
Invited Review THE UNIVERSE Vol. 2, No. 3 July-September 2014

The Curvature Perturbation and Non-Minimal

Coupling

Jonathan White1, ∗

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

We review aspects of the curvature perturbation generated during inflation. In partic-
ular we focus on the time dependence and non-Gaussianity of the curvature perturbation,
as a non-trivial time dependence and deviation from Gaussianity represent two key signa-
tures of inflationary models beyond the canonical single-field scenario. After reviewing these
features in the context of General Relativity, we consider how the situation is changed on
introducing non-minimal coupling. We pay particular attention to how the δN formalism
and its application in calculating the correlation functions of the curvature perturbation are
modified.

1. Introduction

It is now widely accepted that the density

perturbations seeding temperature fluctuations

in the cosmic microwave background (CMB)

and the formation of large scale structure (LSS)

find their origin in the quantum fluctuations of

one or more scalar fields, stretched to super-

horizon scales during a period of quasi-de Sitter

expansion dubbed inflation [1–5]. The relevant

quantity in determining the exact nature of the

initial conditions that these quantum fluctua-

tions give rise to is the gauge-invariant curva-

ture perturbation on hypersurfaces of constant

energy density, ζ. In the context of simple,

single-field inflationary models, there are two

very robust predictions regarding the proper-

ties of the curvature perturbation. Firstly, it is

known to be conserved on super-horizon scales,

not just at linear order but fully non-linearly

[6]. Secondly, it is known that deviations from

Gaussianity are unobservably small [7]. As

such, when looking for signatures of models be-

yond simple, single-field inflation, we are par-

ticularly interested in any possible violation of

the above two predictions. A time-dependence

of the curvature perturbation generically indi-

cates the presence of non-adiabatic perturba-

tions, which in the context of inflation is syn-
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onymous with the presence of multiple fields. A

non-negligible deviation from Gaussianity may

be another signature of the presence of multiple

fields, but could also indicate that the action for

the single scalar field is non-canonical.

A non-minimal coupling of one or more

scalar fields to the Ricci scalar offers one ex-

ample of a non-canonical feature in the infla-

tionary action. Indeed, such a non-minimal

coupling is well motivated in the context of

quantum field theory in curved spacetime or

higher-dimensional unifying theories. Moreover,

there are whole classes of inflationary models

with non-minimal coupling whose predictions

are known to be in very good agreement with

observational constraints coming from WMAP

and Planck. In this article we will review

aspects of inflation models with non-minimal

coupling, focusing in particular on the calcula-

tion of the curvature perturbation on hypersur-

faces of constant energy density, its time depen-

dence and non-Gaussianity. In calculating the

non-Gaussianity of ζ, one particularly powerful

method is the δN formalism, which allows one

to calculate the non-linear curvature perturba-

tion on super-horizon scales using knowledge of

only the background dynamics [8–13]. The for-

malism is essentially independent of the model

of gravity under consideration, but as we will

see, there are some subtleties that come to light

when we try to use the formalism to calculate
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correlation functions of ζ in models with non-

minimal coupling. One of the aims of this re-

view is to clarify these subtleties. Another fo-

cus of this article will be the relation between

the curvature perturbation as defined in the so-

called Jordan and Einstein frames, denoted by

ζ and ζ̃ respectively. In the single-field case it is

known that ζ = ζ̃ non-perturbatively, which al-

lows us to freely use the somewhat simpler Ein-

stein frame formulation of this class of models.

However, this is no longer true in the presence of

multiple fields, meaning that we have to be more

careful in determining exactly how ζ and ζ̃ are

related to observables. At least classically, the

Jordan and Einstein frames are simply related

by a relabelling of the metric, so predictions for

observables should be independent of the frame

in which we calculate them. The physical inter-

pretation in each frame, on the other hand, may

be very different. The issue of “frame depen-

dence” is a longstanding one, and is still very

relevant today, for example in the context of

Higgs inflation.

The rest of this article will be structured as

follows: In Sec. 2 we begin by reviewing proper-

ties of the curvature perturbation on hypersur-

faces of constant energy density in the context

of General Relativity (GR). We start by defining

the gauge-invariant curvature perturbation and

considering its time-dependence at linear order

in perturbation theory. Moving beyond linear

perturbations we then give a summary of the

δN formalism as applied to single- and multi-

field models of inflation. In Sec. 3 we introduce

non-minimal coupling. After firstly motivating

the introduction of non-minimal coupling, we

briefly review the general formulation of mod-

els that contain non-minimal coupling and their

application to inflation. Moving on to the cur-

vature perturbation, ζ, we then take a look at

how the linear and non-linear analyses of Sec.

2 are modified in the presence of non-minimal

coupling, focusing in particular on the subtleties

that arise when using the δN formalism to cal-

culate the correlation functions of ζ. We also

consider the relation between ζ as defined in the

Jordan frame and ζ̃ as defined in the Einstein

frame. Finally we conclude in Sec. 4.

2. Curvature Perturbation

In this section we briefly review the proper-

ties of the curvature perturbation on hypersur-

faces of constant energy density in the context

of GR. We start by defining the gauge-invariant

curvature perturbation on hypersurfaces of con-

stant energy density at linear order and consid-

ering its time dependence. We then discuss how

the δN formalism allows us to determine the

curvature perturbation non-perturbatively.

2.1 Linear Theory and Time-Dependence

Following the notation of [14], assuming

a spatially flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) background and including only

scalar perturbations, we take our perturbed

metric to be of the form

ds2 = −(1 + 2AY )dt2 − 2aBYidtdx
i

+a2

[
(1 + 2R) δij + 2HT

1

k2
Y,ij

]
dxidxj ,

(2.1)

where perturbations have already been decom-

posed into Fourier modes using the scalar har-

monic functions Y (k-indices suppressed) sat-

isfying (∇2 + k2)Y = 0, Yi = −k−1Y,i and

Y,i = ∂iY .

Turning to the energy-momentum tensor, at

background level it is taken to be of the perfect

fluid form

Tµν = pgµν + (ρ+ p)uµuν , (2.2)

and the perturbations are decomposed as

δT00 = −ρδg00 + δρY,

δT0i = δTi0 = pδg0i − δqY,i and

δTij = δTji = pδgij + a2 (δpY δij + pΠTYij) ,

(2.3)

where ΠT is the anisotropic stress perturbation,

δq = −(ρ + p)δu/k, δu is the fluid velocity po-

tential perturbation and Yij is defined as Yij =
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k−2Y,ij + δijY/3. Note that at this stage we do

not restrict ourselves to the energy-momentum

tensor associated with single- or multi-field in-

flationary models.

