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Abstract

Sonic Hawking radiation has recently been observed in dilute Bose—Einstein condensates (BECs), but
it remains an open question whether this landmark achievement of atomic physics can lead to new
insights into the effects on Hawking radiation of nonlinear back-reaction and new short-distance
physics, as was originally hoped by Unruh when he introduced the sonic analogy. Furthermore,
studies of sonic analog black holes have until now concentrated on (1+4-1)-dimensional scenarios, but
Unruh’s sonic analogy for curved spacetime is only valid in more than one spatial dimension. We
therefore model the evolution of a (24-1)-dimensional sonic black hole in a dilute BEC, over along
enough time to let the initial Corley—Jacobson instabilities saturate in vortex production and give way
to along-lived quasi-stationary state. In this quasi-equilibrium state we find the initial laminar
ergoregion replaced by a turbulent zone that steadily radiates sound, but with a non-thermal power
spectrum.

1. Introduction

Ablack hole is among the simplest steady states in pure general relativity. Hawking’s seminal 1974 paper [1]
showed, however, that adding quantum fluctuations changes the black hole steady state into a thermally
radiating one. The further addition of nonlinear back-reaction’ is expected to make this state only quasi-steady,
as the radiating black hole shrinks. Hawking’s revised picture of the black hole steady state has suggested a deep
connection between gravity, quantum mechanics, and thermodynamics, but the result is uncertain because new
physics at trans-Planckian frequencies as well as quantum gravitational nonlinear back-reaction might revise the
conclusion. On the other hand, string-theoretic models which embed general relativity as a classical limit within
anonlinear quantum theory have been shown to preserve black hole thermodynamics even while radically
revising a black hole’s basic nature [2].

It was with the explicit goal of gaining experimental insight into the sensitivity of black hole physics to short-
distance and nonlinear corrections that Unruh proposed studying sonic horizons in fluids [3]”. The ergoregion
inside a black hole corresponds, in this analogy, to a zone of locally supersonic fluid flow; the surface at which the
flow passes through the local speed of sound is the sonic horizon. There was and is no expectation that the
nonlinear dynamics of any fluid would remain an exact analogy for full quantum gravity, but the original point
of Unruh’s analogy was simply to examine at least one example of a well-defined nonlinear quantum theory of

! By this term we mean all effects resulting from the full nonlinear theory that act back on the black hole and that are neglected in Hawking’s
derivation. In the context of analog gravity in BEC mean-field theory the full theory is the nonlinear Gross—Pitaevskii theory; neglecting the
nonlinear back-reaction corresponds to the linear Bogoliubov approximation.

% From [3] above: “This system forms an excellent theoretical laboratory where many of the unknown effects that quantum gravity could
exert on black hole evaporation can be modeled. ... At distances of 10~ cm, the assumptions ... of a smooth background flow are no longer
valid just as in gravity one expects the concept of a smooth space—time on which the various relativistic fields propagate to break down at
scales of 10 >* cm. Furthermore, the phonons emitted are quantum fluctuations of the fluid flow and thus affect their own propagation in
exactly the same way that graviton emission affects the space—time on which the various relativistic fields propagate.” In the last sentence
Unruh cannot really have meant that quantum gravity must be exactly like hydrodynamics, but rather just that nonlinear back-reaction of
some kind will surely occur in both quantum gravity and hydrodynamics—and that this is a reason for pursuing analog experiments.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aad7ed
mailto:rbuerkle@physik.uni-kl.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad7ed&domain=pdf&date_stamp=2018-08-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad7ed&domain=pdf&date_stamp=2018-08-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

New J. Phys. 20 (2018) 083020 R Biirkle et al

which the linearized long-wavelength limit corresponds to massless quantum fields in curved background
spacetime.

The physics of sonic horizons has since grown into a topic in its own right [4-8]. The hypothesis that the full
Hawking scenario of steady thermal radiation in horizon scenarios in general might be insensitive to short-
distance details has been disproven by the discovery that finite ergoregions in fluids with supersonic dispersion
at short wavelengths are dynamically unstable (‘black hole lasing’) [9—12]. Other theoretical studies have also
shown that many dynamically linear aspects of the Hawking scenario can be investigated with BEC analogs,
including quantum entanglement across the horizon due to parametric production of paired excitations
[13-16]. Finally, analog Hawking radiation has actually been observed [17-19] in a quasi-one-dimensional
Bose-Einstein condensate (BEC).

The time has come to revisit the original hopes for sonic black holes by examining nonlinear back-reaction
in the analog system, even though it will not reproduce nonlinear quantum gravity, and even if it leads to steady
states which are more like string-theoretic fuzzballs [2] than they are like general relativistic black holes. Long-
term nonlinear evolution of a one-dimensional sonic horizon sustained by external pumping has been studied in
[20], building on [21]. The system was found to evolve into a quasi-stationary phase of continuous emission of
solitons (CESs) from the initial ergoregion, as also seen earlier in figure 5 of [10]. From the point of view of
adding nonlinear dynamics to an analog spacetime, however, previous studies have been fundamentally limited
by their concentration on one-dimensional scenarios (which are (14-1)-dimensional if time is included).

