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is corrected due to the presence of the Chern-Simons term. We observe that the form of

the correction depends not only on the coefficient of the Chern-Simons term, but also on

the sign of the electric charge; pointing toward the chiral nature of the dual CFT. Using

the asymptotic symmetry of the theory as well as requiring a consistent picture we can

find the central charge and the level of U(1) current. Upon uplifting the solutions to three

dimensions we get purely geometric solutions which will be either AdS3 or warped AdS3

with an identification.
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1. Introduction

2D quantum gravity on AdS2 geometry is important due to its essential role in the con-

text of black hole physics. Indeed the AdS2 geometry is the factor which appears in the

near horizon geometry of extremal black holes in any dimension. Therefore understanding

quantum gravity on AdS2 might ultimately help us understand the origin of the black hole

entropy in other dimensions.

The main problem which prevents us to explain quantum gravity on AdS2 geometry

is the fact that it is not quite clear what it actually means. Indeed this is the case for

any dimension. An attempt to understand, or in better words, to make sense of quantum

gravity in three dimensions has been made by Witten in [1] where it was argued that 3D

quantum gravity makes sense only on AdS3. The main reason supporting the argument

is due to the existence of non-trivial three dimensional black holes, BTZ solutions, which

carry non-zero entropy [2]. Being an AdS background it is natural to define the quantum

gravity in terms of the dual CFT via AdS/CFT correspondence [3].

In 2D Maxwell-dilaton gravity there are several classical solutions with non-zero en-

tropy which may be interpreted as 2D extremal black holes. Therefore we would expect

to have non-trivial 2D quantum gravity on AdS2 geometry. Following the idea explored

in [1] one may suspect that quantum gravity on AdS2 can be defined via its CFT dual.

We note, however, that although AdSd+1/CFTd correspondence has been understood for

d ≥ 2 mainly due to explicit examples, little has been known for the case of d = 1 and in-

deed it remains enigmatic. Nevertheless there are several attempts to explore AdS2/CFT1

correspondence, including [4 – 23].

The aim of the present article is to further study 2D gravity on AdS2 along the recent

studies [16, 18, 21] where 2D Maxwell-dilaton gravity has been considered. To have consis-

tent boundary conditions it was shown in [16] that the asymptotic symmetry of the model

is generated by a twisted energy momentum tensor whose central charge is non-zero. This
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central charge along with eigenvalue of L0 of the dual CFT can be used to consistently

reproduce the entropy of the bulk gravity via the Cardy formula. This was taken as an

evidence that the CFT dual to gravity on AdS2 should be a chiral half of a 2D CFT.

To elaborate the above statement we will consider 2D Maxwell-dilaton gravity in the

presence of higher order corrections given by 2D Maxwell-gravitational Chern-Simons term.

To have consistent boundary conditions one needs to work with the twisted energy mo-

mentum tensor, though in this case due to the presence of the Chern-Simons term the

corresponding central charge gets a correction. An important observation is that the cor-

rection not only depends on the coefficient of the Chern-Simons term, but also it is sensible

to the sign of the electric charge. The sign dependent effect should, indeed, be associated

with the fact that the dual theory should be a chiral half of a 2D CFT.

To study the vacuum solutions of the model we should solve the equations of motion

with a constant dilaton. Equivalently, we may utilize the entropy function formalism [24]

by which we are also able to find the entropy of the corresponding solutions. From the

equations of motion we find three distinctive AdS2 vacuum solutions. Using the asymptotic

symmetry of the theory together with requiring to have a consistent picture we will be able

to read the central charge of the corresponding solutions as well as the level of U(1) current.

The 2D solutions may be uplifted to three dimensions. The obtained 3D solutions are

purely geometric solutions that will be either AdS3 or warped AdS3 with an identification.

The warped AdS3 solution has recently been studied in [25] (see also [26 – 29]).

The paper is organized as follows. In the next section we will introduce our model

where we apply the entropy function formalism to find the vacuum solutions as well as

their entropy. Re-writing the entropy in a suggestive form, we will give an expression for

the corrected central charge. In section 3 requiring to have consistent boundary conditions

we will find the asymptotic symmetry of the theory which can be used to read the central

charge. In section 4 we uplift the 2D solutions to three dimensions which may be compared

with 3D solutions in [25]. The last section is devoted to discussions.

