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Executive Summary
Quantum integrability has turned out to be an important concept in overcoming the
limitations of perturbation theory and reaching a more profound understanding of par-
ticular four-dimensional quantum field theories. The algebraic structure that underlies
integrability in field and string theory is the Yangian, which can be understood as
an infinite-dimensional extension of a Lie algebra. Here, we investigate the Yangian
symmetry of super Maldacena–Wilson loops and fishnet Feynman graphs.

In the first part of this thesis, we discuss Maldacena–Wilson loops in N = 4 super
Yang–Mills theory. Utilizing the non-chiral superspace formulation of the N = 4 SYM
model, we construct the full supersymmetric completion of this operator, which is the
natural object dual to a minimal surface described by the full AdS5 × S5 superstring.
We show that the super loop operator enjoys global superconformal as well as local
kappa symmetry, the latter being related to the 1/2 BPS property of the bosonic
Maldacena–Wilson loop. Using a convenient type of transversal gauge, we establish
the operators one-loop expectation value and prove it to be finite.

We then perform a detailed study of the Yangian symmetries of smooth super
Maldacena–Wilson loops. Focusing on a generic gauge theory setup, we analyze in
detail the different options for representing the Yangian generators and argue for a
representation in terms of gauge-covariant operator insertions. Subsequently, we uti-
lize this approach to prove the Yangian invariance of the full one-loop expectation value.
Importantly, we find that the Yangian symmetry of Wilson loop operators heavily relies
on two features of the underlying gauge theory: first, the vanishing of the dual Cox-
eter number of the underlying Lie algebra; and second, a novel identity that we call
G-identity, basically stating that the field strength two-form vanishes when contracted
with two Lie algebra-generating vector fields.

The second part of this thesis is devoted to the study of four-dimensional fishnet
Feynman graphs, which are built from four-valent vertices that are joined by scalar
propagators. We show that these diagrams feature a conformal all-loop Yangian sym-
metry, which we phase in terms of generators annihilating these graphs as well as in
terms of inhomogeneous monodromy eigenvalue relations. The Yangian symmetry re-
sults in novel differential equations for this family of largely unsolved Feynman integrals
and we shall study their form by considering the box integral as an example.
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Zusammenfassung
Integrabilität hat sich als ein wichtiges Konzept erwiesen, um die Grenzen einer stö-
rungstheoretischen Beschreibung zu überwinden und ein tiefer gehendes Verständnis
von speziellen vierdimensionalen Quantenfeldtheorien zu erlangen. Die der Integra-
bilität zugrunde liegende algebraische Struktur ist der Yangian, welchen man als eine
unendlichdimensionale Erweiterung einer Lie Algebra auffassen kann. In der vorliegen-
den Arbeit untersuchen wir die Yang’sche Symmetrie von super Wilson Schleifen und
Fischnetz Feynman Graphen.

Im ersten Teil dieser Arbeit diskutieren wir Maldacena–Wilson Schleifen in N = 4
supersymmetrischer Yang–Mills Theorie. Unter Ausnutzung der nicht-chiralen Super-
raumbeschreibung des N = 4 supersymmetrischen Yang–Mills Modells konstruieren
wir den supersymmetrisch vervollständigten Schleifenoperator, welcher dual ist zu einer
durch den vollen AdS5×S5 Superstring beschriebenen Minimalfläche. Wir zeigen, dass
dieser Schleifenoperator sowohl globale superkonforme als auch lokale kappa Symmetrie
besitzt, wobei wir letztere zur 1/2 BPS Eigenschaft der bosonischen Maldacena–Wilson
Schleife in Beziehung setzen. Weiterhin berechnen wir den Einschleifenerwartungswert
des Operators und beweisen dessen Endlichkeit.

Anschließend beschäftigen wir uns detailliert mit der Yang’schen Symmetrie von
glatten super Maldacena–Wilson Schleifen. Wir untersuchen anhand einer generischen
Eichtheorie die verschiedenen Möglichkeiten, die Yang’schen Generatoren zu realisieren
und begründen unsere Wahl einer Darstellung in Form von eichkovarianten Opera-
toreinsetzungen. Unter Verwendung dieser Darstellung beweisen wir nachfolgend die
Yang’sche Invarianz des vollen Einschleifenerwartungswertes der super Maldacena–
Wilson Schleife. Ein wichtiges Resultat unserer Analyse ist von übergeordneter Natur
und besteht aus zwei Konsistenzbedingungen, die Aufschluss darüber geben, in welchen
Eichtheorien Wilson Schleifen integrabel sein könnten: Erstens muss die duale Cox-
eter Zahl der zugrunde liegenden Lie Algebra verschwinden, und zweitens muss das
innere Produkt des Feldstärketensors mit zwei Lie Algebra Vektorfeldern null ergeben.
Letztere Relation scheint in der Literatur nicht bekannt zu sein und wird von uns als
G-Identität bezeichnet.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Fischnetz Feynman Graphen,
welche aus viervalenten Vertizes bestehen, die durch skalare Propagatoren miteinan-
der verbunden sind. Wir zeigen, dass diese Diagramme zu allen Schleifenordnungen
eine konforme Yang’sche Symmetrie aufweisen und konstruieren explizit die Yang’schen
Generatoren, die diese Diagramme vernichten. Für Vielschleifendiagramme gelingt uns
Letzteres durch eine Umformulierung der Symmetrie in Form von Eigenwertgleichun-
gen inhomogener Monodromiematrizen, aus deren Entwicklung sich die Generatoren
ablesen lassen. Die Yang’sche Symmetrie impliziert, dass Fischnetz Integrale partielle
Differenzialgleichungen erfüllen, deren Form wir anhand des Boxintegrals illustrieren.
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1. Introduction and Motivation
In the past half-century, Yang–Mills [6] theories have clearly revolutionized our under-
standing of the world of elementary particles and their interactions. In fact, three out
of the four fundamental forces of nature — the weak nuclear force, the strong nuclear
force and the electromagnetic force — are accurately described by a unified Yang–Mills
theory with gauge group SU(3)×SU(2)×U(1), which is known as the Standard Model
of particle physics. The accuracy to which its predictions agree with high precision
measurements carried out at colliders, such as the Large Hadron Collider (LHC), is
spectacular and leaves no doubt that the Standard Model is one of the most successful
theories ever devised. Lately, also the long-sought Higgs boson has been discovered
at the LHC [7, 8], so that by now all particles that the Standard Model predicts have
been observed. Nonetheless, despite its great success in predicting the outcome of scat-
tering experiments, the Standard model is not free of flaws or inadequacies as it fails
to explain certain mysteries of nature, such as neutrino oscillations, the asymmetry of
matter and antimatter as well as what dark matter is made of. Furthermore, the model
only unifies three of the four fundamental forces and therefore lacks a description of
(quantum) gravity.

But even apart from the aforementioned conceptual problems, Yang–Mills theories in
general still pose major challenges to theoretical physicists and mathematicians. Many
of these challenges are related to the theoretical and practical limitations of our most
reliable tool of investigation in any quantum field theory — perturbation theory. For
instance, as perturbation theory requires the coupling constants to be small, large areas
of the parameter space are simply inaccessible to this method. Inherently strongly-
coupled quantum phenomena, such as quark confinement in quantum chromodynamics
(QCD), can therefore not be studied by using perturbation theory. But even within
the range of applicability, exact results for observables most often remain inaccessible
by all practical means. On the one hand, this is related to the fact that the number
of Feynman diagrams grows rapidly with both the number of loops and the number
of legs. On the other hand, also the Feynman integrals that need to be evaluated
become progressively more complex as the number of loops increases and constantly
probe (often exceed) the limits of our knowledge and methods.

One of the most promising approaches to reach a more profound understanding
of Yang–Mills theories and four-dimensional quantum field theories is to study field
theories which allow for exact results. The prime example of such a theory is N = 4
super Yang–Mills theory (N = 4 SYM) [9] with gauge group SU(N), which is the
unique maximally supersymmetric gauge theory in four dimensions and a close cousin
of QCD. Devised already in the late ’70s, the theory was soon abandoned due to its scale

13



1. Introduction and Motivation

invariance, which makes the model incompatible with particle phenomenology. New
interest in N = 4 SYM theory was triggered by one of the breakthrough discoveries of
the late ’90s: the Anti-de Sitter/Conformal Field theory (AdS/CFT) correspondence
[10–12], see, e.g. [13] for a textbook treatment. In its strongest form and applied
to the case at hand, the conjectured correspondence states that the N = 4 SYM
model has a dual description in terms of type IIB superstring theory on AdS5 × S5.
The (conformal) gauge theory lives on the four-dimensional boundary of the AdS5
space, which is conformally equivalent to four-dimensional Minkowski space. Since
the information of the string theory is conjectured to be completely encoded in the
lower-dimensional field theory, one also speaks of the holographic duality. A striking
feature of the duality is that it relates the strongly-coupled sector of the gauge theory
to the weakly-coupled sector of the string theory and vice versa. As the latter is
computationally under control using string perturbation theory, the dual description
can be used to gain novel insights into the strong-coupling regime of N = 4 SYM
theory. Another interesting aspect of the AdS/CFT correspondence is that it relates a
theory that naturally contains gravity (string theory) to a pure gauge theory. Thus, we
can also hope to learn something about the long-standing problem of quantum gravity
by studying this intriguing duality.

The renewed interest in the N = 4 SYM model that was sparked by the advent
of the AdS/CFT correspondence soon led to another groundbreaking discovery: the
integrability (exact solvability) of the planar gauge theory. The word planar refers to
a particular limit, also called ’t Hooft limit [14], which is characterized by sending the
rank of the gauge group N → ∞ while keeping the product of the (squared) Yang–
Mills coupling and number of colors λ = g2N fixed. In N = 4 SYM theory, integrable
structures were first observed in the context of the spectral problem. The spectral
problem consists of finding the anomalous scaling dimensions γ of local gauge-invariant
composite operators, which is the only dynamical information in the two-point function
of two such operators since the functional form is completely fixed by (super)conformal
symmetry

〈O(x)O(y)〉 = C

(x− y)2∆ , ∆ = ∆0 + γ . (1.1)

In the breakthrough work [15], it was shown that the one-loop spectral problem of a
certain subset of operators can be reformulated as an eigenvalue problem of an inte-
grable spin chain Hamiltonian. This result was soon generalized [16, 17] and led to
spectacular progress in the study of two-point functions, see also reference [18] for an
extensive review. The state-of-the-art method for computing the anomalous scaling
dimensions of local operators is provided by the so-called Quantum Spectral Curve
(QSC) [19,20]. The QSC allows for the extraction of scaling dimensions at any value of
the ’t Hooft coupling λ with almost unlimited precision, so that the spectral problem
can be considered as being solved.

Although the progress in applying methods of integrability to the N = 4 SYM model
has been tremendous, the field-theoretic origin of integrability still remains somewhat
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obscure. A more intuitive understanding of whyN = 4 SYM theory is integrable comes
from the AdS/CFT correspondence. The model which is dual to N = 4 SYM theory
is type IIB superstring theory on AdS5 × S5, which is a two-dimensional non-linear
sigma model on a (semi)symmetric coset space [21]. For such theories integrability is
a common phenomenon. In fact, it was shown in [22] that the equations of motion
of the non-linear sigma model can be phrased as a zero-curvature condition for a one-
parameter family of Lax connections. From this construction, an infinite number of
conserved charges follows immediately, which is a hallmark of integrability.

The appearance of an infinite number of conserved charges at strong coupling raises
the question whether similar structures are present on the field theory side of the du-
ality. Such structures have indeed been observed in N = 4 SYM theory, e.g. for the
one-loop dilatation operator [23] as well as for scattering amplitudes [24,25] and lately
also for the field equations of motion and the action [26]. At weak coupling, the in-
tegrability manifests itself as an infinite-dimensional extension of the underlying Lie
algebra symmetry of the model, which is called a Yangian. In fact, the existence of
an infinite number of hidden symmetries is what constrains the model so tightly that
exact analytic results come within reach. The Yangian therefore sits at the heart of
integrability in N = 4 SYM theory and to fully understand its role and implications
is a major desideratum. In this work, we establish and study the Yangian for Wilson
loops and fishnet Feynman graphs and we will now give a brief introduction to both
parts of this thesis.

In the first part of this work, we will be concerned with smooth Maldacena–Wilson
loops. The Maldacena–Wilson loop operator [27, 28] represents a specific generaliza-
tion of an ordinary Wilson loop operator as typically considered in generic Yang–Mills
theories. It is defined as the path-ordered exponential of the gauge field plus a scalar
term both integrated along a path γ,

WM(γ) = 1
N

tr P exp
(∫

dτ
(
ẋµAµ + ni

√
ẋ2φi

))
. (1.2)

Here, xµ(τ) parametrizes a path in Minkowski space and ni is a unit six-vector that
characterizes a point on S5. The loop operator can be defined for any closed path in
space, thus providing a huge class of gauge-invariant observables. Importantly, the
Maldacena–Wilson loop possesses a dual description in terms of strings in AdS5: At
strong coupling, the expectation value is determined by the area of the minimal surface
that ends on the contour γ at the conformal boundary of AdS5. Maldacena–Wilson
loops are thus highly natural observables to study within the context of the AdS/CFT
correspondence. Curiously, the Maldacena–Wilson loop was also the first observable
for which an exact result at finite coupling was available. In fact, two years before the
discovery of integrability it was conjectured that the expectation value of a circular
Maldacena–Wilson loop is given by a simple Bessel function 〈WM(©)〉 ∝ I1(

√
λ)/
√
λ

[29]. This result was later proven using a technique called localization [30]. The fact
that the expectation value is finite is not special to circular Wilson loops but rather
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1. Introduction and Motivation

a generic feature of Maldacena–Wilson loops depending on a smooth non-intersecting
contour.

The appeal of (Maldacena–)Wilson loops1 in N = 4 SYM theory is further raised
by an intriguing duality between Wilson loops and scattering amplitudes. Concretely,
the duality states that

lnMn = ln〈Wn〉+ const. , (1.3)

where Mn is the ratio of the planar MHV amplitude and its tree-level value and Wn is
a polygonal Wilson loop with light-like edges, which are defined through the relation
pi = xi−xi+1, cf. references [31–34]. Soon after its discovery, the duality was extended
to amplitudes of arbitrary helicity configurations by introducing chiral light-like Wil-
son loops which also couple to the fermions [35, 36].2 Motivated by an attempt to
understand the Q̄-anomaly of these chiral Wilson loops, non-chiral null Wilson loops
were constructed and studied to first order in θ̄ in [38] and later on more thoroughly
in [39, 40]. A common feature of all null-polygonal Wilson loops is that their vacuum
expectation value (VEV) is divergent due to light-like edges and cusps. These diver-
gences parallel the IR divergences of massless scattering amplitudes with which they
get in fact identified by means of the duality map [41].

The Yangian symmetry of scattering amplitudes [25] in combination with the afore-
mentioned duality makes it natural to ask whether Wilson loops could be Yangian
symmetric as well. Since divergences typically obscure certain symmetries, it is natu-
ral to begin by focusing on smooth Maldacena–Wilson loops as their expectation value
is finite, which prevents the symmetries from becoming anomalous. Further support
for this approach comes from strong coupling as the string sigma model is known to
be integrable. On the downside, it is clear that the Maldacena–Wilson loop as stated
above does not even respect all superconformal symmetries of N = 4 SYM theory
because the operator couples only to the bosonic fields of the model. It is therefore
most likely that the Maldacena–Wilson loop operator must first be lifted to a fully
supersymmetric operator before the challenge of exposing its non-local symmetries can
be attempted.

Indeed, in reference [1] as well as in the authors’ master’s thesis [42] it was shown that
bosonic Maldacena–Wilson loops do not possess Yangian symmetry at weak coupling.
Instead, one needs to consider the supersymmetric completion of this loop operator,
which we constructed through quadratic order in an expansion in the anticommuting
Graßmann variables. Subsequently, the one-loop expectation value of the supersym-
metrized loop operator was demonstrated to be Yangian invariant to leading order in
the Graßmann expansion. Here, we aim at completing this analysis. We begin by
reviewing the N = 4 non-chiral superspace formulation of the N = 4 SYM model,
thereby laying the foundations for the definition of the full super Maldacena–Wilson
loop. Importantly, the N = 4 non-chiral superspace is an on-shell superspace in the

1For light-like contours, the Maldacena–Wilson loop reduces to the ordinary Wilson loop.
2Note that in reference [37] it was pointed out that the generalized duality might actually be spoiled

due to subtle anomalies on the Wilson loop side.
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sense that the superspace constraints imply the equations of motion for the fields.
While at first sight this feature seems to be in tension with quantization, we show how
to establish one-loop perturbation theory within this framework and derive various
Graßmann exact free two-point functions. Subsequently, we shall define the full super
Maldacena–Wilson loop as a loop operator in non-chiral superspace. Interestingly, the
classical operator has a local fermionic symmetry, which in spirit is very close to kappa
symmetry of string theory. We expose this symmetry and clarify the relation to the
1/2 BPS property of the bosonic Maldacena–Wilson loop. The remaining part of the
chapter is devoted to establishing the one-loop expectation value of the operator and
discussing its superconformal symmetries. With the super Maldacena–Wilson loop es-
tablished, we then turn to an investigation of its non-local symmetries. In contrast to
the path-derivative approach pursued in reference [1], we argue for a formulation of
the Yangian generators in terms of gauge-covariant field insertions. This definition will
then be shown to pass various algebraic consistency checks before we use it to prove
the Yangian invariance of the super Maldacena–Wilson loop at the one-loop level and
to all orders in the Graßmann expansion. The Yangian symmetry of super Maldacena–
Wilson loops is backed up by an investigation at strong coupling in which the Yangian
symmetries of minimal supersurfaces were derived from the integrability of the non-
linear sigma model that describes the full-fledged AdS5 × S5 superstring. This result
was obtained in a parallel line of research and published in [43–45].

Although N = 4 SYM theory is arguably the simplest interacting gauge theory in
four dimensions, the model is not simple on an absolute scale. To better understand
the origins and implications of Yangian symmetry in four-dimensional field theories, it
would be advantageous to have easier models which still display integrability. Recently,
such a class of theories was constructed [46] by studying a particular class of double-
scaling limits of the γi-deformed N = 4 SYM model [47, 48]. The simplest of these
models is a theory with just two scalars interacting via a specific four-valent vertex.
Besides being conformal and integrable in the large-N limit [4,5,46,49–51], this theory
has the remarkable feature that all its non-vanishing planar single-trace correlators are
in one-to-one correspondence with a single Feynman diagram of fishnet type. These
fishnet graphs correspond to scalar high-loop Feynman integrals, which play an impor-
tant role also beyond the above-mentioned context. The pairing of integrability and
single-graphness potentially provides us with unique opportunity to use integrability
to compute this family of largely unsolved scalar Feynman integrals and we shall here
take the first step and expose their infinite-dimensional symmetry algebra.

We begin by reviewing the relation between the γi-deformed N = 4 SYM model
and the bi-scalar model that generates these graphs. Subsequently, we shall investi-
gate the local and non-local symmetries of four-dimensional fishnet diagrams using the
language of Lie algebra and Yangian generators. In this context, we will explicitly
demonstrate that the cross integral and the double-cross integral feature a conformal
Yangian symmetry with non-trivial evaluation parameters. Further progress concern-
ing exposing the symmetry is achieved by phrasing the Yangian symmetry in terms of
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1. Introduction and Motivation

monodromy eigenvalue relations for these graphs. This will allow us to demonstrate
the Yangian symmetry of generic high-loop fishnet Feynman integrals by using simple
graphical arguments. The Yangian symmetry results in novel differential equations for
these integrals as will be illustrated on the example of the cross integral. Finally, we
study on-shell limits of fishnet Feynman graphs and clarify the relation between the
Yangian symmetry and the conformal/dual conformal symmetry of theses graphs.

We conclude by giving a brief summary of the results that have been obtained and
comment on their impact.
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2. Symmetry, Field Theory and
Wilson Loops

The aim of this chapter is to provide an introduction to the fundamental concepts and
objects which are relevant for this thesis. The first part of this chapter is devoted to
algebraic preliminaries. We shall start by introducing the conformal algebra as well as
its superconformal extension. Subsequently, we define an important algebraic structure:
the Yangian algebra. In the second part of this chapter, we discuss the component
formulation of the N = 4 SYM model and introduce one of the most interesting
observables in a gauge theory, the Wilson loop operator. The focus in this latter part
lies on the Wilson loop with scalar extension, which is called the Maldacena–Wilson
loop. It represents one of the central objects that we shall investigate in this thesis.
The presentation here is in parts based on that in the authors’ master’s thesis [42] and
the one in [45]. Further references will be cited in the sections below.

2.1. Symmetry
Symmetry is one of the most important concepts in theoretical physics. It can not
only serve as a guiding principle for the construction of new theories and objects but is
often also invaluable with respect to finding the solution to a given problem. Symmetry
and in particular Yangian symmetry is in fact also the main theme of this thesis and it
therefore seems fitting to begin our discussion by introducing the algebraic foundations
of conformal symmetry and Yangian symmetry.

2.1.1. Conformal Symmetry
In this section, we discuss conformal transformations of flat four-dimensional Minkowski
space R1,3 with metric ηµν = diag(1,−1,−1,−1). Conformal transformations are by
definition transformations xµ → x′µ which leave the metric tensor invariant up to a
local scaling factor

∂x′ρ

∂xµ
∂x′σ

∂xν
ηρσ = Ω2(x) ηµν , (2.1)

where Ω(x) denotes an arbitrary smooth function. Conformal transformations thus
preserve angles, while lengths are generically altered. In what follows, we shall discuss
conformal transformations from the infinitesimal point of view as well as from the
viewpoint of finite transformations.
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2. Symmetry, Field Theory and Wilson Loops

Infinitesimal transformations. We begin by focusing on infinitesimal conformal trans-
formations. In order to determine the form of the most general conformal transforma-
tion, we make the ansatz x′µ = xµ + ξµ(x). Plugging this ansatz into the defining
equation (2.1) and expanding

Ω(x) ≈ 1 + σ(x) , (2.2)

yields the conformal Killing equation, which explicitly reads

∂µ ξν + ∂ν ξµ = 1
2 (∂ · ξ) ηµν . (2.3)

Note that in the above equation we have already taken the trace in order to express
the function σ(x) in terms of the vector ξµ, i.e. σ(x) = 1/4 (∂µξµ). It is easy to show
that the most general solution to this equation is given by

ξµ(x) = −aµ + ωµν x
ν − λxµ + 2 (b · x)xµ − bµ x2 , ωµν = −ωνµ . (2.4)

The first two terms correspond to infinitesimal translations and Lorentz transforma-
tions, while the latter represent infinitesimal scale transformations and special confor-
mal transformations. On general grounds, it is clear that the vector fields ξ = ξµ∂µ
form a Lie algebra with the Lie bracket given by the vector field commutator. In what
follows, we shall refer to it as the conformal algebra. To study this Lie algebra, we
introduce the following convenient basis

ξ = ξµ∂µ = aµPµ + 1
2ω

µνLµν + λD + bµKµ , (2.5)

where

Pµ = −∂µ (translations) ,
D = −xµ∂µ (dilatations) ,
Lµν = − (xµ∂ν − xν∂µ) (Lorentz transformations) ,
Kµ = 2xµxν∂ν − x2∂µ (special conformal transformations) . (2.6)

These generators obey the following algebra relations:

[Lµν ,Lρσ] = ηµρLνσ + ηνσLµρ − ηµσLνρ − ηνρLµσ ,
[Lµν ,Pλ] = ηµλPν − ηνλPµ , [D,Kµ] = −Kµ ,

[Pµ,Kν ] = 2ηµνD− 2Lµν , [D,Pµ] = Pµ ,

[Lµν ,Kρ] = ηµρKν − ηνρKµ . (2.7)

All the remaining commutators vanish. One can show that the Lie algebra defined by
the above commutation relations is isomorphic to the Lie algebra so(2, 4). For this
reason, we will refer to the conformal algebra as so(2, 4).
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2.1. Symmetry

Finite transformations. In the above, we have seen that infinitesimal conformal
transformations form a Lie algebra. For this reason, there exists a clear conceptual
pathway for obtaining finite conformal transformations, which goes under the name
of exponentiation [52]. However, since we will be mainly concerned with infinitesimal
transformations in this thesis, we refrain from discussing this method here in detail
and merely state the final result. Exponentiating the infinitesimal transformations in
equation (2.6) yields

x′µ = xµ − aµ (translations) ,
x′µ = Λµ

ν x
ν (Lorentz transformations) ,

x′µ = αxµ (dilatations) ,

x′µ = xµ − cµ x2

1− 2 (c · x) + c2 x2 (special conformal transformations) . (2.8)

An important point to note is that only those group elements belonging to the con-
nected component of the identity can be reached by exponentiation. Quite often it is
completely sufficient to focus on the connected component of the (symmetry) group,
but when dealing with the conformal group it is convenient to additionally take into
account one further element, which is called the conformal inversion. This discrete
transformation is defined by

Ib[xµ] = xµ

x2 , (2.9)

and does, due to the absence of an infinitesimal analogue, not belong to the identity-
connected component of the conformal group. An important feature of the conformal
inversion is that it relates translations and special conformal transformations. More
precisely, a special conformal transformation can be represented as an inversion, fol-
lowed by a finite translation with shift vector −cµ, followed by another inversion

(Ib ◦ T−c ◦ Ib) [xµ] =
xµ

x2 − cµ(
xν

x2 − cν
) (

xν
x2 − cν

) = xµ − cµ x2

1− 2 (c · x) + c2 x2 . (2.10)

At this point, let us note an important consequence of the relation given above: The
conformal invariance of a Poincaré-invariant quantity follows trivially if the considered
quantity is invariant under inversion. In practice, one therefore considers quite often
the conformal inversion instead of the more complicated conformal boosts.

A common feature of all conformal transformations is that their Jacobian is up to a
scaling factor a local Lorentz transformation/rotation

∂x′µ

∂xν
= Ω(x)Oµ

ν(x) , with det
(
∂x′

∂x

)
= Ω(x)4 . (2.11)

Note that this is in complete agreement with the defining equation (2.1). For trans-
lations, Lorentz transformations and dilatations the above-stated property is obvious.
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2. Symmetry, Field Theory and Wilson Loops

For conformal boosts, it follows from considering the conformal inversion for which one
finds

∂x′µ

∂xν
= 1
x2

(
δµν −

2xµxν
x2

)
, Ω(x) = 1

x2 , Oµ
ν = δµν −

2xµxν
x2 . (2.12)

Finally, let us point out that the inversion can also assist in constructing represen-
tations of the conformal algebra. From equation (2.10), which relates elements of the
conformal group, we infer the following algebra relation

Kµ = Ib ◦ Pµ ◦ Ib . (2.13)

This notation is slightly imprecise but is frequently used. What it means is that the
conformal boost generators can be replaced by the sequence Ib ◦Pµ ◦ Ib when applied to
an element of the vector space on which they act. Given the action of the inversion, it
is thus a straightforward exercise to find the generators Kµ. The remaining conformal
generators then follow by computing commutators, see the algebra relations (2.7). This
concludes the discussion of finite conformal transformations.

Transformation of the fields. So far our considerations were entirely of geometrical
concern as we discussed the action of conformal transformations on points in Minkowski
space. To make contact to field theory, we first need to discuss the action of confor-
mal transformations on the fields. We will do this following to a certain extend the
presentation in references [53,54] and the one in [55].

Contrary to the approach pursued above, we shall begin our discussion by consider-
ing finite conformal transformations from which we shall then derive the infinitesimal
transformation laws. Under a finite conformal transformation, a field φM of arbitrary
spin-tensor structure transforms as

φM(x)→ φ′M(x′) = Ω(x)−∆R[Oµ
ν(x)]MNφ

N(x) . (2.14)

Here, ∆ is the scaling dimension of the field φM and R[Oµ
ν(x)] denotes the represen-

tation of the Lorentz transformation Oµ
ν(x) (2.11) that acts on the vector space of the

fields φM . For a scalar field with scaling dimension ∆ = 1, the above equation reduces
to

φ′(x′) =
∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−1/4

φ(x) , (2.15)

where we have used equation (2.11) to express the function Ω(x) in terms of the Ja-
cobian of the transformation. Fields or operators transforming according to equation
(2.14) are called primary fields/operators. Every operator in a conformal field theory
(CFT) which is not primary is either a descendant operator or can be expressed as a
linear combination of primaries and descendants. Descendants are primary operators
to which momentum generators have been applied, i.e. derivatives of primary opera-
tors. Since their transformations follow from the relations presented above, one usually
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2.1. Symmetry

focuses on primary operators and so do we in this work. Given the finite transforma-
tion laws (2.14) and (2.15), let us now derive the action of the generators on the fields.
For this, we consider the difference of the transformed field and the original one both
evaluated at position x,

δξφ
M = φ′M(x)− φM(x) . (2.16)

By expanding equation (2.14) for an infinitesimal transformation of the form x′µ =
xµ + ξµ(x), we obtain

δξφ
M = −ξµ∂µφM(x)− ∆

4 (∂ · ξ)φM(x)− 1
2(∂[µξν])(Σµν)MNφ

N(x) , (2.17)

where the square brackets denote antisymmetrization including a factor of 1/2. Here,
we have already used the Killing equation (2.3) to express the function σ(x) that
appears in the expansion of Ω(x) as a function of the Killing vectors ξµ. The Σµν-
matrices form a representation of the Lorentz algebra: For scalars we have Σµν = 0,
while vector fields transform under the representation (Σµν)ρσ = 2ηρ[µδν]

σ . In order to
obtain the representation of the generators on the fields, we plug in the explicit form
of the Killing vectors (2.4) and compare equation (2.17) to the defining relation (2.5).
This yields

Pµ φM = ∂µ φ
M ,

DφM = (xµ∂µ + ∆)φM ,

Lµν φM = (xµ∂ν − xν∂µ)φM + (Σµν)MN φ
N ,

Kµ φ
M = (x2∂µ − 2xµxν∂ν − 2∆xµ)φM − 2xν(Σµν)MN φ

N . (2.18)

Note the extra minus signs appearing in front of the differential operator terms com-
pared to equation (2.6). These signs are necessary in order to ensure that the generators
of field transformations satisfy the same algebra relations as the generators in the co-
ordinate representation (2.6). For a more detailed discussion on this point see section
5.1.1. Having set the stage, we are now ready to discuss the implications of conformal
symmetry.

Implications of conformal symmetry. Correlations functions in a CFT obey rela-
tions due to conformal symmetry. These are especially tight for two- and three-point
functions of scalar primary operators as their functional form is completely fixed by
conformal symmetry. In what follows, we shall briefly review the implications of con-
formal symmetry on correlation functions. For convenience, we shall employ the path
integral formulation of the underlying field theory. Note, however, that the derived
relations are valid in any CFT independent of whether or not the theory admits a
description in terms of an action. For an exhaustive discussion on the implications of
conformal symmetry the reader is referred to the textbook [55].
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2. Symmetry, Field Theory and Wilson Loops

As before, we begin by focusing on finite conformal transformations. Let φ be a
collection of scalar primary fields with conformal dimensions ∆ and S[φ] be short for
the action of the underlying theory which we assume to be conformally invariant. Using
the path integral formulation, an n-point Greens function can be expressed as

Gn(x1, . . . , xn) = 〈φ1(x′1) . . . φn(x′n)〉 = 1
Z

∫
[Dφ] φ1(x′1) . . . φn(x′n) eiS[φ] , (2.19)

where Z is the vacuum functional. For simplicity, we shall assume that the coordinates
x′i are all different and that the Green’s functions are finite. Relabeling the integration
variables and using equation (2.14) yields

〈φ1(x′1) . . . φn(x′n)〉 = 1
Z

∫
[Dφ′] φ′1(x′1) . . . φ′n(x′n) eiS[φ′]

= 1
Z

∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−∆1/4

x=x1

. . .

∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−∆n/4

x=xn

∫
[Dφ] φ1(x1) . . . φn(xn) eiS[φ] . (2.20)

Here, we have used that the transformation leaves both the action and the measure
invariant, i.e.

S[φ′] = S[φ] , [Dφ′] = [Dφ] . (2.21)

The correlators thus satisfy the following identity:

〈φ1(x1) . . . φn(xn)〉 =
∣∣∣∣∣∂x′∂x

∣∣∣∣∣
∆1/4

x=x1

. . .

∣∣∣∣∣∂x′∂x

∣∣∣∣∣
∆n/4

x=xn
〈φ(x′1) . . . φ(x′n)〉 . (2.22)

Note that the above relations hold for any correlation function of scalar primary oper-
ators. Whether the operators are fundamental fields in the sense of the path integral
or composite objects does not play a role.

The infinitesimal analogs of the equations (2.22) are called conformal Ward identities.
These can be derived as follows. Consider, for example, a dilatation, which acts on the
coordinates as x′ = eλx. Under such a transformation, a Green’s function transforms
according to

Gn(x1, . . . , xn) = eλ(∆1+...+∆n)Gn(eλx1, . . . , e
λxn) . (2.23)

Taking the derivative with respect to λ and setting λ = 0 yields
n∑
i=1

(
xµi

∂

∂xµi
+ ∆i

)
Gn(x1, . . . , xn) = 0 . (2.24)

This is the Ward identity for dilatations for correlators of primary fields. In a com-
pletely similar manner one can derive Ward identities for the other conformal genera-
tors. Denoting the conformal generators (2.18) by Jδ, we can summarize the conformal
Ward identities as

n∑
i=1

〈
φ1(x1) . . . (Jδiφi)(xi) . . . φn(xn)

〉
= 0 . (2.25)
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2.1. Symmetry

The Ward identities have severe consequences for the functional form of correlation
functions. In particular, two- and three-point functions are heavily constrained by
conformal symmetry. As we will employ a similar logic later on in order to obtain
two-point functions of superfields, let us examine in detail how conformal symmetry
can be used to fix these correlation functions. For this, we consider the correlator of
two scalar primary fields

G2(x1, x2) = 〈φ1(x1)φ2(x2)〉 . (2.26)

From invariance under Poincaré transformations we deduce that the two-point function
must be a function of the variable x2

12 := (x1 − x2)2. Taking into account the scaling
identity (2.23), we find that the two-point correlator has to be of the following form

G2(x1, x2) = c12

(x2
12)

∆1+∆2
2

, (2.27)

where c12 is an undetermined constant, which reflects the normalization of the two-point
function. What remains is to exploit the consequences of conformal boost symmetry.
Instead of studying special conformal transformations directly, we again focus on the
inversion

G2(x1, x2) = (x2
1)−∆1(x2

2)−∆2 G2

(
x1

x2
1
,
x2

x2
2

)
. (2.28)

By inserting the result (2.27) into the former equation we learn that the conformal
dimensions of the two operators have to coincide, i.e. ∆1 = ∆2 = ∆. If the conformal
dimensions are different, the two-point correlator vanishes. Thus, we deduce that

G2(x1, x2) = c12

(x2
12)∆ , for ∆1 = ∆2 = ∆ . (2.29)

The functional form of the two-point function is obviously completely fixed. The
only dynamically determined quantities are the scaling dimensions ∆. For three-point
functions of scalar operators the situation is similar. The same reasoning as employed
above leads us to the conclusion that

G3(x1, x2, x3) = c123

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1
2

, (2.30)

where c123 is a so-called structure constant. At four points, the impressive performance
of conformal symmetry stops. Indeed, with four points or more one can construct
conformal invariants in the form of cross-ratios, which in general read

x2
ijx

2
kl

x2
ikx

2
jl

. (2.31)

From the point of view of conformal symmetry, the n-point function may have an
arbitrary dependence on these ratios and is thus not fixed by conformal covariance.
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2.1.2. Superconformal Symmetry
In this section, we discuss the N = 4 supersymmetric extension of the conformal
algebra. For a general introduction to supersymmetry the reader is referred to the
textbooks [56, 57]. A more formal introduction to Lie superalgebras can be found
in [58]. For more information on the particular extension to be discussed below see
also [59].

In general, superconformal algebras are Lie superalgebras which contain the confor-
mal algebra so(2, 4) ' su(2, 2) as a subalgebra but which have additional odd gen-
erators that map bosonic fields to fermionic ones and vice versa. These algebras are
denoted as su(2, 2|N ), where N is related to the number Poincaré supercharges. Since
the supercharges carry spinor indices, it is convenient to use spinor indices for the
conformal generators as well. Spinor indices can be introduced by contracting the con-
formal generators with the four-dimensional sigma matrices σµ and σ̄µ, see appendix
A.1 for our conventions. More precisely, we define

Pαα̇ = Pµσ
µ
αα̇ , Lαβ = −1

2Lµν(σµν)βα ,
Kα̇a = Kµσ̄α̇αµ , L̄α̇β̇ = 1

2Lµν(σ̄µν)α̇β̇ . (2.32)

Translating the commutation relations (2.7) into spinor language is a straightforward
exercise although a bit tedious. For completeness, let us restate them here. The
commutation relations involving rotations can be conveniently phrased by noting that
their form does only depend on the spinor indices and their position. Indeed, the
indices of any generator J transform canonically according to[

Lαβ, Jγ
]

= −2δγβJα + δαβJγ ,
[
Lαβ, Jγ

]
= 2δαγ Jβ − δαβJγ ,[

L̄α̇β̇, Jγ̇
]

= −2δγ̇
β̇
Jα̇ + δα̇β̇Jγ̇ ,

[
L̄α̇β̇, Jγ̇

]
= 2δα̇γ̇ Jβ̇ − δα̇β̇Jγ̇ . (2.33)

For the commutator of translations and conformal boosts, we find[
Pββ̇,Kα̇α

]
= 2δα̇β̇Lαβ + 2δαβ L̄α̇β̇ + 4δα̇β̇ δ

α
βD . (2.34)

As before, the dilatation generator D acts diagonally on all basis elements of the con-
formal algebra, i.e. [

D, J
]

= dim(J) J , (2.35)

with

dim(P) = − dim(K) = 1 , and dim(L) = − dim(L̄) = 0 . (2.36)

As mentioned above, we are interested in the N = 4 supersymmetric extension of the
conformal algebra. To obtain this algebra, we supplement the conformal algebra by four
pairs of Poincaré supercharges Qαa and Q̄b

α̇ with a, b = 1, . . . , 4 being an index which
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enumerates these pairs. These generators commute with the generator of translations
and their anticommutator is given by{

Qαa, Q̄b
α̇

}
= 2δbaPαα̇ . (2.37)

Under Lorentz transformations, the supercharges transform according to (2.33) and it
follows immediately from (2.37) that they have half the dimension of the momentum
generator, i.e.

dim(Q) = dim(Q̄) = 1
2 . (2.38)

The additional Latin index that is carried by the supercharges gives rise to a further set
of bosonic generators, which are called R-symmetry generators. Under an R-symmetry
transformation, the supercharges get rotated into each other, while the bosonic gen-
erators stay unaffected. In analogy to the case of spacetime rotations (2.33), the R-
symmetry generators act on an arbitrary basis element of the algebra by transforming
the index according to[

Ra
b, Jc

]
= −2δcbJa + 1

2δ
a
b Jc ,

[
Ra

b, Jc
]

= 2δacJb − 1
2δ
a
b Jc . (2.39)

The above commutation relations show that the trace ∑Ra
a vanishes, so that we have

in total fifteen linearly independent generators which form an su(4) ' so(6) algebra. An
additional set of odd charges arises from commuting the generators of supertranslations
with the conformal boost generator Kα̇α,[

Qβb,Kα̇α
]

= −2δαβ S̄α̇b ,
[
Q̄b

β̇,Kα̇α
]

= −2δα̇β̇Sbα . (2.40)

We shall refer to the elements S and S̄ as the generators of superboosts. The naming
serves the purpose of indicating that these generators are related to K in the same way
as the Poincaré supercharges are related to P,{

Saα, S̄β̇ b
}

= −2δabKβ̇α . (2.41)

The superboost generators thus have half the dimension of Kα̇α, i.e.

dim(S) = dim(S̄) = −1
2 . (2.42)

Finally, let us note the remaining non-vanishing commutators. In analogy to (2.37),
we have [

Pαα̇, Sbβ
]

= +2δβαQ̄b
α̇ ,

[
Pαα̇, S̄β̇ b

]
= +2δβ̇α̇Qαb . (2.43)

For the anticommutators of supertranslations and superboosts, one finds{
Qαa, Sbβ

}
= −2δbaLβα + 2δβαRb

a − 2δbaδβα(D− C) ,{
Q̄a

α̇, S̄β̇ b
}

= −2δab L̄β̇ α̇ − 2δβ̇α̇Ra
b − 2δab δ

β̇
α̇(D + C) . (2.44)
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Here, C is the central charge of the superconformal algebra su(2, 2|4), which commutes
with all the other generators. If the central charge C is absent, the algebra is denoted
by psu(2, 2|4). Conversely, we can also promote the algebra su(2, 2|4) to u(2, 2|4). This
is achieved by adding the hypercharge generator B to su(2, 2|4). The hypercharge
generator is diagonal in the chosen basis, i.e.[

B, J
]

= hyp(J) J , (2.45)

with the non-vanishing hypercharges given by

hyp(Q̄) = − hyp(Q) = hyp(S) = − hyp(S̄) = 1
2 . (2.46)

This concludes our formal discussion of the N = 4 supersymmetric extension of the
conformal algebra.

A natural question that arises is how the superconformal algebra can be represented
in terms of vector fields, cf. equation (2.6). Constructing such a representation is in
general a quite difficult task. In fact, the odd generators require the introduction of
anticommuting coordinates, which together with the coordinates of Minkowski space
form a superspace. We shall introduce this space in chapter 3, thereby laying the foun-
dations for a detailed discussion of the superspace representation of the superconformal
algebra in section 4.2.2.

2.1.3. Yangian Symmetry
A common feature of many integrable models is the appearance of an infinite-dimen-
sional symmetry algebra of Yangian type. In general, the Yangian can be viewed as
an extension of an underlying Lie algebra symmetry and as such it was introduced
by Drinfel’d in references [60, 61]. It represents one of the central algebraic structures
underlying the quantum inverse scattering method (QISM) [62, 63], which forms the
foundation for a set of tools that have proven to be incredibly useful when analyzing
quantum integrable systems.

The most common occurrence of Yangian symmetry is within models which are at
most two-dimensional. These can be discrete, e.g. spin chain models, or continuous,
such as two-dimensional sigma models. One reason why Yangian symmetry is mainly
restricted to one- and one-plus-one-dimensional models is that the definition of the Yan-
gian requires an ordering prescription, which is typically absent in higher-dimensional
theories. It is thus remarkable that Yangian symmetry has been encountered within the
class of four-dimensional gauge theories, namely for N = 4 SYM theory. Most promi-
nently, Yangian symmetry has been detected for the spectral problem of local gauge-
invariant operators [15, 16, 23, 64, 65] as well as for the tree-level S-matrix [25, 66–71].
The appearance of the Yangian in N = 4 SYM theory is intimately related to the
large-N limit or planar limit [14]. This becomes most transparent within the context
of tree-level scattering amplitudes. Only in the large-N limit single-trace structures
become dominant and the order of fields is unambiguously1 determined in terms of

1More precisely, the position is unambiguous modulo cyclic shifts.
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their position within the matrix product that spans the color trace. We shall come
back to this point in section 5.1.2.

Below, we give a brief and pedagogical introduction to the so-called first realization
of the Yangian [60, 61], thereby laying the foundations for our discussion of Yangian
symmetry of super Wilson loops and fishnet Feynman graphs. Later on, we shall also
encounter the so-called RTT realization, which is related to the QISM. However, as
this formulation of the Yangian becomes only relevant in chapter 6, we shall introduce
it there. Our presentation is based on references [42,45,72–74].

Preliminaries. Let g be a simple finite-dimensional Lie algebra2 with structure con-
stants f δρκ and generators Jδ, i.e.

[Jδ, Jρ] = f δρκJκ , [Jδ, [Jρ, Jκ]] + cyclic = 0 . (2.47)

Importantly, there is a priori no associative product operation in a Lie algebra. The
only product is the abstract Lie bracket. Products of two arbitrary elements, such as
x ? y, are thus undefined unless we are working in a representation, which specifies the
action of Lie algebra elements on some vector space V . Regarding the construction
of the Yangian this puts us in a slightly inconvenient position as the definition of the
Yangian naturally requires such a product. In order to define the Yangian in complete
generality, one therefore needs to rely on the concept of the universal enveloping al-
gebra, which is, simply speaking, an embedding of a Lie algebra into a much bigger
associative algebra such that the abstract bracket operation in g corresponds to the
commutator x ? y− y ? x. However, we refrain from introducing the universal envelop-
ing algebra and instead content ourselves with working in a representation so that the
product of Lie algebra elements is well-defined. For the moment, we do not specify the
representation of the underlying Lie algebra, but we shall argue in section 5.1.2 that
the field representation is in fact the most natural one for defining the Yangian.

Before we can define the Yangian, we need to introduce a symmetric bilinear form
on the Lie algebra, i.e. we need to define a metric that we can use to raise and lower Lie
algebra indices. A convenient choice for such a symmetric bilinear form is the Killing
form, which is defined as

K(x, y) = tr
(
ad(x) ad(y)

)
, x, y ∈ g , (2.48)

where ad(x) denotes a Lie algebra element in the adjoint representation. Evaluated on
basis elements, the Killing form reads

Kδρ = K(Jδ, Jρ) = tr
(
ad(Jδ) ad(Jρ)

)
= f δκσ f

ρσ
κ . (2.49)

Unfortunately, the Killing form vanishes for certain superalgebras including psu(2, 2|4).
We thus cannot use it to raise and lower indices of the superconformal structure con-
stants. Fortunately, any non-degenerate symmetric bilinear form will do the job and

2For reasons of clarity, we shall assume all the generators to be bosonic. The generalization to the
case of a superalgebra is straightforward, see, for example, reference [25].

29



2. Symmetry, Field Theory and Wilson Loops

we can thus simply pick the trace in the fundamental representation

gδρ = g(Jδ, Jρ) = tr
(
M [Jδ]M [Jρ]

)
. (2.50)

For a simple Lie algebra, there is after all not much difference because in this case all
symmetric bilinear forms are proportional to the Killing form, i.e. gδρ = cKδρ. As the
metric (2.50) is non-degenerate by assumption, its inverse exists and we will denote it
by gδρ. Using this metric, we can now raise and lower algebra indices, for example

f δρκ = gρσ f
δσ
κ . (2.51)

Having set out the framework, we are now ready to define the Yangian algebra.

Definition of the Yangian algebra. The Yangian algebra Y [g], as it was introduced
by Drinfel’d [60, 61], is defined as the algebra which is generated by the Lie algebra
generators Jδ and a second set of generators Ĵδ obeying the following commutation
relations:

[Jδ, Jρ] = f δρκJκ , [Jδ, Ĵρ] = f δρκ Ĵκ . (2.52)

The generators Ĵδ are typically called level-one generators for reasons that will become
clear momentarily. From the above commutation relations two sets of Jacobi identities
follow. However, a third Jacobi-like identity is quantum deformed to the following
Serre relation:3

[Ĵρ, [Jκ, Ĵδ]] + [Ĵδ, [Jρ, Ĵκ]] + [Ĵκ, [Jδ, Ĵρ]] = 1
4 f

ρσ
ωf

κα
βf

δγ
εfσαγ J(ωJβJε) . (2.53)

For g = su(2), this relation has to be replaced by another relation which is otherwise
implied, see reference [73]. Using the commutation relations (2.52), it is straightforward
to rewrite the Serre relation in the following way:

f [ρκ
σ[Ĵδ], Ĵσ] = 1

12 f
ρσ
ωf

κα
βf

δγ
εfσαγ J(ωJβJε) . (2.54)

As opposed to the more familiar case of Lie algebras, the above relations do not com-
pletely specify the commutation relations of all generators. To see this, let us note that
the commutator of two level-one generators does not lie in the span of g ⊕ {Ĵδ} but
rather yields a new generator, which is called a level-two generator. Denoting J = J(0)

and Ĵ = J(1), we define an element of grade two by the relation

Jδ (2) = 1
2cf

δ
ρκ[Jκ (1), Jρ (1)] . (2.55)

Here, c is the dual Coxeter number, which is defined as

f δρκf
κρ
σ = 2cδδσ . (2.56)

3The brackets denote symmetrization or antisymmetrization of the enclosed indices. More precisely,
we define X(i1...in) = 1

n!
∑
σ∈Sn Xiσ(1)...iσ(n) and X[i1...in] = 1

n!
∑
σ∈Sn sign(σ)Xiσ(1)...iσ(n) .
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The commutator between two level-one generators can then be expressed as

[Jδ (1), Jρ (1)] = f δρκJκ (2) +Xδρ , (2.57)

with f δρκXκρ = 0. Plugging the above form of the commutator into the Serre relation
(2.54) yields

f [ρκ
σX

δ]σ = 1
12 f

ρσ
ωf

κα
βf

δγ
εfσαγ J(ωJβJε) , (2.58)

where we have used that the term which includes the level-two generator vanishes due
to the Jacobi identity. It may happen that for some level-zero representations the
right-hand side of the above equation vanishes. In these cases the commutator closes
with X = 0. Conversely, if the right-hand side does not vanish, X has to be chosen
such that the Serre relation (2.58) is fulfilled. The form of the commutator of two
level-one generators is thus non-universal but nevertheless completely determined by
the Serre relation [73]. The procedure described above can be iterated leading to an
infinite tower of Yangian generators which are organized into levels. The structure of
the Yangian is in fact very reminiscent of the structure of a loop algebra g[u], which is
spanned by the generators J(n) = unJ obeying

[Jδ (n), Jρ (m)] = f δρκJκ (n+m) . (2.59)

And indeed, the Yangian can be understood as a deformation of this algebra.
An important aspect of the Yangian is that it possesses the structure of a Hopf

algebra. In particular, this means that it can be equipped with a comultiplication
operation ∆ : Y (g)→ Y (g)⊗ Y (g). On basis elements, the coproduct acts as

∆(Jδ) = Jδ ⊗ 1 + 1⊗ Jδ ,
∆(Ĵδ) = Ĵδ ⊗ 1 + 1⊗ Ĵδ + 1

2 f
δ
ρκ Jκ ⊗ Jρ . (2.60)

The coproduct is consistent with the commutation relations (2.52) as well as with the
Serre relation (2.53). In fact, the latter follows from demanding that the coproduct
furnishes an algebra morphism, see [75]. The main purpose of the coproduct is to define
tensor products of representations, i.e. given a one-site representation, the coproduct
determines the action of the generators on a multi-site space. More precisely, the action
of the generators on the tensor product of n fields is determined by ∆n−1(J),

∆n−1(Jδ) =
n∑
k=1

Jδk , ∆n−1(Ĵδ) =
n∑
k=1

Ĵδk + 1
2f

δ
ρκ

n∑
i<j=1

Jκi J
ρ
j . (2.61)

Note that there is no ambiguity in the above relations as the coproduct is coassociative,
i.e. (1⊗∆)∆ = (∆⊗1)∆. This concludes our discussion on the definition of the Yangian
algebra.
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Representations of the Yangian. A natural question that arises is how the level-one
generators can be represented. More precisely, we need to define how the level-one
generators act on a single site. In general, finding representations of the Yangian is a
rather difficult task. In fact, we will only cover the simplest case here and that is when
a representation of a Lie algebra can be lifted to a representation of the corresponding
Yangian. This representation is called evaluation representation and it is given by

Ĵδ = vJδ . (2.62)

The level-one generators are chosen to be proportional to the corresponding Lie algebra
generators with v being the spectral parameter or evaluation parameter. The so-
defined level-one generators clearly satisfy the commutation relation (2.52). Moreover,
we observe that the left-hand side of the Serre relation (2.54) vanishes trivially due
to the Jacobi identity. However, whether the right-hand side of the Serre relation
vanishes depends on the considered Lie algebra representation. Hence, we conclude
that the above-described prescription leads to a valid representation of the Yangian
if and only if the right-hand side of equation (2.54) vanishes in the representation
under consideration. This criterion was investigated in [65] for certain representations
of su(N), u(N |M) as well as psu(2, 2|4). Given the one-site representation (2.62),
the multi-site action of the generators follows immediately by repeatedly applying the
coproduct rule (2.60),

Jδ =
n∑
k=1

Jδk , Ĵδ =
n∑
k=1

vkJδk + 1
2f

δ
ρκ

n∑
i<j=1

Jκi J
ρ
j . (2.63)

Here, we have dropped the coproduct symbol as is frequently done in the literature.
Although the evaluation representation is quite special, it has a wide range of applica-
tions in N = 4 SYM theory. In particular, the planar one-loop dilatation operator [23]
as well as color-ordered scattering amplitudes [25] transform in the (trivial) evaluation
representation of the Yangian.

