
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Holographic renormalization for Lifshitz spacetimes

Holsheimer, K.

Link to publication

Citation for published version (APA):
Holsheimer, K. (2014). Holographic renormalization for Lifshitz spacetimes

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 04 Feb 2018

http://dare.uva.nl/personal/pure/en/publications/holographic-renormalization-for-lifshitz-spacetimes(0e02276e-c74a-4965-b3f3-f3d5c6406689).html


This dissertation sets up a foundation for studying phys-

ical systems in the vicinity of a strongly-coupled UV fixed point

with non-relativistic scaling via holography. The dual gravitational

description is defined through imposing asymptotic boundary con-

ditions that are consistent with Lifshitz -type scaling symmetry:

t → b
z
t, x → bx. Special attention is given to the case in which

the dynamical exponent is z = 2, i.e. when the system shows a

quadratic dispersion. Such a system exhibits a Weyl-type anomaly

in 3 spacetime dimensions, which is analyzed in detail.
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Introduction

Many advances in theoretical physics originate from adapting concepts in a
different context from where they were initially developed. This is especially
true in string theory, starting from the advent of string theory itself as a pos-
sible theory of quantum gravity.1 Prime examples of such ‘cross-pollinations’,
so to speak, arise from what are known as a dualities, which have become
increasingly ubiquitous in theoretical physics. What we mean by a duality is,
in short, having more than one distinct way of describing one physical sys-
tem; the different descriptions are said to be dual. Theoretical descriptions
(or simply ‘theories’) that are dual in this way may appear vastly different
upon first inspection, as is the case for the type of dualities that we consider
in this dissertation, namely holographic dualities. These dualities admit a
translation between a (quantum) theory of gravity and a quantum field the-
ory without gravity in one less dimension. The gravity theory can be viewed
as a higher-dimensional hologram of its dual quantum field theory.

Holographic principle. The first indication of the holographic nature of
spacetime came from the study of black holes. A similarity was observed
between the laws of black-hole mechanics and the laws of thermodynamics.
In particular, the second law of thermodynamics is reflected by the ‘one-way’
character of a black hole’s event horizon that leads to an ever-increasing black-
hole mass (at the classical level) [4]. The area of the horizon seemed to play
the role of thermodynamic entropy, which lead to the proposition that S ∝ A,
where S is the black-hole entropy and A is surface area of the horizon. The
area-law behavior of black-hole entropy was surprising, because the intuition
from statistical physics told us that the entropy of a typical thermal system
scales as its volume rather than some surface area. The identification S ∝ A
became more serious when the temperature of black holes was computed.
Namely, a black hole exhibits black-body radiation with a temperature that
can be computed by studying local quantum fluctuations near the horizon
[5]. Knowledge of the black-hole temperature allows one to determine the
proportionality constant in S ∝ A via the first law of thermodynamics. The

1String theory was initially developed in the S-matrix formulation of the strong nuclear
force.
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result is that the black-hole entropy is given by:

S =
kBc

3

4~G
A (I.1)

In units where c = ~ = kB = 1, this reduces to S = A/4G. The fact
that this area law ties together very different topics in physics is reflected
by the fact that the proportionality constant involves the speed of light c
(relativity), Planck’s constant ~ (quantum theory), Boltzmann’s constant kB

(thermal/statistical physics) and Newton’s constant G (gravity). Entropy
measures the microscopic degeneracy associated with a macroscopic state.
Similarly, entropy can be seen as that number of microscopic degrees of free-
dom that make up a given macroscopic state. The area law has lead to the
more general expectation that all microscopic degrees of freedom in a the-
ory of gravity organize themselves in such a way that together they form
a macroscopic hologram, as it were [6]. This expectation was dubbed the
holographic principle.

Concrete example. The first concrete example where it was possible to
actually count the number of microscopic degrees of freedom of a black hole
configuration came from the study of D-branes in string theory [7]. The
holographic structure of this analysis became clear not long after, due to
the advent of the AdS/CFT correspondence. The type of quantum field
theories that are dual to gravity theories with anti-De Sitter (AdS) boundary
conditions are conformally-invariant field theories (CFT). The first concrete
example of AdS/CFT relates string theory on an AdS5 × S5 background to
maximally supersymmetric SU(N) Yang–Mills theory (which is conformally
invariant) [8]. The symmetries of the CFT (conformal symmetry and the
SO(6) R-symmetry) are translated to isometries of the AdS5 × S5 geometry.

Simplifying assumptions. The AdS5/CFT4 duality becomes manageable
when we take the rank N of the gauge group very large (keeping the ’t Hooft
coupling λ = Ng2ym finite), which has the effect that the dual gravity theory
becomes classical. A further simplification can be made by focusing on situ-
ations where the ’t Hooft coupling is large, which means we can safely ignore
α′ corrections on the gravity side. In these limits we can use the AdS/CFT
duality to translate a strongly-coupled CFT (at large N) to an ordinary classi-
cal (super)gravity theory. This relation is quite exciting, because field-theory
computations are notoriously hard to do at strong coupling. Holography thus
delivers a new alternative framework for analyzing strongly-coupled systems
with relative ease.

Top-down and bottom-up. Inspired by the above example, one might at-
tempt to use holographic dualities to describe strongly-coupled systems that
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can be realized in a laboratory. A precise gravity dual is in general lack-
ing, but one can nevertheless take a broader perspective and study universal
properties instead. The ways one may try to proceed can be divided into
two categories: top-down and bottom-up. In top-down approaches one tries
to build a model that emulates some general properties of the system under
consideration by using the building blocks that are available in string theory
(typically brane constructions). In a bottom-up approach one usually starts
with Einstein gravity and adds whatever matter is necessary to mimic the
desired setup. The advantage of a top-down approach is that there is a better
understanding of both sides of the duality, while in bottom-up approaches
the field-theory dual is generally unknown. The advantage of a bottom-up
approach is that one has more freedom in constructing a model, where in top-
down approaches one is restricted to the building blocks available in string
theory.

Effective large N. Throughout this work we take a bottom-up approach.
We continue to consider the regime where the gravity theory is evaluated at
a saddle point. The first conceptual issue arises when we ask the question
what this classical limit translates to in the dual field theory. Namely, we
cannot give a precise meaning to the ‘large-N ’ limit. Nevertheless, we imagine
having taken some effective large-N limit. In either the top-down or bottom-
up case, we interpret large N as having a ‘large number of microscopic degrees
of freedom.’

Role of the radial coordinate. Since holographic dualities relate two
theories in a different number of dimensions, a natural question to ask is
what happens to the gravity theory’s additional dimension. The answer is
that the radial coordinate has a natural interpretation as the physical mass
scale on the field-theory side. Interestingly, the radial coordinate and its dual
mass scale are related in such a way that large radii probe short distances
in the dual field theory. Thus, besides interchanging strong/weak coupling,
holographic dualities also interchange UV/IR. The boundary conditions are
imposed on the (conformal) boundary of the geometry at large radius, which
means that they correspond to UV boundary conditions in the field theory.
The CFT can thus be viewed as associated with a UV fixed point. At the
UV fixed point, we only allow relevant or at most marginal operators in
order to be able to satisfy the asymptotic boundary conditions.2 Allowing
for marginal operators means that the geometry does not need to be AdS all
the way into the interior; it only needs to asymptote to AdS at large radii.

2An irrelevant operator would induce a flow away from the UV fixed point when the
mass scale is increased, which means that the asymptotic geometry would be altered.
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Symmetries. In building an effective model, the first thing one does is
to make sure that the symmetries on either side of the purported duality
match. As usual, symmetries imply the existence of conserved (Noether)
charges, which are ‘measured’ at infinity. Because the conserved charges
are ‘measured’ at the large radii, the symmetries are put in the system by
imposing appropriate UV boundary conditions. A particular symmetry that
is part of the conformal algebra is a dilatation, which rescales time and space
as xa 7→ bxa. From the line element of (Poincaré) AdS,3

ds2 = dr2 + e2r ηab dx
adxb , (I.2)

it is obvious that a dilatation can be generated by preforming a radial rescal-
ing: er 7→ b er. In this way, dilatations can be promoted to isometries, as
(xa, er) 7→ (bxa, er/b).

Precision holography. The quantum field theory can be seen as ‘living’
on the asymptotic boundary of the bulk (super)gravity field configuration.
Holographic dualities provide a dictionary that enables translation between
bulk fields and QFT sources and operators. In particular, the asymptotic
values of the bulk fields are identified with sources in the dual field theory. Let
us denote all bulk fields collectively by φ. The type of holographic dualities
that we consider can then be summarized in the following form [9]:

Wfld.th.[J = φ(0)] = Sgrav[φ
r→∞−−−→ φ(0)] . (I.3)

On the left hand side we have the field-theory generating function at strong
coupling, while on the right-hand side we have the gravity action evaluated
on a solution φ that asymptotes to φ(0) as r → ∞.4

Holographic dictionary in AdS/CFT. The master equation (I.3) en-
ables us to compute CFT correlation functions by taking φ-derivatives of the
on-shell gravity action. Of particular interest are the expectation values of
conserved quantities, which give us important information about the state
of the system under consideration. For instance, the stress tensor T ab con-
tains information about the energy, momentum and stress of the system; its
expectation value can be computed in holography as follows:

〈T ab〉 =
2√
g

δW

δgab
=

2√
g

δSgrav
δgab

. (I.4)

The boundary metric gab appears in the AdS bulk metric as

ds2 = dr2 + gab(r, x) e2r dxadxb (I.5)

3We use Gaussian normal coordinates and set the AdS curvature length to one.
4The bulk fields can be rescaled in such a way that the leading mode φ(0) has a finite

limit as r → ∞.



11 Introduction

More precisely, the boundary metric is the (finite) limit limr→∞ gab(r, x).
This identification is the reason why it is often said that the field theory
‘lives’ at the (conformal) boundary of the dual geometry. A typical system
will not exhibit conformal invariance, so one often wants to move away from
the conformal fixed point in the UV. This can be achieved by adding marginal
operators, which in holography is done by adding appropriate matter in the
dual gravitational picture. For instance, adding a scalar field with mass
m2 = ∆(∆ − d) introduces a scalar operator of dimension ∆.5 Another
common example is adding a U(1) gauge field in the bulk, which introduces
a global U(1) current in the CFT. We summarize these three most common
examples schematically:

gab ↔ T ab , Aa ↔ Ja , ϕ ↔ Oϕ . (I.6)

Divergences and counterterms. The relation (I.3) is quite powerful, be-
cause it allows one to compute correlation functions in a strongly-coupled
quantum field theory by taking derivatives of the on-shell gravitational ac-
tion with respect to the leading modes φ(0). There is, however, a serious
issue with (I.3) as it stands now. That is, the on-shell action and the corre-
lation functions it generates are divergent due to the infinite volume of the
geometry. Such infinite-volume divergences translate to UV divergences in
the dual field theory. Of course, it is to be expected that the (bare) generat-
ing functional is UV divergent. We know that in a renormalizable quantum
field theory we can add local counterterms to remove such divergences. The
goal of holographic renormalization is to find such counterterms on the grav-
ity side of the duality. We discuss holographic renormalization in detail in
Chapter 1.

A look ahead. The main goal of this work is to study systems that exhibit
scale invariance but are not Lorentz invariant. In particular, we focus on a
specific class of theories that are invariant under rescalings that treat the time
coordinate differently from spatial ones, which is incompatible with Lorentz
symmetry. As we mentioned above, we are generally interested in describing
universal properties, such as transport properties, of strongly-coupled sys-
tems via holography. Before one can hope to perform such studies, however,
one needs to make sure that the questions are well posed in the sense that
the quantum theory be properly renormalized. This work mainly deals with
the latter issue.

Universality is an important concept in the study of second-order phase tran-
sitions. We briefly review some of these basic concepts below before we dis-

5∆ is the larger of the two roots of ∆(∆− d) = m2.
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cuss the Lorentz-incompatible scaling.

Universal scaling. Consider some observable O(ga), as a function of the
dimensionless coupling constants ga. For simplicity, we take a = 1, 2. The
characteristic fall-off of (equal-time) two-point correlators, known as the cor-

relation length, diverges at a (quantum) critical point. The removal of the
characteristic length scale allows for the system to become scale invariant; it
is a renormalization-group (RG) fixed point. In the vicinity of such a fixed
point one can study the scaling properties of some generic observable O(ga)
as follows. Let b > 1 be the standard RG scaling parameter6 and let us
denote the scaling of the couplings ga by λa. Also, we parametrize our cou-
plings in such a way that ga = 0 at the fixed point. Suppose that g1 is a
relevant coupling, then we can use scale invariance to reduce the number of
arguments of O by one:

O(g1, g2) = b∆O(bλ1g1, b
λ2g2) = g

−∆/λ1
1 O(g12) ,

g12 ≡ g2/g
λ2/λ1
1 . (I.7)

We used scale invariance to set b = g
−1/λ1
1 and we introduced the notation

O(g) ≡ O(1, g). The exponent ∆/λ1 is known as a critical exponent. Critical
exponents are universal in the sense that they are independent of the precise
details of the theory; they only depend on dimensionless parameters such as
the number of dimensions or field components. A universality class consists
of a set of critical exponents, which capture the universal physical properties
of a system at a critical point. Many different theories can give rise to the
same set of critical exponents, so many different systems can belong to the
same universality class.

Dynamical exponent. Many critical exponents are defined as the scaling
of observables relative to the scaling of the correlation length. A particular
example of such a critical exponent that we come across repeatedly through-
out this work is the dynamic critical exponent denoted z. It can be defined
as follows. Let us take the above example again. The correlation length ξ
satisfies the scaling (I.7) with ∆ = −1:

ξ(g1, g2) = g−ν1 ξ(g12) , (I.8)

where ν is standard notation for the critical exponent associated with the
correlation length (in this case, ν = −1/λ1). A typical observable is the

6The rescaling is done after the ‘fast modes’ are integrated out.
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energy E,7 whose scaling relative to ξ defines the dynamical exponent z:

E(g1, g2) = gzν1 E(g12) . (I.9)

Let t be the time coordinate conjugate to E. At the critical point, the
system is invariant under rescaling (x, t) → (bx, bzt) with z 6= 1, which is
often referred to as Lifshitz scaling in the high-energy community. In the
condensed matter community, however, Lifshitz scaling typically refers to
spatial anisotropy rather than space/time anisotropy. The attribute ‘Lifshitz’
has its origin in the effective description of a finite-temperature phase diagram
that includes a tricritical point called a Lifshitz point. We briefly review this
below.

Lifshitz point. A Lifshitz point is a special point in a phase diagram that
separates three distinct phases, which typically consist of a high-temperature
disordered phase and low-temperature ordered phases that are either spatially
uniform or modulated, cf. Figure I.1.

As an example, we consider the phase dia-
gram of MnF2 [10].8 The paramagnetic phase
is the high-temperature disordered phase, the
(anti)ferromagnetic phase is the uniformly ordered
phase, and the spin-flop9 phase is the spatially
modulated phase.

In the effective description of such a phase diagram,
the free energy is given in terms of the order pa-
rameter ϕ (e.g. magnetization):

F =
1

2

∫
dd−1x dy

(
(∂yϕ)2 + c (∂xϕ)2 + κ (∆xϕ)2 + tϕ2

)
(I.10)

Here, t is typically the reduced temperature and y and x are the spatial
directions that are respectively parallel and perpendicular to some external
(magnetic) field. The associated phase diagram is sketched in Figure I.1. An
RG transformation rescales the coupling constants such that:

RG :



t
c
κ


 7→




b2ζ t

b2(ζ−1) c

b2(ζ−2) κ


 (I.11)

7For instance, E could be an effective energy range of low-lying excitations accessible
to the system.

8See also §4.6 of [11].
9In a spin-flop phase transition (from the uniform to the modulated phase), the spins

switch from parallel to perpendicular alignment to the external magnetic field. Such a
transition happens when the external field is tuned to sufficiently high values.



Introduction 14

t

−c0

disordered

uniform modulated

Lifshitz point

0

Figure I.1: Generic phase diagram that includes a Lifshitz point. When c > 0 the system
is in the uniform phase. On the other hand, when c < 0 the system is in a modulated
phase, because the free energy is minimized when ϕ ∼ eik·x with |k| > 0 fixed in terms of
the coupling constants.

The Lifshitz point is the fixed point where c = 0 and t = 0, with relative scal-
ing ζ = 2. The marginal coupling κ parametrizes a line of such fixed points.
It is the spatially anisotropic scaling (x, y) → (bx, bζy) that is called Lifshitz
scaling. Notice that c and t are relevant couplings, so the Lifshitz point is an
unstable fixed point (i.e. related to a second-order phase transition).

Quantum Lifshitz model. To get a feeling for the kind of quantum field
theories we attempt to describe holographically we consider the simplest:
the quantum Lifshitz model [12]. It is defined in analogy to (I.10) at the
Lifshitz point. The spatial direction y is now interpreted as the (Euclidean)
time direction, which means that ζ is interpreted as the dynamical exponent,
z = ζ. The action of the quantum Lifshitz model is given by

S =
1

2

∫
d2x dt

(
−(∂tϕ)2 + κ2(∆ϕ)2

)
(I.12)

This action is invariant under Lifshitz-type scaling (x, t) → (bx, bzt) with
z = 2. The quantum Lifshitz model received considerable interest due to
its relation to 2D CFT’s [13]. It also serves as an effective description for
systems such as the Rokhsar-Kivelson dimer model [12, 14], which lies in the
same universality class as (I.12). We discuss this model in more detail in
Chapter 2.

Non-Abelian Lifshitz model. A model that is slightly closer to holo-
graphic models is the z = 2 analogue of SU(2) Yang–Mills theory, presented
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in [15]:

S =
1

g2

∫
d2x dt tr

(
Ei ∂tAi +AtDiE

i − 1

2
DiEjD

iEj +
1

2
B2

)
+ S′ ,

S′ =
1

g2

∫
d2x dt

(
g1EijE

ij + g2(Ei
i)2
)
, (I.13)

where Ei is the canonical momentum conjugate to Ai, B = ∂1A2 − ∂2A1 +
[A1, A2] is the magnetic component of the field strength, Eij ≡ tr(EiEj) is
just a convenient short-hand notation, and Di is the gauge-covariant deriva-
tive. The above action is invariant under SU(2) gauge transformations and it
is conjectured to be in the same universality class as certain spin-12 systems
in which the spins are organized on a honeycomb lattice; these are z = 2
scale invariant. At tree level, the action (I.13) describes a z = 2 fixed point.
However, if one takes loop corrections into account one finds that it is not
a proper RG fixed point at weak coupling, because the couplings g1 and g2
drive a flow away from the classical fixed point, cf. [15]. It was suggested
that the fixed point may be stable at strong coupling, but the analysis could
not be performed due to the fact that the perturbative approach becomes
unreliable. Systems that are effectively described by a strongly-coupled fixed
point at z = 2 are typically the type of theories we attempt to describe
holographically.

Lifshitz holography. Lifshitz holography aims to describe a class of “large-
N” quantum field theories at a Lifshitz-invariant strongly-coupled UV fixed
point. Besides the Lifshitz scaling symmetry, Lifshitz theories are also invari-
ant under spatial and time-translations, as well as spatial rotations. These
symmetries comprise the Lifshitz algebra. Lifshitz spacetime [16] is con-
structed in such a way that its isometry algebra is the Lifshitz algebra, in
much the same way that the isometry algebra of AdS is the conformal alge-
bra (modulo some subtleties in AdS3). The line element in Gaussian normal
coordinates is an obvious generalization of Poincaré AdS:

ds2 = dr2 − e2zrdt2 + e2rdx2 (I.14)

The Lifshitz symmetry algebra is realized by the isometries that are generated
by D = zt∂t + xi∂i − ∂r, Pi = ∂i, H = ∂t and Rij = xi∂j − xj∂i.

Lifshitz needs additional structure. Lifshitz spacetime is not a solution
to the vacuum Einstein equation, so it must be supported by additional
structure. The simplest model that admits a Lifshitz solution involves the
addition of a massive vector field to the Einstein–Hilbert action, which is
known as the Einstein–Proca theory or massive-vector theory. This theory
was proposed in the context of holography in [17] and it can be derived from



Introduction 16

the two-form/three-form theory initially used in [16] by integrating out one
of the form fields. We discuss the massive-vector theory in detail in Chapter
2. For other models based on dimensional reduction of the well-established
AdS5 holography, see e.g. [18–20].

IR instabilities. Some issues have been raised concerning the stability of
Lifshitz spacetime (I.14). These are mainly related to short-distance insta-
bilities in the interior of the geometry. Although Lifshitz spacetime has no
curvature singularities, it was noticed that the geometry suffers from diverg-
ing tidal forces as felt by a local observer near er ≈ 0 [21, 22]. In one holo-
graphic model known as the Einstein–Maxwell–dilaton model, a resolution
of this issue was proposed by the emergence of an AdS2 throat in the deep
interior [23]. Our stance is that we do not expect these types of singularities
to play a crucial role, as the Lifshitz geometry is only presumed sensible at
large radii. In other words, we assume that we can impose physically sensible
IR boundary conditions that are free of these singularities. In Chapter 3 we
see that the Lifshitz geometry naturally flows to AdS, which resolves this
issue in the massive-vector model in three boundary dimensions with z = 2.

Trapped modes. Another issue that was raised more recently suggests
that constructibility of the geometry from the boundary conditions imposed
at infinity is hindered due the existence of ‘trapped modes’ [24]. These modes
are are related to null geodesics that cannot reach infinity if they carry some
momentum in the transverse spatial directions. In [24] it was also suggested
that a possible resolution of this issue might be to introduce a cut-off for the
transverse momenta. An explicit satisfactory resolution (if it exists) of this
issue is unknown at this stage.

The Lifshitz-type Weyl anomaly. It is well known that Weyl symmetry
is anomalously broken in even-dimensional CFT’s. In Chapter 1 we compute
these Weyl anomalies holographically. It turns out that there is a similar kind
of anomaly in Lifshitz-type theories when the dynamical exponent is equal to
the number of spatial dimensions, z = ds. We compute this anomaly for the
case z = ds = 2 in Chapter 2. In that case, the anomaly is given in terms of
two central charges. Knowing these central charges gives us some insight into
the universal properties of the theory. For instance, in the relativistic case
the central charge completely fixes the free energy at high temperatures in
two dimensions. Also, in both two and four dimensions, the central charges
control the universal terms in the entanglement entropy. We compute the
central charges both for the quantum Lifshitz model (I.12) as well as for
the purported class of Lifshitz-type theories that are holographically dual
to the massive vector theory. Moreover, a first step is made in identifying
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the universal contribution to the entanglement entropy for the z 6= 1 case in
Section 3.1.

Lifshitz-to-AdS holographic RG flow. Consider again the effective de-
scription of a Lifshitz point (I.10). Let us consider moving slightly away from
the Lifshitz point directly to the left, i.e. t = 0 and c > 0. The system will
then flow to an isotropic ζ = 1 fixed point, where SO(d) symmetry emerges.
In Chapter 3 we discuss a similar flow in holography. It so happens that the
massive-vector theory contains a marginally relevant operator that induces a
flow from the UV fixed point with dynamical exponent z = 2 to an IR fixed
point with z = 1 (AdS). We discuss the role of the marginally relevant oper-
ator in the context of holographic renormalization. In the process we resolve
some issues that were present in the literature concerning this marginally
relevant operator.

Entanglement c-function. Besides properly renormalizing the massive-
vector theory, we also check that the effective number of degrees of freedom
decreases along the Lifshitz-to-AdS flow, as expected on general grounds.
As a measure for the effective number of degrees of freedom we take the
universal part of the entanglement entropy known as the entanglement c-
function, which is easily computed in holography.

Structure of this thesis

This dissertation is organized as follows. In Chapter 1 we review the different
methods of holographic renormalization in chronological order, after which
we present a hybrid method that combines all the virtues of the previous
models. In Chapter 2 we apply this model of holographic renormalization
to spacetimes with Lifshitz-type asymptotics. We also compute the Lifshitz-
type Weyl anomaly for z = ds = 2, first for in the quantum Lifshitz model and
then in a holographic model. Finally, in Chapter 3 we discuss the marginally
relevant operator that naturally appears in the holographic massive-vector
model.





Chapter 1

Holographic Renormalization

As we mentioned before, the type of holographic dualities that we consider
follow from the master equation that relates the generating functional of the
QFT at strong coupling (and ‘large N ’) to the on-shell value of the dual
gravitational action [9]:

Wfld.th.[J = φ(0)] = Sgrav.[φ
r→∞−−−→ φ(0)] , (1.1)

where we denote all bulk fields collectively by φ. In the Introduction we men-
tioned that the generating functional is UV divergent. The UV divergences
translate to infinite-volume divergences in the dual gravitational on-shell ac-
tion. To get a feeling for how these infinite-volume divergences appear, let us
consider a probe scalar field in a fixed AdS background, whose line element
is:

ds2 = dr2 + e2r
(
−dt2 + d~x 2

)
. (1.2)

The action for the probe scalar is:

S =

∫

M
dr ddx

√
g
(
∂aϕ∂

aϕ+m2ϕ2
)
. (1.3)

The on-shell action can be written as a surface term by using the field equa-
tions:1

S =

∮

∂M
dσa ϕ∂aϕ = lim

r→∞

∫

Σr

ddx
√
h ϕ∂rϕ . (1.4)

The solution to the scalar field equation (� −m2)ϕ = 0 is spanned by two

modes: ϕ(r, x) = f±(x) eλ±r, where λ± = −d
2 ±

√
(d2)2 +m2. Although

the Breitenlohner–Freedman stability bound allows for negative values of the
mass-squared, m2 ≥ −(d2)2, we consider m2 > 0 for simplicity, such that

1In fact, it is easy to show that, for free theories, the on-shell action is always of the
form S = 1

2

∫
ddx

√
hπϕ (just take the variation of the on-shell action with respect to ϕ

and set then δϕ → 1
2
ϕ).
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λ+ > λ− > 0. It is now clear that it is the non-normalizable mode λ+ is
responsible for the divergence (

√
h = ed r):

S = lim
r→∞

∫

Σr

ddx f+(x)2
(
λ+e(d+2λ+)r + . . .

)
= ∞ (1.5)

where the ellipses denote terms that are suppressed by powers of e−r.

A counterterm. Of course, it is to be expected that the (bare) generating
functional is UV divergent. We know that in a (renormalizable) quantum field
theory we can add local counterterms to remove such divergences. The goal of
holographic renormalization is to find such counterterms on the gravity side
of the duality. For instance, in the above example, we can add the following
surface term to the action before taking the r → ∞ limit:

Sc.t. = −
∫

Σr

ddx
√
hλ+ϕ

2 (1.6)

The on-shell action then becomes

S = lim
r→∞

∫

Σr

ddx
√
h ϕ (∂r − λ+)ϕ

= (λ− − λ+)

∫

Σ∞

ddx f+(x)f−(x) , (1.7)

which allows us to compute the expectation value of the operator O that
is sourced by the scalar field ϕ. More precisely, the source is the non-
normalizable mode J = f+, so

〈O〉 =
δWfld.th.

δJ
=

δS

δf+
= (λ− − λ+) f−(x) , (1.8)

Thus, we see that the expectation value of the operator sourced by the non-
normalizable mode f+ is given by the normalizable mode f−.

Asymptotic radial scaling. Notice that the divergence in the on-shell
action is removed in (1.7) by the fact that ∂r ≈ λ+ asymptotically. It turns
out that this property applies more generally, which we explain in §1.2.

