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Abstract

It has long been known that string theory describes not only quantum gravity, but also
gauge theories with a high degree of supersymmetry. Said gauge theories also have a
large number of colors in a regime with a large effective coupling constant that does not
depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however
the gauge theory described by string theory shares many common features with QCD at
temperatures above the quark deconfinement transition. It is generally though not entirely
accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce
a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition
temperature as determined from lattice simulations. Hence, we might hope that a string
theoretic description of gauge dynamics can elucidate some otherwise intractable physics of
the strongly coupled plasma.

Here we use string theory to calculate the outgoing energy flux from a RHIC process
called “jet quenching”, in which a high-momentum quark or gluon traverses a large distance
in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge
theory, but we nevertheless find that the gross features of the resulting stress-energy tensor
match reasonably well with experimental data. We will furthermore discuss the technology
behind computations of the leading-order corrections to gauge theory observables that are
uniquely string-induced, and we will describe a potential solution to string theory that could
resolve a number of discrepancies between the traditional highly supersymmetric setup and
QCD—in particular, a significant reduction in the amount of supersymmetry, and a finite

effective coupling that is still greater than unity but does depend on energy scale.
iii
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Chapter 1

Introduction

In its attempt to incorporate quantum field theory and Einstein’s theory of gravity into a
single framework, the essence of “string theory” boils down to one rather simple additional
assumption: The fundamental degrees of freedom in nature are not point-like particles,
but rather are line segments or loops moving through space. It is from this one claim—
combined with the idea that strings should dynamically “prefer” to minimize their area as

they propagate—that a host of more substantial claims follow, such as:

e Nature must be supersymmetric, i.e., every fermionic particle must have an otherwise

identical bosonic partner
e Spacetime, if flat, must have ten dimensions

o Hypersurfaces called “D-branes” exist as locations on which open strings (e.g., line
segments) can end, and that furthermore these D-branes are dynamical entities in

their own right

e D-branes naturally serve as a residence for gauge theories, in which open strings

connecting two D-branes act as the “gluons” of the gauge theory
g g gaug

But perhaps the most famous and important claim of string theory is that it is a finite
theory of quantum gravity, providing a unified framework for quantum mechanics and Ein-

stein’s theory of gravity, general relativity. This again follows from the simple postulate of
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string-like fundamental objects, and fails to be true for gravity in a field theoretic frame-
work. The quanta of gravity are called “gravitons”, and they propagate at the speed of
light.

To see why field theory fails to be a finite theory of quantum gravity, suppose we wanted
to naively introduce gravity using field theory techniques, and compute a simple scattering
amplitude, such as two initial-state gravitons scattering into two final-state gravitons. The
rules of quantum mechanics tell us that the total amplitude for such a process comes from
summing the amplitudes for all such graphs with any intermediate state. Clearly one
such graph contains a single graviton being exchanged between the initial and final state

gravitons.

Figure 1.1: Two gravitons interact by exchanging a single graviton between them.

However, in addition to this graph, there must also be graphs where the initial and final
states are separated by loops of gravitons, where the loops come in all shapes and sizes.
In graphs where the loops are smaller, the graviton in the loop covers a short distance
due to its high momentum. Ordinarily, high momentum particles are “more difficult” to
produce, hence the amplitudes of these graphs are power-law suppressed. However, gravity
is stronger in the presence of larger masses, and Einstein tells us that mass is interchange-
able with energy, which by a Lorentz transformation is interchangeable with momentum.
Consequently this exchange of high-momentum gravitons is significantly enhanced due to
the gravitational coupling, and the amplitude for the process approaches infinity as the size

of the loop approaches zero.
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Figure 1.2: Two graphs involving two to two graviton scattering, separated by a loop of
gravitons. The loop of gravitons on the right has higher momentum than the loop of
gravitons on the right.

This same phenomenon does not happen in string theory. Heuristically, the width of
the string provides a natural short-distance cut-off, beyond which graviton loops can not
shrink. To see how this works, imagine the analogous graphs with strings instead of point
particles. Each line essentially “fattens” out to make a string. Note that here the graviton
loop can not shrink to smaller than a string width without overlapping with the other side
of the graph. Hence the very high momentum graphs that render the field theory amplitude

infinite simply do not exist in string theory a priori.

Figure 1.3: A graviton enters on the left, splits into two gravitons, which recombine into a
graviton that exits on the right. The finite width of the string prevents the loop from ever
having zero size.

Though the finiteness of string theory has been a great success, if string theory is to be a

theory of quantum gravity, then the relevant length scale at which strings resolve themselves
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as such must be roughly the Planck scale, which is about fifteen orders of magnitude smaller
than the minimum length scale achieved in today’s particle accelerators. Absent certain
extreme and arguably unlikely assumptions about the way ten-dimensional strings appear
to four-dimensional observers [1], a terrestrial experiment of stringy quantum gravity effects
is highly unlikely. There is some hope that the signatures of stringy physics might be
seen in observations of the very early universe, where the Planck scale energy densities
were commonplace [2]. However, even the most optimistic advocates of this approach
would probably agree that such an outcome is unlikely, and some authors disbelieve in this
possibility entirely [3].

The difficulties in experimentally testing string theory have lent it to considerable crit-
icism, in spite of its mathematical success. However, there is a common thread for this
difficulty: The extreme separation between our everyday energy scales and the scale of
quantum gravity. But string theory is no loﬁger just a theory of quantum gravity.

In the late 1990’s, it was observed that string theory and its natural embeddings of
gauge theories via D-branes provides a simple means of computing physical quantities for
gauge theories when the effective coupling constant is large [4, 5, 6, 7]. In traditional field
theory techniques for computing scattering amplitudes, one typically relies on the presence
of a small coupling constant that allows one to neglect graphs that contain a large number
of vertices, or equivalently, a large number of loops. However, if the coupling is bigger than
one, graphs with many loops dominate the total amplitude for a given process, yet they are
also practically impossible to calculate. This is precisely where string theory is uniquely
useful as a computational tool—the large coupling from a field theory perspective becomes
a small coupling from a string theory perspective. This scenario has the potential to test
string theory, since it is known that QCD, the theory of strong interactions between quarks
and gluons, has a large effective coupling constant at low (and hence more easily accessible)
energy scales.

This thesis discusses one such experiment that has the potential to test string theory: the

Relativistic Heavy Ion Collider, or RHIC. RHIC accelerates gold nuclei around a large ring,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and collides them. After the collision, it is generally believed that the gold nuclei produce
a short-lived “Quark-Gluon Plasma” (QGP), a new state of matter in which quarks and
gluons are free from their hadronic containers, yet the coupling between them remains
larger than one. Conventional Feynman diagram techniques are therefore unreliable, and
string theoretic techniques are arguably our best tool for analyzing the physics. Indeed,
first attempts at matching string theory calculations to experimental observables have been

moderately successful.
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Figure 1.4: Data from the RHIC experiment, overlayed by the string theory’s expected value
for the same data in the upper right corner. The solid line in the upper right is numerical
data to be described, whereas the dashed line is an analytic approximation that is most
valid at lower energies. The vertical scale is offset in the two plots, but the horizontal scale
is identical. The essential thing to note is the broad peaks in each plot.

However, the story is not ideal. First, the string theory construction is strictly valid
when the effective coupling is not only large, but formally infinite. Of course, this is not the
case in nature. Second, it is known that QCD is not a supersymmetric theory—it consists
only of massive fermionic quarks in the fundamental representation of the gauge group (i.e.,
carrying a single color charge) and massless bosonic gluons in the adjoint representation
(i.e., carrying a color charge and anti-charge, essentially). The setup in string theory does

not describe QCD, but rather a theory consisting only of gluons and a large number of
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supersymmetric partner particles. Third, it is known that QCD exhibits the phenomenons
of confinement and asymptotic freedom, i.e., at nuclear length scales, the effective coupling
is large, keeping quarks stuck to each other, whereas at much shorter length scales, the
effective coupling is very small. In string theory, however, the coupling constant does not
depend on the length scale, but rather is a parameter you can choose.

That said, these remarks only apply to one string theory background, in which spacetime
takes on a particularly simple form. This spacetime is a solution to the “supergravity”
equations of motion resulting from string theory. Strictly speaking, supergravity is the
minimal supersymmetric extension to Einstein’s general relativity—minimal in the sense
that it contains fermionic spin-3/2 gravitinos as the supersymmetric partner particles of
the gravitons, however the gravitational part of the action is simply a higher dimensional
analog of Einstein gravity. In the context of this WOI‘k,‘ the fermionic components of the
supergravity action will not be directly relevant, and one can understand “supergravity” as
interchangable with “general relativity in higher dimensions”.

We might hope to use alternative backgrounds whose field theory description is much
closer to reality. Such spacetime configurations require an understanding of the gravitational
dynamics of string theory beyond the leading correction to supergravity. We will develop
that understanding here, and apply it to a specific background in which the effective coupling
constant of the field theory is finite and depends on the energy scale. One might then think
to ask RHIC-like questions with respect to this new background.

This thesis is structured as follows. In Chapter 2, we review the basic physics of
interest—an explanation of the RHIC experiment, and the correspondence between string
theory and strong interactions. In Chapter 3, we present the state-of-the-art in applying
string theory to an analysis of RHIC physics. In Chapter 4, we discuss the technology
behind higher-order corrections to Einstein gravity in string theory that could be used to

determine uniquely-stringy effects at RHIC. We conclude in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2
Background

2.1 The Relativistic Heavy Ion Collider

The recent review by Miiller and Nagle [8] provides an up to date account of experimental
results from RHIC and their interpretation. We present here an abbreviated account aimed

at introducing three aspects of the quark-gluon plasma:

e There is good reason to believe that the QGP thermalizes at a temperature signifi-

cantly above the deconfinement transition of QCD.

o In non-central gold-gold collisions, the QGP undergoes a particular kind of collective
motion called elliptic flow, in addition to its longitudinal expansion. Measurements

of these collisions indicates that the shear viscosity of the QGP is small.

e Hard partons lose energy quickly when they pass through the QGP, a phenomenon

known as jet-quenching.

An authoritative account of results through 2005 can be found in [9, 10, 11, 12].

2.1.1 The experimental setup

The primary physical process investigated at RHIC is the collision of beams of gold nuclei

in moving opposite directions. The main beam ring is roughly 3.8 km in circumference, and
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has four separate experiments (BRAHMS, PHENIX, PHOBOS, and STAR) with comple-
mentary capabilities situated at four of the six beam intersection points. The beam energy
is 100 GeV per nucleon. In addition to gold, RHIC can handle other species, e.g. copper.
The essential number is /syy = 200 GeV, which refers to the total center of mass energy
per nucleon pair.

Gold nuclei have 79 protons and 118 neutrons, and are fairly spherical with a radius
R of about 7fm. With respect to the center of mass frame, each nucleus moves with a
Lorentz contraction factor v of about 100, and consequently the front-to-back length of

2R /v ~ 0.14fm. The inelastic cross-section can be estimated roughly as oot = 4w R2. This

is just the geometric overlap of the nuclei.

Figure 2.1: Ultra-relativistic quantum molecular dynamics simulation of a gold-gold collision
[13], with view before (left) and after (right). Species are probably: protons (red), neutrons
(white), meson (green), and excited baryons (blue).

RHIC’s design luminosity is 2 x 1026cm~2?s~!. To date, they have achieved a total
integrated luminosity in the ballpark of 4nb™!. An idealized version of RHIC detectors is
the ability to assign pr, ¢, 1 (pseudorapidity), and particle identity (e.g. 7, K, p, B, A, &, 2,
Q, ¢, J/1, D, etc.) to all hadrons coming out of the collision region, as well as to electrons,
photons, and in restricted circumstances (i.e. high rapidity) muons. In reality, acceptance
in n and ¢ varies: e.g. STAR accepts |n| < 1, while PHENIX accepts |n| < 0.35 with
incomplete ¢ coverage. Most particles come out with pr < 1GeV, but the high-momentum

tails reach up to pr ~ 10 GeV.
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2.1.2 The quark-gluon plasma

When gold nuclei collide, about 400 nucleons go in, and about 7500 come out. Clearly a lot of
entropy gets produced. A more interesting and non-trivial claim is that a thermalized quark-
gluon plasma (QGP) is formed with a temperature as high as 300 MeV. After formation,
the QGP cools approximately isentropically and then hadronizes.

Part of the evidence for a thermalized QGP is that hadron yields at mid-rapidity can

be fit to a thermal model: even multi-strange hadrons fit. See figure 2.2. The temper-

T,= 1573 [MeV]
200 GeV Au+Au, <Npart> =322 b= 94212 [MeV]
i p= 3.1£23 [MeV]
1 o QA ok y,=1.03x0.04
- oK +C/dof=19.9/10
'1 i * A*
810 e x
S ;.,*
10 &
B %
31
10 ¢ k-
i | | ] ] l | | | ] | | | |
+ (-1)_ { 2)_ - _ 0 i (.1)_ (.2)_ ~ B
= K p p E Q EK)H)K p p MA ¢ E Q
KPP E QT TN T T

Figure 2.2: Ratios of hadron yields observed near mid-rapidity. The lines are the predictions
of the thermal model. Note that the chemical potentials for light quarks and strange quarks
are small compared to the temperature. From [14].

ature T¢p = 157 MeV, which is determined by fitting hadron yields to thermal occupation
numbers (i.e. Bose-Einstein or Fermi-Dirac statistics) is slightly lower than the estimated
temperature for the confinement transition, 7, ~ 170 — 190 MeV, as determined through

lattice calculations: see for example [15, 16]. In fact, deconfinement and chiral symmetry
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restoration are believed to occur not through a true phase transition but through a rapid

cross-over, above which the energy density is given approximately by

T 4
~ 6. 3(—=— . 2.1
€ ~ 6.3 GeV /fm (250MeV) (21)

See figure 2.3. The validity of (2.1) seems to extend to several times T.. It is notable that

T T T T T T

16.0 | egp/T+ —*
140 —
12.0 8/.|_4
10.0 + '
8.0
6.0
4.0
2.0
0.0 EE

"

3/&3
- (3/4) 3/

3 flavor, N =4, p4 staggered
m_ =770 MeV

T,

10 15 20 25 30 35 40

Figure 2.3: Lattice results for the equation of state of QCD. From [15].

the value of ¢/T* in (2.1) is about 80% of the free-field value.

Rapidity distributions of protons in central collisions indicate that 2843 TeV of the total
39 TeV of energy winds up in heating the newly created medium (putatively the QGP) and
in its collective motion [17]. If 28 TeV were entirely concentrated in the Lorentz-contacted
sphere of the gold nuclei at full overlap, the result would be an energy density of roughly
2000 GeV/fm3. This is almost certainly a substantial overestimate of the peak energy
density: simple phenomenological models (with some support from experiment) indicate
that energy densities in gold-gold collisions may reach 30 GeV /fm?® and thermalize by the
time € ~ 5-9 GeV/fm® [9]—well above the QGP threshhold of 1 GeV/fm3. See figure 2.4.
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Figure 2.4: Energy density as a function of time in a central gold-gold collision, according
to an elaboration of the phenomenological Bjorken model. From [9)].

2.1.3 Centrality, elliptic flow, and jet-quenching

An important way to classify collisions of nuclei is the impact parameter of the collision. As
described above, a crude approximation for collision rates comes from geometric overlap.
Centrality refers to the extent of the overlap. A central collision is one where the gold nuclei
hit head-on, whereas a peripheral collision is one where they almost missed.

Experiments at RHIC are capable of making an event-by-event determination of cen-
trality, as well as the reaction plane defined by the beam line and the impact parameter.
In other words, they can measure the impact parameter b as a vector: See figure 2.5. In
order to avoid referring to a specific model of the cross-section, centrality is described in
percentile terms. The 10% of all events that have the smallest values of b are described as
having centrality of 0 to 10%. Note that this is somewhat reversed from what you might
expect—head-on collisions have zero centrality. In the sphere-overlap model of the inelastic

cross-section, the impact parameter corresponding to 10% centrality is evaluated as [18]:

bio
0.1 ot = / dr 27r SO big = 2RV0.1. (2.2)
0
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Figure 2.5: A gold-gold collision of intermediate centrality. The reaction plane is the plane
of the page, in which the centers of mass of both gold nuclei are assumed to lie.

In non-central collisions, an important process called elliptic flow occurs. The over-
lap region is roughly ellipsoidal with all axes unequal (biggest in y, smallest in z). The

distribution of observed particles is parametrized as

dN dN

—  (pr,y, $;b) = ———— [1 + 2ua(pr, ;b)) cos 20 + .. ] , 2.3
ppoTdyd¢(pTy¢) ppoTdy[ 2(pT,y; b) cos 2¢ ] (2.3)

Here, vy is experimentally measured for different particle species, and ¢ = 0 refers to

emission in the reaction plane, so vs > 0 means this is preferred. The sizable observed

Beam’s eye view of a Particles prefer to be “in plane”:
non-central collision:

Figure 2.6: Cartoon of elliptic flow. From [19].

values of vy are in line with non-viscous hydrodynamic models of collective flow:
D

with VP bigger at ¢ = 0 than ¢ = 7/2 because the ellipsoid is shorter at ¢ = 0 and longest
at ¢ = 7/2.
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Jet-quenching refers to the rapid loss of energy of a hard parton propagating through
the hot dense matter created in a gold-gold collision. The prima facie evidence for jet
quenching is the the suppression of high pr jets (more precisely, high pr hadrons) relative
to expectations from “binary collision scaling.” In binary scaling arguments, one replaces
each gold atom by an equivalent flux of nucleons, each carrying 100 GeV of energy, which
do not interact with one another, but which collide with nucleons going the other way. The
number of collisions that would occur in this way is denoted (Npinary). Thus a single gold-
gold collision is replaced by (NVpinary) independent nucleon-nucleon collisions. To obtain an
expected yield for a given particle species in a gold-gold collision, one scales up the yield
measured in proton-proton collisions by the factor (Nyinary). The ratio of this theoretical

quantity to the observed outgoing particles is called Ra4:

dN (gold-gold) /dprdn
(Nbinary)dN (proton-proton) /dprdn

RA,A = (2.5)

Binary scaling is a successful predictor of the flux of outgoing photons with pr > 4 GeV:
R,, ~ 1 for most pr. This indicates that the QGP is fairly transparent to photons. For
hadrons, however, the detected flux is considerably less than what is expected: Rpp =~ 0.2.
The interpretation is that when an energetic scattering event occurs, the hard outgoing
partons tend to lose a large fraction of their energy while plowing through the QGP. Cu-
riously, this suppression only occurs in gold-gold collisions — collisions of proton-gold or
deuterium-gold do not exhibit jet quenching. Hence there is something special occurring in

the thermalized plasma.

2.1.4 Summary of experiment

The essential aspects of the experiment that we have discussed are as follows:

o In central gold-gold collisions with 200 GeV per nucleon center-of-mass energy, a ther-
malized QGP forms as early as ¢ ~ 0.6 fm/c with T as high as 300 MeV. It expands
and cools isentropically with € oc 1/t (or maybe 1/t*/3) and hadronizes at about

t~6fm/c
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Figure 2.7: Nuclear modification factor R4 for photons and hadrons in 0 to 10% central
gold-gold collisions. From [8].

e Sizable anisotropy wve indicates elliptic flow of the QGP: a collective hydrodynamic
motion which can be successfully modeled via inviscid hydro. Significant viscosity

spoils the agreement: 7/s < k seems to be a consensus from RHIC.

o Measurements of R4 show that the QGP is approximately transparent to high-energy

photons, but remarkably opaque to hadrons.

Lattice simulations are quite good at predicting the equation of state, the transition
temperature, etc., but transport properties, e.g. vo and Rg4, are hard. Furthermore, the
low viscosity indicates that the plasma is strongly coupled, spoiling the applicability of

standard Feynman diagram techniques. But perhaps string theory can come to the rescue.

2.2 String Theory and Gauge Theories at Strong Coupling

As was alluded to in the introduction, calculations of physical observables in gauge theories
at strong coupling are particularly simple in a string theoretic framework. In this section

we detail precisely how this connection is made.
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2.2.1 Planar diagrams and the 't Hooft expansion

In the early 1970’s, 't Hooft had a remarkable idea that simplified calculations of QCD
processes considerably [20]. Suppose we are interested in computing scattering amplitudes
in Yang-Mills theory, i.e., pure SU(N) gauge theory with coupling constant gyp;. This is
simply QCD, but with no quarks, and with IV colors instead of three colors. In SU(N)
gauge theory, gluons essentially carry one charge and one anti-charge, and hence come in
N? — 1 combinations of colors. Roughly speaking, one may think of each gluon as being a
“double line”, in which an arrow placed on each line represents a color current. This color
current is conserved—pictorially, this means that if a particular color is specified on some
line in the graph, that same color persists on any connected line segments.

We are interested in specific color indices on the initial and final state gluons. However
we are not interested in the specific color content of any intermediate state gluons, and hence
we sum over all graphs with any intermediate state gluon colors, subject to the constraint
of color current conservation.

Consider first the set of “planar diagrams”—by this we mean those diagrams that can
be continuously drawn “inside” a sheet of paper. There are numerous kinematic integrals
that need to be done to evaluate this graph, however we can ask a simpler question: How
does a given graph depend on the number of colors N and the coupling constant gyn?

Because we sum over all N colors for each closed loop of color, a planar diagram picks
up a factor of N for each loop. Furthermore, the definition of the coupling constant means
that the diagram is proportional to g¥M, where V is the number of vertices in the graph.
Take a simple planar diagram as an example.