While actual experimental systems are of course three-dimensional, sufficiently tight spatial confinement of
aquantum gas sample can restrict its hydrodynamic collective modes to alower-dimensional subset of degrees
of freedom, and the Unruh analogy with spacetime concerns only these hydrodynamic modes. The mapping [3]
between the wave equations for sound in flowing fluid and for massless fields in curved spacetime with metric
8, is given in D spatial dimensions by

oo Soi) _(p e )
8o &) \c —V; & )

where pis the density, v the flow velocity and c the speed of sound of the fluid. The singularity of the prefactor for
D = 1reflects the fact that the mapping does not work for D = 1 (see our appendix for details). This means that
no effectively (1+1)-dimensional fluid can be identified with any black hole metric.

One-dimensional systems can still serve as toy models whose long-wavelength sectors do possess causal
(though not strictly metrical) horizons (see our appendix), but the full spacetime analogy requires at least two
spatial dimensions. As far as strictly linear dynamics are concerned, one may also regard a (1+1)-dimensional
modelasthe k; = 0 or s-wave sector of a higher-dimensional system in which the background happens to have
translational or rotational symmetry in the transverse directions [22]. Nonlinear dynamics will in general couple
different transverse modes of the field together, however. For finite ergoregions, moreover, black hole-lasing
instabilities will in general exist in many transverse modes, and so any translational or rotational symmetry in
transverse directions will be unstable. Classically one could consider stationary states in which the unstable
modes do not happen to be excited, but as soon as quantum fluctuations are taken into account, instabilities
must grow. (See the appendix of [10] for a formal proof of this statement.)

In this paper we therefore show what happens as dynamical instabilities seeded by quantum vacuum noise
grow from an initial horizon configuration in a spatially two-dimensional BEC. Using a single trajectory variant
of the Truncated Wigner method [23-25], we incorporate nonlinear back-reaction at the classical level (i.e., in
Gross—Pitaevskii mean-field theory) while modeling quantum fluctuations with Gaussian noise in the initial
state. We find that linear dynamical instability of the initial laminar flow, as identified within Bogoliubov—de
Gennes (BAG) perturbation theory for BEC backgrounds with finite ergoregions [10, 11], leads in two spatial
dimensions to the proliferation of quantized vortices. This confirms that turbulent instabilities of trans-sonic
flow, as anticipated by Unruh [3], persist in ultracold gases. Vortex production is also the expected
generalization to higher dimensions of the soliton production seen in long-term evolution of quasi-one-
dimensional sonic horizon models [20, 21]. After a transient epoch, our system relaxes to subsonic flow through
along quasi-stationary phase in which vortices and sonic noise are steadily emitted from the turbulent
ergoregion, in qualitative resemblance to the fuzzball scenario [2]. We then analyze this quasi-steady regime in
more detail.

2. Initial black-white-hole scenario

Following [10, 11], we consider a sonic horizon in a dilute BEC at zero temperature. In particular we study an
idealized scenario in which the initial state of the BEC complex order parameter W(r, t)is a small perturbation
around a background ¥, with uniform density p, and velocity vin the x-direction. We express all dimensionful

2



10P Publishing

New J. Phys. 20 (2018) 083020 R Biirkle et al

—
—_
—_—
—_
—_
—
—
—_—
—_—
—_—

Figure 1. Initial set-up: two-dimensional BEC flowing with constant velocity in the x-direction. The local speed of sound is tuned in a
steplike manner to create a small supersonic (red) region within subsonic flow (blue), making a black hole horizon atx = 0 and a
white-hole horizonatx = L.

quantities in units defined by v, so that t = 77/ (mv?)and r = (x, y) 7 /(mv), where m is the atomic mass. In
these units we write Uy = _/p; exp(ivx)exp(—ipu7) where v = (1, 0),and pand py are constants. Since
experimental technology allows the tuning of inter-atomic interactions, the strength of the repulsive contact
interaction g > 0 between the gas particles is assumed to be x-dependent, and an external potential V(x) is tuned
to compensate for itso that u = 1/2v> 4+ V (x) + g(x) p, remains x-independent. The initial background ¥ is
then a stationary solution to the Gross—Pitaevskii equation (GPE)

Y Lo 4 viow + gy @)
or 2
which defines the mean-field approximation [26].

W, represents a sonic black hole/white-hole pair because within the ergoregion 0 < x < L the lower
interaction strength g(x) makes the local speed of sound ¢ (x) = /g (x) p, lower than the initial background flow
velocity v. See figure 1. This realization of a sonic ergoregion with constant ¥y and non-uniform g(x) is probably
not the easiest experimental target, but it defines a simple initial state for quantum fluctuations: the condensate is
prepared in the comoving-frame ground state with uniform g(x), which is then suddenly altered to create the
ergoregion.

