling constant g and
retain only the leading term in gn(p/M). we obtain a result similar
to Eg. (1) in QCD
1

2 (14)
g; m(S/uz))2

sF(s) =

(1 -
(leading gn sum)
the validity of which is being investigated, I will return to this
point later. For all it is worth, this also shows that (cp3)6
has similar infrared structure as QCD in this approach.
We want to make the following observation: f(p) = 0 for
p 2 0 because it is a probability. Therefore, if we replace the

kernel (1‘/52)3/2

in Eq. (13), which is a positive semi-definite
quantity in the allowable kinematic region, by another positive

semi-definite kernel K(p,ql,qz) and call the corresponding solution

3
f'(p) then (13)
. 2,3/2
£'(p) 2 £(p) if K(p,qp.a,)2 (1/E") /2 .0 (1)
We can easily derive the inequalities
q q
1 2,2
1A - 1-2L2-2
2 ( 5D ) (16)

Hence the function f(p) is bounded from above by £ b(p) which

satisfies the equation

ub _ gz
pE™T (p) = TH(p-B) + 25
-

r ©
|
u

dqg, dg.-
1
u 2 (17)

ub ub
<£7(ay) £ (gy) 8 (p-ay-q,)
We define the Laplace transform as

£2) = [ ap e PP (p)

o

(18)

and
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2 .
2P x) = & (g, X = ug (19)

m

Then, we have a differential equation after the transform

azP

T oax

2
_9g -X 1 ub, 2
e rx @7 (20)

The large p behavior is controlled by the small x region and vice
versa. Because of this, the boundary condition for the function

z9P is that

2
2P (x) > L e™ X>w (21)
which is a statement that we should recover the one particle pole
for small p. When x is small Eq (20) is approximated by

ub

az -~ 1 ub, 2
- = = = (@) (22)
which has the solution
ub 1
2 £ 3
X - MXO (23)
We can show that the position of the pole
gy = —7T/g2 for small g2
(24)
2 2 2
X, = o(g”/T) = ;mlin(g™/T)) for large g

Then, using Eq. (23) we take the inverse Laplace transform to

obtain for p/u >> 1

ub Lot % (x, p/W) (25)
F(s) &8 — —==— e
PH
K 2 (14) L
Note that x., is non analytic near to g = 0. Also, in this

0
approach, we can recover the result of Eq. (14) provided (g2/v)

2
m(p/M) < 1 and g° /T << 1.
Now, let me construct a lower bound. Call the solution by
the replacement

. +q
ANz L 9 2 .3
=) (- =2 (26)
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b . e .
Fl . Its Laplace transform satisfies the equation

2
4 b _g° -x . 6 1b, 2
v Z =ze + =z (277) (27)
d'x X
We can show the following:
4
x 2 0: 2™ = 140(1/ a(x/%))") (28)
and
o, 2 2
Xy = -T/g for small g
2, 2 2
Xy = 0(37/T) - 40n(n(g”/T)) for large g
(29)
From Eq. (28), we obtain for p/p >> 1
2 x4 (x, p/u)
1b 7 2
F(s) =5 -3 2 pm? e © (30)
g K
By assuming
n  (Xg B/M)
F(s) 2 Ap e , P/M >> 1 (31)

and substituting this into Eq.kl3), we can determine A and n for

0 We have in fact
2
35T 5/2
zs.=l—2 ELL (xo/u)/ , mn=1/2 (32)
g 3/2TT'

Because of Eq. (24) and Eq. (29), we know that

a given x

Xq = eXP(—W/gz) for small g2

2 2 2

m{g”=/m) = < tnln(g” /7)) for large g
lcecccéd (33)

It is obvious that the true behavior (Eg.(31l)) bears no

resemblance to Eq. (14), a result obtained by leading g, sum method.
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V. CONJECTURE ON CONFINEMENT

I want to make an observation and a conjecture based on
results of Eq. (31) and Eq. (33). From F(s), we can calculate
the average multiplicity, i.e. the average number of gluons which

the original gluon dissociates into

2
(ny = g° &) o F(s)