Figure 2.8 has three closed internal loops of color, and four vertices. Hence it must be

proportional to g%MN 3 = gymA}, where we have defined

It is easy to convince oneself that for a planar diagram, the number of loops and vertices is
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Figure 2.8: A simple planar diagram with no external lines. The red/green/blue lines
indicate three disconnected intermediate loops of color current, and one must sum over the
N3 graphs found by placing one of N colors on each internal loop. Color currents on the
black exterior line are not summed over, since the appropriate colors would be fixed by
whatever color-specific external gluons one attaches to this graph via color conservation.

related in Yang-Mills theory by .
V=2L-2. (2.7)

Hence a generic planar diagram will have an amplitude proportional to
Gl = g 2NE = g3y (2.8)

Consider instead now a non-planar diagram, such as the one in figure 2.9. The small arc in

the middle is meant to come out of the page, not in contact with the straight line.

Figure 2.9: A non-planar diagram. One should view the graph in “3-dimensions”, where the
two gluons in the middle pass by each other without interacting at a vertex. Consequently
the entire internal line is connected, and we sum only over N colors.
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Note that the entire interior line is now connected, since the lines do not meet in the
middle, and hence by color current conservation, the same color must propagate on the
inside of the diagram. Thus this diagram picks up only a single factor of N, yet it contains
four vertices, and is consequently proportional to g@MN = g%,M A¢. This diagram is therefore
suppressed by a factor of g@M relative to a planar diagram.

't Hooft’s key insight was as follows: If we take the number of colors N — oo, and the
Yang-Mills coupling gym — 0 keeping the ’t Hooft coupling g%MN fixed and finite, then
the non-planar diagrams are suppressed by powers of gyy — 0. We need therefore compute
only planar diagrams with an effective coupling A; for each loop in the diagram. Corrections
due to the finiteness of N and gyy will come in powers of \; and 1/N2.

This observation led to incredible progress in the analysis of Yang-Mills theory. In
principle, it has the potential to simplify QCD calculations considerably, since QCD has
1/N? =~ 0.1 < 1, and higher order 1/N corrections will be small. However, A; > 1 at
everyday energy scales, and consequently the diagrams with many loops will dominate the
amplitude for the process, in spite of the fact that the corresponding computations are also

highly intractable.

2.2.2 The physics of D3-branes at zero temperature

D-branes are extended objects in Type II string theory [21]. They are essentially hypersur-
faces that are simultaneously dynamic objects in their own right. They have some associated
tension, ¢.e., mass per unit volume, and therefore will locally warp spacetime.

“D-brane” is short for “Dirichlet-brane”, since D-branes also have the essential property
that strings can have Dirichlet boundary conditions at the location of the D-brane, i.e., they
can end on the D-brane. Without D-branes, Type II string theory would have only closed
strings with periodic boundary conditions.

It is interesting to ask what happens if we have a series of N coincident D-branes stacked
on top of each other. Open strings could then stretch between any two D-branes in the stack.

There are therefore N? different open string configurations, since each string endpoint can
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end on any one of the N branes. Open strings also have some associated orientation, which
can be designated by an arrow going from one end of the string to the other. Strings interact
by splitting and joining at their endpoints, and this orientation must be preserved across
the interaction. Let us label a given string by (i, j), signifying that the string stretches from
the ith brane to the jth brane. For each brane, we can count the net number of strings on a
given brane, by counting the number of strings starting on that brane and subtracting the
number that end on that brane. Since string orientation must be preserved across string
splittings, the net number strings on a brane must be a locally conserved quantity. But if
we identify each brane as a “color”, then the local conservation of color with N? degrees
of freedom description implies that the open strings are effectively gluons of a U(N) gauge
theory living on the stack of D-branes! This gauge theory is U(N) rather than SU(N)

because there are N? degrees of freedom for the string endpoints, rather than N2 — 1.

Figure 2.10: Left: Gluons with red, green, and blue colors end on one of three D-branes. The
brane separation is artificial and pedagogical, not physical. Right: At strong coupling, the
effective description of the gauge theory is given in terms of a weakly-curved gravitational
background.

As mentioned, D-branes also have some mass, and we can calculate the spacetime metric

resulting from our stack of N D-branes. The result is [22, 23]

ds? = H7Y2(r) [~h(r)dt* + dz%) + HY?(r) [h(r) " dr? + r2dQ2] , (2.9)
where
LA T3
H(r)y=1+ pry hir)y=1- el (2.10)
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Here we have specialized to D3-branes, i.e., branes with three dimensions of spatial extent,
spanned by the coordinates Z. This solution has two integration constants: L and rg. It
is easiest to see the physical significance of rg. This metric has a coordinate singularity at
r = rg, and a horizon at that location as well. The existence of a horizon implies that the
solution is a “black brane” solution, an extended, higher dimensional analog of the familiar

black hole. Just like black holes, black branes have an associated temperature, defined by

1 1 1
T=—+/-0,Gu(r =19)0,G"™(r =719) = — ——ereeo—xo—. 2.11
47r\/ Nem 0)0-G™( 0) 0 Vi T L (2.11)

For ro = 0, the horizon disappears, and the temperature goes to zero as well. This particular
limit is called the “extremal brane”. On the other hand, finite 79 corresponding to a finite
temperature will add energy to the system. In the absence of a temperature, the only
contribution to the tension should come from the D-branes themselves, and hence should

be simply N times the tension of a single D-brane [24]:

str 9 4 12
¢=N%g—. | (2.12)

On the other hand, one can calculate the tension of the system based on how an asymptotic

test mass gravitates toward the D-branes. In doing so, one finds

5\74
_ AVol(S°) L% (2.13)
167G
Combining these results, and noting that the volume of an S° is 73, we find
s 2 2.14
E =Angstr N = gym N = At ( . )

The importance of this standard result can not be understated—we will return to it mo-
mentarily.

Of frequent interest is a particular limit of the D3-brane metric, the so-called “near
extremal, near horizon” limit, in which r9 < r < L. In this case, the horizon disappears,
i.e., the branes are at zero temperature, and H(r) in (2.10) becomes simply L*/r4. The

metric (2.9) reduces to

2

L2
ds* —dt? + di?] + —gdr® + L*d05 (2.15)

T
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This metric describes a simple cross-product spacetime, namely AdSsxS®, i.e., 5-dimensional
anti-de Sitter space (the unique Minkowski-signature space of constant negative curvature)
times a 5-dimensional sphere. The physical significance of the parameter L is now clear—it
is simply the characteristic radius of both the sphere and AdS factors of this spacetime.
The crucial physics of (2.14) is now easy to understand—it tells us that as the 't Hooft
coupling X; gets large, the radius of spacetime gets large, and hence the curvature gets small.
But small curvature is the regime in which supergravity alone is a good approximation, with
negligible corrections from string theory at O(a/3L =6 ~ )\, 8/ 2). Hence in the regime of large
't Hooft coupling, where perturbative quantum field theory techniques break down, we can

do relatively simple supergravity calculations without having to worry about high-curvature

corrections coming from string theory.

2.2.3 The thermodynamics of D3-branes

Let us now consider turning on a temperature for our background, i.e., keeping the horizon
radius 7 finite, but maintaining the “near-horizon” condition r < L:

2

Nz

ds? [~h(r)dt® + dz?] + dr? + L2d02. (2.16)

r2h(r)

Then the expression for the temperature (2.11) becomes

To
= 2.17
T w2 2.17)

The presence of a horizon signifies the presence of Hawking radiation, and this is the tem-
perature at which the system of black branes will radiate. Using the standard rule that the

entropy of the configuration is given by the area of the horizon divided by 4Gy, we can

compute the entropy as:

1 Vs

s Gy I3

—det G (r =19) = x L5Vol(S%). (2.18)

- 4G N
By C:", we mean the metric with the exception of the Gy and G,.. components, and V3

refers to the (formally infinite) longitudinal volume of the three extended directions of the
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D3-branes. We can eliminate the horizon radius in favor of the temperature (2.17), and

eliminate the Newton constant in favor of the squared string length o/ via [24]
167Gy = (2m)7 g%, % (2.19)

Finally, we use (2.14) to obtain for the entropy density [25]

S 2 1% 72
S= - - N273 2.20
Vs  g3.a32 2 (2:20)
This rather simple result is a significant hint to deep underlying physics, as we will see

shortly.

2.2.4 The AdS/CFT correspondence

A particular gauge theory called N' = 4 SU(N) Super Yang-Mills (SYM) has a number
of interesting properties. It has a very high degree of supersymmetry-—the N = 4 refers
essentially to the existence of four ladder operators that add or subtract a half unit of spin
from a given state. Unlike /' = 1 supersymmetry, where a gluon has a single spin-1/2
supersymmetric partner particle, the large number of supersymmetries in N = 4 gives the
gauge bosons both spinor and scalar partners, all of them massless and carrying color charge
and anti-charge like the gluons.

The theory is also conformal, meaning that there is no intrinsic mass scale at either
the classical or quantum level. Unlike the coupling constants of the standard model, the
coupling constant gyy of the N/ = 4 theory consequently does not depend on the energy
scale—the amount of supersymmetry ensures that any loop diagrams that might correct
the coupling constant all cancel amongst each other.

In the free theory where \; = g%MN — 0, one can easily count the degrees of freedom
to find the entropy density of the theory

s

V=3 (N2 —1)T3. (2.21)

The N2 — 1 appears due to the number of color degrees of freedom, and the T3 factor is

required on dimensional grounds and the lack of any other dimensionful parameter in the
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theory. But note that in the large N limit, this entropy is identical, up to a pre-factor, to
the entropy of the black brane system (2.20)!

The black brane system also shares another common element with N' = 4 SYM—the
gauge theory has an SU(4) symmetry that rotates the four complex supersymmetry ladder
operators. But SU(4) is isomorphic to SO(6), the group of rotations of a five-sphere.
Furthermore, the isometry group of AdSs is SO(2,4), which is identical to an enhanced
Poincaré symmetry of the 4-dimensional gauge theory. Thus these two theories share the
exact same global symmetry groups.

The one discrepancy remains the factor of 3/4 difference between (2.20) and (2.21). But
note that (2.21) applies to the free theory, at zero ’t Hooft coupling, whereas in (2.20), we
assumed that the AdS radius (and consequently the 't Hooft coupling) was large.

The shared symmetries of these theories, among others similar properties, led Maldacena

to his famous conjecture of the AdS/CFT correspondence [4]:

Supergravity on the space AdSpy1 x SP
is dual to an SU(N) gauge theory

in D-dimensions in the large N, large A; limit.

By “dual”, we mean that the theories are in some sense identical, and that calculations
performed in one have some analog in the other. This is an incredibly powerful statement:
When the ’t Hooft coupling is large, and standard perturbative Feynman diagram techniques
are not at all useful, one can do relatively simple calculations using general relativity on
a higher dimensional space, and translate the results into the gauge theory language via
an appropriate dictionary. Somehow, the AdS space magically “knows” about the gauge
theory results at large 't Hooft coupling when the graphs with many loops dominate the
physics.

Later, as more was learned about the conjecture, it was expanded to include any Einstein
space X in place of the p-sphere, and it was understood that the details of the gauge theory,
such as the precise gauge group and the number of supersymmetries, were encoded in the

details of the space X [26].
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The strongly coupled gauge theory is said to “live” on the boundary of AdS, i.e., at
distances far from the horizon. This will be important when we look to connect physical
objects on the gravity side with their field theory duals.

Furthermore, adding a horizon to the AdSp+, space, a.k.a. AdS-Schwarzschild, corre-
sponds to turning on a finite temperature in the gauge theory. Since the RHIC experiment
considers a gauge theory plasma at large, finite temperature, the AdS-Schwarzschild back-

ground will be of great importance to us.

2.3 The gravity dual of jet quenching in a hot plasma

As jet quenching is an interesting yet incompletely understood phenomenon of the strongly-
coupled RHIC plasma, we might hope to describe it using the AdS/CFT correspondence,
and perhapé use it to experimentally probe string theory. Since corrections to the infi-
nite N and X\ limits are O\, 3/ %) and O(1/N?), each of which are O(10%) corrections,
physical effects that are uniquely stringy may appear in the plasma dynamics, unlike tra-
ditional quantum gravity corrections which are @(1071%) effects in existing particle physics
experiments.

The dual description of a quark moving through a finite temperature plasma is given
by a string with one endpoint at or near the boundary of AdS. The initial setup was first
discussed by Herzog et al [27], and separately and simultaneously by Gubser [28], and we
will summarize their essential results here. Similar calculations of RHIC-like physics via
AdS/CFT appeared at very nearly the same time [29, 30].

For simplicity, we will consider quarks that move at a constant velocity. The plasma
induces a drag force on the quark, and hence the quark deposits energy into the plasma. The
constant velocity condition means that we must feed energy into the quark to compensate
for this energy loss by dragging it through the plasma with a fictitious external force.
Nevertheless, how much energy is lost into the thermal medium, and more to the point,
where that energy goes will be our primary concern.

First, we will make a change of coordinates to simplify our calculations—we will take
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AdS5 —Schivarzschild

Figure 2.11: A string hangs with one endpoint near the boundary of AdS-Schwarzschild,
moving at a constant velocity v.

y = 1o/, so that the boundary is located at y = 0, and the horizon is located at y = 1.
There is nevertheless an infinite proper distance between these surfaces. We will often refer

to the horizon location as zy = L? /7o, so that the temperature is T = 1/nzy. The resulting

metric is:
L2 d 2
s’ = 57— (—hdt2 +dZ* + zﬁ,%) h=1-y* (2.22)
Z5Y

For the time being, the S° portion of the spacetime will not be needed, so we can simply
integrate it out and consider only the AdSs-Schwarzschild portion.

We need to know the configuration of the string as it moves through the plasma. The
conventional approach is to assume a “co-moving” ansatz, in which all parts of the string

move together at some fixed velocity v.
Xt = (t,2',2%,2% y) = (r,vt + £(y),0,0,0). (2.23)

To derive the equation of motion for £(y), we substitute this ansatz into the Nambu-Goto

action for the string, which is simply the geometric area:

2o’

§=_1 / drdo+/det G, 0, X PO X7 . (2.24)

We are left with a simple one-dimensional effective Lagrangian for &:

1 h§’2 v2
= = - 2.25
L ,y2 1+ Z%I h ( )
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The solution to the corresponding Euler-Lagrange equation of motion is simply

vzEy?

¢ = e £= UZTH (arctany — arctanhy) . (2.26)
-y

The solution for £ looks approximately as shown below.

horizon

Figure 2.12: (A) The string trails behind the quark with some distance £(y). (B) Rather
than have the string hang from the boundary, one can imagine splitting off one D3 brane
from the large stack, and letting the string hang from that brane.

The solution described above assumes that the quark hangs all the way from the bound-
ary of AdS. The mass of the string and its dual quark are given by the finite string tension
times the proper length of the string. Hence the infinite proper length of the string means
that the dual quark is infinitely massive. We can consider finite mass quarks by having
the string hang from a D-brane placed at a distance slightly below the boundary. Provided
that the D-brane is close enough to the boundary, the solution for the string profile does
not change—we simply truncate the string at the location of the D-brane.

Before we consider the energy emitted from the quark as it moves through the plasma,
we can first ask about the drag force it experiences. The quantity of interest is the flow of
spacetime momentum down the y-direction of the string worldsheet. Since this momentum

is conserved by the string dynamics, the flow is actually independent of y.

dpy a 1
AP = —/Idt V=gPY, = %At P, = —%G,uyaaXu (2.27)

dpy/dt is precisely the drag force:

2 2
podp_ VIV my (2.28)

t 2m \/1—1}2.
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Provided that the quark mass is sufficiently large as not to be dominated by thermal effects,
so that the usual relativistic dispersion relations hold, the last term in (2.28) is simply the
quark’s momentum, so we can immediately integrate to obtain the momentum as a function

of time:
—t/to 2 m
?

p(t) = poe to = mﬁ : (2.29)
RHIC-relevant values for the temperature and coupling are T = 318 MeV and A = 10. (We
choose this particular value of the temperature for later convenience, since 3187 ~ 1000, and
since it is reasonably close to observed values.) Consequently we find that to = 0.6 fm/c for
charm, and ¢y = 1.9fm/c for bottom, both of which are much less than the typical lifetime
of the QGP, tqgp =~ 6 fm/c. Hence we might say that quarks in our N = 4 SYM plasma are
efficiently quenched. That said, the effect is overestimated, since this temperature is more
or less the maximum plasma temperature at RHIC. Furthermore, the plasma expands and
cools over time, further reducing the quenching effect.
Nevertheless, there is clearly a considerable amount of energy lost in the first moments
of the quark’s motion through the plasma. With some further insight for the magnitude

and direction of this energy loss, we might be able to make some more substantial claims

regarding the role of stringy effects in RHIC’s Quark-Gluon Plasma.
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Chapter 3

The Stress Tensor from a

Plasma-Quenched Quark

So far, we have argued that a gravity dual description of a quark moving through a thermal
Yang-Mills plasma is an efficient means of computing physical observables, such as the
characteristic jet quenching time. A number of other papers [31, 29, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43] have also used AdS/CFT in related ways to describe energy
dissipation from a moving quark.

In addition to knowing the amount of energy that gets dissipated, it is also important to
understand where that energy goes, namely, what the stress-energy tensor is in the boundary
gauge theory. It was observed in [27, 28] that (T}, ) is calculable via AdS/CFT but requires
a technically non-trivial analysis of graviton perturbations in AdSs-Schwarzschild. The aim
of this rather technical chapter is to develop the relevant equations and solve them, both
in limits that are analytically tractable and through use of numerics for selected values
of the velocity. We will closely follow the work described in [44]. Section 3.1 comprises a
derivation of the equations. The linearized graviton equations are stated in full at the end of
section 3.1. Section 3.2 includes solutions of the equations near the boundary and near the
horizon of AdSs-Schwarzschild, as well as expressions for the stress tensor in the near-field

limit. A boundary-value problem in classical five-dimensional gravity is stated at the end

27
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of section 3.2.2 which determines (7,,,) in the boundary theory. Section 3.3 presents the
results of numerical work, and section 3.4 is devoted to discussion of the possible relevance
to jet-quenching in relativistic heavy-ion collisions.

The reader wishing to skip all the five-dimensional technicalities and see the “answers”

may skip directly to section 3.3 with the following definitions and conventions in mind:

¢ Wave-numbers K = (K1, K2, K3) are rendered dimensionless by including a factor of

zg = 1/7T.

Usually we set K3 =0 and Ko = K; > 0.

Often we refer to K = 4/K? + K? and 6 = tan™' (K, /K1).

(TK ) is the K-th Fourier coefficient of the co-moving part of (Tyy,) in the 3 + 1-

dimensional boundary gauge theory: see (3.41).

tot
mn

is a dimensionless quantity proportional to (T'X): see (3.35).

Using symmetries and conservation laws, the non-zero components of Q% can be

expressed in terms of three complex quantities Q%*, Q%*, and Q%*: see (3.30).

o Q%% is the easiest quantity to interpret, as it is directly proportional to (Td), the

K-th Fourier component of the energy density.

. Q)Ig for X=A,D,or Eis Qg?t with the Coulombic near-field of the quark subtracted
away: see (3.61). Note also that the inhomogeneous term py,, in (3.30) amounts to

far-field subtraction in the definition of both Q%* and Q%.

3.1 The graviton equations of motion

The relevant part of the action for supergravity plus the string is

S=/d5x [M(R-l- 12/L2) _2730//6120\/—_965(93“—)(“(0)) , (3.1)

2
2KE
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where L is the radius of AdSs. Typically this action also includes a scalar, massless dila-
ton field, but we have excluded it from (3.1) because it decouples from the metric at the
level of linear perturbations around the AdSs-Schwarzschild background. To reiterate, the

gravitational background of interest is

2
ds%o) = GELOV)d:c“de =

hdt2 -2 2 dy2 _ 4
zHy2 — t +d(L +ZHT h:].—y ; (32)

and the position of the string can be described in static gauge as

X”(t,y)E(t X't,y) 0 0 y)

: 3.3)
H 1—1 ) 1+y (
X(t,y) = vt + _ _ZHU Y ilog—TY)
(ty)=vt+&(y) &) PE logl iy+z 08 T

By varying (3.1) with respect to the background metric G, we obtain the following five-

dimensional Einstein equations

where 9 \/_
w o _ Ky 2 5 m naa yv
- oo d’c (2" — XH)0, X109 X
V=G (3.5)
K Z
= — T TSR0 — vt — £())3(a)8(2%)Ba X PO XY

is the stress-energy tensor due to the string, expressed explicitly in static gauge in the

second line. If we perturb
G = Gf?,,) + By (3.6)

then, schematically, the form of the linearized equations following from (3.4) is
Apgsht’ = 7H (3.7)

where W = G% G(8)heo and Aggs is a variant of the Lichnerowicz operator.
The stress tensor 7 depends on z! and ¢ only through the combination z! — vt. Thus

we can expand

&K T i[K1(a! ~vi)+Kaa?+ Ksa®] /2 (3.8)

TNV(t,xl’xz,x-?"y)_—_ (27{')3 K y)C
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(Note that K = gk =k /7T is dimensionless.) If our interest is the co-moving graviton
response, we can make a similar expansion for h,,. Then, again schematically, one obtains

from (3.7) a set of coupled ordinary differential equations in y:
e = AR — i =0, (3.9)

It is these equations which we wish to formulate more precisely and then solve. Note

that although the Fourier modes 7§~ and hf are complex, they satisfy conditions like

pv (

T_K == NV)

Tr )* that ensure the position space quantities are real. From the asymptotic
behavior of k% near the boundary of AdSs-Schwarzschild one may extract the K-th Fourier
mode (TX ) of the co-moving contribution to the stress tensor. A detailed discussion of the
extraction of (TX ) is deferred to section 3.2.1.

