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There are strong indications that ultra-relativistic heavy ion collisions, produced in accelerators, lead to 
the formation of a new state of matter: the quark gluon plasma (QGP). This deconfined QCD matter 
is expected to exist just for very short times after the collision. All the information one can get about 
the plasma is obtained from the particles that reach the detectors. Among them, heavy vector mesons 
are particularly important. The abundance of cc̄ and bb̄ states produced in a heavy ion collision is a 
source of information about the plasma. In contrast to the light mesons, that completely dissociate 
when the plasma is formed, heavy mesons presumably undergo a partial thermal dissociation. The 
dissociation degree depends on the temperature and also on the presence of magnetic fields and on 
the density (chemical potential). So, in order to get information about the plasma out of the quarkonium 
abundance data, one needs to resort to models that provide the dependence of the dissociation degree 
on these factors. Holographic phenomenological models provide a nice description for charmonium and 
bottomonium quasi-states in a plasma. In particular, quasi-normal modes associated with quarkonia 
states have been studied recently for a plasma with magnetic fields. Here we extend this analysis of 
quasinormal models to the case when charmonium and bottomonium are inside a plasma with finite 
density. The complex frequencies obtained are then compared with a Breit Wigner approximation for the 
peaks of the corresponding thermal spectral functions, in order to investigate the quantitative agreement 
of the different descriptions of quarkonium quasi-states.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most fascinating challenges currently faced by physicists is to build a detailed picture of the quark gluon plasma (QGP) 
from the particles that reach the detectors in heavy ion collisions. Hadronic matter, at the very high energy densities produced in these 
processes, apparently produce the QGP, a state of matter where color is not confined inside bound states. It is not possible to observe 
the plasma directly. All the available information comes from particles created after this very short-lived state of matter hadronizes and 
disappears. For reviews about QGP, see for example [1–4].

An important source of indirect information about the QGP is the abundance of heavy vector mesons. In contrast to light mesons, 
that dissociate once the plasma is formed, mesons made of cc̄ or bb̄ quarks may survive in the thermal medium. They undergo a partial 
dissociation process that depends on the flavor (charm or bottom), on the temperature and density of the plasma and on the presence of 
magnetic fields produced by the motion of charged particles. It is important to understand the thermal behavior of heavy vector mesons 
in a plasma in order to relate their relative abundance with the properties of the medium.

In recent years, it has been shown that holographic phenomenological models are a fruitful framework for describing heavy vector 
mesons inside a thermal medium. In Ref. [5] a holographic AdS/QCD model was proposed in order to represent the spectra of masses and 
decay constants of charmonium and bottomonium states in the vacuum. This model has two energy parameters, fixed by the criteria of 
the best fit to the experimental data. The extension to finite temperature and density appeared in refs. [6,7] where the spectral functions 
representing the quasi-states of heavy vector mesons were calculated.

Then, it was shown that a better fit for the spectra is obtained from an improved model involving three energy parameters [8,9]. These 
parameters represent: the quark mass, the string tension and an ultraviolet (UV) energy scale. This UV energy parameter is related to the 
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large mass change that happens in non-hadronic decays and is necessary in order to fit the decay constant spectra. A very nice picture 
of the dissociation process of charmonium and bottomonium states was obtained in these references by calculating the thermal spectral 
functions.

A complementary tool for studying the dissociation process using holographic models is the determination of the quasinormal modes. 
The spectral function is obtained from real frequency solutions of the equations of motion of gravity fields dual to the hadrons. In contrast, 
quasinormal modes are solutions with complex frequency and more restrictive boundary conditions. The real part of the frequency is 
related to the thermal mass and the imaginary part to the thermal width of the quasi-states. In Ref. [10], quasinormal modes for heavy 
vector mesons were studied using the holographic model of [8,9]. This analysis was then extended, for the case when a magnetic field is 
present, in Ref. [11]. The dissociation process corresponds to an increase in the imaginary part of the frequency of the quasinormal modes.

Here we present an extension of the analysis of heavy vector meson quasinormal modes to the case when the medium has a finite 
density. We investigate the dependence on the density of the complex frequencies for bottomonium and charmonium quasi-states at dif-
ferent temperatures. Then we compare the results obtained for the quasinormal frequencies with the results from the spectral function 
approach. The comparison is performed by considering a Breit Wigner approximation for the spectral function peaks. Such an approxima-
tion provides estimates for the real and imaginary parts of the quasinormal frequencies that are in a very nice agreement with the results 
obtained directly. This shows that the two approaches are consistent not only qualitatively but also from a quantitative point of view.