With the above decompositions, the curva-

ture perturbation on hypersurfaces of constant

energy density, ζ, is defined as

ζ ≡ R− H

ρ̇
δρ. (2.4)

As discussed in the introduction, we are par-

ticularly interested in the time-dependence of

this quantity, or the lack thereof. Taking the

time derivative of (2.4), and making use of the

energy-momentum constraint equations, we find

[15]

ζ̇ = − H

ρ+ p
δpnad +

(
k

aH

)2

H

3

[
ζ −

(
R− aH

k
σg

)
(

1 +

(
k

aH

)2 2ρ

9(ρ+ p)

)]
, (2.5)

where σg = aḢT /k − B and δpnad is the non-

adiabatic pressure perturbation defined as

δpnad = δp− ṗ

ρ̇
δρ. (2.6)

On super-horizon scales (k � aH) the above

expression reduces to

ζ̇ ' − H

ρ+ p
δpnad. (2.7)

As such, we see that on super-horizon scales the

curvature perturbation on hypersurfaces of con-

stant energy density is conserved in the absence

of non-adiabatic perturbations, i.e. perturba-

tions that do not satisfy δp = (ṗ/ρ̇)δρ.

On super-horizon scales, the above curvature

perturbation on hypersurfaces of constant en-

ergy density is closely related to the comoving

curvature perturbation, defined as the curvature

perturbation on hypersurfaces where δT 0
i =

0↔ δq = 0↔ δu = 0, namely

Rc = R+
Hδq

ρ+ p
(2.8)

To see this we note that, using two of Einstein’s

equations, it is possible to show that

ζ −Rc = −H
ρ̇

(δρ− 3Hδq)

=
2ρ

9(ρ+ p)

(
k

aH

)2(
R− aH

k
σg

)
,

(2.9)

so that on super-horizon scales we have ζ ' Rc.

2.2 Single- and Multi-Field Inflation

In the case of single-field inflation, assuming

a canonical kinetic term and potential V , one

finds that the non-adiabatic pressure pertur-

bation is given as δpnad = − 2Vφ
3Hφ̇

(δρ− 3Hδq),

where Vφ = ∂V/∂φ. As such, using (2.9),

we see that the comoving curvature perturba-

tion is conserved on super-horizon scales. We

also note that in the single-field case we have

δT 0
i ∝ δq ∝ δφ, meaning that the comov-

ing curvature perturbation coincides with the

curvature perturbation on hypersurfaces of con-

stant φ. In the case of single-field inflation, this

latter quantity in fact serves as a more appropri-

ate definition of the comoving curvature pertur-

bation when we wish to go beyond linear theory.

Moving on to multi-field inflation, let us con-

sider a Lagrangian of the form

Lφ = −1

2
hab(~φ)gµν∂µφ

a∂νφ
b − V (~φ), (2.10)

where the symmetric matrix hab(~φ) represents

the field-space metric. Unlike in the single-

field case, even on super-horizon scales the

non-adiabatic pressure perturbation is non-

vanishing, meaning that ζ is no longer con-

served. Specifically, one finds

δpnad ' −
2habφ̇

a

hef φ̇eφ̇f
hcg

Dφ̇g

dt
Kbc, (2.11)

where D/dt denotes the covariant derivative

with respect to the field-space metric hab(~φ),

' denotes the fact that the equality holds on

super-horizon scales and Kab is defined as

Kab ≡ δφaφ̇b − δφbφ̇a. (2.12)
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As such, we see that the curvature perturbation

will only be conserved on super-horizon scales

if the background trajectory follows a geodesic

of the field-space, i.e. Dφ̇a/dt ∝ φ̇a. See e.g.

[9, 11, 16–18] for more details on the covariant

approach to multi-field inflationary dynamics.

From (2.11) we see that Kab plays a key role

in the non-conservation of ζ, and this quan-

tity is closely related to the so-called isocur-

vature perturbations associated with multi-field

inflationary models. As introduced by Sasaki

and Tanaka [11], when considering a multi-field

model of inflation with some background trajec-

tory in field-space, one can decompose pertur-

bations at any instant into components along

and perpendicular to this background trajec-

tory.1 These are referred to as the instanta-

neous adiabatic and isocurvature perturbations

respectively [20]. For adiabatic perturbations,

which satisfy δφa ∝ φ̇a, the quantity Kab van-

ishes, meaning that it is only the isocurvature

perturbations that source the evolution of ζ on

super-horizon scales. In the single-field case

the field-space is only one-dimensional, mean-

ing that there are no such isocurvature pertur-

bations.

2.3 Non-Linear Extension and the δN

Formalism

In this section we present an overview of the

so-called δN formalism, which allows one to cal-

culate the non-linear curvature perturbation on

super-horizon scales using knowledge of only the

background dynamics [8–13]. There are essen-

tially two important steps: the first is showing

that δN = ζ, where δN will be defined more

precisely below, and the second is showing that

under the separate-universe approximation Ein-

stein’s equations and the equations of motion

for the fields take on exactly the same form as

1See [19] for an alternative decomposition recently sug-
gested, where, in the context of the δN formalism, per-
turbations are decomposed into components along the
trajectory and along hypersurfaces of constant e-folding
number.

those for the background quantities. The im-

portant point will be to choose the correct time

slicing.

Proving that δN = ζ

In order to prove the relation δN = ζ we

do not need to consider any specific model of

gravity or action. Let us write our metric in the

ADM form

ds2 = −α2dt2+a2e2Rγij(dx
i+βidt)(dxj+βjdt),

(2.13)

where the determinant of γij is unity. We intro-

duce an expansion parameter ε = k/aH, which

we will attach to any spatial gradient of a quan-

tity ∂i. Taking ε� 1 corresponds to smoothing

out small-scale inhomogeneities, and we assume

that in the limit ε → 0 our Universe becomes

locally described by the FLRW metric

ds2 = −dt2 + a2(t)δijdx
idxj , (2.14)

where here we have already assumed our uni-

verse to be flat. In order for the metric (2.13)

to reduce to the FLRW form in the limit ε→ 0

we require βi → 0 and γij → δij . The second

condition can be achieved by performing a co-

ordinate transformation in the case that γij is

time-independent, but not in the case that it is

time-dependent. This leads us to the conclusion

γ̇ij ∼ O(ε). The first condition similarly leads

us to the conclusion βi ∼ O(ε).

We define an effective local Hubble rate in

terms of the expansion of the unit time-like

vector normal to surfaces of constant t, nµ.