The rotational symmetry around the axis of motion of the quark enables us to choose
K= (K1,K,,0) with K| > 0. The remaining symmetry is a Zo sending 23 — —z3. The

metric perturbation can be parametrized as

(HOO HOl H02 H03
HlO H11 H12 H13
1L
W omal /T — 02 24y Hy Hz Hyp H
H30 H31 H32 H33

(3.10)

o o o O

\o 0o 0o o o

The vanishing entries represent a gauge choice which we will refer to as axial gauge. The

K-th Fourier mode of the string’s stress tensor is

h+ v2y? v v2y?
Z%‘I_h?—y—— Z‘I‘Z{E 0 0 zZH ];'//
zi,% 2%1'02 0 0 szy2
w K% e—iK1€(W) /20 v 211
K = onal J1—2 L 0 0 00 0 ’ (3.11)
0 0 0 0 0
2,2
zHg—g— zgvy? 0 0 2 —h
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where £(y) is as given in (3.3).

Because (3.9) is an equation for symmetric rank-two tensors, it has 15 algebraically
independent component equations. Ten of these, namely €™ =0 with 0 <m < n < 3, are
second order, and the other five, £#5 = 0 with u unrestricted, are first order constraints.!
There are 10 dependent variables H,,,, so the full system £*” = 0 seems overdetermined.
But it isn’t: if the constraints are imposed at one value of y and the second order equations
are then solved, the constraints continue to hold automatically for all y.

3 causes the equations (3.9) to partially decouple.

The Z, symmetry that takes 23 — —z
The Zy “charge” of a component Hp,, of the metric perturbation is the parity of the number
of indices equal to 3. Similar charge assignments can be made to the equations £ = 0.
Thus for example Hpz and E3 = 0 are odd while H33 and £% = 0 are even. The three
odd second order equations of motion and the one odd constraint equation involve only the
odd variables, whereas the seven even second order equations and the four even constraint
equations involve only the even variables. Moreover, only the even equations involve non-
zero components of the stress tensor (3.11). So it is consistent to set all the odd variables
equal to zero from the outset. In the interests of generality, we will not do this yet, but

rather consider how the equations may be further decoupled.

Briefly, we make the following definitions and find the following differential equations:

K
K=1/K}4+ K> @=tan"! FL (3.12)
1

A= —Hyq + 2cot Hys — cot? 0Hog + csc? 0 Hss (3.13)
202
! K2 .
[35 + <‘§ * %) Oy + Gz (v cos”0 = h)] e A (3.14)
Yy
Hos Hy3 4 tan§Has
B]_ = m BQ == —Tfuz (3.15)
3 2 2
_3 0 K?2 [—h v“cos*Oh B 0
G a+3s 'l = (3.16)
0 -%+bh— -1 v2cos?d B, 0

"We associate y with u = 5. There is no coordinate associated with x = 4. This convention serves as a
reminder that y is the fifth dimension.
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(3.17)

(3.18)
(3.19)

(3.20)

1
(3.21)

1

(3.22)

Bl —hB,=0
—sin O Hy3 + cos 0 Hog
C =
K
o2 + —§+11—I —i——If('UZcoszé)—h) C=0
Y vy h h2 -
Hy — cot 0Hyo —H11 + 2cot 20 Hys + Hog
D= ——————= Dy =
2v 202
3 2 [ _ 2 a2
g+| Y R i | N e P
0 -3+ %l h -1 v2%cos?6 D,
y
' / y® K16/
D; — hD, = —=—¢ ""16/2H
! 2 iUK1e
1 3 Hyy + tan 6 H
Ey = 3 <—EH00+H11+H22+H33) E; = W

_ Hyy + Hyp + Hss

_ —Hyy — Hag + 3¢cos26(—Hyy + Hag) + 2Hsz — 6sin 260 Hy9

E3 5 Ey 1
(3.23)
3, 3K
-y +355 0 0 0
0 -3 0 0
85 + v 28
3., W
0 0 34k 0
3, K
_ 0 0 o -ii%
—2h  120%cos?6 6v?cos? 0 + 2h 0 E;
K2 0 0 2h h E
+ o | 329
0 0 —2h —h E3
2h  —12v%cos® 6 0 3v2cos’ 0+ h Ey
’U2
142
—_ ge—iKlﬁ/ZH 1
h ~1+v?~ %2
143 cos 26
p? 14305260
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0 1 1 0
—h 0 —3v2cos?0—h —h |0y

h 0 2 0
Eq
0 —6h/ —3n 0
1 E,
T 18v% cos? Oh’ 3(3v% cos? 6 + h)I 0
Ej
2K%yh  —~12K%0%ycos?§ —2K%y(3v?cos?0 —h) 2K2yh
Ey4
—ivysec
I K
= me—’ 18/t 3ivy cos 6(v? + h)
K(v? — h)
(3.25)

‘Let us summarize the salient features of these equations:
e The 15 equations £# = 0 split up into five sets, decoupled from one another.

e The B and C sets (3.15)-(3.19) involve only the Zg-odd components of the metric,
and so it is inevitable that they are homogeneous. We may set By = By = C = 0 and

focus on the A, D, and E equations.

e The A equation (3.14) happens to be identical to the dilaton equation of motion up
to a factor multiplying the source term, so we may borrow directly from [35] to find
its solution. The C equation (3.19) is also the same as the dilaton equation except

that it is homogeneous.

e The B and D equations, (3.16)-(3.17) and (3.21)-(3.22), are identical except that the
former are homogeneous and the latter are not. Each set involves one constraint and

two second order equations of motion.

e The F set (3.23)-(3.25) involves four second order equations of motion and three

constraints.

e The total momentum K enters the equations of motion only as a multiplicative factor
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on the non-derivative coefficient matrices and through the source terms. Elaborations
of the WKB method may therefore be suitable for approximately solving the equations
at large K, and series solutions in K may be used at small K. Section 3.2.5 includes

further discussion of small K approximations.

3.2 Analytic approximations

Although the discussion at the end of the previous section allows us to set the three odd
H,., to 0, and correspondingly B; = By = C = 0, we sometimes refrain from doing so in
the following discussion of limiting forms of the equations.

Our general procedure will be as follows: First we will find exact solutions to the 10
second-order ODE’s near both the boundary of AdS (y = 0) and the horizon (y = 1). We
will find that within each set of equations, there is precisely one non-vanishing oscillatory
solution, and by symmetry, there must be both a positive and negative frequency solution.
One of these corresponds to a wave falling into the black hole, and one corresponds to a wave
coming out of it. The outfalling wave is non-physical: Coherent, semi-classical information
can not come out of a black hole. We must therefore choose our integration constants to
eliminate this solution.

Each set has n second-order equations for n gravitational perturbative modes, and n—1
first-order constraint equations. Thus, within each set, there are 2n integration constants
coming from the second-order equations. We fix those integration constants as follows:
We require each mode to vanish asymptotically at the boundary, fixing n constants. The
n — 1 first-order constraints, which are redundant to the equations of motion, amount to
requiring n — 1 various relationships between the integration constants, which we impose
at the boundary as well. This leaves us with a single integration constant in each set. We
then vary this constant at the boundary until we find the particular value that eliminates
the outfalling mode at the horizon. For some given v and K, this uniquely determines the
solution.

To do this, we first need to know how the solutions behave as we approach both the
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boundary and horizon asymptotically, so we can match our full numerical solutions onto

exact analytical solutions in each region.

3.2.1 Near the boundary

By solving the equations of motion in a series expansion in y one obtains the leading forms

P
X = —?Xy3+Q§?ty4+RX X =A,B1,B2,C,D1,Ds,FE,Es,E3,Ey, (3.26)

where

Py=Pp, =Pp,=Pp,=-Pg,=1 Pp =1+v>  Pg, =0v*3cos’d—1) 527)
3.27

Pp, = Pp, =Pc=0.
The Q% are integration constants related to the VEV’s of the stress tensor. The Rx are
integration constants which can be set to zero because non-zero values would correspond
to deformations of the gauge theory lagrangian. As noted above, the constraint equations
imply relations among the Q%"

sec @

Qtot Qtot — Qtot Qtot
0
Qi — 2Qit = U;;? Qi +2Q8 = (3.28)

3iv(1 +v?) cos b

tot tot __
(1 — 3v% cos 9)@ +2Q%, 5K

The meaning of the equations (3.28) becomes clearer in terms of the original variables H,,,,

whose series expansion near the boundary of AdSs-Schwarzschild includes the leading terms

P
Hypp = g‘" ¥3+ QR yt + R - (3.29)

tot

P, QS, and Ry, are linear combinations, respectively, of Px, Q'%t, and Rx, as can be

deduced by inverting the relations (3.13), (3.15), (3.18), (3.20), and (3.23). In particular,

after setting Zp-odd quantities to zero and using (3.28) to eliminate Q¥5¢, Q%f, Q%*, and

tot : tot tot — tot tot tot :
Qg, in favor of Q% Dy = , and Qg %', one obtains

:3:1 = aan%t + dantBt + eantEOt + Pmn (330)
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where
0 0 0
24in20 |0 —2sin?0 sin20 0
v 8in“ 6 81
(amn) =5 (3.31)
0 sin20 —2cos?d 0
0 0 0 2
0 4sin’d  —2sin20 0
v | 4sin?@ —2vsin®20 wvsindd 0
(dmn) =3 (3.32)
—2sin20 wvsin40  2vsin®20 0
0 0 0 0
—4 dvcos? 2v sin 26 0
1 | 4vcos? 8 deqq (1 — 3v2 cos® 0) sin 20 0
(em") T4 : 2 .02 0Y
2usin26 (1 — 3v?%cos? 6) sin 26 degy 0
0 0 0 —2 4+ 202cos20) (333)
el = % [~1+ (1+v?)cos® § — 3v? cos* 0]
e = —;— cos® §(—1 — 20* + 3v® cos® 0)
0 2v 2utan g 0
( ) ivcosf v -3+ 12+ (1-3v*)cos’d [-2+ (1 — 3v%)cos? 0] tan¥ 0
" 4K | 9ytand [-2+(1—3v?)cos?6]tand 2 —2v% — (1 — 3v?)cos? @ 0
0 0 0 1+ 02
(3.34)

The Q% are integration constants which are proportional to entries of (T:X ):

mn
w374 /g% N
() = —2—=5— Qi (3:35)
V1—w

What we mean by (TX ) is a co-moving Fourier coefficient of the quark’s contribution to
(Tmn). The overall factor in (3.35) can be determined through first principles along the
lines of [45], but we find it more instructive to obtain it heuristically by considering what
may seem at first to be a digression: AdSs-Schwarzschild in axial gauge.

Defining a new radial variable ¢ through

2

2 q
= —— ,3
y 1+q¢%/4° (3:36)
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one finds that the line element (3.2) becomes

2
ds? = 2L (—dt? + d7* + 23dg?) + hy,dztdz”
“He (3.37)
B = 2L giag {[324/4 111
l.l,l/ 4 2 1 + q4/47 b) b 3 .

This is indeed an axial gauge description of AdSs-Schwarzschild because h,o = 0; note
however that (3.37) is an exact rewriting of (3.2).

On general grounds, the stress tensor of the boundary theory must be proportional to
the coefficient of ¢* in hy,. But in the case of AdSs-Schwarzschild, there is a pre-existing

determination of the energy density and pressure based on [25]:

2
-§ =p= 7—T8—~N2T4. (3.38)
Therefore we conclude that
(Trn) = §N2T4 lim 3—L28 (@Phmn) . (3.39)

Returning to the setup with a string dangling into AdSs-Schwarzschild means that on top
of the “perturbation” h,, that deforms AdSs into AdSs-Schwarzschild we must add an
additional perturbation, namely the h,, whose Fourier coefficients are given in (3.10). The
result (3.39) applies unchanged, except that the limit exists only after certain divergent
delta-function contributions have been subtracted. After using (3.29) and the standard
relations

N2H§ — 47T2L3 - gYMN (340)

one obtains

2 BK | 2
(Tin) = 5 N°T* ding{3,1,1,1} + / s (T O st talen - (3.41)

where (TX ) is indeed given by (3.35).
Because Ty, is conserved and traceless (the latter due to conformal invariance), one

expects that K™Q% = 0 where

Km:(vlﬁ K, K, 0), (3-42)
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and also
tr QPF = — Qb + QIot 4 Qlot 4 Qiet = (3.43)

The tracelessness condition (3.43) is indeed satisfied, but conservation fails: instead,

(KmQtot)=%’(u -1 0 0). (3.44)

The result (3.44) is independent of Q4, @p, and Qg: that is, only the last term in the
decomposition (3.30) fails to be conserved.

The non-conservation (3.44) could have been anticipated. It is the manifestation of the
energy-momentum imparted by the quark to the thermal medium. The quark is prescribed
to travel with constant velocity, so it does not slow down as it loses energy-momentum.
The non-conservation (3.44) should precisely reflect the external force required to keep the
quark’s momentum from changihg, which is minus the drag force (2.28). This argument is
formal because the quark’s mass is infinite, hence so is its momentum. But changes in the
momentum, and therefore forces, can be finite. To verify that (2.28) can be recovered from

(3.44), consider some finite region V of R3. The external force on this region is

Fi=d d3 (T + ¢ d?any(TY) = / d3x O (T™) . (3.45)
dt ov v
Here and in the following, ¢ and j are three-dimensional spatial indices, while m and n are
3 4 1-dimensional Lorentz indices. The first term in the middle expression of (3.45) is the
rate of change of momentum in this region, and the second term is the rate of escape of
momentum through its boundaries. Using (3.41), one obtains

F] /d3 / ——— ‘ Tm]> [ (1——vt)+K2:z:2+K3m3]/zH
(2m)* 2 (3.46)

Km:<—-UK1 Kl K2 K3)

The expression for K™ in (3.46) is equivalent to (3.42) except that we have not specialized
to Ko = K| >0 and K3 = 0. Now take the limit where V covers all of R3 so as to obtain

the force on the whole system. Performing the z integral first, one obtains

FI =322 | 3K K (TTYe WK1 §(K)6(K2)6(K3) = i2% lim K (T 3.47
H K HI? 0 K
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where we have anticipated that Km(T}?j ) has a smooth limit as K — 0. Indeed, using
(3.35) and then (3.44) we arrive at
2 /.2 /2
Fl = im lim K, Q™ = i gYMNT2 Y (3.48)
1-v2 Ko 2 V1-—1?

As promised, this is minus the drag force (2.28).

To restore conservation of T,,, one may add to it a “counterterm:”

Ton = Tonn + T (349)

where, after passing to a co-moving Fourier description,

3T4\/ Q%MN

mK _ _qemppK oy _ W7 (3.50)
K Tmn =-K <Tmn> - 9 \/1——_—7}—2 (’U -1 0 0) .
A solution to (3.50) which is also traceless is-
Tos Tof i ™ T \ GemN [1+02 —20 .
K gr| 2 (1-2)32 2 %51
To T -2v 14w
with other components of 7,X, vanishing. Using
PK 1 ik (oot Ko +Kao® . 2 p1 2\ 5/.3
/'(27)3‘[—{—;61[ 1z ’U) 2 3T ]/ZH = ’LZHG(CL‘ - 'Ut)(S(IL‘ )5(1‘ ), (352)
one finds
Ton T 7TT2\ /g%, N 1+v2 -2
00 Jor) _ —;—-%B(xl — ut)6(22)8(z%) . (353)
Tio Tin (1 —v%) —2v 142

It would be cleaner if 7,,,, had delta function support at the location of the quark, but this
does not appear to be possible: 7% would then be analytic in K; and K, and there are
no analytic solutions to (3.50). The form (3.53) of the counterterm indicates an unphysical
“string,” wholly in the boundary theory, that pulls forward on the quark to counteract the
drag force.

The upshot of this somewhat extended discussion is that the original non-conserved
form (3.30) captures the dynamics of dissipation and is non-conserved because it leaves out

the external motive force that keeps the momentum of the quark from decreasing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.2 Near the horizon

40

Near the horizon of AdSs-Schwarzschild, and for vK7 # 0, the leading approximations to

solutions to the equations of motion (3.14) and (3.21) are

K
-2~ (m—log4)

A= Emy 9 T R U )T gt (354
-T2
D _iwKy (m—log4) 1— . ’U2 COS2 6
= T [T g )
D, 4 (1 - le) SD2 1
1 up, (1 —y ;
+ 7% (1—y)+Up (=9 (1 y)wFast (3.55)
tp,
+Vp UDl(]' - y) (1 _ y)ivK1/4
. ‘
i wky 4K?2 vk \?
"2 T UK ( 4 )+ (vEKy)* ( 4 ) (3.56)
. K2 wn — — wKq _ 1wk .
P26+ K2 T TiomEL T RE
E]_ 1 1 %Ki?vz 3(4+K%’U2)
v K
Bl _wetBobn ol | SH e | K0 | T 0
B | 260 (1+25%) |1 1 0 PV ak(1-y)
E, 0 -9 0 —8K*(1-y)
K3v?log(l — y) 1 3(4+ Kiv?)
T(G) 0
LT +1® + 2
0 0 TV 146+ KH)(1-y)
3 3K°(1~y) ~8K2(1 - y)
0 0\
—ivK1 /4 0 wK1/4
+ Ug(1 — y)~ ™K + VE(1 —y)*™
0 0
1 1
(3.57)
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) are integration constants. Near-horizon solutions to the

In these solutions, Ux, Vx, and T)((i
B and C equations are identical, respectively, to the D and A solutions (3.55) and (3.54),
except that the particular solutions are zero.

For each set of equations, the solution multiplied by Ux is infalling (meaning that
gravitons are falling into the black hole), while the solution multiplied by Vx is outfalling.
The solutions multiplied by T)(é) are neither infalling nor outfalling but can be categorized
by their regularity properties at the horizon. The standard boundary condition imposed at
a black hole horizon is that outfalling modes must vanish: Vx = 0for X = A, B, C, D,
and E.

The constraint equations (3.22) and (3.25) imply
O O _ O _ ) _ g, (3.58)

The solutions in (3.55) and (3.57) multiplied by Tg ), T}(;), and TI(;) are in fact exact
solutions to the equations of motion for all 4. Note that the exact solutions do not overlap
with the ones removed by (3.58). This suggests that in the coupled systems of equations
of motion and constraints for D; and F;, it may be possible to make further reductions of
order. We have not pursued this avenue, but it might facilitate future numerical studies.
To further understand the boundary value problem that determines (TX ), it is useful

to again review the counting of integration constants, constraints, and boundary conditions:

e The ten second order equations of motion have 20 constants of integration which must

be fixed in order to specify a unique solution.

e Ten constants of integration are fixed by requiring Rx = 0 at the boundary (no
deformations of the gauge theory). The other ten are the Q%*, which are linear

combinations of entries of (TX).

e Five relations among the Q%" follow from imposing the constraints at the boundary.

e Five more boundary conditions must be imposed at the horizon to suppress the out-

falling solutions.
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Evidently, the number of constraints plus boundary conditions equals the number of inte-
gration constants in the equations of motion. So the boundary value problem is well posed.
All the integration constants are complex, and the constraints and boundary conditions are
too.

Similar counting of integration constants can be done after dividing the equations into
the decoupled sets, A through E. Let us include this counting in a summary of the numerical
algorithm we used. In the A set, one must impose R4 = 0. If we supply in addition an ad
hoc value q for Q%*, then Cauchy data has been specified at the boundary. More precisely,
approximate Cauchy data can be specified at a finite but small value y = yy by setting
Ra = 0 and Q%* = g equal to its ad hoc value and using (3.26) to determine A(yp) and
A'(yo). The second order equation of motion (3.14) can then be integrated numerically to
y = y1, where g is close to 1. The numerical solution can then be fit to the asymptotic
form (3.54), and values of Uy and V4 can be extracted. Because all the equations are affine
(meaning linear with inhomogeneous terms), V4 (as well as Uy4) is an affine function V4(q)
of the ad hoc value we supplied for Q%*. The equation V4(g) = 0 may easily be solved for
the physically meaningful value of Q%*.

For the D and E sets, the situation is only slightly more complicated. After setting
Rx = 0 (see (3.26)) and imposing the constraint (for D) or constraints (for E), there is
only one degree of freedom left at the boundary, which we can fix by supplying an ad hoc
value for the quantity Q%* or Q% that enters (3.30). Cauchy data for the equations of
motion can be generated at y = 1y, and after numerically solving the equations of motion,

the integration constants T )((i), Vx, and Q%" can be extracted by matching numerics to

horizon asymptotics at y = y;. To determine Q%® or Q¢ one solves an affine equation
Vx(g) = 0. It would have been numerically more efficient to eschew one of the equations
of motion in the D set and all but one in the E set in favor of the first order constraint
equations. But we found it a useful check of numerical accuracy to evaluate at y = y; the

T)((i) which are required by (3.58) to vanish.

The method of obtaining an affine function at the horizon by first specifying Cauchy
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data at the boundary was described in [46] for graviton perturbations in AdSs-Schwarzschild

in the absence of the trailing string.