2. 2D Maxwell-dilaton gravity with Chern-Simons term

Let us consider 2D Maxwell-dilaton gravity with the action

S = SEH + SCS (2.1)

where SEH is the Einstein-Hilbert action

SEH =
1

8G

∫

d2x
√−g eφ

(

R + 2∂µφ∂µφ +
2

l2
e2φ − l2

4
FµνFµν

)

, (2.2)

and SCS is the two dimensional Chern-Simons term given by

Scs = − 1

32Gµ

∫

d2x
(

lRǫµνFµν + l3ǫµνFµρF
ρδFδν

)

. (2.3)

The action SEH can actually be obtained from the 3D pure gravity with cosmological

constant by reducing to two dimensions along an S1 [4]. Similarly one may start from 3D
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gravitational Chern-Simons term and reduce along an S1 to arrive at the 2D Chern-Simons

Scs [30, 31]. From three dimensional point of view these actions have been used to study

the entropy of extremal black holes in the presence of higher order corrections (see for

example [32]).

The aim of this section is to study the vacuum solutions of the model given by the

action (2.1) which can be obtained by solving its equations of motion. In fact, setting

Fµν =
√−gǫµνF , the equations of motion are given by

gµν

(

∇2eφ +
1

l2
e3φ − l2F 2

4
eφ + eφ∂µφ∂µφ

)

−∇µ∇νe
φ − 2eφ∂µφ∂νφ

− l

2µ

[

gµν

(

∇2F − l2F 3 − R

2
F

)

−∇µ∇νF

]

= 0 (2.4)

R+
6

l2
e2φ+

l2

2
F 2+2eφ∂αφ∂αφ−4∇2eφ = 0, ǫµν∂µ

(

eφF +
1

2µl
(R + 3l2F 2)

)

= 0 (2.5)

It is useful to work with trace and traceless parts of the equation (2.4)

∇2eφ +
2

l2
e3φ − l2F 2

2
eφ =

l

2µ

(

∇2F − 2l2F 3 − RF
)

(2.6)

gµν(∇2eφ + 2eφ∂αφ∂αφ) − 2(∂µφ∂νφ + ∇µ∇νe
φ) =

l

2µ

(

gµν∇2F − 2∇µ∇νF
)

(2.7)

This model admits AdS2 vacuum solutions. To find them we should look for solutions

with a constant dilaton. In this case one has

2

l2
e3φ − l2F 2

2
eφ = − l

2µ

(

2l2F 3 + RF
)

, R +
6

l2
e2φ +

l2

2
F 2 = 0, (2.8)

which, for a given gauge field, can be solved to find the constant dilaton. Indeed, these

equations reduce to the following equation for dilaton

(

eφ − 3l

2µ
F

)(

2

l2
e2φ − l2

2
F 2

)

= 0. (2.9)

Therefore, for arbitrary µ and l, the model may have three different vacuum solutions with

constant dilaton given by

eφ = ± l2

2
F, eφ =

3

µl

l2

2
F. (2.10)

It is worth noting that, as it is evident from the above expressions, in the special case of

µl = 3 the third solution degenerates with the first one (the positive sign above). We will

come back to this point later.

To find the whole solutions we need to plug these expressions for the dilaton into the

equations of motion and solved for metric and gauge field. Equivalently, since the solutions

we are looking for are AdS2, one may utilize the entropy function formalism [24]. An

advantage of the entropy function formalism is that with this method we can not only find

the solutions, but also we can read the entropy of the corresponding solutions.
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To proceed let us start from an ansatz preserving SO(1, 2) symmetry of the AdS2 so-

lution

ds2 = v

(

− r2dt2 +
dr2

r2

)

, eφ = u, F01 =
e

l2
. (2.11)

The entropy function is given by

E = 2π[qe − f(e, v, u)] (2.12)

where f(e, v, u) is the Lagrangian density evaluated for the above ansatz. The parameters

e, v and u can be obtained by extremizing the entropy function with respect to them. Then

the entropy is given by the value of the entropy function evaluated at the extremum.