Namely, we define H ≡ θn/3, where θn ≡ ∇µnµ.

Using the above form of metric this gives us

θn = ∇µnµ =
3

α
(H̄ + ∂tR) +O(ε2). (2.15)

Note that we attach bars to all background

quantities in this section, so H̄ = ȧ/a. This

in turn allows us to define the local number of

e-foldings along the integrated curve of the nor-

mal vector nµ

5
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NA(t2, t1;x
i)

N(t2, t1)

δN = NA(t2, t1;x
i)−N(t2, t1)

ρ(t2) = const.

R(t2) = 0

R(t1) = 0

Fig. 1. Figure adapted from [21] depicting the method of the δN formalism.

N (t2, t1;xi) ≡
∫ t2

t1

Hαdt

= N(t2, t1) +R(t2;xi)−R(t1;xi),

(2.16)

where αdt = dτ is the local time parameter

and N(t1, t2) is the background number of e-

foldings between the times t1 and t2. The first

thing that we notice is that if we take the flat

slicing, where R(t;xi) = 0, then we recover

the background number of e-foldings, namely

N (t2, t1;xi) = N(t2, t1).

Next consider taking two sets of initial and

final slices labelled by A and B. We then get

the relation

NA(t2, t1;xi)−NB(t2, t1;xi)

=
(
RA(t2;xi)−RB(t2;xi)

)
−
(
RA(t1;xi)

− RB(t1;xi)
)
. (2.17)

If we specify that for A the initial slice is flat and

the final slice is one of uniform energy density,

and that for B both the initial and final slices

are flat, then this gives us the relation

ζ(t2;xi) = NA(t2, t1;xi)−N(t2, t1) ≡ δN.
(2.18)

Diagrammatically the situation is shown in Fig.

1.

Reducing Everything to Background

Dynamics

The next important step is to show that —

on choosing an appropriate time coordinate —

Einstein’s equations and the equations of mo-

tion for the scalar fields at full non-linear level

take on exactly the same form as those at back-

ground level to leading order in ε. This then

leads us to the conclusion that the perturbed

solutions can be derived from the background

solutions by simply changing the initial condi-

tions appropriately. In the following we will use

the explicit form of energy-momentum tensor

associated with the Lagrangian given in (2.10).

Using the ADM decomposition given in

(2.13) one can derive an expression for the ex-

trinsic curvature Kij , which can in turn be de-

composed into trace and trace-free parts as

Kij = a2e2R
(γij

3
K +Aij

)
, (2.19)

where the indices of Aij are raised and lowered

with γij and γij . Taking βi, ∂i, γ̇ij ∼ O(ε)

and making a perturbative expansion in ε, from

the dynamical equation for γij we are able to

determine that Aij ∼ O(ε). Using this result

and taking the flat gauge, i.e. R = 0, one then

finds that the Hamiltonian constraint takes the

6
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form

3H2 =
1

M2
Pl

[
H2

2
habφ

a
Nφ

b
N + V

]
+O(ε2).

(2.20)

where φaN = dφa/dN . We see that the form is

exactly the same as the background Hamilto-

nian constraint. This is thanks to the fact that

we have used N as the time coordinate, as this

quantity remains unperturbed in the flat gauge

R = 0.

Similarly, turning to the equations of motion

for the scalar fields, taking the flat gauge we find

that they can be written as

H
d

dN
(HφaN ) + 3H2φaN + ΓabcH

2φbNφ
c
N

+habVb +O(ε) = 0, (2.21)

which is again of the same form as the back-

ground results, but this time only to order ε.

We can, however, go a step further. Us-

ing the fact that Aij ∼ O(ε) and that the

anisotropic stress of the energy-momentum ten-

sor associated with (2.10) is vanishing, the equa-

tion of motion for Aij in the flat gauge tells us

that Aij ∝ 1/a3. As we only have a decaying so-

lution, this allows us to effectively ignore Aij at

the order of accuracy to which we are working,

so that effectively we have Aij ∼ O(ε2). Substi-

tuting this result into the equation of motion for

γij leads us to the conclusion that γ̇ij ∼ O(ε2)

as opposed to O(ε). As such, we find that the

equations of motion for the scalar fields are of

the same form as the background result up to

O(ε2) rather than just O(ε), namely

H
d

dN
(HφaN ) + 3H2φaN + ΓabcH

2φbNφ
c
N

+habVb +O(ε2) = 0. (2.22)

Given the above results, we conclude that on

a flat hypersurface, to leading order in ε we have

φa(N, xi) = φ̄a(N,φb∗(x
i), φcN∗(x

i)). (2.23)

That is, we can determine φa(N, xi) by locally

specifying different initial conditions, where

φa∗(x
i) = φ̄a∗ + δφaR∗ and similarly for φaN∗(x

i).

For notational simplicity, let us introduce the

vector

φa =

 φb

φcN

 , (2.24)

where a = 1....2n. In this notation we may sim-

ply write φa(N, xi) = φ̄a(N,φa∗(x
i)).

Given that we are ultimately interested in

the curvature perturbation on hypersurface of

constant energy density, let us turn our atten-

tion to the energy density. We follow the anal-

ysis given in [13]. The energy density on a

flat hypersurface is not constant, but is given

as ρ(N, xi) = ρ̄(N,φa∗(x
i)). The energy density

on a hypersurface of constant energy density is

given as ρ̂(N , xi) = ρ̄(N ). However, due to the

fact that the density is a four-scalar, we have

the relation ρ̄(N,φa∗(x
i)) = ρ̄(N ), which can be

inverted to give us N = N (N,φa∗(x
i)). Namely,

we have

N (t2, t∗, x
i) = N(t2, t∗) +Naδφ

a
R∗

+
1

2
Nabδφ

a
R∗δφ

b
R∗ + ...

(2.25)

where Na = ∂N/∂φa∗ and similarly for Nab. In-

serting this result into (2.18) we finally find the

well-known δN formula

ζ(t, xi) = δN = Naδφ
a
R∗ +

1

2
Nabδφ

a
R∗δφ

b
R∗ + ...

(2.26)

The Correlation Functions of ζ

In comparing theoretical predictions with

observations we are interested in the correlation

functions of the curvature perturbation. Given

the expansion (2.26) for ζ, and on expanding in

terms of Fourier modes, we see that in order to

be able to determine the correlation functions

of ζ we must know the correlation functions of

δφaR∗.