This letter is organized as follows: in section 2 we review the holographic model for heavy vector mesons. In section 3 we present 
the calculation of quasinormal modes at finite temperature and density. Then in section 4 we compare the results obtained with a Breit 
Wigner approximation of the first spectral function peaks. Section 5 is devoted to conclusions and final comments.

2. Holographic model for heavy vector mesons

In the phenomenological model developed in Refs. [8,9], vector mesons are described by a vector field Vm = (Vμ, V z)(μ = 0, 1, 2, 3), 
representing the gauge theory current Jμ = ψ̄σμψ in the gravity side of the duality. The fields live in a curved five dimensional space, 
that is anti-de Sitter space for the case when the mesons are in the vacuum. Additionally, there is a scalar background. The action for the 
vector field reads

I =
∫

d4xdz
√−g e−φ(z)

{
− 1

4g2
5

Fmn F mn

}
, (1)

where Fmn = ∂m Vn − ∂n Vm . The model contains three energy parameters that are introduced through the background scalar field φ(z):

φ(z) = κ2z2 + Mz + tanh

(
1

Mz
− κ√

σ

)
. (2)

The parameter σ , with dimension of energy squared, represents effectively the string tension of the strong quark anti-quark interaction. 
The mass of the heavy quarks is represented by κ . The third parameter, M , has a more subtle interpretation. Heavy vector mesons undergo 
non hadronic decay processes, when the final state consists of light leptons, like an e+e− pair. In such transitions there is a very large 
mass change, of the order of the meson mass. The parameter M represents effectively the mass scale of such a transition, characterized by 
a matrix element 〈0| Jμ(0) |n〉 = εμ fnmn , where fn is the decay constant, |n〉 is a meson state at radial excitation level n with mass mn , 
|0〉 is the hadronic vacuum and Jμ the hadronic current. The values that provide the best fit to charmonium and bottomonium spectra of 
masses and decay constants at zero temperature are respectively

κc = 1.2,
√

σc = 0.55, Mc = 2.2 ; κb = 2.45,
√

σb = 1.55, Mb = 6.2 , (3)

where all quantities are expressed in GeV. The geometry that corresponds to a thermal medium with a finite density μ was studied in 
refs. [12–14]. It is a 5-d anti-de Sitter charged black hole space-time with the metric

ds2 = R2

z2

(
− f (z)dt2 + d�x · d�x + dz2

f (z)

)
, (4)

where

f (z) = 1 − z4

z4
h

− q2z2
h z4 + q2z6, (5)

and zh is the horizon position where f (zh) = 0. The relation between zh and the temperature T of the black hole, assumed to be the 
same as the gauge theory temperature, comes from the condition of absence of conical singularity at the horizon:

T = | f ′(z)|(z=zh)

4π
= 1

π zh
− q2z5

h

2π
. (6)

The parameter q is proportional to the black hole charge. In the dual gauge theory, q is related to the density of the medium, or quark 
chemical potential, μ. In the gauge theory Lagrangean, μ would appear multiplying the quark density ψ̄γ 0ψ . So it would work as the 
source of correlators for this operator. In the dual supergravity description the time component V 0 of the vector field plays this role. So, 
one considers a particular solution for the vector field Vm with only one non-vanishing component: V 0 = A0(z) (V z = 0, V i = 0). Assuming 
that the relation between q and μ is the same as in the case of no background, that means φ(z) = 0, the solution for the time component 
of the vector field is: A0(z) = c − qz2, where c is a constant. Imposing A0(0) = μ and A0(zh) = 0 one finds:
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μ = qz2
h . (7)

From eqs. (6) and (7) it becomes clear that specifying both zh and q, the values of the temperature and the chemical potential are fixed 
and contained into the metric (4).

3. Quasinormal modes at finite density

In the context of gauge/gravity duality, quasinormal modes are normalizable gravity solutions representing the quasi-particle states in 
a thermal medium, with complex frequencies ω. The real part, Re(ω), is related to the thermal mass and the imaginary part, Im(ω), is 
related to the thermal width. In the zero temperature limit one recovers the vacuum hadronic states, corresponding to solutions that are 
called normal modes. The normalizability condition requires that, either in the zero temperature case or in the finite temperature one, 
the fields must vanish at the boundary z=0. The main difference in that at finite T there is an event horizon where one additionally 
has to impose infalling boundary conditions. These two types of boundary conditions are simultaneously satisfied in general for complex 
frequencies.