3.2.3 Large K behavior

The large K behavior of Q! is dominated by the near-field of the quark. For v = 0,

mn

this field is entirely color-electric, and it is perfectly Coulombic because of the conformal
symmetry of A" = 4 super-Yang-Mills theory. These observations alone, together with the

radial symmetry and the conservation and tracelessness conditions, fix the v = 0 form of

tot

o Up to an overall prefactor:

2K? 0 0 0

near __
mn T

(3.59)

TR

K

p 0 K:+K? -KiKy -KiK;
0 -KiK» K}+K? —KK3
0

—-K 1 K3 —-K>K3 K12+K§
In section 3.2.4 we explain how to fix the overall prefactor in (3.59).
pear for v # 0 can be obtained by applying a Lorentz boost to (3.59). After this is

mn

done, one may define

anz tot _ near (360)

mn mn °

Then QX, — 0 as K — 00.2 More useful in section 3.3 will be the equivalent forms
Q§ = Qg(()t - Qr)l(?ar X=ADE (361)

where

near __ near_ﬁm near_ifﬁ2+vz(1—3cos20) 9
@i =Qp" = 16 1 - v%cos*6 E 794 A —-2cos20 (3.62)

Recall that Qp = @p, and Qg = Qg,. To derive (3.62) one must compare the conserved

terms in (3.30) with the Lorentz-boosted version of (3.59), with K3 = 0 and K2 = K| in

the rest frame of the thermal plasma.

2Actually, QX,, can be arranged to have an arbitrary I—('-independent limit for large K by adjusting the
choice of particular solution. This corresponds to adjusting a subtraction scheme for the infinite self-energy
of the external quark. The form of solutions specified in (3.29), where the particular solution is assumed not
to have a quartic term, is a sort of holographic minimal subtraction scheme.
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3.2.4 Normalizing the near field

The prefactor can be fixed by observing that the equations (3.9) for v = 0, h = 1, and
£ = 0, as appropriate for a static string in AdS5, can be solved for K| = 0 by setting all
the Hy,, = 0 except for Hog, H11 = 2y3/9, and Hoe = Hsg = Hgo/2 = —2f/3, where f(y)
satisfies

[aj - zay - K%] f=uy. (3.63)
This is precisely the equation satisfied by the K; = 0 Fourier modes ¢~SK of the dilaton
sourced by the same static string configuration: see (17) of [35]. Although (3.63) is non-
trivial to solve directly, position space methods are available to extract the dilaton profile
[47]). From them one can Fourier transform back to find Bx = w|K1|/16, where By is

defined through the asymptotic behavior

. 3
ox = ~%— + Bry*. (3.64)

From Hgyy = —4f/3 it follows that Qf$* = —4Bx/3; hence the prefactor in (3.59). Com-

paring (23) of [35] to (3.35) above, one may conclude that

{Too) = §<0F2> : (3.65)

This is a positive quantity because Op2 ~ tr E? for the static quark. We do not know how
to account for the factor of 4/3 in (3.65).

It is instructive to examine the same static quark solution using the equations (3.13)-
(3.25). Taking h = 1 and ¢ = 0 in these equations poses no difficulties. K| = 0 means
6 = 0, which appears to lead to difficulties in (3.13) and (3.20) (the definitions of A, D;, and
Dy in terms of Hy,,). But the inverse relations expressing Hp,, in terms of the ABCDE

variables are entirely non-singular in the limit K, — 0: they read

2 2
Hopo=—zE1+5E3  Hy =20E,

3 3

2 2

Hypy =0 Hy = -:,;Ea - §E4
O (3.66)

Hyp=0 Hy = -E3+ -E;4
3 3

2 1
Hsiz = - FE —~Fy.
33 3 3+3 4
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We have omitted expressions for the Zg-odd components of the metric in terms of B; and
C because all these quantities vanish in the solution we’re interested in. The equations of
motion and constraints for A, D;, and FE; are also non-singular in the limit K| — 0. The
equations of motion and constraints for A and E; are non-singular if one additionally takes
v — 0, but the constraint for D; is not. Therefore in (3.67)-(3.71) we partially quote and
partially solve the equations of motion and constraints for A and F; after having set v =0,
but for D; we keep v finite. v
[a; - Say - K%] A=y (3.67)

takes precisely the same form as (3.63).

4 . 4
1y v Yy 1

D= - D, = - - 3.68

1=t T 2 d1+4K1v(1—v2) (3.68)

is the general solution of the D constraint consistent with the requirement that D; — 0'as

y — 0. The function d; satisfies

3

o2 — gay + K31 -v*)|d1 =y, (3.69)

which takes the same form as (3.63) except for the replacement K1 — K1v'1 — v2.

4 y° 2 Y 2 293
Ei = —e;+ L Ey= —Fs=2¢ — 2 Ey=—Z¢ — =2 3.70
1 361 9 2 3 361 9 4 361 9 ( )

is the general solution of the E constraint consistent with the requirement that E; — 0 as

y — 0. The function e; satisfies
2 3 2
[(‘)y - gay - Kl] er=y, (3.71)

which again is precisely the same form as (3.63),

Because (3.66) involves only the FE;, it was superfluous to explicitly solve the A and D;
equations in (3.67). But it is a worthwhile check to ensure that the quantities D;, though
singular in the limit v — 0 (as well as in the limit K7 — 0), cause no problems for H,,.

Indeed one recovers the results for Hy,, stated briefly around (3.63).
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3.2.5 Small K behavior

A series expansion in small K allows some progress to be made on solving the equations of

motion. We will first focus on the simplest case, namely the A equation. Plugging

A=a0+Ka1+K2a2+... (3'72)

into (3.14), one can find the differential equations satisfied by each a;. The first three are:

3
Yy, h y
Wayﬁayag = E
3
Yy h .y cos €
'ﬁayﬁayal = -—’LE P (373)
y_38 ﬁa _ Y cos 6 2_v200820—ha
VBV T T g h2 0-

Evidently, these equations are solvable through repeated integration. Integrating ay is easy,
and after matching to the boundary asymptotics with R4 = 0 and the horizon asymptotics
with V4 = 0, (both suitably expanded in K') one obtains |

3 4

1 1 oy, b, 1—iy ¥y 7
_ 1 1 i __ Y.y 3.74
ap 2log(l—l—y) 4log(1—|—y)+4log1+iy 3+4+O(y), (3.74)

which implies Q%* = 1/4+ O(K). Higher order corrections to Q%* can be found by solving
the corresponding differential equations for each of the «;’s, and matching the solutions to

the horizon and boundary asymptotics. To order O(K?) we have obtained

1 ilog?2 K?
Q" = 7 — “ZvKq + o5 (67 — 1210g2) [sin? 6
1”78 192
(1o 0 N 271'2 _ 12(10g 2)2 0 9:' N O(KB) (375)
Y e —1210g2 ) '

A similar analysis can be carried out for the D and E sets. For the D set, for example, one
first writes down series expansions in K for the second order differential equations (3.21),
and solves for the corrections to D and Ds iteratively. By imposing the constraint (3.22)
and by matching, at each order, the small K solution to the boundary asymptotics with
Rp, = Rp, = 0 and to the horizon asymptotics with Vp = 0, one can then solve for the

four integration constants and the corresponding corrections to Q%¢, Q%:, Up, TS ), and
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Tg ). To linear order in K , we find

tot isecd sec? —4v? K secd 2 9
= - - 1+ (2log2 ¢
@0 =LK 167 T gaos L1 T (2logDvicos (3.76)

— (8log 2)v* cos* 9] + O(K?).

Similarly, for the E set, we find

tot _ 3iv(l+v?)cosd 3v? cos®  [2 + v* (1 — 3cos? 6)]

= - O(K
@5 2K (1 — 3v2cos? §) 2 (1 — 3v2 cos? §)? +OK)
_ 3iv(1 4 v?) cosf 1 +O(K) (3.77)
2K (1-30%c0s?0) (1 — 2E2) ~ ivK cos

The striking feature of the expression is the singular behavior at § = cos™1(1/vv/3), which
is the Mach angle. From this we may conclude that there is a sonic boom in the thermal
medium involving large amplitude but small momentum fields. In the second expression,
we have sho;zvn how the O(1) term may be “resummed” into the leading O(1/K) expression

so as to blunt the singularity into a form resembling a Lorentzian lineshape.

3.3 Results of numerics

Let us briefly recap the five-dimensional gravitational calculation that has been our main
focus so far. The trailing string of [27, 28] sources the graviton, which propagates classically
in AdSs-Schwarzschild with purely infalling boundary conditions at the black hole horizon.
The graviton’s behavior near the boundary of AdSs-Schwarzschild determines (7)) in the
boundary gauge theory. Thus (T,,) is a shadow (other authors might prefer the term
“hologram”) of the trailing string. See figure 3.1.

Our aim is to describe (T}ny,) in the boundary theory. We will focus on Fourier coeffi-
cients Q§ for X = A, D, and E. As reviewed at the end of section 4.1, these quantities are
Fourier coefficients of linear combinations of entries of (Tjn,) with a near-field subtraction.
Our numerical algorithm is outlined at the end of section 3.2.2. It was implemented primar-
ily using Mathematica’s NDSolve. To achieve good accuracy, it was necessary to develop

asymptotic power series solutions to a considerably higher order than shown in sections 3.2.1
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Figure 3.1: The AdSs-Schwarzschild background is part of the near-extremal D3-brane,
which encodes a thermal state of A’ = 4 supersymmetric gauge theory [25]. The external
quark trails a string into the five-dimensional bulk, representing color fields sourced by the
quark’s fundamental charge and interacting with the thermal medium.

and 3.2.2. Experience as well as common sense suggest that large K regions become more
numerically challenging. We believe we have adequately met this challenge, partly by allow-
ing arbitrarily many steps in NDSolve and calculating with a working precision of 30 digits
(i.e. roughly twice the standard double precision of modern PC’s). Another challenging
region is small Kj, where the outfalling and infalling solutions are nearly constant until y
is very close to 1. Experience suggests that at most a narrow region with K; <« K| is
problematic.

We found excellent agreement between the numerically computed Q%' and the ana-
lytical approximations Q% for large K and for X = A, D, and E. Only the subtracted
quantities Q¥ = Q%' — Q%™ appear in the plots in figures 3.2-3.3. For Q¥ and Q¥ we also
found excellent agreement with the small K asymptotics (3.75) and (3.76) in the expected
ranges. For Qg , the nearly singular behavior near the origin is difficult for numerics to
capture. This difficulty shows up in the ragged contours in figure 3.4c,d. The problem is

not numerical error in evaluations of Qg at individual points; rather, the ragged contours

in figure 3.4c¢,d are due mostly to imperfect interpolations over a grid of limited resolution.

Indeed, individual evaluations of Q{E{ for K = w/K% + Ki = 0.08 agree with the small K
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a) Re Qa(Ki,Kp) for v=0.95 b) -Im Qa(Ki,Kp) for v=0.95 ¢) Kp |Qa(Ki,Kp)| for v=0.95
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Figure 3.2: Contour plots of Qf , Qg , and beg for v = 0.95. The darker regions are more
positive. All components of (TX ) can be deduced from Q%, Q¥ and Q¥ using (3.30),
(3.35), and (3.61). All three Q% go to zero at large K. The momentum vector K = E/nT
can be read in GeV/c if one chooses T' = 318 MeV: see (3.78). The range of momenta in
each plot was chosen to show the most distinctive structures. The boxed region in (i) is
plotted in more detail in figure 3.3c.
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a) Kp|Qe(Ky,Kp)| for v=0.75 b) Kp|Qe(Ki,Kp)| for v=0.9

d) Kp|Qz(Xy,Kp)| for v=0.99

Figure 3.3: Contour plots of K| |Q§ | for various values of v. Q¥ is proportional to the K-th
Fourier component of the energy density after a near-field subtraction: see (3.30), (3.35),
and (3.61). The phase space factor K| arises in Fourier transforming back to position space.
The green line shows the Mach angle. The red curve shows where K LIQg | is maximized for

fixed K = 1/K} + K2. The blue curves show where K| |QK| takes on half its maximum
value for fixed K.

asymptotics (3.77) at the level of about a percent. A high-resolution plot of K, |Q¥| at
K =0.08 is shown in figure 3.5a. In this plot, the results of numerics are visually indistin-
guishable from the analytic form (3.77). Even in the coarser-grained numerical evaluations
of Qg shown in figure 3.4, agreement with (3.77) was good a distance 6K ~ 0.015 away
from the central ridge.

Two qualitative features visible in figures 3.2-3.3 are worthy of note. The first is the
high momentum ridges, which are most distinctive in figure 3.2c. This is the same feature
that was noted in [35]; indeed, Q¥ above is identical to Bx of [35]. High momentum
ridges are also present in Qg and QfEf . For v = 0.95 and v = 0.99, we find empirically
that Qf R 4Qg on the high momentum ridges. A more approximate relation for a similar
region of momenta is Q¥ = 3Q%.

The second feature worthy of note is the sharp structures at low momentum in fig-

ures 3.2g,h,i. A more detailed view of these structures is shown in figure 3.3. As we will
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Figure 3.4: Contour plots of K L]Qg | for various values of v at low momenta. The green
line shows the Mach angle. The red curve shows where K|Q¥| is maximized for fixed

K = \/K? + K%. The blue curves show where K |Q¥| takes on half its maximum value
for fixed K.

discuss in section 4.5, the lobes in figure 3.3 are suggestive of high angle emission of par-
ticles in energy ranges accessible to experiments at RHIC. The lobes become narrower
as one passes to small K , corresponding to momenta much less than the temperature:
see figure 3.4c,d. Low momentum is the hydrodynamic limit, so it is gratifying to see a
highly directional feature corresponding to a sonic boom. Figures 3.4¢,d thus serve as visual
confirmation of the appearance of a sonic boom that we anticipated based on (3.77). Fig-
ures 3.4a,b show what happens when the velocity of the quark falls below the speed of sound
1/ V/3 & 0.577 in the thermal medium. Evidently, there is still directional emission, but it
becomes abruptly less focused. The peak amplitude also decreases abruptly. Intriguingly,
the drag force (2.28) behaves completely smoothly as one passes through v = 1/+/3.

Readers wishing to examine our results more quantitatively are referred to [48].
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3.4 Application to RHIC physics

Because all the calculations in this chapter were carried out in the framework of five-
dimensional supergravity coupled to a classical string, the gauge theory results are accurate
only to leading order in large N and large g%, umN. Large ’t Hooft coupling is largely
inaccessible to standard techniques of finite-temperature quantum field theory, with the
important exception of lattice gauge theory. But finite-temperature lattice methods are not
well-adapted to real-time dissipative phenomena, in contrast to AdS/CFT, which provides
ready access to both static and dissipative properties. Moreover, the AdS/CFT prescription
for computing gauge theory observables is conceptually the same at all energy scales, giving
some advantage over hydrodynamical approximations that are best justified in the infrared
limit. So AdS/CFT occupies a unique niche in the range of tools available for understanding
strongly coupled gauge theories at finite ten’li;erature. Its principal drawback is that the
dual gauge theory is N' = 4 SU(N) super-Yang-Mills, which in some ways is quite distant
from real-world QCD. Within the limivté,tions that we have described, the calculation of
(Tinn) provides a fairly comprehensive description of dissipation from the heavy quark.
All possible gauge interactions are included, in particular secondary interactions with the
thermal medium of energetic particles radiated from the quark.

For the sake of definiteness, let us set
1
T= - GeV = 318MeV . (3.78)

We understand this number to be in the upper range of temperatures for the quark-gluon
plasma (QGP) produced at RHIC. It is a convenient choice for us because the K; and K|
axes in figures 3.2, 3.3, and 3.4 can then be read in units of GeV/c.

In [35] we suggested that the high momentum ridges might be evidence that the strongly
coupled thermal medium enhances fragmentation near the kinematic limit. But one of our
warnings was that one should compute (7},,) before making definitive statements. In light
of the pronounced directional peak in K J_|Q§ | at low K, we are inclined to regard the

high momentum ridges as less immediately important to attempts to compare string theory
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calculations to recent experimental results on jet-quenching. It is plausible that these ridges
are the expression in Fourier space of a sharp “prow” of color fields supported near the quark.
Moreover, we must bear in mind that at the typical energy scale E 2 10 GeV where the high
momentum ridges are pronounced, QCD is no longer particularly strongly coupled, so there
is less justification for a connection with the supergravity approximation in AdS/CFT.3

Our most striking results are the directional lobes in K| |Q¥|, as seen in figure 3.3. Re-
call that the factor of K is appropriate because it is the measure factor arising in a Fourier
transform back to position space after the azimuthal integral is performed. Recall also that
QX is directly proportional to the K-th Fourier coefficient (T&) of the energy density with
the Coulombic near field subtracted away, whereas Qf and Qg are combinations of com-
ponents of (TX ) and non-conserved terms: see (3.30), (3.35), and (3.61). From figure 3.3
we conclﬁde that in strongly coupled N' = 4 gauge théory af finite temperature, directional
emission from a hard probe is present, but not shafply foéused, at momenta several times
the temperature. This seems to us an intuitively appealing conclusion: Rescattering effects
broaden the directionality of the “wake” in Fourier space.

In figure 3.5 we show a small sampling of our numerical results in a format more sug-
gestive of a comparison with experimental results [50, 51] on the splitting of the away side
peak in di-jet hadron pair correlations. What we find attractive is that at momenta com-
parable to the window 1GeV/c < pr < 2.5GeV/c of transverse momenta for the partner
hadrons, there are broad peaks in the Fourier components (TO% ) of the energy density: see
figure 3.5¢,d. These peaks are not unlike the ones seen at A¢ ~ 2 in gold-on-gold collisions
more central than 60%: see figure 2 of [51]. They are quite different from the narrow peak
that we find at 80 MeV /c (figure 3.5a). At 80 MeV /¢, which is about a quarter the temper-

ature, a hydrodynamic description is probably justified, and we should interpret the narrow

$When hadron pair correlators are plotted with higher momenta windows for the hadrons, we understand
from an experimental colleague that the away side peak reappears [49]. The high momentum ridges might
be relevant to such correlators: forward emission is indeed what they imply. But it is perhaps more plausible
to attribute the reappearance of the away-side peak to away-side partons that have enough energy to punch
through the QGP with only modest deflection.
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Figure 3.5: K |Q¥| at fixed K = (/K? + K? as a function of angle, for v = 0.95 and
for various values of K. To facilitate comparison with di-jet hadron pair correlations, we
have parameterized the angle as A¢ = 7 — 0, where § = tan™! K| /K;. With the usual
assignment 7' = 318 MeV (see (3.78)), K can be read in units of GeV/c. In each plot, the
solid curve is from numerics; the dashed curve is the analytical approximation (3.77); the
green line indicates the Mach angle; the red dot is at the maximum of K, |Q%|; and the
blue dots indicate the points where K J_IQIE< | is half of its peak value.

peak as a sonic boom. The analytic form

K 7T3T4\/ 9y mN 3v(1 +v?) cos b 1
<TOO>: \/——2‘ %K oK 9 i +O(K)7
1-w ¢ (1 — 3v2cos?6) (1—%’}) — ivK cosf
(3.79)

which follows from (3.30), (3.35), and (3.77), is highly accurate in the infrared limit. One
can see from figure 3.5 that for v = 0.95, (3.79) loses validity around K = 1, corresponding
to 1 GeV/c. In the interesting region of 1 to a few GeV/c, (Tf) decreases significantly more
quickly with increasing K than the approximation (3.79) would indicate. This falloff may
be a positive feature in comparing to data.

Let us enumerate the reasons to treat with caution the connection we allege between
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our AdS/CFT calculations and the RHIC results on away side jet splitting.

1. Qg is the hardest quantity to compute of the three that we investigated: the system
of equations is more formidable, and the nearly singular behavior of Qg near the
origin makes numerical evaluations less stable. Moreover, our analytic approximation
(3.77) is not as precise as for Qf and Qg , meaning that we have less extensive checks

on numerics.

2. The A¢ in figure 2 of [51] is the separation in azimuthal angle, whereas in our figure 3.5
it is m minus the angle between the emission direction and the motion of the heavy

quark.

3. The broad peaks at A¢ ~ 2 in [51] are distinctive only after a subtraction related to

elliptic flow.

4. The peaks of di-jet hadron pair correlations are closer to A¢ =~ 2 than to the peak
angle A¢ =~ 2.4 in figure 3.5.

5. The experimental studies [50, 51] do not include heavy quark tagging, so most of
the away side partons are presumably light quarks or gluons. But perhaps, for high-
angle emission, what matters most is not the quark mass but simply the color current

associated with a hard parton.

6. After a parton leaves the QGP, it fragments, and then its fragmentation products
must be detected. We do not have the expertise to add these important aspects of

the physics to our calculations.

7. The QGP cools, expands, and hadronizes, and its equation of state changes with time
as a result. The conformal result ¢, = 1/+/3 is likely to be a reasonable approximation
only in the QGP regime, at temperatures significantly above the deconfinement transi-
tion. As remarked in [52], a steeper emission angle results from a time-averaged speed
of sound that could be as low as ¢; = 0.33. It might be possible to partially mimic

the changing equation of state by some deformation of AdSs-Schwarzschild, but it’s
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not clear that the result would have the same status as a first-principles calculation

that can be claimed for our analysis.

8. One of our many idealizations of the true experimental setup is that we replaced
the QGP by a thermal medium of infinite extent. This could mean that we are
exaggerating the effects of secondary rescatterings. It would be desirable to have
some position space representations of components of the stress tensor to address this

issue.

9. It remains a deep mystery when and why strongly coupled N' = 4 gauge theory
should be directly compared with real-world QCD. Doing so somewhat above the
deconfinement and chiral symmetry breaking transitions is clearly the best hope. But
we return to the basic conundrum: are near-extremal D3-branes merely an analogous
system to the QGP, or can they capture the dynamics sufficient precisely to be a
useful guide to RHIC physics?

It is clear from figure 3.3 that as one passes to higher momenta, the peak emission
direction becomes more forward, although at the same time the peak keeps broadening. It
would be interesting to compare the dependence of (TOIg ) on both the magnitude and angle
of K with two-dimensional histograms of pr and A¢ for partner hadrons.