Starting with the power spectrum, and fol-

lowing the procedure outlined in [10], to lowest

7
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order in the slow-roll approximation we find2

〈δφaR∗(k)δφbR∗(k
′)〉 = (2π)3δ3(k + k′)

H2
∗

2k3
hab∗

≡ (2π)3δ3(k + k′)P (k)ab,

(2.27)

whereH∗ and hab∗ are evaluated at a time shortly

after the two scales k and k′ have left the horizon

and

P(k)ab ≡ k3

2π2
P (k)ab = hab∗

(
H∗
2π

)2

. (2.28)

We therefore find

Pζ(k) = NaNbh
ab
∗

(
H∗
2π

)2

. (2.29)

In order to determine the spectral tilt, we again

follow the procedure outlined in [10] and find

ns − 1 = −2ε− 2

NaNa

+
2NaN b

3H2
∗NeN e

[
∇a∇bV +Racbdφ̇

cφ̇d
]
∗
,

(2.30)

where ε = −Ḣ/H2, indices are raised and low-

ered with hab and hab, respectively, and Rabcd is

the Riemann tensor associated with hab.

Going beyond the power spectrum, if we con-

sider the expansion (2.26) up to second order,

then to leading order we find the three-point

correlation function to be given as

〈ζ(k1)ζ(k2)ζ(k3)〉
= NaNbNc〈δφaR∗(k1)δφbR∗(k2)δφcR∗(k3)〉

+(2π)3δ(3)(k1 + k2 + k3)
6

5
fNL [NaN

a]2

H4

4

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

, (2.31)

where

fNL =
5

6

NaNb∇c∇dNhachbd
[NeN e]2

. (2.32)

2Note that here we are making the slow-roll approxima-
tion and neglecting the dependence of N on φaN . This
means here we only need the power spectra of δφaR∗ and
not of δφaNR∗.

The first term in (2.31) corresponds to the

intrinsic non-Gaussianity in the perturbations

δφaR∗, resulting from non-linear interactions be-

fore horizon crossing. The second term corre-

sponds to the non-Gaussianity generated due to

the non-linear dependence of the evolution of

super-horizon patches on the initial conditions

of each of the fields. If we assume the initial per-

turbations δφaR∗ to be Gaussian, the first term

vanishes and consequently fNL parameterises

the magnitude of the non-Gaussianity. In the

case of single-field inflation it is known that fNL
is slow-roll suppressed, but this is no longer the

case in multi-field inflation.

Before moving on, we close this section by

commenting on the conservation of the non-

linear curvature perturbation. In [6] it was

shown that in the single-field case, provided that

the system is in the attractor regime, where

∂τφ = F (φ) (dτ = αdt), then the uniform φ

slicing coincides with the comoving slicing and

the non-linear comoving curvature perturbation

is found to be conserved.

3. Non-Minimal Coupling

So far, whilst some of our results relating to

the curvature perturbation have been indepen-

dent of the choice of gravity theory, many have

explicitly assumed GR. In this section we re-

view how the analysis presented in the previous

section is modified if we consider models that

contain a non-minimal coupling of one or more

scalar fields to the Ricci scalar.

3.1 Motivation, Formulation and Application

to Inflation

The general action under consideration takes

the form

S =

∫
d4x
√−g

{
f(~φ)R− 1

2
hab(~φ)gµν∂µφ

a∂νφ
b

−V (~φ) + L(m)(gµν , ψ)
}
,

(3.1)

8
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where the first term represents a non-minimal

coupling of some function of one or more fields

to the Ricci scalar and we have also allowed

for additional, minimally coupled matter, rep-

resented by the field ψ. Such a form of action is

theoretically well motivated:

• In the context of field theory in

curved spacetime [22, 23], on dimensional

grounds we should allow for terms of the

form ξRφ2 in our action, where ξ is a di-

mensionless constant. Even if such terms

are not present in the original action, we

would expect them to appear when we

consider higher-order loop corrections.

• Mach’s principle and Dirac’s large-

numbers hypothesis both led to the idea

that the gravitational constant may be

time dependent, which in turn led to the

development of scalar-tensor theories of

gravity [24–30].

• It is well known that f(R) gravity —

a natural extension of GR in which the

Ricci scalar in the Einstein-Hilbert ac-

tion is replaced by some general func-

tion of the Ricci scalar [31] — can be re-

expressed as a scalar-tensor theory, where

the scalar field captures the additional

scalar degree of freedom associated with

f ′(R) [32].

• Finally, in the context of higher-

dimensional unifying theories, non-

minimal coupling appears naturally

when we derive the 4-dimensional effec-

tive actions via compactification, see e.g.

[33].

Jordan Frame Analysis

The action in its original form (3.1) is

said to be in the Jordan frame. Despite the

non-minimal coupling, we are still able to ex-

press Einstein’s equations in the form Gµν =

T eµν/M
2
Pl, but where T eµν is now some effective

energy-momentum tensor given as

T eµν =
M2
pl

2f

[
T (φ)
µν + T (m)

µν + 2∇µ∇νf − 2gµν�f
]
,

(3.2)

where T
(φ)
µν and T

(m)
µν are the standard energy-

momentum tensors associated with the mid-

dle two terms of (3.1) and L(m), respectively.

Using the equations of motion it is possible

to show that, despite the non-minimal cou-

pling, the Biancci identity does indeed give us

∇µT (m)
µν = 0, meaning that test particles still

follow geodesics of gµν [29].

Einstein Frame Analysis

Mixing between the scalar and gravitational

sectors that results from the non-minimal cou-

pling in (3.1) makes analysing this form of ac-

tion somewhat complicated. A common trick,

however, is to perform a conformal transforma-

tion that allows us to remove this mixing. If we

consider our original metric to be given in terms

of some new metric g̃µν as

gµν =
M2
pl

2f
g̃µν , (3.3)

we obtain an action whose gravitational part is

of the canonical Einstein-Hilbert form, namely

S =

∫
d4x
√
−g̃

{
M2
PlR̃

2
− 1

2
Sabg̃

µν∇̃µφa∇̃νφb

−Ṽ + L̃(m)

(
M2
Pl

2f
g̃µν , ψ

)}
,

(3.4)

where Ṽ = M4
PlV/(2f)2 and Sab defines a new

field-space metric that is given explicitly as3

Sab =
M2
Pl

2f

[
hab + 3

fafb
f

]
. (3.5)

Einstein’s equations then take the standard

form Gµν = (T̃
(φ)
µν + T̃

(m)
µν )/M2

Pl. Using the re-

lation between gµν and g̃µν we are able to de-

termine that T
(m)
µν = 2f(~φ)T̃

(m)
µν , from which we

3Note that we require the eigenvalues of the matrix Sab
to be positive in order to avoid the appearance of ghosts
in our model.
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can in turn deduce

∇̃µT̃ (m)
µν = −T̃ (m) fν

2f
, (3.6)

where T̃ (m) is the trace of the matter energy-

momentum tensor. Thus, we see that even if

T
(m)
µν is covariantly conserved, in general T̃

(m)
µν is

not, meaning that test particles will not follow

geodesics of the metric g̃µν . It will, however,

be conserved if T̃ (m) = 0, which is the case for

radiation-like matter.