The finite-size of our ergoregion, within a much larger subsonic region, is an important feature of our model
because, as we will explain below, it implies dynamical instability. The fact that our system includes a white-hole
as well as a black hole horizon is in contrast not of qualitative importance. Detailed study of sonic black holes
sustained by atom sinks must await future work, but we have confirmed that two-dimensional all-black hole
configurations with inward flow towards a ‘singularity’ represented by alocalized imaginary potential behave
very similarly to the simple black-white model. In effect our white horizon plays the role of the central sink in a
finite black hole, without requiring us to model the outcoupling of atoms from a condensate.

As a further idealization, intended to represent a portion of a large horizon, we impose periodic boundary
conditions in the y-direction; the width of our system is large enough that we detect no finite-size effects. In the
x-direction our system is also periodic but with a length so great that no excitations propagate around it within
the duration of our simulation. Since this duration is long enough to see complete relaxation of the initial black
hole, the length in x of our system is large enough to be a computational challenge.

Our final idealization is to make the x-dependence of gand V be steplike, so that g takes a constant smaller
value inside the ergoregion and a constant larger value outside it, leading to spatial abruptness of the transitions
between sub- and supersonic flow. Atleast in one-dimension, however, it is easy to confirm by numerically
solving the GPE that the qualitative behavior of BEC sonic horizons is insensitive to the details of the horizon
profile. In a smoother background, behavior like that at our abrupt steps in gand Vappears instead at
semiclassical turning points’. The final parameters of our set-up are: the system lengths in xand y are
L, = 2560mand L, = 40, respectively, while the ergoregion length is L = 30, all in our dimensionless units
where the initial speed v is one. Our discrete spatial grid has spacing d = 57/64 = 0.25. We tune gand p, to
make the speed of sound outside the ergoregion (and everywhere initially) be ¢; = 1.5, while inside the
ergoregion (after itis turned on) itis ¢, = 0.75. The initial healing length is therefore £ = 1/¢ = 2/3 and our
grid offers (somewhat) sub-healing-length resolution, while both L,, L > £. GPE evolution is sensitive only to
the combined product g|¥[?; the initial values of gand p, separately are determined from considerations of
quantum fluctuations.

? The results for a smooth but steep horizon profile in two-dimensions are very similar to the results presented here and will be published
elsewhere [27].
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3. Dynamical instabilities and nonlinearity

The linear stability of a stationary GPE solution like Wy is determined by evolving perturbations U = ¥, + 6¥
under (2), while discarding terms of higher than linear order in 6¥. The thus linearized GPE couples §¥ and 6 ¥*
in a system known as the BdG equations. The long-wavelength limit of BAG describes sound waves ina
hydrodynamic background and can thus be mapped onto the field equation of a massless field in curved spacetime
[3, 28], provided that D > 1 (see the appendix). At short wavelengths, however, BdG allows propagation faster
than the speed of long-wavelength sound. This short-wavelength dispersion also implies, moreover, that the
eikonal approximation must break down near a sonic horizon, requiring connection formulas which mix short-
and long-wavelength modes [9, 11, 29]; such mixing also occurs at abrupt horizons like ours [11].

Analyzing this mixing at a single horizon reveals the remarkable result that, when the perturbations are
quantized, the mixing with short-distance modes is not only compatible with long-wavelength Hawking
radiation, but is actually the very mechanism by which Hawking radiation can occur in the black hole analog [9],
because the connection formula resulting from continuity across the sonic horizon mixes BAG modes of
opposite norm [29]. This mixing of negative and positive norms in the connection formula necessarily implies
over-unity reflection at the horizon, however, for wave packets coming from inside the ergoregion. (Short-
wavelength modes can propagate against the supersonic flow, and the fact that they are coupled to long-
wavelength modes outside the ergoregion is an example of the kind of qualitative effect from short-distance
physics that sonic black holes were intended to explore.) If the ergoregion is spatially finite, then reflected packets
will encounter the horizon again and again after traversing the ergoregion, and repetitive over-unity reflection is
exponential growth (see the discussion around figure 2 and 3 in [9]).

Thus the very mode-mixing which can generate analog Hawking radiation at a sonic horizon is also the
mechanism of the ‘black hole lasing’ dynamical instability [9, 11, 12] of finite sonic black holes. Although this
instability has received most study in ergoregions that are finite because they are ‘sandwiched’ between a black
hole and a white-hole horizon as in our present model [9, 10, 12], section IV of [ 10] is devoted to a case of inward
flow towards a sink, with no white-hole, and it shows that the instabilities persist (unless the ergoregion is too
small for the spacetime analogy to be valid anyway). Over-unity reflection at the horizon for modes coming from
inside the ergoregion is a destabilizing feature of any finite ergoregion; black hole lasing is not a pathology of
white-hole horizons. The dynamical stability of a single planar black hole horizon with supersonic flow
extending to infinity on one side simply represents the limit in which the ergoregion’s crossing time, and
therefore the instability growth time, have gone to infinity.