Using the above ansatz, the entropy function for the action (2.1) reads

E = 2π

{

qe − 1

8G

[

−2u +
2u3v

l2
+

e2u

2vl2
+

1

2µ

(

2e

vl
− e3

v2l3

)]}

(2.13)

Extremizing the entropy function with respect to the parameters v, u and e, for generic µ

and l we find three different solutions

1 : v =
1 + 1/µl

−16Gq
, e2φ =

−4Gql2

1 + 1/µl
,

e

l
= −

√

1 + 1/µl

−16qG
, q < 0,

2 : v =
1 − 1/µl

16Gq
, e2φ =

4Gql2

1 − 1/µl
,

e

l
=

√

1 − 1/µl

16qG
, q > 0,

3 : v =
1

8Gqµl
, e2φ =

72Gqµl3

µ2l2 + 27
,

e

l
=

√

µl

2Gq(µ2l2 + 27)
, q > 0. (2.14)

The entropy of the corresponding solutions written in a suggestive form is given by

1 : S = 2π

√

−ql2

6

3

2G

(

1 +
1

µl

)

,

2 : S = 2π

√

ql2

6

3

2G

(

1 − 1

µl

)

,

3 : S = 2π

√

ql2

6

12µl

G(µ2l2 + 27)
, (2.15)

which may be compared with the Cardy formula for the entropy S = 2π
√

L0

6 c. Following

the general philosophy of the AdS/CFT correspondence [3] if we assume that the 2D gravity

on the AdS2 solutions (2.14) has a dual CFT, it is then natural to identify ql2 with the

eigenvalue of L0 of the dual CFT. Then the central charges of the corresponding CFTs read

1 : cR =
3

2G

(

1 +
1

µl

)

, 2 : cL =
3

2G

(

1 − 1

µl

)

, 3 : cL =
12µl

G(µ2l2 + 27)
. (2.16)

If correct, this means that the 2D Maxwell-dilaton gravity on AdS2 background (2.14) is

dual to a chiral half of a 2D CFT characterized by the above central charges. We note,
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however, that since the identification of L0 = ql2 was speculative, the above presentation

cannot be considered as an argument supporting AdS2/CFT1 correspondence. The best

we can say is that as far as the entropy is concerned, with this identification, the picture

seems self consistent. It is worth noting that for the case of µ → ∞ where the effect

of the Chern-Simons term is zero, we recove the known results in the literature (see for

example [18, 21]) legitimating our identifications. In the next section we will present

another calculation supporting self consistency of the above picture.

The indices L,R in equations (2.16) refer to the fact that, depending on the sign of

q, the dual chiral CFT is left or right handed. Moreover, as we have already mentioned

µl = 3 is a special point. Indeed at this point the solution (3) degenerates with solution

(2) where we get

cR =
2

G
, cL =

1

G
. (2.17)

Another interesting point is µl = ±1 where we have two solutions with following central

charges

cR =
3

G
, cL =

3

7G
, (2.18)

In section 4 we will compare these results with the solutions of 3D gravity coupled to

Chern-Simons term.

3. Asymptotic symmetry and central charge

In this section we closely follow [16] to study 2D Maxwell-dilaton quantum gravity on the

three different AdS2 backgrounds in (2.14). We will see in order to have consistent boundary

conditions the usual conformal diffeomorphisim, generated by the energy momentum tensor

of (2.1), must be accompanied by a U(1) gauge transformation. As a result we will have

to work with a twisted energy momentum whose central charge is non-zero [16]. We note,

however, that although we would expect to get three different central charges for three

solutions in (2.14), since all the solutions are obtained from the same action, (2.1), the

procedure as well as the expressions for different quantities must be universal.

To proceed we note that the AdS2 vacuum solutions, setting r = 1
σ , can be recast to

the following form

ds2 = −4v
dt+dt−

(t+ − t−)2
, A± = − e

2σl2
, u = η = constant, (3.1)

where t± = t ± σ and v, e, u are given in (2.14).

Now the aim is to study 2D quantum gravity whose vacuum is given by either of the

above solutions. To do so, we first need to understand the action of the conformal group

on the theory. For this purpose, following the standard procedure in 2D CFT, we choose

an appropriate gauge for the metric and the gauge field. For the metric we choose the

conformal gauge

ds2 = −e2ρdt+dt− (3.2)
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and for the gauge field the Lorentz gauge

∂+A− + ∂−A+ = 0 (3.3)

In this gauge the gauge field can be written as A± = ±∂±a, for a scalar field a, such

that F+− = −2∂+∂−a. Our gauge choice fixes the coordinates and U(1) gauge field up to

residual conformal and gauge transformations generated by

t± → t± + ζ±(t±) , a → a + θ(t+) − θ̃(t−) (3.4)