Inflation with Non-Minimal Coupling

Inflationary models with non-minimal cou-

pling are not something new. In the late 80’s

and early 90’s so-called Induced Gravity infla-

tion models were considered [34]. These were

based on Zee’s idea of induced gravity whereby

the current value of the gravitational constant is

determined by the vacuum expectation value of

some field φ after spontaneous symmetry break-

ing [35]. Chaotic inflationary models with non-

minimal coupling were also considered around

that time [36, 37], and again received attention

around the turn of the century [38, 39]. Re-

cent observational constraints on the scalar tilt,

ns, and scalar-to-tensor ratio, r, coming from

WMAP and Planck have once again led to a re-

newed interest in inflationary models with non-

minimal coupling [40–42]. In particular, Higgs

inflation [43] and a whole class of inflation mod-

els introduced by Kallosh and Linde in the con-

text of the superconformal approach to super-

gravity [44–48] all give the same predictions for

ns and r as R2 inflation, namely

ns − 1 = − 2

N
and r =

12

N2
. (3.7)

For N ∼ 55, these lie right at the sweet spot of

constraints from WMAP and Planck. In all of

these examples, there are common effects of the

non-minimal coupling that lead to ideal condi-

tions for inflation. When one re-writes the the-

ories in their Einstein frame representation and

defines a canonically normalised field (which is

always possible in the single-field case) one finds

that

1. The effective potential in the Einstein

frame is suppressed by a factor 1/f2 with

respect to that in the Jordan frame. For

the specific models considered here, at

large field values this suppression factor

causes the effective potential to approach

a constant, equivalent to a cosmological

constant.

2. As a result of the logarithmic relation be-

tween the original field and the canon-

ically normalised field, one also finds

a stretching of the potential for large

field values when written in terms of the

canonically normalised field.

It must be noted, however, that these effects are

not common to all inflation models with non-

minimal coupling.

Finally, we must mention the relevance of

the recent findings of the BICEP2 team, who

claim to have detected a tensor-to-scalar ra-

tio r ∼ O(0.1) [49]. If this finding is con-

firmed, then the aforementioned models become

decidedly less attractive, as they all predict

r ∼ O(10−3). However, this by no means spells

the end for models with non-minimal coupling.

Indeed, classes of non-minimally coupled mod-

els that interpolate between models predicting

small r and those predicting large r are known

[50].

3.2 Linear Curvature Perturbation

Having introduced inflationary models with

non-minimal coupling, we are now interested in

discussing the curvature perturbation on hyper-

surfaces of constant energy density. In their

Einstein frame representation, models with non-

minimal coupling are no different from the mod-

els discussed in Sec. 2. However, if matter is

minimally coupled to the Jordan frame metric

rather than that in the Einstein frame, we would

like to relate the curvature perturbation associ-

ated with g̃µν to that associated with gµν .

Using the fact that ds̃2 = (2f/M2
Pl)ds

2, and

decomposing both the Jordan and Einstein met-

10
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rics in the form (2.1), but with tildes attached to

Einstein frame quantities, at background level

we find the relations

ã =

√
2f

Mpl
a, dt̃ =

√
2f

Mpl
dt,

dx̃i = dxi and H̃ =
MPl√

2f

(
H +

ḟ

2f

)
, (3.8)

and for the perturbations we find

Ã = A+
δf

2f
, R̃ = R+

δf

2f
,

B̃ = B and H̃T = HT . (3.9)

At background level we see that there are appar-

ently non-equivalences between the two frames.

For example, the notion of an accelerating ex-

pansion is different in the two frames [51, 52],

Ḣ/H2 6= H̃ ′/H̃2 (where a prime denotes the

derivative with respect to t̃), so that the no-

tion of slow-roll is not equivalent and aH 6=
ãH̃, meaning that the naive definition of super-

horizon scales is also not equivalent. At the level

of perturbations, we see that they are equivalent

if we are able to choose a gauge in which δf = 0.

In the single-field case δf ∝ δφ, so that

δf = 0 corresponds to the comoving gauges in

both frames, i.e. δφ = 0 ↔ δT e0i = 0 = δT̃ 0
i.

As such, the comoving curvature perturbation

is equivalent in the two frames [53, 54]. Using

the fact that on super-horizon scales the comov-

ing and constant-energy-density curvature per-

turbations coincide, we can conclude that the

latter is also equivalent in the two frames.

In the more general case, however, we may

not be able to choose a gauge in which δf = 0,

and even when this is possible there is no guar-

antee that this choice of gauge will coincide

with the comoving or constant-energy-density

gauges. In comparing ζ and ζ̃ in the more gen-

eral case, we in fact choose to work with the

curvature perturbations on comoving hypersur-

faces, Rc and R̃c. This is because on super hori-

zon scales we have Rc ≈ ζ and R̃c ≈ ζ̃, and the

expressions forRc and R̃c turn out to be simpler

than those for ζ and ζ̃. We thus have

ζ − ζ̃ ' Rc − R̃c = −δf
2f

+
Hδq

ρ+ p
− H̃δ̃q

ρ̃+ p̃
.

(3.10)

where δq and δq̃ are as defined in (2.3) for the

Jordan and Einstein frames respectively. Note

that quantities such as δq in the Jordan frame

are those associated with the effective energy-

momentum tensor defined in (3.2) (see [55] for

explicit expressions). To simplify the calcu-

lation further we take the longitudinal gauge.