Variational principle. The counterterm (1.6) is needed in order to have a
well-defined variational principle. Although we implicitly ignored the surface
term when we derived the scalar field equation, it is not so clear that we were
allowed to do so. The surface term is generated upon varying the action as
follows:

δS =

∫

M
dr ddx

√
g (ϕ̇ δπ + π δϕ̇− δH)

=

∫

M
dr ddx

√
g (ϕ̇ δπ − π̇ δϕ− δH) +

∮

∂M
ddx

√
h π δϕ (1.9)
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where dots denote differentiation with respect to r and π = 2ϕ̇ is the canon-
ical momentum conjugate to ϕ. The surface term diverges as r → ∞, so it
is not clear how one can dispose of this term. However, if we add the coun-
terterm to the action, we find that the surface term becomes finite in much
the same way as the on-shell action itself became finite:

∮

∂M
ddx

√
h π δϕ →

∮

∂M
ddx

√
h (π − 2λ+ϕ) δϕ

= lim
r→∞

∫

Σr

ddx
√
h (π − 2λ+ϕ) δϕ (1.10)

One then imposes boundary conditions on the non-normalizable mode such
that δf+ = 0 on Σr before taking the r → ∞ limit, thereby removing the
surface term in a consistent way. This viewpoint is explained in much greater
detail in [25].

Holographic renormalization. Holographic renormalization provides a
systematic framework for finding the counterterms like the one in (1.6) to
make the on-shell gravitational action finite. Over the years, there have been
roughly three different approaches to holographic renormalization. In chrono-
logical order, these are the Fefferman–Graham method [26], the Hamilton–
Jacobi method [27], and the Hamiltonian method [28]. In this work we shall
employ a hybrid method based on the latter two, which we present in §1.2.
The main advantage of this new method is that it uses only one canoni-
cal formalism (the HJ formalism), while it does not require the use of an
Ansatz. The way the boundary conditions are imposed in the literature typ-
ically makes use of the Euler–Lagrange formalism. In order to formulate the
boundary conditions for fields that are switched off in the background geom-
etry, this typically requires one to solve the linearized field equations about
the background solution. This step is eliminated in our hybrid method. Be-
fore we present this hybrid method, however, we quickly review the previous
methods in order to motivate the use of the new method.

1.1 Review of Previous Methods

In this section we review the Fefferman–Graham method [26], the Hamilton–
Jacobi method and the Hamiltonian method. It is useful to pick a specific
model that we wish to renormalize, for which we take Einstein gravity with
asymptotically locally AdS boundary conditions. The (off-shell) action is



Chapter 1. Holographic Renormalization 22

given by:

16πGS = −
∫

M
dr ddx

√
g
(
R̃− 2Λ

)
−
∮

∂M
ddx

√
g 2K . (1.11)

The AdS curvature length is related to the cosmological constant as 2Λ =
−d(d−1)/ℓ2. We set Newton’s constant 16πG = 1 and the AdS length ℓ = 1
henceforth (they can be restored in the final answer). We give the (d + 1)-
dimensional Ricci scalar R̃ a twiddle to distinguish it from the d-dimensional
one R, which we encounter below. The line element of asymptotically locally
AdS is given by

ds2 = dr2 + gab dx
adxb , (1.12)

where ∂rgab ≈ 2gab, where ‘≈’ means equality up to terms that are suppressed
by higher powers of e−r.

1.1.1 Fefferman–Graham method

In the Fefferman–Graham (FG) method [26], the metric is expanded in powers
of the radial coordinate [29]:

gab(r, x) =
∑

n≥0

e(2−n)rg(n)ab(x) , (1.13)

The first coefficient is fixed by the asymptotic boundary conditions. For
instance, imposing asymptotically AdS boundary conditions means setting
g(0)ab = ηab. The higher-order coefficients can be expressed in terms of g(0)ab
by using the Euler–Lagrange equations and their radial derivatives, e.g. (for
d > 2):

g(2)ab =
1

d− 2
R(0)ab −

1

2(d − 1)(d − 2)
R(0) g(0)ab (1.14)

whereR(0) ≡ Ric[g(0)]. This recursion relation breaks down when one reaches
n = d, which means that g(d)ab is not determined by the asymptotic boundary
conditions; it is the normalizable mode. The expanded form of the metric can
then be plugged into the action (1.11), which gives an expression in terms of
g(n)ab and powers of er, making the divergences explicit. The on-shell action
will then be of the form

S =

∫

Σr

ddx ed r
(
a(0) + e−2ra(2) + . . .

)
(1.15)
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where a(n) are local expressions in terms of g(n)ab with n < d. The term a(d),
which depends on the normalizable mode g(d)ab, gives a finite contribution to
the on-shell action; it is essentially be the renormalized on-shell action.1

Inverting the FG series. The next step in the FG method is to covari-
antize the counterterm action by inverting the FG expansion (1.13), express-
ing g(n)ab in terms of gab and its derivatives. After this is done, the FG
coefficients will look like

g(0)ab = e−2rgab −
(

1

d− 2
Rab −

1

2(d− 1)(d − 2)
Rgab

)
+ . . .

g(2)ab = e2r
(

1

d− 2
Rab −

1

2(d− 1)(d − 2)
Rgab

)
+ . . . (1.16)

which are then plugged into the counterterm coefficients a(n). This finally
gives a covariant expression for the divergent part of the on-shell action,
which is (minus) the counterterm action:

Sc.t. = −
∑

0≤n<d
e(d−n)r

∫
ddx a(n)

=

∫
ddx

√
g

{
2(d− 1) +

1

d− 2
R

+
1

(d− 4)(d − 2)2

(
RabR

ab − d

4(d − 1)
R2

)
+ . . .

}
(1.17)

Logarithmic modes. We mentioned above that the recursion relation that
fixes g(n)ab in terms of g(0)ab breaks down at n = d. This is completely
natural; it just means that the field equations cannot not be used to express
the independent integration constant g(d)ab in terms of g(0)ab; additional input
is needed (e.g. regularity in the interior). It turns out that there is yet another
kind of break-down when d is even, which requires we add a logarithmic term
∼ log(er) in the FG expansion in order to solve the equations of motion:

gab = e2r
(
g(0)ab + e−2r

(
g(2)ab + r g̃(2)ab

)
+ . . .

)
(d = 2)

gab = e2r
(
g(0)ab + e−2rg(2)ab + e−3rg(3)ab + . . .

)
(d = 3)

gab = e2r
(
g(0)ab + e−2rg(2)ab + e−4r

(
g(4)ab + r g̃(4)ab

)
+ . . .

)
(d = 4)

gab = e2r
(
g(0)ab + e−2rg(2)ab + e−4rg(4)ab + e−5rg(5)ab + . . .

)
(d = 5)

(1.18)

1It is not the renormalized action on the nose, because there are typically finite contri-
butions coming from the counterterms after they are made covariant by inverting the FG
series.
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The additional term g̃(d)ab is a local expression in terms of the source g(0)ab.
For instance, when d = 2:

g̃(2)ab = R(0)ab −
1

2
R(0) g(0)ab (1.19)

The appearance of such an additional term is responsible for having a loga-
rithmic divergence in the on-shell action:

Sc.t. =

∫
ddx

√
g
(
2 +Rr

)
(d = 2)

Sc.t. =

∫
ddx

√
g
(
4 +R

)
(d = 3)

Sc.t. =

∫
ddx

√
g

(
6 +

1

2
R+

1

4

(
RabR

ab − 1

3
R2
)
r

)
(d = 4)

Sc.t. =

∫
ddx

√
g

(
8 +

1

3
R+

1

9

(
RabR

ab − 5

16
R2
))

(d = 5) (1.20)

A logarithmically divergent term signals the presence of a Weyl anomaly [26].
We elaborate on this below.

1.1.2 Hamilton–Jacobi method

The second method we review is the Hamilton–Jacobi (HJ) method [27]. In
the Hamilton–Jacobi canonical formalism, the equations of motions are solved
directly in terms of the on-shell action, also known as Hamilton’s principle
function. The HJ formalism is reviewed in Appendix II. The HJ method
makes use of a radial ADM decomposition [30], cf. Appendix I:

ds2 = N2dr2 + gab (dxa +Nadr)(dxb +N bdr) (1.21)

This allows one to construct the radial Hamiltonian H:

H =

∫

Σr

ddx
√
g (NH +NaHa) , (1.22)

with

H = R− 2Λ + πabπab −
1

d− 1
π2 , Ha = 2Dbπ

ab , (1.23)

where
√
g πab is the canonical momentum conjugate to the induced metric

gab on the equal-r slice Σr. The HJ equation is a first-order non-linear PDE
for the on-shell action:

∂rS +H = 0 , πab =
1√
g

δS

δgab
, (1.24)
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The first term in the HJ equation is the explicit r-derivative of the on-shell
action, holding gab fixed. Since S describes a theory that is generally covari-
ant, the first term must vanish, such that solving the HJ equation reduces
to solving the constraints H = 0 and Ha = 0. The HJ momentum is directly
related to the (bare) stress tensor defined on Σr, i.e.

T ab ≡ 2√
g

δS

δgab
= 2πab . (1.25)

This stress tensor is known as the Brown–York stress tensor. The way the
counterterm action is found in the HJ method is by choosing a local covariant
Ansatz, which in the case of Einstein gravity looks like:

Sc.t. = c0 + c1R+ c2R
2 + c3RabR

ab + c4RabcdR
abcd + . . . (1.26)

The renormalized on-shell action Sren = S + Sc.t. is presumed finite, which
can be checked afterwards. The momentum depends linearly on the on-shell
action, which means that the bare momentum splits up into

πab = πabren. − πabc.t. (1.27)

Because we have chosen a covariant Ansatz for the counterterm action, we
immediately find that the associated momentum constraint is satisfied due
to conservation of the Brown–York stress tensor:

2Dbπ
ab
c.t. = DbT

ab
c.t. = 0 (1.28)

The ‘bare’ Hamiltonian constraint thus reduces to the conservation of the
renormalized stress tensor:

0 = Ha = DbT
ab
ren. (1.29)

Boundary conditions. The next step in the HJ method is to impose the
asymptotic boundary conditions. We would like to impose the boundary
condition ∂rgab ≈ 2gab. By ‘≈’ we mean equality up to terms that are
suppressed by powers of e−r. This is done by asymptotically solving the
following Hamilton equation:

∂rgab =
1√
g

δH

δπab
= 2πab −

2

d− 1
π gab ≈ − c0

d− 1
gab . (1.30)

So, the boundary condition ∂rgab ≈ 2gab fixes c0 = −2(d− 1).

Solving the Hamiltonian constraint. Now that we fixed the asymptotic
boundary condition, we are ready to solve the Hamiltonian constraint. It is
useful to express the kinetic term of the Hamiltonian constraint as

{S, S} ≡ Gabcd
δS

δgab

δS

δgcd
(1.31)
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where Gabcd = ga(c gd)b − 1
d−1 gab gcd is known as the DeWitt metric. This

bracket is symmetric and bilinear (it is not a Poisson bracket). The Hamil-
tonian constraint can then be written as

H = {S, S} +R− 2Λ (1.32)

The split of the bare on-shell action S = Sren. − Sc.t. induces a split in the
Hamiltonian constraint:

{Sren., Sren.} − 2{Sren., Sc.t.} + {Sc.t., Sc.t.} +R− 2Λ (1.33)

The computation becomes more tractable when we expand the Hamiltonian
constraint in terms of the number of derivatives, H = H(0)+H(2)+H(4)+ . . .,
where each term must vanish by itself. In AdS, there is a simple relation

between the number of derivatives and the radial scaling: S
(n)
c.t. ∼ e(d−n)r.

On the other hand, the renormalized action has a finite limit as r → ∞ by
assumption. The bracket terms in the Hamiltonian constraint thus scale as
follows:

√
g
{
S
(m)
c.t. , S

(n)
c.t.

}
∼ e(d−m−n)r

√
g
{
S
(n)
c.t. , Sren

}
∼ e−nr

√
g
{
Sren, Sren

}
∼ e−dr (1.34)

The constant term in the Hamiltonian constraint H(0) vanishes automatically
when c0 = −2(d− 1), which was fixed by the asymptotic boundary condition
∂rgab ≈ 2gab. The next term is

0 = H(2) = 2
{
S
(0)
c.t., S

(2)
c.t.

}
+R . (1.35)

It is easy to find that c1 = 1
d−2 . Similarly,

0 = H(4) = 2
{
S
(0)
c.t., S

(4)
c.t.

}
+
{
S
(2)
c.t., S

(2)
c.t.

}
. (1.36)

which yields c2 = d
4(d−4)(d−1)(d−2)2

, c3 = − 1
(d−4)(d−2)2

and c4 = 0. Thus, the

counterterm action that is generated in this way is the same one as we found
using the FG method, cf. (1.17).

Holographic Weyl anomalies. The way anomalies appear in the HJ

method is when {S(0)
c.t., S

(d)
c.t.} vanishes identically, which is the case when d

is even. We notice, however, that {S(0)
c.t., Sren.} ∼ e−dr, which means that

this term might ‘talk’ to other terms of order e−dr. So even if {S(0)
c.t., S

(d)
c.t.}
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vanishes by itself, the Hamiltonian constraint can still be satisfied because of

the appearance of {S(0)
c.t., Sren.}:

0 = H(2) = −2
{
S
(0)
c.t., Sren

}
+R (d = 2)

0 = H(4) = −2
{
S
(0)
c.t., Sren

}
+
{
S
(2)
c.t., S

(2)
c.t.

}
(d = 4) (1.37)

The relation of such counterterms to the Weyl anomaly is more direct in the
HJ method. Namely, it is straightforward to check that

−2
{
S
(0)
c.t., Sren

}
=

∫
ddx 2gab

δSren.
δgab

=

∫
ddx

√
g gab T

ab
ren. . (1.38)

So, the Weyl anomaly in d = 2 and d = 4 dimensions is directly computed
from (1.37):

gab T
ab
ren. = −R (d = 2)

gab T
ab
ren. = −

{
S
(2)
c.t., S

(2)
c.t.

}
= −1

4

(
RabR

ab − 1

3
R2
)

(d = 4) (1.39)

This allows us to determine the central charges associated with this holo-
graphic model. We discuss this at the end of Section 1.2 below.

1.1.3 Hamiltonian Method

The third method we review is the Hamiltonian method.2 This method es-
sentially a streamlined version of the FG method that uses some key ingredi-
ents from the HJ formalism. An important improvement of the Hamiltonian
method to the HJ method is that is does not require writing down an Ansatz.
The radial expansion is replaced by a covariant expansion that uses the di-
latation operator:

δD =

∫
ddx 2gab

δ

δgab
. (1.40)

The on-shell Lagrangian L, defined through S =
∫
ddx

√
gL, is then expanded

in terms of scaling weights:

L =
∑

n

L(n) , δDL(n) = −nL(n) . (1.41)

2The Hamiltonian method is somewhat of a misnomer, as we will shortly see that
this method actually uses the Hamilton–Jacobi formalism rather than a true Hamiltonian
formalism.
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Another ingredient that is used is that the (implicit) radial derivative δr,
defined as

δr =

∫
ddx ∂rgab

δ

δgab
(1.42)

asymptotes to the dilatation operator δr ≈ δD, given that the asymptotic
boundary conditions are in place. Like before, ‘≈’ denotes equality up to
terms that are suppressed by powers of e−r. Using the Gauss–Codazzi equa-
tions together with the equations of motion, one can write the on-shell action
as a surface term:

S = −2

∫
ddx

√
g (K − λ) (1.43)

where λ is the on-shell value of the bulk piece of the action; it is defined
implicitly as the solution of the following first-order equation:

∂rλ+Kλ = d . (1.44)

The counterterm action is defined as (minus) the divergent part of the on-
shell action. Using the expansion defined above, this becomes

Sc.t. =
∑

0≤n<d

2(d− 1)

d− n

∫
ddx

√
g K(n) , (1.45)

where we used the fact that λ(n) and K(n) are related via the HJ momentum
(1.24), and Kab = πab − π gab, which gives:

(1 + δD)K = (d+ δD)λ ⇒ λ(n) =
1 − n

d− n
K(n) . (1.46)

This is the identity that removes the need for writing down an Ansatz for λ.
The terms K(n) are then determined recursively by solving the Hamiltonian
constraint:

K2 −KabK
ab = R+ d(d − 1) , (1.47)

which yields

K(2) =
1

2(d− 1)
R ,

K(n) =
1

4(d− 1)

∑

0<m<n

(
K

(m)
ab K(n−m)ab −K(m)K(n−m)

)
, (1.48)

for n > 2. The extrinsic curvature that is not traced over is computed via

K
(n)
ab = π

(n)
ab − π(n)gab again, where

√
g π(n)ab ≡ δS(n)/δgab.
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Just as we saw in the FG method, we need to add a logarithmically divergent
counterterm when d is even, so

Sc.t. = 2

∫
ddx

√
g



∑

0≤n<d

d− 1

d− n
K(n) − r λ̃(d)


 , (1.49)

The coefficient of the logarithmic counterterm can be computed easily by
first computing K(n) for general d and then taking the limit d→ n:

λ̃(n) = lim
d→n

(d− n)λ(n) = (1 − d) lim
d→n

K(n) (1.50)

For instance, consider the case where d = 2. We first compute K(2) for
general d, cf. (1.48), after which we take

λ̃(2) = −K(2) = −1

2
R . (1.51)

1.1.4 Complications

It should be clear from the above discussion that the FG method is hands
down the most laborious one. On the other hand, the apparent simplicity
of the HJ and Hamiltonian method is mostly due to their being tailored to
AdS space. We are eventually interested in holographic renormalization for
geometries that are asymptotically (locally) Lifshitz rather than AdS, which
severely complicates these procedures.

First of all, the FG expansion for asymptotically Lifshitz configurations is
a huge mess because of the anisotropy between time and space. Especially
inverting the FG series is very difficult (if not impossible) to do.

The derivative expansion in the HJ method can still work, although the
radial scaling is no longer simply related to the number of derivatives (as
was the case in AdS). The main problem of using the HJ method for Lifshitz
spacetimes is that the Ansatz that one needs to write down consists of many
many independent terms. For instance, if one needs to find the counterterms
up to 4 derivatives, the most general covariant local Ansatz consists of about
30 terms, each of which has a coefficient that is obtained by solving a non-
linear differential equation. Although this can be done straightforwardly, it
is a rather daunting task.3

3We actually did this calculation in [2], which is reviewed in Appendix V.
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The Hamiltonian method has the great advantage that it removes the need
for writing down an Ansatz; it computes the counterterms directly from the
asymptotic boundary conditions and the off-shell form of the action. The
simple form that the counterterms take are mainly due to the fact that we are
working in pure Einstein gravity. For instance, the simple relation between
K and λ no longer holds for Lifshitz. The method that we shall use to
renormalize Lifshitz spacetimes is based on the Hamiltonian method, but it
makes the underlying HJ formalism explicit.

1.2 A Hybrid Method

We will now present the method of holographic renormalization that we will
use in this work. This method combines the formal clarity of the Hamilton–
Jacobi method whilst removing the need for writing down an Ansatz (inspired
by the Hamiltonian method). We still use the example of Einstein gravity
with AdS boundary conditions to illustrate the method, but we present it in
such a way that generalization to other setups is most clear. Apart from the
way the asymptotic boundary conditions are implemented, this method was
used in [31].

Boundary conditions. Let us start by imposing the asymptotic boundary
conditions. Consider the variations:

δr =

∫
ddx ∂rgab

δ

δgab
, δD =

∫
ddx 2gab

δ

δgab
. (1.52)

Quantities (generically denoted ‘X’) are expanded according to their scaling
weights using the dilation operator δD:

X =
∑

n

X(n) , δDX
(n) = −nX(n) . (1.53)

To make life easier we will introduce frame fields eAa , with gab = ηAB e
A
ae

B

b .
This allows us to give all tensorial quantities flat indices such that we can
freely raise and lower indices without changing radial scaling.

The boundary conditions are set by requiring that dilatations are asymptot-
ically generated by (implicit) radial derivatives:

δr ≈ δD (1.54)
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As before, ‘≈’ denotes equality up to terms that become negligible at r ∼
∞. The boundary condition (1.54) fixes the leading term of the extrinsic
curvature Kab = 1

2∂rgab, such that KAB
(0) = ηAB.

A useful relation. The relation that removes the need for using an Ansatz
to solve the HJ equation is

∫
ddx 2KAB

(0) πAB = δDS . (1.55)

In fact, more specifically, we will use

2KAB
(0) πAB(n) = (d− n)L(n) (1.56)

It is this identity (together with the δD-expansion) that is the main ingredient
that is taken from the Hamiltonian method.

The counterterms. Next we set out to solve the Hamilton–Jacobi equation,
which comes down to solving the Hamiltonian constraint H = 0, where

H = KAB π
AB + V , (1.57)

where the ‘potential’ V is whatever is not part of the kinetic term; in this
case it is just V = R− 2Λ. We use the extrinsic curvature simply as a short-
hand notation for KAB = πAB − 1

d−1 π ηAB. The Hamiltonian constraint is

expanded in terms of dilatation weights:1

H(n) =
∑

i+j=n

KAB
(i) πAB(j) + V(n) . (1.58)

The lowest term H(0) vanishes automatically (unless we had imposed an
inconsistent dilatation weight for the metric). The level-0 contribution to
the on-shell action is given via (1.56):

L(0) =
2

d
KAB

(0) πAB(0) = −2(d− 1) . (1.59)

The next term in the expanded Hamiltonian constraint is:

0 = H(2) = 2KAB
(0) πAB(2) + V(2) = (d− 2)L(2) +R , (1.60)

which immediately gives:

L(2) = − 1

d− 2
R . (1.61)

1It is useful to note the symmetry property: KAB

(i) πAB(j) = KAB

(j) πAB(i).
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The next order in the Hamiltonian constraint is:

0 = H(4) = 2KAB
(0) πAB(4) +KAB

(2) πAB(2)

= (d− 4)L(4) +KAB
(2) πAB(2) , (1.62)

where πAB(2) and KAB
(2) are computed from L(2):

πAB(2) =
1

d− 2

(
RAB − 1

2
RηAB

)
,

KAB
(2) =

1

d− 2

(
RAB − 1

2(d− 1)
RηAB .

)
(1.63)

We thus see that πAB(2) is proportional to the Einstein tensor GAB , while
KAB

(2) is given by the Schouten tensor SAB. When we plug this back into
H(4), we find

L(4) = − 1

(d− 4)(d− 2)
SabG

ab

= − 1

(d− 4)(d− 2)2

(
RabR

ab − d

4(d− 1)
R2

)
(1.64)

The counterterm action is simply (minus) the divergent terms thus computed,
so

Sc.t. = −
∑

0≤n<d

∫
ddx

√
g L(n) (1.65)

Of course, this is not yet the full story, because there are logarithmically
divergent counterterms that one must add when d is even.

Weyl anomalies. In this formulation it is most clear where the logarithmic
counterterms come from and how they relate to Weyl anomalies. For instance,
when d = 2 we see that the first term in H(2) vanishes identically, leaving a
non-vanishing remainder. In order to still satisfy the Hamiltonian constraint,
one must add a counterterm that depends explicitly on r. In that case there
is an extra contribution to the Hamiltonian constraint equation coming from
∂rSc.t. in the HJ equation, such that

∂rSc.t. =

∫
ddx

√
g H(d) . (d even) (1.66)

Thus, the Hamilton–Jacobi equation is satisfied so far. It is important to
note, however, that the bare action S = Sren. − Sc.t. still satisfies ∂rS = 0.
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This means that ∂rSren. = ∂rSc.t. =
∫
ddx

√
g H(d). Now, the renormalized

on-shell action must have a finite limit as r → ∞, which means that

0 ≈ dSren.
dr

= ∂rSren. + δrSren. . (1.67)

We just argued that the first term on the right-hand side is given in terms
of H(d). The second term asymptotes to the Weyl transformation of the
renormalized on-shell action due to the boundary conditions δr ≈ δD. When
we put all of this together, we obtain the following chain of relations:

δDSren. ≈ δrSren. ≈ −∂rSren. = −∂rSc.t. = −
∫
ddx

√
g H(d) . (1.68)

We thus find that the Weyl anomaly is given as the non-vanishing remainder
in the Hamiltonian constraint H(d):

δDSren. = −
∫
ddx

√
g H(d) (1.69)

when d is even. Let us write δDSren. =
∫
ddx

√
g Tren., then we find for d = 2, 4

the following anomalous traces:

Tren. = −R . (d = 2)

Tren. = −K(2)
AB π

(2)AB = −1

2
PabG

ab = −1

4

(
RabR

ab − 1

3
R2
)

(d = 4)

(1.70)

The curvature length ℓ and the Newton constant can be restored by replacing:

L(n) → ℓn−1

16πG
L(n) (1.71)

The standard form of the d = 2 and d = 4 anomalies are:

Tren. = − c

24π
R (d = 2)

Tren. = aE4 − cI4 (d = 4) (1.72)

where E4 = RabcdR
abcd − 4RabR

ab + R2 is the 4D Euler density and I4 =
RabcdR

abcd− 2RabR
ab + 1

3R
2 is the square of the 4D Weyl tensor. Comparing

with (1.70), we find the well-known Brown–Henneaux central charge for d =
2, c = 3ℓ/2G, while for d = 4 we find that the two central charges are equal,
a = c. This means that the class of CFT’s that are dual to the Einstein–
Hilbert action is restricted in that the two central charges must be equal
a = c. Naturally, this is the case for maximally supersymmetric Yang–Mills.
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In order to lift the a = c degeneracy, one can add higher-derivative cor-
rections to the Einstein–Hilbert action, thereby opening up the possibility of
describing a much larger class of CFT’s in holography. To illustrate the power
of the hybrid method we just presented, we compute this higher-derivative
correction in Appendix III. Let us quickly review the main idea. One starts
with the Einstein–Hilbert action and adds a Gauss–Bonnet term, which is a
special higher-curvature term that is free of ghosts. The action is then (Sgh
is the Gibbons–Hawking term)

S =

∫
ddx

√
g
(

2Λ −R− α
(
RabcdR

abcd − 4RabR
ab +R2

))
+ Sgh (1.73)

If we then repeat the same steps as before, we find that the 4D anomaly is
again given by (1.72), but this time we have a − c ∝ α. We included this
computation mainly to illustrate the power of this method, but since it is not
crucial for the remainder of the text we have moved the computation to the
appendix.
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Conclusion and Look Ahead

Throughout this chapter, the emphasis has mostly been on reviewing differ-
ent computational techniques and not so much on physical issues. In the next
chapter, however, we will actually put the techniques we just developed to
good use. The main thing that was established in this chapter was that the
on-shell action can be renormalized simply by imposing the boundary condi-
tion δr ≈ δD, i.e. by imposing that dilatations are asymptotically generated
by a radial shift. Phrasing the boundary conditions in this manner makes
it very easy to generalize asymptotically locally AdS boundary conditions to
other types of asymptotics.

The main difficulty one faces when trying to do holography with Lifshitz
asymptotics is that it is not so straightforward to figure out how to parametrize
the bulk degrees of freedom. A particularly useful parametrization in terms
of frame fields was proposed in [31], which works quite well for z 6= ds. Diffi-
culty arises when z = ds due to logarithmic modes that appear at the leading
(non-normalizable) modes. Because of such leading log modes, it becomes
tricky to impose the boundary conditions in analogy to how asymptotically
locally AdS boundary conditions are imposed. Rephrasing the asymptotic
boundary conditions as δr ≈ δD removes all such complications. It is by
far the easiest way to generalize asymptotically locally AdS boundary condi-
tions to other types of asymptotics. In particular, we soon see that the z 6= 1
extension of these boundary conditions are very easily implemented.