Since quantum fluctuations must always be present, growing modes can never just have zero amplitude (see
the appendix of [10]). This means that the instabilities must grow until they are limited by nonlinearity and the
BdG description breaks down. Linearized quantum field theory cannot describe this regime, but it can be
described at the classical level by the GPE (2). This nonlinear classical theory also describes the evolution of the
quantum gas well, if the dilute gas parameter o, which equals g for D = 2, is sufficiently small [30]. The
derivation of the GPE as a saddlepoint approximation to the quantum field path integral is analogous to the
derivation of Maxwell’s equations from quantum electrodynamics to leading order in the fine structure
constant: to leading order in @ the quantum evolution in the Wigner representation is Liouvillian flow under the
classical equations of motion. In the limit of small v, moreover, the Wigner functional of any stable quantum
ground state approaches a narrow Gaussian ensemble.

Since < 10 %is common in quantum gas experiments (o = \/ﬁ inD = 3[30],a = ginD = 2),0ne
can use the GPE with appropriately noisy initial states to investigate what actually happens to sonic black holes.
For large systems like ours evolving over long times, averaging over many runs is still time consuming. Since
there are many degrees of freedom, however, each of which is an independent random variable, we propose that
asingle run from pseudo-random initial conditions chosen from the appropriate Gaussian ensemble will
indicate the typical behavior of the whole ensemble [25]. This is the single trajectory variant of the Truncated
Wigner method we use for our simulation.

Specifically, we evolve W classically under (2), but from an initial condition ¥(x, y, 0) = ,/p, + op
exp[i(fy + 66)]with bp, 66 representing quantum fluctuations. These perturbations are random with a
probability distribution given by the ground state Wigner function of the BdG excitationsina ¥, = _/p,
exp(ifp) = /p, exp(ivx)background with completely uniform gand V equal to the values outside the
ergoregion. This represents an experiment in which a uniform condensate is prepared at zero temperature, and
then gand Vwithin 0 < x < Lare suddenly altered to create the ergoregion.

Since this Gaussian initial state includes fluctuations whose classical energy in each mode below the
resolution cut-off would average /v /2, it provides [28]

KE
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where the sum is over k up to the cut-offs represented by the grid spacing d. Since the quantum initial state is not
stationary under the classical evolution described by the GPE, but thermalizes to a classical distribution with a
different temperature [23], we can only keep the truncated Wigner calculation accurate over our long simulation
times by choosing p, large enough to keep +/{6p?) / po = (pod?)~'/? small. Asa conservative specific standard
for ‘small’ we chose 102, and to maintain this we took po = 4 x 10*/d?. Since our simulation is two-
dimensional, the initial sound speed ¢; = 1.5 implies the initially uniform o = g = ¢ / po = (157/25600)* =
3.4 x 107°.If we interpret our two-dimensional model as representing a three-dimensional gas held within a
vertical thickness of less than a healing length, this corresponds to an even smaller three-dimensional a,
substantially lower than in experiments. The quantum and nonlinear effects which our results indicate are
therefore accurate for the extremely dilute gas that we model. In real quantum gas experiments with higher « the
same effects can be expected to be even larger than in our simulation.

4. Long-term evolution

We evolve in time by solving (2) numerically using the standard split-operator fast Fourier transform method
[31]Jona32 768 x 512 grid, see figure 2. Due to the short time steps needed for stability of the split-operator
method over long times, as well as the need for a very long grid in the x-direction in order to avoid finite-size
effects even over this long time, the calculation is numerically demanding even with a good workstation: a single
run of the simulation has required about seven days. We therefore report full results for only a single run. Other
shorter-duration runs have shown that our one long run does appear to be qualitatively typical, and its long time
and space scales provide ample numerical data for statistical analysis. Detailed quantitative results such as the
power spectra we show below must nonetheless be considered tentative and preliminary, inasmuch as they
represent a single run of the simulation and may well come out slightly differently in simulations from initial
conditions that are different realizations of the truncated Wigner ensemble. More exhaustive investigation of the
dependency on precise initial conditions must await future work.

In the beginning (7 = 0) of our simulation the perturbations are too small to be seen. After some time
(T = 603) instabilities seeded by the simulated quantum fluctuations have grown to form ripples between the
horizons; these then deepen and break up into vortex pairs (7 = 630). More and more vortices form (7 = 810),
until the ergoregion becomes a quasi-steady turbulent mess of vortices that continually form and escape (mostly
through the white-hole horizon). A noisy pattern of sound waves is also continuously emitted by this turbulent
ergoregion, through both horizons (7 = 1170, enlarged version in figure 3). Because the excitations carry away
energy from the supersonic region, the flow there gradually slows, while the condensate density in the ergoregion
slowly rises to maintain continuity (see figure 4). Eventually the background velocity in the ergoregion falls
below the local speed of sound, which rises with background density; the sonic horizons disappear, the subsonic
superfluid flow is stable, and vortex production ceases (7 = 3960).