This is possible thanks to the fact that taking

the longitudinal gauge in one frame is equiva-

lent to taking it in the other, as can be seen

from (3.9).4 After some manipulation (see [55]

for details), we obtain

ζ − ζ̃ ≈ AabKab + BabK̇ab, (3.11)

where Aab and Bab are dependent only on back-

ground quantities – see [55] for explicit expres-

sions. With this difference written wholly in

terms of Kab and its derivative, it is explicitly

clear that it is the isocurvature modes that are

responsible for any discrepancy between ζ as

defined in the two frames. In particular, we

see that the difference vanishes in the single-

field case and in any scenario where an ef-

fectively single-field adiabatic limit is reached,

where δφa ∝ φ̇a.
Next let us comment on the conservation of

the curvature perturbation. As already men-

tioned, the analysis in the Einstein frame is en-

tirely equivalent to that presented in Sec. 2,

meaning that the expression for δp̃nad is the

same as (2.11) but with hab → Sab, d/dt→ d/dt̃,

Kab → K̃ab = MPlKab/
√

2f and D/dt → D̃/dt̃,

where the last object corresponds to the covari-

ant derivative with respect to the field-space

metric Sab. With both δp̃nad and ζ − ζ̃ being

given in terms of Kab and K̇ab, we can deduce

that δpnad in the Jordan frame must also be

given in terms of Kab and its derivatives. As

4See [56] for a discussion on the relation between gauge
choices made in the Jordan and Einstein frames.
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such, we can confirm that it is the isocurva-

ture perturbations that source the evolution of

ζ, even in the presence of non-minimal coupling.

In the absence of isocurvature modes, i.e. when

Kab = 0, we thus recover
˙̃
ζ = ζ̇ = 0 and ζ̃ = ζ.

The equivalence of the curvature perturbations

and their statistical properties in the absence of

isocurvature modes is discussed in [57].

More generally, the fact that ζ 6= ζ̃ suggests

that the evolution of the two curvature pertur-

bations will also be different. In particular, the

conservation of one of the two quantities does

not necessarily imply the conservation of the

other, i.e. δp̃nad = 0 < δpnad = 0. It is im-

portant to stress, however, that this does not

equate to a frame-dependence of observables;

any observable predictions should remain inde-

pendent of the frame. In the case that an adi-

abatic limit is reached before the end of infla-

tion, i.e. Kab → 0, the equivalence is manifest,

as we eventually recover ζ = ζ̃. In the case

that isocurvature modes persist, the equivalence

may not be so manifest, but should still hold so

long as we are careful to keep track of how the

non-minimal coupling affects matter, rulers and

clocks in the two frames, see e.g. [58, 59]. The

physical interpretation in the two frames, how-

ever, may be very different, see e.g. [60].

3.3 Non-Linear Considerations

In moving beyond linear perturbations, we

once again turn to the δN formalism. Let us

begin by verifying the validity of the δN for-

malism in models with non-minimal coupling.

We will then point out some subtleties relating

to the calculation of correlation functions of ζ in

the presence of non-minimal coupling. Finally,

based on our findings we will compare the non-

linear curvature perturbations associated with

the Jordan and Einstein frames.

The Validity of the δN Formalism

Recall that there were two key steps in prov-

ing the validity of the δN formalism in subsec-

tion 2.3. The first was showing that δN = ζ,

but in proving this relation we only had to

specify the form of metric, and made no as-

sumptions about the gravity theory. As such,

no additional proof is required regarding this

point. The second step was showing that, under

the separate universe approximation, Einstein’s

equations and the equations of motion for the

fields take on exactly the same form as those

for the background quantities to order ε2 in

the gradient expansion. Extending the proof of

this statement to the case of non-minimal cou-

pling follows through almost exactly as in sub-

section 2.3, replacing Tµν in the original equa-

tions with T eµν . Turning first to the Hamiltonian

constraint, we find that the �f term appearing

in T e00 contains a γ̇ij , meaning that the result is

of the same form as the background equation,

but only up to O(ε). Turning to the equations

of motion for the fields, we find that the �φa

and R terms both contain γ̇ij terms, meaning

that the form of the equations of motion also

only matches that of the background equations

to O(ε).

In the case of Einstein gravity we were able

to show that as Aij only has a decaying so-

lution, and was originally O(ε), we are able

to take Aij ∼ O(ε2), which in turn gives us

γ̇ij ∼ O(ε2). In the non-minimally coupled

case, the anisotropic stress associated with T eij
is not vanishing, meaning that we may not be

able to draw the same conclusion. However, on

closer inspection, we find that the combination

T eij − γijγklT ekl/3 ∝ ḟAij + O(ε2), which means

that the dynamical equation for Aij reduces to

Ȧij +

(
3H̄ +

ḟ

f

)
Aij +O(ε2) = 0, (3.12)

giving us

Aij ∝
1

fa3
. (3.13)

As such, as long as f is not decaying faster than

1/a3, we still have a decaying solution for Aij ,

thus allowing us to take Aij and consequently

12
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γ̇ij to be O(ε2), which means that we recover

3H2 =
1

2f

[
H2

2
habφ

a
Nφ

b
N + V − 6H2fN

]
+O(ε2), (3.14)

H
d

dN
(HφaN ) + 3H2φaN + ΓabcH

2φbNφ
c
N

+hab
(
Vb − fb

(
12H2 + 6HHN

))
+O(ε2) = 0.

(3.15)

We have therefore verified the validity of the δN

formalism in the presence of non-minimal cou-

pling, under the condition that f is not decaying

faster than 1/a3.

Correlation Functions of ζ

In the minimally coupled case, the expansion

of δN in terms of the perturbations on the initial

flat hypersurface — Eq. (2.26) — allowed us to

use the known correlation functions of δφaR∗ —

given in Eq. (2.27) — to determine correlation

functions of ζ. In the non-minimally coupled

case, however, we cannot use the standard result

(2.27) for the correlation functions of δφaR∗, as

the equations of motion for δφaR take on the non-

standard form

M2
a
b
D2δφbR
dt2

+M1
a
b
DδφbR
dt

+M0
a
bδφ

b
R = 0,

(3.16)

i.e. there is mixing not only in the mass term

M0
a
bδφ

b, but also in the derivative terms (see

[55] for the explicit forms of Mi
a
b).

In principle we can of course use these equa-

tions of motion to determine the correlation

functions of δφaR, but in fact we find that this

is unnecessary once we realise the relation be-

tween the δφaR defined on flat hypersurfaces in

the Jordan frame and the δφaR̃ defined on flat

hypersurfaces in the Einstein frame. As noted

previously, the analysis in the Einstein frame

follows almost exactly that outlined in Sec. 2,

and the correlation functions of δφaR̃∗ are given

as in (2.27) with hab∗ → Sab∗ and H∗ → H̃∗. In

order to relate δφaR to δφaR̃, we note that the

Sasaki-Mukhanov variables at first and second

order are given as [61–63]

δφaR(1) = δφa(1) −
φ′a

H R(1),

δφaR(2) = δφa(2) −
φ′a

H R(2)

+

(R(1)

H

)2 [
2Hφ′a + φ′′a − H

′

H φ′a
]

+2
φ′a

H2
R′(1)R(1) −

2

HR(1)δφ
′a
(1),(3.17)

where a prime denotes the derivative with re-

spect to conformal time η (adη = dt) and

H = a′/a. In extending the metric decompo-

sition (2.1) to second order in perturbation the-

ory, we have taken e.g. R = R(1) +R(2)/2, with

R(i) representing a quantity that is of i’th order

in the perturbative expansion.