In this gauge the action (2.1) reads

SGF =
1

4G

∫

d2t

[

− 2∂−η∂+ρ +
e2ρ

2l2
η3 − 2

∂+η∂−η

η
+

l2

2
e−2ρη (F+−)2

]

− l

4Gµ

∫

d2t [2e−2ρ∂+∂−ρ F+− + l2e−4ρ(F+−)3] (3.5)

This action should be accompanied by the equations of motion for the fields that have been

fixed by the gauge choice. These show up as the following constraints

2√−g

δS

δg±±
≡ T±± =

1

4G

(

−2∂±ρ∂±η + ∂±∂±η + 2
∂±η∂±η

η

)

+
l

8Gµ

(

− 2∂±ρ∂±F + ∂±∂±F

)

= 0 (3.6)

− δS

δA±
≡ G∓ = ± l2

8G
∂∓(ηF ) + j∓ = 0 (3.7)

where

j± = ∓ l

16Gµ
∂±(8e−2ρ∂+∂−ρ + 3l2F 2), with ∂−j+ + ∂+j− = 0. (3.8)

On the other hand since we require no current flow out of the boundary one should impose

the condition jσ|σ=0 = 0 which, using the equation (3.7), we find

jσ = j+ − j− = − l2

8G
∂t(ηF ) = 0, at σ = 0. (3.9)

As a result, the boundary terms in the variation of the action will vanish if1

∂ta|σ=0 = Aσ|σ=0 = 0 (3.10)

In general the boundary condition (3.10) is not preserved by the remaining allowed diffeo-

morphisms and hence the coordinate transformations should be accompanied by appropri-

ate gauge transformations [16]

θ(t+) =
e

2l2
∂+ζ+ , θ̃(t−) = − e

2l2
∂−ζ− . (3.11)

1The constraints (3.7) together with (3.8) and the boundary condition jσ|σ=0 = 0, completely determine

j. Indeed from the variation of the action with respect to a we find a boundary term as ∂+(ηF ) δa which

must be zero at the boundary. On the other hand due to (3.9) we are led to δa|σ=0 = 0. This forces a

Dirichlet boundary condition for the field a.
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Therefore the improved conformal transformations are generated by the twisted energy

momentum tensor

T̃±± = T±± ∓ e

2l2
∂±G±, (3.12)

where G± is the current that generates the gauge transformations (3.11). Denoting by k

the level of U(1) current which parameterizes the gauge anomaly due to the Schwinger

term, the central charge of the model reads

c = 3k
e2

l4
. (3.13)

The main challenge is to find the level of U(1), k. In general it can be obtained by making

use of the anomaly calculations [33, 34]. We note, however, that it can be fixed using the

known solutions. In particular for the case of µ → ∞ where the theory is given by the

first action in (2.1), the central charge is found to be 3
2G [18, 21]. Equating this value with

the central charge in (3.13) and using the first or second solution in (2.14) in the limit of

µ → ∞ one finds k = 8|q|l2. Plugging this back into the equation (3.13) we get

1) cR =
3

2G

(

1 +
1

µl

)

, 2) cL =
3

2G

(

1 − 1

µl

)

, 3) cL =
12µl

G(µ2l2 + 27)
, (3.14)

in agreement with our consistent results in the previous section, (2.16).

4. Relation to 3D gravity

In this section we would like to compare our 2D solutions with those in 3D Einstein-Chern-

Simons gravity which have recently been studied in [25]. To do so, we note that the two

dimensional AdS2 solutions (2.14) may be uplifted to three dimensions.

In general if we start from a 2D solution

ds2
2 = gµνdxµdxν , eφ, Aµ, (4.1)

which we assume to be symmetric under an isometry group G, we can find a pure geometric

3D gravity solution

ds2
3 = e2φ

[

ds2
2 +

(

dy + lAµdxµ

)2]

(4.2)

with isometry G ×U(1). Here y is a coordinate that parameterizes an S1 with period 2πl.