Chapter 2

Lifshitz Holography

In this chapter we discuss holography for theories with a Lifshitz-type UV
fixed point. At such a fixed point these theories exhibit Lifshitz-type scaling,
where time scales differently from space,

D : (t,x) 7→ (bzt, bx) . (2.1)

Besides this scaling symmetry, Lifshitz theories are also invariant under spa-
tial and time-translations, P : x 7→ x + a and H : t 7→ t + a and spatial
rotations R ∈ SO(ds). These symmetries make up the Lifshitz algebra. As
we mentioned before, Lifshitz spacetime is constructed in such a way that its
isometry algebra is the Lifshitz algebra. The line element is given by:

ds2 = dr2 − e2zrdt2 + e2rdx2 (2.2)

The Lifshitz symmetry algebra is realized by the isometries that are generated
by D = zt∂t + xi∂i − ∂r, Pi = ∂i, H = ∂t and Rij = xi∂j − xj∂i. Before
moving on, let us discuss two generalizations of the Lifshitz geometry that
have received considerable attention in the literature.

Generalizations of Lifshitz spacetime. The Lifshitz algebra is a sub-
algebra of the Galilean algebra, which also includes Galilean boosts, which
map x → x + vt. A geometry that realizes the full Galilean algebra as its
isometry algebra is known as Schrödinger spacetime [32, 33]:

ds2 = dr2 − e2zrdt2 + e2r
(
dx2 + 2dξ dt

)
(2.3)

Unlike Lifshitz spacetime, Schrödinger spacetime is not invariant under time
reversal. The Galilean boosts are generated by Gi = t∂i − xi∂ξ. In a quan-
tum theory, the Galilean algebra acquires a central charge [Gi, Pj ] = Mδij ,
where M is the mass/particle-number operator. The mass operator is real-
ized geometrically in the above line element by M = ∂ξ. Moreover, when
the dynamical exponent is z = 2, the Galilean algebra is enhanced to the
Schrödinger algebra, which includes the z = 2 equivalent of special confor-
mal transformations. Schrödinger holography is interesting because of its
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rich symmetry properties. However, attempts to perform holographic renor-
malization for these geometries have been plagued with issues related to the
inclusion of the (null) direction ξ, cf. [34].

A more recent generalization of Lifshitz spacetime is known as a hyperscaling

violating geometry, which is covariant rather than invariant under Lifshitz
scalings (see e.g. [35] and references therein). The line element can be written
as:1

ds2 = e−
2θ
ds
r (dr2 − e2zrdt2 + e2rdx2

)
(2.4)

This geometry is conformal to Lifshitz spacetime and the conformal factor is
responsible for the hyperscaling violation:

t→ bzt , x → bx, r → r − ln b ⇒ ds2 → b2θ/dsds2 . (2.5)

These geometries were studied in connection to Fermi surfaces. Since Fermi
surfaces arise as an effective weakly-coupled description, while the field theory
dual to such geometries is necessarily strongly coupled, it is not clear that it
is sensible to think in terms of Fermi surfaces. Nevertheless, these geometries
were found to have some characteristic qualitative features in common with
Fermi surfaces via holography; they were dubbed hidden Fermi surfaces [36].

UV Lifshitz vs. IR Lifshitz. There is an important distinction to be made
when one discusses Lifshitz spacetime in the context of holography. The
conventional wisdom is that Lorentz symmetry is usually found at relatively
high energy scales (UV), while Lorentz symmetry is typically broken at low
energy scales (IR). A holographic setup that reflects such a situation will
have an asymptotically AdS geometry in the bulk that tends to, say a Lifshitz
geometry in the interior, see e.g. [37].

This is not the setup we consider in this work. As we mentioned in the
Introduction, we consider situations where one has a Lifshitz-type fixed point
in the UV. The IR is kept arbitrary and in some cases one finds that Lorentz
symmetry emerges in the IR. An example of a weakly-coupled theory that
exhibits this kind of behavior is a BCS superconductor. The theory one
starts out with has a quadratic dispersion relation (z = 2) and one finds
that as the temperature is lowered below a critical value, a new description
(Landau–Ginzburg) emerges that is Lorentz invariant (z = 1).

Structure of this chapter. In this chapter we apply the techniques devel-
oped in Chapter 1 to Lifshitz-type theories. As it turns out, these theories

1We choose not to use Gaussian normal coordinates, because it would seriously obfuscate
the Lifshitz-covariant nature of this geometry.
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generically exhibit a Weyl-type quantum anomaly when the dynamical ex-
ponent is set to the critical value z = ds, where ds is the number of spatial
dimensions. We dub this anomaly the Lifshitz anomaly. In the first section,
we analyze which terms are to be expected in this Lifshitz anomaly on gen-
eral grounds when z = ds = 2. We find that the general form of the anomaly
is fixed up to two independent central charges. We then move on to the cal-
culation of these central charges in a free Lifshitz scalar field theory in §2.2
and in a holographic model in §2.3.

2.1 The Lifshitz-type Weyl Anomaly

We now classify the terms that can appear in the Lifshitz anomaly for z =
ds = 2. Consider a field theory in 2+1 dimensions coupled to the following
Euclidean background geometry:

ds2 = N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (2.6)

Lifshitz theories are not generally covariant, but they are covariant with
regard to foliation-preserving diffeomorphisms (t,x) 7→ (s(t),y(x, t)). The
shift N i(x, t) can be ‘gauged away’ by a foliating-preserving diffeomorphism,
while the lapse N(x, t) cannot. Henceforth we set N i = 0; it may be restored
in our final answer. The classical theory is invariant under local Lifshitz
scalings, δωS = 0, where δω acts on the geometry as:

δωN = zN δω , δωhij = 2hij δω . (2.7)

When we quantize our theory, the classical action S is replaced by the renor-
malized generating functional W = − logZ[N,h]. The anomaly A is defined
as

δωW =

∫
dt d2xN

√
h A δω (2.8)

The anomaly A = δW/δω is defined up to exact terms. The Wess–Zumino
(WZ) consistency condition puts a constraint on the possible form of A. In
particular, when acting twice on the effective action with a Weyl transforma-
tion we must have:

0 = δ2δ1W − δ1δ2W =

∫
dt d2x

(
δ2
(
N
√
h A

)
δω1 − δ1

(
N
√
h A

)
δω2

)

(2.9)

We thus look for the most general A that is consistent with the WZ condi-
tion. As a first step, notice that the WZ condition is satisfied if the anomaly



Chapter 2. Lifshitz Holography 40

itself is Weyl invariant, by which we mean that δω
(
N
√
h A

)
= 0. So, we

first write down all possible Weyl invariant terms and then we check which
of those is consistent in the more restrictive sense of (2.9). The WZ condi-
tion also requires that the anomaly be covariant under foliation-preserving
diffeomorphisms. Terms that are both covariant and scale invariant are:

A ∼ KijK
ij − 1

2
K2 ,

(
R+

∆N

N
− ∂iN∂

iN

N2

)2

,
∇iJ

i
a

N
(2.10)

where the label a runs over a = 1, . . . , 6. The details of this computation is
included in Appendix IV; the J ia are given in (A.61). Five of the six J ia can
be removed by adding finite local covariant counterterms to the generating
functional W . The one J ia that is left after the other five have been removed
turns out to be incompatible with the WZ condition (2.9), so it cannot appear
in the anomaly. The generic form of the anomaly is thus fixed up to two
central charges:

A =
C1

8π

(
KijK

ij − 1

2
K2

)
+
C2

8π

(
R+

∆N

N
− ∂iN∂

iN

N2

)2

(2.11)

The central charges C1 and C2 are determined by the specific details of the
Lifshitz theory in question; we included the factors 1/8π for later convenience.
The remainder of this chapter deals with computing these central charges in
two different models.

2.2 Lifshitz Scalar Field Theory

The first model we consider is a free Lifshitz-invariant scalar field theory in
2+1 dimensions, also known as the Quantum Lifshitz Model [12]. Its action
is given by:

S =
1

2

∫
dt d2x

(
(∂tϕ)2 − κ2(∆ϕ)2

)
, (2.12)

where ∆ = δij∂i∂j is the flat Laplacian. This theory is invariant under
(global) Lifshitz scalings with z = ds = 2. The (classical) Hamiltonian
associated with the above action is given by H =

∫
d2xH, with

H =
1

2

(
π2 + κ2(∆ϕ)2

)
. (2.13)

Relation to 2D CFT. The quantum Lifshitz model has received some at-
tention in the literature due to its connection to two-dimensional conformal
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fields theories [12, 13]. The underlying structure that is responsible for the
connection to 2D CFTs is known as detailed balance. It is easiest to explain
this using the model (2.12). The quantum Hamiltonian (density) can be
written as a complete square:

H = Q†Q , Q =
1√
2

(κ∆ϕ− iπ) (2.14)

Let us work in the ϕ-representation, such that π = −i δδϕ . The ground state
|0〉 is annihilated by Q, so the ground-state wave functional Ψ0[ϕ] ≡ 〈ϕ|0〉
can be found by solving

(
δ

δϕ
− κ∆ϕ

)
Ψ0 = 0 . (2.15)

Now, the trick is to view the second term in the parentheses as the field
equations of a 2D Euclidean action S2D, such that the solution is found
immediately:

Ψ0[ϕ] =
e−

1
2
S2D

√
Z

, S2D[ϕ] = κ

∫
d2x ∂iϕ∂

iϕ . (2.16)

Notice that S2D is just a (1D) bosonic string with tension 2κ. The normal-
ization constant Z is the 2D partition function:

Z =

∫
Dϕ e−S2D . (2.17)

This is quite powerful, because we can then compute equal-time correlation
functions using the 2D CFT machinery [12, 13]:

〈0| O1 · · · On |0〉 =
1

Z

∫
Dϕ

(
O1 · · · On

)
e−S2D , (2.18)

where Ok ≡ O[ϕ](t, xk). The power of this relation was used in [38, 39] to
compute the (ground-state) entanglement entropy.

Detailed balance. The underlying principle that allows for the connection
to S2D is due to the fact that the (ds + 1)-dimensional Hamiltonian can be

written as a sum of squares, H =
∑

j Q
†
jQj, together with Qj being of the

form

Qj ∼ δSds
δφj

− iπj , (2.19)

where Sds is some ds-dimensional Euclidean action. When the Hamiltonian
has this form the theory is said to satisfy the detailed balance condition.
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What to expect? Because of its connection to a 2D CFT, one may naively
expect that the Lifshitz anomaly is somehow related to the ‘square’ of the
two-dimensional Weyl anomaly 〈T ii〉 ∝ R. This would mean that C1 = 0
while C2 6= 0. We find, however, that this is not the case.

2.2.1 Lifshitz-type Weyl Anomaly

Suppose we minimally couple the theory (2.12) to the background geometry
(2.6), such that the Euclidean action becomes:

S =
1

2

∫
dt d2xN

√
h
(
(∂nϕ)2 + κ2(∆ϕ)2

)
, (2.20)

where ∂n = N−1∂t is the ‘normal’ derivative and ∆ is the spatial Laplacian
compatible with hij . The above theory is then invariant under local Lifshitz
scalings (2.7). The action can be rewritten as

S =
1

2

∫
dt d2xN

√
h ϕDϕ , (2.21)

where

Dϕ ≡ − 1√
h
∂n

(√
h ∂nϕ

)
+

1

N
∆ (N ∆ϕ) (2.22)

The scalar is invariant under Weyl transformations (2.7), while the opera-
tor D transforms covariantly, δωDϕ = −4Dϕδω. On the other hand, we
know that the volume form scales as δω(N

√
h) = 4N

√
h δω, we immediately

see that δωS = 0. In the quantum theory S is replaced by the generating
functional W . The anomaly A is defined through:

δωW =

∫
dt d2xN

√
h A δω . (2.23)

The generic form of A was given in (2.11).

Heat-kernel expansion

We now compute the anomaly using a heat-kernel expansion. The quantum
effective action W can be computed explicitly; it is given by the formal
expression:

W =
1

2
ln det(D) , (2.24)
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where det(D) is the determinant of the operator D defined in equation (2.22).
As usual, this determinant is not well-defined and must be regularized. We
will employ ζ-function regularization. We define the generalized zeta function
as

ζ(s, f,D) = TrL2(fD−s) , (2.25)

where s is an arbitrary positive number, f(t,x) is an arbitrary function and
L2 an appropriate function space on which D−s is trace-class. The regularized
effective action is given by [40]:

W = −1

2
ζ ′(0, 1,D) − 1

2
ln(µ2)ζ(0, 1,D) , (2.26)

where ζ ′(0, f,D) = ∂sζ(s, f,D)|s=0 and µ is the usual arbitrary renormaliza-
tion scale. The zeta function ζ(s, f,D) is related via a Mellin transformation
to the heat kernel:

K(ǫ, f,D) = TrL2(f e−ǫD) , (2.27)

where ǫ is an arbitrary positive parameter. To be more specific, the relation
between the generalized zeta function and the heat kernel is

ζ(s, f,D) = Γ(s)−1

∫ ∞

0
dǫ ǫs−1K(ǫ, f,D) ,

K(ǫ, f,D) =
1

2πi

∮
ds ǫ−s Γ(s) ζ(s, f,D) . (2.28)

In principleK depends on the global behavior of the operator D (the trace can
be written as a sum over the spectrum of the operator, which is determined
by global properties); however there is an asymptotic series of the form:

K(ǫ, f,D) =

∞∑

k=0

ǫ
k
2
−1 ãk(f,D) , (2.29)

where ãk(f,D) can be computed locally from N and hij . By repeating the
analysis of [40] section 7.1, one can show that the variation of the renormal-
ized effective action under an infinitesimal anisotropic local scale transforma-
tion hij → (1 + 2 δω)hij , N → (1 + 2 δω)N , is given by:1

δW = −2ã2(δω,D) . (2.30)

1The factor 2 comes from the factor 4 in D → e−4ωD under scale transformations.
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In other words, the anomaly is given by the ǫ0 term in the heat-kernel ex-
pansion. As explained above, this will be a local functional of N and h; we
will therefore write:

ã2(f,D) =

∫
dt d2xN

√
h f a2(N,hij) , (2.31)

where a2(N,hij) is a local function that depends on N and hij . The spectral
function thus becomes:

K(ǫ, f,D) =
∑

k≥0

ǫ
k
2
−1

∫
dt d2xN

√
h f(t, x) ak(N,hij) , (2.32)

where ak(N,hij) is a local function of N and hij . To evaluate this we need a
suitable basis; it is customary to use the rescaled Fourier modes so that they
are orthonormal with respect to the measure that includes the N

√
h factor.

Nevertheless, as pointed out in [41], the cyclicity of the trace allows us to use
the usual flat Fourier modes. We thus find

K =

∫
dωd2k

(2π)3

∫
dt d2x e−iωt−ikxfe−ǫDeiωt+ikx . (2.33)

We can conjugate the Fourier mode to the left to get the expression

K =

∫
dω d2k

(2π)3

∫
dt d2x fe−ǫD̃ , (2.34)

where D̃ is obtained from D by shifting the derivatives as follows:

∂t → ∂t + iω , ∂i → ∂i + iki . (2.35)

The most singular term in the heat kernel is the one where we keep only the
terms in D̃ without derivatives, leading to

1

ǫ
ã0(f,D) =

∫
dω d2k

(2π)3

∫
dt d2x f e−ǫ(N

−2ω2+(k2)2) , (2.36)

where k2 ≡ hijkikj . This expression is easily evaluated to yield the first term
in the heat kernel expansion:

ã0(f,D) =
1

16π

∫
dt d2xN

√
h f(t, x) . (2.37)

Computing the subleading terms in the heat kernel expansion is now straight-
forward though somewhat involved. We shall write

D̃ = D̃0 + D̃int , (2.38)
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where D̃0 is the piece we isolated above that contains ω2 and k4, while D̃int

consists of whatever remains. We then expand the exponential of D̃int. It
contains a factor of ǫ, but ω counts as ǫ−1/2 and k as ǫ−1/4 in the Gaussian
integral, therefore D̃int has a term which scales as ǫ−1/4, and to get to the
finite term one needs to expand D̃int up to fourth order so that we get terms
up to k12. However, the problem becomes tractable if we consider the time-
derivative and space-derivative sectors separately. This is consistent because
the anomaly can only have structures involving either two time derivatives
or four spatial derivatives.

The two-derivative anomaly. In order to compute the two-derivative
contribution to the anomaly, and in turn C1, it is sufficient to consider metrics
that only depend on t, and not on xi. Thus we can drop all the terms with
spatial derivatives ∂i in D̃int. This also allows us to redefine t to set the lapse
N = 1. With these assumptions, we have:

D̃0ϕ =
(
ω2 + k4

)
ϕ,

D̃intϕ = −iω ∂tϕ− iω√
h
∂t
(√
hϕ
)
− 1√

h
∂t
(√
h ∂tϕ

)
. (2.39)

We have to expand (2.34) to second order in D̃int, for which we use the
following formula:

eA+B = eA +

∫

0≤α≤1
dα eαAB e(1−α)A

+

∫

0≤α+β≤1
dα dβ eαAB eβAB e(1−α−β)A + O(B3). (2.40)

We find the following two-derivative contribution to a2:2

2ã2(f,D) =
−1

768π

∫
dtd2x

√
hf
(

16hij ḧij + 5(hij ḣij)
2 − 10hij ḣjkh

klḣli

)
.

(2.41)

To reinstate N , we simply replace dt → dtN and ∂t → ∂n = N−1∂t. We can
remove the term that involves ḧij by adding a local counterterm as explained
in Appendix IV. We thus obtain the anomaly by comparing with (2.8) and
(2.30):

A =
1

32π

(
KijK

ij − 1

2
K2

)
+ (four-deriv. terms) . (2.42)

2This computation is in principle quite lengthy. However, since there are only few terms
that can appear, one can work this out for a diagonal hij and then reconstruct the full
answer.
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Using (2.11), we see that

C1 =
1

4
(2.43)

The four-derivative anomaly. We now determine the four derivative con-
tribution, and in turn C2. As explained in Appendix IV, there are 6 possible
terms that can appear, 5 of which are total derivatives. These structures are
distinguished by a metric of the form hij = e2f(x)δij and N = eg(x), which
can be used to simplify considerably the computation. The four-derivative
contribution to the anomaly is then:

A =
1

480π

1

N
∇i

(
− 5(∂iN)R+ 3(∂iN)(

1

N
∆N)

+ 2(∂jN)(
1

N
∇j∂

iN) − 5∂i∆N
)
. (2.44)

It is interesting to note that this result is a total derivative, and as predicted
by the Wess-Zumino consistency condition, it is orthogonal3 to the non-trivial
total derivative J defined in equation (A.65). As a consequence, this term
can be removed by a local counterterm and we conclude that

C2 = 0 (2.45)

Conclusion and a look ahead

In summary, the Lifshitz model (2.20) exhibits an anomaly under Lifshitz-
type Weyl transformations, which after the addition of appropriate counter-
terms is given by:

A =
1

32π

(
KijK

ij − 1

2
K2

)
. (2.46)

It is striking that the anomaly involves only time derivatives. It is also in
contrast to the naive expectation that the anomaly is somehow related to the
‘square’ of the trace anomaly of a two-dimensional conformal field theory, as
we mentioned at the beginning of this section. Below we compute the same
anomaly in a holographic model. Let us stress that the holographic model
should not be seen as dual to the scalar model we just considered. We can
nevertheless see if there are some similarities between the two models.

3To see what we mean by ‘orthogonal’, we refer to the appendix IV.
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2.3 Holographic Renormalization of Lifshitz Space-
time

In this section we perform holographic renormalization for Lifshitz spacetime.
Our focus will lie on computing the central charges C1 and C2 when z = ds =
2, although we keep z and ds arbitrary for the most part. The general ideas
of this analysis appeared in [31, 42]. The same calculation was done using
the Hamilton–Jacobi method with an Ansatz for the counterterms in [2].
Since the latter approach is rather long and little illuminating, we discuss
the former instead. For completeness, we have included the HJ computation
in Appendix V.

The line element of Lifshitz spacetime is given by:

ds2 = dr2 + gab dx
adxb = dr2 − e2zr dt2 + e2r dx 2 (2.47)

As our bottom-up holographic model, we take Einstein gravity minimally
coupled to a massive vector field:1

S =

∫
d4x

√
g

(
−R̃+ 2Λ +

1

4
F̃abF̃

ab +
m2

2
ÃaÃ

b

)
−
∫
d3x

√
γ 2K .

(2.48)

We gave the (d+1)-dimensional quantities twiddles to distinguish them from
the d-dimensional ones we encounter below. This action was introduced in
the context of Lifshitz holography in [17]. The Lifshitz geometry is a solution
to the field equations derived from this action, provided we also turn on the
vector,

Ã = α ezr dt , (2.49)

where α is a constant that is fixed by the field equations. The parameters
of the theory are related to the parameters of the geometry as m2 = dsz/ℓ

2

and Λ = (z2 + (ds − 1)z + d2s)/2ℓ
2. We picked our coordinates such that the

Lifshitz length scale ℓ is set to one.

The Hamiltonian

The Hamiltonian H =
∫
d3x

√
gH was derived in Appendix I. We use radial

gauge: N = 1, Na = 0. We write the Hamiltonian constraint as a direct

1In our notation,
√
g ≡

√
|det(g)|.
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generalization of (1.57):

H = Kab π
ab +

1

2
EaE

a +
m2

2
Φ2 + V (2.50)

where the generalized potential is

V = R− 2Λ − 1

4
FabF

ab − m2

2
AaA

a , (2.51)

while Φ is the radial component of the vector field, Ã = Φ dr +Aa dx
a; it is

constrained by the so-called Proca constraint:

Φ = − 1

m2
∇aE

a (2.52)

We shall only consider situations where the vector Aa is time-like throughout
the entire geometry, such that we can pick out coordinates such that the time
direction is aligned along the vector: A = At dt ≡ (α + ψ) dt. The degree
of freedom ψ constitutes a deformation of the vector field away from its
background value At = α, cf. (2.49). Before we start solving the Hamiltonian
constraint, we must impose our (asymptotic) boundary conditions first. The
HJ momenta are given by:

πab =
1√
g

δS

δgab
, Ea =

1√
g

δS

δAa
. (2.53)

For future reference, we also define the following quantities:

T aA =
1√
g

δS

δeAa
πψ =

1√
g

δS

δψ
(2.54)

They are related to the momenta as:

2πAB = TAB + (α+ ψ)πψ δ
A

0 δ
B

0 EA = πψ δ
A

0 (2.55)

TA
B = 2πA

B + EAAB πψ = E0 (2.56)

Henceforth we shall mostly use flat indices so that the radial scaling stays
the same as we raise and lower indices. The field ψ corresponds to the
(unregulated) source of an operator that is relevant for 1 < z < ds. When
z = ds this operator becomes marginally relevant, cf. [3, 43]. We discuss this
in detail in Chapter 3.
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2.3.1 Boundary conditions

Let us introduce the following two variations:

δr =

∫
ddx

(
ė0a

δ

δe0a
+ ėIµ

δ

δeIa
+ ψ̇

δ

δψ

)
,

δD =

∫
ddx

(
ze0µ

δ

δe0µ
+ eIa

δ

δeIa
− λψ

δ

δψ

)
. (2.57)

So, δr is an (implicit) radial variation, while δD is an anisotropic scale trans-
formation. We leave λ (the scaling of ψ) undetermined for now; it will be
fixed by the HJ equation below.2 Then, the above variations can be rewritten
as3

δr =

∫
ddx

√
g
(

2KAB π̂
AB + EA Ê

A

)
,

=

∫
ddxN

√
h
(
KAB T̂

AB +
(
E0 + (α+ ψ)K00

)
π̂ψ

)
,

δD =

∫
ddxN

√
h
(
zT̂ 0

0 + T̂ I
I − λψ π̂ψ

)
, (2.58)

where the differential operators π̂AB and ÊA (and similarly T̂A
B and π̂ψ) are

defined in analogy to the canonical momenta,

π̂AB ≡ eAae
B

b√
g

δ

δgab
, ÊA ≡ eAa√

g

δ

δAa
, (2.59)

such that they reduce to the canonical momenta when acting on the on-shell
action, i.e. π̂ABS = πAB and ÊAS = EA. Later on, we will make use of a
scaling-weight expansion, e.g. X =

∑
nX

(n), where the index (n) denotes the
scaling weight:

δDX
(n) = −nX(n) (2.60)

Now, we would like to impose the asymptotic boundary conditions:

δr ≈ δD (2.61)

By ‘≈’ we mean equality up to terms that vanish as the radial cut-off is
removed. Because of general covariance, the on-shell action must be of the
form:

S =

∫
ddx

√
g U(ψ) + derivative terms . (2.62)

2In fact, we could have left the scaling of eA

a arbitrary as well and have it be determined
by the Hamiltonian constraint.

3The “middle-of-the-alphabet” indices I, J, ... run over the spatial indices alone.
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So, at the non-derivative level, the extrinsic curvature and vector-momentum
are given by

KAB =
U + (ds − 1)(α + ψ)U ′

2ds
δ0Aδ

0
B +

−U + (α+ ψ)U ′

2ds
δIJ δ

I

Aδ
J

B ,

EA = −U ′(ψ) δ0A . (2.63)

Imposing the boundary conditions (2.61) then yields

K
(0)
AB = −z δ0Aδ0B + δIJ δ

I

Aδ
J

B ,

E0
(0) + αK00

(0) = 0

E0
(λ) + αK00

(λ) + ψK00
(0) = −λψ (2.64)

Let us expand U(ψ) = u0 + u1ψ + u2ψ
2 + . . . , such that we can express the

boundary conditions as conditions on the coefficients uk.

K00
(0) =

u0 + α (ds − 1) u1
2ds

EA
(0) = −u1 δ0A

K00
(λ) =

ds u1 + 2α (ds − 1) u2
2ds

ψ EA
(λ) = −2u2ψ δ

0
A

KIJ
(0) =

−u0 + αu1
2ds

δIJ (2.65)

When we plug these into the boundary conditions (2.64), we get

u0 = −2(z + ds − 1) , u1 = −zα ,

u2 = −zds(2z − 1 − λ)

2(z + ds − 1)
, α =

√
2(z − 1)

z
. (2.66)

We have thus fixed our asymptotic boundary conditions by imposing that
dilatations δD are asymptotically generated by radial variations δr. This
immediately gives us the first few counterterms:4

L = −2(z + ds − 1) − zαψ − zds(2z − 1 − λ)

2(z + ds − 1)
ψ2 + . . . . (2.67)

Up to this point λ was left undetermined, but we will now see that it is fixed
by the HJ equation of motion. The Hamiltonian constraint (2.50) can be
expanded in terms of scaling weights using δD, H =

∑
nH(n), where5

H(n) =
∑

p+q=n

(
KAB

(p) πAB(q) +
1

2
EA

(p)EA(q) − m2

2
Φ(p)Φ(q)

)
+ V(n)

(2.68)

4Lc.t. is just (minus) the divergent part of the on-shell action.
5Note that the term KAB

(p) πAB(q) is symmetric under p ↔ q.
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This expansion is useful, because each term must vanish individually so that
the HJ equation can be solved recursively.