The corresponding quantities in the Einstein

frame, δφaR̃(1)
and δφaR̃(2)

, are then found by

replacing all R and H in (3.17) with R̃ and

H̃ = ã′/ã respectively. In comparing δφaR(i) and

δφaR̃(i)
it is therefore necessary to determine the

relation between R and R̃ to second order. The

first order result is already given in (3.9), and

extending the analysis to second order we find

R̃(2) = R(2) +
faδφ

a
(2)

2f
+
fabδφ

a
(1)δφ

b
(1)

2f

−
fafbδφ

a
(1)δφ

b
(1)

f2
+

2faδφ
a
(1)R̃(1)

f
.

(3.18)

Using this result, along with (3.9) and the back-

ground result H̃ = H + f ′

2f , we are able to ex-

press δφaR(i) in terms of δφaR̃(i)
, and substituting

these relations into the expansion for δN in the

Jordan frame we find5

ζ = δN

= Naδφ
a
R̃ +

1

2
Nabδφ

a
R̃(1)

δφbR̃(1)
−
faδφ

a
R̃

2f

−1

2

fcbδφ
c
R̃(1)

δφbR̃(1)

2f
+

(
fbδφ

b
R̃(1)

2f

)2

,

(3.19)

5See [64] for details.
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where we have omitted asterisks attached to

f , its derivatives and the δφaR̃ to avoid clut-

ter. Note that, in its current form, the expres-

sion for ζ is not explicitly covariant with re-

spect to field-space quantities. In order to make

cavariance explicit, we need to replace the δφaR̃
with their corresponding perturbation quanti-

ties that transform as vectors of the tangent

space defined by the field-space metric Sab. The

relation to second order is [65]

δφaR̃ = QaR̃ −
1

2
(S)ΓabcQ

b
R̃(1)

QcR̃(1)
, (3.20)

where (S)Γabc is the Christoffel symbol associ-

ated with Sab, and substituting this relation into

(3.19) we find

ζ = NaQ
a
R̃ +

1

2
∇̃a∇̃bNQaR̃(1)

QbR̃(1)
, (3.21)

where N = N − ln(f)/2.

Using the result [9, 10, 66]

〈QaR̃(1)
(k1)QbR̃(1)

(k2)〉 = (2π)3δ3(k1+k2)
H̃2

2k3
Sab,

(3.22)

we find the power spectrum and fNL parameter

in the Jordan frame

Pζ(k) = NaNbS
ab

(
H̃

2π

)2

and

fNL =
5

6

NaNb∇̃c∇̃dNSacSbd
[NeNfSef ]

2 , (3.23)

where, at leading order, the three point correla-

tion function for ζ is given as

〈ζ(k1)ζ(k2)ζ(k3)〉
= NaNbNc〈QaR̃(k1)QbR̃(k2)QcR̃(k3)〉

+(2π)3δ(3)(k1 + k2 + k3)
6

5
fNL

[
NaNbS

ab
]2

H̃4

4

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

. (3.24)

The intrinsic non-Gaussianity of the field per-

turbations at horizon crossing, which is required

to determine the first term in the above equa-

tion, can be calculated following the formalism

of [66, 67]. Recall that all appearances of QaR̃,

Sab, H̃ and ln(f) in the above equations should

have asterisks attached, indicating that they are

to be evaluated at the time η∗ that is shortly

after the modes in question have left the hori-

zon. We remark here that under the slow-roll

approximation the horizon crossing times in the

two frames coincide, i.e. k = H ≈ H̃ when

|f ′/f | � |H|.
Using (3.23), and following very closely the

calculation outlined in [10], to leading order in

the slow-roll approximation we find the spectral

index as

ns − 1 : =
d lnPζ
d ln k

= 2
dH̃/dt̃

H̃2
− 2

NaNa

+
2NaNb

3H̃2NeNe

[
∇̃a∇̃bṼ + R̃acbd

dφc

dt̃

dφd

dt̃

]
.

(3.25)

Comparing the Frames

Following the arguments of [53], let us write

our conformal transformation in the form

Ω2 = Ω2
0e

2∆Ω, (3.26)

where Ω2 = 2f/M2
Pl and Ω0 and ∆Ω correspond

to the background part of Ω and its non-linear

perturbation, respectively. Then, considering

only the spatial part of our line elements in the

Jordan and Einstein frames, we find

ã2e2R̃γ̃ijdx
idxj = Ω2

0e
2∆Ωa2e2Rγijdx

idxj

= ã2e2R+2∆Ωγij , (3.27)

from which we determine

R̃ = R+ ∆Ω. (3.28)

As such, we see that in a similar way as with

the linear case, the two curvature perturbations

will be equal in a gauge where ∆Ω = 0. In the

single-field case, as Ω is only a function of φ,

∆Ω = 0 corresponds to δφ = 0 at the non-linear

level. Even at non-linear level, taking δφ = 0

corresponds to the comoving gauge in both the

Jordan and Einstein frames, and so we conclude
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φ1

φ 2

δφ∗

i

defines final constant energy surface 

in Einstein frame

 
ɶN
a
≠ N

a

  
δφ

R

a ≠ δφ
R!

a

defines final constant energy surface 

in Jordan frame

ρ = const.

ρ̃ = const.

Fig. 2. Figure demonstrating the two key differences between the δN formalism as applied in the Jordan

and Einstein frames: the difference in initial conditions compared to some fiducial background trajectory,

i.e. δφaR 6= δφaR̃, and the difference in the final surfaces of constant energy density up to which we integrate

N in the Jordan frame (blue line) and Ñ in the Einstein frame (red line).

that the two comoving curvature perturbations

are the same. In the presence of isocurvature

modes, however, this argument no longer holds.

In the more general case, where isocurvature

perturbations are present, let us use try to use

the δN formalism applied in both the Jordan

and Einstein frames to establish the difference

between ζ and ζ̃. As pointed out already, the

analysis in the Einstein frame follows almost ex-

actly that in Sec. 2. The expressions for ζ̃,

Pζ̃(k), f̃NL, 〈ζ̃(k1)ζ̃(k2)ζ̃(k3)〉 and ñs − 1 are

found to be of exactly the same form as given

in expressions (3.21)– (3.25), but with N → Ñ ,

where Ñ is the number of e-foldings in the Ein-

stein frame. As such, we are interested in deter-

mining the difference between the two quantities

Ñ and N, which are given explicitly as

N =

∫ ρ=const.