Apart from the very early and late stages of our simulation there is no uniform value for the flow speed and
the speed of sound, especially between the (initial) horizons, since the condensate density and phase are strongly
varying in the turbulent region. However, we can define the averaged background flow speed 7 (by the phase
gradient ignoring the phase perturbation due to the vortices) and averaged speed of sound g = /gp to see that
the flowwithin 0 < x < Lis supersonic on average until T ~ 1000, and thereafter subsonic on average (see
figure 4). Examining figure 5 does not show any dramatic change in the character of the noisy sound waves that
were emitted before and after 7 ~ 1000, however. This absence of qualitative change associated with subsonic
average flow is not necessarily surprising, since even when the average flow is still supersonic within0 < x < L
the proliferation of vortices has already destroyed the irrotational character of the flow which the spacetime
analogy assumes and it is no longer clear that speed of sound in laminar flow is even an important parameter for
the turbulent region.

A (1+1)-dimensional scenario with atom sources and sinks, but otherwise similar to ours, has been studied
in [20], building on [21]. Although this study did not model quantum fluctuations, it did incorporate random
perturbations in the initial state and computed long-term evolution numerically. The open condensate system
was found to evolve into a quasi-stationary phase of CESs from the initial ergoregion, analogous to our vortex
production and emission. Similar behavior was also briefly reported in [10]. A significant difference in our two-
dimensional scenario is that in the turbulent regions the coarse-grained net density of vortices can provide a curl
of the long-wavelength velocity field [32], so that this flow is no longer irrotational. If regions of irrotational fluid
flow are analogous to curved spacetime, a turbulent region is perhaps analogous to the stringy volume that lies
inside the apparent horizon of a fuzzball [2].
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Figure 2. Temporal evolution of [U[? for initial ¢; = 1.5,¢, = 0.75,L = 30and p, = (200/d)* = 6.6 x 10°. The condensate flows
in the positive x-direction with v = 1 initially. The dashed lines indicate the location of the horizons. Only a part of the x-range of the
system is shown. There is no dissipation; the excitations visible at 7 = 1170 have simply propagated out of the field of view by

T = 3960.

5. Quasi-steady radiation

Only a few close vortex—antivortex pairs emerge through the former black horizon, however, so the spacetime
analogy remains valid there on longer wavelengths and the noisy pattern of sound waves visible in the left half of
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Figure 5. Quasi-steady radiation on the side of the former black hole at 7 = 1530. The box indicates the region that was used to
calculate the power spectrum in figure 6.
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figure 3 appears to be quasi-stationary. What is this emitted sound like, when it has grown from quantum

fluctuations?

Our single typical W(x, y, T) appears to realize an ensemble within its evolution, in the sense that spacetime
sub-volumes that are not too far apart from each other look like realizations of the same ensemble. To analyze
the steady emission quantitatively, therefore, we choose a time (7 = 1530) at which the emitted wave pattern
appears homogeneously random within a large region, shown in figure 5. We then decompose dp and 66 in
Fourier modes, and count their energies, binned in k-space, as functions of BAG frequency. The results are
shown in figure 6, with the analogous data from 7 = 0 for comparison. At 7 = 0 the energies follow the line
(E) = w/2because the Wigner function from which they were randomly drawn provides this zero-point
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Figure 6. Energy spectrum of the excitations on the side of the former black hole at 7 = 1530 (blue +). The power spectrum is well
described by power laws in three different ranges. The dashed green line shows the spectrum for a thermal state at T ~ 6 mv?/kg for
comparison. The red crosses indicate the power spectrum at 7 = 0, which corresponds to the zero-point energy (solid red line).

energy. At high w this vacuum noise remains essentially unchanged in the steady state epoch at 7 = 1530, but so
much power has been generated at small w that we need a log—log plot (figure 6) to see all of it. This high power
low frequency radiation is clearly very different from thermal radiation (green line for T ~ 6mv?2/kp, whichisa
fitto the high frequency tail of our data). The plot also seems to reveal two distinct power laws in addition to the
zero-point energy at high frequencies. We find these power laws by fitting to our numerical data in the respective
regions (fitted lines in figure 6). The points where the power laws turn over into each other fix two characteristic
frequencies w; ~ 6.2 and w, ~ 15.8, which correspond to wavelengths on the order of (or somewhat shorter
than) the healing length; we have no theoretical explanation for these frequencies. Sound emitted by turbulent
regions is a subject in aeronautical engineering [33—35], and superfluid turbulence is an active topic in physics
[36], but the sound emitted by a turbulent superfluid ergoregion does not yet seem to have a theory with which
we can compare our numerical results for the power laws or characteristic frequencies. It also remains a question
whether the observed turbulent state and radiation depend only on the mean-field parameters or are also
sensitive to the initial distribution of fluctuations. Many more week-long runs, or some other form of analysis,
will be needed in order to answer this question.