As K increases beyond the range shown in figure 3.3, one eventually passes into the
region of high momentum ridges, which become more and more forward as v — 1.4 As we
understand the experimental situation, the away side peak reappears as one increases the
momentum window for the hadrons. An optimistic read of this situation is that AdS/CFT
calculations may have some relevance up to an unexpectedly high range of momenta; but
perhaps it is more reasonable simply to suppose that sufficiently high-momentum partons
can punch through the QGP without much deflection.

There have been other notable theoretical efforts to understand the splitting of the away

side jet. An account of the sonic boom picture can be found in [52]. Investigations of the

“We thank J. Casalderrey-Solana for pointing out that the peak angle of the high momentum ridges
decreases roughly as 1/, and for the interesting remark that this behavior may signal some connection with
the Landau-Pomeranchuck-Migdal effect (see for example [53]).
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Cerenkov radiation have been pursued in [54, 55]. The conical flow picture has been seen in
[56] using the hydrodynamical evolution of QGP, and in [57] using linear response theory.
In [57] the Mach cone picture appears only in the strongly coupled QGP. In comparing with
these more phenomenological works, it must be admitted that we have made dramatic and
risky idealizations of the experimental setup. Yet, despite the potential stumbling blocks,
it is exciting to see a simple type IIB string theory construction approaching quantitative

comparisons with a data-rich experimental field.
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Chapter 4

Higher-Order Corrections to

Einstein Gravity

In the previous chapter, we used AdSs x S° at finite temperature, the gravity dual in the
AdS/CFT sense of an N = 4 Super Yang-Mills plasma, to try to calculate the string theory
prediction for jet quenching at RHIC. However, there were some obvious problems—the
field content of A" = 4 SYM is not the same as QCD, and strictly speaking, the calculation
is valid only at 1/A; = 0, whereas the value of the inverse 't Hooft coupling at RHIC is in
the 0.05 to 0.1 range.

The D3-brane construction takes place in the context of Type IIB string theory, and
it is known that the leading curvature correction to Einstein gravity from Type IIB is
proportional to o’>R3 (relative to the leading term of order R) where R is a curvature
tensor. Roughly, this means that corrections to SYM computations should be O(a*L~%) =
olow 8/ 2). At RHIC, this is on the order of a few percent, which is the reason why there is
some hope to detect uniquely stringy effects, should some admittedly significant theoretical
and experimental hurdles be crossed.

In this chapter, we detail a methodology for computing all higher order corrections
to Einstein gravity coming from the Type II string. Our method is precise only for highly

symmetric spacetimes, but fortunately for AdS/CFT, this is precisely the regime of interest.

58
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Furthermore, we will still need to use some perturbative techniques. Rather than expand in
the traditional parameter of o’ R, we will instead expand in 1/D, the spacetime dimension
of the dual conformal field theory. Doihg so allows us to extract information on all higher
order corrections like o/* R,

Along the way, we will find other candidate string theory backgrounds, including pure
AdSs in the absence of D-branes, which at least has the correct symmetries to be dual
to non-supersymmetric Yang-Mills theory. The existence of this background was originally
proposed in [58]. It will also have finite curvature and hence finite 't Hooft coupling, making

it a curious candidate for further study.

4.1 A basic review of string worldsheet theory

The string “worldsheet” is the two-dimensional surface swept out by the string as it propa-
gates [24, 59]. The usual story in string theory is that the coordinates of spacetime X*(7, o)
are functions of the coordinates of the worldsheet, and that the action of the string is simply
its geometric area:

1

S = '271_7 dza\/“ det Gl,u/aaXuabXV . (41)

The metric for these coordinates G, is interpreted as the metric of spacetime, often referred
to as the “target space”. Through a particular transformation, this action can be reduced

to the so-called “Polyakov action”:

1
§=5— 2o/ — det Yo7 G (X) B, XHOp X . (4.2)

Instead of an action representing the geometric area of the string, this now looks like
a two-dimensional quantum field theory, where the spacetime coordinates X* are a set of
quantum fields and 7y, is the two-dimensional metric. Classically, this theory is “conformally
invariant” as a worldsheet theory. This means that if one makes a conformal transformation

such as g — 9"y, the action remains invariant, since /— det Yap — €9/ —det vqp,

and the metric with two upper indices picks up a factor of ¢~%.
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On a quantum level, the story is different. The spacetime metric G, (X) appears from a
two-dimensional perspective as a set of couplings multiplying the kinetic terms of the fields
X#, Thus, like most couplings in a quantum field theory, they will depend on the energy
scale—this is, for instance, the basis behind the idea that the standard model interactions
unify at some energy scale where their couplings all take on nearly the same value. This
energy-scale dependence is in complete contradiction to the notion of a “conformal field
theory”, since a CFT requires that all physical observables be independent of any length
or energy scale. However, in order for the string theory to depend only on the spacetime
coordinates X*, and not on any choice of worldsheet coordinates or conformal factors e?,
we must require that the theory remain conformal at a quantum level.

To do so, the couplings G(X) must take on very special values, called “fixed points” of
their energy-dependent flow. Recall that the beta function for a coupling L tells us how

that coupling depends on the energy scale M of the problem:

B(L) = 86—1\3 . (4.3)

Generically the beta function will depend on L, and if it happens to vanish at some particular
value of L, then at that value, the coupling will not change as we change the energy scale.
Hence this particular value of L is called a fixed point.

Since the spacetime metric G, appears as a set of couplings in the theory, we have a

set of beta functions. In fact, the beta function is [60]:
ﬂw/(G) = R;u/ —+ (9(0/R2) R (44)

where the first term on the right-hand side is simply the Ricci tensor for the metric G. This
is quite an amazing result: It tells us that in order for the theory to be conformal at the
quantum level, the spacetime must satisfy R, = 0. But this also means that the spacetime
must satisfy Einstein’s equations in vacuum! It is in this way that string theory reproduces
classical general relativity when the curvature is small.

Note though that the omitted terms in (4.4) are those terms that string theory predicts

for corrections to Einstein gravity when the curvature reaches the order of the string scale
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o/. As noted above, it is precisely those terms that we aim to compute in this chapter.

We will restrict ourselves from the start to symmetric spacetimes with negative curva-
ture, i.e., AdS spaces and their Euclidean versions, also called hyperbolic spaces. We will
allow the overall radius of the space L to vary, and the high symmetry of the target space
means that this characteristic radius is the only coupling in the theory. We will see that,
to the best of our ability to calculate, there does exist a fixed point when L? ~ &',

Since the same theory on a sphere instead of a hyperboloid is referred to as the O(N)
vector model, or the non-linear sigma model, and we will often adopt language from that
set of literature. In particular, we will often refer to the spacetime fields X# as 7 instead.

We also estimate the central charge of the non-trivial fixed point [59]. Recall that
the central charge is in some sense a measure of the number of degrees of freedom of the
worldsheet theory, and contains information about the required dimension of spacetime. In
order for the spacetime interpretation of the theory to be well-defined, there is a requirement
that the total central charge of the theory must vanish. In the bosonic theory, one gets
a negative contribution of —26 coming from the freedom to change coordinates on the
worldsheet. When the target space is flat, G, = 7, the worldsheet bosons 7 supply
one unit of central charge each, hence there is net zero central charge when % has 26
members, i.e., when spacetime is 26 dimensional. In the supersymmetric case, the ability
to reparameterize gives a central charge of —15. The worldsheet bosons still contribute one
unit each, but each fermionic superpartner contributes 1/2, giving a critical dimension of
10. When the target space is curved, we will see that the story changes, and the critical

dimension is not so simple.

4.2 OQOur worldsheet theory of interest

Consider the bosonic non-linear sigma model (NLoM) in d dimensions, whose target space

is Euclidean anti-de Sitter space (AdSp+1) with D + 1 dimensions. Explicitly, the classical
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action is
_ 1 d 2
§= 1 /d z(9n,) (4.5)

where n,, is constrained to satisfy
n=mng—ni—..—nh, =-L"<0. (4.6)

We will present some evidence that the NLeM (4.5), as well as supersymmetric generaliza-
tions of it, has a fixed point in d = 2 when o/ D/L? is close to 1, at least for sufficiently
large D, in addition to the usual trivial zero at flat space L — oo. Briefly, the evidence is
this: the most accurate calculations that we know, both as an expansion to fixed order in
o' /L%, and as an expansion in 1/D with finite o’ D/L?, lead to beta functions which have
non-trivial zeroes. It is worth noting that these fixed points do not rely on the presence
of stress-energy from extended (‘)bj,ect’s like D-branes, i.e., so-called Ramond-Ramond fields
on the worldsheet. Instead, these zeroes arise because of competition between the one-loop
term and higher loop terms. In the language of an effective action on target space, the
zeroes arise because of competition between the Einstein-Hilbert term and higher powers
of the curvature.

It is possible that this evidence is misleading. Higher order contributions to the beta
function, both in an «o/L? expansion and in a 1/D expansion, could be as large or larger
than the ones that we are able to compute.

The bulk of this chapter is devoted to an exposition of two methods of computing the
beta function for the theory (4.5) and its supersymmetrizations. In section 4.3 we review
results at fixed order in o/, i.e. fixed loop order. The state of the art is four loops. In
section 4.4 we explain how the leading D dependence (and, in the bosonic case, the first
sub-leading D dependence) of all higher loop terms can be extracted from a 1/D expansion
with finite o’ D/L?. There the state of the art is terms of order 1/D? relative to the one loop
term. We note a peculiar feature of the beta function: its slope is large and negative at its
non-trivial zero, so corrections to scaling are controlled by an operator of negative dimension,
i.e., its two-point function increases with distance. We offer a heuristic explanation of what

this could mean, hinging on the supposition that infrared fluctuations are large.
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In section 4.5, we discuss possible consequences of a zero of the beta function: in par-
ticular, based on the results for the central charge, we speculate that the supersymmetric
AdSs NLoM may provide a string-scale holographic dual of Yang-Mills theory, and that
finite volume quotients of AdS3 may be used in compactifications to four dimensions. In

section 4.6, we review the results and conjectures made in this chapter.

4.3 Anti-de Sitter target spaces at fixed order in o/

The partition function of the NLoM (4.5) depends on o/ and L? only in the combination

/

84
9=—25, 4.7)

which we define to be negative in order to anticipate a connection with the literature on
O(N) vector models. In the scheme of dimensional regularization with minimal subtraction,

one obtains the following beta function, up to four loops [61, 62, 63]:

1.
B(g) = —~Dg* — Dg* — DD+ 4)g*

n (113_23 - g(l +¢(3))D* + %(3C(3) = 1)D) 9°+0(¢°).

(4.8)

- As is evident from figure 4.1, the non-trivial fixed point is present or absent depending on
how many terms one retains. This is discouraging. At first glance, it seems not merely
plausible but likely that a computation of the O(g®) term would make the non-trivial zero
disappear. However, as we shall describe in section 4.4, merging the fixed order information
(4.8) with the best results we could obtain from a large D expansion, one winds up with a
beta function that does have a non-trivial fixed point. The large D results contain partial
information about terms in $(g) with arbitrarily high powers of g.

Before presenting results from a large D expansion, we will describe the relation of
the AdSp+1 NLoM to the O(N) vector model with N = D + 2, present the supersym-
metrizations of the AdSpy1 NLoM, and briefly survey results on the beta functions of each

model.
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P

Figure 4.1: The solid lines show successive fixed-order approximations to ((g) for D = 4.
For comparison with large D results, it is convenient to use k = gD to parametrize the
horizontal axis. Each approximation is marked with its loop order. The dashed line is the
large D result through order D=2, also for D = 4.

4.3.1 The O(N) vector model continued to negative coupling

The partition function for the bosonic AdSpy1 NLoM can be written in a variety of ways:
1
2 d
Z = /’Dnu J(ni + L*)8(np) exp {—m/d x(anﬂ)z}
_ Dii 1 d D 5o\ 2
= T exp{ - /d x {(Bn) (0V L2 + ii?) ] (4.9)
DIl 1 ~g 1 —\?
= [ —= ~= [ d* )2+ - (9y/1 — gIi2
/ 1_gﬁ2 exp{ 47T/ g (a ) +g (8 g ) }

where we have split n, = (ng,7) into the time-like component and the spatial (D + 1)-

component vector 71, defined M= / Vo, dropped some inessential prefactors,! and defined
g as in (4.7). Recall that g < 0.
Now recall the classic perturbative treatment of the low-temperature phase [65], in

which one starts with an N -component Euclidean vector field n, subject to the constraint

'Dropping infinite prefactors is a formal manipulation, particularly since one of them is the reciprocal of
the infinite volume of AdSp+1. To see why this factor should be there, consider defining the NLoM on a
finite lattice rather than in a continuum limit. Then to get a finite partition function, one must fix one spin
to a particular location in AdSpy3. See [64] for a more thorough discussion. This subtlety shouldn’t affect
the beta function.
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ni = "nun, = L? > 0 and writes the partition function as

1
Z = /Dnué( i-LQ) exp{—47ral /ddx (anu)2}
Lﬁ_ — 1 d 7)2 2 _ 72)2
I eXp{ 47ra’/d = |(07)° + (V17 — 7] (4.10)

DI 1 [ U A

where we have again split n, = (no,7) into a single (Euclidean) component ng and a

(N — 1)-component vector 7. I is defined identically as in (4.9), but now g = o//L%. Note
that g > 0.

The key observation is that the last lines of (4.9) and (4.10) are identical. The sign
of g determines whether one is treating the S¥~1 model or the AdSp,; model.2  So,
at the perturbative level, one may simply continue( a quantity like 3(g) from the O(N)
model to negative g, set N = D + 2, and apply the result to the AdSp;; NLoM. At a
non-perturbative level, it is less clear that theré is a definite relation between the O(N)
model and the AdSpy; model: the obvious difficulty in comparing the last lines of (4.9)
and (4.10), for example, is that in the latter case one must explicitly bound |2 < 1/g.
(More precisely, one must attach the lower hemisphere of S¥~! to complete the partition

function.)

4.3.2 Supersymmetrizations of the O(/N) model

Having understood that results from the O(N) model can be applied directly to the AdSpq
via the continuation discussed in the previous section, let us now re-express the O(N)
model and its supersymmetrizations in the form that is most convenient for perturbative

calculations:

Z:/DScS(S2 -1) exp{——ﬁ;/ddiﬂ(a‘sy}
= /DSDaexp{——z;r—g/ddw[({‘)S)z+0(S2 - 1)}} 5

2We will persist in using both D and N = D+2 in order to ease the notational transition from well-known
results on the O(N) vector model to the AdSp41/CFTp correspondence.

(4.11)
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where ¢ runs over imaginary values and we omit the target space index on S. The (1,1)
supersymmetric extension of the O(N) model involves N superfields S,, = (Su, ¥y, F).) and

one additional superfield ® = (¢, u, o) to enforce the constraint S? = 1 [66, 67):

g= -1 / d’x {(35)2 + iy + F? +0(S? — 1) + ¢bp + 2apS + 2SFg| . (4.12)

4drg

The (1, 0) supersymmetric extension involves N superfields S, = (S,,,%,) and an additional

spinorial superfield U = (u, o) to enforce the constraint:
1 -
S = o / dx l(65)2 + iy + o(S% - 1) + 2’&¢S] . (4.13)

1, and u are both chiral, but with opposite handedness. In all cases, g = o /L? where L
is the radius of SV~1. Appropriate continuations of (4.12) and (4.13) to negative g lead
to supersymmetric AdSpy1 NLoM’s, analogously to the tréatment in section 4.3.1 of the
bosonic case.

One can regard (4.11), (4.12), and (4.13) as the starting points for describing bosonic,
type II, and heterotic strings propagating on a sphere SV ! with radius L = \/m. These
are not consistent string backgrounds, but one may nevertheless borrow from the literature
[68, 69, 70, 71, 72, 73] on general NLoM’s on the string worldsheet to extract fully covariant
forms of the beta function. In a minimal subtraction scheme, we have

OL,

2
bosonic: Bij = o' Rij + TRiklijklm +0(a®)

12
heterotic: Bij = aIR/L'j + aTRiklijklm + O(O/3)

¢(3)o"

2 RmhkiRjrtm(qusrthSh + qustthsq) -+ O(al5) .

(4.14)

type II: ﬂij = a'R,-j +

To obtain (4.14), we have set to zero all deformations corresponding to matter fields (for
example, B;;), and assumed R;jk1.m = 0, as is appropriate for any symmetric space. The

beta function for g may be expressed as

9 g
Blo) = Mgrs =~ Gy (4.15)
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Plugging
1
Riju = Zg‘(gikgjl — 9jkgit) (4.16)

into (4.14), and using (4.15), one obtains

bosonic: B(g) = —Dg* — Dg® + 0(¢?)

heterotic: Blg) = —Dg? — %Dgg +0(g%) (4.17)
‘ _ 2 3 N5 6

type IL: plg) = —Dg” — 5¢B)D(D — 1)g” + O(¢°) ,

where we have expressed the final results in terms of D = N — 2 to facilitate comparison
with (4.8). Evidently, the bosonic result agrees with (4.8),> and all three beta functions to
the order specified have non-trivial zeroes for negative g.

Let us now briefly anticipate the gist of section 4.4. The fixed-order results so far
sketched for the bosonic NLeM and its (1, 1) supersymmetrization can be supplemented by
the leading-order D dependence of the coefficients of all higher powers in g from a large D
expansion, obtained for the most part from [74, 75] in the bosonic case and [66, 67] in the
(1,1) supersymmetric case. The results will be beta functions with zeroes for gD slightly

larger than —1. The analogous calculation in the heterotic case was carried out in [76].

4.3.3 Scheme dependence

It is well known (see for example [77]) that field redefinitions can alter terms in the beta
function at two loops and higher so that they involve only the Weyl tensor. Such redefini-
tions do not affect the S-matrix elements that were used [70] to anticipate the existence of
an o3 term in the beta function for the general (1,1) supersymmetric NLoM.

AdSpy1 has no Weyl curvature, so we can conclude for the AdSpy; NLoM (and its
supersymmetrizations) that there is a scheme—call it a “Weyl tensor” scheme—where higher

loop terms make no contribution to the beta function at all. If a Weyl tensor scheme is

3Note that we do not even need to appeal to the continuation argument of section 4.3.1 to relate the
bosonic result in (4.14) to (4.8): we could plug the negative curvature metric of AdSp41 into the covariant
expressions directly and wind up with the same two-loop result.
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employed, then clearly there can be no non-trivial zero of the beta function.*

Existence or non-existence of a fixed point is supposed not to depend on scheme. But
what could happen is that a Weyl scheme pushes the zero to ¢ — —o0. In the absence of
a systematic treatment of the stability of various schemes, it seems best to us to choose
a standard one (like dimensional regularization with minimal subtraction) that does not
presuppose an answer to the question we're interested in—as a Weyl scheme effectively

does for the existence or non-existence of a non-trivial AdSp.1 fixed point.

4.4 Anti-de Sitter target spaces in a 1/D expansion

It is apparent from (4.8) that the effective expansion parameter is gD rather than g. More
precisely: except for the one-loop term, the coefficient of the O(g") term in (3(g) is a
polynomial in D of order n — 2. In the (1,1) supersymmetric case displayed in (4.17), the
coefficient of the O(g®) term is only quadratic in D—one power less than the corresponding
coefficient in (4.8).

These observations can be systematized through sophisticated large D techniques pi-
oneered by Vasiliev et al [74, 75] for the bosonic O(N) NLoM and extended by Gracey
[66, 67] to the (1,1) supersymmetric case. For our purposes, the first significant claim (see
[66, 67]) is that in

d=2u=2+¢ (4.18)

worldsheet dimensions, one may express

B(g) L 1 -3

e ze—n+5b1(n)+—§§b2(n)+0(D ), (4.19)
where x = gD and O(D~3) means 1/D? times a function of x only. The functions by(x)

have a power series expansion around x = 0 whose first term is at least order x™*1.

4A preference for the scheme that leads to dependence of higher loop terms only on the Weyl tensor
stems from the fact that there is an on-shell superspace formulation of type IIB supergravity [78] in which
the Weyl tensor rather than the Riemann tensor enters into the superfield for linearized perturbations (in
other words, the on-shell graviton superfield). Unless one can show that an off-shell formulation in which
supersymmetry requires using the Weyl tensor in place of the Riemann tensor, we do not see any compelling
reason to choose a Weyl scheme even in the (1,1) supersymmetric case.
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The second significant claim is that, in a minimal subtraction scheme, there is no e
dependence except as shown explicitly in (4.19). To see this, recall that in such a scheme,

the bare coupling gp and the renormalized coupling ggr are related by

o ax(gr)
g =My BE (4.20)
k=0 °©
where ag(gr) = gr and the remaining ax(gr) are power series in gr whose coefficients do
not depend on M or e. The left side of (4.20) is obviously independent of M. In order for

the right hand side to be independent of M, one must have

0 0
MEE = plgn) = eon+ (1~ gnzo ) (o). (4.21)

Evidently, 3(g)/g depends on e only additively, as indicated in (4.19).5
TFor € greater than 0 but less than some finite upper bound, there is a non-trivial fixed
point at a positive k. satisfying

€= ke~ Shilke) = Sybale) +O(D™) (4.23)

The leading corrections to power law scaling near the fixed point are determined by the

slope of the beta function, i.e. in terms of the quantity

A= —%ﬁ'(gc) (4.24)

where of course g. = k./D, and the derivative of 3(g) is taken with € held fixed. The third
main claim of [74, 75] is that position space diagrammatic techniques allow an independent

determination of A as a power series in 1/D:

A= Xo(e) + -A—l-l(;—) + %(gl +0(D™%), (4.25)

where the functions A;(¢) in (4.25) have been computed explicitly.