In the radial gauge V z = 0, and considering solutions of the type Vμ = e−iωt+ikx3 Vμ(z, ω, k) that corresponds to plane waves prop-
agating in the x3 direction with wave vector pμ = (−ω, 0, 0, k). In terms of the electric field components E1 = ωV 1, E2 = ωV 2 and 
E3 = ωV 3 + kVt the equations of motion coming from action (1) with the metric (4) take the form:

E ′′
α +

(
f ′

f
− 1

z
− φ′

)
E ′
α + 1

f 2

(
ω2 − k2 f

)
Eα = 0 , (α = 1,2) (8)

E ′′
3 +

(
ω

ω2 − k2 f

f ′

f
− 1

z
− φ′

)
E ′

3 + 1

f 2

(
ω2 − k2 f

)
E3 = 0, (9)

where (’) represents derivatives with respect to the radial z coordinate.
One has to impose the normalizability condition at z = 0 and the infalling condition at z = zh . The idea, in order to impose the 

boundary conditions at the horizon, is to re-write the field equations in such a way that they separate into a combination of infalling and 
outgoing waves. It is convenient to introduce the Regge-Wheeler tortoise coordinate r∗ . This coordinate is defined by the relation ∂r∗ =
− f (z)∂z with z in the interval 0 ≤ z ≤ zh and can be expressed explicitly by integrating the former relation and imposing r∗(0) = 0. In 

order to have a Schrödinger like equation, one can perform a Bogoliubov transformation on the electric fields, introducing (ψ j = e− B j (z)

2 E j). 
Then, Eqs. (8) and (9) reduce to the form:

∂2
r∗ψ j + ω2ψ j = U jψ j , (10)

with

Bα(z) = log(z) + φ; B3(z) = log

(
w2 − k2 f

ω2
z

)
+ φ. (11)

For j = (1, 2, 3) these potentials diverge at z = 0 so we must have ψ j(z = 0) = 0. At the horizon we have for both potentials that 
U j(z = zh) = 0 in the limit z → zh one expects to find infalling ψ j = e−iωr∗ and outgoing ψ j = e+iωr∗ wave solutions for equation (10). 
Only the first kind of solutions is physically allowed. The Schrödinger like equation can be expanded near the horizon leading to the 
following expansion the field solution:

ψ j = e−iωr∗(z)
[

1 + a(1)
j (z − zh) + a(2)

j (z − zh)
2 + . . .

]
. (12)

One can solve recursively for a(n)
j . The first coefficients are:

a(1)
α =

(
2 − q2z6

h

)(
zh

(
k2

2−q2z6
h

+ 2κ2
)

− sech2
(

κ√
σ

− 1
Mzh

)
Mz2

h
+ 1

zh
+ M

)

2
(
q2z6

h + iωzh − 2
) , (13)

a(1)
3 =

(
2 − q2z6

h

)(
zh

(
k2

2−q2z6
h

+ 2κ2
)

− sech2
(

κ√
σ

− 1
Mzh

)
Mz2

h
+ 4k2+ω2−2k2q2z6

h
ω2zh

+ M

)

2
(
q2z6

h + iωzh − 2
) . (14)

Eqs. (8) and (9) are solved numerically for complex frequencies using a method that consists in imposing infalling boundary conditions 
for the electric field at the horizon. These conditions are obtained by expressing the expansion (12) in terms of the field E near the 
horizon:

lim
z→ zh

E j(z) −→ e−iωr∗(z)+ B j (z)

2

(
1 + a(1)

j (z − zh) + a(2)
j (z − zh)

2 + . . .
)

. (15)

This expansion leads to the following boundary conditions for the field and it’s derivative at the horizon:

E j(zh) = e−iωr∗(zh)+ B j (z)(zh )

2 , (16)

E ′
j(zh) =

(
−iωr′∗(zh) + B ′

j(zh)

2
+ a(1)

j

)
E j(zh) . (17)
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Fig. 1. Real (left panel) and imaginary (rigth panel) parts of the quasinormal mode frequency of J/ψ as a function of the temperature for four different values of the chemical 
potential: μ = 0, 150, 300, 450 MeV.

Fig. 2. Real (left panel) and imaginary (right panel) parts of the quasinormal mode frequency of ϒ as a function of the temperature for four different values of the chemical 
potential: μ = 0, 150, 300, 450 MeV.

Then one searches for the complex frequencies that provide solutions vanishing on the boundary: E j(z = 0) = 0. These are the quasinormal 
frequencies and the corresponding – normalizable – solutions are the quasinormal modes, that represent the heavy meson quasi-states in 
the thermal medium.

Results

Let us start with heavy mesons at rest in the medium. Figs. 1 and 2 present, for the first states of charmonium J/ψ and bottomonium 
ϒ, respectively, the dependence of the real and imaginary parts of the quasinormal frequencies on the temperature at four different values 
of the chemical potential μ.