39
(34)
~ 2
=g° A5 (x_p/)
099
Since
- 2
9 XO = TT—4 e” /g g2<<]_
99 g9
~ 1 2 (35)
£, g“>>1
g9
we have
2 {-/2
(n) = 15 e /9 Ef gz<<l
g uel 6
Is ‘1/2 2
= g—fi g >>1
el

We can ask a crucial question: What is the energy carried
away by all the soft gluons with energy ~4? The answer is that

it must be greater than

. 2 _—
Lim =T -1/9% /s 2
H(ny 2 — e g«<l
w>0 g2 (37)
2
= /s g >>1

In both cases, it is a finite fraction of the total energy. 1In
particular, we are interested in the large coupling limit, because
we are dealing with an infrared unstable theory. In this case,
all of the energy of a hard gluon dissipates into soft ones,

which in fact are not moving at all. We can also calculate the
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multiplicity distribution, and a Gaussian with almost zero width
results. This implies that the probability of having soft gluons
to chew up the hard energy is unity. If we agree that the soft
gluons are necessary components in constructing coherent states,
then we have provided a mechanism for confinement.

What about the quarks? I have not dealt with them so far,
but we may envision a mechanism for their confinement. In order to
knock a quark out, we must kick it with something, which means
acceleration. The quark will then radiate gluons, which are all
soft and at rest relative to the quark because of the previous
cascading processes. It is possible that the effective mass of
this quark and the gigantic cloud of soft gluons around it becomes
practically infinite. The quark just can't come out!

I should contrast this with the situation in QED. There, the
Bremsstrahlung mean multiplicity is (n) ~ e%m(p/p), where p is
the momentum transfer and p is the infrared cutoff. Therefore,
the mean energy taken by the soft photons is p(n) ~ u eZ%(p/u),
which can be made as small as we please by decreasing the cutoff
. This, of course, agrees with our notion that electrons can
have well defined energy.

In the case when each gluon can split into r components, that
the multiplicity is not logarithmic can be seen from the following

(15)

‘simple argument Let ¢ be the fraction of the original mass
which resides with each of the daughters in the form of rest mass
after each decay. Then, often n steps, each daughter has a mass
~ enp, where p is the original mass. The process ends when

e p £ 4. The total number of particles in the final state is

~ rn = (p/u)(ﬁhrAME). What we have shown is that in the strong

coupling limit, ¢ = 1/r. All final particles are then at rest
with respect to the parent.
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VI. REMARKS AND CONCLUS ION

We have given an explicit calculation, which shows that the
leading gp sum method does not reflect the true infrared behavior
of (cp3)6 or QCD. From the nonperturbative results, we have also
unravelled a dynamical feature, namely the impossibility to excite
any gluons of energy > u, an infrared cutoff which can be made
as small as we please. In our view, this mechanism is tantamount
to hard gluon confinement. We also believe that soft gluons,
while experimentally undetectable, are nevertheless necessary
ingredients to construct physical states.

To be sure, we need many more investigations to find out
whether this is the mechanism Nature chooses for confinemeqt.
Let me point out two: (1) what about radiative effects? The
folklore in that one consequence is to change the coupling constant
into a running effective one. In the infrared limit, this becomes
large. We have to do an analysis to see how it works in the
time-like region. Let me point out one aspect here. We know
from low order calculation the reason that the effective coupling
constant is large for small momentum (actually it has only been
shown to be small for large space-like momentum) in (cp3)6 is
due to vertex correction. Thus, to account for radiative effects,
we need to look into equations of higher non-linearity than the
one we have used so far, which contains self energy cuts only.
(2) Wwhat about the proposition that only color singlets can be
excited? We don't know how this is to come about, because color
symmetry is not a natural symmetry in (w3)6. We need to turn to
QCD for an answer.

In any event, the mechanism we propose here for confinement

is a physical one. We hope that further progress can be made in
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the near future to ascertain its truth.
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2 B
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