Let us see if the counterterms that we found by imposing the boundary
condition δr ≈ δD are consistent with the Hamiltonian constraint. When we
plug in (2.67) into the Hamiltonian constraint, we find that H(0) and H(λ)

automatically vanish. The next term H(2λ), however, only vanishes if we fix
λ = λ±, with

λ± =
1

2

(
z + ds ±

√
(z + ds)2 + 8(z − 1)(z − ds)

)
. (2.69)

Remember that λ dictates the radial scaling of the non-normalizable mode,
ψ ∼ e−λr. We must pick the root that corresponds to the non-normalizable
mode [1], which is max(−λ±). We thus set λ = λ−. Eventually we are

λ

ds
z

1

interested in the case where z = ds = 2, but for now we take ds arbitrary,
while for the dynamical exponent we restrict our attention to the range for
which ψ sources a relevant operator (λ > 0), i.e. 1 < z < ds. In Chapter
3 we show that the operator dual to ψ is marginally relevant when z = ds,
which at this stage just means that we can safely take the limit z → ds when
the dust settles.

Useful relation. Now that we have fixed our boundary conditions we are
almost ready to start solving the Hamilton–Jacobi equation, thereby generat-
ing the counterterm action. Before we do so, however, consider the following
identity that will be very useful further down the line:

2KAB
(0) πAB(n) +EA

(0)EA(n) + 2KAB
(λ) πAB(n−λ) + EA

(λ)EA(n−λ)

= (z + ds − n)L(n) +KAB
(λ) TAB(n−λ) + ψK0A

(λ)EA(n−2λ) (2.70)
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where we used the boundary conditions specified above as well as

δD

∫
ddx

√
gL(n) = (z + ds − n)

∫
ddx

√
gL(n) . (2.71)

The identity (2.70) will be useful, because the left-hand side appears naturally
in the Hamiltonian constraint H(n), while the right-hand side features the
quantity of interest L(n) directly as well terms that are known from lower
orders. More importantly, though, it removes the need for writing down an
Ansatz for the on-shell action.

Breakdown of recursion: IR data vs. anomalies

This method only determines the counterterms, which is the part of the on-
shell action that depends locally on the UV data set by δr ≈ δD. The way we
know that we have reached the end of the line is when the scaling of the term
in the on-shell action is equal to the scaling of the volume form n = z + ds,
such that the prefactor of L(n) in (2.70) vanishes. This means that we have
reached the renormalized on-shell action, which depends on IR data. Such a
breakdown is therefore to be expected and is completely natural.

There can be another type of breakdown of the recursion relations as well.
For instance, in our present set-up we have counterterms with scaling weight
n = 2z and n = 4. Now consider the case z = ds = 2, such that both
of these counterterms scale like the volume form z + ds = 4. Another way
of saying that the prefactor of L(n) in (2.70) vanishes is that the implicit
radial derivative vanishes asymptotically, δr ≈ 0. The terms in the expanded
Hamiltonian constraint where this occurs are

H(2z) = (z + ds − 2z)L(2z) + H(2z)
rem. (2.72)

H(4) = (z + ds − 4)L(4) + H(4)
rem. (2.73)

where H(n)
rem. is just whatever remains of the Hamiltonian constraint when

(z + ds − n)L(n) is subtracted.

In order to still solve the HJ equation, we must add a counterterm6 that
depends explicitly on the radial cut-off, rL̃(4). Remember that the full HJ
equation was ∂rS+H = 0, so when we introduce a counterterm that depends

6Remember that the counterterm action is just (minus) the divergent part of the on-shell
action.
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explicitly on r we get a contribution from

∂rS = ∂rSren. − ∂rSc.t. , where ∂rSc.t. = −
∫
ddx

√
g L̃(4) . (2.74)

The new counterterm can then be computed from the HJ equation at weight
n = 4:

0 = L̃(4) +
(
H(2z)

rem. + H(4)
rem.

)∣∣∣
z=ds=2

(2.75)

This be expressed equivalently in terms of L(2z) and L(4) as

L̃(4) =
(

(z + ds − 2z)L(2z) + (z + ds − 4)L(4)
)∣∣∣
z=ds=2

(2.76)

The need for introducing the counterterm rL̃(4) is related to the presence
of a Weyl-type anomaly. The (integrated) anomaly A is given by the total
r-derivative of the renormalized action

∫
ddx

√
gA =

dSren.
dr

= ∂rSren. + δrSren. . (2.77)

We know that the renormalized action has a finite limit as r → ∞ (by
definition), so

dSren.
dr

≈ 0 ⇒ δrSren. ≈ −∂rSren. = −∂rSc.t. (2.78)

In the last equality we used ∂rSren. = ∂rSc.t., due to ∂rS = 0 (general co-
variance in the bulk). On the other hand, the anomaly A can be defined
as

δDSren. =

∫
dt ddsxN

√
h A (2.79)

Then, when we use the boundary condition δD ≈ δr, we finally find that the
holographic Lifshitz anomaly is given by

A = − lim
r→∞

(
H(2z)

rem. + H(4)
rem.

)∣∣∣
z=ds=2

(2.80)

2.3.2 The Counterterms

All that is left now is to start solving the higher-order Hamiltonian con-
straints. A detailed computation of the non-derivative counterterms is done
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in Chapter 3. The focus of this chapter, however, is on the Lifshitz anomaly,
which we know does not involve non-derivative terms. So for the purpose
of computing the central charges C1 and C2, it suffices to just compute the
non-derivative counterterms up to n = 2λ, cf. (2.67). It is useful to pick a
specific set of coordinates (t, xi) that reflects the anisotropy of the Lifshitz
geometry, such that the metric and vector become

ds2 = dr2 + gab dx
adxb = dr2 +N2dt2 + hij (dxi +N idt)(dxj +N jdt) ,

Ã = Φ dr +Aadx
a = Φ dr + (α+ ψ)Ndt , (2.81)

where N , N i and hij are the lapse, shift and induced metric associated to
the time-like foliation of the radial slices. Equivalently, we can express the
frame fields in terms of these decomposed fields. Let us define spatial frame
fields êIi , such that hij = δIJ ê

I

i ê
J

j . The frame fields eA = eAa dx
a are then

decomposed as

e0 = Ndt , eI = êIi
(
dxi +N idt

)
. (2.82)

The radial scaling of these fields are set by the boundary conditions (2.61),
where

δDN = zN , δDN
i = 0 , δDhij = 2hij , δDψ = −λψ . (2.83)

The dilatation operator can thus be written as

δD =

∫
ddx

(
zN

δ

δN
+ 2hij

δ

δhij
− λψ

δ

δψ

)
(2.84)

The ‘potential’ V, cf. (A.26), can then be split up into terms with given
scaling weight. The non-derivative terms are:

V(0) = (z + ds)(z + ds − 1) , V(λ) = zdsαψ , V(2λ) =
zds
2
ψ2 , (2.85)

while the derivative terms are:7

V(2) = R̂+
z − 1

z

∂iN ∂iN

N2
,

V(2+λ) = αψ

(
∂iN ∂iN

N2
− ∆N

N

)
,

V(2+2λ) =
1

2
∂iψ ∂

iψ +
1

2
ψ2

(
∂iN ∂iN

N2
− ∆N

N

)
,

V(2z) = K̂ijK̂
ij − K̂2 . (2.86)

7We discarded exact terms.
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We introduced the intrinsic and extrinsic curvatures on the equal-time slice,
R̂ij and K̂ij = 1

2N (∂thij−∇iNj−∇jNi), respectively. The radial component
of the vector field is computed recursively:

Φ = − 1

m2
∇aEa = − 1

zds
∇a
(
e0aE0

)
= − 1

zdsN

(
NK̂ − ∂t +N i∂i

)
E0 ,

(2.87)

where we used ∇ae0a = K̂ as well as e0a∂a = N−1(−∂t + N i∂i). The term
with scaling weight n is given by

Φ(n) = − 1

zdsN

(
NK̂ − ∂t +N i∂i

)
E0

(n−z) (2.88)

The stress tensor can be computed directly in terms of the ADM variables:

T 00 = − 1√
h

δS

δN
,

T 0I =
1

N
√
h
êIi

δS

δNi
,

T IJ =
1

N
√
h

(
N I êJj

δS

δNj
+ 2êIi ê

J

j

δS

δhij

)
. (2.89)

Solving the Hamiltonian constraint. Let us start by computing the
counterterms at weight n = 2. The Hamiltonian constraint at n = 2 is

H(2) = 2KAB
(0) πAB(2) + EA

(0) EA(2) + V(2)

= (z + ds − 2)L(2) + R̂+
z − 1

z

∂iN ∂iN

N2
(2.90)

where we used the identity (2.70) as well as Kab
(2−λ) = Ea

(2−λ) = Ea
(2−2λ) =

0. So, the n = 2 Hamiltonian constraint is solved by

L(2) =
−1

z + ds − 2

(
R̂+

z − 1

z

∂iN ∂iN

N2

)
(2.91)

We see that this counterterm has a pole at z = ds = 1, which is related the
the 2D Weyl anomaly. Moving on, at n = 2 + λ we get:

L(2+λ) =
1

z + ds − 2 − λ

(
−KAB

(λ) TAB(2) + V(2+λ)
)
, (2.92)
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where TAB(2) is directly computed from L(2) using (2.89):

T 00(2) =
1

z + ds − 2

(
R̂+

z − 1

z

∂iN ∂iN

N2
− 2(z − 1)

z

∆N

N

)

T IJ (2) =
−1

z + ds − 2

[ (
R̂+

z − 1

z

∂iN ∂iN

N2
− 2

∆N

N

)
δIJ

− 2R̂IJ − 2(z − 1)

z

∂IN ∂JN

N2
+ 2

DI∂JN

N

]
(2.93)

while Kab
(λ) was fixed by the boundary conditions:

K00
(λ) =

(ds − 1)λ− (2ds − 1)z

2 (z + ds − 1)
zαψ

KIJ
(λ) =

λ+ 1 − 2z

2 (z + ds − 1)
zαψ δIJ (2.94)

The counterterm at this order is thus computed from (2.92). The reason why
we go through the trouble of computing the n = 2 + λ counterterm is that

we shall need to know E
(2)
0 in order to compute the n = 4 counterterm. So,

for future reference, we computed:

E0(2) =
1√
g

δS(2+λ)

δψ

=
αz (ds − λ+ 3z − 2)

2 (ds + z − 2) (ds + z − 1) (ds − λ+ z − 2)
R̂

+
α
(
(5 − 3z)ds − 2d2s + (z − 1)(−λ+ z + 2)

)

2N2 (ds + z − 2) (ds + z − 1) (ds − λ+ z − 2)

∂iN ∂iN

N2
(2.95)

+
α (ds − 1) (ds − λ+ 3z − 2)

N (ds + z − 2) (ds + z − 1) (ds − λ+ z − 2)

∆N

N

The orders n = 2 + 2λ etc. are computed straightforwardly. We will not
compute such terms explicitly, though, for they are not needed to compute
the z = ds = 2 anomaly. Moving on, let us consider n = 2z

H(2z) = 2KAB
(0) πAB(2z) +EA

(0)EA(2z) +
zds
2

Φ(z)Φ(z) + V(2)

= (z + ds − 2z)L(2z) + K̂ijK̂
ij +

z − ds − 1

ds
K̂2 (2.96)

Thus, we find

L(2z) =
−1

ds − z

(
K̂ijK̂

ij +
z − ds − 1

ds
K̂2

)
(2.97)
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Again, we could easily compute n = 2z + λ etc., but we focus on the terms
relevant for find the anomaly. For this, we move on to n = 4:

H(4) = 2KAB
(0) πAB(4) + EA

(0)EA(4) +KAB
(2) πAB(2) +

1

2
EA

(2)EA(2)

(2.98)

= (z + ds − 4)L(4) +KAB
(2) πAB(2) +

1

2
EA

(2)EA(2) (2.99)

Interestingly, we find that when z = ds = 2:

KAB
(2) πAB(2) +

1

2
EA

(2)EA(2) = 0 , (2.100)

which means that even though there is an “anomalous” breakdown of the
recursion relations at n = 4 when z = ds = 2, it does not generate a contri-
bution to the Weyl-type anomaly.

2.3.3 Holographic Lifshitz Anomaly

All that is left now is to apply (2.80). We find that the holographic Lifshitz
anomaly is given by8

A =
ℓ2

16πG

(
K̂ijK̂

ij − 1

2
K̂2

)
(2.101)

Comparing with the generic form of the anomaly (2.11) gives us the values
for the central charges:

C1 =
ℓ2

2G
, C2 = 0 . (2.102)

It is striking that the second central charge, which is associated to spatial
curvature, turns out to vanish for both the minimally-coupled scalar model
and the holographic massive-vector model. At this point it remains unclear
whether there is a deeper reason behind the vanishing of C2.

Notice that this situation is quite similar to the a = c degeneracy that we
find for 4D CFT’s dual to Einstein gravity with AdS4 boundary conditions.
In [44] it was argued that a finite value for C2 can be obtained in the Lifshitz
scalar model be introducing a non-minimal coupling:

ϕ2

(
R+

∆N

N
− ∂iN∂

iN

N2

)2

(2.103)

8We reinstate Newton’s constant and the Lifshitz length scale, which comes down to

replacing L(n) → ℓn−1

16πG
L(n) and r → r/ℓ.
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Similarly, one can argue that adding the term
(
R + ∆N

N − ∂iN∂iN
N2

)2
to the

massive-vector theory will yield a non-zero C2.9 One will, however, break
general covariance explicitly. A different approach where general covariance
is reduced to invariance under foliation-preserving diffeomorphisms was pro-
posed in [44], where the low-energy limit of Hořava–Lifshitz gravity was put
forward as a holographic model. Although a precise calculation was never
made public, one can imagine that this model would naturally yield a non-
zero C2.

2.4 Casimir energy for z = 2 Lifshitz theories

One thing that the knowledge of the two central charges will give us is the
Casimir energy and spatial stress tensor. This would be a first step towards a
possible comparison of the results obtained in this chapter with experiments.
Of course, it is not possible to measure fluctuations of the background geom-
etry directly, but one could imagine that there might be a way to relate the
central charges to e.g. finite-size effects.

Knowledge of the Lifshitz anomaly will enable us to compute the Casimir
energy in a Lifshitz theory on a conformally flat background, by which we
mean

ds2 = −N2dt2 + hij dx
idxj , N = ezσ , hij = e2σ δij . (2.104)

Here, σ is an arbitrary function of time and space. Before we dive into the
calculation, let us first state the result. The Casimir energy for any three-
dimensional z = 2 Lifshitz theory on a conformally flat background is given
by:

〈E〉 =
1

8π
e−4σ

[
C1 σ̇

2 + C2

(
−4σ,kkll + 4σ,kσ,kll + 4σ,klσ,kl

)]
, (2.105)

Similarly, we find that the Casimir stress tensor is:

〈Πi
j〉 =

1

8π
e−4σ

{
C1

(
σ̈ − σ̇2

)
δij (2.106)

+ C2

[
2δim

(
−4σ,mjkk + 4σ,mjkσ,k + 4σ,mkσ,jk

)

− 2δij

(
−4σ,kkll + 4σ,kσ,kll + 4σ,klσ,kl

)]}

9It was claimed that C2 = βℓ2/48G for Hořava–Lifshitz gravity. The parameter β is
the gravitational equivalent of the coupling c in (I.10). In other words, it appears in the
effective IR Hořava–Lifshitz Lagrangian as L ∼ K2 + βR.
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This result does not yet appear in the literature, so we will show the calcu-
lation in a little more detail below. It is based on the work done in [58, 59]
for the relativistic case.

Casimir Energy for z = ds Lifshitz theories

In this section we extend the work of [58, 59] in order to obtain the Casimir
energy and the Casimir stress tensor for theories with anisotropic scaling
(xi, t) → (bxi, bzt) with z = ds. After finding the generic expressions for
any number of spatial dimensions ds, we apply it to case of z = ds = 2. In
the spirit of the conformal anomaly, we wish to put our theory on a curved
background. We pick some background (N,hij), whose corresponding line
element is given by:

ds2 = −N2dt2 + hij dx
idxj . (2.107)

The definition of the anisotropic Weyl anomaly A is

A ≡ z〈E〉 + 〈Πi
i〉 =

1

N
√
h

(
zN

δW

δN
+ 2hij

δW

δhij

)
, (2.108)

where W [N,h] ≡ − logZ[N,h] is the generating functional. We view (N,hij)
as Weyl deformations of some background (N̄ , h̄ij), such that

N(x) = ezσ(x)N̄(x) , hij(x) = e2σ(x)h̄ij(x) . (2.109)

This allows us to relate the scale transformation in the definition of the
anomaly (2.108) to a variation with respect to σ(x):

zN
δW

δN
+ 2hij

δW

δhij
=

δW

δσ
. (2.110)

The σ-variation of the expectation value of the stress-tensor complex (E ,Πij)
can in turn be written as

δ

δσ(y)

(
N
√
h 〈E〉

)
(x)

=

(
zN(y)

δ

δN(y)
+ 2hij(y)

δ

δhij(y)

)
N(x)

δW

δN(x)
, (2.111)

δ

δσ(y)

(
N
√
h 〈Πi

j〉
)

(x)

=

(
zN(y)

δ

δN(y)
+ 2hkl(y)

δ

δhkl(y)

)
2hjm(x)

δW

δhim(x)
. (2.112)
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The next ingredient we will use is the commutation relations

[(
zN(y)

δ

δN(y)
+ 2hij(y)

δ

δhij(y)

)
, N(x)

δ

δN(x)

]
= 0 , (2.113)

[(
zN(y)

δ

δN(y)
+ 2hkl(y)

δ

δhkl(y)

)
, hjm(x)

δ

δhim(x)

]
= 0 , (2.114)

which yields

δ

δσ(y)

(
N
√
h 〈E〉

)
(x) = N(x)

δ

δN(x)

(
N
√
hA
)

(y) , (2.115)

δ

δσ(y)

(
N
√
h 〈Πi

j〉
)

(x) = 2hjk(x)
δ

δhik(x)

(
N
√
hA
)

(y) . (2.116)

Following the reasoning of [58], we employ dimensional regularization, i.e.
we analytically continue ds → n = ds + ε (whilst leaving z = ds unaltered).
We introduce a shifted anomaly Aε defined in n + 1 spacetime dimensions
in such a way that limε→0Aε = A while at the same time preserving the
original (anisotropic) scaling relation δσAε = −2dsAε, such that

δ
(
N
√
hA
)
ε

δσ
= (z + n− 2ds)

(
N
√
hA
)
ε

= (n− ds)
(
N
√
hA
)
ε

= ε
(
N
√
hA
)
ε

(2.117)

This can typically be achieved by leaving the scaling behavior of the back-
ground fields unaltered, i.e. δσN = zN = dsN and δσhij = 2hij . This
prescription allows us rewrite the right-hand sides of (2.115) and (2.116) by
using the shifted scaling relation:

(
N
√
hA
)

(y) = lim
ε→0

1

ε

δ

δσ(y)

∫
dnx

(
N
√
hA
)
ε
, (2.118)

such that e.g.

δ

δσ(y)

(
N
√
h 〈E〉

)
(x) = N(x)

δ

δN(x)
lim
ε→0

1

ε

δ

δσ(y)

∫
dny′

(
N
√
hA
)
ε
.

(2.119)

We wish to integrate this differential equation with respect to σ. This is still
difficult, though, since the σ-derivative on the right-hand side can generally
not be pulled to the left consistently.
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Conformally flat backgrounds

Let us focus on the specific case of a conformally flat background, by which
we mean that

N(x) = ezσ(x) , hij(x) = e2σ(x)δij , (2.120)

with z = ds and x = (~x, t). Restricting ourselves to such backgrounds al-
lows us to integrate (2.119). To be more specific, we can interchange the
σ-variation and the N -variation, such that

δ

δσ(y)

(
N
√
h 〈E〉

)
(x) = N(x)

δ

δN(x)
lim
ε→0

1

ε

δ

δσ(y)

∫
dny′

(
N
√
hA
)
ε

(2.121)

=
δ

δσ(y)
lim
ε→0

1

ε
N(x)

δ

δN(x)

∫
dny′

(
N
√
hA
)
ε
.

(2.122)

We fixed the background to be conformally flat (2.120) to ensure that

δ

δN(x)

∫
dny′

(
N
√
hA
)
ε

= O(ε) , (2.123)

δ

δhij(x)

∫
dny′

(
N
√
hA
)
ε

= O(ε) . (2.124)

Namely, it would instead be of order O(1) if we were to use a generic
background. We now integrate this differential equation with the bound-
ary condition that the stress-tensor complex vanishes on a flat background
σ = constant. This gives our final result for the Casimir energy :

〈E〉 = lim
ε→0

1

ε

1√
h

δ

δN

∫
dnx

(
N
√
hA
)
ε
, (2.125)

and similarly, the Casimir stress tensor :

〈Πi
j〉 = lim

ε→0

1

ε

2hjk

N
√
h

δ

δhik

∫
dnx

(
N
√
hA
)
ε
. (2.126)

The specific case of z = ds = 2

In this chapter we found that, for z = ds = 2, the anomaly is of the form

A =
C1

8π
GijklKijKkl +

C2

8π

(
R+

∇i∇iN

N
− ∇iN ∇iN

N2

)2

, (2.127)
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where Kij = ḣij/2N is the extrinsic curvature on a constant-time surface,
∇i is the covariant derivative compatible with the spatial metric hij and
Gijkl ≡ hi(khl)j − 1

2hijhkl. The form of the anomaly is universal, i.e. the only
way the details of a theory can enter in the anomaly is through the central
charges C1 and C2. The same must be true of the vacuum expectation value of
the stress-tensor complex, since it can be derived from the anomaly directly.

We define our shifted anomaly Aε by setting ds → n = ds + ε = 2 + ε,
whilst keeping z = ds = 2. In other words, we keep the scaling of the
fields unchanged, i.e. δσN = zN = 2N and δσhij = 2hij . Doing so gives us
the following expression for the Casimir energy and stress tensor by simply
applying . We have put the intermediate steps in this calculation Appendix
VI. The result is:

〈E〉 =
1

8π
e−4σ

{
C1 σ̇

2 + C2

(
− 4σ,kkll + 4σ,kσ,kll + 4σ,klσ,kl

)}
, (2.128)

〈Πi
j〉 =

1

8π
e−4σ

{
C1

(
σ̈ − σ̇2

)
δij

+C2

[
2δim

(
−4σ,mjkk + 4σ,mjkσ,k + 4σ,mkσ,jk

)

− 2δij

(
−4σ,kkll + 4σ,kσ,kll + 4σ,klσ,kl

)]}
. (2.129)

Notice that the trace is not identically zero,

z〈E〉 + 〈Πi
i〉 = 4C1 σ̈ e−4σ . (2.130)

This term is, however, trivial in the sense that it can be removed by adding a
finite local counterterm to the action. The leftover term can be seen to come
from the covariant term (∂n = N−1∂t as before):

z〈E〉 + 〈Πi
i〉 = 2C1 h

ij∂nKij . (2.131)

We can add a counterterm that relates this term to the one we had initially,
GijklKijKkl. The counterterm that does this is:

W → W + c

∫
dt d2xN

√
hK2 , (2.132)

where c is some appropriately chosen real number and K = hijKij is the trace
of the extrinsic curvature, see Appendix IV for a detailed discussion. We are
then left with a leftover term proportional to GijklKijKkl, which vanishes on
a conformally flat background. Thus we see that the trace vanishes indeed:

z〈E〉 + 〈Πi
i〉 = 0 . X (2.133)
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It is interesting to see that the analysis done in [58, 59] can be extended to
the case of z = ds. The Casimir energy thus computed could be seen as a first
step towards comparing the values of the central charges with experiments.
For instance, one could imagine that the central charge C2 that is related to
spatial fluctuations might be related to finite-size effects in systems effective
described by z = 2 Lifshitz-type theories.

2.5 Two-dimensional central charge and C1

As an aside, we would like to speculate on a possible relation between the
central charge C1 and the charge c of a two-dimensional CFT. This relation
comes from the study of entanglement entropy. The notion of entanglement
entropy will be explained in somewhat more detail shortly. For now, we
just state some specific results. This is an example where a calculation on
both sides of the correspondence is possible. On the field-theory side, one
can explicitly compute entanglement entropy in the ground state [38, 39].
This is possible because the detailed balance condition can be used to find
that the ground-state wave functional has the structure of a 2D CFT [12],
cf. discussion on page 38. On the other hand, the holographic computation
makes no distinction between AdS and Lifshitz, given that the (generalized)
Wald charge [45] reduces to the area law for the specific holographic model.
The entanglement entropy associated to an entangling surface with a cusp
was computed in field theory [39] and in holography [46]. The general form
of the entanglement entropy is

Sent =
ℓ

ε
+ f(Ω) ln

ε

ℓ
+ finite , (2.134)

where ℓ is the typical size of the subdomain and ε is a short-distance cut-off.
The coefficient f(Ω) of the universal log has a simple pole at the point where
the cusp angle Ω → 0. At small values of the cusp angle the entanglement
entropy probes only short distances, so it is generally expected (but not
proved) that universal information in the entanglement entropy of a cusp is
contained in the residue. The two different models give the following residues:

Res
Ω=0

f(Ω) =





π
24 c (field theory)

4π3

Γ(1/4)4
ℓ2

2G (holography)
(2.135)

It is tempting to say that the central charges may be related as

C1

c
=

Γ
(
1
4

)4

96π2
(2.136)
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This would mean, however, that the 2D central charge is fixed to a non-
standard value c = 24π2/Γ(1/4)4 ≈ 1.37, because C1 = 1/4 for the Lifshitz
scalar. The central charge for a single free scalar is usually chosen such that
c = 1. It should be noted, though, that we compare two different regimes in
the above regio C1/c. Namely, C1 is computed at strong coupling, while c is
computed in a free theory. The ratio might be corrected in a way similar to
how the free energy of N = 4 Yang–Mills differs by a factor of 3/4 between
weak and strong coupling. It would be very interesting if a relation between
the two different central charges would exist, though at this stage it is not
much more than a hunch (so please do take these comments with pinch of
salt).

Conclusion

In this chapter we computed the anisotropic Weyl anomaly of two Lifshitz-
type theories. The first theory was just a simple scalar field theory known
as the quantum Lifshitz model (2.20), while the second was a holographic
model known as the massive-vector model. Although it is unclear whether it
is sensible to compare the two anomalies, we did notice that the anomalies
seem quite similar in that one of the two central charges vanishes. The ratio
of the non-zero central charges is 2ℓ2/G.

An aspect that remains unclear in this analysis is that the dynamical critical
exponent is in general renormalized [47], while the conformal anomaly is only
present when z = ds exactly. It is tempting to argue that there might be
a mechanism that protects the value of z = 2, although such a mechanism
remains unknown at present.

It would also be interesting to repeat the analysis in Appendix IV, allowing
for time-reversal symmetry to be broken. This could possibly lead to contri-
butions in the anomaly with an odd number of time derivatives, which would
lead to terms that mix spatial and time derivatives. Another generalization
to the anomaly in the Lifshitz scalar theory might be come from coupling the
scalar to a gauge field, which may yield an additional term in the anomaly,
see e.g. [40] for the z = 1 case.

As mentioned before, one of the main uses of the conformal anomaly is that
it is a relatively simple property of a field theory which sometimes gives rise
to certain universal properties. For instance, in the relativistic case, in d = 2
the conformal anomaly completely fixes the free energy at high temperatures,
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and the central charges also control the universal terms in the entanglement
entropy in d = 2, 4. In Section 3.1 a first step is made in identifying these
universal terms in the z 6= 1 case.

We concluded this chapter with two possible extensions of this work. In
Section 2.4 we took a first step towards identifying the central charges to
physical quantities that could in principle be measured. Although more work
is needed to phrase a concrete proposal for measurement, it is still interesting
that the knowledge of the Lifshitz anomaly allowed us to compute the Casimir
energy and stress tensor. In Section 2.5 we speculated about a possible
connection between the central charge C1 and the two-dimensional central
charge c, inspired by the connection between z = 2 Lifshitz theories and
two-dimensional CFT’s (cf. discussion on page 38).