6. Discussion

Thelong-term evolution of a sonic black hole forces us to consider the meaning and value in general of
experiments that are based on analogies. Theoretical mappings between very different physical systems are never
exact; they are valid approximately, within certain regimes. Laboratory systems like ultracold gases can be tuned
in so many ways that they can achieve many analogies, but even they cannot reproduce other systems exactly.
Moreover, analogies usually only apply to some aspects of system behavior. The model system may reproduce
some significant features of the target system while lacking others entirely.

The value of analog experiments does not only lie in offering oracle-like solutions to unsolved theoretical
problems by exact analog computation, however. In cases like that of quantum gravity, so little is known about
the target system that even limited analogies can be well worthwhile. The long-term evolution of black holes, for
example, raises the very basic questions that have become known as the black hole information paradox [37]. A
steadily radiating black hole will eventually have emitted energy comparable to its own rest energy, and so
nonlinear back-reaction must eventually become important. If we abandon the linear approximation and
consider the black hole and its radiation as a nonlinear dynamical system, however, the problem is not merely
that we do not know exactly what theory of quantum gravity to apply. The severe problem is that it seems
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impossible to reconcile the essential features of classical general relativistic black holes with any unitary quantum
theory [37].

This means that it really is of fundamental interest to learn about any example of a nonlinear quantum
theory which is known for certain to be self-consistent because it can be realized in the laboratory, and which
includes states that can be mapped onto those of a quantum field in curved spacetime, but of which the evolution
can be followed nonlinearly over long times. To simulate full quantum gravity in the laboratory is far too much
to expect, but even a far less rigorous analogy can be a valuable contribution in a field where experimental data
israre.

In our case the nonlinear long-term evolution only preserves the analog spacetime outside the initial
ergoregion. Inside, the flow becomes turbulent and the analogy breaks down. The instabilities to turbulent
vortex production are not an unrelated phenomenon which masks steady thermal Hawking radiation, however.
Itis the same over-unity reflection due to mode-mixing at horizons which leads to stationary Hawking radiation
for infinite ergoregions and to dynamical instabilities for finite ones. The specific way in which these instabilities
saturate through vortex formation is a feature of nonlinear superfluid hydrodynamics rather than gravity, but
the generic expectation of nonlinear quantum gravity is that it may also dramatically influence the interior
structure of a black hole. The quasi-stationary epoch of our simulation indeed resembles the string-theoretic
fuzzball scenario [2, 38], in which the smooth spacetime of classical general relativity likewise only survives
outside the horizon.

The sonic radiation whose power spectrum is shown in figure 6 can be called Hawking radiation in the loose
sense that it is emitted from the initial horizon region. It is clearly not thermal, however, at least not for a global
temperature—the statistics of each mode in k-space (not shown, [28]) do appear to be individually consistent
with Boltzmannian ensembles ((E?) / (E)?> ~ 2),but with strongly k-dependent temperatures. We have thus
realized a scenario that was anticipated in [22] as a possible break down of the universality of thermal Hawking
radiation, when it comes from a turbulent region inside the (former) black hole.

On the other hand we have also realized a scenario in which the curved-spacetime description remains valid
outside the former black hole, which emits some kind of quasi-steady noisy radiation. The relaxation of our
system into this non-thermally radiating state may be considered an example of pre-thermalization, inasmuch as
the system approaches a quasi-stationary state which is not canonical equilibrium. Just as it is an important
problem in the foundations of statistical mechanics to understand why some systems thermalize and others do
not, so itis a good question to pose about quantum gravity, to ask which specific features of quantum
gravitational dynamics may lead to thermally radiating black holes even beyond linearization, in contrast to
systems like ours in which the generalized Hawking radiation is not thermal. Even when a physical analogy does
not yield the right answer, it may supply the right question, and in this sense further study of sonic black holes,
and the states into which they relax, will indeed be a valuable contribution to the difficult challenge of
understanding true quantum black holes.
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Appendix. Sonic analogy

Here we show how the BAG equations in the hydrodynamic approximation can be mapped onto a massless
scalar field equation in curved spacetime. This can be done in many ways, including some that clearly preserve
the quantum nature of the BAG excitations. The shortest derivation proceeds, however, by implementing the
hydrodynamic approximation already within the GPE ((2) in our main text) by defining U = /pe' for real p
and 6, both arbitrary functions of space and time. One obtains