2.2. N = 4 Super Yang–Mills Theory
In this section, we introduce the N = 4 SYM model, which is the unique maximally
supersymmetric gauge theory in four dimensions. A convenient way to introduce this
theory is to perform a dimensional reduction procedure on the ten-dimensional N = 1
SYM model, as was first described in reference [9]. In this section, we will review
this procedure and comment briefly on the quantum aspects of the model, such as its
β-function.

2.2.1. N = 1 SYM Theory in Ten Dimensions
Let us start by introducing the N = 1 SYM model in ten-dimensional Minkowski
space with metric ηµ̂ν̂ = diag(1,−1, . . . ,−1). The field content consists of a ten-
dimensional gauge field Aµ̂ and a real chiral spinor ψα̂. All fields transform in the
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2.2. N = 4 Super Yang–Mills Theory

adjoint representation of su(N) and it is thus convenient to introduce the following
matrix-valued fields

Aµ̂ = Am
µ̂ (x)Tm , ψα̂ = ψα̂m(x)Tm , with µ̂ = 0, . . . , 9 ,

α̂ = 1, . . . , 16 , (2.64)

where Tm are the antihermitian SU(N) generators obeying

T †m = −Tm , tr(Tm) = 0 , tr(TmTn) = −δmn

2 . (2.65)

Under a finite gauge transformation parametrized by
Ω = exp(−ω(x)) , with ω(x) = ωm(x)Tm , (2.66)

the fields transform as
Aµ̂ → Ω(Aµ̂ + ∂µ̂)Ω† , ψα̂ → Ωψα̂Ω† . (2.67)

For later convenience, let us also note the infinitesimal form of the above transformation
laws. Expanding the equations (2.67) in ω and denoting the generator of infinitesimal
gauge transformations by G[ω] yields

G[ω]Aµ̂ = Dµ̂ ω(x) , G[ω]ψα̂ = [ψα̂, ω(x)] , (2.68)
where Dµ̂ is the gauge-covariant derivative, which in our conventions reads

Dµ̂ = ∂µ̂ + Aµ̂ , Dµ̂ = ∂µ̂ + [Aµ̂, ] . (2.69)
All the fields in this thesis transform in the adjoint representation of the gauge group,
so that the second expression for the gauge-covariant derivative is the appropriate
one. However, sometimes we shall make the commutator explicit in which case the
first definition has to be used. Given the gauge-covariant derivative, the field strength
tensor follows immediately

Fµ̂ν̂ = ∂µ̂Aν̂ − ∂ν̂Aµ̂ + [Aµ̂, Aν̂ ] . (2.70)
Note that we use conventions in which the gauge field has mass dimension [A] = 1, the
spinor field has mass dimension [ψ] = 3/2 and the coupling constant has dimension
[g10] = −3. Compared to standard conventions we have thus rescaled the fields by the
dimensionful coupling constant g10. In this conventions, the ten-dimensional N = 1
action takes the form

SN=1 = 1
g2

10

∫
d10x tr

[
1
2Fµ̂ν̂ F

µ̂ν̂ + ψΓµ̂Dµ̂ψ
]
. (2.71)

Here, Γµ̂ are the ten-dimensional Pauli matrices
Γµ̂Γ̄ν̂ + Γν̂Γ̄µ̂ = 2ηµ̂ν̂ , (2.72)

which furnish the chiral representation of the ten-dimensional gamma matrices, see
appendix A.3 for our conventions. Finally, let us note that the above action is invariant
under the following supersymmetry transformations of the fields

δζAµ̂ = [ζQ, Aµ̂] = −ζΓµ̂ψ , δζψ = [ζQ, ψ] = 1
2(Γ̄µ̂ν̂ζ)Fµ̂ν̂ , (2.73)

where Γ̄µ̂ν̂ := 1
2(Γ̄µ̂Γν̂ − Γ̄µ̂Γν̂). For a proof of this statement see, for example, [76].
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2.2.2. N = 4 SYM Theory in Four Dimensions
Having introduced the ten-dimensional N = 1 SYM model, we are now ready to
perform the dimensional reduction down to four dimensions. For this, we split the
ten-dimensional spacetime coordinates according to

xµ̂ = (xµ, yi) , with µ = 0, . . . , 3 ,
i = 1, . . . , 6 , (2.74)

where xµ are coordinates on R1,3, while the yi parametrize six internal directions. The
fields are assumed to be independent of the internal coordinates, i.e.

∂iAµ̂(x) = 0 , ∂iψ
α̂(x) = 0 , ∂iΩ(x) = 0 , (2.75)

and the same applies to local gauge transformations. Therefore, six of the ten compo-
nents of the gauge field transform as scalars. We thus decompose the ten-dimensional
gauge field as

Aµ̂ → (Aµ, φi) . (2.76)

Finally, it remains to specify how the sixteen-component spinor field can be expressed
in terms of four-dimensional spinor fields. For this, we first need to express the ten-
dimensional Pauli matrices in terms of four- and six-dimensional sigma matrices. This
is discussed in appendix A. The decomposition of ψα̂ which is adapted to our choice of
basis reads

ψα̂ → (ψaα, ψ̄α̇a) . (2.77)

Here, we have split the original ten-dimensional spinor index into two pairs, each
consisting of an su(2) index as well as an su(4) ' so(6) R-symmetry index.

With the decomposition rules described above and the Pauli matrix identities of
appendix A, it becomes a straightforward exercise to dimensionally reduce the ten-
dimensional action (2.71). One obtains

SN=4 = 1
g2

∫
d4x tr

[
1
2F

2
µν +

(
Dµφi

)2
+ 2 ψ̄α̇aσµαα̇Dµψaα + 1

2

[
φi, φj

][
φi, φj

]
− ψaαΣi

abεαβ
[
φi, ψ

bβ
]
− ψ̄α̇aΣ̄i abεα̇β̇

[
φi, ψ̄

β̇
b

]]
, (2.78)

where we have absorbed the volume integral over the internal space into a redefinition
of the coupling constant g10, i.e. g = V −1/2g10. The new coupling constant is thus
dimensionless. In the further course of this thesis, we will often interpret the funda-
mental fields as matrices in spinor space. In order to treat the bosonic and fermionic
fields on the same footing, we define

φab = Σi
abφi , Aαα̇ = Aµσ

µ
αα̇ , (2.79)
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where Σ and σ are the Pauli matrices in six and in four dimensions, respectively, see ap-
pendix A. For later convenience, let us also state the four-dimensional supersymmetry
transformations. Reducing the expressions in equation (2.73) yields

δζ,ζ̄Aµ = −ζaασµαα̇ψ̄α̇a − ζ̄ α̇aσµαα̇ψaα ,
δζ,ζ̄φi = ζaαεαβΣi abψ

bβ + ζ̄ α̇aεα̇β̇Σ̄ab
i ψ̄

β̇
b ,

δζ,ζ̄ψ
aα = −1

2ζ
aβ(σµν)βαFµν + 1

2ζ
bα(Σ̄ij)ab[φi, φj] + ζ̄ β̇ bεβ̇γ̇σ̄

µ γ̇αΣ̄i abDµφi ,

δζ,ζ̄ψ̄
α̇
a = 1

2(σ̄µν)α̇β̇ ζ̄ β̇aFµν + 1
2 ζ̄

α̇
b(Σij)ab[φi, φj] + ζbβεγ̇α̇σµβγ̇Σi

abDµφi , (2.80)

where

δζ,ζ̄X = [ζQ + ζ̄Q̄, X] . (2.81)

The four-dimensional action (2.78) inherits the invariance under supersymmetry trans-
formations from the ten-dimensional theory, which now appears asN = 4 supersymme-
try. It is furthermore easy to see that the classical action is not only super Poincaré in-
variant but also scale invariant as well as invariant under R-symmetry transformations.
While the latter symmetry is manifest due to properly contracted R-symmetry indices,
the former can easily be proven by checking that all summands in the Lagrangian in-
deed scale uniformly with a scaling weight exactly opposite to that of the measure.
The classical action is thus invariant under the superconformal group PSU(2, 2|4).

An important point to note is that the superconformal invariance of the action does
not automatically imply that the theory is superconformal at the quantum level. In
fact, conformal invariance is usually anomalous. This is related to the fact that while
quantizing the theory, one typically needs to introduce a regulator in order to control
UV divergences. However, this inevitably requires the introduction of a mass scale µ
which typically breaks conformal symmetry for which scale invariance is indispensable.
The quantity which signals whether conformal symmetry is preserved is the so-called
β-function, which encodes the scale dependence of a coupling constant. In the case at
hand, there is only one coupling constant and the associated β-function reads

β = µ
dg
dµ . (2.82)

For N = 4 SYM theory this function is believed to vanish to all orders in perturbation
theory as well as non-perturbatively [77–82],

β = 0 . (2.83)

The vanishing of the β-function implies that the conformal symmetry of the classical
theory continues to hold at the quantum level. The quantum theory thus still has the
full psu(2, 2|4) invariance.

Since the coupling constant is not running with scale, the N = 4 model has two
freely tunable parameters, namely the coupling constant g and the rank of the gauge
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group N . The two parameters are usually combined into the ’t Hooft coupling λ, being
defined as

λ := g2N . (2.84)

When the effective coupling constant λ is introduced in perturbative results for physical
observables, these admit a double expansion in powers of λ and N−1. The integrability
of the N = 4 model sits in the λ-expansion, while the 1/N corrections are typically not
integrable. For this reason, we shall consider all quantities in the large-N limit [14], in
which the number of colors is taken to infinity while the ’t Hooft coupling is held fixed.
This limit is also called planar limit because it suppresses all Feynman diagrams4 which
cannot be drawn on a plane without crossings. Therefore, the planar limit implements
a two-dimensional characteristics within the four-dimensional theory and it is thus no
accident that the integrability of N = 4 SYM theory arises in this exact limit.

2.3. Wilson Loops
In this section, we introduce one of the central observables that we shall study in this
thesis which is the Maldacena–Wilson loop operator. We begin by briefly reviewing
the definition of Wilson loops in non-abelian gauge theories and proceed by discussing
an important application of Wilson loops: the computation of the quark-antiquark
potential. We then turn to the Maldacena–Wilson loop operator, which we will derive
by considering the dimensional reduction of a light-like Wilson loop in ten-dimensional
N = 1 SYM theory. Finally, we shall discuss the BPS property of the Maldacena–
Wilson loop operator and comment on the fundamental role that this operator plays
within the context of the AdS/CFT correspondence.

2.3.1. Wilson Loops in Gauge Theories
One of the most important observables in a non-abelian gauge theory is the Wilson
loop operator. In fact, in pure gauge theories these operators form an (over)complete
basis for gauge-invariant functions and are thus as fundamental as the gauge connec-
tion itself [83]. However, Wilson loops also play an important role in gauge theories
that contain matter. In particular, they capture the potential between two static probe
particles and they can thus serve as an order parameter for confinement. In this sec-
tion, we introduce the Wilson line operator based on general considerations of gauge
covariance following references [45,84,85].

Let us start by considering two quark fields ψ(z) and ψ(y) which transform in the
fundamental representation of the gauge group SU(N). Under a gauge transformation,

4Here, by Feynman diagrams we mean Feynman diagrams in double-line notation, which graphically
encode the gauge structure, see reference [14] for more details.
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these fields transform as

ψ(z)→ Ω(z)ψ(z) , ψ(y)→ Ω(y)ψ(y) . (2.85)

Since the gauge transformation is local, the two fields cannot directly be compared
to each other. This problem is very similar to that of comparing two tangent vectors
which live at different points on a manifold. Fortunately, there exists a natural solution
to this problem, which is called parallel transport. The construction is borrowed from
differential geometry and works as follows: Let γ be a curve that goes from y to z
with a parametrization denoted by x(τ) such that we have x(0) = y and x(1) = z.
The parallel transport of the spinor field ψ(y) along the curve γ is then defined as the
solution to the following initial value problem:

ẋµDµVγ(x(τ), y)ψ(y) = 0 , with Vγ(y, y)ψ(y) = ψ(y) , (2.86)

where we have written the transported spinor field as an operator acting on the original
spinor ψ(y). In words, the above equation states that the field Vγ(x(τ), y)ψ(y) is
covariantly constant along the curve γ. Stripping of the spinor field ψ(y) and plugging
in the definition of the covariant derivative yields

∂τVγ(x(τ), y) = −ẋµ(τ)Aµ(x(τ))Vγ(x(τ), y) , with Vγ(y, y) = 1 . (2.87)

This equation is obviously an ordinary first order differential equation and the existence
and uniqueness of the solution is thus guaranteed by the Picard–Lindelöf theorem. In
the context of gauge theories, the operator Vγ is called a Wilson line operator. As a
small consistency check, let us prove that under a gauge transformation the operator
Vγ indeed transforms as

V ′γ(x, y) = Ω(x)Vγ(x, y)Ω†(y) . (2.88)

For this, we first note that independent of whether or not the above equation states
the correct relation between Vγ and V ′γ , the abstract operator V ′γ satisfies by definition
the defining equation (2.87) with A replaced by A′. Let us now show that the right-
hand side of equation (2.88) satisfies this defining relation as well. Indeed, a short
computation reveals that

∂τV
′
γ(x, y) = −ẋµ

(
Ω(x)(∂µ + Aµ)Ω†(x)

)
Ω(x)Vγ(x, y)Ω†(y)

= −ẋµA′µ(x)V ′γ(x, y) , (2.89)

where we have abbreviated x = x(τ). Furthermore, we note that the right-hand side
of equation (2.88) also reproduces the correct boundary condition V ′γ(y, y) = 1. Un-
der these conditions, the solution to equation (2.87) is unique and we thus conclude
that equation (2.88) indeed states the correct relation between Vγ and V ′γ . Having
established the Wilson line operator, one can now compare ψ(z) and ψ(y) by multi-
plying ψ(y) with Vγ(z, y). Both fields then transform in the same way under a gauge
transformation.
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In order to obtain a concrete expression for the Wilson line operator Vγ, it is useful
to replace the differential equation (2.87) by an equivalent integral equation. The latter
is obtained by integrating equation (2.87) with respect to τ ,

Vγ(x(1), y) = 1−
1∫

0

dτ1 ẋ
µ
1Aµ(x1)Vγ(x1, y) . (2.90)

By iterating this recursion, we find that the Wilson line operator is formally given by

Vγ(z, y) =←−P exp
− 1∫

0

dτ1 ẋ
µ
1Aµ(x1)

 . (2.91)

Here, ←−P denotes path ordering and the arrow indicates that greater values of τ are
ordered to the left. However, for later convenience, we will reverse the path and trade
the minus sign for a path-ordering prescription exactly opposite to the one described
above, namely greater values of τ are ordered to the right. The Wilson line operator
then reads

Vγ(y, z) = −→P exp
 1∫

0

dτ1 ẋ
µ
1Aµ(x1)

 . (2.92)

As we will exclusively use this convention throughout this thesis, we will omit the arrow
over the path-ordering symbol from now on. Technically speaking, the expression in
the exponent of e is the integral over a Lie algebra-valued one-form and dτ1 ẋ

µ
1Aµ(x1) is

the pullback of the one-form A = dxµAµ on the path. Without relying on a particular
parametrization, the Wilson line can thus be written as

V (γ) = P exp
(∫

γ
A
)
. (2.93)

With the Wilson line operator established, we can now also define a gauge-invariant
quantity, which is known as the Wilson loop. Let us note that for a closed curve γ the
Wilson line transforms as

V ′(γ) = Ω(x)V (γ)Ω†(x) . (2.94)

Based on this observation, we define the gauge-invariant Wilson loop operator as

W (γ) = 1
N

trV (γ) = 1
N

tr P exp
(∮

γ
A
)
. (2.95)

The normalization factor N−1 has been included to ensure that the zeroth order term
in the expansion of W (γ) is one.
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Figure 2.1.: A rectangular Wilson loop of size R× T .

2.3.1.1. The Rectangular Wilson Loop

Wilson loops can be defined for arbitrary closed curves γ, but there exist several classes
of contours which lead to particularly interesting results. One of these classes is fur-
nished by the rectangular contours with one time-like and one space-like direction, see
figure 2.1. Wilson loops defined over such contours have a very physical interpretation
as they carry information on the potential between two heavy probe charges which are
separated by a distance R. In what follows, we shall briefly sketch how this relation
arises following reference [86].

Let us consider two infinitely heavy charges which are separated by a distance R.
Due to their infinite mass, these charges are non-dynamical, so that it suffices to study
the problem in a pure gauge theory. In this picture, the charges simply act as sources
for the electromagnetic field. For simplicity, we will choose the gauge group to be U(1).
The underlying action is thus the plain QED action without matter terms, i.e.

SE = −1
4

∫
d4xFµνF

µν , Fµν = ∂µAν − ∂νAµ , (2.96)

where the subscript E indicates that we have Wick-rotated the theory. The partition
function including a source term is then given by

Z[J ] =
∫

[DA] exp
(
−SE +

∫
d4xJµ(x)Aµ(x)

)
. (2.97)

The charges are assumed to be static and rest at the origin and at position R along
the z-direction, respectively, cf. figure 2.1. The appropriate source term for such a
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configuration is given by

Jµ(y) = δ(3)(~y −~0)δµ0 − δ(3)(~y − ~R)δµ0 , (2.98)

where we have assumed that the charges have unit strength. To make contact to Wilson
loops, we rewrite the above source term in the following way

Jµ(y) =
∫

dτ ẋµ(τ)δ(4)(y − x(τ)) , (2.99)

with the left edge of the rectangle being parametrized by xlµ(τ) = (τ, 0, 0, 0), while
for the right edge we choose xrµ(τ) = (−τ, 0, 0, R) and τ runs from −∞ to ∞. The
two short sides of the rectangle do not contribute as they are located at infinity. For
large Euclidean times T , the partition function Z[0] behaves as exp(−E0T ) with E0
being the ground state energy. The quotient of Z[J ] and Z[0] thus yields the potential
between the two charges

V (R) = − lim
T→∞

1
T

ln
(
Z[J ]
Z[0]

)
. (2.100)

However, substituting equation (2.99) into equation (2.97) shows that this quotient is
nothing more than the expectation value of a rectangular Wilson loop and thus

V (R) = − lim
T→∞

1
T

ln
(
〈W (γR,T )〉

)
. (2.101)

Although we have motivated the above result only for a U(1) gauge theory, it also
holds in non-abelian Yang–Mills theories, cf., e.g. reference [87]. When computed non-
perturbatively, for example by using methods of lattice gauge theory, the Wilson loop
can thus serve as an order parameter to distinguish confining and non-confining phases.
In order to decide whether a gauge theory is confining or not for a certain value of the
coupling constant, it is convenient to study the exponent of the Wilson loop while the
size of the loop is increased. The expectation value then typically behaves as

〈W (γR,T )〉 ∼ e−κP Coulomb phase ,
〈W (γR,T )〉 ∼ e−σ A confining phase , (2.102)

where P = 2(R + T ) is the perimeter and A = RT is the area of the rectangle. If the
exponent satisfies an area law, the potential grows linearly

V (R) ≈ σ R , (2.103)

and it is thus not possible to separate the two charges.
Let us now go back to the N = 4 SYM model. N = 4 SYM theory is a conformal

theory and for this reason the exponent can only be proportional to the dimensionless
ratio T/R. The potential is thus the Coulomb potential. The coefficient, i.e. the
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effective Coulomb charge, is, however, a highly non-trivial function of g2 and N . In
the planar limit, this function reduces to a function of the ’t Hooft coupling λ, i.e.

V (R) = −f(λ)
R

. (2.104)

Over the last two decades, much effort has been put into computing the function f(λ)
both at weak coupling and at strong coupling. Thanks to this effort, the function is
currently known up to seven loops at weak coupling [88–95] and through one loop at
strong coupling [27,28,96,97].

2.3.2. The Maldacena–Wilson Loop
In a pure Yang–Mills theory, the path-ordered exponential of the gauge field is one of
the most natural objects to consider. The N = 4 SYM model is, however, not a pure
gauge theory as it also contains scalars as well as fermions. The enlarged field content
of the model opens the window for the construction of generalized loop operators which
are better in tune with the concept of a supersymmetric field theory. In this section,
we introduce the Maldacena–Wilson loop operator, which locally preserves half of the
Poincaré supercharges.

The Maldacena–Wilson loop operator, as it was introduced by Juan Maldacena in
[27], is a Wilson loop operator that in addition to the gauge field couples to the six
real scalars of the N = 4 SYM model. More precisely, it is defined as

WM(γ) = 1
N

tr P exp
(∫

dτ
(
ẋµAµ(x) + ni(τ)

√
ẋ2φi(x)

))
, (2.105)

where ni(τ) is a unit six-vector which describes a path on S5. The operator can be
motivated by studying the dimensional reduction of a ten-dimensional Wilson loop
while using supersymmetry as a guiding principle for fixing the internal couplings. As
we will later on generalize this reasoning to construct the full supersymmetric Wilson
loop of N = 4 SYM theory, let us explain the procedure in detail. We begin by
considering an ordinary Wilson loop in ten-dimensional N = 1 SYM theory, which is
given by

W (γ) = 1
N

tr P exp
(∮

γ
dxµ̂Aµ̂

)
. (2.106)

Before we perform the dimensional reduction, let us consider the supersymmetry vari-
ation of the above operator. Using the field variations as stated in equation (2.73), we
find

δζW (γ) = 1
N

tr P
[∫

dτ (−ζẋµ̂Γµ̂ψ) exp
(∮

γ
dxµ̂Aµ̂

)]
, (2.107)

which shows that the supersymmetry variation is in general non-vanishing. However,
it is not too hard to see that if we set

ζ = κẋµ̂Γ̄µ̂ , (2.108)
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and assume the contour to be light-like in ten dimensions, the above variation vanishes
due to the algebra relation satisfied by the ten-dimensional Pauli matrices

κẋν̂ ẋµ̂Γ̄(ν̂Γµ̂) = κẋµ̂ẋµ̂ = 0 . (2.109)

It is important to note that this supersymmetry is local because the spinor ζ is in
general not constant along the loop. Moreover, only eight out of the sixteen super-
symmetries are preserved at each point along the loop because the matrix ẋµ̂Γ̄µ̂ has an
eight-dimensional kernel. The ten-dimensional light-like Wilson loop is thus locally a
1/2 BPS object, where the number refers to the fact that half of the super Poincaré
charges are preserved.

Let us now proceed with the dimensional reduction of the ten-dimensional Wilson
loop operator (2.106). Decomposing the gauge field and the coordinates as described
in section 2.2.2 yields

WM(γ) = 1
N

tr P exp
(∫

dτ
(
ẋµAµ(x) + ẏiφi(x)

))
, (2.110)

where yi(τ) describes a path in the internal space. Above, we have argued that the
ten-dimensional Wilson loop is locally 1/2 BPS provided that the underlying curve is
light-like. We want to preserve this feature and thus demand that the combined contour
parametrized by (xµ(τ), yi(τ)) satisfies a ten-dimensional light-likeness constraint, i.e.

ẋµẋµ + ẏiẏi = 0 . (2.111)

Indeed, this constraint guarantees that the property of being locally supersymmetric
carries over to the four-dimensional counterpart of the light-like Wilson loop in ten
dimensions, which is the Maldacena–Wilson loop. To prove this statement, we vary
the operator in equation (2.110) and obtain

δζWM(γ)=− 1
N

tr P
[∫

dτ ζ(ẋµΓµ + ẏiΓi)ψ exp
(∫

dτ
(
ẋµAµ(x) + ẏiφi(x)

))]
, (2.112)

Since the Pauli matrices Γ̄µ and Γi anticommute, it is clear that the argument goes
through as before. Hence, the four-dimensional Maldacena–Wilson loop is locally a
1/2 BPS object. The Maldacena–Wilson loop is typically stated with the light-likeness
constraint (2.111) explicitly solved, i.e.

ẏi(τ) = ni(τ)
√
ẋ2 , (2.113)

where ni(τ) describes a path on S5. Often, the unit vector ni is chosen to be constant,
so that the Maldacena–Wilson loop operator becomes

WM(γ) = 1
N

tr P exp
(∫

dτ
(
ẋµAµ(x) + ni

√
ẋ2φi(x)

))
, (2.114)

in agreement with equation (2.105). Before we move on, let us elaborate on the super-
symmetry of the Maldacena–Wilson loop and its consequences. As explained above,
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the Maldacena–Wilson loop is in general only locally supersymmetric. Conversely, the
action only has global supersymmetry. Global supersymmetry typically severely con-
strains the expectation value of supersymmetric observables, while the implications of
local supersymmetry are in general rather mild. For this reason, it is interesting to look
for contours which lead to constant supersymmetry parameters. One very transparent
case is that of a straight line. In this case, ẋµ is constant and the Maldacena–Wilson
loop becomes a true 1/2 BPS object. Due to the high number of globally conserved
supercharges, the expectation value of such a loop operator does not receive quantum
corrections at all, implying that

〈WM(|)〉 = 1 . (2.115)

Although this result looks very particular, it has far reaching consequences for all
smooth Maldacena–Wilson loops. This is related to the fact that divergences in ex-
pectation values of smooth Wilson loop operators are typically of the UV type arising
from integration regions where two or more points come close to each other. However,
as every smooth curve looks locally like a straight line, the expectation value of smooth
Maldacena–Wilson loops is finite. Below, we shall verify this result explicitly at the
one loop level.

The straight line is, however, not the only geometry which globally preserves some
amount of supersymmetry. In fact, in reference [98] it was noted that one can construct
more general 1/4, 1/8 and 1/16 BPS Wilson loops by letting the S5 vector ni(τ) follow
the spacetime path xµ(τ) in a certain way. Further classes of contours were obtained
in [99] by also considering superconformal transformations of the Maldacena–Wilson
loop. A classification of Wilson loops which globally preserve at least one supercharge
was given in [100,101].

Having defined the Maldacena–Wilson loop operator, let us now compute its one-
loop expectation value and prove that the corresponding integral is finite. To obtain
this expectation value, we expand the operator in equation (2.105) to two fields which
are consequently joined by a propagator. The relevant propagators read (in Feynman
gauge)

〈Am
µ (x1)An

ν(x2)〉 = g2

4π2
ηµνδ

mn

(x1 − x2)2 , 〈φm
i (x1)φn

j(x2)〉 = g2

4π2
ηijδ

mn

(x1 − x2)2 . (2.116)

Using these expressions, we obtain

〈WM(γ)〉 = 1− λ

16π2

∫
dτ1 dτ2

ẋ1 · ẋ2 + n1 · n2 |ẋ1||ẋ2|
(x1 − x2)2 +O(λ2) , (2.117)

where we have employed equation (2.65) as well as the fact that the algebra su(N) has
dimension N2 − 1 ≈ N2. Note that we use metric tensors which have mostly minus
signature, so that n1 ·n1 is equal to minus one. To prove that the one-loop expectation
value is indeed finite, we set τ2 = τ1 + ε and expand the integrand Iτ1,τ2 of equation
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(2.117) in powers of ε,

Iτ,τ+ε = 1
ε2ẋ2

((
ẋ2 + ẋ2 n · n

)
+ ε ∂τ

(
ẋ2 + ẋ2 n · n

)
+O(ε2)

)
. (2.118)

Obviously, the coefficient of both poles vanishes due to the light-likeness condition
(2.111). The same constraint which leads to local supersymmetry thus also ensures
that the one-loop expectation value is finite. Furthermore, we observe that neither the
scalar part nor the gauge part is free of divergences. In fact, both propagators are UV
divergent but the divergences cancel out exactly. Hence, only Maldacena–Wilson loops
have a finite expectation value, while ordinary Wilson loops typically suffer from UV
divergences.

Finally, let us remark that the Maldacena–Wilson loop couples only to the bosonic
degrees of freedom of N = 4 SYM theory. It is therefore clear that the operator (2.105)
is merely the bottom component of a manifestly supersymmetric Wilson loop operator
which couples to a path in superspace. We shall construct this operator in chapter 4
and investigate it further in chapter 5.

2.3.2.1. The Maldacena–Wilson Loop at Strong Coupling

One of the most remarkable features of N = 4 SYM theory is that the model has a
dual description in terms of (super)strings on AdS5× S5. All gauge theory observables
therefore have a completely equivalent string description, which can typically be used
to gain insights into the strong-coupling behavior of the observables. Below, we shall
briefly review the strong-coupling description of the Maldacena–Wilson loop, mainly
following reference [45].

The strong-coupling description of the Maldacena–Wilson loop was obtained in [27],
where is was argued that the expectation value of a loop operator WM(γ) is given by
the action of a string bounded by the curve γ at the conformal boundary of space. In
the limit of large λ, the string sigma model becomes weakly coupled and the partition
function can be calculated using the method of steepest descent. Minima of the string
action correspond to minimal surfaces whose boundary is the curve γ. Consequently,
the Wilson loop expectation value can be approximated as

〈WM(γ)〉 λ�1= exp
(
−
√
λ

2π Aren(γ)
)
, (2.119)

where Aren(γ) is the area of the minimal surface ending on the contour γ at the con-
formal boundary. Let us precise the above formula by providing the necessary mathe-
matical background for calculating this area. The underlying boundary value problem
is most conveniently formulated in Poincaré coordinates (Xµ, z), in which the AdS5
metric reads

ds2 = dXµ dXµ + dz dz
z2 . (2.120)
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The conformal boundary of AdS5 sits at z = 0 and that is where the contour γ is
located. Thus, we impose the following boundary conditions

Xµ(τ = 0, σ) = xµ(σ) , z(τ = 0, σ) = 0 . (2.121)

Note that in the above relations we have denoted the curve parameter by σ instead
of τ to ensure consistency with standard string conventions. The area of the minimal
surface is obtained from the area functional A, which in the context of string theory is
called Nambu-Goto action

A =
∫

dτ dσ
√

det(γij) , with i, j ∈ {τ, σ} . (2.122)

Here, γij is the induced metric on the surface, i.e.

γij = ∂iX
µ ∂jXµ + ∂iz ∂jz

z2 . (2.123)

Obviously, the metric becomes divergent when the surface approaches the conformal
boundary of AdS5, which is located at z = 0. For this reason, the area needs to be
renormalized. This is conveniently done by imposing a cut-off in the z-direction so
that the integration is only over the region satisfying z > ε. Since the minimal surface
leaves the conformal boundary perpendicular, the pole is proportional to the length of
the contour γ and can thus be removed in the following way:

Aren(γ) = lim
ε→0

{
A(γ)

∣∣∣
z>ε
− L(γ)

ε

}
. (2.124)

Let us point out that this divergence does not mean that the expectation value of a
Maldacena–Wilson loop is divergent at strong coupling. In fact, it was noted in [102]
that the divergence is merely an artifact stemming from a slightly incorrect definition
of the partition function. The correct definition is somewhat cumbersome and involves
the Legendre transform of the area functional. Fortunately, considering the Legendre
transform effectively amounts to dropping 1/ε divergences whenever they appear. This
is implemented via the above renormalization prescription. Finally, let us remark that
the above considerations only apply to the case of a constant vector ni. If the vector
depends on σ, one needs to lift the discussion to AdS5 × S5. The minimal surface is
then bound by the curve xµ(σ) in AdS5 and by ni(σ) in S5.
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3. N = 4 SYM Theory in Superspace
Supersymmetric field theories are often most efficiently formulated in terms of super-
fields defined on superspace, which package together all the component fields of the
theory in a nice and elegant fashion. In searching for these descriptions, one always aims
for one which makes the supersymmetry of the model manifest, i.e. for a formulation
in which the supersymmetry algebra closes off shell. Unfortunately, such a formulation
of the N = 4 SYM model is not known. Fortunately, however, one can write down an
on-shell non-chiral superspace formulation of N = 4 SYM theory and we begin by re-
viewing this construction. Later on, we will make extensive use of this formalism when
we discuss the super Maldacena–Wilson loop operator. The superspace description can
be formulated using ten-dimensional language as well as four-dimensional language. In
what follows, we shall review it covering both perspectives, thereby taking the opportu-
nity to lay out our conventions. In the further course of this section, we will then start
deriving new results, namely we shall derive expressions for the superfield propagators.
These will play an important role later on.

3.1. The Ten-Dimensional Perspective
In this section, we shall give a brief introduction to the on-shell superspace formulation
of the ten-dimensional N = 1 SYM model. We begin by discussing various geometric
aspects of the appropriate superspace and continue by introducing the superfields as
well as the constraints that have to be imposed on them. Taking into account the
Bianchi identities of the gauge theory, we then analyze in detail the implications of
the constraint equations and show that they are equivalent to the equations of motion
of the N = 1 SYM model. The second part is devoted to establishing the precise
relation between the superconnection and the component fields of N = 1 SYM theory.
We establish this relation by picking a particular type of transversal gauge which
eliminates all the fermionic gauge degrees of freedom. Finally, we use the component
expansion of the superconnection to compute its propagator through quartic order in
an expansion in the anticommuting variables.

3.1.1. Superspace Geometry and the Constraints
We begin our introduction to the superfield formulation of the ten-dimensional N = 1
SYM model by describing the geometry of the underlying superspace. The material
presented here is standard and can be found in many places including [103–105]. The
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superspace is parametrized by

(xµ̂, θα̂) , with µ̂ = 0, .., 9, α̂ = 1, .., 16 , (3.1)

where xµ̂ are coordinates on R1,9 and θα̂ are sixteen anticommuting Graßmann coor-
dinates, which form a sixteen-component Majorana–Weyl spinor. On this superspace,
the supercharges can be represented as

Qα̂ = (Γµ̂θ)α̂∂µ̂ − ∂α̂ , {Qα̂,Qβ̂} = −2Γµ̂
α̂β̂
∂µ̂ , (3.2)

where Γµ̂
α̂β̂

are the ten-dimensional Pauli matrices as defined in appendix A.3. The
associated susy-covariant derivatives1 read

Dα̂ = (Γµ̂θ)α̂∂µ̂ + ∂α̂ . (3.3)

They obey the relations

{Dα̂,Qβ̂} = 0 , {Dα̂, Dβ̂} = 2Γµ̂
α̂β̂
∂µ̂ . (3.4)

In what follows, we will often make use of methods of differential geometry. In differ-
ential geometry, the set of derivatives (∂µ̂, ∂α̂) is interpreted as a basis for the space of
vector fields. However, one can as well expand vector fields, such as Lie algebra gen-
erators, in the susy-covariant basis spanned by the set (∂µ̂, Dα̂). The latter is in fact
often much more convenient than the plain basis as susy-covariant derivatives preserve
the transformation properties superfields.

The natural habitat of gauge theories is the vector space which is dual to the space
of vector fields. The dual space is the space of one-forms, which is defined as the span
of the differentials (dxµ̂, dθα̂). By definition, the following equation holds true

dXA(∂B) = (−1)|A|δAB , (3.5)

where under the name XA = (xµ̂, θα̂) we lump together the complete set of superspace
coordinates, i.e. A is now a multi-index. A general element of the space of one-forms
can be decomposed as

ω = dxµ̂ωµ̂(x, θ) + dθα̂ωα̂(x, θ) . (3.6)

However, as before, it will be much more convenient to work in a slightly different basis
in which the different components of a superform do not mix under supersymmetry
transformations. This basis is the one which is dual to the basis spanned by the set
(∂µ̂, Dα̂) and can therefore be obtained by demanding the following equation to hold

eA(DB) = (−1)|A|δAB , (3.7)
1The name susy covariant refers to the fact that given a superfield Φ, Dα̂Φ is again a superfield in

the sense that it transforms in the same way under a supersymmetry transformation as the original
field. This follows immediately from the fact that the susy-covariant derivatives anticommute with
the supercharges.
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where DB = (∂µ̂, Dα̂) and eA are linear combinations of the plain basis one-forms. One
easily convinces oneself that the solution to equation (3.7) is given by

eµ̂ = dxµ̂ + θΓµ̂dθ , eα̂ = dθα̂ . (3.8)

Note that these expressions indeed provide a susy-invariant basis for one-forms, but
there is a price that has to be paid for this which is that the exterior derivative, being
defined as

d = dxµ̂∂µ̂ + dθα̂∂α̂ = eµ̂∂µ̂ + dθα̂Dα̂ , (3.9)

of these basis one-forms does no longer vanish. More precisely, we have

deµ̂ = dθα̂ ∧ dθβ̂Γµ̂
α̂β̂
, deα̂ = 0 . (3.10)

Note that the expression dθα̂ ∧ dθβ̂ has both form grading and Graßmann grading.
The wedge product of two basis one-forms is thus no longer antisymmetric but rather
graded antisymmetric. As the exterior product is the only product that can be used
to multiply forms, we will typically omit the wedge symbol in what follows.

Having set up the basics, we can now start definingN = 1 SYM theory in superspace.
We begin by introducing an su(N)-valued gauge connection one-form A = AmTm. We
label the expansion coefficients with respect to the susy-invariant basis by Aµ̂ and Aα̂,
i.e.

A = eµ̂Aµ̂(x, θ) + dθα̂Aα̂(x, θ) . (3.11)

Given this connection one-form, we define the susy- and gauge-covariant derivative as

D = d +A = eµ̂Dµ̂ + dθα̂Dα̂ , (3.12)

where

Dµ̂ = ∂µ̂ +Aµ̂(x, θ) , Dα̂ = Dα̂ +Aα̂(x, θ) . (3.13)

As explained in section 2.2.1, the (graded) commutator with the gauge field is implied
unless it is stated explicitly. The superconnection A is defined up to gauge transfor-
mations of the form

A → e−Λ(d +A)eΛ , (3.14)

where Λ = Λ(x, θ) is a Lie algebra-valued function that depends on the superspace
variables x and θ. Expanding equation (3.14) to first order in Λ leads to the following
infinitesimal transformation law:

G[Λ]A = [D,Λ] = dΛ + [A,Λ] . (3.15)
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Having introduced the superconnectionA, we now want to make contact to the ordinary
formulation of N = 1 SYM theory. This is most transparently done by establishing
the relation between the coefficient fields appearing in the Graßmann expansion of
A and the component fields of N = 1 SYM theory. However, so far the Graßmann
expansion of A produces many more fields than appropriate. This statement continues
to hold even after taking into account that a certain number of components can be
gauged away. To reproduce the expected spectrum, we need to impose constraints on
the superfields. The appropriate constraints leading to N = 1 SYM in ten dimensions
were introduced by Sohnius in [105] and involve the fermionic components of the field
strength two-form, which is defined as

F = dA+A ∧A . (3.16)

For the components of this two-form with respect to the natural basis given by {eν̂ ∧
eµ̂, dθα̂ ∧ eµ̂, dθα̂ ∧ dθβ̂}, one finds

F = −1
2e
ν̂eµ̂Fµ̂ν̂ − dθα̂eµ̂Fµ̂α̂ − 1

2dθβ̂dθα̂Fα̂β̂ , (3.17)

where

Fµ̂ν̂ = [Dµ̂,Dν̂ ] = ∂µ̂Aν̂ − ∂ν̂Aµ̂ + [Aµ̂,Aν̂ ] ,
Fµ̂α̂ = [Dµ̂,Dα̂] = ∂µ̂Aα̂ −Dα̂Aµ̂ + [Aµ̂,Aα̂] ,
Fα̂β̂ = {Dα̂,Dβ̂} − 2Γµ̂

α̂β̂
Dµ̂ = Dα̂Aβ̂ +Dβ̂Aα̂ + {Aα̂,Aβ̂} − 2Γµ̂

α̂β̂
Aµ̂ . (3.18)

Formulated in terms of the components of F as given above, the constraints presented
in [105] read

Fα̂β̂ = 0 . (3.19)

Note that due to the covariant transformation law of the field strength F ,

F → e−ΛFeΛ , (3.20)

the constraints (3.19) are gauge invariant as expected.
It is instructive to study the implications of the constraint equations by looking at the

Bianchi identities for the gauge-covariant derivatives. The Bianchi identity involving
three fermionic derivatives reads

[Dα̂, {Dβ̂,Dγ̂}] + [Dβ̂, {Dγ̂,Dα̂}] + [Dγ̂, {Dα̂,Dβ̂}] = 0 . (3.21)

We can now use the equations (3.18) and the constraint (3.19) to rewrite the former
equation as

[D(α̂, {Dβ̂,Dγ̂)}] = 2Γµ̂(β̂γ̂Fα̂)µ̂ = 0 , (3.22)
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where the parentheses indicate total symmetrization of the enclosed indices as defined
in section 2.1.3. An important aspect of the ten-dimensional Pauli matrices is that
they satisfy the so-called magic identity (A.31). With this relation in mind, it becomes
obvious that equation (3.22) is solved by

Fµ̂α̂ = Γµ̂ α̂β̂Ψβ̂ . (3.23)

Thus, equation (3.22) allows us to identify the mixed component of the field strength
two-form with the fermionic superfield Ψβ̂. We continue with our analysis by studying
the two mixed Bianchi identities. The Bianchi identity involving one bosonic and two
fermionic gauge-covariant derivatives reads

[Dµ̂, {Dα̂,Dβ̂}] = {Dα̂, [Dµ̂,Dβ̂]}+ {Dβ̂, [Dµ̂,Dα̂]} . (3.24)

Using the constraint (3.19) as well as the relation (3.23), we deduce that

Γν̂
α̂β̂
Fµ̂ν̂ = 1

2Γµ̂ β̂γ̂
{
Dα̂,Ψγ̂

}
+ 1

2Γµ̂ α̂γ̂
{
Dβ̂,Ψ

γ̂
}
. (3.25)

By multiplying this equation with Γ̄ρ̂ and taking the trace, we obtain the following set
of equations:

Fµ̂ν̂ = − 1
16(Γ̄µ̂ν̂)α̂γ̂

{
Dα̂,Ψγ̂

}
,

{
Dα̂,Ψα̂

}
= 0 . (3.26)

We proceed by expanding the expression {Dα̂,Ψβ̂} in a basis of ten-dimensional Pauli
matrices. This yields{

Dα̂,Ψβ̂
}

= −1
2(Γµ̂ν̂)α̂β̂Fµ̂ν̂ + 1

16
1
4!

[
(Γσ̂ρ̂ν̂µ̂)γ̂ ε̂

{
Dε̂,Ψγ̂

}]
(Γµ̂ν̂ρ̂σ̂)α̂β̂ . (3.27)

By plugging this expression back into equation (3.25) and making repeated use of the
identity (A.29), we learn that the coefficient multiplying Γµ̂ν̂ρ̂σ̂ vanishes. Thus, the
Bianchi identity (3.24) implies that{

Dα̂,Ψβ̂
}

= −1
2(Γµ̂ν̂)α̂β̂Fµ̂ν̂ . (3.28)

The second mixed Bianchi identity reads

[Dα̂, [Dµ̂,Dν̂ ]] = −[Dν̂ , [Dα̂,Dµ̂]]− [Dµ̂, [Dν̂ ,Dα̂]] . (3.29)

By using equation (3.23), we find

[Dα̂,Fµ̂ν̂ ] = Γµ̂ α̂β̂
[
Dν̂ ,Ψβ̂

]
− Γν̂ α̂β̂

[
Dµ̂,Ψβ̂

]
. (3.30)

Importantly, the constraints can only be realized on shell, i.e. the equations Fα̂β̂ = 0
ultimately imply the equations of motion for the fields. To see this, we look at the
expression

Γµ̂
α̂β̂

[
Dµ̂,Ψβ̂

]
= −1

2(Γρ̂σ̂)(α̂
β̂ [Dβ̂),Fρ̂σ̂] , (3.31)
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3. N = 4 SYM Theory in Superspace

which can be derived by exploiting the constraint (3.19) to rewrite the bosonic gauge-
and susy-covariant derivative in terms of fermionic ones and using equation (3.28) to
express the derivative of the fermionic superfield Ψβ̂ in terms of the super field strength.
In the next step, we use equation (3.30) to rewrite the right-hand side of (3.31) as

Γµ̂
α̂β̂

[
Dµ̂,Ψβ̂

]
= −1

4(Γρ̂σ̂)α̂β̂
(
Γρ̂ β̂γ̂[Dσ̂,Ψ

γ̂]− Γσ̂ β̂γ̂[Dρ̂,Ψ
γ̂]
)
, (3.32)

where we have already taken into account that the trace of Γρ̂σ̂ vanishes. The Dirac
equation

Γµ̂
α̂β̂

[
Dµ̂,Ψβ̂

]
= 0 , (3.33)

now follows from (3.32) by noting that the right-hand side vanishes due to the Pauli
matrix identity

(Γρ̂σ̂)α̂β̂Γρ̂ β̂γ̂ = 9Γσ̂α̂γ̂ . (3.34)

Finally, let us derive the Yang–Mills equation for the super field strength from the
constraints. To do so, we multiply the Dirac equation (3.33) by Γ̄α̂γ̂ν̂ Dγ̂ from the right
and obtain

Γ̄α̂γ̂ν̂ Γµ̂
α̂β̂

{
Dγ̂,

[
Dµ̂,Ψβ̂

]}
= 0 . (3.35)

Using the definition of the mixed components of the field strength two-form (3.18), the
above equation can be rewritten as

Γ̄α̂γ̂ν̂ Γµ̂
α̂β̂

({
Fγ̂µ̂,Ψβ̂

}
+
[
Dµ̂,

{
Dγ̂,Ψβ̂

}])
= 0 . (3.36)

Inserting equation (3.23) and (3.28) into the above relation yields

−1
2 Γ̄α̂γ̂ν̂

(
Γµ̂
α̂β̂

Γµ̂ γ̂δ̂ + Γµ̂
γ̂β̂

Γµ̂ α̂δ̂
){

Ψδ̂,Ψβ̂
}
− 1

2Γµ̂
α̂β̂

Γ̄α̂γ̂ν̂ (Γρ̂σ̂)γ̂ β̂
[
Dµ̂,F ρ̂σ̂

]
= 0 , (3.37)

where we have made use of the fact that the ten-dimensional Pauli matrices are sym-
metric. With the help of the magic identity (A.31) as well as relation (A.30), we can
rewrite the above equation as

1
2 Γ̄α̂γ̂ν̂ Γµ̂γ̂α̂Γµ̂ β̂δ̂

{
Ψδ̂,Ψβ̂

}
− 1

2Γµ̂
α̂β̂

(
Γν̂ρ̂σ̂ + ην̂ρ̂Γσ̂ − ην̂σ̂Γρ̂

)α̂β̂ [
Dµ̂,F ρ̂σ̂

]
= 0 . (3.38)

By noting that the Γν̂ρ̂σ̂-term does not contribute as it is antisymmetric under exchange
of α̂ and β̂ and using the trace identity (A.26), we deduce that[

Dµ̂,F µ̂ν̂
]

+ 1
2Γν̂

β̂δ̂

{
Ψδ̂,Ψβ̂

}
= 0 , (3.39)

which is the desired result, namely the Yang–Mills equation for the super field strength.
This completes our proof that the constraints (3.19) imply the equations of motion. In
fact, it can be shown that the converse statement is also true. Thus, the constraints
are equivalent to the equations of motion. For a detailed proof of this fact see [103].
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3.1.2. Component Expansion of the Superfields

Having set the stage, we now come back to the question of how the superconnection
can be expressed in terms of the physical fields of N = 1 SYM theory. To establish
this relation, we shall use a method due to Harnad and Shnider, which was introduced
in [103, 106]. The key element in their procedure is to introduce a suitable type of
transversal gauge which completely eliminates the fermionic gauge freedom. In the
following, we review this construction in detail.

In the previous section, we derived the following set of equations [104]:

Fα̂β̂ = 0 ,

Fµ̂α̂ = Γµ̂,α̂β̂ Ψβ̂ ,{
Dα̂,Ψβ̂

}
= −1

2

(
Γµ̂ν̂

)
α̂
β̂Fµ̂ν̂ ,

[Dα̂,Fµ̂ν̂ ] = Γµ̂,α̂β̂
[
Dν̂ ,Ψβ̂

]
− Γν̂,α̂β̂

[
Dµ̂,Ψβ̂

]
. (3.40)

The method of Harnad and Shnider makes use of the fact that by imposing a partic-
ular transversal gauge condition, the above equations can be converted into recursion
relations which then allow for the reconstruction of the superfields in terms of their
lowest order components. Explicitly, the gauge condition reads

θα̂Aα̂(x, θ) = 0 . (3.41)

Next, one defines the operator

D := θα̂Dα̂ = θα̂
∂

∂θα̂
, (3.42)

where the rightmost statement is a consequence of equation (3.41) and the fact that the
ten-dimensional Pauli matrices are symmetric. Combining the gauge condition (3.41)
with the equations (3.40) immediately yields the desired set of recursion relations

(1 + D)Aα̂ = 2(θΓµ̂)α̂Aµ̂ ,
DAµ̂ = −(θ Γµ̂Ψ) ,
D Ψα̂ = −1

2 (θΓµ̂ν̂)α̂Fµ̂ν̂ ,
DFµ̂ν̂ = (θΓµ̂Dν̂Ψ)− (θΓν̂Dµ̂Ψ) . (3.43)

Using these relations, we can now reconstruct the superfields entirely from the lowest-
order data

Aµ̂(x, θ) = Aµ̂(x) +O(θ) , Aα̂(x, θ) = O(θ) , Ψα̂(x, θ) = ψα̂(x) +O(θ) .
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3. N = 4 SYM Theory in Superspace

The result reads

Aµ̂(x, θ) = Aµ̂(x)−
(
θΓµ̂ψ(x)

)
− 1

4

(
θΓµ̂Γ̄ρ̂σ̂θ

)(
Fρ̂σ̂(x) + 2

3

(
θΓρ̂Dσ̂ψ(x)

)
+ 1

12

(
θΓρ̂Γ̄ν̂κ̂θ

)
Dσ̂Fν̂κ̂(x) + 1

6

[(
θΓρ̂ψ(x)

)
,
(
θΓσ̂ψ(x)

)])
+O(θ5) ,

Ψα̂(x, θ) = ψα̂(x) + 1
2

(
Γ̄µ̂ν̂θ

)α̂(
Fµ̂ν̂(x) +

(
θΓµ̂Dν̂ψ(x)

)
+ 1

6

(
θΓµ̂Γ̄ρ̂σ̂θ

)
Dν̂Fρ̂σ̂(x) + 1

3

[(
θΓµ̂ψ(x)

)
,
(
θΓν̂ψ(x)

)])
+O(θ4) ,

Aα̂(x, θ) =
(
θΓµ̂

)
α̂

(
Aµ̂(x)− 2

3

(
θΓµ̂ψ(x)

)
− 1

8

(
θΓµ̂Γ̄ρ̂σ̂θ

)
Fρ̂σ̂(x)

)
+O(θ4) , (3.44)

where Dν̂ = ∂ν̂ + [Aν̂ , ] is the usual bosonic gauge-covariant derivative.
In the linearized theory, one can in fact easily find the complete θ-expansion of Aµ̂

and Aα̂. For this, note that at the linear level the recursion relations (3.43) imply

D(D− 1)Alin
µ̂ = −Σµ̂

ν̂Alin
ν̂ , (3.45)

where we have introduced the operator

Σµ̂
ν̂ :=

(
θΓµ̂ρ̂ν̂θ

)
∂ρ̂ . (3.46)

Given the second-order relation (3.45) and the two lowest-order components of the
bosonic superfield Aµ̂, it is not too hard to see that in the linearized theory the super-
field Aµ̂ is to all orders given by

Alin
µ̂ (x, θ) =

( 8∑
n=0

(−1)n
(2n)! (Σn)µ̂ν̂

)
Aν̂(x)−

( 7∑
n=0

(−1)n
(2n+ 1)! (Σn)µ̂ν̂

)(
θΓν̂ψ(x)

)
, (3.47)

where

(Σn)µ̂ν̂ := Σµ̂
σ̂Σσ̂

ρ̂ . . .Σλ̂
κ̂Σκ̂

ν̂ , (Σ0)µ̂ν̂ := δν̂µ̂ . (3.48)

Using the first relation of equation (3.43), we can now also write down an all-order
expression for the linearized fermionic superfield Alin

α̂ ,

Alin
α̂ (x, θ) = 2

(
θΓµ̂

)
α̂

{( 7∑
n=0

(−1)n
(2n)!(2n+ 2) (Σn)µ̂ν̂

)
Aν̂(x)

−
( 7∑
n=0

(−1)n
(2n+ 1)!(2n+ 3) (Σn)µ̂ν̂

)(
θΓν̂ψ(x)

)}
. (3.49)

The generalizations of these component field expansions to the full non-linear case can
be found in [107].
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3.1.3. Superfield Propagators in Harnad–Shnider Gauge
With the component expansions of the fields established, we now address the con-
struction of propagators. Conventionally, the propagators are derived by inverting the
kinetic terms in the action. Unfortunately, a manifestly supersymmetric action for the
N = 4 SYM model is not known. Nevertheless, we can construct propagators and
perform quantum calculations at the one-loop level. In this section, we shall sketch
how the free two-point functions can be derived by using the formerly established com-
ponent expansions of the fields. Later on, we will also discuss another approach where
we exploit the conformal symmetry to determine various (gauge-invariant) two-point
functions.