In particular consider the case where the two dimensional solution is AdS2. The

isometry group of the solution is SL(2, R).2 Being symmetric under SL(2, R) group the

solution has constant dilaton and Ftr. By uplifting the solution to three dimensions we find

a pure geometric solution whose isometry is SL(2, R)×U(1); the obtained solution will be

S1 fibered over AdS2. In other words, in light of the recent terminology, the solution may be

thought of as warped AdS3 [25]. For particular values of the radius of the AdS2 space and

field strength, the resultant three dimensional solution describes a locally AdS3 solution.

2The solution may have extra symmetries. For example for the solutions (2.14) we have U(1) gauge

symmetry as well.
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However globally it is AdS3 with an identification. The effect of this identification is that

the isometry group of AdS3, SL(2, R)× SL(2, R), breaks to SL(2, R)×U(1), as mentioned

above.

Applying the above procedure to the solutions (2.14) we get

1 : ds2 =
l2

4

(

−r2dt2 +
dr2

r2
+ (dz − rdt)2

)

, q < 0,

2 : ds2 =
l2

4

(

−r2dt2 +
dr2

r2
+ (dz + rdt)2

)

, q > 0,

3 : ds2 =
9l2

µ2l2 + 27

(

−r2dt2 +
dr2

r2
+

4µ2l2

µ2l2 + 27
(dz + rdt)2

)

, q > 0, (4.3)

where z = lθ/|e| with the identification z ∼ z + 2πln l
|e| . Here n is an integer.

We note, however, that the above description must be considered with special care. It

is known that the asymptotic symmetry of the AdS2 is is a copy of the Virasoro algebra

whose global part is an SL(2, R) [4]. This is, indeed, the generalization of AdS3 where

the asymptotic symmetry is two copies of the Virasoro algebra with SL(2, R)L ×SL(2, R)R
global part [35]. It is crucial to note that, in general, the global part of the Virasoro algebra

of AdS2 geometry is not necessarily the SL(2, R) symmetry which only leaves the metric

invariant. Indeed as we have seen in the previous section the asymptotic symmetry of AdS2

solutions of (2.14) is given by the twisted energy momentum tensor. Now uplifting the

solutions to three dimensions the resultant SL(2, R) must be read from the twisted energy

momentum tensor. In other words, if we denote the left/right handed energy momentum

tensor of the three dimensional theory by T
(3)
±±, one should identify T

(3)
±± = T̃±± [4].

Since in two dimensions the theory is chiral, upon uplifting the theory to three di-

mensions we only get non-zero excitations for one hand. In other words, depending on

whether the two dimensional solution is left/right handed we will have left/right handed

three dimensional energy momentum tensor. Actually from 3D point of view, as we have

already mentioned, due to the identification the excitation states live purely in SL(2, R)Lor

SL(2, R)R factor of the isometry group.

On the other hand as we have seen in the previous section the 2D twisted energy

momentum tensor has non-zero central charge given by (2.16). Therefore the corresponding

central charge of the dual CFT of the three dimensional solutions is given by

1 : cR =
3l

2G3

(

1 +
1

µl

)

, 2 : cL =
3l

2G3

(

1 − 1

µl

)

, 3 : cL =
12µl2

G3(µ2l2 + 27)
, (4.4)

where G3 is 3D Newton constant. Of course, although the theory we get has excitations of

only one hand, the other sector exists but has zero excitations. Thus the 2D CFT dual to

the above 3D solutions has both cL and cR. Using the diffeomorphism anomaly by which

we have cL − cR = −3/µG3 [36], one finds

1 : cL =
3l

2G3

(

1− 1

µl

)

, 2 : cR =
3l

2G3

(

1+
1

µl

)

, 3 : cR =
15µ2l2 + 81

µG3(µ2l2 + 27)
, (4.5)

in agreement with [32] and [25].
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As we have already mentioned the z coordinate in solutions (4.3) is periodic. Therefore

one may interpret the solutions as 3D extremal black holes. Due to the identification the

SL(2, R)L/SL(2, R)R-invariant AdS3 vacuum should give a thermal state for the left/right

movers of the boundary CFT with zero right/left temperature and non-zero left/right

temperature. On the other hand the t direction can be treated as the null coordinate of

the boundary, while the z should be considered as a Rindler coordinate. Therefore the

left/right temperature of the dual CFT is proportional to the magnitude of the shift in z

direction. More precisely, one gets3

1 : TR =
2l

π

√

−qG3

l(1 + 1
µl )

, 2 : TL =
2l

π

√

qG3

l(1 − 1
µl )

, 3 : TL =
2l

π

√

qG3(µ2l2 + 27)

8µl2
. (4.6)

The corresponding entropy using the Cardy formula S = π2

3 cL/RTL/R reads

1 : S = 2π

√

−ql2

6

3l

2G3

(

1 +
1

µl

)

,

2 : S = 2π

√

ql2

6

3l

2G3

(

1 − 1

µl

)

,

3 : S = 2π

√

ql2

6

12µl2

G3(µ2l2 + 27)
, (4.7)

which are compatible with those we have found in section two from 2D point of view.