1 1
0.0 = ——|VOP —V —gp+ —V2 A2
2| | gp 275 N (A.2)
— — IVEP Vg, (A3)

where the last line is the hydrodynamic approximation, valid whenever the condensate density varies slowly in
space on the scale of the healing length { = 1/, /gp. Thelong-wavelength limit of the BdG equations is then
given by linearizing the hydrodynamic GP equations around an arbitrary background. Introducing the notation
v = V0 for the background velocity field, we find
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0;6p = =V - (pV 0 + vbp), (A.4)
0:00 = —v - V0 — gbp. (A.5)

Introducing the component notation 9, — dpand V — 0; for Latin indices ranging between 1 and the
number of spatial dimensions D, and applying the Einstein summation convention for the Latin indices, we can
write these last equations as

0ip 0;60 = —0ybp — Oi(v;0p), (A.6)
§p = — (0o + vi0,)66. (A7)
g
Defining the local (and in general, time-dependent) speed of sound c(x, 7) = /g(x, T)p(x, 7),and

introducing Finstein summation over Greek indices that run from 0 to D, these equations can be combined
straightforwardly into the form

9,K" 9,60 = 0 (A.8)
for the following (D + 1) x (D + 1) matrix K*":
Ko=-2 (A.9)
c

K0 — KO — _%Vi) (A.10)

c

Ki = pf&; — 22

= p|6; ool (A.11)

c

We now compare (A.8) to the scalar wave equation for a massless field in a curved spacetime with metric
tensor 8

1
W@\/*Iglgﬂ”&,f: 0, (A.12)

where |g| denotes the determinant of gpasaD+ 1) xD+1 matrix, and the contravariant metric tensor
g"" is the inverse matrix g~ !. (We avoid the usual notation of plain g for the metric determinant, to avoid
confusion with our condensate interaction strength.) It is clear that the linearized hydrodynamic equation would
be of exactly the same form as the relativistic scalar wave equation, if we could find a metric tensor g, such that

the just-defined matrix K/ satisfies
K = [—|glg™. (A.13)

For D > 1 thisis easy: we merely need

g = l(B)WKW, (A.14)

p\c

implying the covariant metric tensor

b

8oo = (g) () (A.15)
P\
8io = &i = — - Vi (A.16)
DT

g = (ﬁ) 8 (A.17)

c

For the case D = 3 this agrees with the metric given in Unruh’s original paper [3]; it is also a straightforward
mapping for D = 2. For D = 1, however, it would be singular. This reflects the fact that the mapping does not
workinD = 1.

The problem is thatin D = 1 the determinant of ./ —|g| g*” is identically —|g| |g™!| = —1, for any metric
8, The determinant of the matrix K* for D = 1, however,is —p*/c> = —p/g. There is no way to makea
non-flat metric in one-dimension without letting at least one of p and c vary with space or time, and although the
interaction strength g can be controlled experimentally to some degree, the gas density is a dynamical variable
that depends on initial conditions, and there is no way to simply lock g to follow the local value of p. One could
try to give the background p and g the same spatial profile, but any mismatch would invalidate the Unruh
analogy. The instabilities of one-dimensional sonic black holes to soliton formation would thus destroy the
Unruh analogy, as p changed dynamically, evenif g o< p could be achieved in the initial state.
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One possible way of salvaging one-dimensional sonic horizons, apart from the interpretationasak;, = 0
sector of a higher-dimensional model that we mentioned in our main text, would be to interpret the sound wave
equation as the equation for a massless scalar field in a curved spacetime with a scalar dilaton field ® as well as a
metric, 0,(®/—Igl g"0, f) = 0. The dilaton field would have to have the particular configuration ® o p/g,
fixed by the background condensate profile just as the metric is. This would then allow analog spacetime in one-
dimensional condensates, but not analogs in which spacetime curvature is the only effect on field propagation,
since the dilaton effects would also be important. It is also far from clear that the particular paired dilaton and
metric configurations that are required by the Unruh analogy in one-dimension would be representative of
black holes in general.