Our strategy to compute the superfield propagators is simple: Given the component
expansions of the superfields (3.44), we want to compute the superfield propagators by
relating them to ordinary propagators. However, let us recall that the constraints force
the fields on shell, see section 3.1.1. Naively, this puts us in a slightly inconvenient
position. On the one hand, the superspace constraints demand the fields to be on shell.
On the other hand, we want to compute propagators which are typically of the form
1/(p2 − iε) and therefore clearly off shell. This apparent clash was discussed in [40],
where is was shown that the position space propagator can be defined in a way that
is compatible with the fields being on shell. Let us briefly sketch their argument. For
simplicity, we consider a field theory with just one scalar field which we will quantize
using canonical quantization. One advantage of the canonical formalism lies in the fact
that we can consider the VEV of two fields which are not time ordered

∆(x− y) = 〈0|φ(x)φ(y)|0〉 . (3.50)

Such an expression has no analog in the path integral formalism because the path in-
tegral automatically yields the time-ordered expectation value, i.e. the Feynman prop-
agator

∆F (x− y) = 〈0|T{φ(x)φ(y)}|0〉 = 〈φ(x)φ(y)〉 . (3.51)

In contrast to the Feynman propagator, the non-time-ordered expectation value is a
perfectly well-defined on-shell quantity. It can be evaluated by using the standard
mode expansion of the Klein–Gordon field. For massless fields, one finds

∆(x) = 〈0|φ(x)φ(0)|0〉 = − g2

4π2

( 1
x2 + iπ sign(x0)δ(x2)

)
, (3.52)

see [40] for more details. Curiously, the non-time-ordered VEV differs from the usual
Feynman propagator only by a distributional amount. The latter follows immediately
by evaluating

∆F (x) =Θ(x0)∆(x) + Θ(−x0)∆(−x) = − g2

4π2

( 1
x2 + iπδ(x2)

)
=− g2

4π2
1

x2 − iε
. (3.53)

55



3. N = 4 SYM Theory in Superspace

The above considerations show that the Feynman propagator in position space can
indeed be derived while fully respecting the on-shell condition. In what follows, we will
thus use the standard position space propagators of the component fields to construct
the desired superfield propagators. We will determine these through quartic order in an
expansion in the anticommuting variables. Later on, we will use these propagators in
order to compute the one-loop expectation value of the super Maldacena–Wilson loop.
In what follows, we shall focus on the N = 4 SYM model in four dimensions. However,
instead of decomposing all the expressions into their four-dimensional building blocks,
we will keep the ten-dimensional notation for the vectors and spinors and simply neglect
all partial derivatives with respect to the six extra coordinates, i.e. ∂iAµ̂(x) = ∂iψ(x) =
0. To get started, let us once more list the component expansions of the linearized
superfields Alin

µ̂ and Alin
α̂ . Spelling out the first few summands of (3.47) and (3.49)

while discarding derivative terms with respect to the six extra coordinates yields

Alin
µ̂ (x, θ) =Aµ̂(x)−

(
θΓµ̂ψ(x)

)
− 1

2

(
θΓµ̂ρν̂θ

)
∂ρAν̂(x) + 1

6

(
θΓµ̂ρν̂θ

)(
θΓν̂∂ρψ(x)

)
+ 1

24

(
θΓµ̂ρν̂θ

)(
θΓν̂σκ̂θ

)
∂ρ∂σAκ̂(x) +O(θ5) ,

Alin
α̂ (x, θ) =

(
θΓµ̂

)
α̂

(
Aµ̂(x)− 2

3

(
θΓµ̂ψ(x)

)
− 1

4

(
θΓµ̂ρν̂θ

)
∂ρAν̂(x)

)
+O(θ4) . (3.54)

Here, as before, hatted vector indices run from zero to nine, while unhatted ones run
from zero to three. The final ingredients needed to compute the superfield propagators
are the propagators of the component fields. These follow directly from the SYM action
(2.78) and take the form (in Feynman gauge)

〈Aµ̂(x1)Aν̂(x2)〉 = g2

4π2
ηµ̂ν̂
x2

12
,

〈
ψα̂(x1)ψβ̂(x2)

〉
= g2

2π2
Γ̄α̂β̂ρ xρ12

x4
12

, (3.55)

where we abbreviated xρ12 := xρ1 − xρ2 and stripped off the color dependence. Using
the expressions given above, it is now a straightforward exercise to compute the lead-
ing order terms in the Graßmann expansion of the superfield propagators. Through
quartic order in the anticommuting variables, we find the following expression for the
propagator of the bosonic component of the superconnection:〈
Aµ̂(1)Aν̂(2)

〉
= g2

4π2

(
ηµ̂ν̂ + ηµ̂ν̂

(
θ1Γρθ2

)
∂ρ2 − 2ηρ(ν̂

(
θ1Γµ̂)θ2

)
∂ρ2 + 1

2

(
θ12Γµ̂ρν̂θ12

)
∂ρ2

+ 1
24

(
θ12Γµ̂σκ̂θ12

)(
θ12Γκ̂ρν̂θ12

)
∂ρ2∂

σ
2 − 1

6ησ[µ̂
(
θ1Γν̂]ρκ̂θ2

)(
θ1Γκ̂θ2

)
∂ρ2∂

σ
2

+ 1
6ησ[µ̂

(
θ12Γν̂]ρκ̂θ12

)(
θ1Γκ̂θ2

)
∂ρ2∂

σ
2 + 1

6ησµ̂
(
θ2Γν̂ρκ̂θ2

)(
θ1Γκ̂θ2

)
∂ρ2∂

σ
2

− 1
6ησν̂

(
θ1Γµ̂ρκ̂θ1

)(
θ1Γκ̂θ2

)
∂ρ2∂

σ
2 + 1

2

(
θ12Γµ̂σν̂θ12

)(
θ1Γρθ2

)
∂ρ2∂

σ
2

+ 1
6ηµ̂ρην̂σ

(
θ1Γκ̂θ2

)(
θ1Γκ̂θ2

)
∂ρ2∂

σ
2 + 1

2ηµ̂ν̂
(
θ1Γρθ2

)(
θ1Γσθ2

)
∂ρ2∂

σ
2

− 1
2ηµ̂ρ

(
θ1Γν̂θ2

)(
θ1Γσθ2

)
∂ρ2∂

σ
2 − 1

2ησν̂
(
θ1Γρθ2

)(
θ1Γµ̂θ2

)
∂ρ2∂

σ
2

+O(θ6)
)
x−2

12 . (3.56)
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In order to bring the propagator to this particular form, we made repeated use of
the magic identity (A.31) as well as of the reduction formula (A.29). For the mixed
superfield propagator, we obtain
〈
Aµ̂(1)Aα̂(2)

〉
= g2

4π2

(
θ2Γν̂

)
α̂

(
ηµ̂ν̂ + 1

4

(
θ2Γµ̂ρν̂θ2

)
∂ρ2 + 1

2

(
θ1Γµ̂ρν̂θ1

)
∂ρ2 (3.57)

− 4
6

(
θ1Γµ̂ρν̂θ2

)
∂ρ2 − 8

6ηρ(ν̂
(
θ1Γµ̂)θ2

)
∂ρ2 + 4

6ηµ̂ν̂
(
θ1Γρθ2

)
∂ρ2 +O(θ4)

)
x−2

12 .

The simplest propagator is that of the fermionic component of the superconnection,
which is at leading order given by

〈
Aα̂(1)Aβ̂(2)

〉
= g2

4π2

(
θ1Γκ̂

)
α̂

(
θ2Γκ̂

)
β̂
x−2

12 +O(θ4) . (3.58)

Note that in order to determine the propagator of the full superconnection through
quartic order in an expansions in the anticommuting variables we do not need to
compute the higher-order terms in (3.58) as the fermionic vielbeine are themselves
linear in the Graßmann coordinates. We will compute the full propagator in section
4.3.1 when we discuss the one-loop VEV of the super Maldacena–Wilson loop.

3.2. The Four-Dimensional Perspective
In the last section, we introduced the non-chiral superspace formulation of the ten-
dimensional N = 1 SYM model. While the ten-dimensional formalism is in general
quite useful when dealing with N = 4 SYM theory, some computations are more
conveniently performed in four dimensions. This typically applies to situations where
the conformal boost symmetries are involved as those are not contained in the ten-
dimensional Poincaré group SO(1, 9). To set the stage for these computations, we
start this section by reviewing the on-shell superspace construction adopting the four-
dimensional point of view. We then continue by discussing the action of the conformal
inversion element on the superfields. Subsequently, we will use the newly gained insights
to derive the scalar propagator as well as the field strength correlator.

3.2.1. Superspace Geometry and the Constraints
Let us start by introducing the non-chiral superspace suitable for describing N = 4
SYM theory in four dimensions. The superspace has four bosonic and sixteen fermionic
directions and is parametrized by

(xα̇α, θaα, θ̄α̇a) . (3.59)

Here, α and α̇ are su(2) indices taking values in {1, 2}, while a = 1, .., 4 is an su(4)
R-symmetry index. In what follows, we will frequently use a matrix notation similar
to the one in reference [39]. The bosonic coordinate xα̇α = xµσ̄α̇αµ (see Appendix A.1
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for our conventions) is represented by a 2× 2 matrix, while θaα is a 4× 2 matrix and
θ̄α̇a is a 2× 4 matrix. The superspace coordinates are subject to the following reality
conditions

x† = x , θ† = θ̄ , θ̄† = θ . (3.60)

Note that for Graßmann variables χ, ψ we use the convention that (χψ)† = −ψ†χ†,
while for transpositions we use (χψ)T = −ψTχT. We continue by introducing the
supercharges of the SYM model. On the non-chiral superspace, they can be represented
as

Qαa = θ̄α̇a∂αα̇ − ∂αa , Q̄a
α̇ = θaα∂αα̇ − ∂̄aα̇ . (3.61)

These expressions follow directly by dimensionally reducing the ten-dimensional su-
percharges Qα̂, see equation (3.2). More precisely, they are obtained by splitting the
fermionic index α̂ according to equation (3.59) into the two pairs (αa) and

(
a
α̇

)
and

using the Pauli matrix expressions listed in appendix A.3 while neglecting terms which
vanish upon acting on functions being independent of the six internal bosonic coordi-
nates. In a completely similar manner, one obtains the following expressions for the
susy-covariant derivatives

Dαa = θ̄α̇a∂αα̇ + ∂αa , D̄a
α̇ = θaα∂αα̇ + ∂̄aα̇ . (3.62)

Given these derivatives, it is convenient to define the chiral coordinates x±

x± := x∓ 2θ̄θ . (3.63)

Note that the chiral derivative D annihilates functions depending on (x−, θ̄), while the
antichiral derivative D̄ annihilates functions depending on (x+, θ). Hence, the two pairs
of coordinates (x+, θ) and (x−, θ̄) define chiral and antichiral superspace. Inverting the
equations (3.63) yields

x = 1
2(x+ + x−) , θ̄θ = 1

4(x− − x+) . (3.64)

These relations will prove useful later on when it comes to performing explicit super-
space computations. Having introduced the supercharges Q and Q̄, we take the oppor-
tunity and introduce the supertranslation-invariant distances on which susy-invariant
quantities can depend. The minimal supertranslation-invariant interval reads

x12 := x1 − x2 + 2θ̄2θ1 − 2θ̄1θ2 , (3.65)

where minimal refers to the Graßmann tail of the expression. For later convenience, we
also introduce shorthand notation for the following two non-minimal supertranslation-
invariant intervals

x+−
12 := x12 − 2θ̄12θ12 = x+

1 − x−2 + 4θ̄2θ1 ,

x−+
12 := x12 + 2θ̄12θ12 = x−1 − x+

2 − 4θ̄1θ2 . (3.66)
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Note that these distances have no definite overall chirality. Instead, as indicated by
the signs in the superscript, they have mixed chirality. For instance, x+−

12 is chiral in
the coordinates of point one and antichiral in the coordinates of point two.

We proceed by defining the dual space on which our gauge theory lives. The
dual space is the space of one-forms and a basis of it is given by the differentials
(dxα̇α, dθaα, dθ̄α̇a). However, as before, it is convenient to use another basis in which
the different components of a general one-form do not mix under a general supersym-
metry transformation. This basis is dual to the covariantized basis (∂αα̇, Dαa, D̄

a
α̇) and

is explicitly given by

e = dx− 2dθ̄θ + 2θ̄dθ , dθ , dθ̄ . (3.67)

While working in this basis is in general very convenient, the prize to be paid is that
the basis is not torsion-free anymore, i.e.2

de = 4dθ̄dθ , ddθ = 0 , ddθ̄ = 0 . (3.68)

Here, d is the total differential in superspace and can be expressed in terms of plain or
susy-covariant derivatives

d = 1
2dxα̇α∂αα̇ + dθaα∂αa + dθ̄α̇a∂̄aα̇ = 1

2e
α̇α∂αα̇ + dθaαDαa + dθ̄α̇aD̄a

α̇. (3.69)

Having introduced the appropriate vector space, we are now ready to define the
four-dimensional N = 4 SYM model. We start by introducing an su(N)-valued gauge
connection one-form A = AmTm, which may be decomposed on the vielbein basis as

A = 1
2e
α̇αAαα̇ + dθaαAαa + dθ̄α̇aĀaα̇ . (3.70)

Given the gauge connection one-form, we define the gauge-covariant derivative as

D = d +A = 1
2e
α̇αDαα̇ + dθaαDαa + dθ̄α̇aD̄aα̇ , (3.71)

where

Dαα̇ = ∂αα̇ +Aαα̇ , Dαa = Dαa +Aαa , D̄aα̇ = D̄a
α̇ + Āaα̇ . (3.72)

When written in terms of differential forms, the gauge transformations of A take the
same form as in the ten-dimensional case, see equation (3.14) and (3.15). Finally, we
need to discuss the constraints that have to be imposed on the field strength two-form
in order to reduce the number of degrees of freedom of the superconnection. The field
strength two-form itself is given by the expression

F = dA+A ∧A , (3.73)

2Note that we will typically omit the wedge symbol in the product of differential forms.
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3. N = 4 SYM Theory in Superspace

and its components with respect to the susy-invariant vielbein basis read

F =− 1
8e
α̇αeβ̇βFββ̇αα̇ − 1

2e
α̇αdθbβFβbαα̇ − 1

2e
α̇αdθ̄β̇ bF bβ̇αα̇ − 1

2dθaαdθbβFβbαa
− 1

2dθ̄α̇adθ̄β̇ bF bβ̇aα̇ − dθaαdθ̄β̇ bF bβ̇αa , (3.74)

where

Fββ̇αα̇ = [Dββ̇,Dαα̇] = ∂ββ̇Aαα̇ − ∂αα̇Aββ̇ + [Aββ̇,Aαα̇] ,
Fβbαα̇ = [Dβb,Dαα̇] = DβbAαα̇ − ∂αα̇Aβb + [Aβb,Aαα̇] ,
F bβ̇αα̇ = [D̄bβ̇,Dαα̇] = D̄b

β̇Aαα̇ − ∂αα̇Ābβ̇ + [Ābβ̇,Aαα̇] ,
Fβbαa = {Dβb,Dαa} = DβbAαa +DαaAβb + {Aβb,Aαa} ,
F bβ̇aα̇ = {D̄bβ̇, D̄aα̇} = D̄b

β̇Āaα̇ + D̄a
α̇Ābβ̇ + {Ābβ̇, Āaα̇} ,

F bβ̇αa = {D̄bβ̇,Dαa} − 2δbaDαβ̇ = D̄b
β̇Aαa +DαaĀbβ̇ + {Ābβ̇,Aαa} − 2δbaAαβ̇ . (3.75)

The appropriate set of constraints that have to be imposed on the four-dimensional
field strength two-form can be obtained by dimensionally reducing the ten-dimensional
constraints Fα̂β̂ = 0. For this, one splits the ten-dimensional index α̂ into two pairs
(αa) and

(
a
α̇

)
and decomposes the bosonic component of the ten-dimensional gauge

connection as

Aµ̂ → (Aµ,Φi) , (3.76)

where Φ is the superfield corresponding to the component field φ. The gauge-covariant
derivatives then become

Dµ̂ → (∂µ +Aµ,Φi) . (3.77)

Using this as well as the Pauli matrix conventions laid out in appendix A.3, one finds

{Dαa,Dβb} = −2εαβΦab ,

{Dαa, D̄bβ̇} = 2δbaDαβ̇ ,
{D̄aα̇, D̄bβ̇} = −εα̇β̇εabcdΦcd . (3.78)

Finally, we discuss how the Bianchi identities and the constraints can be used to
express the components of the field strength two-form (3.75) in terms of the superscalar
Φab and derivatives of this field. We begin by taking a fermionic covariant derivative
of the first constraint equation in (3.78). This yields

[D̄cγ̇, {Dαa,Dβb}] = −2εαβ[D̄cγ̇,Φab] . (3.79)

Using the Bianchi identity for fermionic covariant derivatives, we rewrite the left-hand
side of the former equation as

−[Dαa, {Dβb, D̄cγ̇}]− [Dβb, , {D̄cγ̇,Dαa}] = −2εαβ[D̄cγ̇,Φab] . (3.80)
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3.2. The Four-Dimensional Perspective

In the next step, we plug in the mixed chiral constraint (3.78) and contract the complete
equation with δbc ,

4[Dαa,Dβγ̇] + [Dβa,Dαγ̇] = εαβ[D̄cγ̇,Φac] . (3.81)

Symmetrizing this equation in α and β yields

[Dαa,Dβγ̇] = −[Dβa,Dαγ̇] . (3.82)

By plugging this back into equation (3.81), we obtain

Fαaββ̇ = [Dαa,Dββ̇] = 1
3εαβ[D̄bβ̇,Φab] , (3.83)

which is the desired result. In pretty much the same manner one can show that the
other two remaining coefficients, which are not directly covered by the constraints, can
be expressed as follows

Faα̇ββ̇ = [D̄aα̇,Dββ̇] = 1
3εα̇β̇[Dβb, Φ̄ab] ,

Fαα̇ββ̇ = [Dαα̇,Dββ̇] = 1
24εα̇β̇{Dαa, [Dβb, Φ̄

ab]}+ 1
24εαβ{D̄

a
α̇, [D̄bβ̇,Φab]} . (3.84)

Finally, we use the equations (3.78), (3.83) and (3.84) to rewrite the field strength
two-form as

F = (dθεdθT)abΦab + 1
6(eεdθT)α̇a[D̄bα̇,Φab] + 1

192(eεeT)α̇β̇{D̄aα̇, [D̄bβ̇,Φab]}
+ (dθ̄Tεdθ̄)abΦ̄ab + 1

6(eTεdθ̄)αa[Dαb, Φ̄ab] + 1
192(eTεe)αβ{Dαa, [Dβb, Φ̄ab]} . (3.85)

When dealing with the quantum theory, this particular form of F will turn out to
be useful as it can be used to express the field strength correlator in terms of scalar
correlators.

3.2.2. Superfield Propagators
In section 2.1.1, we have shown that conformal symmetry heavily constrains the form of
two- and three-point functions of local gauge-invariant operators. In fact, the functional
form of the two-point correlation function of two such operators is completely fixed
by conformal symmetry. In the present section, we want to use these insights to
determine expressions for certain propagators. Importantly, conformal symmetry only
constrains the physical degrees of freedom, while gauge degrees of freedom are typically
not constraint. To identify the propagators which can possibly be determined by using
conformal symmetry, let us note that for computing propagators it is sufficient to
focus on the linearized theory, which is obtained by replacing the gauge group SU(N)
by U(1)N2−1. Under a linearized gauge transformation, the fields transform as

GLΦm
i = 0 , GLAm = dΛm . (3.86)
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3. N = 4 SYM Theory in Superspace

The following propagators are thus gauge invariant:

〈Φ(1)Φ(2)〉 , 〈F(1)Φ(2)〉 , 〈F(1)F(2)〉 . (3.87)

In what follows, we shall determine the all-order form3 of these propagators by using
considerations of symmetry as well as the superspace constraints. We begin by dis-
cussing the action of the conformal inversion on the superspace coordinates and derive
the corresponding transformation laws of the superfields. With the conformal varia-
tions of the superscalars established, we will then determine the scalar propagator via
elementary CFT considerations. Finally, we compute concrete expressions for the field
strength correlators by exploiting the implications of the superspace constraints. The
all-order form of the above-listed two-point functions is at the heart of our proof of the
one-loop Yangian symmetry of super Maldacena–Wilson loops, which we will present
in chapter 5.

3.2.2.1. The Scalar Propagator

As outlined above, we begin by focusing on the propagator of the superscalars. Al-
though the scalar propagator represents the simplest correlator that we wish to com-
pute, determining its form is neither a trivial task nor a simple one. Our strategy for
computing this two-point function is the following: First, we discuss the action of the
conformal inversion on the superspace coordinates as well as on the fields. Note that we
will not yet discuss the full superspace representation of the superconformal algebra.
We postpone this discussion to chapter 4 as we ultimately need a representation on the
S5-extended non-chiral superspace, which we have not yet introduced. In the second
step, we will then use the translation and inversion symmetry to completely fix the
functional form of the scalar propagator.

Conformal inversion symmetry. In this paragraph, we determine the transformation
laws of the superfields under conformal inversion. This amounts to lifting the bosonic
discussion given in section 2.1.1 to full-fledged superspace. We begin by focusing on the
components of the superconnection and subsequently derive the transformation laws
of the superscalars by using the constraint equations (3.78).

Before we attack the problem in full-fledged superspace, let us briefly demonstrate
our strategy in a bosonic example. Recall from section 2.1.1 that under inversion the
point xµ gets mapped to

Ib[xµ] = xµ

x2 . (3.88)

A convenient way to derive the inversion law of a dimension one vector field is to
consider the derivative of a dimensionless scalar field. According to equation (2.14), a
dimensionless scalar field transforms trivially under inversion, i.e.

ϕ′(x′) = ϕ(x) . (3.89)
3Here, by all order we mean to all orders in the fermionic coordinates.
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3.2. The Four-Dimensional Perspective

In contrast to all the other formulas presented in section 2.1.1, this equation does not
get modified in superspace. To derive the inversion law of the gauge field, we consider
the derivative of the above scalar field

dϕ = dxµ∂µϕ(x) , (3.90)

which can be identified with a connection that is pure gauge, i.e. A = dϕ. The desired
transformation law is now easily established by using the fact that

dxµ∂µϕ(x) = dx′µ∂′µϕ′(x′) . (3.91)

Expressing the differential on the left-hand side in terms of the primed coordinates
yields

dxµ = dx′ρ
(
x2δµρ − 2xµxρ

)
. (3.92)

By plugging this back, we obtain

dx′µ
(
x2δνµ − 2xνxµ

)
∂νϕ(x) = dx′µ∂′µϕ′(x′) , (3.93)

from which we infer

A′µ(x′) = x2
(
δνµ −

2xνxµ
x2

)
Aν(x) . (3.94)

This formula is in complete agreement with equation (2.14) of section 2.1.1.
Let us now proceed and generalize the analysis to fields defined on superspace. The

action of the (generalized) conformal inversion on the superspace coordinates was dis-
cussed in [39] and is given by

I[x±] = εx∓,T,−1ε ,

I[θ] = −Mθ̄Tx−,T,−1ε ,

I[θ̄] = εx+,T,−1θTM−1 , (3.95)

where M is a symmetric unitary position-independent matrix (M = MT, M−1 = M †)
which is needed for correct transformations under R-symmetry. The constraint (M =
MT) follows from demanding that the inversion map is an involution

I[I[θ]] = −MI[θ̄]TI[x−]T,−1ε

= MMT,−1θ

= θ . (3.96)

It can be checked that the constraint x− − x+ = 4θ̄θ is preserved by inversion. The
reality conditions θ‡ = θ̄ and (x+)‡ = x− are preserved as well. The inversion of the
matrix x can easily be obtained by using the identity x = 1

2(x+ + x−),

I[x] = εx−,T,−1xTx+,T,−1ε . (3.97)
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3. N = 4 SYM Theory in Superspace

To obtain the transformations of the components of the superconnection, we again
consider the exterior derivative. As a first step, we invert the susy-covariant one-form
basis

eα̇α = dxα̇α − 2dθ̄α̇aθaα + 2θ̄α̇adθaα , dθaα , dθ̄α̇a . (3.98)

The computation is a bit lengthy but straightforward and we will therefore only state
the final result, which reads

e′ = dI[x]− 2dI[θ̄]I[θ] + 2I[θ̄]dI[θ] = −εx+,T,−1eTx−,T,−1ε ,

dθ′ = dI[θ] = −UTdθ̄Tx−,T,−1ε+Mθ̄Tx−,T,−1eTx−,T,−1ε ,

dθ̄′ = dI[θ̄] = εx+,T,−1dθTU †,T − εx+,T,−1eTx+,T,−1θTM−1 , (3.99)

where we have introduced shorthand notation for the following unitary matrix:

U = M − 4θx−,−1θ̄M , U † = M−1 + 4M−1θx+,−1θ̄ , UU † = 1 . (3.100)

Before we continue, let us compute the determinant of U as we will need it later on.
To do so, we use the following identity

det(1 + AB) = det(1 +BA)−1 , (3.101)

which is valid for A and B being odd matrices of dimension n×m and m×n. Equation
(3.101) can be shown to hold true by comparing two equivalent expressions for the
superdeterminant of a special supermatrix K,

K =
(

1 −A
B 1

)
, sdet(K) = det(1 + AB) = det(1 +BA)−1 . (3.102)

Using identity (3.101) as well as the fact that M has unit determinant, we find

det(U) = det(1− 4θ̄θx−,−1)−1 = det(1− (x− − x+)x−,−1)−1 = det(x−)
det(x+) . (3.103)

We now express the old vielbeine in terms of the new ones. We find

e = −x−εe′Tεx+ ,

dθ = Udθ̄′Tεx+ − θεe′Tεx+ ,

dθ̄ = −x−εdθ′TU † − x−εe′Tεθ̄ . (3.104)

We proceed by plugging these expressions into the formula for the total differential

d =1
2e
α̇α∂αα̇ + dθaαDαa + dθ̄α̇aD̄a

α̇

=1
2e
′β̇β
[
−(x−ε)α̇β(εx+)β̇α∂αα̇ − 2(εx+)β̇α(θε)aβDαa − 2(x−ε)α̇β(εθ̄)β̇aD̄a

α̇

]
+ dθ′bβ

[
−(x−ε)α̇β(U †)baD̄a

α̇

]
+ dθ̄′β̇ b

[
(εx+)β̇αUabDαa

]
. (3.105)
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From this expression, we can directly read off how the different components of the
superconnection transform under inversion. We find

Aαα̇ → −
(
εx−,TAT

px
+,Tε+ 2εθTAT

θx
+,Tε− 2εx−,TĀT

θ̄ θ̄
Tε
)
αα̇
,

Aαa →
(
εx−,TĀT

θ̄U
†,T
)
αa
,

Āaα̇ → −
(
UTAT

θx
+,Tε

)a
α̇ . (3.106)

Using the above transformation formulas, we can show that the constraints (alias the
equations of motion)

{Dαa,Dβb} = −2εαβΦab ,

{D̄aα̇, D̄bβ̇} = −εα̇β̇εabcdΦcd ,

{Dαa, D̄bβ̇} = 2δbaDαα̇ , (3.107)

are indeed invariant for a certain transformation behavior of the superscalars which we
will now determine. Useful formulas to perform this calculation are

Dαa

(
(εx+)α̇γU cb

)
= 4δγα(εθ̄)α̇aU cb − 4δca(εx+)α̇γ(x−,−1θ̄M)αb ,

D̄b
α̇

(
−(x−ε)γ̇α(U †)ad

)
= −4δγ̇α̇(θε)bα(U †)ad + 4δbd(x−ε)γ̇α(M−1θx+,−1)aα̇ ,

D̄a
α̇

(
(εx+)γ̇γU cb

)
= 4(εx+)γ̇γ(θx−,−1)cα̇Uab ,

Dαa

(
−(x−ε)γ̇γ(U †)cd

)
= −4(x−ε)γ̇γ(x+,−1θ̄)αd(U †)ca . (3.108)

We begin by investigating the first constraint of (3.107). Evaluating the anticommu-
tator of the two transformed susy- and gauge-covariant derivatives yields

{D′αa,D′βb}=(x−ε)α̇α(x−ε)β̇β(U †)ac(U †)bd{D̄cα̇, D̄dβ̇} . (3.109)

Note that the two contributions involving a susy-covariant derivative of the matrix
U † cancel out. Using the constraints (3.107) as well as the identity (A.15), the last
expression can be rewritten as

{D′αa,D′βb}=− 2εαβ det(x−)(U †)ac(U †)bdΦ̄cd . (3.110)

Obviously, the constraint is invariant if under inversion the superscalars transforms as

Φab → Φ′ab = det(x−)(U †)ac(U †)bdΦ̄cd . (3.111)

Let us now check whether this transformation is compatible with the second con-
straint of (3.107). Evaluating the anticommutator of two transformed susy- and gauge-
covariant derivatives D̄′aα̇ and inserting the constraint yields

{D̄′aα̇, D̄′bβ̇} = −εα̇β̇εabgk
(

1
2εgkef det(x+)U ceUdfΦcd

)
, (3.112)
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which implies

Φab → Φ′ab = 1
2εabef det(x+)U ceUdfΦcd . (3.113)

In order to show that this is equivalent to (3.111), we use the following identity, which
is valid for invertible 4× 4 matrices T :4

T [c|eT |d]f = 1
4ε
gkefεmncd det(T )T−1

gmT
−1
kn . (3.114)

Using this identity as well as equation (3.103), the equivalence between (3.111) and
(3.113) is easily established. Finally, we need to verify that an inversion also leaves
invariant the last constraint of (3.107). However, as this works out straightforwardly
we will not discuss it here in detail.

Determining the propagator. Before we discuss the derivation of the propagator of
the superscalars, let us again consider a simple example to demonstrate our strategy.
In section 2.1.1, we have seen that conformal symmetry implies that the correlator of
n scalar primary fields satisfies the following identity

〈φ(x1) . . . φ(xn)〉 =
∣∣∣∣∣∂x′1∂x1

∣∣∣∣∣
1/4

. . .

∣∣∣∣∣∂x′n∂xn

∣∣∣∣∣
1/4

〈φ(x′1) . . . φ(x′n)〉 , (3.115)

where |∂x′/∂x| denotes the Jacobian of the transformation. Here, we have set d = 4
and ∆ = 1 as we are interested in the free two-point function, i.e. the propagator.
Specializing the above equation to the case of translations yields

〈φ(x)φ(y)〉 = 〈φ(x− y)φ(0)〉 , (3.116)

simply stating that the propagator does only depend on the difference between x−y. To
fix the functional form of the correlator 〈φ(x− y)φ(0)〉, we now study the implications
of inversion symmetry. The Jacobian of this transformation is given by |∂x′/∂x| =
1/(x2)4. Using this in equation (3.115) yields

〈φ(x− y)φ(0)〉 = 1
(x− y)2 lim

z→∞
z2〈φ((x− y)′)φ(z)〉 . (3.117)

Importantly, this limit does not depend on coordinates and just yields the normalization
of the propagator. Thus, we find the unsurprising result that

〈φ(x)φ(y)〉 = − g2

4π2
1

(x− y)2 . (3.118)

4This formula can be shown to hold true by using (T−1)gm = adj(T )gm/det(T ) on the right-
hand side of the equation with det(T ) = 1

4!εi1i2i3i4εj1j2j3j4T
j1i1T j2i2T j3i3T j4i4 and adj(T )gm =

1
3!εgi1i2i3εmj1j2j3T

j1i1T j2i2T j3i3 .
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We will now apply the same logic to derive the propagator of the superscalars. In
the first step, we use the supertranslation invariance to place the second superscalar
at the origin, i.e.

〈Φ̄ab(x1, θ1, θ̄1)Φcd(x2, θ2, θ̄2)〉 = 〈Φ̄ab(x12, θ12, θ̄12)Φcd(0, 0, 0)〉
= 〈Φ̄ab(x12, θ12, θ̄12)φcd(0)〉 , (3.119)

where x12, θ12 and θ̄12 are the translated superspace coordinates as defined in (3.65),
i.e.

x12 = x1 − x2 + 2θ̄2θ1 − 2θ̄1θ2 , θ12 = θ1 − θ2 , θ̄12 = θ̄1 − θ̄2 . (3.120)

Note that at the origin of superspace, the superscalar reduces to its bottom component,
which is the ordinary scalar field of N = 4 SYM. In the second step, we need to
take into account that the superscalars have a non-trivial su(4) index structure. The
transformation of the indices can be incorporated by replacing the Jacobian in equation
(3.115) by the appropriate transformation matrix which can be read off from equation
(3.111), see also section 2.1.1. Using this more general version of the conformal Ward
identity, we can express the shifted correlator (3.119) in terms of the same correlator
evaluated at the inverted points

〈Φ̄ab(1)Φcd(2)〉 =

(
M − 4θ12x

−+,−1
12 θ̄12M

)ae(
M − 4θ12x

−+,−1
12 θ̄12M

)bf
(x−+

12 )2

×M−1
kc M

−1
jd lim

z→∞
z2〈Φef ((1− 2)′)φ̄kj(z)〉 . (3.121)

As in the bosonic example, the limit does not depend on coordinates and evaluates to

lim
z→∞

z2〈Φef ((1− 2)′)φ̄kj(z)〉 = − g2

π2 δ
k
[eδ

j
f ] . (3.122)

Plugging this back into (3.121) yields the desired propagator

〈Φ̄ab(1)Φcd(2)〉 =− g2

π2

(
1− 4θ12x

−+,−1
12 θ̄12

)a
[c
(
1− 4θ12x

−+,−1
12 θ̄12

)b
d]

(x−+
12 )2 . (3.123)

Note that here we have again dropped the trivial color dependence of the propagator.
We will stick to this convention throughout this chapter. By interchanging the points
one and two and using that θ12 = −θ21, θ̄12 = −θ̄21 as well as x+−

12 = −x−+
21 , we obtain

〈Φab(1)Φ̄cd(2)〉 = − g
2

π2

(
1 + 4θ12x

+−,−1
12 θ̄12

)c
[a
(
1 + 4θ12x

+−,−1
12 θ̄12

)d
b]

(x+−
12 )2 . (3.124)

This expression can be shown to be compatible with the reality constraint Φ̄ab =
1
2ε
abcdΦcd by using the analogue of equation (3.114) with one index up and one index

down.
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3.2.2.2. The Field Strength Propagator

Let us continue by computing the free two-point function of the field strength two-form
F . In principle, we could compute this correlator by employing the same logic as used
above. However, since the situation for the field strength is more complicated due to its
non-scalar nature, we shall use a different approach, namely we express it in terms of
the scalar propagator and its derivatives. To see how this works, we recall the following
identity from section 3.2.1,

F = (dθεdθT)abΦab + 1
6(eεdθT)α̇a[D̄bα̇,Φab] + 1

192(eεeT)α̇β̇{D̄aα̇, [D̄bβ̇,Φab]}
+ (dθ̄Tεdθ̄)abΦ̄ab + 1

6(eTεdθ̄)αa[Dαb, Φ̄ab] + 1
192(eTεe)αβ{Dαa, [Dβb, Φ̄ab]} , (3.125)

which relates the field strength two-form to the superscalar field and its gauge-covariant
derivatives. Note that for computing the field strength propagator we only need to keep
terms which are linear in the fields as all the non-linear terms do not contribute at this
order in perturbation theory. Thus, we can safely replace all the gauge-covariant deriva-
tives in equation (3.85) by susy-covariant derivatives. This allows us to compute the
〈F(1)F(2)〉 propagator by differentiating the scalar correlator (3.123). For later con-
venience, we split the linearized field strength into its chiral and antichiral components
Flin = F+ + F−. These take the following form

F− =
[
(dθεdθT)ab + 1

6(eεdθT)α̇aD̄b
α̇ + 1

192(eεeT)α̇β̇D̄a
α̇D̄

b
β̇

]
Φab ,

F+ =
[
(dθ̄Tεdθ̄)ab + 1

6(eTεdθ̄)αaDαb + 1
192(eTεe)αβDαaDβb

]
Φ̄ab. (3.126)

Let us start by computing the basic building block for computing the whole field
strength correlator, namely the two-point function of the (anti)chiral component of the
field strength and the superscalar. To keep equations as short as possible, we introduce
the abbreviations

C a
12 b := (1− 4θ12x

−+,−1
12 θ̄12)ab , H12αa := (x−+,−1

12 θ̄12)αa . (3.127)

Using the result (3.123) as well as the identity

D1αaC
b
12 c = −4δbaH12αc , (3.128)

we find after some manipulations the following expression for the 〈F+(1)Φcd(2)〉 prop-
agator:

〈
F+(1)Φcd(2)

〉
= − g

2

π2

εα̇β̇
(x−+

12 )2 (e1H12 − dθ̄1C12)α̇c (e1H12 − dθ̄1C12)β̇d . (3.129)

To simplify this expression further, we note that

d1H12αa = (x−+,−1
12 )αβ̇(dθ̄1C12 − e1H12)β̇a . (3.130)
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3.2. The Four-Dimensional Perspective

The last identity in combination with (A.15) allows us to rewrite the correlator (3.129)
as 〈

F+(1)Φcd(2)
〉

= − g2

π2 d1(x−+,−1
12 θ̄12)γc εγδ d1(x−+,−1

12 θ̄12)δd
= − g2

π2 (d1H
T
12 ε d1H12)cd . (3.131)

Note that in what follows, we will always be aiming at rewriting the correlators in a
form like (3.131), which makes the exactness of the wedged one-forms manifest. This
will turn out to be useful when proving the Yangian invariance of the one-loop VEV
of the super Maldacena–Wilson loop.

Next, we compute the mixed chiral two-point function 〈F+(1)F−(2)〉. For this, we
need to evaluate the expression〈

F+(1)F−(2)
〉

=
[
(dθ2εdθT

2)ab + 1
6(e2εdθT

2)α̇aD̄b
2 α̇ + 1

192(e2εe
T
2)α̇β̇D̄a

2 α̇D̄
b
2 β̇

]
×
〈
F+(1)Φab(2)

〉
. (3.132)

Inserting the expression (3.131) and applying the susy-covariant derivatives, which act
on H12 as

D̄a
2 α̇H12βb = −δab (x

−+,−1
12 )βα̇ , (3.133)

leads after some rearrangements to〈
F+(1)F−(2)

〉
= − g2

16π2 εαβε
γδ(d1x

−+,−1
12 e2 + 4d1H12dθ2)γα

×(d1x
−+,−1
12 e2 + 4d1H12dθ2)δβ. (3.134)

To rewrite the former expression in a more compact fashion, we use the identity

d1(x−+,−1
12 d2x

−+
12 )γα = −(d1x

−+,−1
12 e2 + 4d1H12dθ2)γα , (3.135)

which can easily be proven by direct computation. For the color-stripped mixed cor-
relator, we thus obtain the following final result:〈

F+(1)F−(2)
〉

= − g2

16π2 d1(x−+,−1
12 d2x

−+
12 ε)γβ d1(εx−+,−1

12 d2x
−+
12 )γβ . (3.136)

Last but not least, let us turn to the computation of the chiral - chiral correlator
〈F+(1)F+(2)〉. As before, our goal is to rewrite this two-point function in a nice and
compact fashion as exterior derivatives acting on some coordinate expression. For
the correlator of homogeneous chirality, such a rewriting requires quite some algebraic
effort. However, for the sake of readability we will not provide too much detail on this
and instead only present the important steps one has to take in order to reach the
desired goal. To get started, we need to evaluate the following expression〈

F+(1)F+(2)
〉

=
[
(dθ̄T

2εdθ̄2)cd + 1
6(eT

2εdθ̄2)αcD2αd + 1
192(eT

2εe2)αβD2αcD2βd
]

×
〈
F+(1)Φ̄cd(2)

〉
. (3.137)
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For the action of the susy-covariant derivative D2αa on the building block H12 of the
chiral - scalar correlator, one finds

D2αaH12 γc = −4H12 γaH12αc . (3.138)

Using this identity as well as the decomposition rule (A.12), it can be shown that
equation (3.137) can be written as〈
F+(1)F+(2)

〉
= 1

2εα̇β̇ε
cdef (e2H12 − dθ̄2)α̇c(e2H12 − dθ̄2)β̇d

〈
F+(1)Φef (2)

〉
. (3.139)

It remains to express the first two factors as exterior derivatives of some function
depending on the supertranslation-invariant superspace intervals. To achieve this, we
note that from equation (3.130) it follows that

d2H21αa = (x−+,−1
21 )αβ̇(dθ̄2C21 − e2H21)β̇a . (3.140)

Multiplying this equation by x+−
12 from the left and C12 from the right yields

(x+−
12 )α̇αd2H21αbC

b
12 a = (e2H12 − dθ̄2)α̇a , (3.141)

where we have used that

C21 = 1 + 4θ12x
+−,−1
12 θ̄12 = C−1

12 . H21C12 = H12 . (3.142)

The equations (3.142) can easily be shown to hold true by exploiting the relation
4θ̄12θ12 = x−+

12 −x+−
12 . By combining equation (3.141) with equation (3.139), we obtain

our final expression for the chiral - chiral correlator which reads

〈
F+(1)F+(2)

〉
=− g2

2π2 Ξabcd(1, 2)(d2H
T
21 ε d2H21)ab(d1H

T
12 ε d1H12)cd , (3.143)

where

Ξabcd(1, 2) = (x+−
12 )2εefcdC a

12 eC
b
12 f . (3.144)

Note that the 〈F−(1)F−(2)〉 correlator as well as the 〈F−(1)F+(2)〉 correlator can be
obtained from the ones derived above by conjugating equation (3.136) and equation
(3.143), respectively. However, since we will not need these expressions, we do not
state them here explicitly.
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4. The Super Maldacena–Wilson Loop
The Maldacena–Wilson loop operator, as it was introduced above, couples only to the
bosonic degrees of freedom of N = 4 SYM theory. It is therefore clear that this oper-
ator is merely the bottom component of a manifestly supersymmetric loop operator.
In reference [1], the super Maldacena–Wilson loop operator was constructed through
quadratic order in an expansion in the anticommuting variables using supersymmetry
as a guiding principle. In this chapter, we aim to complete this construction. However,
instead of pushing further the analysis initiated in [1], we shall define the full operator
by making use of the superspace formalism that has been introduced above. Our ap-
proach is inspired by the paper of Ooguri et al. [108], in which the authors study super
Wilson loops from the ten-dimensional point of view. Having established the operator,
we shall then turn to an investigation of its symmetries. Besides discussing the super-
conformal invariance of the operator, we shall prove that the four-dimensional super
Maldacena–Wilson loop also enjoys local kappa symmetry. The latter will turn out to
be intimately related to the 1/2 BPS property of the bosonic Maldacena–Wilson loop
operator. The last section of this chapter is devoted to computing the one-loop VEV
of the super Maldacena–Wilson loop and proving that it is finite. We will perform this
calculation in Harnad–Shnider gauge and work consistently up to fourth order in an
expansion in the Graßmann variables. Finally, we shall then verify that the one-loop
expectation value is fully superconformal.

4.1. Definition
In section 2.3.2, we argued that the Maldacena–Wilson loop [27] can be derived by con-
sidering the dimensional reduction of a light-like Wilson loop in ten-dimensional N = 1
SYM theory. Our strategy to derive the supersymmetric analog of the Maldacena–
Wilson loop is to lift this discussion to superspace. For this reason, let us briefly recall
the important steps of the bosonic derivation. The ordinary Wilson loop operator in
N = 1 SYM theory is given by

W (γ) = 1
N

tr P exp
(∮

γ
A
)

= 1
N

tr P exp
(∫

dτ ẋµ̂Aµ̂(x)
)
. (4.1)

Here, γ denotes a closed path in a ten-dimensional spacetime which satisfies a light-
likeness constraint at every point along the loop

ẋµ̂ẋµ̂ = 0 . (4.2)
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4. The Super Maldacena–Wilson Loop

The counterpart of the operator (4.1) in the four-dimensional N = 4 SYM theory is the
Maldacena–Wilson loop operator and can be obtained by dimensionally reducing the
expression in equation (4.1). Decomposing the ten-dimensional gauge field in equation
(4.1) as Aµ̂ → (Aµ, φi) yields

WM(γ) = 1
N

tr P exp
(∫

dτ
(
ẋµAµ(x) + ẏiφi(x)

))
, (4.3)

where we have relabeled the coordinates characterizing the path in the internal space
as yi(τ). An important point to emphasize is that the coordinates are still subject to
the light-likeness constraint (4.2), i.e.

ẋµẋµ + ẏiẏi = 0 . (4.4)

Only if the path is light-like in a ten-dimensional sense, the Wilson loop operator (4.3)
falls into the class of Maldacena–Wilson loops. Typically, the Maldacena–Wilson loop
is stated with the constraint explicitly solved

ẏi(τ) = ni(τ)
√
ẋ2 , (4.5)

where ni(τ) is a unit six-vector that characterizes a path on S5. However, one can as
well work with the operator (4.3) and handle the constraint separately. In fact, in what
follows we will frequently adopt this point of view.

Let us now supersymmetrize the above-given Wilson loop operators. With the super-
space formalism at our disposal, we can immediately write down the supersymmetric
analog of the plain bosonic Wilson loop operator in equation (4.1). Replacing the
gauge connection by the superconnection yields

W(Γ) = 1
N

tr P exp
(∮

Γ
A
)

= 1
N

tr P exp
(∫

dτ
(
pµ̂Aµ̂ + θ̇α̂Aα̂

))
, (4.6)

where Γ = (xµ̂(τ), θα̂(τ)) is a path in superspace and pµ̂ denotes the pullback of the
supertranslation-invariant one-form (3.8), i.e.

pµ̂ = ẋµ̂ + θΓµ̂θ̇ . (4.7)

From now on, we shall refer to pµ̂ as the supermomentum. The so-defined operator is
not only gauge and reparametrization invariant but also supersymmetric by construc-
tion. More precisely, it is supersymmetric in the sense that the susy transformation of
the fields can be rewritten as minus1 the action on the superpath variables

[Qα̂,W ] = −Qα̂W . (4.8)

1The minus is necessary in order to ensure the consistency of the two algebras. For a more detailed
discussion on this point see section 5.1.1.
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4.1. Definition

Here, the generator Qα̂ acts on the fields (2.73), while Qα̂ acts on the superspace
coordinates (3.2). From this equation, it follows immediately that the VEV 〈W(Γ)〉 is
annihilated by the supercharges Qα̂.2

We are now ready to define the full super Maldacena–Wilson loop operator. As
in the purely bosonic case, we construct it using the technique of dimensional reduc-
tion. For this, we decompose the ten-dimensional gauge field in equation (4.6) as
Aµ̂ → (Aµ,Φi) and demand that the reduced fields are independent of the coordinates
parametrizing the internal directions. Here, Aµ represents the bosonic component of
the four-dimensional superconnection, while by Φi we refer to the six superscalars of
N = 4 SYM theory, see also section 3.2.1. Performing this step yields

WM(Γ) = 1
N

tr P exp
(∫

dτ
(
pµAµ + θ̇α̂Aα̂ + qi Φi

) )
, (4.9)

where the contour integral is over a superpath Γ parametrized by (xµ(τ), θα̂(τ), qi(τ)).
In what follows, we shall refer to the superspace spanned by the set (xµ, θα̂, qi) as ex-
tended non-chiral superspace. Importantly, the superpath Γ is subject to a generalized
ten-dimensional light-likeness constraint, which explicitly reads

pµpµ + qiqi = 0 ←→ q2 = qiqi = pµpµ . (4.10)

Recall that we are working with a metric which has mostly minus signature, therefore
explaining the extra minus sign in the rightmost equation. As in the bosonic case, the
constraint can be solved explicitly by setting

qi = ni(τ)
√
pµpµ , (4.11)

with ni(τ) being a unit six-vector as in equation (4.5). The above equations also make
it clear that qi cannot be interpreted as ẏi + θΓiθ̇ with yi describing a purely bosonic
path. The dimensional reduction procedure employed is thus of a slightly generalized
nature. For completeness, let us also state the super Maldacena–Wilson loop using
purely four-dimensional notation. It reads

WM(Γ) = 1
N

tr P exp
(∫

dτ
(
pµAµ + qi Φi + θ̇aαAαa + ˙̄θα̇aAaα̇

))
, (4.12)

with pµ being given by

pµ = ẋµ + θσµ ˙̄θ − θ̇σµθ̄ . (4.13)

As its ten-dimensional ancestor (4.6), this operator is gauge and reparametrization
invariant as well as supersymmetric by construction. Inserting the component field
expansions (3.44) furthermore shows that it limits to the bosonic Wilson loop oper-
ator (4.3) and exactly reproduces the result found in reference [1], where the present

2Here, we are assuming that the vacuum state is invariant under supersymmetry transformations.
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4. The Super Maldacena–Wilson Loop

author and his collaborators constructed the super Maldacena–Wilson loop through
quadratic order in an expansion in the anticommuting variables. We thus believe that
the operator (4.12) represents the correct supersymmetric extension of the ordinary
Maldacena–Wilson loop operator and is most likely the object which, at strong cou-
pling, is described by the minimal surface of the full-fledged AdS5×S5 superstring that
ends on the curve Γ [43,108] at the boundary.