5Renormalizability requires that the higher a; satisfy so-called pole equations, which accounts for the
fact that 3(gr) depends only on ai:

(1 - yﬂggg) ax+1(9r) = (1 - QRE)—%) ax (gR)'é‘?_Rak(gR) . (4.22)
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Given (4.19)-(4.25), one can determine the b; in terms of the A;. Here is the algebra:
first one uses (4.23) to rewrite (4.25) as
]' !
A= Nolke) + 35 [ Ma(ke) = ba(ree) Mp(re)|
. . (4.26)
+ 3 [l = Bae) ) = B 50 + 3 NG () | + O(D).

Next one computes #'(g.) in terms of the series expansion (4.19):

1, 1 , 1 , }
~58(90) = —5 + o — 55 () + kb ()| = 555 [ balie) + keba()| + O(D™?)
_ Ke _ Kby (e) _ Kby (ke)

+0(D7?),

2 2D 2D2
(4.27)

where in the second line we have again used (4.23) to eliminate e. Finally, one compares

terms in the second lines of (4.26) and (4.27) to obtain

K¢

)\O(K,c) == 7

1
)‘1("'70) - bl(’ic))‘f)(nc) = —iﬂcbll("ﬁc) (4'28)
1 1
Aa(ke) — b2(’§6))‘6(’%) - bl(’%))‘/l(’%) + Ebl(’%)z)‘g(’%) = _5“6 12(’%) .
The equations (4.28) hold for any k. greater than 0 and less than some finite upper bound:

thus the second and third can be regarded as differential equations for by and be. They may

be integrated to obtain

bi(k) = —2k /0 ) dé ’\ng) ba(k) = —2k /0 ) dé Aa(8) = 2;(5)’\/1 ) (4.29)

It is not obvious from what we have summarized so far that the lower limits of the integrals

in (4.29) should be 0. This will become clear once the explicit expressions for the \; are in
hand.

It is to be emphasized that b; (k) and ba(x) are defined through (4.29) for finite k. More
precisely: the treatment (4.24)-(4.29) defines bi(x) and bs(k) directly on some interval
starting at 0 and extending to finite positive values of k. Through analytic continuation, as
in section 4.3.1, we extract the beta function of the AdSpy1 NLoM through order 1/ D?,
again for finite k = —a/D/L%. As we shall describe in section 4.4.5, no singularities are

encountered in this analytic continuation until k = —3 for b1 (k) and k = —1 for by(k).
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The critical exponent A is (in principle) a measurable quantity pertaining to the non-
trivial fixed point in d = 2 + ¢ dimensions of the O(N) NLoM, with D = N — 2. As such,
it doesn’t suffer from any scheme ambiguities. There is clearly a certain attractiveness in
the strategy of folding all the difficult diagrammatic calculations into a determination of
X (as well as other critical exponents) and then extracting the beta function in a minimal
subtraction scheme in the very last step.

Having summarized all but the difficult calculations, we will turn in section 4.4.1 to
the promised determinations of Aj(e) and Ag(e) in the bosonic NLeM. The final results can
be previewed in figure 4.1. As promised, there is once again a non-trivial fixed point for
negative k, corresponding, apparently, to a CFT with target space AdSp41. The reader who
wishes to skip the technical details can find the main results in equations (4.40) and (4.53),
supplemented by the definitions (4.32), (4.35),and (4.47).

4.4.1 Explicit results for the bosonic case

In this section, we will give a fairly complete summary of the bosonic calculation through
O(D™2) [74, 75] for three reasons: first, the position space techniques employed are less well
known than fixed order perturbative techniques; second, we find a minor discrepancy in the
final result of [75], at least as it appears in translation as cited; and third, we will identify
one particular three loop diagram which is almost entirely responsible for the effects we are
interested in.

To fix notation, consider the following generating functionals:

ZJg, Js] = /DSDO’ exp {——1;157;/(1‘133 [(8S)? + o(S* — 1)] + /ddx [JsS + Jaa]}
= Wls:Jol = extremum exp {—F[S, o] + / 4%z [JsS + Jga]}
(4.30)
The connected Green’s functions G(™59) are derivatives of W, i.e. the connected (ng+ng)-
point function (S(z1) - S(zng)o(y1) - 0(yn,))e- The 1PI Green’s functions ['"s"e) are
analogous derivatives of I'. For two-point functions we will adopt notations like @55 instead

of G20 Near an ultraviolet-stable fixed point, the scaling parts of G55 and G and the
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Figure 4.2: Feynman rules for the O(N) model (4.30). Shaded circles indicate a dressed
propagator. There is no undressed propagator for o. There is a tadpole for ¢ which we
omit because it does not contribute to the calculations of interest. A loop of S, picks up a
factor of N whether the propagators in it are dressed or undressed, and regardless of how
many 5S¢ vertices it may include.

leading correction to them may be expressed for small but non-zero x as

CG’U

SS
_C [1+C%22 + ] G"”(w)=x2—Aa[1+C~""’x2)‘+...], (4.31)

G58(z) = o
where as noted above, 2A = —f'(g.) at the UV critical point. We have omitted to write the
tensor structure of G5°: it is proportional to duv- Indeed, because both the bare propagator
for S, and the bare SSo vertex are d,,, times a scalar function, all Green’s functions Glnsino)
or I'"sme) may be expressed as scalar functions times symmetrized products of §,,,,; where
i,7=1,2,...,ng: in particular, no factors like (z1—x9)* can ever appear. Tensor structure
may be completely ignored for the calculations of interest to us; the only rule to remember
is that every loop of S, picks up a factor of N. See figure 4.2 for the Feynman rules that

we will use.

The renormalized dimensions of the operators in this theory can be expanded in 1/D:

_ Ag1 | Ag
As=0sot 0+ oo
Aal Aa2
- Dol Doz, 4.32
Ao =Rg0+ 5+ 55 + (4.32)
Y
)\_)\0+5+ﬁ+”"

The method of [74, 75] is to self-consistently determine the Ag, A,, and A to some order in
1/D by plugging (4.31) and (4.32) into Dyson equations which are represented graphically

in figure 4.3. The graphs contributing to the Dyson equations are precisely the 1PI graphs,
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Figure 4.3: Graphical representation of the Dyson equations for G5% and G°?. All graphs
have external legs amputated, so (for instance) the left hand sides are I'*S and I'??. The
effective loop order L/, defined as the number of loops minus the number of loops of Sy, is
indicated for each graph. See the beginning of section 4.4.3 for a more complete discussion
of effective loop order. The graph labeled II; makes the crucial contribution leading to a
non-trivial zero of the beta function; see section 4.4.5.

with the exception of graphs containing subgraphs that already appear at a lower efffective
loop order. So, for example, the two-loop rainbow graph correction to I'S is omitted from
the Dyson equations because it would be generated by iterating the Dyson equation for
G%% truncated after the term labeled ¥y. The undressed amputated SS propagator is a
distribution supported at z = 0, so it makes no contribution to the scaling form (4.31).
Thus the first term in the Dyson equation for G55 could have been omitted. Graphs with o
tadpoles also do not contribute to the scaling forms (4.31), so we have entirely suppressed

them.

4.4.2 Lowest order results

The lowest order treatment is to include only the graphs ¥y and 1l in the Dyson equations:

1 2 ao
5(z) = 5 = — (—2—%—9—];) G35 (2)G°° (x)

N1 (4.33)
r7%(x) =Tl = -4 ( ) G55(x)?.

27gp
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(The overall minus signs on the right hand sides are due to the sign on I'[S, o] in (4.30).)

Explicitly,
p(AS) 1 =SS AT _ 1 2 CSSCG‘O‘ ~5S . o
¢SS z2(2u-As) [1-C%q(As,M)2*] = - Smgp) 22BsTE) [1+(C°° + C7%)z*]

p(Ag) 1 [1 _ éaaq(Am)\)xZ\] — _‘E ( 1 )2 (055)2 [1 + 26”15’5:62)\]

Coo  z2(2p—Ag) 2 \27gB ziAs
(4.34)
where p=d/2=1+4¢€/2, as in (4.18), and
_Ik-4) _ a(A—p) _a(A—XNa(A+A—y)

The factors of p and ¢ in (4.34) come from the inverse propagators I', which one finds by

passing to momentum space using a standard Fourier integral:

/ddme—i’m . w“a(A)22(“_A)

= (4.36)

and noting that in Fourier space, the inverse propagator is simply the algebraic inverse.

The equations (4.34) imply

9 (CSS)ZCJU
205 + Ay =2 Ag) = —z=—p(A = L 4.37
s+ Qg Y p( S) z Np( 0’) z (27T9B)2 ( )
from matching the leading powers of z, and
1+ q(Ag, A 1 Css
a(As,)) B =0 (4.38)
2 q(Aqg, N) cee

from matching the subleading powers. In order for (4.38) to admit a solution with non-zero

C5% and C?9, the determinant of the matrix must vanish, which is to say

[9(As, X)) +1]g(Ag,A) = 2. (4.39)

Once p and NV = D + 2 are specified, (4.37) and (4.39) can be solved straightforwardly for
Ag, Ay, and X in the 1/D expansions (4.32):

a(2 — pla(p — 1)
a(2)T(p + 1)

Ago =2 (4.40)

2p—1)(p—1)
w—2

Agp=p—1 Ag =-2

d=p—1 )\1=—2As1(
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and also
_ 21 22 -3
z—zo+—1—)—+—D-2—+O(D ) (4.41)
where
-1
=0 o =Agit D=l (4.42)

2
Although it is possible to obtain expressions for Ags, Ag1, A2, and 2y from (4.37) and
(4.39), these coefficients also receive contributions from the graphs ¥1, ¥, II;, and I, as

we shall summarize in the next section.

4.4.3 Effects at order D2

To determine the order in 1/D at which a given graph begins to contribute, replace each
propagator G°° by the overall coefficient C55, and likewise replace G°? by C°?. The
“scaling amplitude” of the graph is then some monomial in C5, C°?, 1/gp, and N. It
is straightforward to show that thp scaling amplitudes of all the graphs contributing to a
given Dyson equation are some ﬁked monomial times powers of z and D, and that if one
replaces N by D and z with 1/D—consistent with the scaling (4.42)—then the resulting
power of D is D'~ where the “effective loop order” L’ is the number of loops minus the
(CS5)2N

number of loops of S,. For example, IIp has scaling amplitude =z whereas Iy has
B

scaling amplitude

SS\6(noo\2 SS\2 SS\2
(OSSP o (55PN oy (CSPN 1
9B 9B 9B D

(4.43)
In the first step of (4.43) we have used the definition of z and discarded factors of 2 and
7; in the second step we have used (4.41) and discarded further O(1) factors. Evidently,
I1, is suppressed relative to Iy by a single power of D, as the effective loop order leads us
to expect. In short, each graph starts to contribute at order D=L, See figure 4.3 for the
effective loop order of each graph. The number of graphs increases quickly as one proceeds
to higher effective loop orders.

To evaluate I, 1Is, ¥3, and X5 in position space, one must integrate over internal

vertices. Certain identities to facilitate these computations were developed in [74, 75]; see
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also [79] for a systematic exposition. Infinities arise in these position space integrals if
one uses 2Ag + A, = 2u, as obtained in (4.37). These infinities are naturally regulated:
each of the four amplitudes of interest can be expanded as singular term, proportional to
1/(2u—2Ag—A,), plus terms that remains finite as we take 2Ag+ A, — 2u. The singular

terms vanish provided we set®

Ay = dng 2= Dl -1

e (4.44)

and from the finite terms one eventually finds corrections to (4.37), (4.38), and (4.39)
[74, 75]. The corrections to (4.37) are

p(As) +z+ 228 + 2°NSh =0 ]—%r-p(Aa) + 24 2HT) + 23NTT, = 0 (4.45)
where
% = i = TUEI B (gia,) - )
o 27r4ua(As)3a(AI,:()Zc)z(u +As —Ay) (B(Aw) - B(Ag)) (4.46)
r - Z2elbelelBe) ol b B Ba) (yp(,) - 3B(A5) - B+ A - )
and

B(z) = ¢(z) +¥(p— ). (4.47)
The quantities X, 35, I}, and II,, each a function only of 4, are the coefficients of the

leading power of z in the finite parts of the corresponding graphs, with powers of C53, C,

gp, and N removed, as the dependence on these parameters has already been extracted

SS\2 oo
into (4.45). We still define z = %2—, as in (4.37).
514 is actually no coincidence that Ay,1 = —2A1—it is a consequence of the fact that A, = d — 2A.
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The corrections to (4.38) are
7SS  TSo Css
ToS oo Coo

T95 = —p(Asg)q(As, \) + z + 225 s + 22 NThg

(4.48)
T5 = 2+ 225, + 22N},
T = 22 + 2T} g + 23 N1l
2
T77 = —52(80)a(As, A) + 2210}, + 22N,
where
'15 =2D1 4+ Do Yo = 2D3
/25 =2Dg+2D7 + Dg /20 =2Dg + Dy
| (4.49)
Il = 4D, 20 = Ds
HIQS =4D1; + 2Dq9 HIQU = 2Ds3
and, following the notation of [74, 75|, ' -
ok
Di= s
(2 — p)T()?
2
Dy =
(2= w?l(n—1)
T (p? — 3p 1)
D3 =Dy =
(2 — )T (n)?
32k
D5 = r
(2—p)(2p = 3)T(p—1)2
De— T = 3p+ 101 — p)
6= —
2= pPT(I'(2p - 3) (4.50)
Do THT(2 — ) [2/1—3 +3R] .
T e-Wru-1T2u-2) [G-w? T
T (4 — )
Dg=— :
(2= p)°T(p—1r2p—4)
THT(1 — ) (=242 + Tu — 4)
Dg = Dy; = 3
(2= p)’T(T(2p - 3)
3THT(3 — )
Dyp= D13 = Ry
@-pT(p—-1I2e-2)
(2 —
Di3 = ChatD) [6Ry — Ry — RY]

2(2 = p)l'(p-1I'(2p - 2)
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with”

Ry =¢/(n—1)—4/(1)

Ry=v/(2u—3)—¢/'(2—p) —¢'(n—1) +4'(1) (4.51)

Ry =9Q2u—3) + 92— p) —¢p(u—1)-9(1).
The equations (4.48) arise from comparing a subleading term in I'SS or I'?? to its form
obtained from the right hand side of a Dyson equation. To match powers of x, each graph
on the right hand side needs to have all but one of its propagators set equal to their leading
power law behaviors—that is, C55/2225 or C?%/2?As—while the last propagator is set
equal to CS5C5S [z2(Bs=A) or C79C7 J4H A=) T . a function only of u, denotes the
coefficient of the finite part of X1, with one .S propagator replaced by its subleading behavior,
and with factors of C°5, C??, ¢gg, N, and C55 removed. The other expressions in (4.49)
have analogous meanings. Each contribution D; arises from a particular choice of which
propagator to assign subleading behavior to.

The corrections to (4.39), of course, are
TSSTO’J _ TSG’TO’S =0. (452)

It is now straightforward though tedious to plug the expansions (4.32) and (4.41) into
(4.45) and (4.52) and obtain coefficients of arbitrarily high orders in 1/D. The ones which

"Note that [74] includes two inconsistent definitions for Rz-—the one in the main text of the paper is
correct, whereas the definition in the appendix contains an error.
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do not suffer further corrections from higher order graphs are

8
z9 = —221 + Am (4 + —+14u - 6p2
uw—2 w—2

+2[B(u—2) — B2 - p)] +p(2p = 3)[B(3 — ) + B(p — 2) — 2B(2 —#)])

2u(p — 1)(p — 2)? 205121

o plp—1) [2(=4p* + 1243 — 54° — 6p+2)
52— p)? ulp—1)

2u(2u — 3)?
+ —“—(2“?;—)— [6R; — Ry — R2] + 3u(8p — 11) Ry

8ud — 42u% + 6513 — 34u2 + 8 — 4 2

A2 = —2X1 +2A [B(2 - p) — B(u—1)]

6 2 10 10 3
+12M2_18M+20+;—E— 2_“4—“_1 - (,u—1)2>'

(4.53)

In comparing with [75], one needs to know that n = 2(Ag — Ago), and that the series

expansions employed there are in 1/N rather than 1/D: for instance, z = zg+21/N +2Z2/N?,

where Zy = 23 + 221. Thus, to obtain the coefficient Z, of 1/N2, one simply removes the

first term from the right hand side of the first equation in (4.53).

4.4.4 Consistency checks

The discrepancies we find with [75] are some minor differences in Agy and Ag and the
analogous quantities quoted there. A highly non-trivial check made in [75] is to compare
v = 1/2) with results obtained in d = 3 (that is, 4 = 3/2) by studying the high-temperature
phase of the O(N) vector model [80]:
o0 ~
v=S " fo=1, in= 23 <112 7r2) : (4.54)

N© 372’ 7t \ 27
n=0

These expressions agree with the results one gets using (4.40) and (4.53). In particular,

-~ )\% - )\0()\2 + 2)\1)

= 4.

The final expression in [75] for v leads to a result that differs from the one quoted in (4.54)

by a factor (176 + 2772)/(—112 + 277%). Thus we believe that our expressions are correct,
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and that the inaccuracies appearing in [75] are typographical.?

With A1 and Ag in hand, we may return to (4.29) to extract the beta function. Series

expansions
€
o =5
e & ¢ 5
- £ _< 4.56
M=5+7-5+0E) (4.56)
Ay = il ?f(?’) et + O(e°)

lead immediately to

1
Mm=w~Df—Df~ZMD+®¢

D® 3

(4.57)
+ (_ -2+ g(3))D2> g°+0(g%,

12 2

which agrees with (4.8) except for a term scaling as Dg®. This term corresponds to an
O(D3) contribution to A, so it is evidently excluded from the calculations in this section.

There appeared to be some arbitrariness in choosing the lower limits of integration in
(4.29) to be 0. This arbitrariness is removed by requiring agreement with the one- and
two-loop terms in (4.8).° Thus the non-trivial check in comparing (4.57) to (4.8) is the

three- and four-loop terms.

4.4.5 A singularity at e = -1

Because I'(z) has all its singularities on the real axis, the same is true of A\1(e). The singu-
larity of A;(e) closest to e = 0 is at e = —3, whereas the singularity of A;(e) closest to e = 0
is at e = —1. It’s clear from (4.29) that b;(k) and by(k) have the same radii of convergence

around € = 0 as A1(€) and Aa(e), respectively. Near their respective singularities, one can

3We have tried without success to contact the authors of [74, 75] in order to discover whether the errors
might be in translation.

9There is a small caveat: there are two other choices for the lower limit of integration on the integral
that determines by (k). Both are irrational, and choosing one of them instead of 0 does not alter the higher
loop terms. For the ba(k) integral, there appears to be one choice other than 0, but it is less than —1, hence
on the other side of the singularity of primary interest to us.
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show that
Ai(e) = —i/iﬂ; +0(1) bi(k) = —lﬁg—(j’—ﬁi@ +0(1)
4.58
Aa(e)=%+0[(e+1)*3] @(@:—-%nto[(nﬂ)-?]. )
All terms in Ay are regular at e = —1 (i.e., p = 1/2), except for R3, which originates only

from the diagram Ils of figure 4.3, upon replacing a o propagator with its leading correction
to scaling (see the quantity D13 in (4.50)). Evidently, this diagram is somehow responsible
for the existence of the fixed point at this order.

The singular behavior of ba(x) is crucial to the question of whether there is a zero of

B(g) for negative g in d = 2. In the expansion
B(9) _ <= bn(~)
= E , 4.59
9 n=0 Dr ( )

if one stops after the term b1(x)/D, then as one decreases g from 0 to negative values,
B(g) becomes singular (at k = —3, as explained above) before it has a zero. But if one
includes also the term by(x)/D?, then the competition between positive by(x) and negative
ba(k) leads to a zero before the singularity at x = —1. In short, the behavior in figures 4.1
and 4.4 is typical.

If one further expands

bn(ﬁ)z i bn,kl‘ﬁk (4.60)

k=n+1

then the singular behaviors (4.58) translate into the statements

bip = Pi(k)(—=1/3)F  byy = Po(k)(—1)F*1, (4.61)

where Pj(k) and Pa(k) are positive for all but finitely many k and have at most polynomial
growth. Physically, the zero of the beta function computed through order D~2 arises
not so much from competition of one-loop and two-loop terms as in [81], but more so
from competition of the one-loop result from the asymptotics of high loop orders—or, in
spacetime language, from competition between the Einstein-Hilbert term and high powers

of the curvature tensor.
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The outstanding question, of course, is what happens at higher orders in 1/D. We have
no real answers in the bosonic case, and only partial information in the supersymmetric

case, but let us contemplate the two main alternatives.

1. Most optimistic is the supposition that higher orders in 1/D are no more singular
than by(k), so that the beta function is well-approximated by the 1/D? result that we
have developed in this section. This would seem more plausible if it could be shown
that general amplitudes contributing to A;(¢) have their singularities at integer e, or,

equivalently, integer d.

2. Alternatively, one could imagine that the b,(x) become singular at progressively small
values of k—for example, at Kk = —3/(2n + 1). Then for finite D, B(g) does not
have a convergent power series expansion. This would not be atypical of perturbive

expansions.

* Even in case (2), it could still be that correct qualitative information can be gleaned from
a partial summation of the beta function, such as the 1/D? results that we have in hand.
After all, fairly good agreement is obtained for the O(N) model between these results in
d = 3 and other treatments [74, 75].