5. Conclusions

In this paper we have studied 2D Maxwell-dilaton gravity on AdS2 geometry in the presence

of higher order correction given by Chern-Simons term. The model admits three distinctive

AdS2 vacuum solutions characterized by the sign of the electric field. Using the entropy

function formalism we have evaluated the entropy of the solutions. Note that in the leading

order when the action is given by the Einstein-Hilbert action the model has only one

solution. Adding the Chern-Simons term the solution gets corrections which depend on

the coefficient of the Chern-Simons term as well as the sign of the electric charge leading to

three different solutions. The sign dependent nature of the corrections may be associated

with the fact that the dual CFT is believed to be chiral half of a 2D CFT.

When the coefficient of the Chern-Simons term is set to zero the solution (1) degen-

erates with solution (2) while the third one disappears. In other words, the solutions (1)

and (2) are Einstein solutions while the last one is not. Of course for particular values of

µl the third one degenerates with the solution (2) as well.

Following [16] we have studied the action of the conformal group in the model where

we have seen that in order to have consistent boundary conditions we will have to work

3Note that such a treatment for warped AdS3 is tricky due to its boundary. Nevertheless in writing the

expression for this case we are encouraged by the fact that in this case the picture fits nicely as well.
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with a twisted energy momentum tensor. The twisted energy momentum tensor has non-

zero central charge which should be associated with the central charge of the dual CFT.

Requiring to have a consistent picture we have been able to read the corresponding central

charge as well as the level of U(1) current.

We have compared our solutions with those in 3D gravity by uplifting the solutions

to three dimensions. The solutions (1) and (2) have been uplifted to a solution which is

locally AdS3 though globally it is AdS3 with an identification. The third one has been

uplifted to a solution which is known as warped AdS3 [25] with an identification. Due to

the identification, the resultant 3D solutions may be thought of as 3D extremal black holes.

We have also determined the entropy of the extremal black holes which are given by

the Cardy formula using the obtained central charges. The consistency of the results points

toward the conjecture made in [25] where the authors proposed that the 3D gravity on the

warped AdS3 geometry is dual to a 2D CFT with left and right hand central charges given

by the third central charges in equations (4.4) and (4.5).

The AdS3 and warped AdS3 solutions in 3D gravity are believed to be dual to 2D CFTs

with cL and cR given by equations (4.4) and (4.5). Therefore in general one might expect

that from two dimensional point of view we should have got four solutions corresponding

to four different sectors which are obtained from 3D AdS3 and warped AdS3. But as we

have seen in two dimensions only three of them can be realized. The missing one is the

right handed sector of the warped AdS3 solution with central charge given by the third one

of (4.5). This means that if we consider an extremal black hole in warped AdS3 there is

only one possibility in which the left movers will survive. This is unlike an extremal black

hole in AdS3 where it could be either left or right handed with non-zero excitations of left

or right mover states, respectively.

It is worth mentioning that, as it was observed by the authors of [26], when we study

asymptotic symmetry of the warped AdS3 solution one gets a copy of Virasoro algebra

with central charge given by the third one of (4.5). This is exactly the one which cannot

be realized from 2D point of view. It would be interesting to illustrate the physics behind

this special behavior of the warped AdS3.

It was shown in [37] that the TMG quantum mechanically makes sense only at µl = 1

where we get chiral gravity. From 2D point of view although we have observed that µl = 1

is a special point, it is not a priori clear why we should set µl = 1 from 2D point of view.

Indeed, there are several examples in string theory where we have extremal black holes

which upon reduction to two dimensions we get an action very similar to that in (2.2).

In these cases the coefficient of the Chern-Simons term usually is fixed by a topological

number and the charges of black holes. As far as the black holes are concerned there

are no conditions on the coefficient of the Chern-Simons term. It would be interesting to

understand this point better
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