Finally, let us comment on the existing literature. To the authors’ knowledge, the
supersymmetric generalization of the Maldacena–Wilson loop operator has first been
considered in the appendix of reference [102]. In this paper, the authors gave a formal
definition of the object but constructed it only through linear order in an expansion in
the anticommuting coordinates. From the superspace point of view, super (Maldacena–
)Wilson loops were discussed in reference [108]. Our derivation here is in fact very
much inspired by the one presented in [108] but corrects a technical detail concerning
the dimensional reduction of the ten-dimensional super Wilson loop operator (4.6).
Although the operator has been (almost) available for more than fifteen years, it has
never been studied in detail for arbitrary smooth contours. For polygonal contours
which are null in four dimensions, the operator was investigated in [39,40], but in this
case the couplings to the scalars becomes irrelevant due to the light-likeness of the
contour. In this thesis, we want to fill this gap and study the super Maldacena–Wilson
loop for arbitrary smooth supercontours.

4.2. Symmetries
An important aspect of all physical observables is symmetry. Symmetries can often be
used to simplify explicit computations drastically. For this reason, it is crucial to gain a
complete understanding of them. The super Wilson loop, as introduced above, enjoys
local kappa symmetry and is expected have global superconformal symmetry. In the
first part of this section, we shall review the kappa symmetry of the ten-dimensional
super Wilson loop [108] and show that it also holds for the four-dimensional super
Maldacena–Wilson loop. In the second part, we turn to the question of superconfor-
mal symmetry. As it is unknown how the superconformal algebra acts on extended
non-chiral superspace, we shall start our discussion on this topic by deriving a con-
sistent representation acting on this space. Subsequently, we will demonstrate that
superconformal symmetry is compatible with kappa symmetry. Verifying the super-
conformal invariance of the Wilson loop expectation value will be postponed to the
next section.

4.2.1. Kappa Symmetry
The ten-dimensional super Wilson loop (4.6) enjoys local kappa symmetry. This state-
ment has been proven in reference [108]. The kappa symmetry is in fact closely related
to the 1/2 BPS property of the bosonic Wilson loop operator, see section 2.3.2. To
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see how this works in detail, let us first consider the simpler example of a local BPS
operator.

BPS property of local operators. Let O(0) be a local gauge-invariant operator that
is located at the origin. To define the operator at an arbitrary point in spacetime, we
can use the familiar translation property of local operators

O(x) = exPO(0)e−xP . (4.14)

Here, the generator P acts on the fields and has to be distinguished from the differential
operator P, see section 2.1.1. If the underlying theory is furthermore supersymmetric,
we can use a similar relation to construct the supersymmetric completion of the local
operator O(x). Explicitly, we define

O(x, θ) = eθQO(x)e−θQ , (4.15)

where Q are the supercharges acting on the fields. However, an important point to
note is that unlike the generators of translations, the supercharges do not commute in
general. In order to prove that the operator O(x, θ) really represents the supersym-
metric completion of the local operator O(x), let us consider how it transforms under
a supersymmetry transformation. Under a finite supersymmetry transformation, the
operator O(x, θ) gets mapped to

eζQO(x, θ)e−ζQ = O(x− ζΓθ, θ + ζ) , (4.16)

where ζ is a parameter that specifies the transformation. Expanding the above equation
in ζ and looking at the terms being linear in ζ yields the following relation

[Qα̂,O(x, θ)] = −Qα̂O(x, θ) , (4.17)

where Qα̂ is the representation of the supercharges that acts on the coordinates, see
equation (3.2). The local operator O(x, θ) is thus supersymmetric in the same sense
in which the super Wilson loop operator is supersymmetric, cf. equation (4.8).

In complete analogy to the discussion in section 2.3.2, it may happen that that a
certain linear combination of Poincaré supercharges annihilates the operator O(x), i.e.

[ζQ, O(x)] = 0 , (4.18)

for some fixed spinor ζ. In this case, the supersymmetric version O(x, θ) depends
only on some θ’s and therefore the Graßmann expansion is shorter. These are BPS
operators. An interesting question to answer is what the BPS property of the bottom
component O(x) implies for the full-fledged operator O(x, θ). To clarify this question,
we consider the equation

O(x, θ) = eθQeζQO(x)e−ζQe−θQ . (4.19)
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4. The Super Maldacena–Wilson Loop

Note that the inner conjugation does not harm the relation as ζQ commutes with O(x)
by assumption. Using the algebra relation of the supercharges {Qα̂,Qβ̂} = 2Γµ̂

α̂β̂
Pµ̂,

the above equation can be rewritten as

O(x, θ) = e(θ+ζ)Q+(ζΓµ̂θ)Pµ̂O(x)e−(θ+ζ)Q−(ζΓµ̂θ)Pµ̂ = O(x+ ζΓθ, θ + ζ) . (4.20)

Expanding this relation in ζ yields

O(x, θ) = O(x, θ) + (ζD)O(x, θ) +O(ζ2) , (4.21)

where Dα̂ is the susy-covariant derivative (3.3). The conclusion of this computation
is that the BPS property of the bottom component implies that the operator ζD
annihilates the supersymmetric operator O(x, θ),

(ζD)O(x, θ) = 0 . (4.22)

This argument generalizes straightforwardly to the case of Wilson loops. This is what
we will discuss next.

Kappa symmetry. In section 2.3.2, we showed that the bosonic Maldacena–Wilson
loop operator is a 1/2 BPS object, meaning that it commutes locally with half of the
supercharges. As a preparation for the discussion of kappa symmetry, let us briefly
recall the important formulas using ten-dimensional notation. The ten-dimensional
gauge connection can be written as A(τ) = dτ ẋµ̂Aµ̂ and we assume the path to be
null in ten dimensions, i.e. ẋ2 = 0. Under a supersymmetry transformation (2.73), the
gauge connection transforms as

[ζQ, A] = −dτ(ζẋµ̂Γµ̂ψ) . (4.23)

If ζ = κẋµ̂Γ̄µ̂, the above variation vanishes due to the light-likeness of the vector ẋµ̂
and the algebra relations fulfilled by the Pauli matrices, see appendix A.3. As ẋµ̂ is in
general not constant, different supersymmetries are preserved at different points along
the contour. Moreover, it is a 1/2 BPS condition because the matrix ẋµ̂Γ̄µ̂ has an
eight-dimensional kernel and thus projects out eight of the sixteen degrees of freedom
of the spinor κ.

In analogy to the case of local operators, the invariance of the bosonic Wilson loop
operator under some local worldline supersymmetry lifts to the invariance of the su-
per Wilson loop under some local superdiffeomorphisms. These diffeomorphisms are
generated by the vector field

κα̂p
µ̂Γ̄α̂β̂µ̂ Dβ̂ ≡ ζ(κ)α̂Dα̂ , (4.24)

which is obtained by replacing ζ → κpµ̂Γ̄µ̂ and Q→ D, where pµ̂ is the supermomentum
as introduced in equation (4.7). For the variation of the superspace coordinates, we
find

δκp
µ̂ = ζ(κ)α̂Dα̂ p

µ̂ = 2ζ(κ)Γµ̂θ̇ , δκθ
α̂ = ζ(κ)β̂Dβ̂ θ

α̂ = ζ(κ)α̂ . (4.25)
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Let us emphasize again that while κ has sixteen degrees of freedom, the spinor ζ has
only eight degrees of freedom because eight are projected out by the matrix pµ̂Γ̄µ̂. Using
the light-likeness condition on p, it is in fact easy to show that there is an equivalence
relation κ ∼ κ + p · Γξ on the spinors κ. Hence, the spinors κ and κ + p · Γξ produce
the same kappa-symmetry transformation.

Let us now explicitly show that the ten-dimensional super Wilson loop (4.6) is invari-
ant under kappa-symmetry transformations. Varying the superconnection with respect
to the coordinates yields

δκA = dτ
(
pBζ(κ)AFAB +

[
pADA, ζ(κ)BAB

])
, (4.26)

where A = (µ̂, α̂) is a collective superspace index and we have introduced the ab-
breviation pA = (pµ̂, θ̇α̂). In the above formula, ζ(κ)A is the coefficient of the kappa-
symmetry-generating vector field when written in the basis of susy-covariant derivatives
(∂µ̂, Dα̂). From equation (4.24), we read off the following explicit form of ζ(κ)A,

ζ(κ)A = (0, ζ(κ)α̂) = (0, δκθα̂) . (4.27)

Note that the latter term in equation (4.26) represents an infinitesimal field-dependent
gauge transformation and can therefore be neglected if δκ is applied to a gauge-invariant
operator. For more details on this see section 5.1.1. For the variation of the ten-
dimensional super Wilson loop operator, we thus find

δκW(Γ) = 1
N

tr P
{

exp
(∮

Γ
A
)∮

Γ
δκA

}

= 1
N

tr P
{

exp
(∮

Γ
A
)∫

dτ
(
pµ̂ δκθ

α̂Fα̂µ̂ + θ̇β̂ δκθ
α̂Fα̂β̂

)}
. (4.28)

Fortunately, both terms are zero in ten-dimensional N = 1 SYM theory. While the
latter one is zero due to the constraint Fα̂β̂ = 0 (3.19), the former one vanishes only
if the contour satisfies a generalized light-likeness constraint, namely pµ̂pµ̂ = 0. To see
this, let us recall that the constraints allowed us to identify the mixed component of
the field strength tensor with the fermionic superfield Ψ,

Fµ̂α̂ = Γµ̂ α̂β̂Ψβ̂ , (4.29)

, cf. equation (3.23). Using this relation, the first term in equation (4.28) can be
rewritten as

δκθ
α̂pµ̂ Γµ̂ α̂β̂Ψβ̂ =

(
κΓ̄ν̂Γµ̂Ψ

)
pν̂pµ̂ ∝ pµ̂pµ̂ = 0 . (4.30)

For a light-like contour pµ̂(τ) this expression vanishes. This completes the proof that
the ten-dimensional super Wilson loop is kappa symmetric. Note that a similar proof
has been given in reference [108]. However, there the authors did not elaborate on the
relation between kappa symmetry and the 1/2 BPS condition.
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4. The Super Maldacena–Wilson Loop

Let us now discuss the situation for the dimensionally-reduced super Maldacena–
Wilson loop operator (4.9). The kappa-symmetry transformations of the variables
pµ and θα̂ follow immediately from the ten-dimensional equations presented above.
Explicitly, we find

δκθ
α̂ = κβ̂(pµΓ̄µ + qiΓ̄i)β̂α̂ , δκp

µ = 2δκθΓµθ̇ , (4.31)

where we have decomposed the ten-dimensional supermomentum as pµ̂ → (pµ, qi).
However, how does the coordinate qi transform? To answer this question, we observe
that the proof of kappa symmetry goes through without further ado if the coordinate
qi transforms in the same way as the extra components of ten-dimensional supermo-
mentum pµ̂. Therefore, we demand that

δκq
i = 2δκθΓiθ̇ . (4.32)

This can be achieved by letting the S5 vector ni transform as

δκn
i = 2(δij + ninj)

δκθΓj θ̇√
pµpµ

. (4.33)

To prove this, we consider

δκq
i = δκn

i
√
pµpµ + ni

δκp
µpµ√
pµpµ

= 2δκθΓiθ̇ + 2ni
√
pµpµ

δκθΓµ̂θ̇pµ̂ , (4.34)

where pµ̂ in the rightmost term is defined as pµ̂ = (pµ, qi). The last term in the above
equation represents the variation of the ten-dimensional light-likeness constraint. By
inserting the explicit expression for δκθ, one can easily show that the light-likeness
constraint is preserved by a kappa-symmetry transformation and therefore the extra
term vanishes.

For completeness and later convenience, let us also state the transformation of the
superspace coordinates using purely four-dimensional notation. Using the Pauli matrix
conventions as laid out in appendix A.3, we obtain the following expressions for the
transformations of the odd variables

δκθ = κ̄p− q̄κTε ,

δκθ̄ = pκ− εκ̄Tq , (4.35)

where p = ẋ+2θ̄θ̇−2 ˙̄θθ. Here, we haven again taken καa to be a 2×4 matrix and κ̄aα̇ to
be a 4× 2 matrix. Also, q̄ab is the vector qi written in spinor form and qab = 1

2εabcdq̄
cd,

see appendix A.2 for our conventions. The kappa transformations of the remaining
quantities read

δκx = 2(pκ− εκ̄Tq)θ − 2θ̄(κ̄p− q̄κTε) ,

δκp = 4(pκ− εκ̄Tq)θ̇ − 4 ˙̄θ(κ̄p− q̄κTε) ,

δκq̄
ab = −8(θ̇εδκθT)[ab] − 4εabcd( ˙̄θTεδκθ̄)cd . (4.36)

This concludes our discussion on the kappa symmetry of the super Maldacena–Wilson
loop operator.
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Consistency. Consistency requires that kappa-symmetry transformations and loop
reparametrizations from a closed algebra. Loop reparametrizations represent a closely
related class of transformations which leave the super Wilson loop invariant. On the
superspace coordinates, the infinitesimal reparametrization transformations act as

δσθ(τ) = σθ̇(τ) , δσx
µ̂(τ) = σẋµ̂(τ) . (4.37)

Using these transformations as well as the formulas for kappa transformations, it is
straightforward to verify that

[δκ1 , δκ2 ] = δκ(κ1,κ2) + δσ(κ1,κ2) ,

[δσ1 , δσ2 ] = δσ(σ1,σ2) ,

[δσ1 , δκ2 ] = δκ(σ1,κ2) , (4.38)

where

κ(κ1, κ2) = 4(θ̇κ2)κ1 − 4(θ̇κ1)κ2 + 2(κ1Γ̄µ̂κ2)(Γµ̂θ̇) , κ(σ1, κ2) = σ̇1κ2 − σ1κ̇2 ,

σ(κ1, κ2) = −4(κ1p
µ̂Γ̄µ̂κ2) , σ(σ1, σ2) = σ2σ̇1 − σ1σ̇2 . (4.39)

The kappa-symmetry transformations thus form a consistent algebra. We can conceive
of kappa-symmetry transformations and reparametrizations as transformations map-
ping points along some path to nearby points in superspace. Since these transforma-
tions close under the Lie bracket, they locally generate some manifold of dimension 1|8
with one bosonic and eight fermionic directions. Any two paths within this manifold
are related by kappa transformations and reparametrizations and the corresponding
Wilson loops are equivalent.

4.2.2. Superconformal Symmetry in Extended Superspace
In chapter 3, we did not really touch upon the topic of a superspace representation of
the superconformal algebra psu(2, 2|4). We postponed this discussion to the present
chapter because ultimately we do not only need a representation on the superspace
spanned by the coordinates (x, θ, θ̄) but also on the extended superspace, which is
parametrized by (x, θ, θ̄, q). Constructing a representation of the superconformal alge-
bra that acts on (extended) non-chiral superspace is neither a trivial task nor a simple
one. In fact, reference [1] failed to do this correctly. The challenge lies in representing
the conformal boosts, which do not simply follow from a dimensional reduction pro-
cedure as they are not contained in the symmetry algebra of ten-dimensional N = 1
SYM theory. Fortunately, we can use the conformal inversion (3.95) to construct these
generators. Discussing this in detail will be the subject of the next paragraphs.

Conformal boosts in non-chiral superspace. Let us start by constructing a repre-
sentation of the conformal boost generators S and S̄ that acts on the non-extended
superspace parametrized by (x, θ, θ̄). Such a representation has been obtained in [39]
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and we will follow their approach here. The key idea is to consider the conformal in-
version instead of the more complicated conformal boosts. Under conformal inversion,
the superspace coordinates get mapped to

I[x±] = εx∓,T,−1ε ,

I[θ] = −Mθ̄Tx−,T,−1ε ,

I[θ̄] = εx+,T,−1θTM−1 , (4.40)

where M is some symmetric unitary matrix whose explicit form we will not need, see
also our discussion in section 3.2.2.1. A convenient feature of the conformal group
SO(2, 4) is that the inversion relates the generator of translations and the generator
of special conformal transformations, see section 2.1.1. Fortunately, similar relations
also exist in the superconformal case. In fact, we can determine the transformations of
the superspace coordinates under superconformal boosts by considering the following
sequence of transformations:

δS,S̄ X = (I ◦ δQ,Q̄ ◦ I)[X] . (4.41)

Here, δQ,Q̄ denotes the variation generated by

δQ,Q̄ = ζaαQαa + ζ̄ α̇aQ̄a
α̇ , (4.42)

where Q and Q̄ are the Poincaré supercharges as given in equation (3.61). Under this
variation, the coordinates transform as

δQ,Q̄ θ = −ζ , δQ,Q̄ θ̄ = −ζ̄ ,
δQ,Q̄ x

+ = 4ζ̄θ , δQ,Q̄ x
− = −4θ̄ζ ,

δQ,Q̄ x = 2ζ̄θ − 2θ̄ζ , δQ,Q̄ p = 0 . (4.43)

Evaluating equation (4.41) is somewhat lengthy and we shall merely give the final
result, which reads

δS,S̄ θ = ξ̄x+ − 4θξθ , δS,S̄ θ̄ = x−ξ + 4θ̄ξ̄θ̄ ,
δS,S̄ x

+ = −4x+ξθ , δS,S̄ x
− = 4θ̄ξ̄x− ,

δS,S̄ x = 2θ̄ξ̄x− − 2x+ξθ , δS,S̄ p = 4θ̄ξ̄p− 4pξθ , (4.44)

where we have identified the transformation parameters as

ξ := εζTM−1 , ξ̄ = Mζ̄TεT . (4.45)

Given the variation of the coordinates, it is a straightforward exercise to reconstruct
the generators S and S̄. However, we shall postpone this task until we have deter-
mined the transformations of the coordinates qi. Finally, let us note that given the
Poincaré supercharges as well as the superconformal boost generators, all the other
generators follow from algebra considerations. We shall present an exhaustive list of
them momentarily.
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4.2.2.1. Conformal boosts in extended superspace.

While the fields live in non-chiral superspace, the super Maldacena–Wilson loop is
defined on extended non-chiral superspace. The extra coordinates enter, however,
only explicitly through the couplings of the superscalars, cf. (4.12). Nevertheless, we
need to know how the superconformal algebra acts on this bigger space. To find the
transformations of the coordinates q̄, we again study the conformal inversion. The
key property that we will use to fix the transformation law of the coordinates q̄ is
that the Wilson loop operator must be invariant under a combined transformation of
the fields and the coordinates. In section 3.2.2.1, we employed this logic to find the
transformations of the gauge components. Here, we use it to find the transformation
law of the coordinates q̄.

We begin by demonstrating the above statement for the bosonic Maldacena–Wilson
loop operator. As discussed in section 2.3.2, the scalar part of this operator is of the
following form

dτ
√
ẋ2φi(x)ni . (4.46)

Under inversion, the dimension-one field φi(x) transforms as

φi(x)→ φ′i(x′) = x2φi(x) . (4.47)

On the other hand, using xµ → xµ/x2, we find that the square root factor transforms
as

√
ẋ2 →

√
ẋ2

x2 . (4.48)

Hence, the combination of terms in equation (4.46) stays invariant.
Let us now fix the inversion law of q̄ by demanding that the same holds true for

the super Maldacena–Wilson loop. Recall from section 3.2.2.1 that the superscalars
transform under inversion as

Φ→ Φ′ = det(x−)U †Φ̄U †,T , (4.49)

where

U = M − 4θx−,−1θ̄M , U † = M−1 + 4M−1θx+,−1θ̄ , UU † = 1 . (4.50)

If we want the super Wilson loop to be invariant under inversion, the coordinates q̄ab
must transform in such a way that it compensates the transformation of the fields Φab.
We obtain

I[q̄] = det(x−)−1UTq U , I[q] = det(x+)−1U †q̄ U †,T . (4.51)
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To find the action of the superconformal boosts, we proceed as described above, see
equation (4.41). For the susy variation of the inverted coordinate, we obtain

(δQ,Q̄ ◦ I)[q̄] =− 2(x−)−4 tr
(
εx−,Tεθ̄ζ − εζTθ̄Tεx−

)
UTqU

− 4(x−)−2
(
Mζ̄Tx−,T,−1θT +Mθ̄Tx−,T,−1ζTM−1UT

)
qU

+ 4(x−)−2UTq
(
UM−1ζx−,−1θ̄M + θx−,−1ζ̄M

)
. (4.52)

Note that q is supertranslation invariant, i.e. δQ,Q̄ q = 0. The final step consists of
applying another inversion to the above equation. The following identities come in
handy when performing this computation

I[(x−)−2] = (x+)2 , I[U ] = UT . (4.53)

Using these, we obtain the following result for the superconformal variation of q̄:

δS,S̄ q̄ = 4q̄
(
ξTθT + θ̄Tξ̄T

)
− 4

(
θξ + ξ̄θ̄

)
q̄ − 4tr

(
ξθ
)
q̄ . (4.54)

The transformation law of q with lower indices can easily be obtained by complex
conjugating the above equation

δS,S̄ q = 4q
(
ξ̄θ̄ + θξ

)
− 4

(
θ̄Tξ̄T + ξTθT

)
q + 4tr

(
θ̄ξ̄
)
q . (4.55)

Note that superconformal boosts preserve the duality relation q̄ab = 1
2ε
abcdqcd, which

can be proven by using Schouten’s identity in five indices.

4.2.2.2. Superspace representation of the superconformal algebra.

Given the variations of the coordinates under supertranslations and superconformal
boosts, we can now construct a complete representation of the superconformal algebra.
The first step consists of translating the variations (4.44) and (4.54) into differential
operator expressions for S and S̄. The other generators can then be found by algebra
considerations, see the commutation relations in appendix B. We refrain from present-
ing any intermediate steps and merely state the final result, which reads

Pαα̇ = −∂αα̇ ,
Qαa = θ̄α̇a∂αα̇ − ∂αa ,
Q̄a

α̇ = θaα∂αα̇ − ∂̄aα̇ ,
Lαβ = −xγ̇α∂βγ̇ − 2θcα∂βc + 1

2δ
α
β

(
xγ̇γ∂γγ̇ + 2θcγ∂γc

)
,

L̄α̇β̇ = −xα̇γ∂γβ̇ − 2θ̄α̇c∂̄cβ̇ + 1
2δ
α̇
β̇

(
xγ̇γ∂γγ̇ + 2θ̄γ̇ c∂̄cγ̇

)
,

D = −1
2

(
xα̇α∂αα̇ + θaα∂αa + θ̄α̇a∂̄

a
α̇ + 1

2q
ab∂ab

)
,

Saα = −(x+)δ̇αθaδ∂δδ̇ + 4θcαθaγ∂γc + (x−)γ̇α∂̄aγ̇ + 2θcαqad∂cd − θaαqcd∂cd ,

82



4.2. Symmetries

S̄α̇a = −(x−)α̇γ θ̄γ̇a∂γγ̇ − 4θ̄γ̇aθ̄α̇c∂̄cγ̇ + (x+)α̇γ∂γa − 2θ̄α̇bqbe∂ae ,
Kα̇α = 2θcα(x+)α̇γ∂γc + 2(x−)γ̇αθ̄α̇c∂̄cγ̇ + 1

2(x+)γ̇α(x+)α̇γ∂γγ̇
+ 1

2(x−)γ̇α(x−)α̇γ∂γγ̇ − 4θcαθ̄α̇aqad∂cd + 1
2(x+)α̇αqcd∂cd ,

Ra
b = 2θ̄γ̇ b∂̄aγ̇ − 2θaγ∂γb − qad∂bd − 1

4δ
a
b

(
2θ̄γ̇ c∂̄cγ̇ − 2θcγ∂γc − qcd∂cd

)
. (4.56)

Here, ∂cd denotes the derivative3 with respect to the coordinates q̄cd, which enter the
super Maldacena–Wilson loop via the couplings to the superscalars. This derivative
acts on q̄ab as

∂cdq̄
ab = 2

(
δac δ

b
d − δadδbc

)
. (4.57)

A complete list of all the commutation relations can be found in appendix B. To obtain
a representation acting on the smaller non-chiral superspace, one can simply set to zero
all the q-terms in the generators (4.56). The closure of the algebra is not affected by
this modification.

Finally, let us extend the superconformal algebra by the hypercharge generator B
as well as the central charge C. Together with the generators of psu(2, 2|4) these
generators span the algebra u(2, 2|4). We will need this extension later on because we
want to discuss the level-one hypercharge symmetry [109, 110] of super Maldacena–
Wilson loops. On our superspace, the generators B and C are represented by

B = 1
2θ

aα∂αa − 1
2 θ̄

α̇
a∂̄

a
α̇ , C = 0 . (4.58)

This concludes our discussion on the superspace representation of the superconformal
algebra.

4.2.3. Consistency
In this section, we shall perform two consistency checks. The first consists of proving
that the generalized ten-dimensional light-likeness constraint is preserved by all super-
conformal transformations. The second one concerns the algebra of kappa transforma-
tions and superconformal transformations. Consistency requires that the commutator
of a kappa transformation and a superconformal transformation closes onto another
kappa transformation. Verifying this property will the subject of the second paragraph.

The constraint and superconformal symmetry. The question that we want to ad-
dress in this paragraph is whether the ten-dimensional light-likeness condition

pµpµ + qiqi = 0 ↔ tr(q̄q)− 2tr(εpεpT) = 0 , (4.59)

3As usual, we define the derivative with spinor indices as ∂cd = Σicd∂i with Σicd being the six-
dimensional Pauli matrices, see appendix A.2 for our conventions.
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is preserved by superconformal transformations. Obviously, it is preserved by Lorentz
transformations and R-symmetry transformations because they descend from ten-
dimensional so(1, 9) Lorentz transformations. Furthermore, (4.59) is clearly susy in-
variant as

δQ,Q̄ p = δQ,Q̄ q = 0 . (4.60)

However, for the remaining elements of psu(2, 2|4), namely for the generators of con-
formal and superconformal boosts, the situation is less clear. Fortunately, it suffices
to analyze the situation for the conformal inversion as the invariance of the constraint
under all types of boosts follows if (4.59) is preserved by I. Recall that inverting the
coordinates p, q and q̄ yields

I[p] = −εx+,T,−1pTx−,T,−1ε ,

I[q̄] = det(x−)−1UTqU ,

I[q] = det(x+)−1U †q̄U †,T . (4.61)

Using these formulas as well as the identity (A.15), one derives the following equation

I[tr(q̄q)− 2tr(εpεpT)] = 1
(x−)2(x+)2

(
tr(q̄q)− 2tr(εpεpT)

)
, (4.62)

from which we conclude that the light-likeness condition is preserved by inversion.
Since (4.59) is also (super)translation invariant and

δK = I ◦ δP ◦ I , δS,S̄ = I ◦ δQ,Q̄ ◦ I , (4.63)

the constraint is also preserved by conformal and superconformal boosts.

The algebra of kappa transformations and superconformal transformations. In
this paragraph, we investigate the algebraic relation between superconformal transfor-
mations and kappa transformations. We do this using the language of variations, being
defined as

δP = 1
2a

α̇αPαα̇ , δL,L̄ = ωα
βLβα + ω̄β̇ α̇L̄α̇β̇ , δD = λD , δP = 1

2bαα̇Kα̇α ,

δR = χbaRa
b , δQ,Q̄ = ζaαQαa + ζ̄ α̇aQ̄a

α̇ , δS,S̄ = ξαaSaα + ξ̄aα̇S̄α̇a , (4.64)

where ω, ω̄ and χ are traceless matrices and {P,L, L̄,D,K,Q, Q̄, S, S̄,R} are the super-
conformal generators as listed in equation (4.56). To study the algebra, we need to
compute the following commutators

[δκ, δs.c.] p , [δκ, δs.c.] θ , [δκ, δs.c.] θ̄ , [δκ, δs.c.] q̄ , (4.65)

where δs.c. represents a general superconformal transformation as defined in equation
(4.64). Let us start by focusing on the easiest commutators which are those involving
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translations and supertranslations. By recalling that the two coordinates p and q are
translation as well as supertranslation invariant, one sees that

[δκ, δP] = [δκ, δQ,Q̄] = 0 , (4.66)

holds on all the superpath variables. Next, we consider the generators of rotations,
namely δL,L̄ and δR. These computations are a bit more involved but still straightfor-
ward and we shall merely give the final results. One finds

[δκ, δL,L̄] = δκ′ , with κ′ = 2ωκ ,

[δκ, δR] = δκ′ , with κ′ = 2κχ . (4.67)

Furthermore, for dilatations we obtain

[δκ, δD] = δκ′ , with κ′ = λ
2κ . (4.68)

Let us now come to the most involved commutator that we shall investigate explicitly,
which is the one involving a kappa transformation and a superboost. Evaluating the
action of this commutator on the coordinates p, θ and θ̄ requires quite some effort but
can still be done in a straightforward manner. Going carefully through the calculation
while using the formulas of section 4.2.2.1 and 4.2.1 yields the following result

[δκ, δS,S̄]

pθ
θ̄

 =

δκ′pδκ′θ

δκ′ θ̄

 , (4.69)

with

κ′ = 4ξθκ+ 4κξ̄θ̄ + 4κθξ . (4.70)

Hence, on p, θ and θ̄ the commutator closes onto a kappa transformation as expected.
However, for q the situation is slightly different. To see this, we calculate

[δκ, δS,S̄] q̄cd=
[
− 32θ̇εpT

(
κ̄TξTθT + κ̄Tθ̄Tξ̄T − κ̄T tr(ξθ) + ξ̄Tθ̄Tκ̄T

)
− 32θ̇

(
ξθε+ εTθTξT

)
pTκ̄T

− 32θ̇
(
ξθκ+ κθξ + κξ̄θ̄

)
q̄
][cd]

+ 16εabcd
[ ˙̄θTκ̄T

(
q(ξ̄θ̄ + θξ)− (θ̄Tξ̄T + ξTθT)q + tr(θ̄ξ̄)q

)
+ ˙̄θTε(θ̄ξ̄p− pξθ)κ

+
(
tr(ξθ) ˙̄θT − ξTθT ˙̄θT − θ̄Tξ̄T ˙̄θT − ˙̄θTξ̄Tθ̄T

)
ε(pκ− εκ̄Tq)

]
ab

+ 16
( ˙̄θTε(pκ− εκ̄Tq)

)
ab

[
εabed(θξ + ξ̄θ̄)ce − εabce(ξTθT + θ̄Tξ̄T)ed

]
+ 4q̄

(
ξTpTκ̄T + ξTεκq̄T + qTκ̄εξ̄T + κTεξq̄ − tr(ξκ̄p− ξq̄κTε)q̄

)
+ 4κ̄p

(
εTpTξ̄T − ξq̄

)
+ 4ξ̄

(
εκ̄Tqq̄ + pεpTκ̄T

)
+ 4εabcd

[
ξTpTε(pκ− εκ̄Tq)

]
ab
.
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Now, using standard su(2) identities like (A.12) as well as Schouten’s identity in five
indices for the terms in the fifth and in the last line, one shows that the right-hand
side of the former equation can be written as

[δκ, δS,S̄] q̄cd = δκ′ q̄
cd +

(
4εabcd(ξTεκ)ab + 4ξ̄εκ̄T − 4κ̄εξ̄T

)(
p2 + q2

)
, (4.71)

with κ′ as given in equation (4.70). The latter term, however, vanishes if the path we are
acting on is light-like in a ten-dimensional sense4, so that in this case the commutator
closes as expected. Last but not least, we could check the commutator between kappa
transformations and the generators of special conformal transformations δK. However,
as the Jacobi identity together with the knowledge that superboosts preserve the light-
likeness constraint p2 + q2 = 0 (see section 4.2.3) already guarantees the closure of this
commutator, we will not carry out this computation.

4.3. The Super Wilson Loop in Harnad–Shnider Gauge
Having established the operator and a consistent representation of the superconformal
algebra, we now turn to computing its one-loop VEV. Using the propagators derived
in section 3.1.3, we will determine the expectation value through fourth order in an
expansion in the anticommuting variables and subsequently investigate the question of
finiteness. We shall conclude by verifying explicitly the superconformal invariance of
the one-loop expectation value at the first non-trivial orders in the fermionic coordi-
nates.

4.3.1. The One-Loop Vacuum Expectation Value
Let us start this section by explaining our notation. For reasons of compactness, we
prefer to perform the computation in ten dimensions rather than in four dimensions.
This means that we will keep the ten-dimensional notation for the spinors and the
vectors but assume the component fields to be independent of the six extra coordinates,
see also section 3.1.3. Using ten-dimensional language, the super Maldacena–Wilson
loop operator can be written as

WM(Γ) = 1
N

tr P exp
(∫

dτ
(
pµ̂Aµ̂ + θ̇α̂Aα̂

))
. (4.72)

Here, we have reassembled the four and six vector that couple to Aµ and Φi, respec-
tively, into one ten-dimensional vector, being defined as

pµ̂ =

ẋ
µ +

(
θΓµθ̇

)
for µ̂ = 0, . . . , 3

qi = ni
√
pνpν for µ̂ = 4, . . . , 9 .

(4.73)

4Note that kappa symmetry requires the superpath to be light-like in ten dimensions, see (4.30).
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To obtain the one-loop correction to the VEV, the operator (4.72) must be expanded
to two fields which are consequently joint by a propagator. This yields

〈WM(Γ)〉 = 1− N

4

∫
dτ1 dτ2

(
pµ̂1p

ν̂
2

〈
Aµ̂(1)Aν̂(2)

〉
+ 2pµ̂1 θ̇α̂2

〈
Aµ̂(1)Aα̂(2)

〉
− θ̇α̂1 θ̇

β̂
2

〈
Aα̂(1)Aβ̂(2)

〉)
+ . . . . (4.74)

Note that in the above equation we have already used that the propagators are diagonal
in color space. Moreover, we have replaced the color factor (N2−1)/N by N because we
are only interested in the large-N behavior of the VEV. After plugging in the superfield
propagators as derived in section 3.1.3 and performing a few manipulations using the
identity (A.29) as well as integration by parts, we obtain

〈WM(Γ)〉 = 1− λ

16π2

∫
dτ1 dτ2 F(τ1, τ2) +O(λ2) , (4.75)

where the integrand is given by

F(τ1, τ2) =

pµ̂1pν̂2
(
ηµ̂ν̂ + 1

2

(
θ12Γµ̂ρν̂θ12

)
∂ρ2 + 1

24

(
θ12Γµ̂ρn̂θ12

)(
θ12Γn̂σν̂θ12

)
∂ρ2∂

σ
2

)

+ 2pµ̂1
(
ηµ̂κ̂ + 1

4

(
θ12Γµ̂ρκ̂θ12

)
∂ρ2

)(
θ12Γκ̂θ̇2

)

− 2
3

(
θ12Γµ̂θ̇1

)(
θ12Γµ̂θ̇2

) 1
(x12 − θ1Γθ2)2 +O(θ6) . (4.76)

Note that for the sake of manifest super Poincaré invariance, we have completed the
distance x12 in the denominator above. Upon Taylor expansion all terms which are of
order six or higher in the anticommuting variables need to be neglected. Now, given the
integrand (4.76), it is tempting to speculate about the all-order form of the one-loop
integrand. In fact, by taking into account the all-order expressions (3.47) and (3.49)
for the linearized superfields, one can come up with an educated guess for the complete
one-loop integrand

F(τ1, τ2) =

pµ̂1
( 16∑
n=0

1
(2n)!

(
Σ̄n

12

)
µ̂

ν̂

)
p2ν̂ + 4pµ̂1

( 15∑
n=0

1
(2n)!(2n+ 2)

(
Σ̄n

12

)
µ̂

ν̂

)(
θ12Γν̂ θ̇2

)

− 2
3
(
θ12Γµ̂θ̇1

)( 15∑
n=0

cn
(
Σ̄n

12

)
µ̂

ν̂

)(
θ12Γν̂ θ̇2

) 1
(x12 − θ1Γθ2)2 , (4.77)

where we have used a similar notation as in (3.47), with Σ̄12 being defined as(
Σ̄12

)
µ̂

ν̂ :=
(
θ12Γµ̂ρν̂θ12

)
∂2ρ , and

(
Σ̄0

12

)
µ̂

ν̂ := δν̂µ̂. (4.78)

Unfortunately, there seems to be no easy way of determining the coefficients cn beyond
explicit calculation, so that at this point we only know that they are rational and that
c0 = 1.
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4.3.2. Finiteness
Although it has never been rigorously proven, the Maldacena–Wilson loop operator,
as it was introduced in [27], is believed to have a finite expectation value as long as
the path on which it depends is smooth and non-intersecting. In this section, we will
address the question whether a similar statement holds true for the supersymmetric
Maldacena–Wilson loop operator (4.72). Since an all-loop analysis seems to be far
beyond reach, we will restrict ourselves to a discussion at the one-loop level. More
precisely, we shall only focus on the short-distance behavior of the one-loop integrand
(4.76) as the absence of short-distance singularities at the level of the integrand already
guarantees the finiteness of the one-loop expectation value.5

To investigate the UV behavior of the super Wilson loop (4.72), we will study the
short-distance limit of the one-loop integrand (4.76). For this, we introduce a parameter
ε being defined as ε = τ2 − τ1 and expand the integrand (4.76),

F(τ1, τ2) = F(τ, τ + ε) , (4.79)

for small ε. If we can show that the resulting series is free of poles, the integrand
stays finite over the whole integration domain, thus leading to a finite VEV. The loop
contour that we are going to consider is assumed to be a smooth non-intersecting closed
path in superspace which is furthermore super light-like in ten dimensions, i.e.

pµ̂pµ̂ = pµpµ − qiqi = 0 −→ pµ̂ṗµ̂ = 0 , (4.80)

but nowhere null in four dimensions, i.e. pµpµ 6= 0 for all τ . Here, we have used the
same definition for the ten-dimensional vector pµ̂ as in the previous section, see (4.73).
The expansions of the superpath variables Z(τ + ε) around ε = 0 are given by

xµ1 = xµ, xµ2 = xµ + εẋµ + 1
2ε

2ẍµ +O(ε3),
θα̂1 = θα̂, θα̂2 = θα̂ + εθ̇α̂ + 1

2ε
2θ̈α̂ +O(ε3),

qi1 = qi, qi2 = qi + εq̇i + 1
2ε

2q̈i +O(ε3) . (4.81)

We start our investigation of the pole structure of (4.79) by focusing on the denominator
term in (4.76) and its derivatives. Using the expansions (4.81), we find

1
(x12 − θ1Γθ2)2 = 1

ε2

(
1

pµpµ
− ε pµṗµ

(pνpν)2 +O(ε2)
)
. (4.82)

For the first derivative of the denominator term, we obtain the following Taylor expan-
sion

∂ρ2

(
1

(x12 − θ1Γθ2)2

)
= 1
ε3

(
−2pρ

(pµpµ)2 + ε
4pρpµṗµ − ṗρpµpµ

(pνpν)3 +O(ε2)
)
. (4.83)

5Due to the Minkowski structure of our superspace, it could in principal happen that the denominator
of (4.76) becomes zero although the two points (x(τ1), θ(τ1)) and (x(τ2), θ(τ2)) do not coincide.
However, for the time being, let us not consider this case and instead restrict to curves for which
the square of the supertranslation-invariant interval does not vanish for any two distinct τ1 and
τ2.
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4.3. The Super Wilson Loop in Harnad–Shnider Gauge

In general, each partial derivative increases the power of the leading divergence by one
unit. Therefore, we can write down the following formal Taylor series for the n-th
derivative of the inverse square of the supertranslation-invariant interval

(∂2)n
(

1
(x12 − θ1Γθ2)2

)
= 1
ε2+n

(
Sn(τ) + εTn(τ) +O(ε2)

)
, (4.84)

where Sn and Tn denote two different rank-n tensors. Having discussed the denomi-
nator term and its derivatives, we now need to compute the Taylor expansions of the
numerator terms. We start by focusing on the sum of all terms which do not involve a
partial derivative. For these terms, we find the following result

pµ̂1
(
p2µ̂ + 2

(
θ12Γµ̂θ̇2

))
− 2

3

(
θ12Γµ̂θ̇1

)(
θ12Γµ̂θ̇2

)
= 1

2ε
2pµ̂

(
p̈µ̂ − 2

(
θ̇Γµ̂θ̈

))
+O(ε3),

(4.85)

where we have used the relations (4.80) as well as the fact that the ten-dimensional
Pauli matrices are symmetric. If we multiply the two expansions (4.82) and (4.85), we
immediately see that the resulting series starts at order ε0 and does therefore have a
finite limit as ε → 0. For the sum of all terms which multiply the first derivative of
the denominator term (4.83), we obtain the following expansion:

1
2p

µ̂
1p

ν̂
2

(
θ12Γµ̂ρν̂θ12

)
+ 1

2p
µ̂
1

(
θ12Γµ̂ρκ̂θ12

)(
θ12Γκ̂θ̇2

)
= 1

2ε
3pµ̂ṗν̂

(
θ̇Γµ̂ρν̂ θ̇

)
+O(ε4) . (4.86)

Here, we have used the fact that the term at order ε2 vanishes due to the antisymmetry
of Γµ̂ρν̂ . Therefore, the product of the two expansions (4.83) and (4.86) is also free of
poles. The last term which we will investigate explicitly is the one which multiplies
the second derivative of the denominator term. Its Taylor expansion reads

1
24p

µ̂
1p

ν̂
2

(
θ12Γµ̂ρn̂θ12

)(
θ12Γn̂σν̂θ12

)
= 1

24ε
4pµ̂pν̂

(
θ̇Γµ̂ρn̂θ̇

)(
θ̇Γn̂σν̂ θ̇

)
+O(ε5) . (4.87)

If we combine this expression with equation (4.84) (for n = 2), we see that the re-
sulting series is again UV safe, thus completing our proof that the first three terms in
the Graßmann expansion of the complete one-loop integrand are free of short-distance
singularities. Given this result, one can now of course raise the question whether this
statement also holds for the higher-order terms in the θ-expansion. In fact, provided
that our conjecture about the form of the complete one-loop integrand (4.77) is struc-
turally correct, one easily sees that all the higher-order terms are also UV finite since
every operator Σ̄12 comes with two ε’s originating from the expansions of the two θ12
but contains only one partial derivative, cf. (4.84).

4.3.3. Superconformal Symmetry
Finally, let us confirm the full superconformal invariance of the one-loop VEV (4.75).
The one-loop expectation value (4.75) is manifestly invariant under (super)translations,
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4. The Super Maldacena–Wilson Loop

Lorentz transformations and internal rotations. However, it remains to check the in-
variance under superboosts. In what follows, we will check this superconformal Ward
identity at the first three orders in the Graßmann expansion of the one-loop VEV
(4.75).

In ten-dimensional notation, the superconformal transformation laws of the super-
space coordinates (4.44) and (4.54) take the following form

δS,S̄ xµ = xν
(
θΓµΓ̄νξ

)
− 1

12

(
θΓνρξ

)(
θΓµΓ̄νρθ

)
+ 1

12

(
θΓijξ

)(
θΓµΓ̄ijθ

)
,

δS,S̄ θ
α̂ = xµ

(
ξΓ̄µ

)α̂
+ 1

2

(
θξ
)
θα̂ − 1

4

(
θΓµνξ

)(
θΓµν

)α̂
+ 1

4

(
θΓijξ

)(
θΓij

)α̂
,

δS,S̄ q
i = 2qj

(
θΓjΓ̄iξ

)
, (4.88)

where ξ is the parameter which specifies the transformation. In order to be able to split
the subsequent computation in smaller but self-contained pieces, we will work with the
following form of the one-loop expectation value

〈WM(Γ)〉(1) = λ

16π2

∫
dτ1 dτ2

{
Ip(τ1, τ2) + Iq(τ1, τ2) +O(θ4)

}
, (4.89)

where we have separated the integrand into a part which does not involve the coordinate
q at all

Ip(τ1, τ2) = pµ1p
ν
2

x2
12

(
ηµν + 2ηµν

(
θ1Γρθ2

)xρ12
x2

12
+
(
θ12Γµρνθ12

)xρ12
x2

12

)
+ 2pµ1
x2

12

(
θ12Γµθ̇2

)
,

(4.90)

and a piece which involves all the remaining terms

Iq(τ1, τ2) = qi1q
j
2

x2
12

(
ηij + 2ηij

(
θ1Γρθ2

)xρ12
x2

12
+
(
θ12Γiρjθ12

)xρ12
x2

12

)

+ 2qi1
x2

12

(
pµ2
(
θ12Γiρµθ12

)xρ12
x2

12
+
(
θ12Γiθ̇2

))
. (4.91)

This particular splitting turns out to be useful since the p-part and the q-part do not
mix under superconformal transformations.

Let us start by computing the variation of the integrand Ip(τ1, τ2). Under a super-
conformal boost, the supermomentum pµ transforms as

δS,S̄ pµ = 2ẋν
(
θΓµΓ̄νξ

)
+O(θ3) . (4.92)

Using this expression, we can now compute the variation of the integrand (4.90). If we
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only keep terms which are linear in θ after the variation, we find

δS,S̄ Ip(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2ẋµ1
x2

12

(
2ẋν2

(
θ2ΓµΓ̄νξ

)
− xν12

(
θ̇2ΓµΓ̄νξ

)
+ ẋν2

(
θ12ΓµΓ̄νξ

))

− 2ẋµ1 ẋν2
x4

12

(
ηµνx

ρ
12x

σ
12

(
θ1ΓρΓ̄σξ

)
+ ηµνx

ρ
12x

σ
12

(
θ2ΓρΓ̄σξ

)
− xρ12x

σ
12

(
θ12ΓµρνΓ̄σξ

))
, (4.93)

where by =̂ we mean that the expression on the right-hand side gives the same result
when integrated over τ1 and τ2, i.e. we already made use of the freedom to relabel the
integration variables. Using the Clifford algebra relation for the Pauli matrices as well
as the identity (A.29), the former expression can be rewritten as

δS,S̄ Ip(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2ẋµ1
x2

12

(
2ẋν2

(
θ2ΓµΓ̄νξ

)
− xν12

(
θ̇2ΓµΓ̄νξ

)
+ ẋν2

(
θ12ΓµΓ̄νξ

)
− ẋ2µ

(
θ1ξ

)

− ẋ2µ
(
θ2ξ

)
− ẋν2

(
θ12Γµνξ

)
+ 2ẋρ2x12ρ

x2
12

xν12

(
θ12ΓµΓ̄νξ

))
.

(4.94)

By use of the Clifford algebra relation as well as integration by parts, the variation of
Ip(τ1, τ2) can be shown to be equivalent to

δS,S̄ Ip(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2ẋµ1
(
− ẋ

ν
2

x2
12

(
θ12ΓµΓ̄νξ

)
− xν12
x2

12

(
θ̇2ΓµΓ̄νξ

)
+ 2ẋρ2x12ρ

x4
12

xν12

(
θ12ΓµΓ̄νξ

))
.

(4.95)

This expression can, however, easily be seen to be a total derivative with respect to τ2

δS,S̄ Ip(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2ẋµ1
∂

∂τ2

(
xν12
x2

12

(
θ12ΓµΓ̄νξ

))
, (4.96)

and does therefore vanish when integrated over. Let us note that the expression is also
non-singular in the limit 1→ 2.

We now turn to the variation of Iq(τ1, τ2). If we again discard terms which are of
higher order than linear in θ, we find

δS,S̄ Iq(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2qi1q
j
2

x2
12

((
θ12Γijξ

)
+ ηij

(
θ1ξ

)
+ ηij

(
θ2ξ

)
− 1
x2

12

(
ηijx

µ
12x

ν
12

(
θ1ΓµΓ̄νξ

)

+ ηijx
µ
12x

ν
12

(
θ2ΓµΓ̄νξ

)
− xµ12x

ρ
12

(
θ12ΓiρjΓ̄µξ

)))
(4.97)

+ 2qi1
x2

12

(
−xµ12

(
θ̇2ΓiΓ̄µξ

)
+ ẋµ2

(
θ12ΓiΓ̄µξ

)
+ 2pν2
x2

12
xµ12x

ρ
12

(
θ12ΓiρνΓ̄µξ

))
.
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Using the Clifford algebra relation as well as the reduction formula (A.29), one easily
shows that the part being quadratic in q vanishes without leaving behind a total deriva-
tive term. Note that this is expected as the terms being quadratic in q originate from
the correlator of two scalar superfields Φi and the combination qiΦi is superconformally
invariant, see section 4.2.2.1. The terms being linear in q can be rewritten as

δS,S̄ Iq(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2qi1
(
−x

µ
12
x2

12

(
θ̇2ΓiΓ̄µξ

)
− ẋµ2
x2

12

(
θ12ΓiΓ̄µξ

)
+ 2ẋρ2x12ρ

x4
12

xµ12

(
θ12ΓiΓ̄µξ

))
,

which is pretty much the same total derivative that we encountered when varying the
integrand Ip(τ1, τ2),

δS,S̄ Iq(τ1, τ2)
∣∣∣∣∣
O(θ)

=̂ 2qi1
∂

∂τ2

(
xν12
x2

12

(
θ12ΓiΓ̄νξ

))
. (4.98)

Putting both results together yields

δS,S̄〈WM(Γ)〉(1) = λ

8π2

∫
dτ1 dτ2

{
∂

∂τ2

(
xν12
x2

12

(
θ12
(
ẋµ1Γµ + qi1Γi

)
Γ̄νξ

))
+O(θ3)

}
, (4.99)

which shows that the one-loop expectation value of the super Maldacena–Wilson loop
operator (4.72) is annihilated by the generators of superboosts modulo terms which
are at least cubic in the anticommuting variables.
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We now turn to the discussion of the non-local symmetries of super Maldacena–Wilson
loops. In reference [1], it was shown that the one-loop VEV of the super Maldacena–
Wilson loop is Yangian invariant at the leading order in the Graßmann expansion. In
this paper, the authors formulated the Yangian symmetry in terms of second order
variational derivative operators acting on the (super)path of the Wilson loop operator.
However, it was noted that such a definition is subtle as these operators easily lead
to ill-defined distributional terms when applied to the VEV of the super Maldacena–
Wilson loop. Here, we will now reconsider the definition of the Yangian generators
and argue for an approach based on gauge-covariant field insertions. We begin by
explaining our formalism in the context of level-zero symmetry and compare it to the
path-based approach used in reference [1]. Subsequently, we shall define the level-
one generators and discuss various algebraic consistency conditions. Finally, we will
apply our formalism to the case of smooth super Wilson loops and prove the Yangian
symmetry of the full one-loop VEV.