The behavior of charmonium and bottomonium is similar. As one can see on the left panels, the thermal mass represented by Re(ω)

decreases with the chemical potential for low temperatures. For higher temperatures, T � 200 MeV for J/ψ and T � 400 MeV for ϒ, the 
effect of the chemical potential is the opposite but much smaller.

The imaginary part of the frequency Im(ω) is related to the width of the associated peak of the spectral function. An increase in 
Im(ω) corresponds to a broadening of the peak. On the other hand, the broadening of a peak corresponds to a smaller probability of 
finding the quasiparticle in the medium because of the dissociation. The decrease in this probability is what we call as an increase in the 
“dissociation degree”. For both charmonium and bottomonium ground states there is a monotonic increase in the absolute value of Im(ω)

with temperature and chemical potential. This means that, the denser is the plasma, the higher is the dissociation degree of heavy vector 
mesons.

Now, let us consider mesons in motion in the plasma. Fig. 3 show the dependence of the charmonium J/ψ quasinormal frequencies at 
T = 125 MeV on the momentum k. The upper panels represent the case when the motion is transverse to the polarization and the lower 
panels show the case when the momentum is longitudinal to the polarization. Fig. 4 shows the analogue results for the bottomonium ϒ

quasi-state at the temperature T = 300 MeV. The reason for choosing these temperatures is that the corresponding spectral functions, for 
charmonium at T = 125 MeV and for bottomonium at T = 300 MeV, present clear peaks for the first quasi-state. So, at these temperatures
it is simple to observe the effect of the density.

Both flavors present a similar behavior. The real parts of the QNM modes represent for k = 0 the thermal mass. The dependence on k is 
approximately equal to the trivial dispersion relation for a free relativistic particle: w = √

m2 + k2. For the imaginary parts of the QNM, the 
dispersion relation is shown on the panels on the right-hand side of Figs. 3 and 4. For both flavors the dissociation considerably increases 
with the chemical potential but the effect of the motion of the meson inside the plasma depends on the direction of the momentum 
with respect to the polarization. For motion transverse to polarization the dissociation degree increases with the momentum k while for 
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Fig. 3. Dispersion relations for J/ψ QNM at T = 125 MeV. The upper panels show the transverse ( j = 1, 2) case and the bottom panels the longitudinal ( j = 3) one. The real 
part of the frequencies are on the left panels and the imaginary part on the right panels.

longitudinal motion it decreases with the momentum. This effect is more noticeable for higher chemical potentials, when the dissociation 
caused by the density is partially compensated by longitudinal motion.

4. Comparison with spectral function results

Quasinormal modes (QNM) and spectral functions are complementary approaches for studying the thermal behavior of heavy vector 
mesons in a plasma. It is interesting to check if the results obtained here using QNM are consistent with the spectral function descrip-
tion, using the same holographic approach, presented in Ref. [8]. It is known that an increase in the imaginary part of the quasinormal 
frequencies corresponds to a broadening of the corresponding peak of the thermal spectral function. Such a qualitative analysis is trivial 
and indicates consistency between the two approaches. Much more interestingly, it is possible to make a quantitative test of consistency. 
In the vicinity of the peaks, the spectral function calculated from the imaginary part of the current-current retarded propagator has the 
approximate Breit Wigner (BW) form:

ρ(ω)

ω
≈ a(�/2)2

(ω − M)2 + (�/2)2
, (18)

where the height of the peak a, the thermal mass M and the width � can be determined by the numerical adjust of the spectral function 
ρ(ω) (see for example [15] for a discussion).

Fig. 5 shows the spectral functions calculated from the model considered here for charmonium at T = 125 MeV (left panel) and 
bottomonium at T = 300 MeV (right panel). For details on how to determine these spectral functions, see Ref. [8].

It is clear from these plots that the height of the peaks decrease with the chemical potential. In order to illustrate how the BW 
approximation works, we show in Fig. 6 the BW fit and the actual peak for charmonium at T = 125 MeV and μ = 150 MeV One 
notices that near the peak the BW approximation works very well. As mentioned in the previous section, the reason for choosing these 
temperatures is that the corresponding spectral functions, for charmonium at T = 125 MeV and for bottomonium at T = 300 MeV, present 
very clear peaks for the first quasi-states. So, at these temperatures it is simple to observe the effect of the density.