Chapter 3

Marginally Relevant Operator in
z=2 Lifshitz Holography

In this chapter we continue our holographic analysis from Chapter 2. It
turns out that the solutions of the Einstein–Proca field equations contain a
logarithmic branch when z = ds = 2. In particular, the leading behavior of
the metric is no longer simply a power of the radial coordinate; it contains
leading logarithms.1 In [43] it was argued that these leading logs are related
to having a marginally relevant operator in the system. We will build on this
observation, although our way of renormalizing the on-shell action will be
radically different. In particular, we show that one can renormalize the on-
shell action by adding only local counterterms without the need to introduce
explicit dependence on the radial cutoff, contrary to what was claimed in
[43, 48].

In order to perform holographic renormalization, one needs to specify bound-
ary conditions for the fields. In Chapter 1 we saw that there is a natural way
to fix these boundary conditions by fixing the radial scaling of the fields. This
input is restrictive enough to renormalize on-shell action, while at the same
time it is lenient enough to allow for the presence of these leading logarithms.
For simplicity, we assume translational invariance in the boundary directions.
Our method for renormalizing the on-shell action is essentially based on the
results of [1], though the special case of z = 2 will bring some interesting new
features. In particular, we find that the renormalized on-shell action will be
a non-analytic function of the only Lorentz scalar one can construct at the
non-derivative level: the square of the massive vector. To be precise, we use
the scalar perturbation ψ defined as the shift in the vector away from the
constant background value: Aa = (1 +ψ) e0a. Conversely, ψ can be expressed
in terms of the square of the Proca field as ψ =

√
−A2 − 1.

Before we discuss holographic renormalization we first construct a holo-

1As before, we call e#r power-law and r# logarithms.
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graphic RG flow that interpolates between a Lifshitz-like fixed point in the
UV and a conformally invariant fixed point in the IR. This Lifshitz-to-AdS
flow can be seen as a result of turning on the marginally relevant operator.
We check that it makes sense to view AdS as an IR solution by studying the
universal part of the entanglement entropy in which the entangling surface
is a strip. This was proposed as a promising candidate c-function in [49] for
z = 1 and d ≥ 3 boundary dimensions. We check whether this same proposed
c-function decreases monotonically as one follows the RG flow from the UV
z = 2 fixed point to the IR z = 1 fixed point.

Structure of the chapter. This chapter is organized as follows. Below,
we give a brief overview of some interesting properties of the massive vector
model. We explain why the case where the dynamical exponent is equal to the
number of (boundary) spatial dimensions (z = ds) is special. In Section 3.1
we study the Lifshitz-to-AdS flow using the entanglement entropy of a strip,
which we compute holographically. In the process, we derive a nice and simple
expression for Myers’ entanglement c-function. Finally, Section 3.2 contains
the main discussion of this chapter, which is holographic renormalization in
the presence of the marginally relevant operator.

Special nature of z = ds in the massive-vector model

Before we continue our discussion, let us mention some interesting facts about
Lifshitz systems with critical values of the dynamical exponent, z = ds, where
ds is the number of spatial dimensions on the field theory side. Namely,
besides the Lifshitz-type Weyl anomaly, there are some more incarnations of
the special nature of z = ds.

Fixed point of a duality transformation. A first hint that z = ds
is special in the massive-vector model comes from the following argument.
Consider the values of the mass and cosmological constant that give rise to
a Lifshitz geometry with dynamical exponent z in ds + 2 bulk dimensions,

m(z, ℓ) =

√
dsz

ℓ
, Λ(z, ℓ) = −z

2 + (ds − 1)z + d2s
2ℓ2

. (3.1)

In [50] it was noticed that there is a dual pair (z′, ℓ′) that gives rise to the same
m and Λ, because the above relation is quadratic. Solving m(z, ℓ) = m(z′, ℓ′)
together with Λ(z, ℓ) = Λ(z′, ℓ′) yields

z′ =
d2s
z
, ℓ′ =

dsℓ

z
. (3.2)
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The map (z, ℓ) → (z′, ℓ′) is a solution-generating technique. The critical value
z = ds is the unique fixed point for this duality map.

A logarithmic branch. If we focus on ds = 2 for the moment, we know
from the perturbative analysis [51] that a basis for the independent modes
can be chosen as follows:

1 , e−(z+2)r , e−
1
2
(z+2−β)r , e−

1
2
(z+2+β)r , (3.3)

where β2 = (z+2)2+8(z−2)(z−1). For z = 2 we see that β = z+2 = 4, which
means that two pairs of modes will coincide and so a logarithmic branch will
emerge. We will now see what this logarithmic branch looks like when we
consider solutions to the equations of motion derived from (2.48).

Seemingly bad logs. At present, we do not have a closed-form solution
of the equations of motion that exhibits the expected logarithmic behavior,
so we study two approximate solutions instead. For one, we can look at lin-
earized perturbations around the Lifshitz background (2.47) and (2.49). The
other approximate solution is an asymptotic expansion, where one expands
in powers of e−r (and r−1) for large values of the radius r.

We start with the linearized solution. The linearized field equations of the
massive-vector theory were solved some time ago in [51] for ds = 2. For
z = ds = 2, it was found that a logarithmic mode emerges that seemed to
grow quicker than the background mode. For this reason, it was generally
expected to be an irrelevant perturbation of the (pure) Lifshitz solution.2

The mode (proportional to c) appears in the linearized solution as

−gtt = e4r(1 − 2c r + . . .) , (3.4)

gij = e2r(1 + c r + . . .) , (3.5)

At = e2r(1 − c (12 + r) + . . .) . (3.6)

This looks pretty bad, because it looks like the asymptotics are destroyed by
this mode. One can see, however, that the Lorentz scalar A2 and the volume
form constructed from these fields do behave nicely, e.g.

A2 = −1 + c+ . . . ,
√
g = e4r

(
1 + . . .

)
. (3.7)

The ellipses denote other linearized modes that are suppressed by powers of
e−4r. The mode proportional to c shifts the background value of A2.

2It was not phrased in this precise way. It was said that the mode proportional to c
should be switched off so as to satisfy the asymptotically Lifshitz boundary conditions.
The latter depends on what specific boundary conditions one has in mind.
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Now let us turn to the asymptotic solution, which was first obtained in [43].
The leading behavior of the asymptotic solution is:

−gtt =
e4r

r4
(
1 +O(r−1)

)
, (3.8)

gxx = r2e2r
(
1 +O(r−1)

)
, (3.9)

At =
e2r

r2
(
1 +O(r−1)

)
. (3.10)

In this case, the logarithmic modes look even worse. However, just as in the
linearized solution, one sees that A2 and the volume form do behave nicely.
In this case they only receive sub-leading logarithmic corrections:

A2 = −1 +
2

r
+O(r−2) ,

√
|g| = e4r

(
1 +

1

r
+O(r−2)

)
. (3.11)

The shift in A2 can thus be seen as a logarithmic correction, which vanishes
when r → ∞. It was argued in [43] that the logarithms ∼ r that appear
in the asymptotic solution comprise a marginally relevant perturbation of
the “pure” Lifshitz solution (2.47). Our results agree with this statement, al-
though our method of renormalizing the on-shell action is inherently different
in that we do not allow for explicitly r-dependent counterterms.

In conclusion, we see that a logarithmic branch opened up when z = ds = 2.
This logarithmic branch looks problematic if one considers quantities that
are not covariant. However, everything appears fine again once we consider
only covariant quantities (and the volume density). In particular, we checked
explicitly that the curvature invariants and the geodesic deviation behave in
this same way. In light of this, it seems appropriate to call the configuration
(3.8)–(3.10) asymptotically Lifshitz, even though the metric looks quite dif-
ferent from the pure Lifshitz geometry (2.47). Since the asymptotics are not
changed in this covariant sense, one can expect that the logarithmic branch
is related to a marginally relevant perturbation of the pure-Lifshitz solution.
We will make this more precise in the context of holographic renormalization.

Tidal forces in the infra-red. It was previously argued that the Lifshitz
geometry (2.47) is singular in the infra-red. Even though the curvature in-
variants are finite everywhere, one finds that the tidal forces that a local
observer experiences diverge as er → 0 whenever z 6= 1, cf. [21, 22]. The log-
arithmic Lifshitz solution is free of such singularities for the obvious reason
that the dynamical exponent flows to z = 1 in the infra-red (cf. Figure 3.1).3

This is in contrast to what was expected in [21], where it was argued that a

3See Appendix VII for the numerical setup.
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sensible IR geometry that is free of these pathologies was unlikely to exist.
The reason why the analysis from [21] does not apply to this particular flow
is that we allow for the presence of leading logs.

r

zeff

2

1

Figure 3.1: The dynamical exponent is evaluated on a numerical background that inter-
polates between AdS4 in the interior (left) and Lifshitz spacetime in the asymptotic region
(right). The dynamical exponent flows from zeff = 1 in the IR to zeff = 2 in the UV.

3.1 Holographic Entanglement Entropy

A

B
Entanglement entropy in quantum field theory is a
measure for correlation between subsystems and it pro-
vides a powerful diagnostic tool for the theory in ques-
tion. The most common subsystems one typically con-
siders are obtained by splitting up the full Hilbert space
in terms of the Hilbert spaces associated to disjoint spatial subdomains. For
instance, for two spatial subdomains labeled A and B, we take H = HA⊗HB.
Suppose we start out with a pure state described by the density matrix ρ as-
sociated to the full Hilbert space H. One can then define the reduced density
matrix ρA by tracing out the part of the state associated to HB, ρA = TrBρ.
The entanglement entropy can then be defined as the Von Neumann entropy
computed from the reduced density matrix:

Sent = −TrA (ρA ln ρA) (3.12)

This quantity measures the amount of entanglement between the degrees of
freedom in the subdomainsA andB. It sometimes used as an order parameter
when a local order parameter is lacking. Entanglement entropy is notoriously
hard to compute in quantum field theory. There is, however, a surprisingly
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B
A

Figure 3.2: The minimal surface is suspended from ∂A and extends into the bulk. The
entanglement entropy between subdomain A and B is proportional to the area of the
minimal surface.

simple way to compute it in theories with a holographic dual [52]. Namely,
the entanglement entropy can be computed in holography by computing the
surface area of a minimal surface that extends into the bulk while suspended
from the spatial boundary between the two subdomains, see Figure 3.2. For
our purposes, we are interested in entanglement entropy because it provides
us with an effective measure for the number of degrees of freedom. We discuss
this below.

3.1.1 Entanglement c-function

We would like to have a measure for the effective number of degrees of free-
dom. For this purpose, we shall look at the renormalized entanglement en-
tropy, which was proposed as a candidate c-function in [49] for RG flows that
interpolate between conformally invariant fixed points in d ≥ 3 dimensions.
We will follow [49] and study the entanglement entropy associated to a strip-

L̃

L

Figure 3.3: The entangling region is a strip. The two length scales associated to this
geometry is the width L of the strip and a long-distance cutoff L̃.

shaped region in flat space (see Figure 3.3). For a strip in d ≥ 3 dimensions,
the entanglement entropy contains only the leading area-law divergence and
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a universal piece [38, 49]:

Sent =
Area

ǫd−2
+ Sfinite , (3.13)

The strip is particularly convenient, because there are no sub-leading power-
law divergences beyond the leading area-law term and Sfinite is independent
of the UV-cutoff (so no log ǫ dependence).1 Let L be the width of the strip
and let L̃ be an IR length scale associated to the transverse directions. For

conformally invariant fixed points, one finds Sfinite ∝ cd
(
L̃/L

)d−2
, where cd

are the known a-type central charges when d is even. The strip geometry is
special, because the non-universal power-law divergent piece is independent
of the width L of the strip. This means that the universal piece can be
extracted rather easily by taking the derivative with respect to L,

Sfinite ∝ L∂LSent . (3.14)

The right-hand side we shall call the renormalized entanglement entropy of
the strip (in analogy to the renormalized entanglement entropy of the sphere
[53]). In the case where a theory flows between two conformally invariant
fixed points, it was suggested in [49] that the renormalized entanglement
entropy would be a good candidate c-function:

cd(L) = βd

(
L

L̃

)d−2

L∂LSent . (3.15)

The prefactor βd is a dimensionless constant that depends on the number of
dimensions as

βd =
1√

π 2d Γ
(
d
2

)
(

Γ
(

1
2(d−1)

)

Γ
(

d
2(d−1)

)
)d−1

. (3.16)

The function cd was constructed in such a way that it reduces to the known
a-type central charges at conformally invariant fixed points.

In our situation, one of the fixed points we are interested in is not confor-
mally invariant, so it is not a priori clear whether it makes sense to interpret
(3.15) as a c-function. However, we will compute (3.15) holographically,
in which case one finds that the computations of the entanglement entropy

1For a more generic entangling geometry that is not flat, one finds curvature-dependent
power-law divergences that are sub-leading compared to the leading area-law term. Such
terms typically do depend on L and even though its dependence can be scaled away by
rescaling the UV-cutoff ǫ, it is far simpler to consider a strip for the purpose of finding a
quantity that behaves as a c-function.
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done either in AdS or in Lifshitz spacetime go through in precisely the same
manner. The monotonicity of (3.15) for non-Lorentz invariant situations
was recently discussed in [54]. One can easily check that our setup meets
the requirements of [54]. In particular, the null energy condition is satis-

fied, uµuνT
µν = m2

2 (uµAµ)2 ≥ 0, where uµ is a future-directed null vector.
Furthermore, the Ryu–Takayanagi formula holds in the massive vector bulk
model, so our computation will be very similar to the known AdS/CFT com-
putations in Einstein gravity.2

We will use the function (3.15) to see how the effective number of degrees of
freedom decrease along the RG flow. Before we do so, however, we will first
derive a simple formula for cd(L) using holography.

3.1.2 A simple formula for the entanglement c-function

Generically it is rather difficult to compute the entanglement entropy away
from a scale-invariant fixed point. This why we will use holography. The
holographic formula for the entanglement entropy associated to some subre-
gion A was proposed by Ryu and Takayanagi [52]. It is given by the area (in
Planck units) of a minimal surface in the bulk that is suspended from the
boundary ∂A of the subregion A.3 So, the entanglement entropy is given by
the on-shell value of the Nambu–Goto type action

Sent =
1

4Gd

∫
dd−1x

√
γ , (3.17)

where γab = gµν(x) ∂ax
µ ∂bx

ν is the induced metric on the hypersurface and
Gd is Newton’s constant in d dimensions. Consider the situation in which
the metric at constant time is given by

ds2
∣∣∣
t=const

= f(r) d~x 2 + dr2 . (3.18)

Note that this includes both AdS as well as Lifshitz spacetime. Focusing on
the case where the entangling subregion is a strip yields

Sent =

∫ L

0
dxL L(r, ṙ) =

L̃d−2

4Gd

√
f(r)

(
f(r) + ṙ2

)
(3.19)

where ṙ = dr/dx. We have chosen our coordinates such that the strip lies
perpendicular to the coordinate x in such a way that it covers the interval

2One can see that theWald charge (or improvements thereof) reduces to the area formula
in the massive vector model.

3This formula is incomplete e.g. when higher derivatives are taken into account.
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−L < x < L, so x has been rescaled by a factor of 1/2 compared to the
standard one. Furthermore, we have used the symmetry x → −x, such that
the integral runs from 0 < x < L rather than −L < x < L. These two
redefinitions generate two factors of 2, which mutually cancel.

b

b

b

b

b

b

bb

r(x)

x

∞
− log ǫ

−L L0

r0

Figure 3.4: The minimal surface at fixed y. We have chosen our coordinates such that x
runs from −L to L. We use the symmetry x → −x to reduce the problem such that the
coordinate x runs from 0 to L instead.

One can associate a Hamiltonian to x-evolution,

H(r, p) = p ṙ − L(r, ṙ)
∣∣∣
ṙ(p,r)

, (3.20)

which is conserved, such that H(r, p) = E. The on-shell action is a function
of the boundary data r(0) = r0 and r(L) = − log ǫ. The integration constant
r0 is related to the constant of motion E by imposing that r0 is the turning
point of the minimal surface in the bulk, see Figure 3.4. Thus,

0 = ṙ(0) =
∂H

∂p

(
r0, E

)
. (3.21)

In our case this yields E = L̃
2Gd

f(r0). So it seems that given ǫ and E, we
get a value of the on-shell action. However, the physical input that we give
the system is L rather than E, so we need to express E in terms of L. In
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summary, the boundary conditions are set by the two integration constants
L and ǫ via:

f(r0) = E(L) , r(L) = log
1

ǫ
(3.22)

Because the Hamiltonian is a constant of motion, we can write the on-
shell action as the Legendre transform of the so-called characteristic function
W (ǫ, E),4

Sent(ǫ, L) = −E L+W (ǫ, E) , L =
∂W

∂E
. (3.23)

Now, we assume that the characteristic function is separable, by which we
mean that it splits up into two pieces:

W (ǫ, E) = Wǫ(ǫ) +WE(E) . (3.24)

The first piece Wǫ contains the area-law divergence, while the second one
WE contains information about the finite piece of the entanglement entropy
(3.13). The above separation is justified if there is a clean separation between
the UV and IR, which is the case when the entangling surface is a strip (3.13).
The reason why we want the separation (3.24) is that L = ∂W

∂E = W ′
E(E)

depends only on E this way. The renormalized entanglement entropy (3.15)
then becomes simply

cd(L) = −βd
Ld−1

L̃d−2
E(L) (3.25)

where E(L) is obtained by inverting the relation5

L(E) =

∫ ∞

r0(E)

dr

ṙ(r,E)
=

∫ ∞

r0(E)
dr

(
∂H

∂p

)−1 ∣∣∣∣
p=p(E,r)

. (3.26)

We have thus reduced the problem of finding the renormalized entanglement
entropy of a strip to inverting L(E) to E(L).

A relation between bulk and boundary length scales. It is known that
the physical scale, i.e. the scale at which one probes the theory, is related to
a radial scale in the bulk as µ ∼ er/ℓ. Although this relation between bulk
and boundary scales formally true, it is not always easy to make this more
precise. The holographic version of the renormalized entanglement entropy
is a nice quantity to consider, because it gives an explicit relation between a
boundary scale µ = 1/L and a bulk scale r0 (or E).

4See e.g. Chapter 10 of [55].
5This integral would not converge if we were not allowed to separate the characteristic

function as in (3.24). In other words, we would need to introduce the cut-off ǫ. The integral
would then run up to r = 1/ǫ instead of all the way to r → ∞, which would introduce a
dependence of E on ǫ.
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3.1.3 Lifshitz-to-AdS RG Flow

Let us put formula (3.25) to good use. We restrict ourselves to d = 3 bound-
ary dimensions henceforth. Besides the Lifshitz geometry,

ds2 = dr2 − e2zr/ℓLif dt2 + e2r/ℓLif d~x 2 ,

A =

√
2(z − 1)

z
ezr dt , (3.27)

the massive vector theory also has an AdS4 solution:

ds2 = dr2 + e2r/ℓAdS
(
−dt2 + d~x 2

)
,

A = 0 , (3.28)

Both these backgrounds have the same equal-t geometry (3.18), where the
function f(r) = e2r/ℓ; the curvature length scale is either ℓ = ℓAdS or ℓ = ℓLif.
Moreover, the ratio of the length scales fixed in the massive vector model,
which is ℓAdS/ℓLif =

√
3/5.

All we need to do in order to compute the entanglement c-function is plug in
f(r) = e2r/ℓ and then run the machinery we just developed. First of all, we
have

ṙ(r,E) = er
√

e4(r−r0)/ℓ − 1 , (3.29)

where r0 is given in terms of E via E = L̃
4G e2r0/ℓ. Then, we find

L(E) =

√
ℓ2

2G

L̃

β3E
, (3.30)

which can easily be inverted to E(L). The central charges for the AdS and
Lifshitz fixed points are thus given by

cAdS =
ℓ2AdS

2G
, cLif =

ℓ2Lif
2G

. (3.31)

As a first consistency check, we see that cAdS/cLif = 3/5 < 1, which gives
credence to the statement that the flow must be from a Lifshitz-type fixed
point in the UV to a conformally invariant fixed point in the IR. In the
previous chapter we choose the normalization of the Lifshitz central charges
(2.11) such that cLif = C1, cf. (2.102).

Using formula (3.25) it is actually quite easy to evaluate the renormalized
entanglement entropy on a numerical background, for which we take the
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L

c(L)/cLif

3
5

1

Figure 3.5: The renormalized entanglement entropy is evaluated on the numerical back-
ground. Along the horizontal axis we have the width of the strip L. We divided by the

Lifshitz value cLif =
ℓ2
Lif

2G
.

interpolating solution computed in Appendix VII. The result of this is shown
in Figure 3.5. We see that at small L (probing short distances), the c-
function tends to the value associated to the Lifshitz fixed point. Then,
when L becomes large enough (probing long distances), the minimal surface
dips into the bulk deep enough to become sensitive to the AdS4 part of the
geometry.

3.2 Holographic Renormalization

The previous methods for renormalizing this system involved the use of coun-
terterms that depend explicitly on the radial cut-off. The explicit r depen-
dence was more involved than what one encounters in the presence of Weyl-
type anomalies. In this section we show that the z = 2 massive-vector model
can be renormalized by using only covariant counterterms. Moreover, we find
a closed-form expression for the renormalized on-shell action.

Boundary conditions. We would like to impose the boundary condition
δr ≈ δD, where henceforth ‘≈’ means equality up to 1/r corrections. The
implicit radial derivative is simply:

δr =

∫
ddx

(
∂rN

δ

δN
+ ∂rhij

δ

δhij
+ ∂rψ

δ

δψ

)
. (3.32)

In the previous chapter, we used the following representation of the dilatation
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operator:

δD =

∫
ddx

(
2N

δ

δN
+ 2hij

δ

δhij
− λψ

δ

δψ

)
(3.33)

where λ was given in (2.69):

λ =
1

2

(
z + ds −

√
(z + ds)2 + 8(z − 1)(z − ds)

)
. (3.34)

Now, notice that λ = 0 when z = ds = 2. On the other hand, we do know
that the leading behavior of ψ is not a constant, but it depends on r. Namely,
for the asymptotic solution (see Appendix VIII), we know that ψ ≈ −1

r . This
means that we need to improve δD in order for it to asymptote to δr at large
r. The main thing that changes due to the logarithmic behavior is that the
radial derivative acts non-linearly on ψ:

∂rψ ≈ ψ2 . (3.35)

So, for z = 2, we must define δD differently:

δD =

∫
ddx

(
2N

δ

δN
+ 2hij

δ

δhij
+ ψ2 δ

δψ

)
(3.36)

The asymptotic boundary condition δr ≈ δD is then imposed in much the
same way as in §2.3.1. The result is:

L = −6 − 2ψ − 2ψ2 − 2ψ3 +O(ψ4) . (3.37)

These coefficients agree with those found in (2.67).

The Hamiltonian. Translational invariance reduces the on-shell action to:

S =

∫
ddx

√
gL(ψ) , (3.38)

The momenta are therefore given by

2πAB =
(
−L(ψ) + (α+ ψ)L′(ψ)

)
δA0 δ

B

0 + L(ψ) δIJ δ
I

Aδ
J

B ,

EA = L′(ψ) δA0 . (3.39)

The extrinsic curvature is given by KAB = GABCD π
CD, cf. (2.63), so

KAB =
L + (ds − 1)(α + ψ)L′

2ds
δ0Aδ

0
B +

−L + (α+ ψ)L′

2ds
δIJ δ

I

Aδ
J

B (3.40)

The Hamiltonian constraint is given by

H = KAB π
AB + V , (3.41)
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where the non-derivative potential with z = ds = 2 is

V = 2
(
6 + 2ψ + ψ2

)
. (3.42)

In this section, we solve the Hamiltonian constraint H = 0 directly. We
get the Hamiltonian constraint by plugging in (3.39) and (3.40) into (3.41),
which gives:

H = −3

8
L2 +

ψ + 1

4
LL′ +

(ψ − 1)(ψ + 3)

8
L′2 + 2

(
6 + 2ψ + ψ2

)
(3.43)

Solving the HJ equation. Let us denote the finite part of L(ψ) by W(ψ),
such that the renormalized generation functional is

W = lim
r→∞

∫
d3x

√
gW(ψ) . (3.44)

Let us also define the counterterm Lagrangian through W = L+Lc.t., where

Lc.t. = 6 + 2ψ + 2ψ2 + 2ψ3 +O(ψ4) (3.45)

was fixed by the boundary conditions, cf. (3.37). By definition we have
dW
dr ≈ 0, such that

dW
dr

≈ −4W ,
dLc.t.

dr
≈ 0 . (3.46)

This means that W is suppressed by a power of e−4r compared to Lc.t., which
allows us to solve the HJ equation perturbatively in powers of W. Solving
the leading-order HJ equation just gives the counterterms to higher order in
powers of ψ, e.g.

Lc.t. = 6 + 2ψ + 2ψ2 + 2ψ3 +
5

2
ψ4 +

5

2
ψ5 − 17

8
ψ6 +O(ψ7) . (3.47)

The next-to-leading order gives us the following linear ODE for W(ψ):

W ′

W =
3Lc.t. − (ψ + 1)L′

c.t.

(ψ + 1)Lc.t. + (ψ − 1)(ψ + 3)L′
c.t.

= − 4

ψ2
+

10

ψ
+O(ψ0) . (3.48)

This is easily integrated:

W = w e4/ψ ψ10 (1 +O(ψ)) , (3.49)
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The integration constant w cannot we determined by the asymptotic bound-
ary conditions; it is related to the geometry’s renormalizable mode. From the
asymptotic solution (see Appendix VIII) we know that ψ approaches 0 from
below, i.e. ψ ≈ −1

r . Superficially, it looks as though W ≈ 0 due to the ψ10

factor. We will see, however, that this is not true when we take the O(r−2)
correction in ψ into account. Before we look at any specific solution, though,
we first discuss Weyl invariance.

Lifshitz-type Weyl invariance

Now, let us see whether W is Weyl invariant. As before, we write

W = lim
r→∞

∫
d3xN

√
h W(ψ) . (3.50)

The Weyl variation is computed using δD defined in (3.36), such that:

δDW = lim
r→∞

∫
d3xN

√
h
(
4W + ψ2 W ′(ψ)

)
(3.51)

Now, from (3.48), we see that ψ2 W ′(ψ) ≈ −4W. It thus follows that the
renormalized generating functional remains Weyl invariant:

δDW = 0 (3.52)

We thus showed to that Lifshitz-type Weyl invariance remains unbroken
for any translationally invariant configuration that satisfies the asymptotic
boundary condition δr ≈ δD.