5.1. Yangian Action on Wilson Lines
In the following, we will establish the action of the Yangian generators on a generic
Wilson line operator. In the beginning, we will keep the discussion fairly general in
the sense that we will neither fix the underlying algebra nor the specific form of the
Wilson line operator. This will not only streamline the discussion but also allow us
to see more clearly which of the many exceptional features of the N = 4 SYM model
are responsible for its integrability. For simplicity, we shall, however, assume that the
underlying Lie algebra is purely bosonic. This will make algebra expressions a lot more
readable, while the generalization to the case of a superalgebra is straightforward. The
Wilson line operator that we are going to consider is of the following form

V = P exp
∫

Γ
A , (5.1)

where we have abbreviated V := V(Γ) for later convenience. Here, Γ denotes an
open path in a general spacetime Γ : τ 7→ XA(τ) and for concreteness we will use a
parametrization that runs from τ = 0 to τ = 1. The index A is to be interpreted
as a multi-index running over the bosonic and fermionic degrees of freedom. In what
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follows, we will often expand the Lie algebra-valued gauge connection A in a plain basis
of one-forms, i.e. A = dXAApA. Note that this can be done without loss of generality
as one can easily translate between a supertranslation-invariant basis and the plain
basis spanned by the dXA, see section 5.1.3. In order to distinguish the expansion
coefficients with respect to the plain basis from the expansion coefficients with respect
to the susy-covariant basis, we have added a superscript p to the components of the
gauge connection. For the sake of simplicity, we have refrained from making explicit
any coupling to the scalars in equation (5.1). However, the Maldacena extension can
be introduced straightforwardly as will be discussed in section 5.1.3.

5.1.1. Level-Zero Action on the Wilson Line
The Lie algebra constitutes the level-zero algebra upon which the Yangian is built. In
fact, the bi-local part of the level-one generators is completely determined once the
level-zero algebra has been fixed and a representation for these generators has been
chosen, see section 2.1.3. There are, however, different ways of representing the level-
zero algebra, which are equivalent up to boundary terms. While these boundary terms
are irrelevant for the level-zero symmetry, they can easily spoil the level-one symmetry.
In what follows, we will discuss and compare the different level-zero representations
in detail, thereby laying the foundations for formulating the action of the level-one
generators.

Useful definitions and gauge transformations. Let us start our discussion by col-
lecting the relevant definitions that will be used throughout the next sections. As
we will often consider small variations of the Wilson line operator (5.1), the following
notation suggests itself:

V [Q] :=
∫
V[0,τ ] Q(τ)V[τ,1] . (5.2)

Here, we have inserted a local operator, like, for example, the variation of the gauge
connection A, into the path-ordered exponential at the position X(τ). Note that for
tactical reasons we have omitted the integration measure dτ in the above formula. In
practice, Q(τ) will always be a one-form field which has to be understood as pulled
back to the path. For example, the pullback of the gauge connection one-form A
reads A = dτẊA(τ)ApA(X(τ)).1 For later convenience, let us also define a shorthand
notation for a Wilson loop with two ordered insertions:

V [Q;Q′] :=
∫
τ<τ ′
V[0,τ ] Q(τ)V[τ,τ ′] Q

′(τ ′)V[τ ′,1] . (5.3)

Here, as above, Q(τ) and Q′(τ ′) denote the pullback of two one-forms.
1In order to distinguish between the pullback of the form and the one-form itself, we should in

principal introduce a different notation for the pullback, like, for example, Γ∗A. However, in this
thesis we will refrain from doing so as it will be clear from the context which object is meant.
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One of our main guiding principles in the following will be gauge covariance (gauge
invariance). Let us therefore consider gauge transformations of Wilson lines/loops in
detail, see also section 2.3.1. As discussed in section 3.1.1, a gauge connection one-form
transforms under an infinitesimal gauge transformation G[Λ] as

G[Λ]A = DΛ = dΛ + [A,Λ] . (5.4)

When pulled back to a path parametrized by X(τ), the former equation becomes

(G[Λ]A)(X(τ)) = dτ (∂τΛ + [ẊAApA,Λ]) =: dτ Dτ Λ . (5.5)

Here, we have introduced a new notation namely the covariant derivative along the
path Dτ = ∂τ +[ẊAApA, ]. In order to obtain the transformation behavior of a generic
Wilson line operator, we vary the operator (5.1) with respect to the gauge field A and
plug in equation (5.5) for the variation δA. This yields

G[Λ]V = V [DΛ] =
∫

dτ V[0,τ ]Dτ Λ(X(τ))V[τ,1] . (5.6)

Note that we can integrate the first term of the covariant derivative along the path by
parts. The action of the partial derivative ∂τ on the two Wilson line operators V[0,τ ]
and V[τ,1] in fact cancels the commutator term, so that the only remaining term is a
total derivative term which can be integrated and yields two boundary terms, i.e.

G[Λ]V = −Λ(0)V + VΛ(1) . (5.7)

This is in agreement with the finite gauge transformation of a Wilson line, see equation
(2.88). Consequently, a closed Wilson loop is a gauge-invariant quantity

G[Λ] trV = tr[V ,Λ] = 0 . (5.8)

Next, let us consider the gauge transformation of a Wilson line operator with one
insertion. The variation can either hit the first Wilson loop operator in (5.2), the
insertion itself or the second Wilson loop operator in (5.2). Consequently, we get

G[Λ]V [Q] = V [DΛ;Q] + V
[
G[Λ]Q

]
+ V [Q;DΛ]. (5.9)

Integrating the covariant derivatives yields

G[Λ]V [Q] = −Λ(0)V [Q] + V [ΛQ] + V
[
G[Λ]Q

]
− V [QΛ] + V [Q]Λ(1)

= −Λ(0)V [Q] + V [Q]Λ(1) + V
[
G[Λ]Q− [Q,Λ]

]
. (5.10)

From the last equation, we conclude that if the insertion transforms covariantly, i.e.
G[Λ]Q = [Q,Λ], the Wilson line with one insertion transforms in the same way as
the Wilson line itself, see equation (5.6). In particular, we note that a Wilson loop
with a covariant insertion is still gauge invariant. This completes our preliminary
considerations. We proceed by discussing the different level-zero representations.
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Action on the path. A convenient way of representing the level-zero generators is
by specifying their action on the path XA(τ). Under a small variation of the contour
δXA, the Wilson line operator changes as

δV =
∫

dτ V[0,τ ]
(
∂τ (δXA)ApA + ẊAδXB∂BApA

)
V[τ,1] . (5.11)

As explained above, we will not yet fix the underlying Lie algebra and instead just
assume some general expansion of the symmetry-generating vector fields

J = JXAp (X)∂A = JXA(X)DA , (5.12)

where the ∂A furnish the plain basis of vector fields, while by DA we refer to the susy-
covariant derivatives, see also chapter 3. The subscript p helps to distinguish the two
sets of expansion coefficients. Acting with a level-zero transformation on the point XA
obviously yields JXAp (X) and we will therefore denote (with abuse of notation) the
infinitesimal displacement of the path XA(τ) by JXAp (τ). Note that for the moment,
we omit the Lie algebra index α by conceiving of the Lie algebra generators as being
contracted with a parameter ε. In order to distinguish the path variation of the Wilson
line operator (5.11) from, for example, the field variation, we choose to denote the path
variation of V by JV . Using this notation, equation (5.11) becomes

JV =
∫

dτ V[0,τ ]
(
Dτ (JXAp A

p
A) + ẊAJXBp F

p
BA

)
V[τ,1] , (5.13)

where FpBA is the field strength tensor, being defined as

FpBA = ∂BApA − (−1)|A||B|∂AApB + [ApB,A
p
A} , (5.14)

where

[ApB,A
p
A} := ApBA

p
A − (−1)|A||B|ApAA

p
B . (5.15)

Note that in the above equation we have rewritten the ∂τ -term as a covariant derivative
along the path acting on JXAp A

p
A, see also equation (5.5). The extra terms needed for

this cancel exactly against those terms that were used to rewrite the second term in
equation (5.11) as an insertion of the full field strength tensor. Therefore, the equations
(5.11) and (5.13) are completely equivalent. By comparing equation (5.13) to equation
(5.6), we see that the first term is merely a field-dependent gauge transformation,
which can be integrated to the boundary. For Wilson loops, these boundary terms
cancel out due to the presence of the trace. Hence, the gauge-covariant derivative term
in equation (5.13) can be safely disregarded when discussing the Lie algebra symmetry
of Wilson loops. However, while being irrelevant for level-zero symmetry, such terms
have to be treated with care when dealing with level-one symmetry as they can easily
lead to a breakdown of gauge invariance. This is one of the reasons why we refrain
from formulating the Yangian using this path-based approach. Instead, we shall use
generators which act on the fields.
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5.1. Yangian Action on Wilson Lines

Action on the fields. An alternative approach to formulate the level-zero symmetry
is by using generators which act on the fields rather than on the path. Varying the
Wilson line operator (5.1) with respect to the gauge connection A yields

JV =
∫

dτ V[0,τ ] (JA)(τ)V[τ,1] = V [JA] . (5.16)

Here, we have employed a similar notation as in the paragraph above, namely we
denote the variation of the gauge connection by JA and the variation of the Wilson
line operator by JV . The field variation of the one-form field A is defined as minus the
path variation, i.e.

JA = −dXA JXBp ∂BA
p
A − d(JXBp )ApB

= −dXAJXBp F
p
BA −D(JXAp A

p
A) . (5.17)

Note that the minus sign in the definition of J is required to match the Lie algebra of
the field generators J to the algebra of derivative operators J, which act on coordinates.
To see this, let us consider the product of two generators J acting on a field Ψ,

J1J2Ψ = −J1J2Ψ = −J2J1Ψ = J2J1Ψ . (5.18)

Since the order of generators is effectively reversed, we need the extra minus sign in the
definition of the generators J to absorb the minus sign resulting from reordering the
indices of the structure constants. This argument makes it clear that by construction
the level-zero actions on the fields satisfy the same algebra relations as the generators
Jδ, i.e.

[Jδ, Jρ] = f δρκJκ. (5.19)

For later convenience, let us note that the transformation law (5.17) also has a nice
mathematical interpretation. From the point of view of differential geometry, the
generators of the Lie algebra J = JXAp ∂A form vector fields which we chose to write in
the local coordinate basis spanned by the ∂A. In this framework, the field variation of
the gauge connection is interpreted as minus the Lie derivative of the one-form field A
with respect to the vector field J = JXAp ∂A, meaning that

JA = −LJA = −i[J]dA− d(i[J]A) . (5.20)

Here, we have introduced a new operation denoted by i[J], which is called the interior
product. The interior product takes a vector field, such as J = JXAp ∂A, as an argument
and acts on a generic p-form ω,

ω = 1
r! dXA1 ∧ dXA2 ∧ . . . ∧ dXArωAr...A2A1 , (5.21)

in the following way:

i[J]ω = 1
(r−1)! JXAp dXA2 ∧ . . . ∧ dXArωAr...A2A . (5.22)
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5. Integrability of Smooth Super Wilson Loops

Obviously, the operator i[J] acts on a differential form by subsequently replacing the
basis differentials by the vector JXAp . Note, however, that the interior product acts as
an antiderivation, meaning that

i[X](ω ∧ η) = (i[X]ω) ∧ η + (−1)pω ∧ (i[X]η) , (5.23)

where ω is a general p-form and η is a general q-form. For this reason, one picks up a
minus sign when commuting the operator i[X] past a basis differential. In the further
course of this thesis, we shall call the object i[J]ω the contraction of J with ω. Given
these explanations, we can now easily check that the expressions (5.17) and (5.20)
indeed agree. To get familiar with the formalism, let us carry out this computation in
detail. Applying the exterior derivative and the interior product operator to the gauge
connection A yields

JA = i[J]
(
dXA ∧ dXB 1

2(∂BApA − (−1)|A||B|∂AApB)
)
− d(JXAp A

p
A) . (5.24)

Carrying out the contraction in the above equation leads to the expression

JA = JXAp dXB(∂BApA − (−1)|A||B|∂AApB)− d(JXAp A
p
A)

= −dXBJXAp F
p
AB −D(JXAp A

p
A) , (5.25)

where in the second line we have added and subtracted the commutator term in order
to match the right-hand side of the above equation to equation (5.17). This completes
our short excursion into differential geometry.

The above definition of the level-zero action makes direct reference to the gauge
potential A, which is not gauge covariant by itself. This will later lead to problems in
the definition of the Yangian. For this reason, let us consider gauge transformations
in more detail. Under an infinitesimal gauge transformation, the field insertion JA
changes as

G[Λ](JA) = [JA,Λ]−D(JΛ) . (5.26)

Consequently, the Wilson line operator with a field insertion of the form JA transforms
as

G[Λ]V [JA] = −Λ(0)V [JA] + V [JA]Λ(1) + (JΛ)(0)V − V(JΛ)(1) . (5.27)

To obtain this result, we have used equation (5.10). The insertion of JA obviously
leads to two extra boundary terms which can be interpreted as follows: Under a gauge
transformation, the Wilson line operator changes by the gauge-parameter field Λ eval-
uated at its two ends. Under a subsequent level-zero transformation, the Wilson line
transforms as described above but the generator can also hit the gauge-parameter field
explaining the two extra terms in equation (5.27). However, note that for a Wilson loop
operator all the terms on the right-hand side of equation (5.27) conveniently cancel out

G[Λ] trV [JA] = tr
[
V [JA],Λ

]
− tr[V , JΛ] = 0 . (5.28)

Consequently, the level-zero variation of a gauge-invariant Wilson loop operator is still
gauge invariant.
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Covariantized field action. Let us begin this paragraph by recalling the level-zero
representation on the fields as introduced above. We found that the generator J acts
on the gauge connection A in the following way:

JA = −dXAJXBp F
p
BA −D(JXAp A

p
A) . (5.29)

Taking into account our discussion on gauge transformations in the first paragraph,
we observe that the second term in the above equation is just a field-dependent gauge
transformation. While the field strength tensor transforms covariantly under a gauge
transformation, the latter term does not and is therefore the source of the additional
terms in equations (5.26) and (5.27). Furthermore, it is exactly this term which will
later lead to problems when it comes to defining the level-one generators. For this rea-
son, we will now introduce the gauge-covariant field representation. As gauge trans-
formations do not play a role when dealing with gauge-invariant quantities, such as
Wilson loops, we can redefine the level-zero actions of the last paragraph by supple-
menting each level-zero generator by a compensating gauge transformation of the form
G[JXAp A

p
A]. On the gauge connection A, such a gauge transformation acts as

G[JXAp A
p
A]A = D(JXAp A

p
A) . (5.30)

It thus makes sense to define the covariantized field actions in the following way:

J∗ := J + G[JXAp A
p
A] . (5.31)

When applied to the gauge potentialA, the compensating gauge transformation cancels
the covariant derivative term being present in equation (5.29), so that only the field
strength term survives

J∗A = −dXAJXBp F
p
BA . (5.32)

The gauge-covariant level-zero representation thus acts on the Wilson line by the in-
sertion of the manifestly gauge-covariant field strength tensor

J∗V = V [J∗A] = V
[
−dXBJXAp F

p
AB

]
. (5.33)

Let us compare this to the straight level-zero field action JV := V [JA] defined in equa-
tion (5.16). The difference between the two prescriptions is a gauge transformation,
which acts as the insertion of a covariant derivative operator into the Wilson line

J∗V − JV = G[JXAp A
p
A]V = V

[
D(JXAp A

p
A)
]

= −(JXAp A
p
A)(0)V + V(JXAp A

p
A)(1) . (5.34)

Ultimately, the difference is thus given by the gauge-parameter field evaluated at the
two ends of the path. However, for a Wilson loop the terms on the right-hand side
cancel out as expected

J trV = J∗ trV . (5.35)
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For the purpose of studying the Lie algebra symmetry, it therefore makes no difference
whether we use the straight field action (5.17) or the covariantized field action (5.31).
However, the local actions are different and this difference is very important for the
Yangian action to be discussed below.

Comparison. As already pointed out in the beginning of this section, the level-one
symmetry of super Wilson loops has been investigated before in reference [1], where the
present author and his collaborators proved the Yangian symmetry to leading order in
the Graßmann expansion. In this paragraph, we want to compare the three different
level-zero representations introduced above to the representation used in reference [1].
The approach that the authors pursued in their paper is actually equivalent to what we
call the path action and only differs from it in small technical aspects. Let us explain
this in more detail. In reference [1], the authors represented the level-zero generators
in terms of variational derivative operators of the form

J =
∫

dτ J(τ) , J(τ) = JXAp (X(τ)) δ

δXA(τ) . (5.36)

When applied to the path variables XA(σ), such variational derivative operators pro-
duce delta functions, for example

δXA(σ)
δXB(τ) = δAB δ(σ − τ) , δẊA(σ)

δXB(τ) = δAB ∂σδ(σ − τ) . (5.37)

Applying the generator (5.36) to the Wilson line operator (5.1) thus yields

JV =
∫

dτ dσ JXAp (τ)V[0,σ]

(
ApA(σ)∂σδ(σ − τ) (5.38)

+ (−1)|A||B|ẊB(σ)∂AApB(σ)δ(σ − τ)
)
V[σ,1] .

In order to get rid of the derivative of the delta function, we have two options. We can
either perform integration by parts directly on σ or we can use the translation invariance
of the delta function to write ∂σδ(σ − τ) = −∂τδ(σ − τ) and perform integration by
parts on τ . Pursuing the first prescription yields

JV ' −
∫

dτ dσ JXAp (τ)δ(σ − τ)∂σ
(
V[0,σ]ApA(σ)V[σ,1]

)
+
∫

dτ dσ JXAp (τ)δ(σ − τ)V[0,σ](−1)|A||B|ẊB(σ)∂AApB(σ)V[σ,1]

= −
∫

dτ V[0,τ ]JXAp ẊB
(
ApBA

p
A + ∂BApA − (−1)|A||B|(ApAA

p
B + ∂AApB)

)
V[τ,1]

= V
[
−JXAp dXBFpBA

]
= −V [J∗A] = −J∗V . (5.39)
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Alternatively, we can perform integration by parts on τ and obtain

JV '
∫

dτ dσ ∂τ
(
JXAp (τ)

)
δ(σ − τ)V[0,σ]ApA(σ)V[σ,1]

+
∫

dτ dσ JXAp (τ)δ(σ − τ)V[0,σ]Ẋ
B(σ)∂AApB(σ)(−1)|A||B|V[σ,1]

=
∫

dτ V[0,τ ]
(
∂τ (JXAp )ApA + ẊBJXAp ∂AA

p
B

)
V[τ,1]

= −V [JA] = −JV . (5.40)

Obviously, the two expressions are different as one corresponds to an insertion of the
gauge-covariant object J∗A, while the other one corresponds to an insertion of the
straight field action JA. While this difference is irrelevant for the level-zero symmetry
of Wilson loops, the Yangian crucially depends on it. In fact, as will be explained
below, gauge covariance (gauge invariance) requires the use of the J∗A action in the
level-one generators. The attentive reader might object that the difference in the two
equations given above is merely due to the different boundary terms that have been
dropped while performing integration by parts. However, note that the boundary
terms are not even well-defined as they contain delta functions which are located at
the boundaries of the integration domain. In any case, the equations (5.39) and (5.40)
hopefully make it clear that the path derivative approach to Yangian symmetry has to
be used with care as one might easily loose gauge invariance, which would render the
computation meaningless. For this reason, we refrain from using this framework and
instead define the level-one generators based on the gauge-covariant field action that
has been introduced above. This will be the subject of the next section.

Gauge-covariant algebra. Before we turn to the construction of the level-one gener-
ators, let us study the algebra of the different level-zero representations. As already ex-
plained above, the generators of path transformations Jδ and the generators of straight
field transformations Jδ satisfy the same algebra relations by construction, i.e.

[Jδ, Jρ] = f δρκ Jκ , [Jδ, Jρ] = f δρκ Jκ . (5.41)

However, for the generators in the gauge-covariant field representation Jδ∗ the algebra
relations (5.41) are no longer guaranteed. For this reason, let us investigate them in
more detail. Making one of the generators on the left-hand side of equation (5.41)
gauge covariant yields the following mixed algebra relation:

[Jδ, Jρ∗] = f δρκ Jκ∗ . (5.42)

This equation can easily be verified by acting with the generators on the fundamental
field A. Commuting two gauge-covariant field actions, however, yields an extra term
on the right-hand side. Explicitly, we find

[Jδ∗, Jρ∗]A = f δρκJκ∗A−DGδρ , (5.43)
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where

Gδρ = −JδXAp JρXBp F
p
BA . (5.44)

The first term in equation (5.43) represents a covariantized level-zero transformation,
while the second term corresponds to a gauge transformation with gauge-parameter
field −Gδρ,

[Jδ∗, Jρ∗] = f δρκJκ∗ + G[−Gδρ] . (5.45)

This result is not surprising as the generators Jδ∗ are composite objects, which combine
a level-zero transformation with a gauge transformation. On gauge-invariant objects,
such as Wilson loops, the algebra reduces to the plain level-zero algebra. The ap-
pearance of gauge transformations in the algebra of spacetime transformations is in
fact a standard feature of gauge theories with extended supersymmetry, see, for exam-
ple, [111] for a textbook treatment of this topic. For this reason, it seems to be natural
to use the composite level-zero actions J∗ instead of the plain ones J.

5.1.2. Yangian Action on the Wilson Line
We now turn to one of the central aspects of this chapter: the construction of the
level-one generators. For simplicity, let us start by considering a discrete multi-site
space, which, for example, could be spanned by the product of n matrix-valued fields

A(X1̃)A(X2̃)A(X3̃)A(X4̃)A(X5̃)A(X6̃) . (5.46)

In fact, expanding the Wilson line operator exactly yields expressions of this form, but
in this case the coordinates Xĩ were to read as Xĩ := X(τĩ) with the τĩ’s being the
curve parameters, which would also determine the positions of the fields within the
matrix product due to path ordering. For the moment, let us, however, stay general
and interpret the coordinates Xĩ’s just as spacetime coordinates. At each site i we
have a representation of the underlying Lie algebra in terms of generators Jκi acting on
the fields. Here, i labels the position of the field within the matrix product, while ĩ
enumerates the external coordinates. It is important to note that, in the first place, the
number of sites is determined by the number of fields in the matrix product and not by
the number of external coordinates. Each field represents one site. On the multi-site
tensor product space, the level-zero generators thus act as

Jκ =
∑
i

Jκi . (5.47)

Let us note that having specified the level-zero representation, the bi-local part of the
level-one generators is fully determined thanks to the coproduct rule (2.60). Explicitly,
one finds

Ĵκbi = fκρδ
∑
i<j

Jδi J
ρ
j , (5.48)
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where we have dropped the prefactor for later convenience. A few comments on this
bi-local part of the Yangian generators are in order. Let us emphasize again that the
index i enumerates fields and not coordinates. The dimension with respect to which
the ordering in the level-one generator is defined is thus a dimension in color space,
being defined by the matrix product of matrix-valued fields, see equation (5.46). In
fact, it is the only sensible interpretation in the context of four-dimensional theories as
there is in general no ordering prescription which is related to the underlying spacetime.
Furthermore, it also explains the crucial role that the planar limit plays for integrability
in N = 4 SYM theory: Only for large N can we expect single-trace structures to
be dominant, leading to a single dimension in color space with respect to which the
ordering can be defined. As soon as double-trace terms enter the game the prescription
breaks down. Obviously, there exists a trivial bijection between the two sets of indices
i and ĩ in case that all the coordinates are different. However, this mapping fails to
be injective if fields are located at the same point in spacetime. For example, let us
assume that the first two fields in equation (5.46) are located at the same point in
spacetime. Applying the level-one generator (5.48) to this expression yields

Ĵκbi(A(X1̃)A(X1̃)A(X2̃) . . .) = fκρδ((Jδ1A(X1̃))(Jρ2A(X1̃))A(X2̃) . . .) + . . . , (5.49)

where the dots represent all the other terms which we have omitted for brevity. Now,
suppose we had written the level-one generator directly in terms of differential operators
Jδ
ĩ

with indices ĩ enumerating the external coordinates, i.e.

Ĵκ = fκρδ
∑
ĩ<j̃

Jδĩ Jρ
j̃
. (5.50)

Quite obviously we would miss the first term in equation (5.49) and exclusively get
those terms which are represented by dots in the very same equation. This reasoning
makes it clear that it is not always possible to rewrite the higher-level generators of
the Yangian in terms of differential operators which act from the outside on the object
under consideration. For this reason, we consider the representation (5.48) with level-
zero generators acting on the fields and an index i specifying the position of the field
within the matrix product the most fundamental one. Quite often, like, for example,
in the case of color-ordered tree-level scattering amplitudes in N = 4 SYM theory with
generic momenta, one can directly go over to a generator written in term of differential
operators (5.50). However, as explained above, this is not always possible. Finally, let
us point the reader to the paper [26], where the (covariantized) field action approach
to Yangian symmetry was used to show the invariance of the equations of motion of
N = 4 SYM theory as well as of the classical action.

Let us now generalize the above definitions to the case of Wilson lines/loops. In
analogy to the straight level-zero action (5.16), we define the straight level-one action
as

ĴκV = V
[
ĴκA

]
+ fκρδV

[
JδA; JρA

]
. (5.51)
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Here, the first term represents a local term ĴκA, which we have included for complete-
ness. However, since we do not yet know its form, we shall mainly disregard it in what
follows. The second term denotes an ordered bi-local insertion of two level-zero actions
combined with the structure constants and represents the continuous version of (5.48),
see also equation (5.3).

As discussed before, there are two alternative definitions J and J∗ for the local level-
zero action. While in the case of level-zero symmetry it does not matter which action
we choose, the Yangian crucially depends on it. To see this, let us investigate how the
bi-local part in equation (5.51) transforms under an infinitesimal gauge transformation.
We find

G[Λ]ĴκbiV = fκρδG[Λ]V
[
JδA; JρA

]
= −Λ(0)ĴκbiV + ĴκbiVΛ(1)

+ fκρδV
[
D(JδΛ); JρA

]
+ fκρδV

[
JδA;D(JρΛ)

]
= −Λ(0)ĴκbiV + ĴκbiVΛ(1)

+ fκρδV
[
JδΛ JρA− JδA JρΛ

]
− fκρδJδΛ(0)V [JρA] + fκρδV [JδA]JρΛ(1) . (5.52)

Note that in the second line we have rewritten the straight field action in terms of a
generator that acts on coordinates for the cost of an extra minus sign. Beyond the
expected terms, we obviously find extra local terms as well as terms which involve
simultaneous insertions in the bulk and at the boundary. Unfortunately, these terms
do not cancel out for a closed Wilson loop

G[Λ] tr(ĴκbiV) = fκρδ trV
[
{JδΛ, JρA}

]
− 2fκρδ tr

(
JδΛV [JρA]

)
. (5.53)

Note that to obtain this equation we have used the antisymmetry of the structure
constants. While the first term could well be canceled by the local term in equation
(5.51), there is no obvious resolution for the second term in equation (5.53). The
above computation thus shows that the definition of the Yangian action (5.51) does
not respect gauge symmetry. It maps a gauge-invariant quantity to something which
is not gauge invariant anymore and can thus not serve as an observable in a gauge
theory.

Here is where the gauge-covariant level-zero representation comes into play. Instead
of using the straight level-zero action to define the level-one generators, we can work
with the gauge-covariant representation, i.e.

Ĵκ∗V = V
[
Ĵκ∗A

]
+ fκρδV

[
Jδ∗A; Jρ∗A

]
= V

[
Ĵκ∗A

]
+ fκρδV

[
JδXAp dXBFpBA; JρXCp dXDFpDC

]
. (5.54)

As all the insertions transform covariantly under a gauge transformation, this definition
respects gauge symmetry by construction. In particular, one can easily show that

G[Λ] tr
(
Ĵκ∗,biV

)
= 0 . (5.55)
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This discussion makes it clear that while the level-zero symmetry can be studied using
any of the three representations, the Yangian can only be defined meaningfully in terms
of the covariantized representation. In what follows, we shall thus exclusively focus on
the definition (5.54).

An important point to note is that the bi-locally transformed Wilson line, i.e. the
second term in equation (5.54), is not a plain Wilson line anymore but a Wilson
line with two operator insertions. Unlike a level-zero transformation, which can be
interpreted as a deformation of the path, the bi-local level-one transformation cannot
be interpreted in such a way. This will become clear later on when we show that the
bi-locally transformed Wilson loop has a different divergence structure than the Wilson
loop itself. The potentially different divergence structure of the bi-locally transformed
Wilson line, however, immediately raises the question how these divergences can be
absorbed in the final result. This is where the local piece of the level-one action comes
into play. Let us see how this works in detail. In the further course of this chapter when
it comes to concrete computations in section 5.3, we shall introduce a local cut-off that
keeps the two insertions at a minimum distance

fκρδV
[
Jδ∗A; Jρ∗A

]
ε

:= fκρδ

∫
τ ′>τ+ε

V[0,τ ] (Jδ∗A)(τ)V[τ,τ ′] (Jρ∗A)(τ ′)V[τ,1] . (5.56)

Since the divergence originates from the region where the two insertions approach each
other, this prescription will regularize the UV divergence, which now manifests itself
in terms of local 1/εn poles. To renormalize these divergent terms, we will adjust the
local level-one action in such a way that both terms, i.e. the local as well as the bi-local
term, are finite at finite ε and that there sum is independent of ε in the limit ε→ 0,

Ĵκ∗V = V
[
(Ĵκ∗A)ε

]
+ fκρδV

[
Jδ∗A; Jρ∗A

]
ε
. (5.57)

Fortunately, the bi-local action applied to the super Maldacena–Wilson loop produces
only local terms even at the finite orders. This is totally non-generic and a clear sign
of Yangian symmetry as it will allow us to promote the bi-local level-one actions to
true symmetry generators by appropriately adjusting the local term. Proving this will
be the subject of section 5.3.

5.1.3. Superspace and Scalar Couplings
The above discussion was based on slightly simplified assumptions. For this reason, let
us now discuss how to generalize the results to superspace and to Wilson loops with
scalar couplings.

Superspace coordinates. The generalization to superspace consists of two steps. The
first step is to introduce graded coordinates parametrizing a spacetime with bosonic
and fermionic directions. In the above discussion, we treated the index A as a true
multi-index, meaning that we kept track of all the factors of (−1)|A|. For this reason,
the N = 4 superspace coordinates (x, θ, θ̄) can be introduced straightforwardly by just
splitting apart the index A into bosonic and fermionic regions.
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Superspace torsion. The second step is to introduce superspace torsion. As discussed
in section 3.1.1, it is often more convenient to work in a supertranslation-invariant basis
of one-forms instead of the plain basis spanned by the dXA. However, both are valid
bases and one can easily translate between them. This is what we shall discuss below.

In our discussion, we will not immediately specify to the case of the N = 4 non-
chiral superspace but rather stay a bit more general. More precisely, we refer to the
susy-covariant derivatives collectively by

DA = ∂A + T CABX
B∂C . (5.58)

Here, T CAB is the torsion tensor, which is proportional to the ten-dimensional Pauli
matrices in the N = 4 non-chiral superspace. However, the only assumptions that we
make on this tensor are (a) that it is graded antisymmetric in the lower two indices
and (b) that it is non-zero only if the upper index is bosonic and the lower indices are
both fermionic. This certainly applies to the Pauli matrices. The basis of one-forms
which is dual to the susy-covariant derivatives reads

EA = dXA + TABCX
BdXC . (5.59)

The exterior derivative d can either be expressed using the supertranslation-invariant
basis of one-forms or the plain basis, i.e.

d = EADA = dXA∂A . (5.60)

Furthermore, let us note that the quantities A and F are basis independent as well.
In superspace, they are normally expanded in terms of the one-form basis EA,

A = EAAA, F = −1
2E
A ∧ EBFBA . (5.61)

The advantage of expanding in the EA-basis lies in the fact that in this basis the
components of the gauge connection and of the field strength tensor do not mix under
a supersymmetry transformation. Furthermore, some of the components FBA are forced
to zero by the constraints of the superspace gauge theory, see section 3.1.1. However,
one can as well expand the quantities A and F in terms of the plain basis of one-forms,
i.e.

A = dXAApA, F = −1
2dXA ∧ dXBFpBA . (5.62)

In both cases F and A are related via the equation F = dA+A∧A. In the previous
discussion of level-zero and level-one symmetry we often made use of the plain compo-
nents ApA and FpBA. Given the equations (5.59), (5.61) and (5.62), it is, however, an
easy exercise to show that the plain components and the susy-covariant components
are related in the following way:

ApA = AA − T CABXBAC ,
FpBA = FBA − TDBCXCFDA − T CADFBCXD − TDACXCTFBEXEFFD . (5.63)
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Similarly, the generators of level-zero transformations can be expressed using either of
the two bases described above

J = JXAp ∂A = JXADA , (5.64)

where the infinitesimal displacements are related as

JXAp = JXA + TACD JXCXD . (5.65)

It is straightforward to verify that the following two forms of the gauge-covariantized
level-zero action are completely equivalent:

J∗A = −dXBJXAp F
p
AB = −EBJXAFAB. (5.66)

In fact, by noting that the transformation law (5.66) can be written as the contraction
of the vector field J with the field strength two-form F , it becomes clear that the
expression cannot depend on the basis chosen. Since this applies to all the equations
we have written so far, one can effectively perform the following replacements in the
above relations:

ApA → AA, dXA → EA,
FpAB → FAB, JXAp → JXA. (5.67)

The replacements make torsion more evident, but they do not change the content of
the relations.

Scalar couplings. In order to make contact to the super Maldacena–Wilson loop
operator, we need to generalize the above relations to Wilson lines with scalar couplings.
We can write such a Wilson line as

V = P exp
∫

Γ
(A+ Φ) . (5.68)

Here, A denotes the pullback of the ordinary gauge connection one-form, while by Φ
we refer to a one-form on the path of the form

Φ = dτ YM(τ)ΦM(X(τ)) , (5.69)

where YM(τ) describes a path in the internal space. Note that we assume YM(τ) to
be independent of XA(τ), so that the generators of level-zero transformations act on it
exclusively via derivatives with respect to YM, see also section 4.2.2.2. For the super
Maldacena–Wilson loop operator, where YM(τ) corresponds to qi(τ), this means that
we treat qi(τ) as an independent coordinate which together with the supermomentum
satisfies a ten-dimensional light-likeness constraint. We do not solve this constraint
explicitly.
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Let us collect some relevant identities for the scalar term Φ. First of all, Φ transforms
covariantly under gauge transformations, i.e.

G[Λ]Φ = [Φ,Λ] . (5.70)

The level-zero field actions on Φ are defined in an analogous way as the field actions
on A. More precisely, we define the plain field action and the covariantized field action
as minus the path action

JΦ := −JXAp ∂AΦ− (JYM)ΦM ,

J∗Φ := −(JXAp )DpAΦ− (JYM)ΦM , (5.71)

where DpA denotes the plain gauge-covariant derivative, i.e. DpA = ∂A +ApA. Note that
the path now also includes the internal directions, which are parametrized by YM(τ).
The internal path enters the expressions, however, only via the coupling to the scalars
as all the fields are assumed to be independent of this coordinate. We shall denote its
infinitesimal displacement by JYM. As explained above, these relations can also be
expressed using the susy-covariant basis of vector fields

JΦ := −JXADAΦ− (JYM)ΦM ,

J∗Φ := −(JXA)DAΦ− (JYM)ΦM . (5.72)

Here, DA is assumed to be both gauge and superspace covariant.
Finally, we note that the scalar term changes the relation between gauge-covariant

derivatives and boundary terms. An insertion of a plain gauge-covariant derivative is
no longer sufficient to produce a boundary term. Instead, we need to take into account
the coupling to the scalars

V
[
DΛ + [Φ,Λ]

]
= −Λ(0)V + VΛ(1) . (5.73)

This relation, however, confirms the rule that the scalar term can typically be intro-
duced by replacing all instances of A by

A → A+ Φ . (5.74)

This can be done even within gauge-covariant derivatives. For the remainder of this
general part, we shall largely disregard the scalar term in the Wilson loop operator
because it clutters the relations somewhat, while it can be reintroduced straightfor-
wardly.

5.2. Consistency and the Yangian Algebra
An important question to answer is whether our formulation of Yangian symmetry is
actually consistent. There are several aspects to be discussed in this context. The
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first one concerns the cyclicity of the Wilson loop operator, which is not manifestly
respected by the level-one generators. Moreover, we need to verify the Yangian algebra
relations as we have formulated the Yangian generators in terms of covariantized level-
zero actions, which have an impact on the algebra. Subsequently, we briefly discuss
the relation between kappa symmetry and Yangian symmetry and comment on the
compatibility of the Yangian and the superspace constraints. During our investigations,
we will see that the consistency of the Yangian heavily relies on a novel type of identity
that involves the level-zero vector fields and the field strength two-form. Proving this
identity for the superconformal algebra will be the subject of the last section.

5.2.1. Cyclicity
An important feature of closed Wilson loops is cyclicity. By cyclicity, we refer to the
fact that the base point of the line integral can be chosen arbitrarily, i.e.

trV[0,1] = trV[τ,1+τ ] . (5.75)

Since the level-one generators are typically in tension with this feature, we need to
verify the consistency explicitly. Our arguments towards cyclicity are similar to the
ones used in [25] with some additions concerning gauge symmetry.

In order to check that the level-one action on two equivalent objects yields two
equivalent results, we consider

Ĵδ∗ trV[τ,1+τ ] − Ĵδ∗ trV[0,1] = −2f δκρ tr Jρ∗V[0,τ ]Jκ∗V[τ,1]

= −2f δκρ Jρ∗
[
trV[0,τ ]Jκ∗V[τ,1]

]
+ 2f δκρ trV[0,τ ]Jρ∗Jκ∗V[τ,1]

= −2f δκρ Jρ
[
trV[0,τ ]Jκ∗V[τ,1]

]
(5.76)

+ f δκρf
ρκ
σ trV[0,τ ]Jσ∗V[τ,1] − f δκρ trV[0,τ ]V[τ,1][DGρκ] .

Here, we wrote the difference as the product of two level-zero generators acting on a
part of the Wilson loop. We then let the first level-zero generator act on everything and
compensated for that by the second term in the third line. Subsequently, we used the
antisymmetry of the structure constants to rewrite the second term as a commutator
and used the level-zero algebra relation (5.43) to obtain the third line. The result is
clearly not zero in general, but fortunately all the terms have special properties. The
first term represents a level-zero transformation of a gauge-invariant object and does
therefore vanish within an expectation value. The second term is proportional to the
dual Coxeter number of the underlying Lie algebra

f δκρf
ρκ
σ = 2c δδσ . (5.77)

For the N = 4 superconformal algebra psu(2, 2|4) this number is zero, c = 0. The final
term contains the combination

f δκρ Gρκ ' 0 . (5.78)
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This combination is zero for N = 4 SYM theory as will be shown in section 5.2.6. In
what follows, we shall refer to it as the G-identity. This concludes our discussion on
the cyclicity of the Wilson loop operator.

5.2.2. Mixed Level-One Algebra
The second point to be addressed is the algebra of the Yangian generators. As discussed
in section 2.1.3, the Yangian generators need to transform in the adjoint representation
of the underlying Lie algebra, i.e.

[Jδ, Ĵρ] = f δρκĴκ . (5.79)

In the case at hand, we are forced to represent the level-one generators by the gauge-
covariant level-one actions Ĵ∗. However, for the level-zero generators there is a choice.
We can either work with the straight field representation J or with the covariant rep-
resentation J∗. Let us consider the mixed algebra relation first. In what follows, we
shall disregard the local terms of the level-one generators as we do not yet know their
form

Ĵδ∗A = 0 . (5.80)

In fact, in [26] it was shown that the level-one generators map the gauge connection to
terms which are non-linear in the fields. However, these are not relevant for the Wilson
loop expectation value at one loop and for this reason we shall disregard them here.

Let us start by evaluating the first half of the commutator. The level-zero generator
can either hit one of the three Wilson line operators in equation (5.3) or one of the two
insertions

JδĴρ∗V = fρσκ JδV [Jκ∗A; Jσ∗A]
= fρσκ

(
V [JδA; Jκ∗A; Jσ∗A] + V [Jκ∗A; JδA; Jσ∗A] + V [Jκ∗A; Jσ∗A; JδA]

)
+ fρσκ

(
V [JδJκ∗A; Jσ∗A] + V [Jκ∗A; JδJσ∗A]

)
. (5.81)

Acting with the level-one generator as described in section 5.1.2 yields the following
expression for the second half of the commutator:

Ĵρ∗JδV = Ĵρ∗V [JδA]
= fρσκ

(
V [Jκ∗A; Jσ∗A; JδA] + V [Jκ∗A; JδA; Jσ∗A] + V [JδA; Jκ∗A; Jσ∗A]

)
+ fρσκ

(
V [Jκ∗A; Jσ∗JδA] + V [Jκ∗JδA; Jσ∗A]

)
. (5.82)

The first three terms are obviously present in both equations and therefore cancel out
immediately. The remaining terms can be further simplified by using the mixed algebra
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relation (5.42) as well as the Jacobi identity for the structure constants. We thus find[
Jδ, Ĵρ∗

]
V = fρσκ

(
V
[
[Jδ, Jκ∗ ]A; Jσ∗A

]
+ V

[
Jκ∗A; [Jδ, Jσ∗ ]A

])
= fρσκ

(
f δκωV

[
Jω∗A; Jσ∗A

]
+ f δσωV

[
Jκ∗A; Jω∗A

])
= f δρκf

κ
ωσV

[
Jσ∗A; Jω∗A

]
= f δρκ Ĵκ∗V . (5.83)

Fortunately, all violations of gauge covariance have canceled out in the commutator.

5.2.3. Gauge-Covariant Level-One Algebra
Let us now study the algebra of purely gauge-covariant actions. Naively, one might
think that it suffices to decorate all the level-zero generators in equation (5.83) with
a star and subsequently use the commutation relation of gauge-covariant level-zero
generators (5.43). However, this is in fact not true. The derivation is more subtle and
moreover relies on a special feature of N = 4 SYM theory. Let us therefore go through
it in detail.

Let us start by considering the algebra on a single gauge connection A. At first sight,
this appears to be trivial because we have set to zero the local terms of the Yangian
generators, see equation (5.80). However, there is a subtlety hiding which resolves an
issue later on. Obviously, only one half of the commutator contributes non-trivially[

Jδ∗, Ĵρ∗
]
A = −Ĵρ∗Jδ∗A = dXAJδXBp Ĵρ∗F

p
BA . (5.84)

Here, it is tempting to disregard the action of Ĵρ∗ on FpBA as the field strength consists
of A only on which the action is trivial. However, note that F contains products of
fields which are located at the same point. As explained is section 5.1.2, we need to act
on this contribution with the bi-local piece of the level-one generator. Doing so yields

Ĵρ∗F
p
BA = Ĵρ∗(A

p
BA

p
A − (−1)|A||B|ApAA

p
B)

= fρσκ Jκ∗A
p
B Jσ∗A

p
A + (−1)|A||B|fρσκ Jσ∗A

p
A Jκ∗A

p
B . (5.85)

Here, we have used the antisymmetry of the structure constants to swap the Lie algebra
indices in the second term. Inserting the above relation back into equation (5.84) yields[

Jδ∗, Ĵρ∗
]
A = fρσκ

{
JδXBp Jκ∗A

p
B, Jσ∗A

}
= fρσκ

{
Gδκ, Jσ∗A

}
. (5.86)

The term on the right-hand side can be further rewritten by letting the gauge-covariant
level-zero generator act on everything and correcting for the discrepancy[

Jδ∗, Ĵρ∗
]
A = fρσκ Jσ∗

{
Gδκ,A

}
− fρσκ

{
Jσ∗Gδκ,A

}
. (5.87)

Using the gauge-covariant level-zero algebra relation (5.43), we can show that the
discrepancy term is actually zero for N = 4 SYM theory

fρσκJσ∗Gδκ = fρσκJδXAp Jσ∗Jκ∗A
p
A = 1

2f
ρ
σκJδXAp (fσκωJω∗A

p
A −D

p
AGσκ)

= −1
2f

ρ
σκf

κσ
ωGδω + 1

2f
ρ
σκJδXAp D

p
AGκσ ' 0 . (5.88)
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The first term vanishes because the dual Coxeter number is zero. The second term
contains the combination fρσκGκσ which will be proven to be zero in section 5.2.6.
Thus, we can write the algebra on A as[

Jδ∗, Ĵρ∗
]
A ' fρσκ Jσ∗

{
Gδκ,A

}
. (5.89)

Obviously, the result does not agree with the expected algebra as the commutation
relation closes only up to a level-zero transformation. However, there are two things to
keep in mind. First of all, let us recall that the above algebra relation was derived under
the assumption that the level-one generators act trivially on the gauge connection, cf.
equation (5.80). In reference [26], it was, however, shown that the level-one generators
map the gauge connection to a term which is non-linear in the fields. Such a term
would of course have an impact on the algebra even though it is unlikely that the
above level-zero action term would get canceled. In fact, if the above term were not
present, the algebra on the Wilson line would not close. This fact, which we will prove
momentarily, actually makes another explanation more likely: The algebra does not
need to close on the gauge connection alone, what matters is the algebra on the Wilson
line. Let us demonstrate that this algebra indeed works out fine. First, we note that
the first line in equation (5.83) has not only to be decorated by stars but also to be
supplemented by the action of the commutator on a single gauge connection[

Jδ∗, Ĵρ∗
]
V = fρσκ

(
V
[
[Jδ∗, Jκ∗ ]A; Jσ∗A

]
+ V

[
Jκ∗A; [Jδ∗, Jσ∗ ]A

]
+ V

[
[Jδ∗, Ĵρ∗]A

])
. (5.90)

The reason why the last term could be dropped in equation (5.83) is that the straight
field action is linear in the fields, while the gauge-covariant level-zero action is not.
Using the gauge-covariant level-zero algebra relation (5.43), the Jacobi identity for the
structure constants as well as equation (5.86), we can bring the algebra relation to the
following form:[

Jδ∗, Ĵρ∗
]
V =f δρκ Ĵκ∗V + fρσκV

[
{Gδκ, Jσ∗A}

]
− fρσκV

[
Jκ∗A;DGδσ

]
− fρσκV

[
DGδκ; Jσ∗A

]
. (5.91)

The covariant derivatives can now be integrated, leading to two local terms and two
bulk-boundary terms. The former ones are, however, precisely canceled by the algebra
acting on the gauge connection. We are thus left with[

Jδ∗, Ĵρ∗
]
V = f δρκ Ĵκ∗V + fρσκ

(
V [Jσ∗A]Gδκ(1) + Gδκ(0)V [Jσ∗A]

)
. (5.92)

As explained above, we can extend the gauge-covariant level-zero action in the second
term such that it acts on the whole expression for the cost of a term which is zero in
N = 4 SYM theory. Consequently, we obtain the following final result:[

Jδ∗, Ĵρ∗
]
V ' f δρκ Ĵκ∗V + fρσκ Jσ∗

(
VGδκ(1) + Gδκ(0)V

)
. (5.93)
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This shows that the gauge-covariant level-one algebra relation closes but only on shell
in N = 4 SYM theory.2 Furthermore, as the commutator produces an extra level-zero
transformation on the right-hand side, the algebra relation only holds at the level of
the expectation value 〈[

Jδ∗, Ĵρ∗
]

trV
〉
' f δρκ

〈
Ĵκ∗ trV

〉
. (5.94)

Here, we have used the level-zero symmetry which guarantees that 〈J∗H〉 = 0 for any
gauge-invariant observable H,

fρσκ
〈
Jσ∗ tr

(
VGδκ(1) + Gδκ(0)V

)〉
= 0 . (5.95)

This concludes our discussion of the gauge-covariant level-one commutation relations.
Finally, let us emphasize that verifying the adjoint transformation law of the level-
one generators is strictly speaking not sufficient to prove that an algebra is a Yangian
algebra. In fact, in a Yangian algebra the Serre relations (2.53) need to hold as well.
In [65], it was investigated under which conditions the Serre relations are guaranteed
to hold. Unfortunately, the arguments presented there cannot directly be applied to
the case at hand. However, as the Serre relations are much more elaborate than the
level-one commutation relations (5.93), we will make no attempt here to prove these
relations. Clarifying whether and how they are satisfied is left for future work. If for
some reason the Serre relations should not hold, the symmetry algebra of Wilson loops
would not be a Yangian, but it would still be an infinite-dimensional algebra.

5.2.4. Yangian Symmetry and Kappa Symmetry
In section 4.2.1, we have shown that super Wilson loops which are null in a ten-
dimensional sense enjoy eight additional fermionic translation symmetries which are in
close relation to kappa symmetry of string theory. An important question to answer
is whether kappa symmetry is compatible with Yangian symmetry. For the sake of
consistency, we will discuss this question using the formalism developed in this chapter.
The expressions that we will write are to be interpreted in a ten-dimensional sense and
we use the susy-covariant basis to make the relation to the ten-dimensional equations
given in section 4.2.1 completely obvious.

Definition. In analogy to the level-zero actions, we can formulate kappa symmetry
as the covariantized action of a variation δ∗κ on the fields

δ∗κAA := −δκXBFBA . (5.96)

Here, δκXB denotes the derivative coefficients of the kappa-symmetry-generating vector
field when written in the basis of susy-covariant derivatives

δκ = δκX
ADA , (5.97)

2The on-shell condition enters via the G-identity, which only holds on shell.
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see also equation (4.24). Note that relation (5.96) is in complete accordance with equa-
tion (4.26) up to the necessary minus sign and the compensating gauge transformation.
Under a kappa-symmetry transformation, the Wilson line transforms as

δ∗κV = V [δ∗κA] . (5.98)

For a kappa-symmetric Wilson line the above variation vanishes exactly. This is due
to the fact that the variation of the gauge connection vanishes when pulled back to a
light-like path

δ∗κA = δκX
A EBFBA → 0 . (5.99)

Algebra. Let us now consider the algebra of covariantized kappa-symmetry transfor-
mations and level-zero as well as level-one transformations. For the level-zero commu-
tator, we find

[Jρ∗, δ∗κ]AA = −δκ′ρXBFBA +DA(JρXB δκXC FCB) . (5.100)

In deriving this relation, we have assumed that at the level of coordinates the algebra
of level-zero transformations and kappa-symmetry transformations closes onto another
kappa-symmetry transformation. In section 4.2.3, we have verified this for the case
at hand, i.e. for the superconformal algebra psu(2, 2|4). The first term in the above
relation represents another kappa-symmetry transformation, while the second term
corresponds to a gauge transformation. The general algebra thus reads

[Jρ∗, δ∗κ] = δ∗κ′ρ + G[δκXC Jρ∗AC] . (5.101)

Let us now consider the algebra of kappa-symmetry transformations and level-one
transformations. For the action of the commutator on the gauge connection, we find

[Ĵρ∗, δ∗κ]AA = −fρδσ
{
δκX

CJσ∗ AC, Jδ∗AA
}
. (5.102)

Given this result, we can now straightforwardly derive the action of the commutator
on the Wilson line. For a kappa-symmetric Wilson line, we obtain

[Ĵδ∗, δ∗κ]V =V
[
[Ĵδ∗, δ∗κ]A

]
+ f δσρV

[
[Jρ∗, δ∗κ]A; Jσ∗A

]
+ f δσρV

[
Jρ∗A; [Jσ∗ , δ∗κ]A

]
=− fρδσV

[
{δκXCJσ∗ AC, Jδ∗AA}

]
+ f δσρV

[
D(δκXB Jρ∗AB); Jσ∗A

]
+ f δσρV

[
Jρ∗A;D(δκXB Jσ∗AB)

]
=− f δσρ(δκXB Jρ∗AB)(0)V

[
Jσ∗A

]
− f δσρV

[
Jσ∗A

]
(δκXB Jρ∗AB)(1)

'− f δσρ Jσ∗
(
(δκXB Jρ∗AB)(0)V + V(δκXB Jρ∗AB)(1)

)
. (5.103)

This result is very reminiscent of (5.93). The extra gauge transformation on the
right-hand side of equation (5.101) again leads to the insertion of two gauge-covariant
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derivatives, which can be integrated and lead to two bulk-boundary terms. However, as
before, these terms can be rewritten as a complete level-zero transformation of a gauge-
covariant (gauge-invariant) object because the discrepancy term is zero for N = 4 SYM
theory, see section 5.2.6. Therefore, the right-hand side of equation (5.103) vanishes
at the level of the expectation value, hence proving that the Yangian algebra respects
kappa symmetry.