Performing a numerical fit of spectral functions, near the first peak, to the Breit Wigner (BW) form (18) one can test the agreement 
with the quasinormal modes approach. The comparison comes from the identification of the thermal mass M with the real part of the 
QNM frequency Re(ω) and the resonance width � with twice the absolute value of the imaginary part: 2| Im(ω)|.

Tables 1 and 2 summarize the results for QNM frequencies calculated using the method presented at section 3 and the results for the 
corresponding quantities obtained from a Breit-Wigner fit of the spectral functions peaks. One notices that the relative discrepancies are 
very small and then concludes that the results of quasinormal modes and spectral functions are consistent. They represent complementary 
approaches to study the thermal behavior of quarkonium inside a plasma.
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Fig. 4. Dispersion relations for ϒ QNM at T = 300 MeV. The upper panels show the transverse ( j = 1, 2) case and the bottom panels the longitudinal ( j = 3) one. The real 
part of the frequencies are on the left panels and the imaginary part on the right panels.

Fig. 5. Spectral functions for charmonium at T = 125 MeV and bottomonium at T = 300 MeV.

It is important to remark that similar results are obtained if one chooses different temperatures. The choice of T = 125 MeV for 
charmonium and T = 300 MeV for bottomonium was motivated by the fact that at these temperatures the effect of the density is more 
evident. However the same kind of agreement between the spectral function and quasinormal mode approaches is observed at different 
temperatures.

5. Conclusions

In this letter the behavior of heavy vector mesons inside a plasma with finite chemical potential was studied through the determination 
of the quasinormal modes. A holographic model was used, in order to describe the quasi-states of cc̄ and bb̄ in terms of normalizable 
field solutions in a five dimensional dual space. This dual geometry contains a black hole with a Hawking temperature assumed to be the 
same as the gauge theory temperature. The chemical potential, or density, of the medium is represented in the holographic description, 
by the charge of the black hole.

The results obtained show how the density affects the partial thermal dissociation and the thermal mass of the quarkonia in the 
medium. In particular, the higher the density, the higher the dissociation degree. This fact holds for heavy mesons at rest or in motion 
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Fig. 6. Breit-Wigner fit compared with the actual spectral function peak for charmonium at T = 125 MeV and μ = 150 MeV.

Table 1
Real part of the quasinormal frequency Re(ω), compared with the thermal mass M obtained 
from Breit-Wigner fit of the spectral function and their relative discrepancy.

Quasi-state μ (MeV) T (MeV) Re(ω) (MeV) M (MeV) Rel. discr. (%)

J/ψ 0 125 2.89931 2.88558 1.8
J/ψ 150 125 2.88270 2.86565 0.54
J/ψ 300 125 2.85034 2.88491 0.076
J/ψ 450 125 2.83546 2.89992 0.021

ϒ 0 300 6.73452 6.75621 0.32
ϒ 150 300 6.72812 6.75463 0.39
ϒ 300 300 6.71170 6.74551 0.50
ϒ 450 300 6.69218 6.74412 0.78

Table 2
Absolute value of the imaginary part of the quasinormal frequency | Im(ω)|, compared with 
one half of the thermal width � obtained from Breit-Wigner fit of the spectral function and 
their relative discrepancy.

Quasi-state μ (MeV) T (MeV) | Im(ω)| (MeV) �/2 (MeV) Rel. discr. (%)

J/ψ 0 125 0.0108540 0.0108923 0.35
J/ψ 150 125 0.0246513 0.0248886 0.96
J/ψ 300 125 0.0805289 0.0804919 0.046
J/ψ 450 125 0.173714 0.173152 0.32

ϒ 0 300 0.115284 0.115169 0.10
ϒ 150 300 0.127202 0.13211 3.8
ϒ 300 300 0.163493 0.164364 0.53
ϒ 450 300 0.224074 0.229888 2.6

relative to the medium. However, there is a non trivial aspect. For motion in the direction perpendicular to the polarization (transverse 
motion) the dissociation degree increases with momentum. In contrast, for motion in the direction of polarization (longitudinal motion), 
the dissociation degree decreases with momentum. So, for this longitudinal case, motion and density have opposite effects.

Regarding the thermal mass, there is also a non trivial behavior. For low temperatures (T � 200 MeV for J/ψ and T � 400 MeV for 
ϒ) the thermal mass decreases with the chemical potential. For higher temperatures, the mass increases slightly with the chemical 
potential. It is important to note that the plasma at T = 125 MeV considered here would be a super-cooled plasma phase if the critical 
deconfinement temperature is above this value.

There are many interesting previous studies of mesons using holography to describe thermal effects and heavy flavors like for example 
[16–35]. An alternative approach to describe heavy meson spectra was proposed very recently in Ref. [36].
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