Evaluate W on an asymptotic solution

In order to check whether this result makes sense, we consider the asymptotic
solution found in [43], see Appendix VIII. One interesting fact about this
solution is that there is a dynamically generated scale Λ. The ψ degree of
freedom and

√
g are given by

ψ = −1

r
− 5 ln r + 2 ln Λ + 3 − λ

2r2
+O(r−3) ,

√
g = N̂ ĥ2 e4r

(
1 +

1

r
+O(r−2)

)
. (3.53)
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To see how the integration constants N̂ , ĥ, Λ and λ appear in the asymp-
totic solution, we refer to Appendix VIII. We thus see that the renormalized
generating functional (3.49) is finite as required:

lim
r→∞

√
gW = N̂ ĥ2 Λ4e6−2λ w (3.54)

As the last step in our comparison to the asymptotic solution, let us express
w in terms of the mass M, which is the integration constant associated with
the normalizable mode in the asymptotic solution. For convenience, we first
define

ε(ψ) ≡ e4/ψ ψ10 , (3.55)

such that:

w ≈ ∂W
∂ε

=
∂ψ

∂ε

∂W
∂ψ

=
W ′(ψ)

ε′(ψ)
(3.56)

Next, we use the relation ∂rAa = Ea = − Aa√
−A2

L′(ψ) as well as L = W−Lc.t.

to express w in terms of Aa and gab directly:

w = lim
r→∞

1

ε′(ψ)

(
Aa∂rAa√

−A2
+ Lc.t.(ψ)

) ∣∣∣∣
ψ=−1+

√
−A2

(3.57)

When evaluated on the asymptotic solution, this gives w = e2λ−6M, such
that

lim
r→∞

√
gW = N̂ ĥ2 Λ4 M (3.58)

Conclusion

We have seen that the leading logarithmic modes that are present in the solu-
tion of the field equations in the massive-vector model can be interpreted as
a marginally relevant operator in the z = 2 Lifshitz field theory. The theory
flows to a conformal fixed point in the IR due to this marginally relevant
operator. We derived a nice formula for the holographic entanglement c-
function and we saw how it decreased along the RG flow. We found a way to
renormalize the on-shell action without introducing explicitly r- dependent
counterterms. This did require that we have an infinite number of counter-
terms, although we showed that one can obtain the renormalized on-shell
action without knowing all counterterms explicitly. The fact that we need an
infinite number of counterterms despite the fact that we are not dealing with
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an irrelevant operator seems to be an artifact of the non-analyticity of the
renormalized on-shell action around the Lifshitz background value A2 = −1.

One often encounters an ambiguity due to the freedom of being able to add
finite local counterterms to the renormalized on-shell action. This ambiguity
is absent in our case, because there are no finite local covariant counterterms
when one assumes translational invariance in the boundary directions. This
can also be seen in the free 3D Lifshitz scalar, φ̇2 + (∇2φ)2, where there are
no finite counterterms at the non-derivative level.

The closed-form expression we found for the renormalized on-shell action is
a non-analytic function of ψ = −1 +

√
−A2, which reduces to a very simple

expression once it is evaluated on the asymptotic solution. This may well
be related to the onset of a z = 2 to z < 2 phase transition; we discuss this
in the final conclusion. We investigated the possibility that Lifshitz scaling
symmetry is broken by the appearance of the dynamically generated scale
Λ, cf. Appendix VIII. Contrary to previous claims, including ones made by
the author, we have shown once and for all that Lifshitz scaling is preserved
for all translationally invariant geometries that are asymptotically locally
Lifshitz in the sense that ∂r ≈ δD. This includes the asymptotic solution of
[43] presented in Appendix VIII.





Conclusion and Outlook

We have seen that it is possible to reproduce some general features of Lifshitz-
type quantum field theories through holography. In order to remove UV/large-
volume divergences we computed the necessary holographic counterterms.
The asymptotic boundary conditions were imposed by taking serious the ob-
servation that dilatations are asymptotically generated by a radial shift. This
way of specifying the boundary conditions was phrased as δr ≈ δD, which
admits renormalization of the on-shell action in the presence of arbitrary
sources. In other words, it is a convenient way to impose the most lenient
boundary conditions required to deem the on-shell action finite. It is easy
to show that δr ≈ δD is equivalent to asymptotically locally AdS boundary
conditions when the dynamical exponent is z = 1. This way of imposing the
boundary conditions was especially useful for the case z = ds = 2, which
would otherwise be tricky due to the fact that the leading radial behavior of
the fields is not purely power-law.

We investigated anomalous breaking of Lifshitz-type Weyl symmetry in two
different models, one defined using a standard field theory quantization of an
explicit classical action (2.20), the other defined using a holographic model.
A precise definition of Lifshitz holography is still lacking, and a microscopic
definition of the strongly coupled field theory remains unknown. It is there-
fore a priori not very meaningful to compare the two anomalies. Nevertheless,
we found that the anomalies are quite similar. Namely, in both cases there
are two possible central charges of which one vanishes, and as a consequence
the two anomalies are directly proportional to each other. The ratio of the
two anomalies is 2ℓ2/G, with ℓ the curvature radius of the Lifshitz spacetime
and G the 4D Newton constant.

It would be interesting to evaluate this quantity in explicit string theory
embeddings of Lifshitz spacetimes to see how it scales with the various integer
fluxes, as this will provide some measure of the effective number of degrees
of freedom of the dual field theory. We know that in the relativistic case the
central charges control the universal terms in the entanglement entropy in
d = 2, 4. We studied this in a z = 2 holographic model. The computation
of holographic entanglement entropy in a Lifshitz background is identical to
those done in AdS/CFT, because the AdS and Lifshitz geometries look the
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same at constant time. In the process, we derived a nice new formula for the
holographic entanglement c-function, where the entangling surface is a strip.

It is quite mysterious that the conformal anomaly only involves time deriva-
tives, it is even more mysterious that there exists a conformal anomaly at all.
According to [47], the dynamical critical exponent is in general renormalized,
though there were some hints that z = 2 might be protected.1 This would
pose a problem, because the Lifshitz anomaly can no longer be written down
as soon as the dynamical exponent is not precisely equal to the number of
spatial dimensions. So either there is some unknown mechanism that pro-
tects the value of z = 2, or the conformal anomaly can be removed in the full
quantum theory. In the latter case, one would be in the peculiar situation
that one would need to include counterterms that diverge in the classical
limit. Further work will be required to clarify this issue.

It is also of interest to explore other systems with anisotropic scale invariance
to examine whether the conformal anomaly is still of the same form. For
instance, if one allows that time reversal symmetry be broken, it is logically
possible to have contributions with an odd number of time derivatives to the
conformal anomaly. It is in principle straightforward to extend the analysis
in Appendix IV to determine whether there are non-trivial terms of this type.

Knowledge of the general form of the Lifshitz anomaly allowed us to compute
the Casimir energy and stress tensor in any z = ds Lifshitz theory, which is
quite difficult to compute in general. This result is universal in the sense that
it only depends on the central charges and the background geometry. This
could be considered as a first step towards making contact with experiments.
Although more work is required to make the relation to experiments more
precise, one could imagine that, for instance, the central charge C2 that
is associated with spatial fluctuations of the background geometry might
somehow be related to finite-size effects.

We have seen that the seemingly bad logarithmic modes that are naturally
present solutions to the Einstein–Proca equations can be interpreted as orig-
inating from the presence of a marginally relevant operator in the dual z = 2

1It should be noted that the model that was used in [47] was not the massive vector
model but the two-form/three-form model from [16]. Since the massive-vector model can
be obtained from the two-form/three-form one by integrating out one of the forms, it is
not unlikely that one would reach the same conclusions in the massive vector model. In
particular it was found that the dynamical exponent is generically corrected due to the
inclusion of higher-derivative (α′-like) corrections to the action. There were two special
values of the dynamical exponent, however, that did not receive corrections at first order:
z = 1 and z = 2.
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Lifshitz field theory. Furthermore, we showed that this marginally relevant
operator is responsible for an RG flow towards a conformally invariant fixed
point in the IR. We saw that this observation is corroborated by the fact that
the aforementioned entanglement c-function decreased monotonically along
the holographic RG flow.

We found a way to properly renormalize the on-shell z = 2 massive-vector
action without the need for introducing explicit dependence on the radial
cutoff. This did require that we have an infinite number of counterterms,
although we showed that one can obtain the renormalized on-shell action
without knowing all counterterms explicitly. The fact that we need an infi-
nite number of counterterms despite the fact that we are not dealing with
an irrelevant operator seems to be an artifact of the non-analyticity of the
renormalized on-shell action around the Lifshitz background value A2 = −1.
If we view ψ as an order parameter that is zero when the dynamical scaling
is precisely z = 2 and non-zero when z < 2, we could interpret the non-
analyticity of the free energy2 as being related to a z = 2 to z < 2 phase
transition. From the asymptotic solution we know that the dynamically gen-
erated scale Λ is the appropriate source for the marginally relevant operator

rather than ψ itself, which gives ∂F
∂Λ = −ψ2

Λ
∂F
∂ψ = 4F

Λ (up to terms that vanish
when the cut-off is removed). We thus see that repeated Λ-derivatives are
all finite, which means that this phase transition is somewhat akin to a BKT
transition. It would be interesting to understand this non-analyticity and its
possible relation to a BKT-type phase transition better.

We find that the Lifshitz symmetry remains unbroken at the translationally-
invariant level, as is expected from the generic form of the Lifshitz anomaly
(2.11). Contrary to previous claims, we have seen that Lifshitz scaling is
preserved for all translationally invariant geometries that are asymptotically
locally Lifshitz in the sense that δr ≈ δD, which includes the asymptotic
solution from [43].

A possible extension of the work done in Chapter 3 might be to study the
thermodynamic properties of these asymptotically Lifshitz geometries. In
particular, it would be interesting to find an AdS-to-Lifshitz crossover in the
free energy as a function of temperature. The temperature-scaling of the free
energy depends on the dynamical exponent z, F ∼ T 1+ds/z , so one may see
a transition F ∼ T 3 to F ∼ T 2 as T is increased. Another extension of this
work would be to let go of translation invariance, though at this stage this

2The free energy F is given by the on-shell Lagrangian in Euclidean signature, i.e.
F = Le. The on-shell Euclidean action is given by the integral of the Euclidean Lagrangian
over imaginary time: Se =

∫
dτ Le.
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seems to complicate matters quite severely.

In AdS there is a natural ground state, which is usually taken to be pure
AdS in global coordinates. For spacetimes with Lifshitz asymptotics this
ground-state geometry is yet unknown. We know that the ground state in
a 3D Lifshitz theory is invariant under spatial conformal transformations,
cf. page 38. This suggests that the ground-state geometry would have to
be a line times 3D hyperbolic space, R × H3. The ground state could be
an interpolating solution between a z = 0 solution and z = 2 one. It is
actually quite easy to construct such an interpolating solution numerically
by using the techniques of [56]. This work is still ongoing. Besides finding the
proper ground-state geometry, the main objective of this work is to figure out
whether holography correctly captures the universal behavior of entanglement
entropy as computed in [38, 39].

It would also be very interesting to figure out if there is indeed a relation
between the central charge C1 and the two-dimensional central c, as discussed
in Section 2.5. Though, it should be noted that this possibility is not a very
serious one at this stage.
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I Einstein–Proca Hamiltonian

In this section, we derive the Hamiltonian associated to the Einstein–Proca
theory:

S =

∫

M
dd+1x

√
g

(
−R̃+ 2Λ +

1

4
F̃abF̃

ab +
m2

2
ÃaÃ

b

)
−
∮

∂M
dσaΘ

a .

(A.1)

We use Wald’s abstract index notation throughout this section and Θa is the
Gibbons–Hawking term. Let us write the full geometry as a radial foliation
consisting of a stack of equal-r slices Σr.

1 We split up the metric in terms of
the outward-directed unit normal na, where

na ≡ N ∇ar . (A.2)

The normalization constant is known as the lapse function. We then define
the induced metric, or first fundamental form, as:

hab ≡ gab − ǫ nanb (A.3)

Here, ǫ ≡ nana = ±1 is the signature of the foliation. In this case we have
a ǫ = 1, but it is convenient to leave it arbitrary, so that we can use the
same expressions for a time foliation as well. The induced metric hab can be
used as a tangent projector, which pulls back tensorial quantities onto the
hypersurface Σr. Similarly, ǫ nanb can be seen as the normal projector. This
allows us to decompose the vector in similar fashion:

Ãa = Φna +Aa (A.4)

where Φ ≡ ǫ naÃa and Aa ≡ ha
b Ãb.

The canonical Lagrangian L, defined through S =
∫
dr L, is a function of

the (induced) fields and their canonical dual velocities. In order to define the

1There might be global obstructions to such a foliation, but for our purposes it is enough
to define the foliation only near the conformal boundary.
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latter, we introduce the flow vector ra, which is defined implicitly through
rana = ǫN . The tangential component of ra is known as the shift function,
Na ≡ hab r

b. Thus, the radial flow vector field is decomposed as

ra = Nna +Na (A.5)

The canonical velocities are then defined via Lie transport along the radial
flow ra:

ḣab ≡ Lrhab , Ȧa ≡ LrAa . (A.6)

A natural quantity to consider is the extrinsic curvature, or second funda-
mental form, as the Lie derivative of hab along the unit normal:2

Kab ≡ 1

2
Lnhab = ha

c∇cnb (A.7)

Let us also introduce the covariant derivative Da, compatible with hab. This
covariant derivative can be related to ∇a as follows. Consider some arbitrary
tangent vector va = hab v

b. The two covariant derivatives are then related
via:3

Dav
b = ha

c∇cvb (A.8)

The metric-velocity and extrinsic curvature are related via:4

ḣab = L(Nn)hab + LNhab

= NLnhab + LNhab

= 2N Kab +DaNb +DbNa (A.9)

Let us do the same for the vector velocity. We define Ka ≡ LnAa, such that:

Ȧa = NLnAa + LNAa

= NKa −N bFab + ∇a
(
N bAb

)
(A.10)

We are now ready to write the Lagrangian directly in terms of the canonical
quantities.

2The property ha
c ∇cnb = hb

c ∇cna follows from hypersurface orthogonality; it can be
shown straightforwardly by using the definition of the unit normal (A.2).

3This also works for higher-rank ternsors. Let Tabc... be a purely transversal tensor, i.e.
Tabc··· = ha′

a hb′

b hc′

c · · · Ta′b′c′···, then DaTbc··· = ha′

a ∇a′Tbc···.
4The property L(Nn)hab = NLnhab follows directly from nahab = 0.
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Gauss–Codazzi decomposition

Let us start with the metric. We shall use the Gauss–Codazzi decomposition.
The Riemann tensor can be decomposed as follows:

heah
f
b h

g
ch
h
d R̃efgh = Rabcd + ǫ (KadKbc −KacKbd)

nehfah
g
bh
h
c R̃efgh = DbKac −DcKab

nehfan
ghhb R̃efgh = −LnKab +KacKb

c +Dbaa − ǫ aaab (A.11)

where aa ≡ nb∇bna is the acceleration of observers that are at rest in the slices
Σr. It then follows that the Ricci tensor and Ricci scalar can be decomposed
as

hcah
d
b R̃cd = Rab + 2ǫKacKb

c − ǫKabK − ǫLnKab + ǫDbaa − aaab

nchda R̃cd = DaK −DbKab

ncnd R̃cd = K2 −KabK
ab + ∇a(aa − naK)

R̃ = R+ ǫ
(
K2 −KabK

ab
)

+ 2ǫ∇a(aa − naK) (A.12)

We only used the Leibniz rule a couple of times. We are now ready to start
using the ADM variables again.

Now, let us decompose the Maxwell term. The field strength is decomposed
as

hcah
d
b F̃cd = Fab

nchda F̃cd = Ka − ǫDaΦ + aaΦ (A.13)

where we used ∇anb = Kab + ǫ naab.

F̃abF̃
ab = (hab + ǫ nanb)(hcd + ǫ ncnd) F̃acF̃bd

=
(
habhcd + ǫ hab ncnd + ǫ hcd nanb + nanbncnd

)
F̃acF̃bd

= FabF
ab +

(
ǫ hab ncnd + ǫ hcd nanb

)
F̃acF̃bd

= FabF
ab + 2ǫ hab

(
nchda F̃cd

)(
nehfb F̃ef

)

= FabF
ab + 2ǫ (Ka − ǫDaΦ + aaΦ) (Ka − ǫDaΦ + aaΦ) (A.14)

Now, before we write down the canonical Lagrangian L, let us focus our
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attention on the Einstein term:

−
∫

M
ddx

√
g R̃−

∫

M
dσaΘ

a = −
∫

M
ddxN

√
h
(
R+ ǫ

(
K2 −KabK

ab
))

− 2ǫ

∮

∂M
dσa

(
aa −Kna +

1

2ǫ
Θa

)

(A.15)

Let us have a look at the surface term. The Gibbons–Hawking term is
Θa = 2ǫ ña∇bñ

b, where ña is the outward-directed unit normal on ∂M . For
simplicity, we consider the case where ∂M = Σ∞, with Σ∞ = limr→∞ Σr,
such that ña = na. In that case, the surface term vanishes (using naa

a = 0).

The canonical Lagrangian is thus given by

L =

∫
ddxN

√
h
{
−R+ 2Λ + ǫ

(
KabK

ab −K2
)

+
1

4
FabF

ab

+
ǫ

2
(Ka − ǫDaΦ + aaΦ) (Ka − ǫDaΦ + aaΦ)

+
m2

2

(
ǫΦ2 +AaA

a
)}

(A.16)

Canonical momenta

The momenta can be computed by taking the derivative of the Lagrangian
with respect to the velocities:

πab =
1√
h

∂L

∂ḣab
=

1

2N
√
h

∂L

∂Kab
= ǫ

(
Kab −K hab

)

Ea =
1√
h

∂L

∂Ȧa
=

1

N
√
h

∂L

∂Ka
= ǫ (Ka − ǫDaΦ + aaΦ) (A.17)

This is easily inverted:

Kab = ǫGabcd π
cd , Ka = ǫ (Ea +DaΦ − ǫ aaΦ) (A.18)

which also gives:

ḣab = 2ǫN Gabcd π
cd + 2D(aNb) ,

Ȧa = ǫ (Ea +DaΦ − ǫ aaΦ) −N bFab + ∇a
(
N bAb

)
(A.19)

The Hamiltonian is then obtained as the Legendre transform that replaces
the velocities for momenta:

H =

∫
ddx

√
h
(
ḣab π

ab + ȦaE
a
)
− L (A.20)
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For our purposes, it is convenient to express the Lagrangian in the following
way:

L =

∫
ddx

√
h

(
1

2
ḣab π

ab +
1

2
ȦaE

a − V
)
, (A.21)

which implicitly defines V to be

V = N

(
R− 2Λ − 1

4
FabF

ab − m2

2

(
ǫΦ2 +AaA

a
))

+Na
(
EbFba +AaDbE

b
)

(A.22)

The Hamiltonian thus becomes:

H =

∫
ddx

√
h

(
1

2
ḣab π

ab +
1

2
ȦaE

a

)
+ V (A.23)

The non-dynamical fields in this theory are N , Na and Φ. We can vary the
action (A.16) with respect to Φ to obtain the Proca constraint:5

Φ = − 1

m2
DaE

a . (A.24)

This fixes Φ. The most convenient gauge choice for lapse and shift functions
is N = 1 and Na = 0. The Hamiltonian then reduces to

H =

∫
ddx

√
h

(
Kab π

ab +
1

2
EaE

a

)
+ V (A.25)

with

V = R− 2Λ − 1

4
FabF

ab +
m2

2

(
ǫΦ2 −AaA

a
)

(A.26)

where Φ is understood to be fixed by (A.24).

II Hamilton–Jacobi Formalism

The on-shell action is a function of the endpoints ti and tf and qi and qf ,
which specify the boundary conditions at the endpoints: q(ti) = qi and
q(tf ) = qf . Let us focus our attention on the final endpoint only and we

5A useful relation is DaΦ− ǫ aaΦ = N−1Da(NΦ).
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will drop the ‘f ’ subscript, so S = S(q(t), t). The on-shell action can then be
written as

S(q(t), t) =

∫ t

dt′ (p q̇ −H) , (A.27)

where p is the canonical momentum conjugate to q. Let us first vary the
action with respect to q, keeping the endpoint fixed:

δS =

∫ t

dt′
(
q̇ δp + p δq̇ − δH

)

=

∫ t

dt′
(
q̇ δp − ṗ δq − δH

)
+ p δq

= p δq . (A.28)

such that at the endpoint t, we have

p(t) =
∂S

∂q

∣∣∣∣
t′=t

(A.29)

Now, let us vary the endpoint t, keeping the q(t) fixed. We then find

∂S

∂t
=

dS

dt
− ∂S

∂q
q̇ = L− p q̇ = −H (A.30)

The Hamilton–Jacobi equation can then be summarized as

∂S

∂t
+H = 0 , p =

∂S

∂q
. (A.31)

The HJ equation has a natural extension to theories of gravity. In the context
of this work, we replace time t by our radial coordinate r:

∂S

∂r
+H = 0 , πab =

1√
g

∂S

∂gab
, (A.32)

where H is now the radial ADM Hamiltonian that we computed in the previ-
ous section. Because of general covariance, we know that the term ∂S

∂t vanishes
by itself, so the HJ equaition reduces to solving the constraint H = 0.

III Higher Derivatives in AdS/CFT

To illustrate the power of the hybrid method presented in Section 1.2, we
compute higher-derivative corrections to the d = 4 Weyl anomaly in order
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to lift the a = c degeneracy. Let us consider the following bulk Euclidean
action that includes a higher-derivative correction in the form of the ghost-
free Gauss–Bonnet (GB) term:

S = −
∫
dr ddx

√
g
{
R̃− 2Λ + ε

(
R̃, R̃

)
gb

}
+ Sgh . (A.33)

where R̃ is the Ricci scalar in d + 1 dimensions; we gave it a twiddle to
distinguish it from the d-dimensional one, R. We introduced the Gauss–
Bonnet bracket:

(
R̃, R̃

)
gb

≡ R̃abcdR̃
abcd − 3R̃abR̃

ab + R̃2 , (A.34)

which is symmetric and bilinear. The Gibbons–Hawking term is given by

Sgh = −2

∫
ddx

√
g

(
K +

ε

d− 3
gab π

ab
gb

)
(A.35)

where πabgb has the somewhat lengthy expression:

πabgb ≡ 1

2

∂Lgb

∂Kab

= 2RKab + 4RabK − 8Rc(aKb)
c − 4RacbdKcd − 2gab

(
RK − 2RcdKcd

)

− 2KabK2 + 4KacKb
cK + 2KabKcdK

cd − 4KacKbdKcd

+
2

3
gab
(
K3 − 3KKcdK

cd + 2Ka
bK

b
cK

c
a

)
(A.36)

The cosmological constant is related to the AdS curvature length scale ℓ as
−2Λ = d(d − 1)/ℓ2. The Gauss–Bonnet theory admits asymptotically AdS
solutions with a corrected value for AdS length ℓ → ℓgb, i.e. with a shifted
cosmological constant:

−2Λ =
d(d− 1)

ℓ2
=

d(d− 1)

ℓ2gb

(
1 − ε

(d− 2)(d − 3)

ℓ2gb

)
(A.37)

Previously, we chose to work in units such that ℓ = 1. From now on, we will
now set ℓgb = 1 instead. The reason why we make this choice is especially
nice when we extend the useful relation (1.56) to incorporate ε corrections
below. So, the cosmological constant is effectively corrected:

−2Λ = (d)2 − ε(d)4 (A.38)

where (d)n = d(d− 1) · · · (d− n+ 1) is the Pochhammer symbol.
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The Hamiltonian constraint

Just like before, we write the Hamiltonian constraint as

H = KAB π
AB + V ,

V = R− 2Λ + ε
(
R,R

)
gb

+
ε

3

(
K,K

)
gb
. (A.39)

where Kabcd ≡ KadKbc − KacKbd. Notice that there no cross-term (R,K)gb
in V. The momentum is related to the extrinsic curvature via:

πab =
1

2

∂L
∂Kab

= Kab −Kgab + ε πabgb(K) . (A.40)

where πabgb was given in (A.36). Henceforth, we work perturbatively in ε,
which allows us to invert the above relation:1

KAB = GABCD

(
πCD − ε πCD

gb (π)
)

+O(ε2) . (A.41)

Here, πAB
gb is expressed in terms of πAB to leading order in ε:

πAB

gb (π) ≡ πAB

gb (K)
∣∣∣
Kab=Gabcdπcd+O(ε)

(A.42)

The way we solve the constraint H = 0 is by noticing that the contribution
to V proportional to ε can be computed directly from the solution that we
found in the previous section, where we had ε = 0. Just like before, we solve
the Hamiltonian constraint recursively, using the dilation-weight expansion.

Now, let us have a look at the useful relation (1.56). Let us expand the
on-shell action to first order in ε, such that S = S0 + Sε + O(ε2), which
gives a similar expansion for the momentum and extrinsic curvature, e.g.
πAB = πAB

0 + πAB
ε . The reason why we chose ℓgb = 1 is to make sure that

the useful relation (1.56) continues to hold. It holds because K
(0)
AB does not

receive an O(ε) correction, i.e. K
(0)
ε AB = 0, so

2K
(0)
AB π

(n)AB = 2K
(0)
0 AB

π
(n)AB

0 + 2K
(0)
0 AB

π(n)AB

ε + 2K
(0)
ε AB π

(n)AB

0 +O(ε2)

= (d− n)L(n) +O(ε2) . X (A.43)

Note that L(n) is the full counterterm, which includes the ε correction. One

thing that we need to be careful of is that K
(i)
AB π

(j)AB is no longer symmetric
under i↔ j due to (A.41), i.e. there is an ε correction:

K
(n)
AB π

(0)AB = K
(0)
AB π

(n)AB + ε
(
K

(n)
AB π

(0)AB

gb −K
(0)
AB π

(n)AB

gb

)
(A.44)

This correction is determined in terms of the ε = 0 quantities.

1GABCD = ηA(C ηD)A − 1
d−1

ηAB ηCD is the DeWitt metric.
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Solving the Hamiltonian constraint

We start at the lowest order.

0 = H(0) = K
(0)
AB π

(0)AB + V(0) =
d

2
L(0) + V(0) (A.45)

We thus find:

L(0) = −2(d− 1) +
4ε

3
(d− 1)3 +O(ε2) (A.46)

Next, we consider scaling weight n = 2:

0 = H(2) = K
(0)
AB π

(2)AB +K
(2)
AB π

(0)AB + V(2)

= (d− 2)L(2) + V(2) + ε
(
K

(2)
AB π

(0)AB

gb −K
(0)
AB π

(2)AB

gb

)
(A.47)

This gives the n = 2 counterterm:

L(2) = −
(

1

d− 2
+ 2ε (d − 3) +O(ε2)

)
R (A.48)

Finally, at n = 4, we have:

H(4) = K
(0)
AB π

(4)AB +K
(4)
AB π

(0)AB +K
(2)
AB π

(2)AB + V(4)

= (d− 4)L(4) +K
(2)
AB π

(2)AB + V(4) + ε
(
K

(4)
AB π

(0)AB

gb −K
(0)
AB π

(4)AB

gb

)
,

(A.49)

which yields:

L(4) = c1R
2 + c2RabR

ab + c3RabcdR
abcd (A.50)

with

c1 =
d

4(d − 4)(d − 2)2(d− 1)
− ε

3d2 − 9d+ 4

2(d − 4)(d− 2)(d − 1)
+O(ε2)

c2 = − 1

(d− 4)(d− 2)2
+ ε

6d− 14

(d− 4)(d − 2)
+O(ε2)

c3 = − ǫ

d− 4
+O(ε2) (A.51)

The curvature length can be restored by dimensional analysis, which comes
down to replacing L(n) → ℓn−1

gb L(n) and ε → ε/ℓ2gb. The result of [57] is
reproduced by expressing ℓgb in terms of the non-corrected AdS length ℓ via
(A.37). On page 31 we discuss how the inclusion of the Gauss–Bonnet term
lifts the ‘a = c’ degeneracy in the four-dimensional Weyl anomaly.
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IV Wess–Zumino Condition and the Lifshitz Anomaly

Classification of possible terms in the anomaly

In this appendix we explore to what extent it is possible to remove total
derivatives from the anomaly. This is achieved by adding appropriate scale
invariant counterterms to the action that are not invariant under local scale
transformations. Clearly, we can discuss the two-derivative and the four-
derivative terms separately. Let us start with the former; there are only
three possible scale-invariant terms that we can construct with two time
derivatives:

KijK
ij , K2 , hij∂nK̇ij . (A.52)

where introduced the ‘normal’ derivative ∂n ≡ N−1∂t. For instance, the
extrinsic curvature is simply Kij = 1

2∂nhij .
1 It is straightforward to see that

the two combinations

hij ∂nKij , KijK
ij − 1

2
K2 , (A.53)

are invariant under local scale transformations (up to total derivatives).
These two terms are related by partial integration, and we now show that
it is indeed possible to “partially integrate” inside the anomaly by adding
an appropriate counterterm to the action. The most general form of the
anomaly at the two derivative level is:

δW =

∫
dt d2xN

√
h
(
ahij ∂nKij + b

(
KijK

ij − 1
2K

2
))
δω , (A.54)

where a and b are arbitrary numbers. The presence of the factor δω prevents
us from doing partial integration directly. What we can do, however, is add
the following counterterm to the action:

W → W ′ ≡ W + 4c

∫
dt d2xN

√
h K2 . (A.55)

It is then easy to check that

δW ′ =

∫
dt d2xN

√
h
(

(a− c)hij ∂nKij + (b+ 2c)
(
KijK

ij − 1
2K

2
))
δω .