5.2.5. Yangian Symmetry and the Constraints
A further aspect of consistency concerns the superspace formalism that we used to
define the gauge theory. In chapter 3, we have shown that the formulation of N = 4
SYM theory in non-chiral superspace requires constraints. For the Yangian to be
consistent with the underlying gauge theory, the constraints need to be respected by
the level-one actions. However, in this thesis we will not attempt to verify this and
instead refer the reader to reference [26]. In this paper, the authors proved that the
equations of motion of N = 4 SYM theory close onto themselves under the action of
the covariantized level-one generators. Since the equations of motion are completely
equivalent to the constraints (see section 3.1.1), the consistency follows immediately
from the considerations in this paper.

5.2.6. The G-Identity
Let us close this section by proving an identity which played a prominent role in
this section, namely the so-called G-identity. For this purpose, we now specify the
underlying Lie algebra to the case of interest for us, namely the superconformal algebra
of N = 4 SYM theory. Explicitly, the G-identity reads

fωρκ Gκρ ' 0 . (5.104)

Here, fωρκ are the structure constants of u(2, 2|4) and Gκρ is given by

Gκρ = −(−1)|A||ρ| JκXA JρXB FBA

= −i[Jκ] i[Jρ]
(
−1

2E
A ∧ EBFBA

)
= −i[Jκ] i[Jρ]F . (5.105)

The extra minus sign compared to equation (5.44) is a consequence of the fact that
we have now generalized the expression for G to the case of a superalgebra. As before,
i[Jρ]F denotes the contraction (see section 5.1.1) of the vector field Jκ = JκXADA
with the field strength two-form. Note that in relation (5.104) we have tactically
extended the underlying algebra from psu(2, 2|4) to u(2, 2|4). The reason for this is
that we want to discuss the invariance of our Wilson loop under level-one hypercharge
transformations. An important point to note, however, is that once we have proven
the G-identity for u(2, 2|4), the psu(2, 2|4) version follows immediately. This becomes
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obvious by noting that the index range of the summed indices in (5.104) can actually
be restricted to psu(2, 2|4) as the differential operator corresponding to C vanishes
exactly, see section 4.2.2.2.

Our strategy to prove (5.104) is the following: First, we will show that the G-identity
holds for ω corresponding to the hypercharge generator B. In the next step, we will
then use the superconformal transformation properties of Gκρ to argue that (5.104)
holds for any u(2, 2|4) index ω. Note that for ω corresponding to C, the G-identity is
trivial since the structure constants vanish in this case.

If we fix ω to be equal to B, equation (5.104) becomes

fωρκ Gκρ ∝
(
i
[
Sbβ

]
i
[
Qβb

]
− i

[
S̄β̇ b

]
i
[
Q̄b

β̇

])
F . (5.106)

In order to evaluate this expression, it is useful to first compute the contractions be-
tween the vector fields Q, Q̄, S, S̄ and the basis one-forms. We find

i
[
Qβb

]
eα̇α = 4δαβ θ̄α̇b , i

[
Qβb

]
dθaα = −δab δαβ ,

i
[
Q̄b

β̇

]
eα̇α = 4δα̇β̇θ

bα , i
[
Q̄b

β̇

]
dθaα = 0 ,

i
[
Sbβ

]
eα̇α = −4(x−)α̇βθbα , i

[
Sbβ

]
dθaα = 4θaβθbα ,

i
[
S̄β̇ b

]
eα̇α = −4θ̄α̇b(x+)β̇α , i

[
S̄β̇ b

]
dθaα = δab (x+)β̇α ,

i
[
Qβb

]
dθ̄α̇a = 0 , i

[
Q̄b

β̇

]
dθ̄α̇a = −δbaδα̇β̇ ,

i
[
Sbβ

]
dθ̄α̇a = δba(x−)α̇β , i

[
S̄β̇ b

]
dθ̄α̇a = −4θ̄α̇bθ̄β̇a . (5.107)

Given these formulas, we can now apply the double-contraction expression of (5.106) to
all the basis two-forms appearing in the decomposition of the super field strength (3.85).
Note that due to the constraints (3.78), the field strength contains only a restricted
set of basis two-forms. In particular, the coefficient of the mixed fermionic two-form
is set to zero by (3.78). A useful formula for computing (5.106) is i[X]i[Y ](α ∧ β) =
−(i[X]α)(i[Y ]β) + (i[Y ]α)(i[X]β), where X, Y are vector fields and α, β are one-forms
(this holds when all the quantities are Graßmann even; if not, extra signs are needed).
As an example of a computation where fermionic signs appear, we consider(

i
[
Scγ
]
i
[
Qγc

]
− i

[
S̄γ̇ c

]
i
[
Q̄c

γ̇

]) (
dθaα εαβ dθbβ

)
= i

[
Scγ
][(

i
[
Qγc

]
dθaα

)
εαβ dθbβ + dθaα εαβ

(
i
[
Qγc

]
dθbβ

)]
= εαβ

[
4θaβθbα − 4θaβθbα

]
= 0 . (5.108)

In a similar way, one can show that the double-contraction expression in (5.106) also
annihilates all the other basis two-forms appearing in (3.85).

Having proven the G-identity for ω corresponding to B, we now proceed and argue
that it actually holds for any u(2, 2|4) index ω. To do so, we use the following identity

Jδ∗Gκρ = −Jδ∗Gκρ + f δκσGσρ + (−1)|δ||κ|f δρσGκσ , (5.109)
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where the differential operator Jδ∗ is defined as Jδ∗ = JδXADA and Jδ∗ is a composite
superconformal generator of field transformations, which acts on AA as

Jδ∗AA = −JδXB FBA . (5.110)

Equation (5.109), simply stating that Jδ∗ acts on Gκρ by transforming the field as well
as the conformal indices, can easily be proven by acting on Gκρ with Jδ∗ and using the
Bianchi identity as well as the superconformal commutation relation. If we contract
equation (5.109) with fωρκ and rewrite the last two terms using a supersymmetric
version of the Jacobi identity

fωρκf
δκ
σ + (−1)|δ||σ|fωκσf δκρ = f δωκf

κ
ρσ , (5.111)

we get (
Jδ∗ + Jδ∗

)
fωρκ Gκρ = f δωκf

κ
ρσGσρ . (5.112)

Now, the important thing that we need to recall is that the N = 4 SYM constraints
(3.78) are preserved by a psu(2, 2|4) transformation, see section 3.2.2.1. Thus, if ω is
fixed to B and we choose δ to be equal to a psu(2, 2|4) index, the left-hand side of the
above equation vanishes, leaving us with

f δωκf
κ
ρσ Gσρ = 0 . (5.113)

The last equation immediately allows for the conclusion that the G-identity (5.104)
also holds for ω corresponding to Q, Q̄, S and S̄. Having proven the G-identity for B as
well as for the four above-mentioned indices, one can now argue that it holds for any
u(2, 2|4) index ω by iterating the argument with the free indices properly chosen.

5.3. Yangian Invariance at One Loop
In this section, we demonstrate the Yangian invariance of the super Maldacena–Wilson
loop operator (4.12) at the leading perturbative order. At the one-loop level, there is
only one term contributing: The Wilson loop operator has to be expanded to two fields
which are consequently joined by a propagator

〈
WM

〉
(1)

= −N4

∫
1,2

〈
(A+ Φ)(1) (A+ Φ)(2)

〉
. (5.114)

Note that here we have again stripped off the color generators and used that the
propagators are diagonal in color space. In fact, at this perturbative order all effects
of a non-abelian gauge group are irrelevant. For this reason, we shall throughout this
section assume that the gauge group is effectively abelian. In particular, we will drop
all the non-linear terms in the field strength, meaning that we replace F → Flin = dA.
However, for brevity we shall refer to the linearized field strength still by F . All
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5. Integrability of Smooth Super Wilson Loops

expressions in this section are to be understood as one-loop expressions. Higher-order
terms will always be neglected.

Under the action of the bi-local part of a covariantized level-one generator (5.54),
the above one-loop expectation value gets mapped to〈

Ĵκ∗,biWM

〉
(1)

= −N2 fκρδ

∫
1<2

〈
Jδ∗(A+ Φ)(1) Jρ∗(A+ Φ)(2)

〉
. (5.115)

In what follows, we shall now analyze this expression in detail.

5.3.1. Symmetry of the Gauge Propagator
Let us start by considering the action of the Yangian on the gauge propagator

Cκ
12 =

〈
Ĵκ∗,bi

(
A(1)A(2)

)〉
= fκρδ

〈
Jδ∗A(1) Jρ∗A(2)

〉
. (5.116)

We now extend the first generator over the whole expression and correct for the dis-
crepancy. This yields

fκρδ
〈
Jδ∗A(1) Jρ∗A(2)

〉
= fκρδ

〈
Jδ∗
(
A(1) Jρ∗A(2)

)〉
− fκρδ

〈
A(1) Jδ∗Jρ∗A(2)

〉
. (5.117)

To simplify the second term, we use the graded antisymmetry of the structure constants
to rewrite the product as a graded commutator and subsequently apply the algebra
relation (5.43),

1
2f

κ
ρδ

〈
A(1) [Jδ∗, Jρ∗}A(2)

〉
=1

2f
κ
ρδf

δρ
σ

〈
A(1) Jσ∗A(2)

〉
− 1

2f
κ
ρδ

〈
A(1)DGδρ(2)

〉
. (5.118)

Both terms are actually zero; the former because the dual Coxeter number of the
superconformal algebra is zero3, the latter because of the G-identity, see section 5.2.6.
Hence, we are left with

Cκ
12 = fκρδ

〈
Jδ∗
(
A(1) Jρ∗A(2)

)〉
. (5.119)

As the first generator acts on both fields, the whole expression obviously corresponds
to a symmetry variation of an expectation value. If the object inside the brackets were
gauge invariant, we would immediately conclude that Cκ

12 vanishes. However, as one
of the fields is a gauge potential, this statement does not hold. In fact, the symmetry
only forces to zero the physical degrees of freedom. The unphysical gauge degrees of
freedom are not constrained by the symmetry and we thus conclude that the result
is zero only up to a total derivative term, representing an (effectively) abelian gauge
transformation

fκρδ
〈
Jδ∗
(
A(1) Jρ∗A(2)

)〉
= d1B

κ
12 . (5.120)

3In fact, for u(2, 2|4) the combination fκρδfδρσ is not zero but rather proportional to δκBδC
σ . However,

note that since C is always represented by zero (see 4.2.2.2), this expression effectively vanishes as
well.
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5.3. Yangian Invariance at One Loop

Here, d1 is an exterior derivative in superspace and B12 is some function of the super-
space coordinates. By performing the “partial integration” on the second generator
instead of the first one, we can show that Cκ

12 = −d2B
κ
21. Altogether this implies that

C12 is in fact the double derivative of some function R12,

Cκ
12 =

〈
Ĵκ∗,bi

(
A(1)A(2)

)〉
= d1d2R

κ
12 . (5.121)

In what follows, we shall refer to the function R12 as the remainder function. It should
be added for the benefit of the doubtful reader that we will verify the relation (5.121)
later on explicitly for the level-one momentum generator and also comment on an easy
way of proving that it holds in general.

5.3.2. Symmetry of the Wilson Loop
Apart from the gauge connection, the super Maldacena–Wilson loop also couples to the
superscalars of N = 4 SYM theory. For this reason, we need to investigate the bi-local
action of the level-one generators on the propagators 〈AΦ〉 and 〈ΦΦ〉 as well. However,
their contributions to the VEV of the Yangian transformed Wilson loop follow easily
from the above considerations. To see how this works, let us recall that the superscalar
is actually a particular component of the super field strength two-from F , cf. equation
(3.85). For the bi-local level-one action on the 〈FA〉 propagator, we obtain〈

Ĵκ∗,bi

(
F(1)A(2)

)〉
=
〈
Ĵκ∗,bi

(
dA(1)A(2)

)〉
= d1d1d2R

κ
12 = 0 . (5.122)

The same of course applies to the propagator 〈FF〉,〈
Ĵκ∗,bi

(
F(1)F(2)

)〉
= 0 . (5.123)

Note that Ĵκ∗,bi acts exclusively on the fields and does therefore not change the structure
of the basis two-forms of F . Since all the basis two-forms are linearly independent by
definition, the zero actually holds for all the constituents individually. For this reason,
the two above relations imply that〈

Ĵκ∗,bi

(
Φ(1)A(2)

)〉
= 0 ,〈

Ĵκ∗,bi

(
Φ(1) Φ(2)

)〉
= 0 . (5.124)

Obviously, the mixed propagator as well as the scalar propagator do not contribute at
the one-loop level.

In principle, we can now use the above results towards Yangian symmetry of the
Wilson loop expectation value〈

Ĵκ∗,biWM

〉
∼
∫

1<2
d1d2R

κ
12 =

∫
d2R

κ
12|1=2 −

∫
d2R

κ
02

=
∫

d2R
κ
12|1=2 −R

κ
00 +Rκ

00 =
∫

d2R
κ
12|1=2 . (5.125)
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The result is obviously not zero, but fortunately all the bi-local and bulk-boundary
terms have gone away. What remains is a local term for which we can compensate by
properly adjusting the local action of the level-one generators. However, in the above
computation we have been careless with respect to divergences. The function Rκ

12 is in
fact UV divergent when the two points approach each other. For this reason, we have
to repeat the computation in the presence of a regulator. However, before we do this,
let us compute the remainder functions Rκ

12.

5.3.3. Remainder Functions
In the previous two sections, we have argued that the only contribution to the remainder
term Rσ

12 comes from the correlator of the product of two gauge fields to which the
respective bi-local level-one generator Ĵσ∗,bi has been applied〈

Ĵσ∗,bi

(
A(1)A(2)

)〉
= fσρκ

〈
Jκ∗A(1) Jρ∗A(2)

〉
= d1d2R

σ
12 . (5.126)

Here, we will determine all the remainder functions Rσ
12. For this, we shall first ex-

plicitly compute the level-one momentum and the level-one hypercharge remainder
function and then determine the other remainder functions by algebra considerations.
In principle, it would be sufficient to only compute the level-one hypercharge remain-
der function explicitly as all the other remainder terms can be derived from this one.4
However, since P̂∗ is the more generic Yangian generator, we will mainly focus on
this one in the subsequent discussion and in return shorten the level-one hypercharge
discussion.

We start by rewriting the left-hand side of (5.126) in such a way that we can take
advantage of the fact that we already know the two-point function of the field strength
two-form, see section 3.2.2.2. By plugging in the definition of Jκ∗A (5.110), the left-hand
side of equation (5.126) becomes〈

Ĵσ∗,bi

(
A(1)A(2)

)〉
= fσρκ

〈
JκXA1 EB1 F1BA JρXC2 ED2 F2DC

〉
. (5.127)

Using the interior product notation that we have introduced in section 5.1.1, the former
expression can be rewritten as

Ĵσ∗,bi

〈
A(1)A(2)

〉
= fσρκ i[Jκ1 ] i[Jρ2]

〈
F(1)F(2)

〉
. (5.128)

By taking into account the decomposition of the field strength F = F+ + F−, we
see that computing the remainder term for P̂∗,bi effectively amounts to calculating the
following two contraction expressions (σ ∼ P):

fσρκ i[Jκ1 ] i[Jρ2]
〈
F+(1)F+(2)

〉 (
chiral contributions

)
, (5.129)

fσρκ i[Jκ1 ] i[Jρ2]
〈
F+(1)F−(2)

〉 (
mixed-chiral contributions

)
. (5.130)

Having computed these, the full result can be constructed by symmetry considerations.
4Note that this statement does not hold for the level-one momentum remainder function as the

level-one hypercharge remainder function cannot be derived from R12[P].
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Level-one momentum remainder function. The bi-local part of the level-one mo-
mentum generator P̂∗ can be written as combinations of the superconformal generators
P∗ (bosonic translations), Q∗, Q̄∗ (fermionic translations), L∗, L̄∗ (rotations) and D∗
(dilatations)

P̂∗,bi,αα̇ = P∗,βα̇ ∧ Lβ∗α + P∗,αβ̇ ∧ L̄β̇∗ α̇ + 2P∗,αα̇ ∧ D∗ + Q∗,αa ∧ Q̄a
∗α̇ . (5.131)

Here, the action of a bi-local term (J∗ ∧ J′∗) is defined in analogy to (5.54) as(
J∗ ∧ J′∗

)
W =W

[
J∗
(
A+ Φ

)
; J′∗

(
A+ Φ

)]
− (−1)|J∗||J′∗|W

[
J′∗
(
A+ Φ

)
; J∗

(
A+ Φ

)]
. (5.132)

It turns out to be convenient to rewrite the expression for P̂∗,bi by introducing the
following modified rotation generators:

L′∗αβ = Lα∗ β + δαβ
(
D∗ − B∗

)
,

L̄′∗α̇β̇ = L̄α̇∗ β̇ + δα̇β̇

(
D∗ + B∗

)
. (5.133)

Using these definitions, the Yangian generator P̂∗,bi can be rewritten as

P̂∗,bi,αα̇ = P∗,βα̇ ∧ L′∗βα + P∗,αβ̇ ∧ L̄′∗β̇ α̇ + Q∗,αa ∧ Q̄a
∗α̇ . (5.134)

From this equation, we can now directly read off the double-contraction operator (c.f.
(5.128)) that we want to use for the computation of the remainder term R12[P]. It
reads

fσρκ i
[
Jκ1
]
i
[
Jρ2
]

= + i
[
P1,βα̇

]
i
[
L′2βα

]
+ i
[
P1,αβ̇

]
i
[
L̄′2β̇ α̇

]
+ i
[
Q1,αa

]
i
[
Q̄a

2 α̇

]
− i

[
L′1βα

]
i
[
P2,βα̇

]
− i

[
L̄′1β̇ α̇

]
i
[
P2,αβ̇

]
+ i
[
Q̄a

1 α̇

]
i
[
Q2,αa

]
, (5.135)

where here and in the following the index σ corresponds to the generator Pαα̇.
We start with the computation of the remainder term R12[P] by investigating the

chiral contributions, see (5.129). The relevant correlation function was computed in
section 3.2.2.2 and is given by〈

F+(1)F+(2)
〉

= − g2

2π2 ε
αβεγδΞabcd(1, 2) d1

(
x−+,−1

12 θ̄12
)
αc

d1
(
x−+,−1

12 θ̄12
)
βd

· d2
(
x+−,−1

12 θ̄12
)
γa

d2
(
x+−,−1

12 θ̄12
)
δb
. (5.136)

By symmetry, it is sufficient to compute the action of the double-contraction operator
(5.135) on Wγc,δd = d1(x−+,−1

12 θ̄12)γc d2(x+−,−1
12 θ̄12)δd. Note that the contraction opera-

tors i[. . .] effectively just replace (modulo a sign) the corresponding exterior derivative
d by the differential operator specified in the square brackets. For example, we have

i
[
P1,βα̇

]
i
[
L′β2 α

]
Wγc,δd = −P1,βα̇

(
x−+,−1

12 θ̄12
)
γc

L′β2 α

(
x+−,−1

12 θ̄12
)
δd

= 4
(
x−+,−1

12

)
γα̇

(
x+−,−1

12 x−2 x
−+,−1
12 θ̄12

)
δc

(
x+−,−1

12 θ̄12
)
αd
. (5.137)
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Note the extra minus sign in the first line coming from commuting the contraction
operator i

[
L′β2 α

]
past the d1. Carrying out the remaining contractions and adding all

the contributions up shows that the chiral contributions vanish

fσρκ i[Jκ1 ] i[Jρ2]
〈
F+(1)F+(2)

〉
= 0 . (5.138)

Let us now focus on the mixed-chiral contributions. The relevant two-point function
was also computed in section 3.2.2.2 and is given by〈

F+(1)F−(2)
〉

= − g2

16π2 d1
(
x−+,−1

12 d2x
−+
12 ε

)
βγ

d1
(
εx−+,−1

12 d2x
−+
12

)βγ
. (5.139)

Applying the double-contraction expression of (5.135) to this correlator yields

i[Jκ1 ] i[Jρ2]
〈
F+(1)F−(2)

〉
= g2

8π2 ελγ ε
βρ
{

Jκ1
(
x−+,−1

12 Jρ2 x−+
12

)
β

λ d1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ

(5.140)

− (−1)|Jκ1 ||J
ρ
2| d1

(
x−+,−1

12 Jρ2 x−+
12

)
β

λJκ1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ
}
,

where we have left out the structure constant for brevity. Some useful formulas for
computing the former expression are:

L′1αβ(x−+
12 )γ̇γ = −2δγβ(x−1 )γ̇α,

L′2αβ(x−+
12 )γ̇γ = 2δγβ(x−1 − x−+

12 )γ̇α,
L̄′1α̇β̇(x−+

12 )γ̇γ = −2δγ̇
β̇
(x+

2 + x−+
12 )α̇γ,

L̄′2α̇β̇(x−+
12 )γ̇γ = 2δγ̇

β̇
(x+

2 )α̇γ. (5.141)

The expression (5.140) obviously consists of two different terms, one term where both
generators act on the same piece of the mixed-chiral two-point function and another
term where the two generators act on different pieces. First, we compute the term
where both generators act on a single term. After some computation, we find that

fσρκ Jκ1
(
x−+,−1

12 Jρ2 x−+
12

)
β

λ = 8δλα
(
x−+,−1

12

)
βα̇
− 4δλβ

(
x−+,−1

12

)
αα̇
. (5.142)

For the second term of (5.140),

T λγβρ = fσρκ(−1)|Jκ1 ||J
ρ
2| d1

(
x−+,−1

12 Jρ2 x−+
12

)
β

λJκ1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ , (5.143)

we obtain

T λγβρ = −4
[
δλα
(
x−+,−1

12

)
ρα̇

d1
(
x−+,−1

12 d2 x
−+
12

)
β

γ + δλρd1
(
x−+,−1

12

)
βα̇

(
x−+,−1

12 d2 x
−+
12

)
α

γ
]
.

Plugging these two expressions back into equation (5.140) and using the identity
ελγε

βρ = δβλδ
ρ
γ − δβγ δ

ρ
λ yields

fσρκ i[Jκ1 ] i[Jρ2]
〈
F+(1)F−(2)

〉
= g2

2π2 d1d2
(
x−+,−1

12

)
αα̇
, (5.144)
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which is a total derivative with respect to points one and two.
Given the results (5.138) and (5.144), the full result for the action of P̂∗,bi on the

correlator of two gauge fields can now be constructed by symmetry considerations. For
this, note that (5.144) implies

fσρκ i[Jκ2 ] i[Jρ1]
〈
F+(2)F−(1)

〉
= g2

2π2 d2d1
(
x−+,−1

21

)
αα̇
. (5.145)

Now, using the property that the two exterior derivatives anticommute as well as the
fact that the double-contraction expression on the left-hand side of the above equation
is symmetric under exchange of points one and two, we find the following final result
for the level-one momentum remainder term

R12[Pαα̇] = R−+
12 [Pαα̇]−R−+

21 [Pαα̇] , (5.146)

where

R−+
12 [Pαα̇] = g2

2π2

(
x−+,−1

12

)
αα̇
. (5.147)

A common feature of all the remainder functions is that they can be cast into the form
(5.146). For this reason, we will from now on omit the second piece of (5.146) and only
work with the building blocks R−+

12 [Jσ].

Level-one hypercharge remainder function. In this paragraph, we compute the
remainder function Rσ

12 for the Yangian bonus symmetry generator B̂∗. The bi-local
part of this generator takes the following form

B̂∗,bi = 1
4

(
Q∗,αa ∧ Saα∗ − Q̄a

∗α̇ ∧ S̄α̇∗ a
)
, (5.148)

and acts on the Wilson loop operator as defined in equation (5.132). From the last
equation, we can again directly read off the relevant double-contraction operator. It
reads

fσρκ i
[
Jκ1
]
i
[
Jρ2
]

= 1
4

(
i
[
Q1,αa

]
i
[
Saα2

]
− i

[
Q̄a

1 α̇

]
i
[
S̄α̇2 a

]
+ i
[
Saα1

]
i
[
Q2,αa

]
− i

[
S̄α̇1 a

]
i
[
Q̄a

2 α̇

])
, (5.149)

where here and throughout this paragraph σ ∼ B. As in the case of the level-one
momentum remainder function, we will now apply this double-contraction operator to
the chiral and mixed-chiral part of the field strength two-point function.

Again the computation splits up into the chiral and mixed-chiral contributions. In
order to determine the chiral contributions to the level-one hypercharge remainder func-
tion, it is again sufficient to compute the action of the contraction operator (5.149) on
the form d1(x−+,−1

12 θ̄12)γc d2(x+−,−1
12 θ̄12)δd. Using the representation of the generators in
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terms of differential operators (see section 4.2.2.2), one shows that this action vanishes
and thus

fσρκ i[Jκ1 ] i[Jρ2] 〈F+(1)F+(2)〉 = 0 . (5.150)

Turning to the mixed-chiral contributions, we recall the formula for the action of a
general double-contraction operator on the mixed-chiral two-point function:

i[Jκ1 ] i[Jρ2]
〈
F+(1)F−(2)

〉
= g2

8π2 ελγ ε
βρ
{

Jκ1
(
x−+,−1

12 Jρ2 x−+
12

)
β

λ d1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ

(5.151)

− (−1)|Jκ1 ||J
ρ
2| d1

(
x−+,−1

12 Jρ2 x−+
12

)
β

λJκ1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ
}
.

As before, we will compute the two different terms of the former expression individually.
For the contribution where both generators act on a single term, we find

fσρκ Jκ1
(
x−+,−1

12 Jρ2 x−+
12

)
β

λ = 4δλβ
{

tr
(
x−+,−1

12 θ̄1θ2
)
− 1

}
− 8

(
x−+,−1

12 θ̄1θ2
)
β

λ . (5.152)

For the second contribution, we obtain

fσρκ d1
(
x−+,−1

12 Jρ2 x−+
12

)
β

λJκ1
(
x−+,−1

12 d2 x
−+
12

)
ρ

γ

= −4
(
x−+,−1

12 θ̄1θ2
)
ρ

λ d1
(
x−+,−1

12 d2 x
−+
12

)
β

γ

+ 4δλρd1
(
x−+,−1

12 θ̄1
)
βa

{
d2θ

aγ
2 −

(
θ2 x

−+,−1
12 d2 x

−+
12

)aγ}
. (5.153)

Combining both expressions and adding the correct prefactor yields

fσρκ i[Jκ1 ] i[Jρ2] 〈F+(1)F−(2)〉 = − g2

2π2 d1d2

(
ln
((
x−+

12

)2)
+ tr

(
x−+,−1

12 θ̄1θ2
))

. (5.154)

From this result, we can now read off the form of the essential building block R−+
12 [B]

of the level-one hypercharge remainder function, see (5.146). It reads

R−+
12 [B] = − g2

2π2

(
ln
((
x−+

12

)2)
+ tr

(
x−+,−1

12 θ̄1θ2
))

. (5.155)

Other level-one remainder functions. Having computed the remainder functions
R12[P] and R12[B], we can now determine all the other remainder functions by applying
the appropriate superconformal transformations to one of them. This can be seen as
follows. Under the action of a superconformal generator Jδ = JδXAp ∂A = JδXADA,
the one-form Jκ∗A transforms by the Lie derivative. A short computation shows that
Jδ acts on Jκ∗A by transforming the field as well as the conformal index

JδJκ∗A = −JδJκ∗A+ f δκω Jω∗A . (5.156)
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Using this identity, one easily shows that the following equation holds true:(
Jδ1 + Jδ2

)
fσρκ

〈
Jκ∗A(1) Jρ∗A(2)

〉
=
[
fσρκf

δκ
ω + (−1)|δ||ω|fσκωf δκρ

]〈
Jω∗A(1) Jρ∗A(2)

〉
− fσρκ

〈(
Jδ1 + Jδ2

)(
Jκ∗A(1) Jρ∗A(2)

)〉
. (5.157)

Importantly, the expression in the second line vanishes. This is because the term
in brackets represents a conformal variation of an object which is invariant under lin-
earized gauge transformations. Thus, using the supersymmetric Jacobi identity (5.111),
we find (

Jδ1 + Jδ2
)
fσρκ

〈
Jκ∗A(1) Jρ∗A(2)

〉
= f δσκf

κ
ρω

〈
Jω∗A(1) Jρ∗A(2)

〉
. (5.158)

By combining this expression5 with equation (5.121), we obtain[
Jδ1 + Jδ2, d1d2R

σ
12

}
= f δσκd1d2R

κ
12 . (5.159)

In fact, it turns out that if one excludes the level-one hypercharge remainder function,
the Rσ

12 satisfy the adjoint transformation law on their own, i.e.[
Jδ1 + Jδ2, Rσ

12

}
= f δσκR

κ
12 . (5.160)

Using these equations, one can now iteratively compute all the yet undetermined re-
mainder functions. One finds

R−+
12 [L̄′] = g2

2π2x
+
2 x
−+,−1
12 − g2

2π2 ln(x−+
12 )2 ,

R−+
12 [S̄] = g2

π2x
+
2 x
−+,−1
12 θ̄1 ,

R−+
12 [K] = − g2

2π2x
+
2 x
−+,−1
12 x−1 ,

R−+
12 [Q̄] = − g

2

π2 θ2x
−+,−1
12 ,

R−+
12 [R′] = −2g2

π2 θ2x
−+,−1
12 θ̄1 + g2

2π2 ln(x−+
12 )2 ,

R−+
12 [S] = g2

π2 θ2x
−+,−1
12 x−1 ,

R−+
12 [Q] = − g

2

π2x
−+,−1
12 θ̄1 ,

R−+
12 [L′] = g2

2π2x
−+,−1
12 x−1 + g2

2π2 ln(x−+
12 )2 . (5.161)

This concludes our discussion on the remainder functions.
5Note that equation (5.158) can also be used to confirm the result of section 5.3.1, namely, that all

the level-one generators Ĵσ∗,bi exclusively produce a double-derivative term. For example, choosing
σ ∼ P and δ ∼ S in (5.158) and taking into account the result of 5.3.3 as well as the fact that
Jδidi = diJδi , we learn that ̂̄Q∗,bi produces a double-derivative term as well. By continuing this
analysis we can thus confirm that (5.121) indeed holds true.
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5. Integrability of Smooth Super Wilson Loops

Figure 5.1.: Integration domain for two ordered insertions in point-splitting regulariza-
tion. The colored stripe and corner are removed by the regularization.

5.3.4. Regularization and Local Terms
The above remainder functions are obviously UV divergent when the two points ap-
proach each other. For this reasons, we need to repeat the computation in equation
(5.125) in the presence of a regulator. Using point-splitting regularization, we will
determine the residual terms that are left behind by the bi-local actions and finally
define the full Yangian generators which annihilate the one-loop VEV of the super
Maldacena–Wilson loop.

Regularization. In order to regularize the short distance singularities of the remainder
functions, we introduce a point-splitting regulator in the following way: While the
remainder function is integrated over the upper triangle as depicted in figure 5.1 we
always keep the two points at a minimum distance which is determined by some general
function ε(τ), i.e.

(τ2 − τ1) > ε(τ1) = ε̄(τ2) , (5.162)

for a generic configuration with τ2 being greater than τ1. Here, ε(τ1) specifies this
minimum parameter space distance in the forward direction, while ε̄(τ2) specifies the
very same distance in the backward direction. By construction, the functions ε(τ) and
ε̄(τ) are thus related to each other as follows

ε(τ) = ε̄(τ + ε(τ)) , ε̄(τ) = ε(τ − ε̄(τ)) . (5.163)

For later convenience, let us solve this relation perturbatively. We obtain

ε̄ = ε− εε̇+ εε̇2 + 1
2ε

2ε̈+O(ε4) . (5.164)
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5.3. Yangian Invariance at One Loop

Later on, we will use this equation in order to express everything in terms ε(τ). Note
that we could also use a scheme in which the coordinate τ is proportional to the arc
length of the curve and the function ε is a constant cut-off parameter ε = ε̄. However,
as this choice would obscure reparametrization invariance, we prefer to work with a
fairly general scheme where ẋ2 and ε, ε̄ are not assumed to be constant.

We proceed by evaluating the regularized version of the integral (5.125). Note that
the full integration domain 0 < τ1 < τ2 < 1 needs to be adjusted not only where τ1 ≈ τ2
but also at τ1 ≈ 0, τ2 ≈ 1 where both points approach each other due to the periodicity
of the Wilson loop, see figure 5.1. For the regularized integral of d1d2R12, we obtain∫

ε
d1d2R12 =

∫ 1−ε̄(1)

ε(0)
dτ2

∫ τ2−ε̄(τ2)

0
dτ1 ∂1∂2R12 +

∫ 1

1−ε̄(1)
dτ2

∫ τ2−ε̄(τ2)

τ2−1+ε(τ2)
dτ1 ∂1∂2R12

=
∫ 1−ε̄

ε
dτ (∂2R)(τ − ε̄, τ)−

∫ 1−ε̄

ε
dτ (∂2R)(0, τ)

+
∫ 1

1−ε̄
dτ (∂2R)(τ − ε̄, τ)−

∫ 1

1−ε̄
dτ (∂2R)(τ − 1 + ε, τ)

=
∫ 1

0
dτ (∂2R)(τ − ε̄, τ) +R(0, ε)−R(0,−ε̄)

−
∫ ε

0
dτ (∂2R)(τ − ε̄, τ)−

∫ 0

−ε̄
dτ (∂2R)(τ + ε, τ) , (5.165)

where we have abbreviated τ + ε := τ + ε(τ) and similarly for ε̄(τ). Here, we have
integrated the bi-local double-derivative term to a local term and some terms located
at the boundary. The next step is to expand the above relation in ε. For the UV
expansion of the contributing terms, we obtain

R(τ, τ + ε) = 1
ε
R−1(τ) + 1

2Ṙ−1(τ) +R1(τ)ε+O(ε2) ,

(∂2R)(τ, τ + ε) = − 1
ε2R−1(τ) +R1(τ) +O(ε) . (5.166)

Note that the constant term 1
2Ṙ−1(τ) in the ε-expansion of R(τ, τ + ε) follows from the

antisymmetry R(τ1, τ2) = −R(τ2, τ1). Inserting these expressions into equation (5.165)
and using equation (5.164) in order to express everything in terms of ε(τ) yields∫

ε
d1d2R12 =

∫ 1

0
dτ

(
−1 + ε̇

ε2 R−1(τ) +R1(τ)
)

+ 4 + 2ε̇
ε

R−1(0) +O(ε) . (5.167)

Definition of the full Yangian action. Fortunately, all the remaining terms in equa-
tion (5.167) have a local form. The first contribution is a (divergent) local term which
is integrated over the whole loop, while the second term is located at the boundary.
Fortunately, we can absorb these terms by an appropriate redefinition of the action of
the Yangian, see section 5.1.2. The term which is integrated over the whole loop can
be absorbed by defining the local action of the Yangian on the gauge fields as follows

(Ĵ∗A)ε = N

2 dτ(∂2R)(τ − ε̄, τ) . (5.168)
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5. Integrability of Smooth Super Wilson Loops

Note that this action maps the gauge field to a plain number times the identity matrix.
Therefore, the generator does not preserve the gauge structure of the field itself. How-
ever, this issue is of no concern as the action clearly preserves the gauge structure of
the Wilson loop. Moreover, the identity matrix appears naturally in the expansion of
a Wilson loop operator. On the components of the gauge field, the above local action
can be realized as6

(Ĵ∗Aµ)ε = N

2
pµ
p2 (∂2R)(τ − ε̄, τ) . (5.169)

For the remaining boundary term in equation (5.167) we need to adjust the definition
of the Yangian action on the Wilson line (5.57) by a boundary term

Ĵκ∗V = V
[
(Ĵκ∗A)ε

]
+ fκρδV

[
Jδ∗A; Jρ∗A

]
ε

+N
(
Rκ(0, ε)−Rκ(0,−ε̄)

)
V . (5.170)

Such boundary terms are in fact natural since the boundary is also involved in the
regularization, see figure 5.1. Altogether, Yangian symmetry of Wilson loops requires
a 1/ε2 divergent local term, a finite local term as well as a 1/ε divergent boundary
term. The crucial point in favor of Yangian symmetry is that no bi-local and no
bulk-boundary counterterms are needed.

Before moving on, let us note that the above form of the local term (5.168) is almost
fully in line with the findings in reference [1]. In this paper, a similar term was found
that had to be incorporated in order to make the Yangian a true symmetry. In fact,
the local term determined here represents the full supersymmetric extension of the
expression computed in reference [1] and reduces to the latter when all θ’s are set
to zero and ε is chosen to be constant. This will become more obvious in a moment
when we expand the level-one momentum remainder function. An important difference
compared to the results in reference [1] is, however, the presence of a boundary term in
equations (5.167) and (5.170). There are two possible explanations for this difference.
First of all, we formulated the bi-local level-one actions in terms covariantized level-
zero generators, which differ from the straight field actions (and potentially also from
the path actions) by a compensating gauge transformation which could lead to extra
boundary terms, see section 5.1.1. Another point to be taken into account is that the
authors of reference [1] did not regularize the upper left corner of the integration region
(see figure 5.1) where τ1 ≈ 0 and τ2 ≈ 1. However, as the result is divergent there
as well, there is no way around regularizing this point. In conclusion, it is probably
fair to state that we have been very careful here with respect to both the definition of
the Yangian as well as the regularization of the remainder functions and we therefore
believe that our result, which includes boundary corrections, is correct.

Finally, it is also interesting to compare our results to the findings at strong coupling,
which have been derived using methods of string theory. The bosonic situation was
already analyzed in reference [1], while the superspace discussion has been carried out

6Other component field realizations which involve the fermionic components of the gauge field are
conceivable as well.
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5.3. Yangian Invariance at One Loop

more recently in references [43,44]. At strong coupling, the Yangian generators consist
of a standard bi-local piece and a finite local contribution, taking the form of a curve
integral. Divergent local terms as well as boundary terms are not present. The curve
integral represents the counterpart of the R1(τ) term in equation (5.167) and these
terms can therefore directly be compared. For the level-one momentum generator the
term R1(τ) can easily be read off from equation (5.171) in the following paragraph.
Close inspection of the corresponding expression at strong coupling [43] shows that
both local terms share many common features but do not exactly agree. The most
apparent difference is that at strong coupling the local term involves the S5 coordinate
qi(τ), while our result does not depend on it. Clarifying the origins of this discrepancy
is, however, beyond the scope of this thesis and is therefore left for future work.

Level-one momentum. The above definition of the full Yangian action makes use of
the expansion coefficients appearing in the short distance expansion of the remainder
functions Rκ

12. As an example, let us expand the remainder function of the level-one
momentum generator. Using the explicit form as given in equation (5.146), we find

RP(τ, τ + ε) =2g2

π2

[
− 2
ε
p−1 + p−1ṗp−1

+ εp−1
(

1
3 p̈+ 2

3
¨̄θθ̇ − 2

3
˙̄θθ̈ − 1

2 ṗp
−1ṗ− 8 ˙̄θθ̇p−1 ˙̄θθ̇

)
p−1 +O(ε2)

]
, (5.171)

from which we can directly read off the relevant functions RP
−1 and RP

1 ,

RP
−1(τ) = −4g2

π2 p−1 ,

RP
1 (τ) = 2g2

π2 p
−1
(

1
3 p̈+ 2

3
¨̄θθ̇ − 2

3
˙̄θθ̈ − 1

2 ṗp
−1ṗ− 8 ˙̄θθ̇p−1 ˙̄θθ̇

)
p−1 . (5.172)

A curious observation concerns the transformation behavior of these functions under a
reparametrization τ 7→ σ(τ). The function RP

−1 transforms covariantly

RP
−1 7→ σ̇ RP

−1 . (5.173)

Conversely, the function RP
1 is not covariant. Instead, it transforms by the addition of

a peculiar Schwarzian derivative which multiplies the divergence term RP
−1,

RP
1 7→

1
σ̇

(
RP

1 + 1
6S(σ)RP

−1

)
, (5.174)

with

S(σ) :=
...
σ

σ̇
− 3

2

(
σ̈

σ̇

)2
. (5.175)

However, an important point to note is that the regulator ε(τ) transforms under a
reparametrization as well. In fact, demanding that the cut out distance in target space
is the same in both parametrizations yields the following transformation rule for ε,

ε(τ) 7→ σ(τ + ε(τ))− σ(τ) = εσ̇ + 1
2ε

2σ̈ + 1
6ε

3...
σ + (ε4) . (5.176)
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5. Integrability of Smooth Super Wilson Loops

The relevant combination of ε-terms in equation (5.167) therefore happens to transform
with a Schwarzian derivative as well

1 + ε̇

ε2 7→ 1
σ̇2

(1 + ε̇

ε2 + 1
6S(σ) +O(ε)

)
. (5.177)

The extra term multiplying R−1 cancels nicely with the transformation of R1. Finally,
by taking into account the transformation of the integral measure dτ 7→ dτ σ̇ we
see that all the local contributions in equation (5.167) are properly reparametrization
invariant. Moreover, since

1 + 1
2 ε̇

ε
7→ 1

σ̇

(
1 + 1

2 ε̇

ε
+O(ε)

)
, (5.178)

the boundary term stays invariant as well. This concludes our discussion on the local
terms of the Yangian.
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Feynman Graphs

In the second part of this thesis, we shift our focus to a different class of physical quan-
tities: fishnet Feynman graphs. Fishnet Feynman diagrams are built from four-valent
vertices that are joined by scalar propagators and correspond to planar high-loop Feyn-
man integrals. Almost all of these integrals are believed to be elliptic [112, 113] or of
even more general type, making them both interesting and hard to evaluate. Surpris-
ingly, they exhibit a number of outstanding properties: First, fishnet integrals are all
IR and UV finite, which makes them particularly well-suited for symmetry investiga-
tions. Second, they feature a (dual) conformal Lie algebra symmetry. Third, fishnet
graphs (with periodic boundary conditions) furnish an integrable lattice system, as
was demonstrated by Zamolodchikov already in 1980 [114]. Here, we add a further
remarkable property to the above list, namely we demonstrate that fishnet Feynman
integrals have conformal Yangian symmetry. We begin by discussing the relation be-
tween fishnet Feynman graphs and correlators/amplitudes in the recently proposed
bi-scalar quantum field theory [46] that was obtained by studying a particular double-
scaling limit of the γi-deformed N = 4 SYM model. Subsequently, we expose the
Yangian symmetry of off-shell fishnet graphs, which we discuss from the perspective
of the first realization of the Yangian as well as from the point of view of the RTT
realization. Finally, we consider on-shell limits and comment on the relation between
conformal, dual conformal and Yangian symmetry.

6.1. Strongly-Twisted N = 4 SYM Theory
Scalar fishnet Feynman graphs are in one-to-one correspondence with planar correlators
in the recently proposed bi-scalar χFT4 model [46]. The latter can be obtained by
considering a particular double-scaling limit of the γi-deformed N = 4 SYM model.
Here, we review this construction based on references [46, 115] and present arguments
in favor of the aforementioned conjecture.

6.1.1. The γi-Deformed N = 4 SYM Model
We begin by briefly reviewing the γi-deformation of the N = 4 SYM model. This
deformation was introduced by Frolov in [47,48] as an integrable [47,48,116–118] three-
parameter generalization of the β-deformed SYM model [119,120], see [121] for a review

131



6. Yangian Symmetry of Fishnet Feynman Graphs

B Aµ ϕ1 ϕ2 ϕ3 ψ1α ψ2α ψ3α ψ4α

q1
B 0 1 0 0 +1/2 −1/2 −1/2 +1/2
q2
B 0 0 1 0 −1/2 +1/2 −1/2 +1/2
q3
B 0 0 0 1 −1/2 −1/2 +1/2 +1/2

Table 6.1.: Charges of the fields under the Cartan generators of su(4). The conjugated
fields carry opposite charges.

on deformations of N = 4 SYM theory. The γi-deformed N = 4 SYM model can be
obtained by replacing all products of fields in the N = 4 SYM Lagrangian (2.78) by a
Moyal-like ∗-product based on the su(4) Cartan charges of the fields. The ∗-product
of two fields is defined as

A ∗B = AB e i2 (qA∧qB) , (6.1)

where qA = (q1
A, q

2
A, q

3
A) and qB = (q1

B, q
2
B, q

3
B) are the su(4) Cartan charge vectors of

the fields A and B, see table 6.1. The antisymmetric C-product in equation (6.1) is
defined as

qA ∧ qB := (qA)TC qB , C =

 0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0

 . (6.2)

The phase factor of products of more than two fields can simply be obtained by applying
the rule (6.1) successively, i.e.

A ∗B ∗ C = e i2 (qA∧qB)AB ∗ C = e i2 (qA∧qB)e i2 ((qA+qB)∧qC)ABC . (6.3)

Replacing all the products in the N = 4 SYM Lagrangian by ∗-products yields1

Sγ =N
∫

d4x tr
[
−1

4F
µνFµν −

(
Dµϕ̄i

)(
Dµϕi

)
+ i ψ̄aα̇D

α̇βψaβ

−
√
λ

2

(
iεijkψαi

[
ϕj, ψkα

]
∗

+ 2iψαi
[
ϕ̄i, ψ4α

]
∗

+ iεijkψ̄
i
α̇

[
ϕ̄j, ψ̄kα̇

]
∗

+ 2iψ̄iα̇
[
ϕi, ψ̄

4α̇
]
∗

)
+ λ

([
ϕj, ϕk

]
∗

[
ϕ̄j, ϕ̄k

]
∗
− 1

2

[
ϕj, ϕ̄

j
][
ϕk, ϕ̄

k
])]

, (6.4)

where we have dropped the ∗ in cases where the ∗-product trivially reduces to the
usual product. Note that in the above, we have adapted the field conventions of
reference [115] in order to make contact to the existing literature on the subject. The
indices i, j, k run from one to three and εijk is the totally antisymmetric tensor in three
dimensions. The scalars are thus no longer real but complex. Furthermore, we have
rescaled the fields by a factor of

√
N for later convenience. Using equation (6.1) and

1Note that here, the fields are hermitian and the color generators are normalized to tr(TmT n) = δmn.
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(6.2) as well as the Cartan charges as given in table 6.1, we can now easily construct the
phase factors multiplying the interaction terms in the γi-deformed Lagrangian (6.4).
We find

Sγ =N
∫

d4x tr
[
−1

4F
µνFµν −

(
Dµϕ̄i

)(
Dµϕi

)
+ i ψ̄aα̇D

α̇βψaβ

−
√
λ

2

(
2iεijkψαi ϕjψkαe

i
2 εkilγ

+
l + 2iεijkψ̄iα̇ϕ̄jψ̄kα̇e

i
2 εkilγ

+
l + 2iψαi ϕ̄iψ4αe

− i
2γ
−
i

− 2iψα4 ϕ̄iψiαe
i
2γ
−
i + 2iψ̄iα̇ϕiψ̄4α̇e−

i
2γ
−
i − 2iψ̄4

α̇ϕiψ̄
iα̇e

i
2γ
−
i

)
+ λ

(
2ϕjϕkϕ̄jϕ̄ke−iεjklγl − 1

2

{
ϕj, ϕ̄

j
}{
ϕk, ϕ̄

k
})]

, (6.5)

where a summation over all doubly- and triply-repeated indices is implied. The abbre-
viations γ+

i and γ−i are defined as

γ±1 = −γ3 ± γ2

2 , γ±2 = −γ1 ± γ3

2 , γ±3 = −γ2 ± γ1

2 . (6.6)

An important point to note is that the γi-deformation naively not only breaks the
SU(4) R-symmetry group to its Cartan subgroup U(1)×3 but also the supersymmetry
is completely broken for generic values of the deformation parameters γi. However,
recent investigations [122–125] in the context of the β-deformed model (corresponding
to γi = β) have shown that in the β-deformed case, the symmetries are not really
broken but rather hidden in the sense that the full PSU(2, 2|4) symmetry can (at least
classically) be restored by twisting the plain symmetry generators with an appropriate
Drinfel’d–Reshetikhin twist factor. Based on this, one might speculate that the same
can be done for the full γi-deformed SYM model. However, even if the full PSU(2, 2|4)
symmetry can classically be restored, this does not imply that the deformed theories
stay (super)conformal at the quantum level. In fact, it was shown in [126] that the
action (6.5) does not lead to a consistent quantum CFT as renormalization requires
the action to be modified by additional double-trace terms. The couplings of these
double-trace terms were shown to be running with scale — even in the planar limit
— and it was argued that the corresponding β-functions do not possess a real-valued
fixed point.2 However, since we are only interested in a particular double-scaling limit
of (6.5), we will not discuss these terms here in all generality but rather comment on
those which are relevant for us. This will be done in the next section.

6.1.2. The Bi-Scalar Double-Scaling Limit
Having introduced the γi-deformed N = 4 model, we shall now discuss a particular
class of double-scaling limits, which were introduced by V. Kazakov and Ö. Gürdoğan

2Fixed points do, however, exist if one allows for complex values of the tree-level double-trace cou-
plings [51,126,127].
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in [46] and combine a large imaginary twist with the weak coupling limit in the following
way:

γi → i∞ , λ→ 0 , such that ξi =
√
λ e− i

2γi = const. . (6.7)

Applying this limit to the action (6.5) while keeping the effective coupling constants ξi
distinguishable yields

Sds = N
∫

d4x tr
[
− 1

4F
µν
lin F

lin
µν − (∂µϕ̄i)(∂µϕi) + i ψ̄aα̇∂

α̇βψaβ + Lint
]
. (6.8)

Here, F µν
lin is the linearized field strength, i.e. F µν

lin = ∂µAν − ∂νAµ and Lint is the
interaction Lagrangian, which in our conventions reads

Lint =2ξ2
1ϕ2ϕ3ϕ̄

2ϕ̄3 + 2ξ2
2ϕ3ϕ1ϕ̄

3ϕ̄1 + 2ξ2
3ϕ1ϕ2ϕ̄

1ϕ̄2 − i
√

2ξ2ξ3(ψ3ϕ1ψ2 + ψ̄3ϕ̄1ψ̄2)

− i
√

2ξ1ξ3(ψ1ϕ2ψ3 + ψ̄1ϕ̄2ψ̄3)− i
√

2ξ1ξ2(ψ2ϕ3ψ1 + ψ̄2ϕ̄3ψ̄1) . (6.9)

Note that for better readability we have suppressed the su(2) indices in the last equa-
tion. They can, however, easily be restored by substituting

ψiϕkψj → ψαi ϕkψjα , ψ̄iϕ̄kψ̄j → ψ̄iα̇ϕ̄
kψ̄jα̇ . (6.10)

An interesting point to note is that the gauge field as well as the fourth fermion
decouples in this limit and we will thus drop their kinetic terms. Furthermore, we note
that the limit projects out the hermitian conjugate terms of the interaction vertices,
i.e. the resulting Lagrangian is not invariant with respect to hermitian conjugation.
The authors of [46] called this behavior of the Lagrangian (6.9) “chiral”3 and we will
stick to this terminology even though it conflicts with the standard meaning of chirality.
One consequence of this chirality is immediate: The double-scaled theories are non-
unitary as their action is not real. Nevertheless, they lead to very sensible results as
we will see in a moment.