Because (3(g) computed through 1/D? slopes steeply down at its non-trivial zero, g, < 0,
the critical exponent A = ——% B'(gc) is large and positive. The corresponding operator then
must have a dimension which is large and negative (see figure 4.4 and table 4.1), i.e., its
two-point function increases with distance, rather than decreases. This appears to violate
unitarity, and we might wonder anew whether the fixed point really exists. Let us reflect,
however, on another CFT with non-compact target space, namely the free massless boson
X in d = 2. The correlator (X (z)X(0)) ~ log|z| grows at large |z|, signalling large infrared
fluctuations. AdSp41 is in some sense much “bigger” than RP*1, because the volume
enclosed within a radius £ of a given point grows exponentially with £ rather than as a power.
So we should not be too surprised to find even wilder infrared fluctuations, mediated perhaps

by operators whose two-point correlators do grow as positive powers. Two-point functions
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Figure 4.4: (A) (g) versus g for the bosonic AdSs NLoM (D = 4). The non-trivial zero
is at ¢ & —0.198. (B) The analogous results for the type II AdSs; NLoM. The zero is at
g~ —0.217.

that increase weakly with distance were found in [64], and their observation that the AdSp,1
NLoM has ﬁon—normalizable ground states appears to dovetail with the expectation of large
infrared fluctuations.

We are also struck by the observation that the integral form (4.29) for the beta function
coefficients must draw a large contribution from regions where € is close to k., which is
finite and negative—in fact, k. is close to —1 when D is very large. Perhaps this means that
configurations in target space with a Hausdorff dimension closer to 1 than 2 make a large
contribution to the path integral. Such configurations would be somewhere between smooth
surfaces (dimension 2) and branched polymer configurations (dimension 1). It is natural
to expect positive power laws in correlators for field theories in d < 2 dimensions. Perhaps
strong infrared fluctuations in the AdSpy1 target space result in an effective lowering of

the dimension in which the field theory is defined.

4.4.6 Central charge of the non-trivial fixed point

Besides dimensions of operators at the fixed point, another scheme-independent quantity
is central charge. The non-trivial fixed point is UV stable, and if it is perturbed slightly
toward smaller g, there is an RG flow to flat space. Because the beta function is roughly

speaking the gradient of the central charge, the non-trivial fixed point has a higher central
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charge than flat space of the same dimension. More precisely,

dc  3(D+1)

55 = —292 Blg) . (4.62)

We defer a derivation of (4.62) until after (4.64). The prefactor comes from the metric on
the space of couplings, and it may be corrected by loop effects. As we will now see, leading
order expressions are sufficient to make a reasonable estimate of ¢ at the non-trivial fixed
point, at least for D large. Indeed, integrating across the RG flow from the non-trivial fixed

point to flat space leads to

C=D+1+3(D——*_1)/C£d_§_’8_(_gl

2 0o kK g

B 3(D+1) [t dx 1 1

=p+1+22 /0 - [ 5+ Ehils) + S3ba(K) (4.63)
m(D+l)[1~—%]

where in the second equality we have used (4.19). In the approximate equality we simply
note that the integrand is nearly constant over nearly the entire range of integration: it is
dominated by the one-loop term in 3(g). The main way in which the higher loop terms
participate is in fixing k.. In table 4.1, we have obtained more precise results by numerically

integrating the second line of (4.63). Evidently,

c<2(D+1), (4.64)

SR

and this bound saturates in the limit of large D. It seems to us likely that ¢ does not exceed
the the bound (4.64) even when higher 1/D corrections and a more precise treatment of
Gkl are included, for two reasons: first, such corrections cannot move k. to a value less
than —1; and second, they have little chance of making the integrand in (4.63) significantly
larger over an appreciable range.

Let us now return to the derivation of (4.62). A general metric perturbation of flat space
is accomplished through

58 = / d?26G; 09 07 = Qiaxiéxj, (4.65)

ol
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where we employ the normalizations of [59]. As explained, for example, in section 15.8 of

[24],
5 ) 3
a(;. = 247?GH gy = ‘2“,3”
i o (4.66)
ikl 4 i ki gtk gt
G = |2|*(0"(2,2)07(0,0)) = To2

where in the second step of the first line we have used the final expression in the second line
for the metric on the space of couplings, G¥*. Note that G¥*! is computed in free field
theory: this is why we remarked below (4.62) that it may suffer loop corrections.

Let us now apply the result 6‘2?” = %ﬁij to the AdSp+1 NLoM. We express the metric

as Gij = —%Gf.?), where Gg?) is the metric on AdSp41 with radius of curvature V! rather
than L. Thus G;;0/0G;; = —g0/0g, and we find

dc

gag h

where in the last step we used (4.15), which is an exact expression. A non-trivial check on

3, ;i 3D+1
.. 27
3G = 5= B(s). (4.67)

the calculation is to compare a series expansion of ¢ in small g,
3 3
c=(D+U—5D@H&M—ZDuJ+Df+”. (4.68)
with the tree-level spacetime effective action (see for example [59])

1 2(D—25 ! y
S=5m / P+ /G2 [-(T) + R+4(99)” + 7 Ry R + ] . (469)

It is understood [62, 63, 82] that, to the order shown, in the scheme of minimal subtraction,
and up to an overall multiplicative factor, the quantity in square brackets in (4.69) must
coincide with the central charge (4.68), plus —26 to account for reparametrization ghosts.
Our central charge expression (4.68) indeed satisfies this constraint. Furthermore, any
corrections to G in (4.66) must be at least O(a’?) for this matching to be satisfied. Note
that this is an off-shell test: the comparison between (4.68) and (4.69) is being made for a

very weakly curved AdSp41 space.

4.4.7 Explicit results for the (1,1) supersymmetric case

Calculations analogous to those in sections 4.4.2 and 4.4.3 were carried out in a series of

papers by Gracey [66, 67, 83, 84]. The computations were done for the (1, 1) supersymmetric
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Bosonic Supersymmetric
D+1 gcD c Ae g.D c A
3 -0.6603 | 5.228 | 1.698 | -0.8105 | 7.732 | 4.583
4 -0.7435 | 7.538 | 2.687 || -0.8447 | 10.58 | 6.026
5 -0.7926 | 9.899 | 3.734 || -0.8696 | 13.49 | 7.614
6 -0.8247 | 12.29 | 4.801 || -0.8872 | 16.42 | 9.209
7 -0.8473 | 14.69 | 5.866 | -0.9001 | 19.36 | 10.78
8 -0.8642 | 17.11 | 6.921 || -0.9101 | 22.3 | 12.32
9 -0.8773 | 19.54 | 7.96 | -0.918 | 25.26 | 13.82
10 -0.8877 | 21.97 | 8.982 | -0.9244 | 28.21 | 15.28
11 -0.8962 | 24.41 | 9.986 || -0.9298 | 31.17 | 16.71
12 -0.9034 | 26.85 | 10.97 || -0.9343 | 34.13 | 18.11
13 -0.9094 | 29.3 | 11.94 || -0.9381 | 37.1 | 19.48

Table 4.1: Values of the central charge and critical exponent A in the bosonic and supersym-
metric case for various choices of D. Included in the central charge in the supersymmetric
case is the fermionic contribution of (D+1)/2, as well as some known 1/D3 contributions—
see (4.78). We compute X as —'(g;)/2. In bold we show the cross-over points between
sub-critical and super-critical values of the central charge for both the bosonic and super-
symmetric cases.

O(N) NLoM in component formalism, starting with the action (4.12). The final results for

A are:
M=pu—1
A =0
Vo Sp-NTEp-2? | 42— m) - +¥(2e—1) —¥(1)
27 T2 - w2 (u — DT (w)? p—1 (4.70)

— 22— p) —P(p) + ¥(2u — 1) — (1))
22— )+ 59 () — 200 (2 — 1) - 5¢’(1)} .

The relative simplicity of (4.70) over (4.40) and (4.53) results from non-trivial cancellations

among several dozen Feynman graphs. Because A; = 0, we have

_ﬂ(g_g) =e— K+ %@(H) + O(D"?’)
bo(k) = —2k / * dg)\z(f) _ (4.71)
0 £2
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It is interesting to examine the structure of the series expansion of 3(g) computed through

order 1/D?: from (4.70) and (4.71),

7
Blg) = ~Dy” — SCBD*G® + S C(A)DP® ~ 2 C(5)D%
1 1
UETT) [245¢(6) + 104¢(3)%] D°¢® — 537 BIIC(7) + 156¢(3)¢(4)] D8+ ...,

(4.72)
Just as in section 4.4.4, one can make a non-trivial check of (4.70) and (4.71) by comparing
(4.72) with the third line of (4.17). The four-loop term—related to the famous o/3¢(3)R*
term in the type II string theory action—agrees up to a term of order Dg®, which corresponds
to an O(D~3) contribution to A.1® It is evident from (4.72)—and it can be proven starting
from (4.70)—that the coefficient of the term D*~2gF+1 in (4.72) is a polynomial in the
transcendental numbers ((g) for integers ¢ > 2, such that each term is a rational multiple
of ¢(g1)¢(q2)--C(gs) with 3. qr = k — 1.1 The significance of this will emerge in
section 4.5.4.
It is also evident from (4.72) that after the Einstein term —Dg?, the sign of each term

alternates, in such a way that for g < 0,

Blg) = —c1lg|* + calgl® + cs1g]® + cslgl” + ... , (4.75)

where c; > 0 for all k. Thus there must be a zero of the beta function (to the order we

have computed it) before there is a singularity: the first term balances against all the rest.

10Recall that in the dimensional regularization scheme being used, it is the Riemann tensor, rather than
the Weyl tensor, that appears in this R* term.

70 see this, note that from (4.71) that the g™ "2 term of the beta function comes from the €™ term in
the series expansion of Ay around p = 1+ ¢/2 = 1. To prove the claim regarding the ¢ dependence, start by
noting that the series expansion of the term in square brackets in (4.70) can be written as

oo oo k—1
[]= ane™¢(k+2)+ > > bawe™ (K )C(k— K +2), (4.73)
k=1 k=4 k’'=3

where the ar and by are rational. Next, rewrite the remaining factors as

e I(1+e)?
4 T(1—€/2)2T(1 + ¢/2)8

Note that F'(0) = 1. Furthermore, F'(e) = F(e) [2¢(1 + ¢) + (1 — ¢/2) — 30(1 + ¢/2)] = F(e)G(¢). Next,
note that G(0) = 0, G’(0) = 0, and G (0) o ((n + 1) with non-zero, rational proportionality, since
™ (1) = (=1)"*nl¢(n + 1). Finally, F(™(0) is equal to F(0) = 1 times a polynomial of derivatives of G
at ¢ = 0, such that the number of derivatives plus factors of G in a given term sums to n. These factors can
then be easily recompiled to prove the claim.

= ZF(e). (4.74)
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This pattern of signs is related to the fact that ba(x) is positive and singular at x = —1:
4/7T4 -3 8/37T4 —9
= 1 = 1 . 4.76
Az (e) (€+1)4+o[(e+ )] ba() IS +O0[(k+1)77] (4.76)
As in the bosonic case, ba(x) has all its singularities on the real axis, and x = —1 is the one

closest to the origin.

The distinctive singular behavior at Kk = —1 is the same as in the bosonic case: see
figure 4.4 and table 4.1. And, just as in the bosonic case, we must be careful to qualify the
claim that there is a zero of the beta function with the caution that higher order terms in the
1/D expansion could change the story. The particular danger emphasized in section 4.4.5
was that bg(x) and/or higher b, (x)’s could become singular for less negative values of x than
—1. In the all-orders beta function, expressed as a power series as in (4.75), each coefficient
ck is a polynomial in D. The large D calculations performed to date (i.e. through O(D~?))
tell us only the leading behavior of each ¢, fdr largé D. Terms in these polynomials which
are subleading in D could nevertheless eventually dominate the contribution of high loop
terms and control the existence of a fixed point. The two main élternatives contemplated
in section 4.4.5 are alternatives still for the supersymmetric case.

In an attempt to obtain partial information available about bs(x) and other high order
terms, Gracey [66] has noted that consistency with the results of [85] demands that the

) entering into (§(g) for a general homogenous space at k = n + 3 loops

(n > 0) should vanish on Kahler manifolds. He noted that a satisfactory form of the R((:g) is

tensor structure Rl(:g

n—1

R((:I;) = RaCdeRbpqe [RcllmlpRQInmnd + Rcl1m1qupmnln} H Rli+1limimi+1 . (4'77)

i=1
If the Rg:) were the only tensor structures contributing to the beta function at loop order
k = n + 3, then the coefficients ¢, would not change sign as compared to their behavior at

leading order in D: indeed,

(n=3)/2
nodd: R = (5"3Gw) [2D-1)D° 3 D*+3D(D-1)
k=0
(n=2)/2
n even: R((ZZ): —(g""3Gy) |2(D ~1)D? Z D2
k=0
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In terms of the large D expansion, we may summarize the discussion as follows:

@ ze—n—l—DD—?,lbz(l‘é)- (4.78)

It is not claimed that the form (4.78) entirely accounts for O(D~3) effects, but it does
capture the four-loop term in (4.17) exactly, and it also correctly captures the one-loop
exactness of the O(3) model [86]. And, of course, it retains the zero for negative x which
has been our main interest.

There is another constraint on tensor structures that contribute to the beta function at
higher loops in a minimal subtraction scheme: they cannot involve factors of the Ricci scalar
or Ricci tensor. We learn this from the background field method [62, 69]. In this scheme, the
beta function depends only on the simple poles of the dimensional regularization parameter
¢ in Feynman diagrams that have only “external vertices”. Each external vertex comes with
one or two powers of the Riemann tensor. Factors of the Ricci scalar or tensor would come
from lines that loop back to the same vertex—propagators of internal lines proportional
to d;; result in self-contractions of the Riemann tensor. Such a loop contributes a simple
pole in e. The remainder of the diagram must contribute at least a simple pole in ¢, hence
the entire diagram has a pole of at least ¢ 2, and therefore does not contribute to the beta
function.

As in the bosonic case (see section 4.4.5) the operator controlling the leading corrections
to short-distance scaling is predicted to have negative dimension. We offer again the sug-
gested interpretation that large infrared fluctuations, possibly leading to an embedding in
target space with Hausdorff dimension less than 2, lead to the power-law growth in certain
two-point functions that negative operator dimensions imply.

The central charge computation also goes through almost as in section 4.4.6. The main
difference is that the x — 0 limit of the central charge is 3(D + 1) rather than D + 1 due to
the contribution of fermions. A free-field treatment of the metric on the space of couplings

leads to
Qg B 3(D+1)

= ), (479)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

identically to the bosonic case (4.62). We defer a justification of (4.79) until after (4.81).

Integrating (4.79),

_3 3(D+1) [ dkp(g)
3 3(D+1) [Fedk D-1

_2 skl S 4.80
5D +1)+ == /0 - [ K+ 53 bz(fi)] (4.80)
3

~ §(D+1)[1—nc] ,

and we conclude that
c<3(D+1), (4.81)

with the bound saturating as D — oco. In table 4.1, we have obtained more precise results
by numerically integrating the second line of (4.80).
Let us now return to the derivation of (4.79). The considerations of (4.65) and (4.66)

generalize straightforwardly: the metric perturbation operator is

1 /9 .. N
0% = — | =0X'0X7 + Oy + 'Oy’ (4.82)
4 \ o/
The fermion terms contribute only contact terms to (O%(z,z)O*(0,0)), so (4.66) is un-

changed. The discussion leading to (4.67) is also unchanged. Series expansions show that

¢=2(D+1) = 3D(D+ 1)g — (DD - Vg + (). (4.8)

To match this onto a spacetime action for non-critical type II superstrings, we require the

form

2
S = 2% /d% VGe 22 {——(—C—M + R+ 4(00)%+...| . (4.84)
Kp

3o/
Then, up to an overall factor and the ghost contribution, the first two terms of (4.83) match
the first two terms in square brackets of (4.84). We note that (4.84) is of exactly the same
form as (4.69) to the order shown.
There seem to be some conflicting claims in the literature!? about the normalization of

the potential term for non-critical superstrings. This normalization is tied to the factor in

2For instance, in [87, 88], a potential is quoted which is 2/3 of the one we claim, and in [89], the result
is 1/2 of the one we claim. But we find consistency with the results of [90].
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(4.79), so it is crucial for our discussion of central charges to get it right. Let us therefore
consider an alternative to the straightforward free-field worldsheet calculation discussed
after (4.82). Namely, in the NS5-brane background of type II string theory, ¢ = 9 comes
from the R%! portion of the CFT; ¢ = 9/2 — 6/k comes from the supersymmetrized WZW
theory describing the S® with k units of H3 flux (so that there are k coincident NS5-branes);
and ¢ = 3/2+6/k is supposed to come from a linear dilaton background, for a total of ¢ = 15

(see for example [91]). The geometrical description of the throat geometry is
ds? = —dt* + d2 + dr? + kd/dQ2 ¢ =—r/Vko!  Hs=—kd volgs, (4.85)
3

where 7 is a vector in R®. Consider now a spacetime treatment of the radial direction only.

The string frame action (consistent with (4.84)) is
S = / dre™2® [—gif + 4(8@)2] : (4.86)
o

where dc = —6/k is the central charge deficit from the supersymmetrized WZW theory that
forces a dilaton flow upon us. The radial equation of motion for the dilaton derived from
(4.86) indeed possesses the solution ¢ = —r/v/ka/, providing a check on the normalization

of the potential term.

4.5 Applications to AdS/CFT and model building

In sections 4.3 and 4.4, we have laid out the evidence that AdSp,1 NLoM’s, both super-
symmetric and non-supersymmetric, have zeroes at finite coupling, at least for large enough
D. We have also explained how this evidence could be misleading: see in particular the
discussion following (4.8) and in section 4.4.5. While cautioning once more that we have not
shown that our calculations rest upon a controlled approximation scheme, we will in this
section assume what seems to us the likeliest alternative: that there are indeed non-trivial
fixed points. What then are the consequences?

First and foremost, there may be vacua of string theory which incorporate an AdSp1

NLoM in the worldvolume theory. In section 4.5.1 we focus on possible implications of an
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AdSs vacuum, and in section 4.5.2 we turn to vacua with an AdSs factor. Aspects of these
discussions will be quite speculative. In section 4.5.3 we comment on a sort of no-go theorem
for de Sitter vacua arising from competition between different powers of the curvature. And
in section 4.5.4 we remark on a prescription for including the effects of string loops in the

spacetime effective action.

4.5.1 A dual for pure Yang-Mills theory?

The many existing examples of anti-de Sitter string vacua involve matter fields whose stress-
energy supports the negatively curved geometry. In terms of the NLoM, there are additional
couplings of the scalar fields (and possibly the fermions in the supersymmetric case) that
modify the one-loop beta function in such a way that there is fixed point—usually, in fact, a
fixed line. Actually, this is an over-simplification in most cases: the matter fields are usually
Ramond-Ramond fields, and including them in the action leads to technical difficulties; see
for example [92]. In any case, a string vacuum based on an AdSp41 NLoM of the unadorned
type that we have described would be quite different from most previously studied cases,
for example in that the scale of curvature is necessarily close to the string scale. More
precisely, || = o/D/L? = 1, so the radius of curvature of AdSp,1 is L ~ va’D. Because
the construction we have given makes no reference to D-branes, it is not obvious what the
dual field theories in D dimensions should be. In this respect our story is similar to [93];
see also [94] for more recent developments.

But a two-dimensional worldsheet CF'T is not enough to guarantee the existence of
a string vacuum. One must also cancel the Weyl anomaly by arriving at net zero central
charge and define physical state conditions in a consistent way. In general, one must impose
a GSO projection to eliminate any undesirable states that simultaneously leads to a self-
contained spectrum of string states, and finally one must show that one-loop string diagrams
are invariant under an appropriate set of torus transformations to ensure that one-loop
divergences do not appear as described in the introduction.

The results for the central charge listed in table 4.1 are not particularly encouraging
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at first sight: c is always non-integer. But we are always free to add a spatial dilaton
gradient to continuously adjust the central charge. This is best understood in free field
theory (the linear dilaton vacuum) but based on the spacetime effective action, it seems
obviously to remain true in curved backgrounds. As long as we focus on Euclidean theories,
decreasing the central charge with a timelike dilaton gradient is not an option. Referring
to table 4.1, we see that we can cancel the Weyl anomaly in the type II case with a dilaton
gradient for AdSs, AdSs, and AdSs5, but not AdSg and higher. A natural choice is for the
dilaton gradient to be chosen in the radial direction in a Poincaré patch description of the
geometry. The resulting geometry is an obvious candidate for a holographic dual of a gauge
theory undergoing renormalization group flow. It is pleasing to see this construction work
in the dimensions that it does because it is in dimensions 4 and lower that gauge theory
interactions are renormalizable.

But wouldn’t it be lovely if the Weyl anomaly canceled exactly in AdSs, without any
dilaton gradient? That would mean that there is no potential for the dilaton. Turning on
a dilaton gradient would still be allowed, just as in AdSs x S [95]. Presumably, it would
be a gentler flow, at least when ® is large and negative. This would correspond to the fact
that gauge couplings in four dimensions experience logarithmic flow, which is qualitatively
gentler than the power law flow in lower dimensions.

As things stand in table 4.1, the critical dimension for the string theory construction
seems to be about halfway between D = 4 and D = 5 (a precise computation gives
D = 4.517). Everything would fit together a bit better if the critical dimension for the
string theory construction coincided precisely with the upper critical dimension for gauge
interactions in the AdS/CFT duals. If only (4.81) were an equality rather than an inequal-
ity! Recall that in deriving (4.81), we combined rather precise knowledge of 3(g) with a less
precise computation of the metric on the space of couplings. Perhaps then there is enough
wiggle room to wind up with ¢ = 3(D + 1) for the non-trivial fixed point. Or perhaps we
are engaging in wishful thinking: after all, our calculations were accurate enough so that

the series expansion (4.83) avoided O(g?) and O(g3) terms, which was necessary to match
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onto the absence of R? and R? terms in the type II effective action.