(A.56)

1We use foliation-preserving diffeomorphism invariance to kill the shift, Ni = 0.
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Therefore we can pick c = a and get rid of the first term, which is tantamount
to integrating by parts, or discarding total derivatives in the anomaly.

Let us now consider the four derivative level. In this case we are interested
in terms of the form ∇iJ

i in the anomaly. We ask ourselves to what extent
it is possible to remove them by adding local counterterms G to the action.
Both the total derivatives and the local counterterms must be scale invariant,
therefore there is only a finite number of them. Let us choose a basis:

J ia a = 1, . . . , A ,

Gb b = 1, . . . , B . (A.57)

The Weyl variation of a linear combination qbGb can be written (after partial
integration) as:

qb δGb = Mab qb

(∇iJ
i
a

N
δω

)
, (A.58)

where the sum over repeated indices a and b is implied. If the variation of
the effective action reads:

δW =

∫ √
hω
(
A + ca∇iJ

i
a

)
, (A.59)

we can get rid of the total derivatives if we can solve the system of linear
equations:

Mab qb = ca . (A.60)

If we are to remove all the possible total derivatives that can appear, the
number of rows A of the matrix Mab must be less than or equal to the number
of columns B, and the rank of the matrix should be maximal. It is easy
to check that there are 6 possible functionally independent scale invariant
currents J i, and we choose the following basis:

J i1 = N∂iR J i2 = (∂iN)R

J i3 = (∂iN)( 1
N ∂jN)( 1

N ∂
jN) J i4 = (∂iN)( 1

N ∆N)

J i5 = (∂jN)( 1
N∇j∂

iN) J i6 = ∂i∆N (A.61)

Analogously, there are 12 functionally independent scale invariant counter-



Appendix 100

terms, and we choose the basis:

G1 = R2 G2 = ∆R

G3 = ( 1
N∆N)R G4 = ( 1

N ∂iN)( 1
N ∂

iN)R

G5 =
(
( 1
N ∂iN)( 1

N ∂
iN)

)2
G6 = ( 1

N ∂iN)( 1
N ∂

iN)( 1
N ∆N)

G7 = ( 1
N∆N)2 G8 = ( 1

N ∂
iN)( 1

N ∂
jN)( 1

N∇i∂jN)

G9 = ( 1
N ∂

iN) 1
N ∂i∆N G10 = 1

N∇i∂jN
1
N∇i∂jN

G11 = 1
N∆2N G12 = 1

N ∂
iN∂iR (A.62)

While we have many more possible counterterms than currents, it is impor-
tant to stress that not all the counterterms are independent, since we can
always partially integrate inside the action. This means that some linear
combinations of counterterms will have the same Weyl transformation. Fur-
thermore, there can be Weyl invariant combinations of counterterms that do
not help in removing total derivatives from the anomaly.

By taking the Weyl variation of the 12 terms Gb, it is straightforward to
compute the matrix Mab, which is given by:

Mab =




−4 2 2 0 0 0 0 0 0 0 0 −2
−4 −2 −2 −4 0 0 0 0 0 2 0 2
0 0 0 2 −8 −6 0 −5 −6 0 0 0
0 0 0 0 0 −4 −8 2 4 −2 0 0
0 0 0 −4 0 4 0 −2 4 −4 0 0
0 −2 −2 0 0 0 4 0 −4 4 0 2




(A.63)

It is easily checked that Mab does not have maximal rank (which would be
6), but it has rank 5. In fact, Mab has a 7 dimensional space of null vectors,
which is spanned by the 6 total derivatives ∇iJ

i and a Weyl invariant term:

δ

∫ √
h∇iJ

i
a = 0, δ

∫
N
√
h

(
R+

∆N

N
− ∂iN∂

iN

N2

)2

= 0. (A.64)

Since the rank of Mab is 5, the Weyl variation of the most general counterterm
spans a 5 dimensional subspace of the 6 dimensional space generated by
ca∇iJ

i
a. That means that we can find an orthonormal basis (with respect to

the usual Euclidean scalar product δab) for the currents where 5 are trivial
(i.e. removable by counterterms) and 1 is non-trivial. In other words, we
look for 5 vectors ea such that ea = Mabqb admits a solution. If we now take
ua to be the null vector of the transpose of Mab, it is obviously orthogonal
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to all the ea since uaea = eaMabqb = 0. We define the non-trivial current J i

to be:

J i = uaJ
i
a = J i1 − J i2 + J i4 + J i5 + 2J i6. (A.65)

However, we will presently show that this current does not obey the Wess–
Zumino consistency condition, therefore it cannot appear in the anomaly.

Wess–Zumino consistency condition and J i

The goal of this section is to figure out whether all possible terms that we
found above satisfy the Wess–Zumino consistency conditions. To this end,
we shall compute the quantities

Ωa ≡ δ1

∫
d2x

√
hω2∇iJ

i
a − δ2

∫
d2x

√
hω1∇iJ

i
a (A.66)

=

∫
d2x δ2

(√
h J ia

)
∂iω1 −

∫
d2x δ1

(√
hJ ia

)
∂iω2 (A.67)

for each a = 1, .., 6. The main idea of this analysis is to find all possible linear
combinations of the Ω’s such that

caΩa = 0 (A.68)

If the vector space spanned by the vectors {ca} is six dimensional, all J ia’s
are Wess–Zumino-consistent. If, on the other hand, this vector space is five-
dimensional then we must conclude that one of the J ia’s is inconsistent. Since
we already know that five currents can be generated by varying appropriate
local scale invariant terms, these are manifestly consistent. Therefore the
inconsistent current, if present, must be the non-trivial current of equation
(A.65).

The way we shall carry out this computation is by first computing the first
term in (A.67). The second term in (A.67) is then obtained from the first
one by replacing the derivatives that act on ω1 for derivatives that act on ω2

by means of partial integration.

We shall start with Ω1. The first term in (A.67) is2

δ2
(√
hJ i1

)
∂iω1 =

√
h
(
−∂iω2NR− ∂i∆ω2N

)
∂iω1 (A.69)

2For notational clarity, notice that the variation differs by a factor of two compared to
before. For instance, hij → eωhij rather than hij → e2ωhij .
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The second term is then

δ1
(√
h J i1

)
∂iω2 =

√
h
(
−∂iω1NR− ∂i∆ω1N

)
∂iω2 (A.70)

=
√
h
(
−∂iω2NR−∇i∇j

(
∂jω2N

))
∂iω1 (A.71)

=
√
h
(
− ∂iω2NR− ∂i∆ω2N (A.72)

− ∆ω2 ∂
iN − ∂i

(
∂jω2 ∂

jN
))
∂iω1 (A.73)

so that

Ω1 =

∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1 (A.74)

Similarly, from J i2:

δ2
(√
h J i2

)
∂iω1 =

√
h
(
∂iω2NR− ∆ω2 ∂

iN
)
∂iω1 (A.75)

δ1
(√
h J i2

)
∂iω2 =

√
h
(
∂iω1NR− ∆ω1 ∂

iN
)
∂iω2

=
√
h
(
∂iω2NR+ ∂i

(
∂jω2 ∂

jN
))
∂iω1 (A.76)

Ω2 = −
∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1 (A.77)

From J i3:

δ2
(√
h J i3

)
∂iω1 =

√
h
(
∂iω2 ∂jN ∂jN + 2∂jω2 ∂

iN ∂jN
)
∂iω1 (A.78)

δ1
(√
h J i3

)
∂iω2 =

√
h
(
∂iω1 ∂jN ∂jN + 2∂jω1 ∂

iN ∂jN
)
∂iω2

=
√
h
(
∂iω2 ∂jN ∂jN + 2∂jω2 ∂

jN ∂iN
)
∂iω1 (A.79)

Ω3 = 0 (A.80)

From J i4:

δ2
(√
h J i4

)
∂iω1 =

√
h
(
∂iω2 ∆N + 2∂jω2

1
N ∂

iN∂jN + ∆ω2 ∂
iN
)
∂iω1

(A.81)

δ1
(√
h J i4

)
∂iω2 =

√
h
(
∂iω1 ∆N + 2∂jω1

1
N ∂

iN∂jN + ∆ω1 ∂
iN
)
∂iω2

=
√
h
(
∂iω2 ∆N + 2∂jω2

1
N ∂

jN∂iN − ∂i
(
∂jω2 ∂

jN
))
∂iω1

(A.82)

Ω4 =

∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1 (A.83)
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From J i5:

δ2
(√
h J i5

)
∂iω1 =

√
h
(
∂jω2 ∇i∂jN + ∂iω2

1
N ∂

jN∂jN + ∇j∂
iω2 ∂

jN
)
∂iω1

(A.84)

δ1
(√
h J i5

)
∂iω2 =

√
h
(
∂jω1 ∇i∂jN + ∂iω1

1
N ∂

jN∂jN + ∇j∂
iω1 ∂

jN
)
∂iω2

=
√
h
(
∂jω2∇i∂jN + ∂iω2

1
N ∂

jN∂jN −∇j

(
∂(iω1 ∂

j)N
))

∂iω1

(A.85)

Ω5 =

∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1 (A.86)

From J i6:

δ2
(√
hJ i6

)
∂iω1 =

√
h ∂i

(
2∂jω2 ∂

jN + ∆ω2N
)
∂iω1

=
√
h
(
∂i∆ω2N + ∆ω2 ∂

iN + 2∂i
(
∂jω2 ∂

jN
))
∂iω1

(A.87)

δ1
(√
hJ i6

)
∂iω2 =

√
h ∂i

(
2∂jω1 ∂

jN + ∆ω1N
)
∂iω2

=
√
h
(
∂i∆ω2N − ∆ω2 ∂

iN
)
∂iω1 (A.88)

Ω6 = 2

∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1 (A.89)

We thus find that each Ωa is a multiple of

∫
d2x

√
h
(
∆ω2 ∂

iN + ∂i
(
∂jω2 ∂

jN
))
∂iω1, (A.90)

which means that there is one linear combination that does not satisfy the
Wess–Zumino consistency conditions. In other words, all but one of the six
J ia’s can be made consistent. Since we have already found that five of the
six J ia’s can be canceled by variations of local terms, the one that cannot be
canceled (which we called J i) must be inconsistent. We can make this more
precise by noticing that the consistency equation

c1 − c2 + c4 + c5 + 2c6 = 0 (A.91)

describes a five-dimensional hypersurface of consistent linear combinations
caJ

i
a. The set of all such ca-vectors can be defined as those that are orthogonal

to the inconsistent vector, va say, such that cava = 0. The inconsistent vector
is

~v =
(
1 −1 0 1 1 2

)
(A.92)
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As a consistency check on our computations, notice that this is precisely
the five-dimensional hypersurface that we mentioned above, which may be
defined as all vectors that are orthogonal to ua (as defined in (A.65)). Namely,
the vector ua is the same as the inconsistent vector, i.e. ua = va. The fact
that J i does not satisfy the Wess–Zumino condition means that it cannot
appear as the variation of either local or non-local terms. The fact that there
are precisely five total-derivative terms in the anomaly, all of which can be
canceled by variations of local terms.

V Hamilton–Jacobi Renormalization of Lifshitz Space-

time

The goal of this section is to compute the (divergent piece of the) on-shell
value of the above action using the Hamilton–Jacobi method (cf. page 22)
as it appeared in [1, 2]. The HJ equation is a differential equation for the
on-shell action, i.e. solving the HJ equation will give us the on-shell action
S. We write the HJ equation H = 0 as

{S, S} + V = 0 (A.93)

where

V = R− 2Λ − 1

4
FabF

ab − m2

2
AaA

a (A.94)

the brackets are given by the following expression. Let F and G be two
arbitrary phase-space functionals, then the brackets are defined as

{F,G} ≡ 1

(
√
g)2

[(
gacgbd −

1

d− 1
gabgcd

)
δF

δgab

δG

δgcd

+
1

2
gab

δF

δAa

δG

δAb
+

1

2m2
Da

δF

δAa
Db

δG

δAb

]
(A.95)

where gab and Aa are the induced fields pulled back onto the radial cut-off
slice. The brackets (A.95) were introduced in [27]; see also [1]. It should be
noted that these brackets are only introduced as a short-hand notation for
the ‘kinetic’ part of the Hamiltonian contraint; they are not Poisson brackets
(or any other type of special brackets).

Let us define the renormalized on-shell action as W = S + Sc.t.. Using the
split S = W − Sc.t., we may write the HJ equation as

0 = {Sc.t., Sc.t.} − 2{Sc.t.,W} + {W,W} + V . (A.96)
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In this approach, we use an Ansatz for the counterterm action. Let us expand
the counterterm Lagrangian in terms of the number of derivatives, Lc.t. =

L(0)
c.t. + L(2)

c.t. + L(4)
c.t. + . . .. The Ansatz is chosen to be the most general local

covariant counterterm action one can write down, for instance, at the constant
level we take:

L(0)
c.t. = U(ψ) , (A.97)

where ψ = −1 +
√
−A2 is the deviation of the massive vector away from

the time-like unit normal (ψ = 0 on the pure Lifshitz background). The
derivative counterterms are suppressed by powers of e−r, because each pair
of derivatives comes with one factor of an inverse metric. This is why the
boundary conditions will fix the leading terms of the non-derivative counter-
term action U(ψ).

Boundary condtions. The way we impose the boundary conditions that
allow for arbitrary sources is by only fixing the asymptotic radial scaling:
∂rgtt ≈ 2z gtt, ∂rgij ≈ 2gij and ∂rAt ≈ z At. These can be translated to the
leading behavior of the on-shell action by using the Hamiltonian equations
of the type q̇ = ∂H/∂p:

∂rgab =
1√
g

δH

δπab
= 2πab −

2

d− 1
π gab

=
U + (ds − 1)(α + ψ)U ′

ds
δtaδ

t
b +

−U + (α+ ψ)U ′

ds
δij δ

i
aδ
j
b

∂rAa =
1√
g

δH

δEa
= Ea = U ′ δta . (A.98)

The boundary conditions in terms of the radial scaling thus fix U(0) = 6 and
U ′(0) = 2. The ‘potential’ V involves only integer powers of ψ,

V = 12 + 4ψ + 2ψ2 + (derivative terms) , (A.99)

so it seems reasonable to assume that U(ψ) can be expanded as

U(ψ) =
∑

n≥0

unψ
n , (A.100)

where u0 = U(0) and u1 = U ′(0) were just fixed by the boundary conditions.
When we start solving the Hamiltonian constraint order by order, one find
a discrete ambiguity for constant u2. We must pick the value that corre-
sponds to the non-normalizable mode, which gives u2 = 2.1All higher order
coefficients un≥3 are unambiguously determined in terms of u0,1,2.

1If both modes were normalizable, we would have been able to pick either one.
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The first thing we see is that Sc.t. ∼ e4r, while the renormalized on-shell
action W ∼ 1 by definition.2 We then see that we can work perturbatively
in W . Solving leading order HJ equation will yield the counterterm action,
while the solution to first order will give the renormalized on-shell action
itself. Let us start by solving the leading-order HJ equation.

V.1 Two-derivative counterterms and anomaly

Throughout this section, we use the index (n) to denote the number of deriva-
tives. The Hamiltonian constraint at the level of two spacetime derivatives
is given by

H(2) = {Sc.t., Sc.t.}(2) +R− 1

4
FabF

ab (A.101)

At the level of two spacetime derivatives, the most general Ansatz is schemat-
ically given by

L(2)
c.t. ∼ R , gg DADA , gAADADA , AAAADADA . (A.102)

When we take all contractions into account, we end up with 9 distinct terms.
Each term, labeled by i = 1, . . . , 9, has a coefficient Ci(ψ) that is a general
function of ψ. Equation (A.101) can be solved straightforwardly by expand-
ing the coefficient-functions around the Lifshitz background,

Ci(α) =
∑

n≥0

ci(n)(α− α0)
n. (A.103)

The coefficients ci(n) are then found by solving the equation H(2) = 0 recur-
sively order by order.

For the case of z = 2 in d = 3 boundary dimensions one finds a break-down
of the recursive ‘descent’ equations, i.e. H(2) 6= 0 for any choice of coefficient
functions Ci. Such a finite remainder is directly related to the holographic
Lifshitz anomaly, see Section 1.1.2 as well as (2.80):

A = −H(2) = DaAbD
bAa − 1

2
(DaA

a)2 + four-derivative terms , (A.104)

which is obviously affected by the ambiguity of adding finite local counter-
terms to the action. Using the time-like ADM decomposition from (2.81), we

2IfW is not renormalizable, it would be reflected in a breakdown of the recursion relation
at a level that is still power-law divergent.
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get

A =
ℓ2

16πG

(
K̂ijK̂

ij − 1

2
K̂2

)
+ four-derivative terms . (A.105)

We reinstated the four-dimensional Newton’s constant G and the curvature
length scale ℓ. Comparing with the generic Lifshitz anomaly (2.11) gives us
the first central charge:

C1 =
ℓ2

2G
(A.106)

V.2 Four-derivative anomaly

One may repeat the above steps at the level of four derivatives.3 The four-
derivative Ansatz is

S
(4)
loc =

∫
ddx

√
g
(
G1R

2 + G2RabR
ab + G3RabcdR

abcd + G4�R
)

+ . . . ,

(A.107)

where the Gi are arbitrary functions of ψ and the ellipses denote terms that
involve the Proca field Aa. All the terms that appear at this level are finite
for our choice of boundary conditions, which means that they can only con-
tribute with trivial total derivatives to the anomaly. In this case, we find the
remainder

H(4) =
1

8
R2 − 1

4
RabR

ab + . . . (A.108)

where the ellipses denote once again terms that involve Aa. Writing this in
terms of the two-dimensional Ricci tensor R̂ gives:

H(4) =
1

4
R̂ijR̂

ij − 1

8
R̂2 + . . . , (A.109)

where these R̂ and R̂ij are the two-dimensional Ricci scalar and tensor and
we have not written down terms that involve derivatives acting on N . We
can use the off-shell identity that relates the Ricci tensor to the Ricci scalar,
R̂ij = 1

2 R̂ hij, which is specific to two dimensions. When we plug this into

(A.109), we find that the Ricci-squared terms cancel and we find that H(4) =

3One does not expect to find anomalous contributions that contain three derivatives
(one time and two spatial), since terms that involve an odd number of time-derivatives are
not invariant under time-reversal.
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0. Now, we can use the identification A4-deriv. = −H(4) to conclude that the
second central charge vanishes:

C2 = 0, (A.110)

which interestingly seems to agree with the field theory computation.

Notice that while we were able to extract the coefficient C2, we have not
performed a complete analysis of the counterterms at the four-derivative
level, which would be rather involved. Nevertheless, the complete answer has
been computed using the results of [31] in [42] (cf. Chapter 2), which is in
perfect agreement with our result C2 = 0. In conclusion, the holographic
anomaly is given by

A =
ℓ2

16πG

(
K̂ijK̂

ij − 1

2
K̂2

)
. (A.111)

VI Computing the z = 2 Casimir energy and stress
tensor

In this section we show the explicit computations that lead to the final ex-
pressions for the expectation values of the energy density (2.128) and the
spatial stress tensor (??).

Working out δ(N
√
hGijklKijKkl)/δN .

This first term is relatively easy to compute. We get

δ

δN

∫
dt dnxN

√
hGijklKijKkl =

δ

δN

∫
dt dnx

√
h

4N
Gijklḣij ḣkl

= −
√
h

4N2
Gijklḣij ḣkl . (A.112)

We can then use the conformally flat background, i.e. N = ezσ = e2σ and
hij = e2σ δij . When we use the fact that n = 2 + ε, we find

δ

δN

∫
dt dnxN

√
hGijklKijKkl =

1

2
(n− 2)n σ̇2 e(n−4)σ

= ε σ̇2 e−2σ +O(ε2) (A.113)
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Working out δ(N
√
h R̃2)/δN .

Before we start, let us define the short-hand notation:

R̃ij ≡ Rij +
1

N
∇(i∇j)N − 1

N2
∇(iN ∇j)N . (A.114)

We want to compute the variation:

δ

δN

∫
dt dnxN

√
h R̃2 =

√
h R̃2 + 2

∫
dt dnxN

√
h R̃

δR̃

δN
(A.115)

Let us work out the variational derivative the second term.

δR̃(x)

δN(y)
=

(
− 1

N2
∆N +

2

N3
∇iN ∇iN +

1

N
∆ − 2

N2
∇iN ∇i

)
δ(x− y)

(A.116)

such that

2

∫
dt dnxN

√
h R̃

δR̃

δN
= 2

√
h R̃

(
− 1

N
∆N +

2

N2
∇iN ∇iN

)

+ 2
√
h

(
∆R̃+ 2∇i

(
R̃

1

N
∇iN

))

= 2
√
h

1

N
∆
(
NR̃

)
(A.117)

Now let us return to the thing we wanted to compute in the first place,
namely (A.115). Again, we use the conformally flat background N = e2σ and
hij = e2σ δij . First, we notice that R̃ is of order O(ε):

R̃ = (n− 2)
(

(3 − n)σkσk − 2σkk

)
e−2σ

= ε
(
σkσk − 2σkk

)
e−2σ +O(ε2) , (A.118)

where we use the abbreviated notation σi ≡ ∂iσ, σij ≡ ∂i∂jσ, etc. This
means that the first term in (A.115) will be of order O(ε2) and hence will not
contribute. So, the only contribution we find comes from the second term.

δ

δN

∫
dt dnxN

√
h R̃2 = 2

√
h

1

N
∆
(
NR̃

)
(A.119)

= 2ε∂k∂k

(
σlσl − 2σll

)
e−2σ +O(ε2)

= −4ε
(
σkkll − σkσkll − σklσkl

)
e−2σ +O(ε2)

(A.120)
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Working out δ(N
√
hGklmnKklKmn)/δhij.

Remember that Gijkl ≡ hi(khl)j − 1
2hijhkl. Let us look at

δ

δhij

∫
dt dnxN

√
hGklmnKklKmn

=
δ

δhij

∫
dt dnx

√
h

1

4N
Gklmnḣklḣmn

=

∫
dt dnx

1

4N

(
δ(
√
hGklmn)

δhij
ḣklḣmn + 2

√
hGklmnḣkl

δḣmn
δhij

)

=
1

4N

(
∂(
√
hGklmn)

∂hij
ḣklḣmn − 2∂t

(√
hGijklḣkl

)
+ 2

Ṅ

N

√
hGijklḣkl

)
.

(A.121)

We used partial integration in going from the second to the third line. Let
us work the first term first. We can introduce the rank-6 tensor Ωijklmn as
defined in below in section VI.1, so that we find the first term in (A.121):

∂(
√
hGklmn)

∂hij
ḣklḣmn = −

√
hΩijklmn ḣklḣmn , (A.122)

We used the property that Ωijklmn is symmetric under permutations of the
pairs of indices ij, kl and mn. We specifically used Ωklmnij = Ωijklmn. The
second term in (A.121) is given by

−2∂t

(√
hGklijḣkl

)
= −2

√
hGijklḧkl − 2

∂(
√
hGijkl)

∂hmn
ḣklḣmn

= −2
√
hGijklḧkl + 2

√
hΩijklmn ḣklḣmn . (A.123)

The third and last term in (A.121) does not need rewriting at this point.

We can now return to the expression we were initially interested in.

δ

δhij

∫
dt dnxN

√
hGklmnKklKmn

=

√
h

4N

(
Ωijklmnḣklḣmn − 2Gijklḧkl +

2Ṅ

N
Gijklḣkl

)
(A.124)

At this stage we are ready to start using N = e2σ and hij = e2σδij, which
means in particular that ḣij = 2σ̇ hij and ḧij = 2σ̈ hij +4σ̇2 hij . We can then
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use the identities (A.153), such that

δ

δhij

∫
dt dnxN

√
hGklmnKklKmn =

1

4
(n− 2)

(
2σ̈ + (n− 4)σ̇2

)
e(n−4)σ δij

=
1

2
ε
(
σ̈ − σ̇2

)
e−2σ δij +O(ε2) .

(A.125)

Working out δ(N
√
h R̃2)/δhij.

Remember the short-hand notation that we introduced above:

R̃ij ≡ Rij +
1

N
∇(i∇j)N − 1

N2
∇(iN ∇j)N . (A.126)

As we will use it later, let us first compute the variation δR̃(x)/δhij(y):

δR̃(x)

δhij(y)
=

δhkl(x)

δhij(y)
R̃kl(x) + hkl(x)

δR̃kl(x)

δhij(y)

=

(
−R̃ij + ∇(i∇j) − hij∆ − 1

N
∂(iN ∇j) +

1

2N
hij ∂kN ∇k

)
δ(x− y)

(A.127)

where we used

δhkl(x)

δhij(y)
= hi(kh

j
l) δ(x− y) , (A.128)

δhkl(x)

δhij(y)
= −hi(khl)j δ(x − y) , (A.129)

hklδRkl =
(
∇(k∇l) − hkl∆

)
δhkl , (A.130)

as well as

hkl
δ

δhij(y)

(
1

N
∇k∂lN

)
(x) =

1

N

(
−∂(iN ∇j) +

1

2
hij ∂kN ∇k

)
δ(x− y) .

(A.131)
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The thing we are interested in is

1√
h

δ

δhij

∫
dt dnxN

√
h R̃2 =

1√
h

∫
dt dnxN

(
δ
√
h

δhij
R̃2 + 2

√
h R̃

δR̃

δhij

)

=
1

2
N R̃2 hij−2NR̃ R̃ij

+2
(
∇(i∇j) − hij∆

)
(NR̃)

+2∇(i
(
R̃ ∂j)N

)
− hij ∇k

(
R̃ ∂kN

)
. (A.132)

We have color-coded the different contributions for easy visual distinction.
Using partial integration, we made sure no derivatives act on the delta func-
tion δ(x− y). Let us now take N = e2σ and hij = e2σδij . It then follows that
(we use the abbreviated notation σi ≡ ∂iσ, σij ≡ ∂i∂jσ, etc.)