In this thesis, we will focus on a very particular limit of the γi-deformed Lagrangian
(6.5). This limit is obtained by sending the deformation parameters γi to imaginary
infinity and λ to zero in such a way that two of the three effective couplings ξi vanish,
while the third one remains finite. In this limit, the fermions and one of the three
scalars decouples as well, so that the action contains only two scalars which interact
via one chiral quartic vertex. Explicitly, the action reads

Sbs = N
∫

d4x tr
[
−(∂µϕ̄1)(∂µϕ1)− (∂µϕ̄2)(∂µϕ2) + 2ξ2ϕ1ϕ2ϕ̄

1ϕ̄2
]
. (6.11)

The corresponding Feynman rules are shown in figure 6.1. Although the theory de-
3The “antichiral” actions are obtained by taking the opposite double-scaling limits. More precisely,

these limits are characterized by sending the deformation parameters γi to minus imaginary infinity
and λ to zero in such a way that the quotient ξ̃i = e− i

2γi/
√
λ is constant. The resulting theories

are, however, physically equivalent to the ones that we are considering.
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ϕ̄1 ϕ1

ϕ̄2 ϕ2

ϕ̄1 ϕ1

ϕ̄2

ϕ2

Figure 6.1.: Feynman rules for the bi-scalar χFT4 model. The left figure represents the
two scalar propagators. Blue lines correspond to a propagating ϕ1 field,
while red lines correspond to a propagating ϕ2 field. The arrows on the lines
indicate the flavor flow of complex scalars. The only interaction vertex is a
particular quartic one. Due to the imaginary twist factor, interactions can
only happen with the orientation shown above. The vertex with opposite
orientation is absent.

ϕ̄1 ϕ1

ϕ̄2 ϕ2

ϕ̄1 ϕ1

Figure 6.2.: The planar one-loop diagrams (in momentum space) which could poten-
tially renormalize the coupling ξ2 (left figure) or generate a mass (right
figure). Both diagrams are absent since the left vertex is not present in the
Lagrangian. This argument can be generalized to any loop order. Hence,
neither the coupling nor the mass is renormalized in the planar limit.

scribed by (6.11) looks a bit pathological, its planar limit has a very rich structure
and a number of intriguing features, which we will now briefly discuss. Let us start by
analyzing the spacetime symmetries of the model. Besides being Poincaré invariant,
the action is obviously scale invariant and therefore conformal at the classical level.
Naively, conformality continues to hold at the quantum level in the large-N limit as
the chirality of the vertex forbids planar diagrams which could renormalize the coupling
ξ2 or generate a mass, see figure 6.2. However, as was argued in [127], renormalizability
requires the action (6.11) to be supplemented by the following double-trace terms:

Ldt = −ξ
2

N

 2∑
i≤j=1

Qij
ij tr(ϕiϕj) tr(ϕ̄iϕ̄j) + Q̃ tr(ϕ1ϕ̄

2) tr(ϕ2ϕ̄
1)
 . (6.12)

The corresponding couplings have a non-vanishing β-function already in the planar
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limit and therefore render the considered bi-scalar theory non-conformal.4 However,
one should note that the double-trace terms (6.12) only play a role for special corre-
lation functions [51,127]. More precisely, these are those which either directly contain
operators of length L = 2, such as tr(ϕiϕj) and tr(ϕ̄1ϕ2), or which implicitly depend
on them via the OPE of two operators. The majority of correlation functions is thus
unaltered by the double-trace terms and show a perfectly conformal behavior in the
planar limit. Almost quantum conformality is, however, by far not the only nice fea-
ture of this theory. Intriguingly, the double-scaling limit leaves not only intact the
approximate conformality of the parent theory but also planar integrability seems to
be preserved. In fact, the tools of (twisted) AdS/CFT integrability, such as twisted
asymptotic Bethe ansätze [116], their generalizations in terms of the twisted Quan-
tum Spectral Curve (QSC) [118] as well as the recently developed tools for computing
structure constants [128, 129], seem to remain applicable [49, 50, 130]. This is a very
remarkable result as the theory (6.11) has no gauge symmetry or supersymmetry at all
— features which have long been believed to be prerequisites for higher-dimensional
quantum integrability. Finally, let us remark that the integrability of this theory can
not only be used to compute its observables, such as two- and three-point functions,
but can rather assist in computing individual Feynman graphs. The reason for this
lies in the special structure of the interaction term (6.11). As was noticed in [46],
due to the chirality of the vertex, planar observables typically receive contributions
from at most one Feynman diagram at any given order in perturbation theory. In
the bulk, these Feynman diagrams always look like a regular square lattice, therefore
justifying the name fishnet graphs. Due to this (almost) one-to-one correspondence
between planar observables and Feynman diagrams, the bi-scalar QFT (6.11) provides
us with the unique opportunity to use tools of integrability for computing certain
high-loop Feynman graphs and a first few very promising results have already been
obtained [46,49–51,130].

6.2. Correlators and Amplitudes

6.2.1. Definitions, Diagrammatics and Examples
Having introduced the field-theoretic framework, let us now define the quantities that
we will study in the next sections. The main objects that we shall study are off-shell
single-trace correlators of the following form

G(xi) = 〈tr(χ1(x1) . . . χ2M(x2M))〉 , (6.13)

where the χi(xi) are elements of the set

χi(xi) ∈ {ϕ1(xi), ϕ2(xi), ϕ̄1(xi), ϕ̄2(xi)} . (6.14)

4Concerning the question of fixed points of these β-functions see our comment in the previous section.
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The word off shell in this context refers to the fact that we take all the position space
coordinates to be independent, i.e. there are no constraints on these variables. We
frequently use this terminology in order to distinguish the position space coordinates
of correlators from the dual variables of amplitudes, where this will no longer be the
case. For the time being, let us assume that all the coordinates xi are different. A
typical correlator in our bi-scalar model is then of the following form:

x1 x2 x3

x4

x5 x6

x7

x8
x11

x12

x13

x15 x14 x10 x9

x18

x17

x16

Here, gray-filled blobs denote loop integrations, while the smaller white blobs represent
external points. Note that we will always be exclusively interested in the connected
and planar contribution to the correlator. All non-planar contributions will be ignored.
Obviously, due to charge conservation, the number of fields ϕ1, which we call M1,
equals the number of fields ϕ̄1. The same applies to the fields ϕ̄2 and we will denote
their number by M2. The total number of fields is therefore 2M := 2(M1 + M2).
The interaction vertex in (6.11) also conserves each of the two flavors. Hence, lines
of a certain flavor run continuously from one external field to another external field.
Furthermore, if we leave aside the double-trace terms (6.12), lines of the same flavor
never intersect and the interactions happen only with one particular orientation due
to the chirality of the vertex in (6.11). In our conventions, this leads to the fact that
lines of flavor one will always continuously flow from the left to the right, while lines of
flavor two flow from the bottom of the diagram to the top. Given these explanations,
we note the following fact: In the planar approximation, a generic single-trace multi-
point correlation function receives contributions from exactly one Feynman diagram
which looks in the bulk like a regular square fishnet. The correlator therefore lives
at a particular order in perturbation theory and does not receive further quantum
corrections.

Before moving on, let us pause for a moment and reflect again on the double-trace
terms (6.12). Naively, the double-trace terms are suppressed as they enter the La-
grangian with a relative factor of 1/N compared to the single-trace interaction term.
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However, as was explained in [126] and [131], the overall power of N of a diagram con-
taining these couplings can get enhanced to the planar level in particular cases. This
typically happens when the traces of the multi-trace couplings are fully contracted
with other traces of the same length. Consider, for example, the first correction to the
two-point function of two appropriately chosen single-trace length-two operators. If
both operators are fully contracted with one of the traces of the multi-trace coupling,
the order in N gets enhanced, so that the diagram, despite being naively suppressed,
is of the same order as the corresponding single-trace interaction diagram. However,
as we are exclusively considering the expectation value of long single-trace operators,
such an enhancement cannot occur.

Let us now move on and discuss the two simplest loop correlators of the form (6.13)
in some more detail. In what follows, we will consider these two correlation functions
frequently and we will furthermore use them here to explain the relation between
single-trace correlators and amplitudes in the bi-scalar model (6.11). Explicitly, they
read

G4(xi) =
〈
tr(ϕ2(x1)ϕ1(x3)ϕ̄2(x5)ϕ̄1(x7))

〉
,

G6(xi) =
〈
tr(ϕ2(x1)ϕ2(x2)ϕ1(x4)ϕ̄2(x6)ϕ̄2(x7)ϕ̄1(x9))

〉
, (6.15)

where the labeling of the points has been chosen for later convenience. Now, as ex-
plained above, both correlators receive contributions from only one Feynman diagram
in the planar limit. The two corresponding Feynman diagrams look as follows:

p1 p2

p3

p4

p5p6

p7

p8

x7 x3

x5

x1 p1 p2 p3

p4

p5

p6p7p8

p9

p10

x7

x1

x6

x2

x9 x4

Let us ignore the dual graph (momentum space) drawings for a moment and focus on
the correlators themselves. Applying the Feynman rules yields

G4(xi) = 2ξ2N

(4π2)4

∫ d4x0

x2
10x

2
30x

2
50x

2
70
,

G6(xi) = 4ξ4N

(4π2)7

∫ d4x0d4x0′

x2
10x

2
70x

2
90x

2
00′x

2
20′x

2
40′x

2
60′
. (6.16)

Obviously, the planar correlators G4 and G6 are nothing more than the so-called cross
and double-cross integral. While the cross integral is explicitly known to evaluate
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to [132],

G4(xi) = 2ξ2N

(4π2)4
π2

x2
15x

2
37

2Li2(z)− 2Li2(z̄) + log zz̄ log 1−z
1−z̄

z − z̄
, (6.17)

with z and z̄ being related to the conformal cross-ratios as

u = zz̄ = x2
13x

2
57

x2
15x

2
37
, v = (1− z)(1− z̄) = x2

17x
2
35

x2
15x

2
37
, (6.18)

the double-cross integral has not been computed yet and is furthermore believed to be
elliptic [112]. However, recently a slightly simpler version of this integral5 has been
evaluated and expressed as an integral over a standardized elliptic measure times a
weight-three hyperlogarithm [113]. Still, from the whole family of fishnet integrals
obtained by gluing together crosses, the cross itself is the only one which is explicitly
known. However, despite being not known, these scalar integrals play an important role
in many four-dimensional quantum field theories as they are fairly general quantities.

An important point to note is also their relation to ordinary momentum space in-
tegrals [133–135] and therefore to loop amplitudes in χFT4. The corresponding mo-
mentum space integrals are easily obtained by interpreting the differences of x’s not as
distances in position space but rather as so-called region momenta. Let us make this
more explicit using the cross integral as an example. We perform the following change
of variables:

pµ1 = xµ12 , pµ2 = xµ23 , . . . pµ8 = xµ81 , kµ = xµ10 . (6.19)

The cross integral then becomes

G4(pi) = 2ξ2N

(4π2)4

∫ d4k

k2(k − p1 − p2)2(k − p1 − p2 − p3 − p4)2(k + p7 + p8)2 . (6.20)

Graphically, this transformation corresponds to going over to the dual graph, which we
have drawn in light grey in the above figure. The cross integral is obviously equivalent
to the well-known (four-mass) box integral. Note, however, that by convention we still
consider the xi’s as independent at this point, so that the external momentum legs
in above figure are off shell, i.e. p2

i 6= 0, as x2
i i+1 6= 0 generically. In order to make

contact to amplitudes, we obviously need to go on shell with the external legs. While
for the box integral there is no difference between the on-shell and the off-shell case as
the momenta enter the graph always in pairs of two, it will make a difference for all
higher-loop graphs. This, however, raises the question which of the considered graphs
are actually finite and whether we can always go on shell without creating divergences.
Let us postpone this question to the next section and for the moment just assume that

5In reference [113], the upper two points and the lower two points of the double cross are assumed
to be null separated, which reduces the number of conformal cross-ratios from nine to seven.
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all the graphs are finite, off shell as well as on shell. If the on-shell limit is always well-
defined, it becomes, however, an easy exercise to extract color-ordered amplitudes from
the correlator graphs (6.13).6 All one needs to do is to introduce momentum variables
according to the prescription pi = xi i+1 and set to zeros all the squares of individual
momenta. The resulting function then describes a color-ordered loop amplitude with
its momentum configuration being determined by the dual graph, see the above figure.

6.2.2. Finiteness
An important point which we have not yet discussed is whether the considered graphs
are actually finite or not. We will address this question now, adopting the momentum
space point of view. Since a rigorous proof of finiteness is somewhat beyond the scope
of this thesis, we content ourselves with presenting evidence in favor of their finiteness.
Let us start by considering graphs which are made out of boxes all glued together in
a fishnet type manner with all the external momenta being off shell. Such a graph
represents the dual graph of a generic correlator graph as considered above. In general,
Feynman graphs can suffer from two different types of divergences: UV divergences
and IR divergences. While the former originate from integration regions where some
or all of the loop momenta are large, the latter come from regions where the loop
momenta are small or collinear to one of the external (null) momenta, see [138] for a
more detailed discussion. However, in what follows, we will argue that our graphs are
actually free of both types of divergences. For this, we first note that we do not need
to worry about collinear divergences at the moment because so far all the external
momenta are considered to be off shell. In order to argue that UV and soft divergences
are absent as well, we will employ power counting. In general, the overall UV degree
of divergence of a graph Γ in our theory is given by

ω(Γ) = 4L− 2P , (6.21)

where L is the number of loops and P is the number of propagators. This formula can
easily be derived by introducing spherical coordinates in 4×L dimensions. Evaluating
(6.21) for the box diagram G4 and the double-box diagram G6 yields

ω(G4) = −4 , ω(G6) = −6 . (6.22)

It is easy to convince oneself that ω in general drops further as the number of loops
grows. As our fishnet graphs do furthermore not contain any divergent subgraphs, we
conclude that they are indeed all UV finite. A similar reasoning can be applied to argue
that IR divergences are absent as well. Indeed, noting that the leading divergence of
the denominator of each square loop is captured by the respective loop momentum

6Note that the considered correlators only allow for the extraction of color-ordered amplitudes. The
full amplitudes can, however, easily be reconstructed from those, see [136,137] for an introduction
to color ordering.
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k l

pa

k + l
+pa

Figure 6.3.: The figure represents a generic vertex in momentum space which is located
on the inside of one of the outer edges of a fishnet diagram. This diagram
could, for example, represent the upper middle vertex of the double-box
diagram. Here, pa (loosely dotted line) denotes an external on-shell mo-
mentum, while k and l (dotted lines) denote loop momenta.

squared,7 it becomes almost obvious that no IR divergences are present as the integral
measure cancels the square of the loop momentum in the denominator. Having settled
the off-shell case, let us now turn to the more interesting case of on-shell momenta.
While the UV behavior does not depend on whether the inflowing momenta are on
or off shell, the IR behavior potentially does. However, the only vertices we need to
inspect again are those sitting on the inside of the outer edges as these are the only
vertices where a single massless momentum gets injected into the graph, see figure 6.3.
At the corners, external momenta always enter in pairs, so that the effective momentum
injected there is generically still off shell and no divergences are expected to arise from
these particular parts of the diagram. This being said, let us investigate the vertices
on the outer edges in a bit more detail. For this, we analyze a generic vertex of this
type as shown in figure 6.3. The relevant part of the integral looks as follows:

∫ dk+dk−dk2
⊥ dl+ dl−dl2⊥

(2k+k− − k2
⊥)(2l+l− − l2⊥)(k− + l−)p+

a

. (6.23)

Here, we have already employed the so-called eikonal approximation, i.e. we only keep
the leading term in the denominator. Furthermore, we have introduced light-cone
coordinates in such a way that pa has only one non-zero component, which is p+

a .
As mentioned before, there are two integration regions which can potentially lead to
divergences: the soft region and the collinear region. To investigate the soft region, we
set k+ → t and rescale all the other momentum components by this factor, i.e. x→ tx.
The first two terms in the denominator obviously scale homogeneously as t2, while the
last one scales linearly in t. The denominator thus becomes proportional to t5, but the

7All other propagators do not contribute as they stay finite in the zero-momentum limit due to
inflowing off-shell momenta.
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transformation of the measure yields a factor of t7. As all the other propagators of the
two involved boxes stay finite in the zero-momentum limit, the above-considered part of
the multi-loop integral does obviously not lead to a soft divergence. Similarly, one can
convince oneself that the other parts of the diagram stay finite as well, so that fishnet
integrals with on-shell momenta do not suffer from soft divergences. However, to make
sure that the whole integral stays finite, we need to argue that collinear singularities
are absent as well. For this, we scale the momenta as

k+ → k+ , k− → t2 , ~k⊥ → t~k⊥ ,

l+ → l+ , l− → t2l− , ~l⊥ → t~l⊥ , (6.24)

so that in the limit t→ 0 the loop momenta become collinear with the external on-shell
momentum. In this case, the denominator scales as t6, while the transformation of the
measure again yields a factor of t7. Hence, collinear singularities are absent as well, so
that on-shell fishnet integrals are indeed finite. This concludes our argument towards
the finiteness of fishnet Feynman graphs.

6.3. Symmetries of Fishnet Feynman Graphs

Having discussed the relation between regular fishnet diagrams and correlators in the
bi-scalar χFT4 model, let us now turn to the main part of this chapter, namely an
in-depth investigation of the symmetries of these graphs. In fact, there are many hints
pointing towards the fact that scalar fishnet graphs come endowed with a rich algebraic
structure. One of the earliest hints was found by Zamolodchikov, who showed in 1980
that scalar fishnet graphs, which are built from four-point vertices and massless prop-
agators, define a completely integrable statistical lattice model [114]. Furthermore,
as was argued in the previous sections, these graphs feature a conformal symmetry
as they can be identified with planar correlators in a theory which behaves (almost)
like a CFT in the large-N limit. The theory, namely the χFT4 model, is furthermore
believed to be an integrable field theory and it is thus natural to search for signs of
integrability within the sector of single-trace correlators alias fishnet Feynman graphs.
A typical sign of integrability is an infinite-dimensional symmetry algebra of Yangian
type, see also 2.1.3. In what follows, we will establish a conformal Yangian symmetry
for the following two types of diagrams:
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Note that as our symmetry considerations will apply to generic fishnet diagrams in-
dependent of their origin in a particular theory, we will drop the arrows and flavor
distinction from now on. The diagram on the left represents such a generic scalar fish-
net graph. It is made out of four-point vertices which are connected by scalar massless
propagators. By assumption, we first take the external points xi to be different. Later
on, we will also consider slightly generalized fishnet graphs like the one depicted on
the right-hand side of the above figure. Considering such graphs will allow us to prove
the Yangian symmetry of on-shell graphs (scattering amplitudes). In this case, the
x-variables are no longer independent due to the on-shell constraint x2

i i+1 = 0. We will
take these constraints into account by multiplying the respective correlator graph with
a product of delta functions δ(x2

i i+1). Graphically, we depict these delta functions by
dashed lines. Without further ado, let us now start with the analysis.

6.3.1. First Realization of the Yangian
In this section, we shall analyze the symmetries of scalar fishnet graphs employing the
language of level-zero and level-one generators. This construction is known as Drin-
fel’d’s first realization of the Yangian and has been introduced in detail in section 2.1.3.
We will use this language to demonstrate the Yangian symmetry of two pedagogical
examples, namely the cross integral and the double-cross integral. In the further course
of this thesis, we will then introduce the powerful RTT formalism and use it to prove
the Yangian symmetry of generic scalar fishnet Feynman graphs.

6.3.1.1. Lie Algebra Symmetry

In order to lay the foundations for the discussion of Yangian symmetry, let us briefly
review the underlying Lie algebra symmetry of fishnet graphs. The algebra on which
the construction of the Yangian will be based is the conformal algebra so(2, 4), which
we have already introduced in section 2.1.1. In this section, we use the following
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representation of the algebra:

Pµ = −i∂µ ,
Lµν = i(xµ∂ν − xν∂µ) ,
D∆ = −i(xµ∂µ + ∆) ,
K∆
µ = 2xνLνµ − ix2∂µ − 2i∆xµ . (6.25)

Note that, for later convenience, we have changed to a hermitian basis of the conformal
algebra. Moreover, we have included the conformal dimension ∆, which we encountered
in the context of the field representation in section 2.1.1. In principle, we could as well
work with a representation acting on the fields as all the fishnet graphs are in one-to-
one correspondence with a planar correlator in the χFT4 model. However, we prefer to
investigate fishnet graphs from a general point of view without relying on the correlator
interpretation. Since all the external coordinates are assumed to be different, there is
after all not much difference between the two representations because subtleties as
those described in section 5.1.2 do not arise.

To investigate the conformal properties of fishnet Feynman graphs, we again focus
on the inversion. As discussed in section 2.1.1, the inversion is a discrete element of
the conformal group and acts on the coordinates as

Ib[xµ] = xµ

x2 . (6.26)

It relates the generator of translations Pµ and the generator of conformal boosts K∆=0
µ

in the following way:

K∆=0
µ = −Ib ◦ Pµ ◦ Ib . (6.27)

Let us now check the inversion properties of the two simplest fishnet diagrams, namely
the cross and the double cross. We have written down theses integrals already while
discussing correlators, but for convenience let us state them here again

|F4〉 =
∫ d4x0

x2
10x

2
20x

2
30x

2
40
, |F6〉 =

∫ d4x0 d4x0′

x2
10x

2
50x

2
60x

2
00′x

2
20′x

2
30′x

2
40′
. (6.28)

The notation as a state has been chosen in anticipation of the subsequent discussion
on the RTT realization, where fishnet graphs are interpreted as eigenstates of a mon-
odromy matrix. In order to invert the two expressions (6.28), it is useful to note the
following relations:

Ib[x2
ij] =

x2
ij

x2
ix

2
j

, Ib[d4x0] = d4x0

x8
0
. (6.29)

Using these formulas, we find

Ib[|F4〉] = x2
1x

2
2x

2
3x

2
4 |F4〉 , Ib[|F6〉] = x2

1x
2
2x

2
3x

2
4x

2
5x

2
6 |F6〉 . (6.30)
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The two considered fishnet graphs are obviously not invariant under a conformal in-
version but rather transform covariantly. Taking into account the relation between Pµ

and K∆=0
µ (6.27), it is not hard to see that under a special conformal transformation

the cross and the double cross transform as

Kµ
~∆=0 |F4〉 =

4∑
i=1

2ixµi |F4〉 , Kµ
~∆=0 |F6〉 =

6∑
i=1

2ixµi |F6〉 , (6.31)

where we have introduced the shorthand notation ~∆ for the set of conformal dimensions.
By comparing this to equation (6.25), we see that the two graphs are invariant if we
choose the conformal dimensions ∆i to be equal to one at each site, i.e.

Kµ
~∆=1 |F4〉 = Kµ

~∆=1 |F6〉 = 0 . (6.32)

Note that due to the commutation relations (2.7), the invariance under D~∆=1 is guar-
anteed and the graphs are hence conformally invariant as expected.

Given these two examples, it is actually not hard to convince oneself that the pattern
(6.30) continues to higher loop orders and thus all the graphs of plain fishnet type
feature a conformal symmetry. We will postpone the discussion of the on-shell graphs
to the section on the RTT formulation.

6.3.1.2. Yangian Symmetry

Having discussed the Lie algebra symmetry of fishnet graphs, we now turn to the con-
struction of the Yangian. The level-zero algebra on which the construction is based is
the conformal algebra so(2, 4) and, as before, we choose to represent the level-zero gen-
erators by the differential operators given in equation (6.25). Based on our discussion
in section 2.1.3, we write down the following ansatz for the level-one generators:

Ĵδ = 1
2f

δ
ρκ

∑
j<k

Jκj J
ρ
k +

∑
k

vkJδk . (6.33)

Here, f δρκ are the inverse structure constants and the vk’s are the evaluation parame-
ters, which can be chosen arbitrarily without spoiling the defining algebra relations of
the Yangian, see section 2.1.3. In many cases, like, for example, in the context of su-
peramplitudes in N = 4 SYM theory [25], the local contribution is absent and we have
vk = 0 for all k. However, in the present case we will use this freedom to choose the vk’s
to define a consistent Yangian symmetry algebra of fishnet graphs. Let us illustrate
this on the example of the cross integral and the double-cross integral. Note that, as
in the case of Wilson loops, it again suffices to show invariance under one level-one
generator. The level-zero invariance together with the Yangian commutation relations
(2.52) guarantees that all the other level-one generators annihilate the (double-)cross
integral as well.

In what follows, we will choose the simplest level-one generator, which is the level-one
momentum generator P̂µ. Using the formula (6.33), we find the following expression
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for the bi-local piece of P̂µ,

P̂µ
bi = − i

2

∑
j<k

[
(Lµνj + ηµνD∆j=1

j )Pk,ν − (j ↔ k)
]
, (6.34)

where Lµνj , D∆j=1
j and Pµ

k are the single-site conformal generators as introduced above.
Applying this generator to the box integral (6.28) yields

P̂µ
bi |F4〉 =

(
Pµ

2 + 2Pµ
3 + 3Pµ

4

)
|F4〉 . (6.35)

The form of the right-hand side makes it obvious that we can use the freedom to
choose the vk’s in equation (6.33) to construct a true symmetry generator. Explicitly,
we define the full level-one momentum generator as

P̂µ
F4 := P̂µ

bi − Pµ
2 − 2Pµ

3 − 3Pµ
4 . (6.36)

As a second example, let us consider the double-cross diagram. Applying the bi-local
generator (6.34) to the double-cross integral (6.28) yields

P̂µ
bi |F6〉 =

(
Pµ

3 + 2Pµ
4 + 2Pµ

5 + 3Pµ
6

)
|F6〉 . (6.37)

Again, we see that we can define an algebraically consistent level-one momentum gen-
erator that annihilates the double-cross integral by choosing the inhomogeneities as
follows

P̂µ
F6 := P̂µ

bi − Pµ
3 − 2Pµ

4 − 2Pµ
5 − 3Pµ

6 . (6.38)

In principle, this method can be continued to higher and higher loop orders. However,
in practice, it cannot because the complexity of the computation grows vastly with the
number of loops. Furthermore, one should note that symmetry statements such as

P̂µ
F4|F4〉 = P̂µ

F6|F6〉 = 0 , (6.39)

do typically not hold at the level of the integrand due to total derivative terms. Com-
puter algebra systems can therefore only be of partial help in proving these statements.
In conclusion, we have to state that this method is probably unsuitable for proving the
Yangian symmetry of a generic fishnet Feynman graph. Fortunately, there exists an-
other formulation of the Yangian, which goes under the name of the RTT realization.
This formalism will turn out to be highly capable of tackling this problem and we will
introduce it and explain its relation to the first realization of the Yangian in section
6.3.2. Although the first realization seems to have its drawbacks, it is well-suited for
studying the implications of Yangian symmetry and that is what we shall attempt next.
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6.3.1.3. Differential Equations from Yangian Symmetry

An obvious aspect of interest is whether the Yangian symmetry can actually help in
computing the fishnet Feynman integrals that we are considering. A natural approach
to this question is to examine the differential equations that the Yangian symmetry
implies. In general, these differential equations, such as (6.39), are very complicated
due to the vast number of terms in the bi-local part of the generator. For this reason,
it is crucial to simplify them by introducing an appropriate set of variables. Here,
we shall focus on the simplest fishnet integral, which is the cross integral. A clear
advantage of focusing on this representative is that the integral is explicitly known and
we can therefore directly test our equations. Furthermore, the integral depends only
on four external points, which keeps the number of conformal cross-ratios manageable.
We begin by simplifying the four-point level-one generator. For convenience, let us
define the following abbreviation:

Ĵδbi = 1
2

∑
j<k

Cδ
jk , where Cδ

jk = f δρκJκj J
ρ
k . (6.40)

In the four-point case, we obviously have

2Ĵδbi = Cδ
12 + Cδ

34 + Cδ
13 + Cδ

14 + Cδ
23 + Cδ

24 . (6.41)

To simplify this equation, we rewrite the last four terms according to

Cδ
13 + Cδ

14 + Cδ
23 + Cδ

24 = f δρκ(Jκ1 + Jκ2)(Jρ3 + Jρ4)
= f δρκ(Jκ1 + Jκ2)Jρ − 1

2f
δ
ρκf

κρ
σ(Jσ1 + Jσ2 ) . (6.42)

The first term obviously annihilates level-zero invariants and we will thus drop it. The
second term is proportional to the dual Coxeter number (2.56) of the conformal algebra,
which is non-vanishing. For level-zero invariants |Fn〉, and with Ĵδ = Ĵδbi +∑

k vkJδk, we
thus have

Ĵδ|F 〉 = 0 ⇔
(
Cδ

12 + Cδ
34 +

4∑
k=1

[2vk − c(δk,1 + δk,2)]Jδk
)
|F 〉 = 0. (6.43)

Let us now specify to the case of the level-one momentum generator. The corresponding
C-operator reads

CPµ
jk = −i(Lµνj + ηµνD∆j

j )Pk,ν − (j ↔ k)
= −i

[
xµj ∂

ν
j ∂k,ν − xνj∂

µ
j ∂k,ν − xj,ν∂νj ∂

µ
k −∆j∂

µ
k

]
− (j ↔ k)

= −i
(
xµjkη

ρσ − xρjkηµσ − xσjkηµρ
)
∂jρ∂kσ + i

(
∆j∂

µ
k −∆k∂

µ
j

)
, (6.44)

with ∆j being equal to one at each site. Taking into account the insights discussed
above, we can rephrase the level-one momentum invariance of the cross integral as
follows [

CPµ
12 + CPµ

34 +
4∑

k=1
θkPµ

k

]
|F4〉 = 0 . (6.45)
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By plugging in the result of the former section, namely vk = −(k − 1), and using that
c = 4, we find (modulo an overall shift)

θk = 2vk − c(δk1 + δk2) = (+1,−1,+1,−1) . (6.46)

At this point, we note that we can absorb the ∆-terms in equation (6.44) into a
redefinition of the parameters θk. Doing so yields the following differential equation[

CPµ
12,∆=0 + CPµ

34,∆=0 +
4∑

k=1
θ′kP

µ
k

]
|F4〉 = 0 , (6.47)

with

θ′k = (0,−4, 0,−4) . (6.48)

After having simplified the level-one equation, we shall now perform a change of
variables. The new variables are the conformal cross-ratios u and v, which make
manifest the level-zero symmetry of the problem. These variables will not only allow
us to rephrase the level-one equation (6.47) in a nice and compact fashion but also
help in separating the implications of level-zero symmetry and level-one invariance.
Our strategy to introduce them is the following: First, we note that we can use the
level-zero invariance of the cross integral to argue that the integrated result is of the
following form:

|F4〉 = 1
x2

13x
2
24
φ(u, v) . (6.49)

Here, u and v are the conformally-invariant cross-ratios,8 being defined as

u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
, (6.50)

and φ is an arbitrary function of them. In the second step, we now plug the ansatz
(6.49) into the simplified level-one equation (6.47). The computation is in principal
straightforward but nevertheless quite lengthy. However, we will refrain from presenting
it here in detail and only state the final result. It reads[
CPµ

12,∆=0 + CPµ
34,∆=0 +

4∑
k=1

θ′kP
µ
k

]
|F4〉 = 0 = −4i

x2
13x

2
24
×

×

(xµ14
x2

14
− xµ23
x2

23

)(
v + 3vu∂u + (3v − 1)v∂v + vu2∂2

u + (v − 1)v2∂2
v + 2v2u∂u∂v

)
φ

−
(
xµ12
x2

12
+ xµ34
x2

34

)(
u+ (3u− 1)u∂u + 3uv∂v + (u− 1)u2∂2

u + uv2∂2
v + 2u2v∂u∂v

)
φ

 .
(6.51)

8The variables u and v are annihilated by the conformal generators (6.25) with ∆i uniformly chosen
to be equal to zero.
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Keeping all squares x2
ij fixed so that u and v are constant removes six of the sixteen

degrees of freedom of four Minkowski vectors. One can check that this leaves enough
freedom to vary the two coefficients that multiply the differential equations in (6.51)
independently, so that we conclude that the function φ must satisfy the following
system of differential equations:(

1 + 3u∂u + (3v − 1)∂v + u2∂2
u + (v − 1)v∂2

v + 2vu∂u∂v
)
φ(u, v) = 0 ,(

1 + (3u− 1)∂u + 3v∂v + (u− 1)u∂2
u + v2∂2

v + 2uv∂u∂v
)
φ(u, v) = 0 . (6.52)

Obviously, the two equations are related to each other by exchange of u and v. It
can be checked that the solution (6.17) indeed satisfies them. An interesting point to
investigate is how constraining the above equations are and how they can be solved.
However, clarifying these and related questions is left for future work.

6.3.1.4. Yangian Symmetry and Cyclicity

An important point when dealing with Yangian symmetry of quantities which have
a cyclic shift symmetry is the interplay between these two symmetries, see also our
discussion in section 5.2.1. While the level-zero generators are cyclic, the level-one
generators typically map cyclic functions to non-cyclic ones. This is due to the fact that
the ordering prescription in the bi-local piece of the level-one generators (6.33) singles
out a reference point. In the case of color-ordered scattering amplitudes in N = 4 SYM
theory, the compatibility between Yangian symmetry and cyclicity is ensured by the
vanishing of the dual Coxeter number of the underlying Lie algebra [25]. For the case
at hand, i.e. for the conformal algebra so(2, 4), the dual Coxeter number is, however,
non-vanishing. Nevertheless, we have some cyclicity constraints for certain types of
fishnet graphs. For instance, an entire n-point fishnet graph (with complete rows only)
has an n

2 -site cyclic shift symmetry of the external legs. One may thus wonder how
the consistency is achieved in this case and furthermore which restrictions the cyclicity
imposes on the most generic level-one Yangian generator. That is what we are going
to discuss next.

We start by considering the bi-local piece of the level-one generator

Ĵδbi|1,n = 1
2f

δ
ρκ

n∑
j<k=1

Jκj J
ρ
k , (6.53)

where |1,n denotes the boundaries of summation. Shifting the summation range in the
above equation by m units and subtracting the original bi-local generator yields

Ĵδbi|1+m,n+m − Ĵδbi|1,n = 1
2f

δ
ρκf

κρ
σ

m∑
k=1

Jσk − f δρκ
m∑
k=1

JκkJρ. (6.54)

Restricting to the space of level-zero invariants, the second term is trivially zero and
we will neglect it from now on. Equation (6.54) can be further simplified by noting
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that the product of structure constants can be replaced by the dual Coxeter number,
see equation (2.56). We thus have

Ĵδbi|1+m,n+m − Ĵδbi|1,n = c
m∑
k=1

Jδk . (6.55)

From this equation, we conclude that if the underlying level-zero algebra has a non-
vanishing dual Coxeter number and we are considering a quantity which has an m-site
cyclic shift symmetry, the bi-local piece on its own can never be a symmetry generator
as the right-hand side of the equation does not vanish upon acting on the object under
consideration.

However, the key observation now is that we can compensate for the term on the
right-hand side of equation (6.55) by adding an appropriate local term ∑n

k=1 vkJδk to
the level-one generator. Under an m-site cyclic shift, such a term transforms as

Ĵδlo|1+m,n+m − Ĵδlo|1,n =
n+m∑
i=m+1

vi−m Jδi −
n∑
i=1

vi Jδi

=
m∑
i=1

(vi−m+n − vi)Jδi +
n∑

i=m+1
(vi−m − vi)Jδi . (6.56)

In total, we thus have

ĴA|1+m,n+m − Ĵδ|1,n =
m∑
i=1

(vi−m+n − vi + c)Jδi +
n∑

i=m+1
(vi−m − vi)Jδi . (6.57)

To ensure consistency between Yangian symmetry and cyclic shift symmetry, we require
that

Ĵδ|1+m,n+m − Ĵδ|1,n = am
n∑
i=1

Jδi , (6.58)

where we allow the constant am to depend on the length of the shift. This leads to the
following set of equations:

vi−m+n − vi + c = am , ∀i ∈ {1, . . . ,m} ,
vi−m − vi = am , ∀i ∈ {m+ 1, . . . , n} . (6.59)

Setting m = n
2 , the above system of equations (6.59) has n+ 1 free parameters and the

solution reads

vk>n
2

= vk−n2 −
c

2 , an
2

= c

2 . (6.60)

Hence, in the case of entire fishnet graphs, half of the evaluation parameters vk are
actually fixed by cyclicity.

150



6.3. Symmetries of Fishnet Feynman Graphs

Unique level-one generator for truly cyclic quantities. We can apply the above
arguments to the case when the object we are acting on is truly cyclic in the sense
that it is invariant under the shift xk → xk+1. This, for example, applies to the
cross integral |F4〉, see (6.28). In this case, the system of equations (6.59) admits the
following solution:

vk = v − (k − 1) c
n
, a1 = c

n
. (6.61)

Here, v represents the freedom to shift the level-one generator by a full level-zero
generator and we may set this parameter to zero without loss of generality. Hence,
we see that in the case at hand the evaluation parameters vk are completely fixed by
cyclicity. This means that there is a unique level-one generator that is consistent with
true cyclicity.

6.3.2. RTT Realization
In order to demonstrate the Yangian symmetry of generic fishnet Feynman graphs, it
is useful to formulate the invariance discussed above in terms of the powerful RTT
formulation of the Yangian algebra. Here, the Yangian generators are packaged into a
monodromy matrix T(u),

Tαβ(u) = δαβ +
∞∑
n=0

u−n−1J (n)
αβ , (6.62)

where u is the spectral parameter and J (n) is the infinite set of Yangian generators.
The precise relation between the generators J (n) and the ones introduced above will
be established in section 6.3.2.4. In this framework, the defining algebra relations of
the Yangian are encoded into a Yang-Baxter equation for the monodromy matrix T(u),
which is called the RTT relation

R(u− v)T(u)⊗ T(v) = T(v)⊗ T(u)R(u− v) , (6.63)

where R(u) is Yang’s R-matrix

R(u) = 1 + uP , (6.64)

with P being the permutation operator. The RTT formulation of the Yangian algebra
has first appeared implicitly in the context of the QISM [63,139], much earlier than its
general definition by Drinfel’d [60].

The simplest solution to equation (6.63) is provided by the trivial evaluation repre-
sentation of the Yangian, being characterized by J (n) = 0 for n > 0. The corresponding
solution is called the Lax operator and explicitly reads

Lαβ(u) := uTαβ(u) = uδαβ + J (0)
αβ . (6.65)
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It satisfies equation (6.63) and will play the role of a basic building block in our
construction. We will present a detailed discussion of this operator in the next section.
Note that in equation (6.65) we have changed the normalization of the operator by
including an extra factor of u. This will ensure that the monodromy matrices are
polynomial in the spectral parameter. Given the Lax operator (6.65), we can now
define the n-site inhomogeneous monodromy matrix

T(~u) = Ln(un) . . .L2(u2)L1(u1) , (6.66)

where ~u = (u1, . . . , un). The subscript i of the Lax operator Li denotes the site on
which the operator acts. Each Lax operator acts on its own site and we will identify
these sites with the external legs. In the RTT framework, the Yangian invariance of
fishnet graphs |Fn〉 translates into an eigenvalue equation for the n-site monodromy
matrix T(~u),

T(~u)|Fn〉 = Ln(un) . . .L2(u2)L1(u1)|Fn〉 = λ(~u)|Fn〉1 . (6.67)

Here, the ui’s are defined as ui = u + δi where u is the spectral parameter and the
δi’s are the inhomogeneity parameters, which have to be chosen appropriately for each
diagram. The eigenvalue λ is a polynomial in u of degree n and its exact form depends
on the considered graph. Note that since the right-hand side of equation (6.67) is
proportional to the identity matrix, the off-diagonal generators, obtained from the
expansion of (6.67), have to annihilate the state |Fn〉, while the diagonal generators
act covariantly, i.e.

J (n)
αβ |Fn〉 = cnδαβ|Fn〉 . (6.68)

Before moving on to the construction of the appropriate Lax operator, let us point out
that monodromy eigenvalue equations of the form (6.67) have been considered before
in [69,70,140]. They were shown to bridge the gap between the Yangian invariance of
scattering amplitudes in N = 4 SYM theory and the QISM and thus paved the way
for the application of integrability techniques to the scattering problem in N = 4 SYM
theory [69–71,141–143] and in ABJM theory [141].

6.3.2.1. The Conformal Lax Operator

Let us now introduce the most fundamental object of this section which is the Lax
operator Lαβ. The Lax operator that we are going to use has been considered before
in [144] and is of the following form:

Lαβ(u,∆) = uδαβ + 1
2Sabαβ J∆

ab . (6.69)

Here, Sabαβ labels a finite-dimensional matrix representation of the conformal algebra
so(2, 4) acting on so-called auxiliary space, while by J∆

ab we refer to the differential
operator representation (6.25) acting on quantum space. Note that we have labeled
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the fifteen generators by an antisymmetric pair of indices both running from one to six.9
In the case at hand, the generators Sab form an irreducible spinor representation of the
algebra so(2, 4). To construct this representation, we use a basis of gamma matrices
Γa for the six-dimensional space R2,4. A spinor representation of the algebra so(2, 4)
can then be constructed by considering the commutator i

4 [Γa,Γb]. This representation
is, however, reducible since all matrices take a block-diagonal form. The generators Sab
are obtained by projecting onto the Weyl subspace V+, i.e.

Sab = i
4 [Γa,Γb]

∣∣∣
↓V+

. (6.70)

By plugging this into equation (6.69), we find the following explicit expression for the
Lax operator [145],

L(u+, u−) =
(

1 0
x 1

)(
u+ · 1 p

0 u− · 1

)(
1 0
−x 1

)
, (6.71)

where the block 2× 2 matrices are defined as x ≡ −iσµxµ and p ≡ − i
2σµ∂µ with the

Pauli matrices as given in appendix A.1. Note that, for later convenience, we have
introduced the following abbreviations

u+ ≡ u+ 1
2(∆− 4) , u− ≡ u− 1

2∆ , (6.72)

where u is the spectral parameter and ∆ is the conformal dimension, see equation
(6.25). Inverting the two equations (6.72) yields

u = 1
2(u+ + u− + 2) , ∆ = u+ − u− + 2 . (6.73)

In what follows, we will use both notations, L(u+, u−) and L(u; ∆), for the Lax operator
(6.71).

Lax operator relations. For later convenience, let us list a number of relations that
the Lax operator (6.71) fulfills and that we will need in the next two sections. Most of
the relations can easily be checked, either by hand or using Mathematica, and we will
therefore refrain from presenting these computations here.

• We denote by LT the transposed Lax operator in the non-compact physical space
(not the auxiliary matrix space), i.e. we have xTµ = xµ and ∂Tµ = −∂µ, which
is equivalent to integration by parts. The inverse of the Lax operator coincides
with its transposition (up to permutation and shift of parameters)

LTαβ(v − 2, u− 2)Lβγ(u, v) = uv δαγ . (6.74)
9The similarity transformation relating the two different bases used in equation (6.25) and (6.69) is

standard material and can, for example, be found in [144].
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• The Lax operator acts diagonally on 1 at ∆ = 0, i.e.

Lαβ(u, u+ 2) · 1 = (u+ 2)δαβ , LTαβ(u+ 2, u) · 1 = (u+ 2)δαβ . (6.75)

We can think of 1 as a local pseudo-vacuum state of the Lax operator.

• The scalar propagator x−2
12 is an intertwining operator, permuting spectral pa-

rameters of the two-site monodromy [145–148]:

x−2
12 L1(u, v)L2(w, u+ 1) = L1(u+ 1, v)L2(w, u)x−2

12 . (6.76)

• As we are working in Minkowski space, we can consider the unitary cut of the
Feynman propagator 1/(x2

12 + iε), which is δ(x2
12). Interestingly, this delta func-

tion satisfies the same intertwining relation

δ(x2
12)L1(u, v)L2(w, u+ 1) = L1(u+ 1, v)L2(w, u)δ(x2

12). (6.77)

• The eigenvalue problems for monodromies with the same cyclic ordering of Lax
operators are equivalent:

Ln(un; ∆n) . . .L1(u1; ∆1) |Fn〉 = λ |Fn〉1 ,
m

Ln−1(un−1; ∆n−1) . . .L1(u1; ∆1)Ln(un − 4; ∆n) |Fn〉 = λ̃ |Fn〉1, (6.78)

where by uk we mean different spectral parameters for each Lax operator. Here,
the eigenvalues λ and λ̃ are related by un+un−λ̃ = (un+ − 2)(un− − 2)λ. A proof
of this statement can be found in reference [140] and [5].

6.3.2.2. Yangian Symmetry of Correlator Fishnet Graphs

We are now ready to prove the Yangian symmetry of a generic fishnet graph, such as
depicted in figure 6.6. As explained above, proving the Yangian symmetry of a generic
fishnet graph in the language of the RTT realization amounts to showing that the
following relation holds true:

Ln[δ+
n , δ

−
n ] . . .L2[δ+

2 , δ
−
2 ]L1[δ+

1 , δ
−
1 ]|Fn〉 = λ(δ+

i , δ
−
i )|Fn〉1 . (6.79)

Here, we have introduced a new notation, which we will frequently use from now on

Li[δ+
i , δ

−
i ] := Li(u+ δ+

i , u+ δ−i ) , (6.80)

where the Lax operator L is to be seen as a function of u+ and u−, i.e. L = L(u+, u−).
The inhomogeneity parameters δ+

i and δ−i as well as the eigenvalue λ(δ+
i , δ

−
i ) depend on

the graph under consideration and we will explain how to choose the δi’s momentarily.
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Before we explain how to prove the Yangian symmetry of a generic fishnet graph,
let us consider again our two primary examples, namely the cross integral and the
double-cross integral. The eigenvalue relation for the cross integral reads

L4[4, 5]L3[3, 4]L2[2, 3]L1[1, 2] |F4〉 = [3][4]2[5] |F4〉1 , (6.81)

where [δk] is shorthand for (u + δk). The strategy to prove equation (6.81) is the
following: First, we extend the monodromy matrix on the left-hand side by inserting
a sophisticated identity of the form 1 = [2]−1 LT0 [2, 0] · 1 (see equation (6.75)), where
0 labels the point that is integrated over. We then integrate the Lax operator LT0 [2, 0]
by parts so that it acts on the integrand of the cross integral, i.e.

[2]−1
∫

d4x0 L4[4, 5]L3[3, 4]L2[2, 3]L1[1, 2](LT0 [2, 0] · 1)x−2
10 x

−2
20 x

−2
30 x

−2
40

=[2]−1
∫

d4x0 L4[4, 5]L3[3, 4]L2[2, 3]L1[1, 2]L0[2, 0]x−2
10 x

−2
20 x

−2
30 x

−2
40 . (6.82)

In the next step, we repeatedly use the intertwining relation (6.76) to pull the scalar
propagators through the Lax operators. As soon as there is no more coordinate de-
pendence to the right of the external Lax operators, i.e. they act only on the vacuum
state, we use equation (6.75) to replace them by a numerical factor times an identity
matrix. Let us see how this works in detail. First, we pull through the factor x−2

10 ,

L1[1, 2]L0[2, 0]x−2
10 = x−2

10 L1[0, 2]L0[2, 1] = [2] x−2
10 L0[2, 1] . (6.83)

In the next step, we pull through x−2
20 ,

L2[2, 3]L0[2, 1]x−2
20 = x−2

20 L2[1, 3]L0[2, 2] = [3] x−2
20 L0[2, 2] . (6.84)

This procedure can be continued until the integrand is completely to the left of the
product of Lax operators. In the last step, we replace the Lax operators L4 and L0,
which act on the vacuum, by a numerical factor times the identity matrix

L4[4, 5]L0[2, 3]x−2
40 = x−2

40 L4[3, 5]L0[2, 4] = [4][5]x−2
40 1 . (6.85)

Collecting all the numerical factors yields the polynomial [3][4]2[5] and equation (6.81)
is hence proven. Already in the case of the cross integral the expressions would have
been quite bulky if we had written out the complete integral in each step. For this
reason, we need a more efficient notation in order to be able to prove the Yangian
symmetry of generic graphs. Fortunately, there exists a nice graphical way to represent
the sequence of transformations used to prove the eigenvalue relation for the cross
integral, see figure 6.4. In this figure, the monodromy is depicted by the oriented
contour that embraces the graph. Lax operators correspond to solid red segments,
while dashed orange lines denote summation over matrix indices. The shifts in the
arguments of the Lax operators L(u + δ+

i , u + δ−i ) are denoted by the two numbers in
square brackets next to the nodes. Each picture in figure 6.4 corresponds to one of the
transformation steps explained above.
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[1,2]

[2,3]

[3,4]

[4,5]

[2]−1

[1,2]

[2,3]

[3,4]

[4,5]

[2,0]
[2]

[2,3]

[3,4]

[4,5] [2,1]

[3]

[3,4]

[4,5]
[2,2]

[4]

[4,5] [2,3]

[4][5]

Figure 6.4.: This figure visualizes the sequence of transformations that we use to prove
that the cross integral furnishes an eigenstate of the four-point monodromy
matrix. The Lax operators of the external part of the monodromy act
on fixed external coordinates. The Lax operator introduced around the
integrated middle node acts on the coordinate of this node. Numerical
factors appearing in the process are indicated above arrows.

Using the same logic, we can now also prove the Yangian invariance of the double-
cross integral. The eigenvalue equation for this graph reads

L6[4, 5]L5[3, 4]L4[3, 4]L3[2, 3]L2[1, 2]L1[1, 2] |F6〉 = [3]2[4]3[5] |F6〉1 . (6.86)

Again, the logic is to extend the above monodromy by inserting two identities in the
form of two additional Lax operators which act on the integration points x0 and x0′ .
After integrating these by parts, we get

[2]−2 L6[4, 5]L5[3, 4]L4[3, 4]L3[2, 3]L2[1, 2]L0′ [2, 0]L1[1, 2]L0[2, 0] . (6.87)

Subsequently, we use the intertwining relation (6.76) as well as the vacuum identities
(6.75) to pull the monodromy line through the integrand. The whole sequence of
transformations is depicted in figure 6.5.

Finally, we now attempt the general case. We will mainly use the graphical methods
explained above to prove the Yangian invariance of generic graphs as explicit formulas
would be quite bulky. In the first step, we draw the monodromy line and attribute
inhomogeneity parameters to the external legs according to the following regular pat-
tern:
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[1,2] [1,2]

[2,3]

[3,4] [3,4]

[4,5]

[2]−2

[1,2] [1,2]

[2,3]

[3,4] [3,4]

[4,5]
[2,0] [2,0]

[2]

[1,2]

[2,3]

[3,4] [3,4]

[2,1] [2,0]
[4,5]

[2][3][4]

[3,4]

[4,5]
[2,1]

[2,3]

[3]

[3,4]

[4,5]
[2,2]

[4]2[5]

Figure 6.5.: This figure visualizes the sequence of transformations that can be used
to prove that the double-cross integral furnishes an eigenstate of the six-
point monodromy matrix. Numerical factors appearing in the process are
indicated above the arrows.

• At the first leg, we choose [δ+
1 , δ

−
1 ] = [1, 2] (of course the overall spectral parameter

u is allowed to be shifted uniformly in all ui+ and ui− along the contour).

• We do not change the inhomogeneities of the Lax operators when moving straight
along a horizontal or vertical segment of the contour.

• We increase δ±i+1 = δ±i + 1 at a convex corner i→ i+ 1 when turning by an angle
π/2.

• We decrease δ±i+1 = δ±i − 1 at a concave corner i → i + 1 when turning by an
angle −π/2.