References

[1] Hawking S 1974 Nature 248 30-1
[2] Mathur S2005 Fortschr. Phys. 53 793-827
[3] Unruh W 1981 Phys. Rev. Lett. 46 1351-3
[4] Novello M, Visser M and Volovik G 2002 Artificial Black Holes (Singapore: World Scientific)
[5] Unruh W 1995 Phys. Rev. D 51 2827-38
[6] Unruh W and Schiitzhold R (ed) 2007 Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (Berlin: Springer)
[7] Weinfurtner S, Tedford EW, Penrice M C, Unruh W G and Lawrence G A 2011 Phys. Rev. Lett. 106 021302
[8] Rousseaux G, Mathis C, Maissa P, Philbin T G and Leonhardt U 2008 New J. Phys. 10 053015
[9] CorleySandJacobson T 1999 Phys. Rev. D 59 124011
[10] GarayL, Anglin], CiracJand Zoller P 2001 Phys. Rev. A 63 023611
[11] GarayL, Anglin], Cirac]and Zoller P 2000 Phys. Rev. Lett. 85 4643—7
[12] FinazziSand ParentaniR 2010 New J. Phys. 12095015
[13] Busch X and Parentani R 2014 Phys. Rev. D 89 105024
[14] deNova]RM, Sols Fand Zapata12015 New J. Phys. 17 105003
[15] Boiron D, Fabbri A, Larré P E, Pavloff N, Westbrook C I and Zifi P 2015 Phys. Rev. Lett. 115 025301
[16] FinazziSand Carusotto 12014 Phys. Rev. A90 033607
[17] Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer ] 2010 Phys. Rev. Lett. 105 240401
[18] Steinhauer ] 2014 Nat. Phys 10 864
[19] Steinhauer ] 2016 Nat. Phys 12959
[20] deNova], Finazzi S and Carusotto 12016 Phys. Rev. A 94 043616
[21] Michel Fand Parentani R 2015 Phys. Rev. A91 053603
[22] Unruh W G and Schiitzhold R 2005 Phys. Rev. D 71 024028
[23] Sinatra A, Lobo Cand Castin Y 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3599
[24] Ruostekoski ] and Martin A 2013 The Truncated Wigner Method for Bose Gases (London: Imperial College Press) pp 203—14
[25] Blakie P, Bradley A, Davis M, Ballagh R and Gardiner C 2008 Adv. Phys. 57 363
[26] Pitaevskii L and Stringari S 2003 Bose—Einstein Condensation (International Series of Monographs on Physics) (Oxford: Clarendon)
[27] Stabel P and Anglin ] in preparation
[28] Biirkle R, Gaidoukov A and Anglin ] in preparation
[29] Zapatal, Albert M, Parentani R and Sols F 2011 New J. Phys. 13 063048
[30] Lee T, Huang K and Yang C 1957 Phys. Rev. 106 1135-45
[31] Weideman J and Herbst B 1986 SIAM J. Numer. Anal. 23 485-507
[32] Feynman R 1955 Prog. Low Temp. Phys.117-53
[33] Lighthill M 1952 Proc. R. Soc. A 211 564—87
[34] Lighthill M 1954 Proc. R. Soc. A2221-32
[35] Dowling A and Hynes T 2004 Eur. J. Mech. B 23 491-500
[36] Tsatsos M C, Tavares P E, Cidrim A, Fritsch A R, Caracanhas M A, dos Santos F E A, Barenghi C F and Bagnato V S 2016 Phys. Rep. 622
1-52
[37] Mathur S 2009 Class. Quantum Grav. 26 224001
[38] ChenF, Michel B, Polchinski J and Puhm A 2015 J. High Energy Phys. JHEP02(2015)081

11


https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevD.51.2827
https://doi.org/10.1103/PhysRevD.51.2827
https://doi.org/10.1103/PhysRevD.51.2827
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1088/1367-2630/10/5/053015
https://doi.org/10.1103/PhysRevD.59.124011
https://doi.org/10.1103/PhysRevA.63.023611
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1088/1367-2630/12/9/095015
https://doi.org/10.1103/PhysRevD.89.105024
https://doi.org/10.1088/1367-2630/17/10/105003
https://doi.org/10.1103/PhysRevLett.115.025301
https://doi.org/10.1103/PhysRevA.90.033607
https://doi.org/10.1103/PhysRevLett.105.240401
https://doi.org/10.1038/nphys3104
https://doi.org/10.1038/nphys3863
https://doi.org/10.1103/PhysRevA.94.043616
https://doi.org/10.1103/PhysRevA.91.053603
https://doi.org/10.1103/PhysRevD.71.024028
https://doi.org/10.1088/0953-4075/35/17/301
https://doi.org/10.1142/9781848168121_0013
https://doi.org/10.1142/9781848168121_0013
https://doi.org/10.1142/9781848168121_0013
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1088/1367-2630/13/6/063048
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1137/0723033
https://doi.org/10.1137/0723033
https://doi.org/10.1137/0723033
https://doi.org/10.1098/rspa.1952.0060
https://doi.org/10.1098/rspa.1952.0060
https://doi.org/10.1098/rspa.1952.0060
https://doi.org/10.1098/rspa.1954.0049
https://doi.org/10.1098/rspa.1954.0049
https://doi.org/10.1098/rspa.1954.0049
https://doi.org/10.1016/j.euromechflu.2003.10.014
https://doi.org/10.1016/j.euromechflu.2003.10.014
https://doi.org/10.1016/j.euromechflu.2003.10.014
https://doi.org/10.1016/j.physrep.2016.02.003
https://doi.org/10.1016/j.physrep.2016.02.003
https://doi.org/10.1016/j.physrep.2016.02.003
https://doi.org/10.1016/j.physrep.2016.02.003
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1007/JHEP02(2015)081

	1. Introduction
	2. Initial black-white-hole scenario
	3. Dynamical instabilities and nonlinearity
	4. Long-term evolution
	5. Quasi-steady radiation
	6. Discussion
	Acknowledgments
	Appendix. Sonic analogy
	References