Rij = −δijσkk + (n− 2) (σiσj − σij − δij σkσk) , (A.133)

1

N
∇(i∇j)N = 2σij + 2δij σkσk , (A.134)

− 1

N2
∇iN ∇jN = −4σiσj , (A.135)

where repeated lower indices are summed over implicitly. From this, it follows
that:

R̃ij = (n − 6)σiσj − (n− 4)σij − δij

(
(n− 4)σkσk + σkk

)
(A.136)

which implies in particular that (remember, n = 2 + ε)

NR̃ = −(n− 2)(n − 3)σkσk − 2(n − 2)σkk

= ε (σkσk − 2σkk) +O(ε2) . (A.137)

Notice that the first term in (A.132), 1
2NR̃

2hij , will not contribute, because
it is of order ε2. In the second term of (A.132) we use that

R̃ij = −2
(
2σiσj − σij

)
+ δij (2σkσk − σkk) +O(ε) (A.138)

and since R̃ is already of order ε, only the O(1) piece of R̃ij will contribute.
In other words,

−2NR̃ R̃ij = −2ε (σkσk − 2σkk) (−4σiσj + 2σij + δij (2σlσl − σll)) +O(ε2) ,
(A.139)
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bearing in mind that R̃ij = hikhjlR̃kl. Before working out the third term in
(A.132), notice that for any scalar function Φ we have1

∇(i∇j)Φ = ∂i∂jΦ − 2σ(i ∂j)Φ + δij σk ∂kΦ

hij∇k∇kΦ = δij

(
∆Φ + (n− 2)σk ∂kΦ

)

(
∇(i∇j) − hij∇k∇k

)
Φ = ∂i∂jΦ − 2σ(i ∂j)Φ − δij

(
∂k∂kΦ + (n− 3)σk ∂kΦ

)

(A.140)

In order to work out the third term in (A.132), we replace Φ by NR̃ as given
by (A.137), which yields

2
(
∇(i∇j) − hij∇k∇k

)
(NR̃) =

= 2ε
(
∂i∂j − 2σ(i∂j) − δij

(
∂k∂k − σk∂k

))
(σlσl − 2σll) +O(ε2)

(A.141)

Finally, we work out the last two terms in (A.132):

2∇(i

(
R̃ ∂j)N

)
= 4∂(i

(
NR̃ σj)

)
− 4(σiδjk + σjδik − σkδij)

(
NR̃ σk

)

= 4∂(i

(
NR̃ σj)

)
− 4(2σiσj − δij σkσk)(NR̃) (A.142)

= 4ε∂(i
[
σj) (σkσk − 2σkk)

]
− 4ε(2σiσj − δij σkσk) (σlσl − 2σll)

and

−hij∇k

(
R̃ ∂kN

)
= −2δij ∂k

(
NR̃ σk

)
− 2(n− 2)δij σkσk (NR̃)

= −2ε δij ∂k (σkσlσl − 2σkσll) +O(ε2) (A.143)

When we put all these pieces together, we finally get

1

ε

hikhjl√
h

δ

δhkl

∫
dt d2xN

√
h R̃2 = −4 (σijkk − σkσijk − σikσjk)

+ 4δij (σkkll − σkσkll − σklσkl) +O(ε)

VI.1 General Variations

Variation of the Riemann and Ricci tensor

We adopt the usual convention, in which the Riemann tensor is given by

Rabcd = ∂cΓ
a
bd + ΓaceΓ

e
bd − (c↔ d) (A.144)

1Use the fact that Γk
ij = σi δjk + σj δik − σk δij .
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and its variation is given by

δRabcd = ∂c δΓ
a
bd + δΓace Γebd + Γace δΓ

e
bd − ∂d δΓ

a
bc − δΓade Γebc − Γade δΓ

e
bc

= ∂c δΓ
a
bd + Γace δΓ

e
bd − Γebc δΓ

a
de − Γecd δΓ

a
be

− ∂d δΓ
a
bc − Γade δΓ

e
bc + Γebd δΓ

a
ce + Γecd δΓ

a
be

= ∇c δΓ
a
bd −∇d δΓ

a
bc

In the second line we reshuffled the terms somewhat and we added and sub-
tracted the term Γecd δΓ

a
be, which makes it obvious that we are dealing with

covariant derivatives. The variation of the Christoffel symbols is

δΓabd =
1

2
gae
(
∂bδged + ∂dδgbe − ∂eδgbd

)
+

1

2
δgae

(
∂bged + ∂dgbe − ∂egbd

)

=
1

2
gae
(
∂bδged + ∂dδgbe − ∂eδgbd

)
− 1

2
ga(kgl)eδgkl

(
∂bged + ∂dgbe − ∂egbd

)

=
1

2
gae
(
∂bδged + ∂dδgbe − ∂eδgbd

)
− ga(kΓ

l)
bd δgkl

=
1

2
gae
(
∂bδged + ∂dδgbe − ∂eδgbd − 2Γkbd δgek

)

=
1

2
gae
(
∇bδged + ∇dδgbe −∇eδgbd

)

In the last step we used ∇aδgbc = ∂aδgbc−Γkabδgkc−Γkacδgbk. This yields the
following expression for the variation of the Riemann tensor.

δRabcd =
1

2
gae
(
∇c∇b δgde + ∇c∇d δgbe −∇c∇eδgbd

−∇d∇b δgce −∇d∇c δgbe + ∇d∇eδgbc

)
(A.145)

Taking the trace over the a and c indices gives the variation of the Ricci
tensor,

δRbd =
1

2

(
∇a∇b δgad + ∇a∇d δgab −� δgbd −∇(b∇d) δg

)
(A.146)

By δg we mean gab δgab; we used the fact that the two covariant derivatives
acting on a scalar is equal to its symmetric combination, e.g. ∇a∇b δg =
∇(a∇b) δg. A further contraction with the metric gives part of the variation
of the Ricci scalar,

gab δRab =
(
∇(a∇b) − gab�

)
δgab (A.147)

One minor thing we used here is that ∇a∇b δgab = ∇(a∇b) δgab, since δgab is
symmetric in its indices.
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DeWitt metric and more

A useful tensor that one can introduce is the DeWitt metric. It can be defined
as

Gabcd ≡ − 1√
g

∂(
√
g gab)

∂gcd
= ga(cgd)b − 1

2
gabgcd (A.148)

The DeWitt metric has the same symmetry properties as the Riemann tensor.
In a similar way, we define the rank-6 tensor

Ωabcdmn ≡ − 1√
g

∂(
√
g Gabcd)

∂gmn
= −1

2
Gabcdgmn − ∂Gabcd

∂gef

= gm(agb)(cgd)n + gn(agb)(cgd)m +
1

4
gabgcdgmn (A.149)

− 1

2
gc(mgn)dgab − 1

2
gm(agb)ngcd − 1

2
ga(cgd)bgmn ,

where we used

−1

2
gmnGabcd =

1

4
gabgcdgmn − 1

2
ga(cgd)bgmn , (A.150)

−∂G
abcd

∂gmn
= gm(agb)(cgd)n + gn(agb)(cgd)m − 1

2
gc(mgn)dgab − 1

2
ga(mgn)bgcd ,

(A.151)

The symmetry structure of Gabcd and Ωabcdmn can be seen most easily in
terms of the Young tableaux:2

Gabcd ∼ a b
c d

, Ωabcdmn ∼
a b
c d
m n

. (A.152)

The way to read the Young tableau for Ωabcdmn is that e.g. the anti-symmetric
combination [ab] vanishes as well does the symmetric combination (acm).
We also notice that Ωabcdmn is symmetric under permutations of the pairs of
indices ab, cd, and mn. Some useful identities that we use in the main text
are:

gmnΩabcdmn = −1

2
(n− 4)Gabcd , gcdG

abcd = −1

2
(n− 2)gab . (A.153)

2See e.g. [60], p. 35.
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VII Numerical Lifshitz-to-AdS Flow

In this section we set up the numerical solution that interpolates between
AdS in the interior and Lifshitz in the asymptotic region, see e.g. [61] for
previous work on flows that involve a Lifshitz scaling region in the massive-
vector model. We use the Ansatz consistent with translational invariance
and we focus on scalar modes only. The Ansatz is:

ds2 = −f(r) dt2 + g(r)
(
dx2 + dy2

)
+ dr2 , A = h(r) dt . (A.154)

In our numerical set-up, we shoot from the AdS solution outward. The AdS
background is (absorbing ℓ factors into t, x, y)

f(r) = e2r/ℓ , g(r) = e2r/ℓ , h(r) = 0 . (A.155)

We work in coordinates such that the Lifshitz curvature scale is set to one,
which fixes the AdS scale to ℓ =

√
3/5. In order to ensure that the solution

flows to Lifshitz quickly enough we turn on the source for the irrelevant
operator discussed in the main text. The linearized mode that plays the role
of this source is

δh(r) = ε eνr/ℓ , ν =
1

2

(
−1 +

√
1 + 16ℓ2

)
. (A.156)

The small parameter ε sets the radial scale at which the irrelevant mode picks
up speed. To be more precise, the crossover point is at r ∼ r∗, where

r∗ =
ℓ

ν
log (1/ε) . (A.157)

We will let the numerical integration run from r = −40 to r = 140, and we
set the crossover radius to zero, so ε = 1. The result of this calculation is
plotted in terms of α = AaA

a in Figure A.1.

VIII Asymptotic z = 2 Lifshitz Solution

The asymptotic solution was found in [43]. Because the solution itself does
not look too pretty we have kept it out of the main text. The non-zero metric
and vector components are

gtt = −N̂2 Λ4 e4ρ

ρ4

(
1 +

10 log ρ+ 10 − 2λ

ρ
+ . . .

)

+
M
4ρ2

(
1 +

5 log ρ+ 41
6 − 2λ− λ̃

ρ
+ . . .

)
(A.158)
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0 5 0 1 00

-1

0

AaA
a

r

Figure A.1: The vector-squared AaA
a is evaluated on the numerical solution. On the

left (IR) we have AdS, α = 0, and the right (UV) we have log-Lifshitz, α = −1. The
dashed curves are the approximate analytic solutions α = e∆(r−r∗) with ∆ = 2(ν − 1)/ℓ
(left, green) and α = −1 + 2

r−r∗
(right, red).

gii = ĥΛ2 ρ2 e2ρ
(

1 +
5 log ρ+ 4 − λ

ρ
+ . . .

)

+
M ρ4 e−2ρ

8

(
−1 +

10 log ρ+ 13
6 − λ+ λ̃

ρ
+ . . .

)
(A.159)

At = N̂
Λ2 e2ρ

ρ2

(
1 +

5 log ρ+ 4 − λ

ρ
+ . . .

)

+
5M e−2ρ

8

(
1 − λ̃+ λ− 35

6

ρ
+ . . .

)
(A.160)

The ellipses denote terms that are sub-leading in (log ρ)/ρ. The radial coor-
dinate we use here is related to the one in [43] as ρ = − log(Λr[43]). In terms
of the radial coordinate r that we use throughout the rest of this note, we
have ρ = r − log Λ. One can see that the pure Lifshitz geometry is obtained
by Λ → 0 keeping r fixed (and rescaling t and ~x accordingly). The integration
constants (N,h, λ,M, λ̃) are related to the ones in [43] as

N =
√
f0 , h = p0 , λ = λ , M =

4β

3
√

2
, λ̃ =

α

β
, (A.161)
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where α is an integration constant that appears in [43], it is not A2. A useful
contraction that we use in the main text is:

α ≡ AaAa = −1 +
5 log ρ+ 2 − λ

ρ2
+

2

ρ
+ . . .

+
3M ρ2 e4ρ

2

(
−1 +

5 log(ρ) + 1 + λ̃

ρ

)
(A.162)

A Lifshitz scaling transformation acts on the integration constants in the
following way:

(
Λ, λ,M, λ̃

)
→

(
eλ

′/2Λ, λ+ λ′, e−2λ′M, λ̃− λ′
)

(A.163)

So a Lifshitz rescaling can be seen as a redefinition of the scale Λ. In the gauge
chosen both here as well as in [43], there is one spurious integration constant,
which must be removed from the solution. This spurious integration con-
stant should be removed by fixing a dimensionless combination of integration
constants, which is a combination that is invariant under (A.163). This is
necessary so as not to break the Lifshitz symmetry explicitly. The Hamilton–
Jacobi formalism will tell us uniquely which dimensionless combination we
must fix. In [43] the extra integration constant is removed in a way that does
not preserve (A.163), thereby breaking Lifshitz symmetry explicitly.

We will now show how the spurious integration constant is fixed in the HJ
formalism. Consider the canonical momenta

πab =
1√
g

δIon-shell
δgab

Ea =
1√
g

δIon-shell
δAa

(A.164)

which split up into πab = πabU + πabW and Ea = EaU + EaW , where

πabW =
1

2
gabW (α) −AaAbW ′(α) EaW = 2AaW ′(α) (A.165)

and similarly for W → U . It is useful to define the tensor

T ab ≡ 2πab + E(aAb) = gab (U +W ) (A.166)

From these expressions we can isolate W (α) and W ′(α) by respectively taking
the trace of T ab and by contracting Ea with Aa/2α:

W (α) =
1

3

(
2gab ∂rgab −Aa ∂rAa

)
− U(α) (A.167)

W ′(α) = − 1

2α
Aa ∂rAa − U ′(α) (A.168)
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where we used the canonical relations πab = −Kab + gabK (with Kab =
1
2∂rgab) and Ea = ∂rAa. On the other hand, from the leading-order Hamilton–
Jacobi equation for W one finds

√
gW (α) =

(α+ 1)2

2(5α + 9)

√
gW ′(α) + . . . (A.169)

where the ellipses denote α+ 1 ∼ 1/ρ corrections. Thus, if one computes the
renormalized on-shell action on the asymptotic solution using (A.167) and
(A.168) one should get the same answer on both sides of the equation. On
the left-hand side we get (up to 1/r corrections)1

√
gW (α) = −1

3
NhM (λ + λ̃− 17

6
) (A.170)

while on the right-hand side we get

(α+ 1)2

2(5α + 9)

√
gW ′(α) = −NhM (A.171)

Comparing these two expressions gives

λ+ λ̃ = −1

6
, (A.172)

Notice that this does not affect the scaling transformation (A.163), because
the combination λ+ λ̃ is invariant. Finally, we should mention that one can
expand in r rather than ρ = r − log Λ. This comes down to performing a
rescaling (A.163) with λ′ = −2 log Λ. This is the convention we use in the
main text.

1Subtracting U in (A.167) ensures that all power-law (∼ e4ρ), logarithmic (∼ ρ#),
and double-logarithmic (∼ log ρ) divergences cancel. This can be checked explicitly up to
arbitrarily high order in the asymptotic expansion.
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Samenvatting

In de theoretische fysica houdt men zich bezig met de theoretische beschrijv-
ing van fysische systemen. Het concept van een fysisch systeem is vrij breed
en de precieze betekenis hangt af van de vragen die men stelt. Je zou je bij-
voorbeeld kunnen afvragen hoe een bepaald stukje metaal elektrische stroom
geleidt. Het systeem waar we het dan over hebben is het stukje metaal in
een bepaalde meetopstelling in een laboratorium. Een andere vraag die je
zou kunnen stellen is: hoe snel dijt het heelal uit? In dat geval is het hele
heelal het fysische systeem.

Een theoretische beschrijving van een fysisch systeem noemt men een theorie.
De term theorie heeft in de natuurkunde een iets preciezere betekenis dan in
het dagelijks gebruik. Een natuurkundige theorie is een wiskundig model die
men in staat stelt voorspellingen te doen over de uitkomst van experimentele
metingen. Het meest bekende voorbeeld van een theorie zijn de wetten van
Newton: 1) traagheid van massa, 2) kracht = massa×versnelling (F = m · a)
en 3) actie = −reactie. Deze theorie stelt ons in staat om bijvoorbeeld de
beweging van een biljartbal te voorspellen.

Naast dat een natuurkundige theorie het voorspellen van de uitkomst van
een metingen mogelijk maakt, geeft het veelal ook inzicht in het mechanisme
dat verantwoordelijk is voor zo’n uitkomst. Dit laatste maakt de theore-
tische fysica zo interessant. Toch is het goed om wel op te passen voor de
valkuil waarin een waardoor -vraag wordt verward met een waarom-vraag;
natuurkundige theoriëen zijn enkel in staat waardoor -vragen te beantwoor-
den.

In sommige gevallen bestaan er meerdere theoretische beschrijving van een
enkel fysisch systeem. Omdat de natuurkundige inhoud van de theoriëen
uiteindelijk hetzelfde moet zijn, zijn deze theoriëen equivalent. Men spreek
dan van een dualiteit ; de theoriëen zijn duaal aan elkaar. In dit proefschrift
staat een bepaalde dualiteit centraal die afkomstig is uit de snarentheorie.
Voordat we deze dualiteit bespreken is het handig om een klein beetje achter-
grond van de snarentheorie te geven.
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Snarentheorie

Snarentheorie is de uitkomst van een lange zoektocht naar een allesomvat-
tende fundamentele theorie. Hoewel de snarentheorie nog lang niet compleet
is, zijn er goede aanwijzingen dat men op het goede spoor zit. Bovendien is
de snarentheorie op dit moment de enige serieuze kandidaat voor een alle-
somvattende theorie.

De belangrijkste taak van een allesomvattende theorie is dat het alle bestaande
fundamentele theoriëen samenvoegt in één overkoepelende theorie. De funda-
mentele natuurkrachten zijn de zwaartekracht, de elektro-magnetische kracht
en de zwakke en sterke kernkrachten. De elektro-magnetische kracht en de
zwakke en sterke kernkrachten zijn al samengevoegd in het zogenaamde stan-

daard model van de deeltjesfysica. Het standaard model beschrijft de in-
teractie tussen subatomaire deeltjes met ongekende precisie. Vanwege de
minuscule afmeting van zulke deeltjes is het nodig om quantum-mechanica

te gebruiken in de beschrijving van het standaard model. De enige kracht
die niet door het standaard model wordt beschreven is de zwaartekracht.
Voor de zwaartekracht hebben we een andere theorie, namelijk de algemene

relativiteitstheorie. In tegenstelling tot het quantum-mechanische standaard
model, waar men hele kleine objecten beschrijft, is de algemene relativiteits-
theorie juist van toepassing op hele grote objecten. Het is gebleken dat het
ontzettend moeilijk is om de algemene relativiteitstheorie en de quantum-
mechanica samen te voegen in één theorie.

Een quantum-mechanische theorie is van toepassing als we te maken hebben
met zeer kleine objecten. Heisenberg’s onzekerheidsrelatie staat toe dat en-
ergiebehoud voor een zeer korte tijd wordt geschonden. Dit geeft de mogeli-
jkheid tot het ontstaan van een deeltje/anti-deeltje paar op voorwaarde dat
deze binnen zeer korte tijd weer op elkaar botsen en daarmee annihileren.
Dit heeft grote gevolgen voor de beweging van subatomaire deeltjes. Het
onderscheid tussen de paden die een klassiek en een quantum deeltje volgen
is schematisch afgebeeld in Afbeelding 1. Hier is te zien dat een quantum
deeltje kan opsplitsen in twee virtuele deeltjes die na zeer korte tijd weer

klassiek quantum

Afbeelding 1: Het pad van een klassiek en een quantum-mechanisch punt-deeltje. De
stippellijn geeft het pad van een virtueel deeltje aan. De tijd loopt van links naar rechts.
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samenkomen als het originele deeltje. De twee virtuele deeltjes vormen een
gesloten lus die bekend staat als een quantum-lus. We zien straks dat het
pad van een quantum-mechanisch snaartje een soortgelijke lus bevat.

Het belangrijkste inzicht van de snarentheorie is dat elementaire deeltjes kun-
nen worden gëınterpreteerd als verschillende trillingspatronen van hetzelfde
snaartje. Zo worden alle deeltjes voortgebracht door een enkel elementair
snaartje. Men maakt het onderscheid tussen open en gesloten snaren, zie
Afbeelding 2.

open gesloten

Afbeelding 2: Open en gesloten snaren.

Holografische Dualiteit

Laten we gaan kijken naar de dualiteit waar dit proefschrift op gebaseerd
is: holografische dualiteit of simpelweg holografie. Een holografische du-
aliteit is een bijzondere equivalentie tussen een zwaartekrachttheorie en een
quantum-mechanische veldentheorie. Quantum-veldentheorie begrijpen we
conceptueel veel beter dan quantum-zwaartekracht. Holografie geeft ons
dus een handzame definitie voor quantum-zwaartekracht. Andersom kan
holografie ook gebruikt worden om ingewikkelde problemen in quantum-
veldentheorie op te lossen in termen van een simpel zwaartekrachtmodel.

Om een idee te krijgen wat de onderliggende reden is dat er zoiets kan
bestaan als een equivalentie tussen een zwaartekrachttheorie en een quantum-
mechanische veldentheorie hebben we twee ingrediënten nodig. Het eerste in-
grediënt is dat men heeft bevonden dat de gesloten snaren verantwoordelijk
zijn voor de zwaartekracht, terwijl de open snaren gerelateerd zijn aan deelt-
jes die enigszins lijken op de elementaire deeltjes uit het standaard model van
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de deeltjesfysica.2 In het kort hebben we dus de volgende relaties:

open snaren ∼ quantum-veldentheorie

gesloten snaren ∼ zwaartekracht

Voor het tweede ingrediënt bekijken wat voor pad een snaar ‘bewandelt’ in de
tijd, zie Afbeelding 3. Het pad van een klassieke open snaar vormt een plat
oppervlak en het pad een klassieke gesloten snaar vormt een buis-vormig
oppervlak. Zoals we eerder zagen hebben we in de quantum-mechanica te
maken met virtuele deeltjes. Op dezelfde manier kunnen we ook kijken naar
het pad van een quantum-mechanisch snaartje. Zo’n snaartje kan opsplitsen
(net als een quantum punt-deeltje) in twee virtuele snaartjes die na zeer korte
tijd weer samenkomen.

gesloten, quantum

open, quantum

open, klassiek

gesloten, klassiek

Afbeelding 3: Snaartjes die door de tijd bewegen volgen een twee-dimensionaal traject.
De tijd loopt van links naar rechts.

Laten we nu even onze aandacht richten op de quantum-lus in het pad van
het quantum-mechanische open snaartje. We zien dat deze buisvormig is. We
zagen eerder al dat het klassieke pad van een gesloten snaartje ook buisvormig
is. In Afbeelding 4 zetten we de twee paden naast elkaar.

We zagen zojuist dat een quantum-mechanische open snaar kan worden gëın-
terpreteerd als een klassieke gesloten snaar. Uiteindelijk (na enig rekenwerk)
volgt hieruit dat bepaalde quantum-veldentheoriëen (open snaren) kunnen
worden vertaald naar een klassieke zwaartekrachttheorie (gesloten snaren).

2Het is helaas niet mogelijk om in een paar zinnen (of pagina’s) te beredeneren waarom
dit het geval is. (Mijn excuses voor het weglaten van deze logische stap!)
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gesloten, klassiekopen, quantum

=

Afbeelding 4: Het ‘traject’ van een quantum-mechanisch open snaartje is gelijk aan dat
van een klassiek gesloten snaartje!

Waarom holografie? Een hologram is een drie-dimensionaal beeld dat
wordt gegenereerd door een twee-dimensionaal vlak, zie bijvoorbeeld Afbeeld-
ing 5. De reden dat de equivalentie tussen deze quantum-veldentheoriëen
en zwaartekrachttheoriëen ‘holografisch’ wordt genoemd heeft te maken met
het feit dat de zwaartekrachttheorie is gedefiniëerd in één extra ruimtedi-
mensie vergeleken met de quantum-veldentheorie.3 Zwaartekracht kan dus
worden gezien als een holografisch beeld van een lager-dimensionale quantum-
veldentheorie.

Afbeelding 5: Een hologram. Als je lang genoeg naar dit plaatje staart kom er een
drie-dimensionaal beeld tevoorschijn.

In dit proefschrift. De enige systemen waar tot nu toe een holografische
dualiteit voor bestond zijn relativistisch, wat betekent dat de deeltjes in zo’n
theorie heel snel bewegen. Er zijn echter veel systemen waarin de deeltjes niet
heel snel bewegen. Zulke systemen worden dan niet-relativistisch genoemd.

3Zo kan bijvoorbeeld een drie-dimensionale zwaartekrachttheorie worden vertaald naar
een twee-dimensionale quantum-veldentheorie.
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In dit proefschrift is een versie van holografie ontwikkeld voor systemen die
niet-relativistisch zijn.

Niet-Relativistische Systemen

Om een beetje een gevoel te krijgen wat het verschil is tussen relaticistische en
niet-relativistische systemen. De kinetische energie Ekin. van een relativistisch
deeltje is evenredig met de kinetische impuls p = mv:4

Ekin. = pc . (relativistisch / snel)

De evenredigheidsconstante is de lichtsnelheid c. Aan de andere kant weten
dat voor een niet-relativistisch deeltje de kinetische energie niet evenredig is
met p, maar met het kwadraat van de impuls, p2:

Ekin. =
1

2
mv2 =

p2

2m
. (niet-relativistisch / langzaam)

Hier is de evenredigheidsconstante 1/2m. Deze laatste formule geldt voor
deeltjes die met een relatief lage snelheid bewegen.

Zoals eerder vermeld, waren er tot nu toe alleen holografische dualiteiten
bekend voor relativistische systemen, oftewel van het type E = pc. Het doel
van dit promotieonderzoek is het opzetten van een versie van holografie voor
niet-relativistische systemen, oftewel van het bekendere type E = 1

2mv
2.

Een korte afleiding van de bovenstaande formules. Tot slot doen
we voor de gëınteresseerde lezer een kleine berekening om de bovenstaande
formules (Ekin. = pc en Ekin. = 1

2mv
2) af te leiden. De bekendste formule

uit de relativiteitstheorie is E = mc2, oftewel de energie E van een object
is evenredig met zijn massa m (de evenredigheidsconstante is het kwadraat
van de lichtsnelheid c). Om iets preciezer te zijn is het alleen de rust-energie
die gelijk is aan mc2. De totale energie E is de som van de rust-energie Erust

en de kinetische energie Ekin., dus E = Erust + Ekin, en de volledige formule
luidt:

E = γ mc2 , γ =

√
1 +

( p

mc

)2
.

De factor γ staat bekend als de Lorentz-factor en p = mv is de kinetische
impuls. Voor een relativistisch object is de kinetische impuls p veel groter dan

4m is de massa van het deeltje en v is zijn snelheid.
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mc (de rustmassa keer de lichtsnelheid). Dit betekent (p/mc)2 veel groter is
dan 1, waardoor de Lorentz-factor reduceert tot:

γ =

√
1 +

( p

mc

)2
≈
√( p

mc

)2
=

p

mc
. (relativistisch)

Aan de andere kant, een niet-relativistisch object heeft een kinetische impuls
p die juist veel kleiner is dan mc, dus (p/mc)2 is dan veel kleiner dan 1. De
Lorentz-factor reduceert in dat geval tot:

γ =

√
1 +

( p

mc

)2
≈ 1 +

1

2

( p

mc

)2
. (niet-relativistisch)

Hier gebruikte we de standaard formule
√

1 + x ≈ 1 + 1
2x, die geldt als x een

klein getal is.5 Hieruit volgt dan dat de totale energie wordt gegeven door:

E = γ mc2 ≈





pc (relativistisch)

mc2 + p2

2m (niet-relativistisch)

(A.173)

In het niet-relativistische geval krijgen we het bekende resultaat, waar de rust-
energie en kinetische energie worden gegeven door Erust = mc2 en Ekin. =
1
2mv

2 (omdat p = mv). In het relativistische geval zien we dat de rust-energie
helemaal geen bijdrage geeft aan de totale energie, zodat E ≈ Ekin. = pc.

5Deze standaard formule is een voorbeeld van een Taylor-benadering.
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