It is particularly attractive to suppose that the critical background is AdSs—probably
with a slight dilaton gradient—rather than a product of AdSs and some other geometry.
The dual field theory may then be expected to be comparably simple, without (for example)
any flavor symmetries. Perhaps a definite understanding of what theory it is would come
from studying the dynamics of open strings on some version of D3-branes appropriate to
the AdSs NLoM. Absent such a discussion, let us assume that it is pure Yang-Mills theory,
with coupling gy ps = e¢®. Because of our limited understanding of the spacetime effective
action and the lack of a D-brane construction, we cannot presently determine the central
charge or the gauge group. But because the geometry is at string scale and the dilaton can
flow to large negative values, we may hope that it embraces the asymptotic freedom and
confinement of pure glue in a single holographic description. For example, confinement of

_external electric charges and screening of magnetic ones might be accounted for in terms of
the radial variation of the tensions (as measured in Einstein frame) of fundamental strings
and D1-branes, as in [95].

Before getting carried away with the idea that the type II AdSs construction should
be critical, let us note another possibility that fits much better with the current numerical
results: AdS; x S may be a critical background. The worldsheet boson parametrizing S*
and its superpartner together contribute ¢ = 3/2, so using the value for AdSs from table 4.1
leads to a total central charge of 14.99.'3 The dual four-dimensional theory should have a
U(1) symmetry. Pure /' = 1 Yang-Mills theory is an obvious candidate. If it is indeed the
dual theory, then a fuller treatment should reveal a dilaton gradient, a dynamical breaking
of the U(1) symmetry, and (most fundamentally) a GSO projection that leads to spacetime
supersymmetry. Indeed, an understanding of the GSO projection seems crucial to the entire
discussion of AdSp string vacua, since we have to find some way to get rid of the negative

dimension operator or otherwise ensure stability.

131t may seem striking that AdSs x §* is the bosonic part of ﬁ%, which was argued in [93] to

support a NLoM. But the reasoning in [93] hinged on the inclusion of a fermionic version of a Wess-Zumino
term whose presence combined with kappa symmetry forbade a non-zero beta function. This is rather

different from our analysis. Moreover, %%)(7) was stated in [93] to be a non-critical background.
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4.5.2 Model building with quotients of AdS;

Having articulated the hope that ¢ = 3(D + 1) in a full calculation of the type II AdSp.y
NLoM’s, let us note another striking consequence of this conjectured equality: AdSs; has
c = 9, the same value as a six-dimensional Calabi-Yau construction (CY3). We are thus
led to suggest a new class of type II string vacua: R®»! x AdSs/T, where I' ¢ SO(3,1) is a
discrete group such that AdSs/T" has finite volume.

There is an obvious candidate for a heterotic generalization, inspired by the familiar
story of the standard embedding [96].1* Let the fields X*(z, Z) and ¢*(Z) form the usual
free R3! portion of the theory, with ¢ = 4 and &= 6. Let the AdS; NLoM be constructed
in a symmetric fashion, so that ¢ = ¢ = 9 (we assume). The anti-holomorphic part of the
Weyl anomaly is now canceled. To cancel the holomorphic part, an additional holomorphic
CFT is required with ¢ = 13. This is easily big enough for model-building: for example, a
Kac-Moody current algebra based on Eg x SO(10) at level 1 has ¢ = 13. But we have no
definite proposal for how an appropriately chiral spectrum of fermions might emerge in such
a construction, nor for how to make an appropriate GSO projection in such a way as to get
rid of tachyons and/or negative dimension operators and be left with a phenomenologically
attractive gauge group.

The total size of AdS3 /T is fixed in string units, once I is chosen, because the non-trivial
zero of ((g) is isolated. We must of course assume that GSO has gotten rid of operators
of dimension less than 2. A very attractive feature of the finite volume spaces AdSs/T is
that they have no massless shape moduli [97]. There is however a large discrete class of
these manifolds, and their number grows rapidly with their volume. It is known that finite
volume AdS3/T" can never have Killing spinors [98, 99], so perhaps it is impossible to get
N =1 supersymmetric vacua in four dimensions.

Another notable feature of manifolds AdSs/T" is that their volume scales exponentially
with their linear size. This has been exploited in the context of brane-world scenarios

(99, 100] to give an account of the hierarchy between the four-dimensional Planck scale

“We thank G. Michalogiorgakis for a discussion on this point.
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and the weak scale without extensive tuning the size of the extra dimensions. We also
note that the implications for compact hyperbolic manifolds in cosmology has been the
subject of many studies [101, 102, 103, 104, 105, 106], and considerations for particle physics
were discussed in [107]. And we note that we evade the objections of [108] because our
construction is near the string scale. But we cannot claim to have demonstrated stability
until a satisfactory GSO projection is formulated.

The framework we have suggested so far seems to depend strongly on having ¢ = 9
exactly for the type II AdS3 NLoM. This value is surely within “theoretical errors” of the
results listed in table 4.1: large D methods cannot be expected to be terribly accurate for
D = 2!'5  But there might be some interest in this type of construction even if this is
not true. Perhaps some flux of H3 can be used to adjust the central charge. Perhaps, in
a case where AdSs/I" has finite volume but is not compact, a dilaton gradient might be
added. If the value ¢ = 7.732 is a slight over-estimate of the true value, then perhaps
a compactification to five dimensions (possibly with a slight dilaton gradient) would be
possible.

In any case, the large discrete freedom in the choice of AdSs/T" could result in an
interesting range of four-dimensional models, as in [109]. Most finite volume hyperbolic
manifolds are not simply connected, and the minimal length of the various homotopy cycles
are fixed in string units. This suggests interesting possibilities for the spectrum of wrapped
strings. For example: could they provide generations of chiral fermions?

We should also consider the possibility that type II on R3! x AdS, is a critical back-
ground. Although this is almost as close to being realized in table 4.1 as criticality of
R31 x AdS3, it doesn’t fit with the attractive hypothesis that AdSs is critical (which works
if the values for ¢ in table 4.1 are under-estimates); nor does it fit particularly well with the
supposition that AdSs x S is critical, since this hypothesis works nearly perfectly when
the values in table 4.1 are assumed to be highly accurate. Clearly, it would be highly de-

sirable to determine the central charges more precisely. Absent this, a more quantitative

3Tndeed, we should admit the possibility that the fixed point exists for larger D, but not D = 2. Certainly
it doesn’t exist for D = 1: see the discussion preceding (4.77). ’
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estimate of the theoretical uncertainties in the determinations in table 4.1 would help bring

the current discussion into better focus.

4.5.3 Positive curvature spacetimes

It is well-accepted that there cannot be a conformal NLoM on a sphere SV~! in d =
2 without some participation of matter fields (i.e. couplings other than the target space
metric): such a NLoM would be associated with a finite-temperature phase transition
for the O(N) model, which the Coleman-Mermin-Wagner theorem prohibits [110, 111].
This theorem states (more or less) that a compact, continuous symmetry cannot exhibit
spontaneous symmetry breaking in two dimensions.!6

It is only a small step from this to claim that there cannot be a conformal NLoM on de
Sitter space, dSp41, without the participation of some matter fields. The reason, simply, is
that the beta function is indifferent to signature. If competition between different powers
of curvature gave rise to a dSp1 fixed point, there would be a SV~ fixed point too (with
N = D + 2 as always). Previous claims that de Sitter vacua do arise in this way [112] rely
upon a SL(2,Z)-covariantization of the type IIB spacetime effective action. This takes us
outside our current scope (see however section 4.5.4), but we believe a careful analysis of
signs still indicates AdSp41 rather than dSp, solutions.

It is possible to check that the expressions (4.19) and (4.78) that we have given for the
bosonic and type II NLoM’s are consistent with the expectation that there are no positive
curvature conformal points. But there is a subtlety: for d > 4, the scalar field interactions
of our model become irrelevant, and hence do not affect the renormalization group flow.
Thus for d > 4, we find the mean-field theory result A = 1, to all orders in 1/D, in both the
bosonic and supersymmetric cases. A check on the expressions (4.40), (4.53), and (4.70)
for the A; is that Ag = 1 and A\; = A\ = 0 for d = 4, so that A = 1. In short, the large D
results match smoothly onto mean field theory expectations, order by order in 1/D. If this

matching were not accounted for, then ((g) would oscillate wildly for k > 2, resulting in

'5Reasons are noted in [64] why the CMW theorem does not extend to the non-compact symmetry group
SO(D +1,1) acting on AdSpy1.
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multiple zeroes. When it is, 5(g) has no zeroes at all for k > 0.

4.5.4 Including string loops

Although our focus has been on non-trivial fixed points of AdSp+; NLoM’s, it is interest-
ing to note that a series expansion of the beta functions calculated in section 4.4 can be
translated into information about the low-energy effective action, or equations of motion, in
ordinary type II superstring theory in ten nearly flat dimensions. We will focus on type IIB
and show how to arrange SL(2,Z) invariance.

The tree-level effective action in string frame has the schematic form

1

S=22

/ d¥zvVGe™®® [R+ asR* + asR® +---] (4.87)

neglecting terms which involve defivatives of curvature. The coefficients a; are closely
related to the coefficients in a power series expansion of 3(g) in g. In Einstein frame,
gMN = e ®/2 G’ MmN, and the term at order R* will pick up a dilaton dependence of e(1-k)2/2,
The Einstein-Hilbert term is then evidently SL(2,Z)-invariant, but the higher powers of
curvatures are not. An algorithm for rendering them SL(2, Z)-invariant has been discussed

by several authors [113, 114, 115]: briefly, one makes the replacement

T |2 —q®/2
__qq)/2 Im T € q
o B (m ")2#:(0 0) mnT B (m W)Z#O 0) (m? + nZe2%)e/2 (9

in all the coeflicients a. The replacement (4.88) leads to an effective action with information
at all orders in string loops. For (4.88) to make sense, a highly non-trivial property is
required of the aj: they must be polynomials in ((g) such that every term is some multiple
of a product ¢(q1)¢(q2) - - - {(gr) such that )" q; = k — 1. Then, in Einstein frame, all the
dependence of the coefficients of R* on the dilaton and on transcendental numbers can be
factored into products of the form on the first expression in (4.88). The middle expression
in (4.88) is SL(2, Z)-invariant: 7 = Cp + ie~? is the usual complexified dilaton. In the last
step, we specialize to configurations with Cy = 0.

As we noted in (4.72) and the discussion following it, the coefficient of D¥=2¢k+1 in

B(g) satisfies precisely the zeta function property required for (4.88) to make sense. It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

an interesting, qualitative, all-orders consistency check on the tree-level equation of motion
B(g) = 0 that one can straightforwardly render it SL(2, Z)-invariant.

It is tempting to speculate that some version of SL(2,Z)-invariance can be arranged
in AdSs (or perhaps AdSs x S'), where, according to our earlier speculations, the Weyl
anomaly cancels just as in ten-dimensional flat space. If so, then in the same spirit as [112],
it should be possible to solve the SL(2, Z)-covariant equation of motion for the complexified
dilaton by setting 7 = 4, i.e. ® = Cyp = 0. The reason is that 7 = i is necessarily an extremum
of an SL(2,Z)-invariant function. The upshot is that by making the replacement (4.88)
and then setting ® = 0, one obtains from 8(g) = 0 a modified equation which stﬂl has an
AdSs solution. The radius is slightly larger: k. =~ —0.72 rather than the tree-level value
—0.8696.

We are attracted to the idea that SL(2,Z)-invariance can be realized at some level
for type II strings on AdSs, because in the conjectured dual, pure Yang-Mills theory, the
action possesses an SL(2, Z) invariance. This does not imply that there is a conformal fixed
point for this theory, but rather that renormalization group flows should have images under
SL(2,Z). Whether the AdSs vacuum with & = 0 suggested in the previous paragraph is
physically significant for pure Yang-Mills theory seems doubtful; more plausible is the idea
that some dilaton gradient is required. But we remind the reader that we are at the end of

a long chain of conjectures.

4.6 Summary

The absence of a zero of B(g) for positive g—that is, for the O(N) model—is well ac-
cepted because it is consistent with the known perturbative results, the large N results, the
Coleman-Mermin-Wagner theorem, and, in the bosonic case, the non-perturbative results
of [116]. The situation for the AdSp,; NLoM is much less certain. The evidence from
four-loop perturbative calculations and from the large D expansion through order 1/D?

points to the following picture:

1. There is indeed a zero of 3(g) for negative g, of order —1/D. This is true both for
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the bosonic case and the supersymmetric case, at least for large enough D. In the
supersymmetric case, 3(g) cannot have a zero for D = 1 (i.e. AdSz), but for D > 2 it
may. See equations (4.29), (4.40), (4.53), (4.70), (4.71), and (4.78); figures 4.1 and 4.4;
and table 4.1.

2. The non-trivial fixed point has the peculiar property that the leading corrections
to short-distance scaling are controlled by an operator of negative dimension. In
section 4.4.5 we have outlined a heuristic physical picture that could account for this
peculiarity: it hinges on the idea that infrared fluctuations are quite wild in an AdSp;
target space, and that these large, non-Gaussian fluctuations make it possible for two

point correlators to have power-law growth rather than power-law fall-off.

3. The central charge of the non-trivial fixed point has ¢ < 5(D + 1) in the bosonic
case, and ¢ S 3(D + 1) in the supersymmetric case. The dominant uncertainty in
determining c is from the metric on the space of couplings, which we have computed
at the level of free field theory on the worldsheet rather than in a systematic expansion.
In the supersymmetric case, we have suggested that ¢ = 3(D + 1) exactly because it
makes sense for the critical dimension for strings in AdSp;; to coincide with the
upper critical dimension of gauge interactions in R”. This conjectured equality has
the striking consequence that AdSs and quotients of it have the same central charge

as six-dimensional Calabi-Yau manifolds.

Of these claims, surely the oddest is the second. But because the dimension of the operator
is related to the slope of 3(g) at the fixed point, it is more sensitive to the nearly singular
behavior of 3(g) there than the position g. of the fixed point is. Thus one might hope
that this “problem” goes away on its own. The determination of the central charge is also
less sensitive to the precise form of 5(g) near the fixed point than 3'(g.). If the values in
table 4.1 are fairly accurate, then AdSs x S! rather than AdSs is the leading candidate for
a critical type II background. As we have noted in section 4.5.1, modifying our string-scale

AdSpy1 backgrounds with a dilaton gradient for D < 4 leads to appealing candidates for
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holographic duals of simple gauge theories, such as pure Yang-Mills theory, with no flavor
symmetries.

We have been careful all along to point out the potential pitfalls of our calculations,
but let us reiterate the main one: we are not calculating in a controlled approximation
scheme. This is well illustrated for fixed order computations in figure 4.1, where successive
terms alternate up to the fourth loop order. The alternating signs problem is fixed in the
large D treatment: all powers of g except the first few contribute with the same sign to
B(g) for g < 0. But then the issue becomes the radius of convergence in x = gD of higher
1/D corrections. It would clearly be desirable to gain better control over these corrections.
Perhaps the class of graphs at O(D~3) that contributes to the leading singular behavior of
b3() is small enough for explicit calculations to be tractable. It is also clearly worthwhile
to try to approach the same broad class of NLoM’s in different ways, such as algebraic
methods, lattice simulations, or (for g > 0) high temperature expansions. Explorations of
D-branes in these NLoM’s is clearly called for, as is an understanding of the possible GSO
projections and their implications for stability.

Even the most conservative reading of these results strongly suggests that there is in-
teresting structure in the beta function for the AdSp;+1 NLeM which is not reliably visible
at low loop orders. While we admit the possibility that all the strange behavior—including
singularities and an apparent zero—could be artifacts of the minimal subtraction scheme
we chose, or of a zero radius of convergence for 3(g), we think it more likely that these
features signal interesting physics. A fixed point of RG is the simplest and most attractive
possibility. If this fixed point is where we think it is; if it leads to a dual at string scale to
four-dimensional gauge theory at moderate coupling; if it provides an alternative route to
four-dimensional models—then these NLoM’s and variants of them could become a central

part of string theory.
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Chapter 5

Conclusions

We have argued that though tests of stringy corrections to gravitational measurements may
be difficult if not impossible, tests of string theory as it describes strong interactions is at a
minimum substantially more plausible, and perhaps even likely with today’s experiments.
The presence of a strongly-coupled Quark-Gluon Plasma at the RHIC experiment provides
hope for experimental tests of string theory, since the bulk physics can be described by the
gravitational dynamics of an anti-de Sitter background in the presence of a horizon.

In particular, the strongly-coupled nature of the Quark-Gluon Plasma combined with
the dynamic nature of jet quenching makes it difficult to study the phenomenon using
standard methods, such as perturbative quantum field theory or lattice simulations. Ideal
hydrodynamics comes close, however it is best applied in the far infrared region of parameter
space and can not easily access the region of momenta that is most experimentally relevant,
when the momentum is on the order of the plasma temperature. Indeed, the one remaining
calculational tool that we are aware of is string theory via the AdS/CFT correspondence.

We have proceeded to compute the jet quenching efficiency from a simple gravity dual
description, based on a string hanging near the boundary of AdS, with the bulk of the string
trailing behind the “quark” endpoint in the bulk of AdS. Previous authors have shown that
string theory indeed predicts that the quark momentum is exponentially damped, and we

have extended their analysis to address the question of where the energy goes after it is
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dissipated into the thermal medium by the relativistic quark. We have shown that the
behavior of the outgoing energy density as a function of the angle between the outgoing
particles from the quenched jet and the near-side jet that escapes the plasma quickly is

qualitatively very similar to the string theory prediction.
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Figure 5.1: Figure 1.4 revisited. The vertical axis is proportional to the number of outgoing
particles observed in each angular bin, where the angle is the separation between the near-
side jet and the outgoing particle from the quenched jet.

We benefit further from the fact that though the RHIC data plots are consistent with
a Mach-like sonic-boom, they do not imply this physics directly, and further directional
measurements are required to say for certain that a sonic boom occurs. Therefore, to this
extent, the presence of a sonic boom is a prediction from string theory regarding what
should be seen at RHIC.

Strictly speaking, our calculations were carried out within the gravity dual to N’ = 4
SYM in the limit of a large number of colors N, which is quite different from QCD. However,
we remind the reader that lattice simulations of QCD tell us that at RHIC temperatures,
the physics of QCD can be well-approximated by a conformal field theory, which is one of
the essential properties of N' =4 SYM. Furthermore, since our calculations deal only with
the AdSs portion of the spacetime, which should be a generic component of any gravity

dual to a four-dimensional gauge theory, one might also expect our essential findings—the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

presence of a sonic boom in particular—to be generic to jet quenching physics in any gauge
theory with a gravity dual, QCD perhaps included. Indeed, the S5 portion of the spacetime,
which contains the geometric encoding of the supersymmetry properties of the theory, was
barely relevant to our calculations. Appropriate modifications to the setup to account for
real-world deviations from conformality would certainly enhance the story.

Of course, our calculations are valid only at the leading order in the *t Hooft coupling
and number of colors, and corrections will be on the order of A, 32 and 1 /N2, each about
10%. Though 10% may mean that our calculations receive large corrections, the fact that
this number is reasonably large gives hope that physical effects that are uniquely stringy
could be experimentally observed in strong interactions. To this end, we have presented a
method for computing the higher order corrections to supergravity that arise from consid-
eration of the beta function for the string worldsheet couplings. We have argued that by
including an effectively infinite number of higher curvature corrections to supergravity, one
can find solutions to string theory that have large curvatures. Though we have presented
the reasons to doubt the existence of these solutions—in particular, the fact that our con-
clusions rely on approximations that strictly speaking are uncontrolled—we do know that
their dual field theories, if the backgrounds exist in the first place, should have ’t Hooft
couplings that are order unity, as opposed to the infinite 't Hooft coupling of the standard
AdSs x S° limit. Furthermore the gauge theory duals will have minimal (if any) supersym-
metry, and may exhibit important phenomena like confinement and asymptotic freedom in
a unified framework. Clearly it would be interesting to understand how these backgrounds
can contribute to an improved understanding of RHIC physics.

We have clearly emphasized the ability to test string theory as it applies to strong
interactions. However, it is extremely important to note that this perspective on string
theory is very closely related to string theory as it applies to quantum gravity. Indeed, many
formulations of models of particle physics plus quantum gravity that come from string theory
rely on AdS/CFT-like components in their setups [117, 118], and particle physicists have

for years keyed in on so-called “warped geometries”, i.e., anti-de Sitter space, as a means
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of explaining the large hierarchy between the electroweak and gravitational energy scales
[119]. On the other hand, if we understand AdS/CFT as a duality between a theory that is
purely gravitational, and another theory that is purely a theory of gluons, then the quantum
gravity corrections to supergravity that one might calculate for AdS/CFT purposes are the
ezact same quantum gravity calculations that would be unobservable O(1071%) effects at,
say, the LHC. Yet when viewed through the lens of the AdS/CFT correspondence, these
corrections become O(g2, ~ 1/N? = 1/9 ~ 10%) contributions to gauge theory observables,
and hence are significantly more likely to be testable. Therefore, although we are primarily
concerned with the use of string theory as a description of strong interactions, if we are
able to test string theory in that vein, then ywe are simultaneously testing string theory as
it applies to quantum gravity. Clearly, the importance of RHIC to string theory can not be

underestimated.
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