A representative graph including the monodromy line with appropriately chosen in-
homogeneities is depicted in figure 6.6. In order to show that the claimed eigenvalue
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[1,2] [1,2] [1,2]

[2,3]
[1,2] [1,2]

[2,3]

[2,3]
[4,5]

[3,4]

[2,3]

[3,4] [3,4] [3,4] [3,4]

[4,5]

[4,5]

[4,5]

Figure 6.6.: This diagram represents a generic fishnet Feynman graph. The correspond-
ing n-site monodromy is depicted by the oriented contour. As before, Lax
operators correspond to solid red segments, while dashed orange lines de-
note summation over matrix indices.

[δ, δ + 1]

[δ + 1, δ + 2]

= [δ + 2]

[δ + 1, δ + 1]

[δ, δ + 1]

=

[δ + 1, δ]

Figure 6.7.: Local transformations employed to prove the Yangian symmetry of a
generic fishnet Feynman graph. Pushing the contour inside the graph
involves integration by parts. If the initial monodromy acts on an L-loop
graph, then, after one local transformation, the new monodromy (trans-
formed contour) acts on an (L− 1)-loop integral.

relation holds true, we again pull the monodromy through the graph using the local
transformations depicted in figure 6.7. We also use the intertwining relation (6.76) and
the vacuum relations (6.75). The local transformations depicted in figure 6.7 can be
justified using the same manipulations that we employed to prove the eigenvalue rela-
tion of the cross integral. In order to obtain the eigenvalue of the monodromy relation
(6.79), one just needs to keep track of all the factors while deforming the contour. How-
ever, the expression for the eigenvalue can also directly be read off from the respective
graph. For this, we split the set of 2M external legs, which we will call C, into pairs
of antipodes. More precisely, we decompose the set C according to the following rule:
A leg which we encounter first when moving along the monodromy contour (it has a
lower number) belongs to the set Cin, and a leg which we encounter last moving along
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Figure 6.8.: A fishnet amplitude graph representing a generic scattering amplitude in
the bi-scalar theory and its dual graph. The amplitude graph is drawn by
dotted lines, which denote scalar propagators p−2

i . All inflowing momenta
are on shell. They are denoted by loosely dotted lines. The dual graph is
formed by solid lines, denoting scalar propagators x−2

ij , and dashed lines,
which represent delta functions δ(x2

ij).

the contour (it has a higher number) belongs to the set Cout. Using this prescription,
we decompose the set of external legs according to C = Cin ∪ Cout. The eigenvalue λ in
equation (6.79) is then simply given by the following formula:

λ(δ+
i , δ

−
i ) =

∏
i∈Cout

[δ+
i ][δ−i ] . (6.88)

For example, for the graph depicted in figure 6.6, we obtain

λ(u) = ([3][4])5([4][5])4 = (u+ 3)5(u+ 4)9(u+ 5)4 . (6.89)

This completes our prove of the Yangian symmetry of generic fishnet correlator graphs.

6.3.2.3. Yangian Symmetry of Amplitude Fishnet Graphs

Having discussed the Yangian invariance of correlator fishnet graphs, let us now con-
sider on-shell momentum space graphs and make contact to color-ordered scattering
amplitudes in the bi-scalar χFT4 model. A generic on-shell momentum space graph
is depicted in figure 6.8 by dotted lines. To show that it satisfies a monodromy rela-
tion, we consider the corresponding dual graph. The dual graph is drawn using solid
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lines and, as before, filled blobs denote integration vertices, while white blobs denote
external points. An important point to note is that we now interpret the xi’s as region
momenta and no longer as coordinates in position space. The region momenta are
related to the external momenta in the following way:

pµi = xµi − x
µ
i+1 . (6.90)

An important difference between the correlator case considered before and the case at
hand is that the xi’s are no longer all independent as the external momenta square to
zero, i.e. p2

i = 0. Obviously, the region momenta have to be constrained by x2
i i+1 = 0.

In order to account for these constraints, we have modified the boundary of the dual
graph in figure 6.8 in the following way: First, we added an extra external node at
each convex corner in order to account for the fact that we always have two inflowing
momenta at these corners. Conversely, we identified external coordinates at concave
corners, see figure 6.8. Subsequently, we have multiplied the whole graph by a product
of delta functions δ(x2

i i+1) to enforce the light-likeness constraints. Graphically, we
have depicted the delta functions by dashed lines, see figure 6.8. An important point
to note is that the delta functions δ(x2

i i+1) satisfy the same intertwining relation as the
propagators, see equation (6.77). To prove that the dual graph in figure 6.8 obeys a
monodromy relation, we can thus employ the same techniques that we used to prove
the Yangian symmetry of correlator graphs. Let us elaborate on this a bit more.
First, we again draw the monodromy line by encircling the whole graph. This is
depicted in figure 6.9. The assignment of inhomogeneities for such a graph follows the
rules depicted in figure 6.10. It is now easy to convince oneself that the monodromy
can again be pulled through the graph by using the local transformations depicted in
figure 6.7, the intertwining relations for propagators (6.76) and delta functions (6.77)
as well as the vacuum relation (6.75). Explicit expressions for the eigenvalue λ can
straightforwardly be worked out for each particular graph by keeping track of all the
factors while deforming the contour.

There exists, however, a quicker way to find the eigenvalue λ. By applying n-times
the cyclicity argument (6.78) to the initial eigenvalue problem, we obtain an equivalent
eigenvalue relation which is related to the original one by a uniform shift of the spectral
parameter u by a factor of minus four. By comparing the two eigenvalues λ and λ̃, we
learn that the eigenvalue satisfies the following finite-difference equation

λ(u)
λ(u− 4) = P (u)

P (u− 2) , (6.91)

where λ(u) is a polynomial of degree n and P (u) is given by

λ(u) =
n∏
i=1

(u+ ai) , P (u) =
n∏
i=1

(u+ δ+
i )(u+ δ−i ) . (6.92)

Equation (6.91) is reminiscent of the Bethe ansatz equations but in comparison much
easier to solve. In practice, it can often be solved by just staring at the equation. For
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[1,1] [2,1] [2,2]

[3,0]

[1,1] [2,1] [2,1] [2,2]

[3,2]

[3,3]
[4,2]

[3,2]

[3,3]
[4,3][4,4]

[5,2]

[3,2]

[3,3]
[4,3][4,4]

[5,3]
[4,4]

[5,4]

[5,5]
[6,4]

[5,4]

Figure 6.9.: The amplitude graph depicted in figure 6.8 is Yangian invariant, i.e. it is an
eigenstate of the monodromy with the indicated inhomogeneities [δ+

i , δ
−
i ].

The assignment of inhomogeneities follows the rules depicted in Fig. 6.10.

[2,2] [2,1]

[4,2]

[5,2]

Figure 6.10.: The Lax operator from the monodromy acting on the junction of: (A)
two, (B) three, (C) four, (D) five legs. Rotating this picture by ±π/2
results in a shift of both inhomogeneities δ → δ ± 1. As before, we use
dashed lines to represent delta functions and solid lines to represent scalar
propagators.

example, for the graph in figure 6.9, equation (6.91) reads

λ(u)
λ(u− 4) = (3 + u)7(4 + u)11(5 + u)6(6 + u)

(u− 2)(u− 1)7u11(1 + u)6 . (6.93)

161



6. Yangian Symmetry of Fishnet Feynman Graphs

From this equation, we can more or less directly read off the eigenvalue λ,

λ(u) = (u+ 2)(u+ 3)7(u+ 4)11(u+ 5)6(u+ 6) . (6.94)

For later convenience, it is also useful to solve equation (6.91) perturbatively for the
first few coefficients in the u-expansion of the monodromy eigenvalue λ. We find

λ(~u) = un + 1
2u

n−1
n∑
k=1

δ̂k + 1
4u

n−2
[ n∑
i<j=1

δ̂iδ̂j − 1
2

n∑
j=1

∆̂j

]
+O(un−3) , (6.95)

Here, we use the shorthand notations δ̂k = δ+
k + δ−k + 2 and ∆̂i = ∆i(∆i − 4) with

∆k = δ+
k − δ−k + 2.

Finally, let us point the reader to the recent paper [149], where it was argued that
the momentum-space conformal symmetry of finite on-shell loop integrals of the type
considered above is anomalous. The anomaly is of contact type and originates from
integration regions where the loop momenta become collinear to one of the external null
momenta. The breaking of (super)conformal symmetry of massless scatting amplitudes
due to collinear singularities is in fact a well-known phenomenon in N = 4 SYM theory
[66, 67] and ABJM theory [150]. However, the mechanism described in reference [149]
seems to be of a slightly different nature and causes anomalies even though the integral
is completely finite. As the level-one symmetry of on-shell fishnet integrals is tightly
linked to their conformal symmetry in momentum space (see reference [25] as well as
our discussion in section 6.3.3), one may wonder whether the Yangian symmetry is
actually anomalous as well. However, we leave this investigation for future work.

6.3.2.4. Monodromy Expansion

In section 6.3.2, we promised to make precise the relation between the expansion coef-
ficients of the monodromy, see equation (6.62), and the level-zero and level-one genera-
tors as introduced in section 6.3.1. We will now make good on this promise and expand
a general n-site monodromy of the type used above in the spectral parameter u,

T(~u) = Ln(u+ δ+
n , u+ δ−n )Ln−1(u+ δ+

n−1, u+ δ−n−1) . . .L1(u+ δ+
1 , u+ δ−1 ) . (6.96)

We employ the Lax operator given in (6.69) and (6.71), which yields

T(~u) =un 1+1
2u

n−1
n∑
k=1

(
δ̂k 1+SabJ∆k

k,ab

)
(6.97)

+ 1
8u

n−2
[

n∑
k=1

k−1∑
j=1

+
n∑
j=1

j−1∑
k=1

](
δ̂j 1+SabJ∆j

j,ab

)(
δ̂k 1+ScdJ∆k

k,cd

)
+ . . . .

Here, we again use the shorthand notation δ̂k = δ+
k + δ−k + 2. Note that in the above

equation, the ∆k’s are no longer free parameters. In fact, as soon as we choose values
for {δ+

k } and {δ−k }, the conformal dimensions ∆k are fixed, see equation (6.73),

∆k = δ+
k − δ−k + 2 . (6.98)
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In order to make contact to the level-zero and level-one generators of section 6.3.1,
we also need to take into account the function on the right-hand side of the generic
monodromy equation (6.79). For the first few orders in u, we found the following
expression, see equation (6.95):

λ(~u) =un + 1
2u

n−1
n∑
k=1

δ̂k + 1
4u

n−2
[ n∑
i<j=1

δ̂iδ̂j − 1
2

n∑
j=1

∆̂j

]
+O(un−3) . (6.99)

Here, again ∆̂i = ∆i(∆i−4) with ∆k = δ+
k −δ−k +2. Subtracting the eigenvalue λ from

the monodromy matrix yields the following operator, which now annihilates invariants
under the Yangian algebra for arbitrary spectral parameter u,

T(~u)− λ(~u)1 = 0× un 1+un−1
[

1
2

n∑
k=1

SabJ∆k
k,ab

]
(6.100)

+ un−2
[

1
4

n∑
j<k=1

Sab ScdJ∆k
k,ab J∆j

j,cd + 1
4

n∑
k=1

n∑
j=1
j 6=k

δ̂jSabJ∆k
k,ab − 1

8

n∑
k=1

(4−∆k)∆k 1

]
+ . . . .

As expected, at order un−1 we see the plain level-zero generators appearing. Since the
equation is valid for any u, we conclude that they annihilate all graphs on their own.
At the next order in u there is, however, a little bit more hiding than the plain level-one
generator. To separate the latter one, we rewrite

1
4

n∑
j<k=1

Sab ScdJ∆k
k,ab J∆j

j,cd =1
8

n∑
j<k=1

[Sab, Scd] J∆k
k,ab J∆j

j,cd + 1
8

n∑
j,k=1

Sab ScdJ∆k
k,ab J∆j

j,cd

− 1
8

n∑
k=1

Sab ScdJ∆k
k,ab J∆k

k,cd . (6.101)

The first term on the right-hand side reproduces the bi-local piece of the level-one gen-
erator. The second term is the product of two level-zero generators, which annihilates
the diagrams under consideration and can thus be dropped. Noting that

Sab ScdJ∆k
k,ab J∆k

k,cd = (∆k − 4)∆k 1−4 SabJ∆k
k,ab , (6.102)

we can rewrite the last term according to

− 1
8

n∑
k=1

Sab ScdJ∆k
k,ab J∆k

k,cd = 1
8

n∑
k=1

(4−∆k)∆k 1+1
2

n∑
k=1

SabJ∆k
k,ab . (6.103)

Here, the first term cancels the piece proportional to the identity in (6.100), while the
last term is a level-zero generator and can thus be dropped. Collecting the remaining
terms at order un−2 of (6.100), we thus find the level-one generators to be given by

Ĵab = 1
8 fab

cd,ef
n∑

j<k=1
J∆k
k,cd J∆j

j,ef + 1
2

n∑
k=1

vk Jk,ab . (6.104)
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Here, fabcd,ef denotes the structure constants with [Sab, Scd] = fab,cdef Sef and the eval-
uation parameters vk take the form

vk = 1
2

n∑
j=1
j 6=k

δ̂j . (6.105)

Specifying to the case of the (double-)cross integral, it is easy to check that the gener-
ator (6.104) agrees with the expression found in section 6.3.1.

6.3.3. Dual Conformal Symmetry and the Yangian in Momentum
Space

In N = 4 SYM theory, the Yangian invariance of scattering amplitudes is known to
be equivalent to their superconformal and dual superconformal symmetry [24, 25]. It
is thus natural to ask whether a similar statement can be made rigorous in the case
at hand — namely, for planar scattering amplitudes in χFT4, which enjoy ordinary
conformal and dual conformal symmetry, cf. [151] for a discussion of the one-loop box.
At the same time, one may wonder whether an analogue of the above construction of the
coordinate-space Yangian can also be performed in momentum space. In what follows,
we will explicitly demonstrate that the generator of special conformal transformations
in the dual (coordinate) space can be rewritten as a Yangian level-one generator acting
in on-shell momentum space. We thus derive the Yangian symmetry in momentum
space and establish its equivalence to dual conformal symmetry.

Dual conformal symmetry. We begin by briefly discussing the dual conformal sym-
metry of planar bi-scalar scattering amplitudes. As explained above, this symmetry can
be exposed by introducing the dual variables, which are defined through the relation

pµi = xµi − x
µ
i+1 . (6.106)

In contrast to the situation in N = 4 SYM theory, the dual conformal symmetry of the
considered χFT4 model is less universal in the sense that the dual conformal symmetry
generators depend, at least in part, not only on the number of external legs but also
on the structure of the amplitude itself. To make this statement more clear, let us
consider three simple examples of amplitudes:

x1

p3

p2

p1

p4

p6

p5

x4

x3

x1

p3

p4

p2

p1

p6

p8

p5

p7

x6 x3 x7

x5

x1

p3

p4

p2

p1

p5

p8

p6

p7

x0
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Using Feynman rules, we write down the following expressions for the amplitudes
depicted above:

At
6 = δ(4)(x1 − x7)

x2
14

, At
8 = δ(4)(x1 − x9)

x2
16x

2
36

, A1l
8 =

∫
d4x0

δ(4)(x1 − x9)
x2

10x
2
30x

2
50x

2
70
, (6.107)

A few comments concerning these amplitudes are in order. In equation (6.107), we have
already introduced the dual coordinates x1, x2, . . . , xn, which are related to the external
momenta as stated in equation (6.106). Obviously, the denominators just represent the
region momenta flowing through the different propagators. Furthermore, note that in
the above formulas, we have relaxed the cyclicity condition on the x’s at the cost of a
four-dimensional delta function δ(4)(x1 − xn+1) reimposing the closure of the light-like
polygon. This delta function corresponds to the momentum-conserving delta function
δ(4)(P), where P = ∑n

j=1 pj, and we have inserted it here for later convenience. On
the contrary, we have not included the one-dimensional delta functions ensuring the
light-likeness of the edges xi − xi+1. The reason for this is that the dual conformal
generators as well as the level-one on-shell momentum-space generators manifestly re-
spect the light-likeness condition, so that we can safely disregard these delta functions.
This being said, let us now take a closer look at the dual conformal properties of these
amplitudes. The representation of the dual conformal algebra that we will use here
was introduced in equation (6.25) and for pedagogical reasons we will start with a rep-
resentation with conformal dimension ∆i = 0 at each site. The amplitudes (6.107) are
manifestly invariant under translations and rotations and thus they are annihilated by
the corresponding generators. Acting with the dilatation generator on the amplitudes
in equation (6.107) yields

D~∆=0At
6 = 6iAt

6 , D~∆=0At
8 = 8iAt

8 , D~∆=0A1l
8 = 8iA1l

8 , (6.108)

where

D~∆=0 = −i
n+1∑
i=1

xµi ∂iµ . (6.109)

Note that due to the relaxed cyclicity condition, the dual conformal generators are
summed up to n + 1 instead of n. From equation (6.108), we anticipate that acting
with the conformal dilatation generator on an amplitude just yields the number of
external legs times i and it is actually not too hard to convince oneself that this
statement holds true for all the planar scattering amplitudes in χFT4. In order to
make the dilatation generator a true symmetry generator, we will now use the freedom
to choose the conformal dimensions ∆i to compensate for the terms on the right-hand
side of equation (6.108). The conformal dimensions ∆i enter the dilatation generator
in the following way:

D~∆ = −i
n+1∑
i=1

(
xµi ∂iµ + ∆i

)
. (6.110)
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There are actually many choices that lead to a generator D~∆ which annihilates the
amplitudes (6.107) but the most natural one is

~∆At
6

= (4 + 1, 0, 0, 1, 0, 0, 0) ,
~∆At

8
= (4 + 1, 0, 1, 0, 0, 2, 0, 0, 0) ,

~∆
A1l

8
= (4 + 1, 0, 1, 0, 1, 0, 1, 0, 0) . (6.111)

Note that we can always choose ∆n+1 = 0 as the delta function allows us to eliminate
the coordinate xn+1 in favor of x1. The factors of four in the above equations compen-
sate for the weight that is introduced by the delta function, while all the other numbers
are chosen such that the weight coming from the corresponding coordinate is canceled
out. Having discussed the dilatation symmetry, let us now focus on special conformal
transformations. For this, we again study the inversion and use the identity (6.27) to
deduce how the amplitudes transform under special conformal transformations. Using
that the region momenta invert as

Ib[x2
ij] =

x2
ij

x2
ix

2
j

, (6.112)

as well as the formula Ib[δ(x1 − xn+1)] = x8
1δ(x1 − xn+1),10 we find

Ib[At
6] = x10

1 x
2
4A

t
6 , Ib[At

8] = x10
1 x

2
3x

4
6A

t
8 , Ib[A1l

8 ] = x10
1 x

2
3x

2
5x

2
7A

1l
8 , (6.113)

see also our discussion in section 6.3.1.1. In contrast to the situation in N = 4 SYM
theory, the amplitudes obviously do not transform in a completely covariant way. This
is on the one hand due to the fact that there is no supermomentum-conserving delta
function present which could balance out the inversion weight of the bosonic delta
function. On the other hand, also the amplitude functions themselves do not transform
in a completely homogeneous way as some of the x’s are simply not present, while others
come with a power higher than two. Having studied the inversion properties of the
amplitudes, we can now easily write down expressions for the action of the generator
Kµ
~∆=0 on the three amplitudes (6.107). Using equation (6.27), we find

Kα̇α
~∆=0A

t
6 = i

(
5xα̇α1 + xα̇α4

)
At

6 ,

Kα̇α
~∆=0A

t
8 = i

(
5xα̇α1 + xα̇α3 + 2xα̇α6

)
At

8 ,

Kα̇α
~∆=0A

1l
8 = i

(
5xα̇α1 + xα̇α3 + xα̇α5 + xα̇α7

)
A1l

8 , (6.114)

where we employed the standard definitions

xα̇α = σ̄α̇αµ xµ,

Kα̇α
~∆=0 = 1

2 σ̄
α̇α
µ Kµ

~∆=0 = −i
n+1∑
i=1

xα̇βi xβ̇αi ∂iββ̇ . (6.115)

10This formula can easily be derived by considering the definition of the delta function
∫

d4x1 δ(x1 −
xn+1) = 1 and noting that under inversion the measure transforms as Ib[d4x1] = d4x1/x

8
1.
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As in the case of dilatation symmetry, we can now adjust the conformal scaling dimen-
sions ~∆ such that the generator of special conformal transformations annihilates the
amplitudes

Kα̇α
~∆ = Kα̇α

~∆=0 − i
n∑
i=1

∆i x
α̇α
i , (6.116)

with the ∆i’s as defined in equation (6.111). Our examples and equation (6.111)
make it clear that the generators D~∆ and Kα̇α

~∆ are no longer universal as the vector
~∆ does not only depend on the number of external legs but also on the amplitude
itself. However, note that the generators D~∆ and Kα̇α

~∆ are perfectly consistent with
the algebraic restrictions imposed on them by the conformal commutation relations.
Hence, the generators Pµ, Lµν , D~∆ and Kµ

~∆ still furnish a representation of the conformal
algebra so(2, 4).

Finally, let us comment on the situation for a generic planar amplitude in the bi-
scalar χFT4 model. As mentioned above, the plain dilatation generator D~∆=0 acts on
an amplitude as follows

D~∆=0An = inAn . (6.117)

For a given planar amplitude, the modified dilatation generator

D~∆ = −i
n+1∑
i=1

(
xµi ∂iµ + ∆i

)
, (6.118)

annihilating the amplitude can be constructed in the following way: First, we determine
which xi’s will be absent in the amplitude by drawing the amplitudes’ dual graph and
set to zero all the corresponding ∆i’s. For the remaining xi’s, we set the corresponding
∆i’s equal to the number of lines which meet in the point xi. Finally, we set to
zero ∆n+1 and add a factor of four to ∆1 to compensate for the weight of the delta
function. The resulting generator D~∆ will then annihilate the considered amplitude.
The generator of special conformal transformations annihilating this amplitude follows
immediately from the algebra. Explicitly, it reads

Kα̇α
~∆ = Kα̇α

~∆=0 − i
n∑
i=1

∆i x
α̇α
i . (6.119)

Finally, note that due to equation (6.117), the ∆i’s satisfy the following relation:
n∑
i=1

∆i = n . (6.120)

We will use this equation in the next paragraph, when we establish the connection
between the generator Kα̇α

~∆ and the level-one momentum generator.
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Yangian symmetry in momentum space. In this paragraph, we will now demon-
strate that the generator Kα̇α

~∆ agrees with the conformal level-one momentum gen-
erator up to terms which annihilate the amplitudes by themselves. The discussion
follows closely the one presented in [25], where the statement was proven for the case
of psu(2, 2|4). To rewrite Kα̇α

~∆ as an operator acting in on-shell spinor-helicity space,
we first extend it such that it commutes with the constraint

xγ̇γi − x
γ̇γ
i+1 − λ

γ
i λ̃

γ̇
i = 0 . (6.121)

The result reads

Kα̇α
~∆ = −i

n+1∑
i=1

xα̇βi xβ̇αi ∂iββ̇ +
n∑
i=1

(
xα̇βi λαi ∂iβ + xβ̇αi+1λ̃

α̇
i ∂̃iβ̇ + ∆i x

α̇α
i

) . (6.122)

Using the inverse of equation (6.121),

xα̇αi = xα̇α1 −
i−1∑
j=1

λ̃α̇j λ
α
j , (6.123)

and dropping the term that includes a derivative with respect to x, we find

Kα̇α
~∆ =i

n∑
j<i=1

(
λ̃α̇j λ

β
j λ

α
i ∂iβ + ∆i λ̃

α̇
j λ

α
j

)
+ i

n∑
j<i+1=1

(
λ̃β̇j λ

α
j λ̃

α̇
i ∂̃iβ̇

)

− i
n∑
i=1

(
xα̇β1 λαi ∂iβ + xβ̇α1 λ̃α̇i ∂̃iβ̇ + ∆i x

α̇α
1

)
. (6.124)

Note that the amplitudes can always be written as distributions depending exclusively
on the spinor-helicity variables {λi} and {λ̃i}. For this reason, we could safely disregard
all terms containing a derivative with respect to the dual coordinates. Starting from
equation (6.124), it is now, however, a straightforward exercise to rewrite Kα̇α

~∆ as

Kα̇α
~∆ = i

2P̂
α̇α
bi + i

n∑
j<i=1

(∆i − 1)Pα̇α
j + i

2

(
Pα̇βLαβ + Pβ̇αL̄α̇β̇ + Pα̇αD−Pα̇α

)

− i
2

n∑
i=1

Pα̇α
i

(
λγi ∂iγ − λ̃

γ̇
i ∂iγ̇

)
− i

n∑
i=1

(
xα̇β1 Lαi β + xβ̇α1 L̄α̇i β̇ + xα̇α1 Di

)
, (6.125)

where we have introduced the conformal generators written in terms of spinor-helicity
variables

Lαi β = λαi ∂iβ − 1
2δ
α
βλ

γ
i ∂iγ , L̄α̇i β̇ = λ̃α̇i ∂̃iβ̇ − 1

2δ
α̇
β̇ λ̃

γ̇
i ∂̃iγ̇ ,

Pα̇α
i = λ̃α̇i λ

α
i , Di = 1

2λ
α
i ∂iα + 1

2 λ̃
α̇
i ∂̃iα̇ + 1 . (6.126)

The generator P̂α̇α
bi in equation (6.125) is the level-one momentum generator

P̂α̇α
bi =

n∑
j<i=1

(
Pα̇β
j Lαi β + Pβ̇α

j L̄α̇i β̇ + Pα̇α
j Di − (i↔ j)

)
, (6.127)
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as it follows from the formula (6.33) with the underlying level-zero algebra being the
conformal algebra spanned by the generators (6.126). Note that in order to bring Kα̇α

~∆
to the above form, we have also used the constraint equation (6.120), which allowed
us to replace the ∆i’s by one in the term that contributes to xα̇α1 Di. Finally, using the
level-zero invariance of the amplitudes as well as the fact that all the external particles
have zero helicity, i.e.

1
2

(
λγi ∂iγ − λ̃

γ̇
i ∂iγ̇

)
An = 0 , (6.128)

we see that most of the terms on the right-hand side of equation (6.125) drop out,
leaving us with

Kα̇α
~∆ = i

2P̂
α̇α
bi + i

n∑
j<i=1

(∆i − 1)Pα̇α
j . (6.129)

The local term would obviously vanish if all the ∆i’s were equal to one as they are, for
example, in the case of N = 4 SYM theory. However, since this is not the case here, we
arrive at a purely bosonic Yangian generator with non-vanishing evaluation parameters,
which is in complete analogy with the x-space level-one momentum generator that we
considered before.
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7. Conclusion and Outlook
Quantum integrability has turned out to be an important tool in overcoming the limi-
tations of perturbation theory and reaching a deeper understanding of four-dimensional
quantum field theories. The algebraic structure that sits at the heart of integrability
is the Yangian, which can be understood as an infinite-dimensional extension of the
underlying Lie algebra symmetry. Reaching a profound understanding of its origins,
role and implications is still a major desideratum. In this work, we have established
and studied the Yangian for Maldacena–Wilson loops and fishnet Feynman graphs and
we shall now give a brief summary of the results that have been obtained.

In the first part of this thesis, we studied Maldacena–Wilson loops at weak coupling.
Our first goal was to determine the full supersymmetric completion of the Maldacena–
Wilson loop operator. In reference [1], this operator was constructed through quadratic
order in an expansion in the anticommuting variables by employing the component for-
mulation of the N = 4 SYM model and demanding supersymmetry. Here, we did not
pursue this approach but rather made use of the N = 4 non-chiral superspace formu-
lation of the N = 4 SYM model [105], which we introduced in chapter 3. Importantly,
we have seen that this space is an on-shell superspace as the superspace constraints
imply the equations of motion [103, 104]. Standard quantization techniques, such as
the path integral, are therefore clearly not applicable. Nevertheless, we were able to
derive propagator expressions for the gauge connection, the superscalars and the field
strength tensor. The gauge propagator was established through quartic order in an ex-
pansion in the Graßmann variables by using a convenient type of gauge due to Harnad
and Shnider [103], while the gauge-invariant propagators were determined to all orders
in the anticommuting coordinates by exploiting the superconformal symmetry of the
theory.

With the superspace formalism established, we then turned to the construction of
the super Maldacena–Wilson loop operator. Based on work done by Ooguri et al. [108],
we derived this object by considering the dimensional reduction of the ten-dimensional
super Wilson loop. The so-defined loop operator is a highly natural observable from the
viewpoint of the AdS/CFT correspondence as it is the object which is dual to a minimal
supersurface of the type IIB superstring that is bounded by the Wilson loop path at
the boundary of space. This claim was substantiated by the observation that super
Maldacena–Wilson loops have a local fermionic symmetry of kappa type. We exposed
this symmetry and showed how it is related to the 1/2 BPS property of the bosonic
Maldacena–Wilson loop. Additionally, we established the action of the superconformal
generators on both the fields and the superspace coordinates. Subsequently, we turned
to the one-loop expectation value of the super Maldacena–Wilson loop operator. Using
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the previously established propagators, we computed the operators vacuum expectation
value through quartic order in an expansion in the anticommuting coordinates and put
forward an educated guess for the all-order form of the one-loop VEV. Finally, we
proved the expectation value to be finite and verified the superconformal symmetry of
the object.

One of the key results of this thesis concerns the non-local symmetries of the super
Maldacena–Wilson loop operator: We proved the existence of a hidden Yangian sym-
metry at the leading perturbative order and to all orders in the Graßmann coordinates.
To establish this result, we first inspected thoroughly the different possibilities for defin-
ing the action of the bi-local part of the level-one generators on the super Wilson loop.
More precisely, we compared the path representation of the level-zero generators to the
level-zero field actions and the covariantized field actions, which act on the gauge con-
nection through a level-zero transformation plus a compensating gauge transformation.
While all three representations yield equivalent results for level-zero transformations,
we saw that that the consistency of the Yangian crucially depends on which level-zero
representation is chosen. In fact, we found that gauge covariance is only maintained if
the bi-local level-one actions are built upon the covariantized level-zero field represen-
tation. The claim that the level-one generators are most naturally specified by their
action on the fields was further substantiated by realizing that the hidden “space-like”
dimension with respect to which the ordering in the bi-local level-one actions is defined
is a dimension in color space, being spanned by the matrix product of fields. In the
case at hand, this ordering prescription trivially coincides with the ordering along the
one-dimensional path but this is obviously specific to Wilson loops. Importantly, we
saw that the bi-local level-one actions leave behind a UV-divergent local term when ap-
plied to the super Maldacena–Wilson loop operator. No bi-local term remained at the
one-loop level, which is a clear sign of Yangian symmetry. We worked out the different
local contributions for all level-one generators Ĵ∗ ∈ Y [psu(2, 2|4)] and showed how the
freedom of defining the local action can be used to make the bi-local level-one actions
true symmetry generators. Additionally, we found that the super Maldacena–Wilson
loop features a level-one bonus symmetry, namely level-one hypercharge symmetry,
mirroring the structure found for scattering amplitudes [110].

While we strove to keep the discussion as generic as possible, we noticed that the
Yangian symmetry of Wilson loops crucially depends on the following two properties
of the underlying gauge theory: first, the vanishing of the dual Coxeter number of
the underlying level-zero symmetry algebra; second, a novel identity, which we called
G-identity, basically stating that the field strength two-form vanishes when contracted
with two level-zero vector fields. Both are fulfilled by N = 4 SYM theory and tightly
constrain the number of models in which Wilson loops could feature a Yangian sym-
metry.

Finally, let us compare our findings to the results that have been obtained at strong
coupling. In a parallel line of research, the Yangian symmetries of minimal supersur-
faces were derived from the integrability of the string sigma model [43, 44]. At strong
coupling, the bi-local part of the level-one generators follows the usual pattern, while
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the local terms that were found are structurally very similar to the ones obtained by us.
However, a careful inspection of the local contributions shows that they do not com-
pletely agree. Most likely, this indicates that the local terms depend in a non-trivial
way on the ’t Hooft coupling λ. Nevertheless, the string theory findings strongly sup-
port the correctness of the results that have been obtained in this thesis. With the
weak coupling results of this work and the cited strong coupling results, the Yangian
symmetry of super Wilson loops is now fully established, which completes the analysis
that was begun in reference [1].

In the second part of this thesis, we shifted our focus to fishnet Feynman diagrams,
which are built from four-valent vertices that are joint by scalar propagators in a regular
pattern. In the bulk, these diagrams look like a regular square lattice, a structure that
was long ago shown to furnish an integrable lattice system [114]. However, merely the
simplest representative (the box integral) of this infinite-dimensional family of Feynman
integrals is completely known [132]. Any new insights into the mathematical structure
of theses fishnet integrals are therefore highly valuable. Notably, scalar fishnet graphs
are in one-to-one correspondence with planar correlators in the recently discovered
integrable bi-scalar CFT [46] that can be obtained by taking a specific double-scaling
limit of the γi-twisted N = 4 SYM model. This correspondence in fact explains in
parts the nice integrable structure of these diagrams.

Here, we have shown that scalar fishnet integrals feature a conformal Yangian sym-
metry with Yangian generators that realize a non-trivial evaluation representation of
the Yangian Y [so(2, 4)].1 We phrased this symmetry in terms of generators annihi-
lating these graphs as well as in the language of the RTT realization. In the latter
formalism, fishnet Feynman graphs are interpreted as eigenstates of an inhomogeneous
monodromy matrix in the spirit of the work [69, 70, 140]. Importantly, the considered
fishnet Feynman integrals are all free of divergences, which renders the Yangian sym-
metry an exact loop-level statement. The finiteness even continues to hold when all
the external momenta are put on-shell and we were able to prove the Yangian symme-
try of on-shell graphs as well. The level-one symmetry implies that fishnet Feynman
integrals satisfy a set of (complicated) differential equations. We explicitly worked out
the simplest of these equations, which is the differential equation for the box integral.
Finally, let us emphasize a result that is of far more general nature: Our analysis shows
that cyclic Yangian invariants exist even if the dual Coxeter number of the underlying
Lie algebra does not vanish. The non-cyclicity of the bi-local part of the level-one
generators can in fact be repaired by choosing appropriate evaluation parameters. A
vanishing dual Coxeter number is therefore in general not a necessary condition for
integrability.

There are several interesting directions for future investigations. Let us begin by
highlighting a couple of interesting questions that concern fishnet Feynman graphs.

A natural way to extend our results is to study more general double-scaling limits
of the γi-twisted N = 4 SYM model [46, 49]. These limits are believed to preserve

1That is to say that the local term is of the form
∑
vkJk and therefore proportional to the corre-

sponding level-zero generator.
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integrability as well but lead to theories with a richer field content. While my collab-
orators and I have already made progress in understanding the Yangian symmetry of
off-shell correlators in the model with two non-zero couplings, the fully double-scaled
model with three effective couplings still poses challenging problems. Also, on-shell
limits remain to be completely understood, see our discussion in section 6.3.2.3.

Another interesting question concerns the definition of integrability in four-dimensio-
nal field theories. Recently, a criterion for integrability in planar gauge/field theories
was put forward in [26]. It would be highly interesting to investigate how the double-
scaled models and in particular the bi-scalar theory perform with respect to this cri-
terion. One of the clear advantages in comparison to N = 4 SYM theory is that the
bi-scalar model is much simpler, so that open questions potentially become a lot easier
to answer. If the criterion holds or can be adapted, this might also allow one to un-
derstand the Yangian symmetry of field theory observables on more general grounds,
namely in terms of a symmetry of the action.

A further pressing question is whether the Yangian symmetry can actually be used to
compute fishnet Feynman diagrams. Fishnet integrals in fact furnish an ideal starting
point for attacking the long-standing challenge of turning the Yangian into a computa-
tional tool as the symmetry is non-anomalous, while the quantities of interest depend
on finitely many variables. A natural strategy is to study the differential equations
that the Yangian symmetry implies. However, since the level-one equations are gener-
ically very complicated, one first needs to cast them into a usable form. Here, we have
shown how to do this for the box integral. It would be interesting to perform the same
computation for the (off-shell) double-box integral. This integral belongs to the class
of elliptic Feynman integrals [112,113] about which not much is known.

The question how the Yangian symmetry can be used in practice also applies to
the discussed super Wilson loops. In contrast to fishnet graphs, general smooth super
Maldacena–Wilson loops depend on infinitely many bosonic and fermionic variables.
This clearly renders the task of identifying Yangian invariants highly non-trivial. How-
ever, the constraints that are implied by the Yangian should become more transparent
when restricting to special types of contours. Two natural classes that come to mind
are the highly symmetric curves, such as superspace circles, as well as the null polyg-
onal contours. However, the latter lead to UV-divergent expectation values [39, 40],
which renders the symmetries anomalous. For this reason, it could be wise to look
at super Wilson loops depending on contours which are almost polygonal in the sense
that the corners are smoothed out by splines.
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A. Sigma Matrices in Four, Six and
Ten Dimensions

In this appendix, we summarize our conventions for the four-, six- and ten-dimensional
Pauli matrices and provide the identities which are relevant for the calculations carried
out in this thesis.

A.1. Sigma Matrices in Four Dimensions
We consider four-dimensional Minkowski space with metric ηµν = diag(+1,−1,−1,−1).
The four-dimensional Pauli matrices σµαα̇ and σ̄α̇αµ are defined as

σµ = (1, ~σ) , σ̄µ = (1,−~σ) , (A.1)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

The sigma matrices transform between the four-dimensional chirality left and right
spinors and satisfy the following algebra relations

σµσ̄ν + σν σ̄µ = 2ηµν , σ̄µσν + σ̄νσµ = 2ηµν , (A.3)

where ηµν is the Minkowski metric. Furthermore, they obey the following trace identi-
ties

tr(σ̄µσν) = 2ηµν ,
tr(σ̄µσν σ̄ρσκ) = 2(ηµνηρκ + ηνρηµκ − ηµρηνκ − iεµνρκ) ,
tr(σµσ̄νσρσ̄κ) = 2(ηµνηρκ + ηνρηµκ − ηµρηνκ + iεµνρκ) , (A.4)

where εµνρκ is the totally antisymmetric four-tensor in four dimensions. For conve-
nience, we introduce the following abbreviations for antisymmetrized products of Pauli
matrices:

σµν = 1
2(σµσ̄ν − σν σ̄µ) , σ̄µν = 1

2(σ̄µσν − σ̄νσµ) . (A.5)
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The following identities are straightforward to check:

σµ,αα̇σ̄
µ,β̇β = 2δβαδ

β̇
α̇ , (σµν) β

α (σ̄µν)β̇α̇ = 0 ,
(σµν) β

α (σµν) δ
γ = −8δδαδβγ + 4δβαδδγ . (A.6)

We proceed by introducing the antisymmetric tensors in two dimensions. There are
four types of totally antisymmetric ε-tensors: εαβ, εαβ, εα̇β̇ and εα̇β̇. In our conventions,
these tensors are all numerically equal, i.e.

ε =
(

0 1
−1 0

)
, (A.7)

which implies that

εαβε
βγ = −δγα , εα̇β̇ε

β̇γ̇ = −δγ̇α̇ . (A.8)

An important identity that we shall frequently use is the so-called Schouten identity,
which reads

εαβδ
δ
γ + εβγδ

δ
α + εγαδ

δ
β = 0 , (A.9)

plus a similar identity for the ε-symbols with dotted indices. Moreover, we note the
following completeness relations:

ελγε
βα = δβλδ

α
γ − δβγ δαλ , ελ̇γ̇ε

β̇α̇ = δβ̇
λ̇
δα̇γ̇ − δ

β̇
γ̇ δ

α̇
λ̇ . (A.10)

The ε-tensors can be used to raise and lower the spinor indices of the four-dimensional
Pauli matrices, i.e.

εα̇β̇σ̄
β̇γ
µ εαγ = σµαα̇ , εαβσµαα̇ε

α̇β̇ = σ̄β̇βµ . (A.11)

An important point to note is that the ε-tensor is the only antisymmetric two-tensor
in two dimensions. For this reason, each two-tensor can be decomposed as

Mαδ = M(αδ) + 1
2εαδε

βγMβγ , Mα̇δ̇ = M(α̇δ̇) + 1
2εα̇δ̇ε

β̇γ̇Mβ̇γ̇ . (A.12)

Using the sigma matrices, we assign bi-spinors to four-vectors in the following way:

xα̇α := xµσ̄α̇αµ , ∂αα̇ := ∂µσµαα̇ . (A.13)

Note that this implies that

∂ββ̇x
α̇α = 2δα̇β̇ δ

α
β . (A.14)

Finally, we note the following identities:

εxTεx = εxεxT = −x2I , det(x) = x2 . (A.15)
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A.2. Sigma Matrices in Six Dimensions
We consider Euclidean space R6 with metric ηij = −δij. The six-dimensional Pauli
matrices are 4× 4 matrices, which are defined as

(Σ1
ab, . . . ,Σ6

ab) = (η1ab, η2ab, η3ab,−iη̄1ab,−iη̄2ab,−iη̄3ab) ,
(Σ̄1 ab, . . . , Σ̄6 ab) = (η1ab, η2ab, η3ab, iη̄1ab, iη̄2ab, iη̄3ab) . (A.16)

Here, ηiab and η̄iab are the ’t Hooft symbols, which explicitly read

ηiab = εiab4 + δiaδ4b − δibδ4a , η̄iab = εiab4 − δiaδ4b + δibδ4a , (A.17)

where εibc4 is the totally antisymmetric four-tensor. The six-dimensional Pauli matrices
satisfy the following algebra relations

Σ̄iΣj + Σ̄jΣi = 2ηij , ΣiΣ̄j + ΣjΣ̄i = 2ηij , (A.18)

where ηij is the metric tensor. Further relevant identities are

Σi
ab = 1

2εabcdΣ̄
i cd , Σ̄i ab = 1

2ε
abcdΣi

cd ,

Σi
abΣi

cd = 2εabcd , Σ̄i abΣj
ab = 4δij , (A.19)

with the convention that ε1234 = ε1234 = 1. Furthermore, we note that

εdabcε
dklm = δklmabc + δmklabc + δlmkabc − δlkmabc − δmlkabc − δkmlabc ,

εabgk ε
cdgk = 2

(
δcdab − δdcab

)
, (A.20)

where δa..de..h := δae ..δ
e
h. The antisymmetrized products of six-dimensional Pauli matrices

are defined as

Σij = 1
2(ΣiΣ̄j − ΣjΣ̄i) , Σ̄ij = 1

2(Σ̄iΣj − Σ̄jΣi) . (A.21)

As in the four-dimensional case (A.13), we can use the sigma matrices (A.16) to assign
antisymmetric 4× 4 matrices to a six-dimensional vector Xi,

Xab := Σi
abXi , X̄ab := Σ̄i abXi . (A.22)

For the scalar product of two vectors we find the following trace expression:

X̄abYab = Σ̄i abΣj
abXiYj = 4XiYi = −4X iYi . (A.23)

A.3. Sigma Matrices in Ten Dimensions
We consider ten-dimensional Minkowski space with metric ηµ̂ν̂ = diag(+1,−1, . . . ,−1).
We denote the two types of ten-dimensional Pauli matrices by Γµ̂

α̂β̂
and Γ̄µ̂ α̂β̂. These

matrices are real and symmetric

Γ = ΓT , Γ̄ = Γ̄T , (A.24)
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and satisfy the following algebra relations:

Γµ̂Γ̄ν̂ + Γν̂Γ̄µ̂ = 2ηµ̂ν̂ , Γ̄µ̂Γν̂ + Γ̄ν̂Γµ̂ = 2ηµ̂ν̂ . (A.25)

For the trace of two such matrices, we find

tr(Γµ̂Γ̄ν̂) = 16ηµ̂ν̂ . (A.26)

We often use antisymmetrized products of ten-dimensional Γ matrices, such as

Γµ̂ν̂ = 1
2

(
Γµ̂Γ̄ν̂ − Γν̂Γ̄µ̂

)
, Γ̄µ̂ν̂ = 1

2

(
Γ̄µ̂Γν̂ − Γ̄ν̂Γµ̂

)
, (A.27)

and analogous formulas for higher-rank products

Γµ̂1...µ̂p := 1
p! Γ[µ̂1 . . .Γµ̂p] . (A.28)

As a rule, such a matrix has no bar if the row index is lower and it has a bar if the row
index is upper. The product of antisymmetrized Pauli matrices can be rewritten as

Γµ̂1...µ̂pΓν̂1...ν̂q =
min{p,q}∑
k=0

k!
(
p

k

)(
q

k

)
η[µ̂p|[ν̂1|

η|µ̂p−1||ν̂2|
. . . η|µ̂p+1−k||ν̂k|Γ|µ̂1...µ̂p−k]|ν̂k+1...ν̂q ]

.

(A.29)

Note that in the last expression we have for obvious reasons given up the notational
distinction between the two types of Pauli matrices. In particular, we will often use
the following special case of the above formula:

Γµ̂Γν̂1...ν̂l = Γµ̂ν̂1...ν̂l + lηµ̂[ν̂1Γν̂2...ν̂l] . (A.30)

Another important identity is the so-called magic identity, which reads

ηµ̂ν̂Γµ̂(α̂β̂Γν̂
γ̂)δ̂ = Γµ̂

α̂β̂
Γµ̂ γ̂δ̂ + Γµ̂

β̂γ̂
Γµ̂ α̂δ̂ + Γµ̂γ̂α̂Γµ̂ β̂δ̂ = 0 . (A.31)

A similar identity of course holds for the Pauli matrices with upper spinor indices.
Finally, we provide the decomposition rules for the ten-dimensional Pauli matrices.

If we do not insist on the reality conditions, we can write the ten-dimensional Pauli
matrices as

Γµ(aα)(bα̇)
= δbaσ

µ
αα̇ , Γ̄µ (aα)(bα̇) = δab σ̄

µ α̇α ,

Γi(cα)(dβ) = −εαβΣi
cd , Γ̄i (cα)(dβ) = εαβΣ̄i cd ,

Γi(cα̇)(dβ̇) = −εα̇β̇Σ̄i cd , Γ̄i (
c
α̇),(dβ̇) = εα̇β̇Σi

cd . (A.32)

Note that we have not written all the matrix elements, but the missing ones can either
be obtained by symmetry or they vanish.
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B. The Algebra u(2, 2|4)
In this appendix, we present details on the algebra u(2, 2|4), which is a slightly enlarged
version of the symmetry algebra of N = 4 SYM, namely psu(2, 2|4).

B.1. The Commutation Relations
We start by listing the commutation relations of the su(2), su(4), su(2) rotation gen-
erators Lαβ, Ra

b, L̄α̇β̇. Under one of these rotations, the indices of any generator J
transform canonically according to[

Lαβ, Jγ
]

= −2δγβJα + δαβJγ ,
[
Lαβ, Jγ

]
= 2δαγ Jβ − δαβJγ ,[

L̄α̇β̇, Jγ̇
]

= −2δγ̇
β̇
Jα̇ + δα̇β̇Jγ̇ ,

[
L̄α̇β̇, Jγ̇

]
= 2δα̇γ̇ Jβ̇ − δα̇β̇Jγ̇ ,[

Ra
b, Jc

]
= −2δcbJa + 1

2δ
a
b Jc ,

[
Ra

b, Jc
]

= 2δacJb − 1
2δ
a
b Jc . (B.1)

The commutators involving the conformal dilatation generator D and the hypercharge
operator B are given by[

D, J
]

= dim(J) J ,
[
B, J

]
= hyp(J) J , (B.2)

with the non-vanishing dimensions and hypercharges

dim(P) = − dim(K) = 1 , dim(Q) = dim(Q̄) = − dim(S) = − dim(S̄) = 1
2 ,

hyp(Q̄) = − hyp(Q) = hyp(S) = − hyp(S̄) = 1
2 . (B.3)

The translation generators Pαα̇, the boost generators Kα̇α and their superpartners Qαa,
Q̄a

α̇, Saα and S̄α̇a satisfy the relations[
Qβb,Kα̇α

]
= −2δαβ S̄α̇b ,

[
Q̄b

β̇,Kα̇α
]

= −2δα̇β̇Sbα ,[
Pαα̇, Sbβ

]
= +2δβαQ̄b

α̇ ,
[
Pαα̇, S̄β̇ b

]
= +2δβ̇α̇Qαb ,{

Qαa, Q̄b
β̇

}
= +2δbaPαβ̇ ,

{
Saα, S̄β̇ b

}
= −2δabKβ̇α . (B.4)

The remaining non-vanishing commutators are given by[
Pββ̇,Kα̇α

]
= 2δα̇β̇Lαβ + 2δαβ L̄α̇β̇ + 4δα̇β̇ δ

α
βD ,{

Qαa, Sbβ
}

= −2δbaLβα + 2δβαRb
a − 2δbaδβα

(
D− C

)
,{

Q̄a
α̇, S̄β̇ b

}
= −2δab L̄β̇ α̇ − 2δβ̇α̇Ra

b − 2δab δ
β̇
α̇

(
D + C

)
. (B.5)
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B. The Algebra u(2, 2|4)

B.2. The Non-Chiral Representation
On the S5-extended non-chiral superspace spanned by (x, θ, θ̄, q) the algebra u(2, 2|4)
can be represented as

Pαα̇ = −∂αα̇ ,
Qαa = θ̄α̇a∂αα̇ − ∂αa ,
Q̄a

α̇ = θaα∂αα̇ − ∂̄aα̇ ,
Lαβ = −xγ̇α∂βγ̇ − 2θcα∂βc + 1

2δ
α
β

(
xγ̇γ∂γγ̇ + 2θcγ∂γc

)
,

L̄α̇β̇ = −xα̇γ∂γβ̇ − 2θ̄α̇c∂̄cβ̇ + 1
2δ
α̇
β̇

(
xγ̇γ∂γγ̇ + 2θ̄γ̇ c∂̄cγ̇

)
,

D = −1
2

(
xα̇α∂αα̇ + θaα∂αa + θ̄α̇a∂̄

a
α̇ + 1

2q
ab∂ab

)
,

Saα = −(x+)δ̇αθaδ∂δδ̇ + 4θcαθaγ∂γc + (x−)γ̇α∂̄aγ̇ + 2θcαqad∂cd − θaαqcd∂cd ,
S̄α̇a = −(x−)α̇γ θ̄γ̇a∂γγ̇ − 4θ̄γ̇aθ̄α̇c∂̄cγ̇ + (x+)α̇γ∂γa − 2θ̄α̇bqbe∂ae ,
Kα̇α = 2θcα(x+)α̇γ∂γc + 2(x−)γ̇αθ̄α̇c∂̄cγ̇ + 1

2(x+)γ̇α(x+)α̇γ∂γγ̇
+ 1

2(x−)γ̇α(x−)α̇γ∂γγ̇ − 4θcαθ̄α̇aqad∂cd + 1
2(x+)α̇αqcd∂cd ,

Ra
b = 2θ̄γ̇ b∂̄aγ̇ − 2θaγ∂γb − qad∂bd − 1

4δ
a
b

(
2θ̄γ̇ c∂̄cγ̇ − 2θcγ∂γc − qcd∂cd

)
,

B = 1
2θ

aα∂αa − 1
2 θ̄

α̇
a∂̄

a
α̇ , C = 0 . (B.6)

The representation of the same algebra on the non-extended superspace is obtained by
setting all the q’s in the above expressions to zero.
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