∗
Hdη − ln(f∗)

2
, (3.29)

Ñ =

∫ ρ̃=const.

∗
H̃dη

=

∫ ρ̃=const.

∗
Hdη +

1

2
ln

(
fρ̃=const.

f∗

)
,

(3.30)

where ρ = const. and ρ̃ = const. denote the final

surfaces of constant energy density up to which

we integrate in the Jordan and Einstein frames

respectively. Taking their difference, we have

Ñ−N =

∫ ρ̃=const.

ρ=const.
Hdη+

1

2
ln(fρ̃=const.). (3.31)

Note that this difference is not affected by the

difference in definition of the initial flat hyper-

surface. This is because the difference resulting

from δφaR ↔ δφaR̃, which manifested itself in the

ln(f∗)/2 term in the expression for N, exactly

cancels with the ln(f∗)/2 term in the expression

for Ñ , which results from the difference between

H̃ and H. As such, it is only the difference in

definition of the final surface of constant energy

density which is important. The two key dif-

ferences between the δN formalism as applied

in the Jordan and Einstein frames are depicted

schematically in Fig. 2.

If an adiabatic limit is reached we have two

simplifications. Firstly, the definition of the fi-

nal surface of constant energy density becomes

unique, meaning that the first term on the

right-hand side of (3.31) vanishes. Secondly,

the final values of all the fields become inde-

pendent of the initial conditions, meaning that

∂fρ̃=const./∂φ
a
∗ = 0.
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Fig. 3. Taken from [64]: Evolution of the power spectrum (upper plot) and spectral tilt (lower plot) in the

Jordan (JF) and Einstein (EF) frames for a range of fχ. Here we have set 2f = 1 (which corresponds to

taking MPl = 1), V (χ) = 1, fχχ = Wχχ = 0, N∗ = 60, p = 1 and m2 = 1.94× 10−11.

As such, given that we are actually only in-

terested in differences between the derivatives of

Ñ and N, such as Ña−Na, which will depend on

derivatives of fρ̃=const., we see that the second

term in (3.31) also becomes irrelevant. Conse-

quently, we recover the known result ζ = ζ̃ even

at the non-linear level [53, 68].

3.4 An Example: Non-Minimally Coupled

“Spectator”

As an example, let us summarise the re-

sults obtained in [64] for what was dubbed the

non-minimally coupled “spectator” field model.

This model consists of two fields φ and χ, corre-

sponding to the inflation and “spectator” field

respectively. We then choose the non-minimal

coupling function to only depend on χ. The

reason we call χ the “spectator” field is that we

assume Ṽχ = 0, meaning that under the slow-

roll approximation we have χ′ = 0, i.e. the field

is not dynamical during inflation. However, it

is not a spectator field in the usual sense, as

the presence of non-minimal coupling results in

the perturbations of χ contributing to the cur-

vature perturbation. Hence we write spectator

in quotation marks.
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Fig. 4. Taken from [64]: Predictions in the ns–r plane for models with p = 1 (upper plot) and p = 1/2

(lower plot). A range of fχ are considered (see legends for exact values) and the remaining parameters are

fixed as V (χ) = 2f = 1, fχχ = Ṽχχ = 0 and m2 is normalised for each curve such that Pζ = 2.4× 10−9.

The small and large discs on each curve correspond to modes leaving the horizon 50 and 60 e-foldings

before the end of inflation, respectively. As the Jordan and Einstein frames agree at leading order at the

end of inflation, here we only plot the Jordan frame quantities. The 68% and 95% confidence contours

from the recent Planck results have also been plotted.

In order to allow for an analytic analysis we

consider the case where Ṽ is product separa-

ble and hab = δab. Being a little more specific,

we take V = V (χ)(χ)V (φ)(φ), with V (φ)(φ) =

m2φ2p. In the context of our analytic calcula-

tions, we find that we require fχ/
√
f ∼ O(ε1/2)

and fχχ . O(ε). To leading order in the slow-

roll approximation we then find

ζ − ζ̃ ' fχ
2fε

δχR̃∗. (3.32)

Given the 1/ε dependence of this difference, we

therefore expect that it might be initially large,

when ε � 1, but that towards the end of infla-

tion, when ε ∼ 1, it is small.

In Fig. 3 we have plotted the Jordan and

Einstein frame power spectra and tilts as func-

tions of N for a range of values of fχ. The end

of inflation is taken to be defined by ε = 1,

and we consider modes that leave the horizon

60 e-folds before the end of inflation. For def-

initeness, the remaining parameters are taken

as follows: 2f = 1 (so that the effective Planck

17



Invited Review THE UNIVERSE Vol. 2, No. 3 July-September 2014

mass is in agreement with the current value and

we are now taking MPl = 1), fχχ = Ṽχχ = 0,

V (χ)(χ) = 1 and p = 1. Lastly, we take

m2 = 1.94× 10−11 in order that for fχ = 0 the

power spectrum is normalised to the observed

2.4× 10−9.

We see that the general behaviour of the dif-

ferences between the power spectra and tilts as-

sociated with the Jordan and Einstein frames

is as expected from expression (3.32). Namely,

whilst initially there is a non-trivial difference

between the Jordan and Einstein frame quanti-

ties, they become equivalent towards the end of

inflation.

A similar behaviour is found for the quan-

tities fNL and f̃NL, but the requirement that

fχχ . O(ε) deems the non-Gaussianity unob-

servable, so we do not plot the results here. This

example illustrates how, despite the fact that fi-

nal predictions for ζ and ζ̃ may coincide, their

preceding evolution may be very different, lead-

ing to different interpretations of the generation

of primordial perturbations in the two frames.

Having looked at the evolution of the power

spectra and spectral tilts, let us now turn to

their final values and the dependence of these

values on the non-minimal coupling. Still im-

posing fχχ = Ṽχχ = 0, in Fig. 4 we have plot-

ted predictions in the ns–r plane as a function

of fχ for the cases p = 1 and p = 1/2. As

we expect the final Jordan and Einstein frame

results to agree at leading order, we choose to

only plot the Jordan frame parameters. In each

case we choose m such that Pζ is normalised

to 2.4 × 10−9, and the remaining parameters

are set as 2f = V (χ) = 1. We see that as fχ
is increased, the tensor-to-scalar ratio becomes

suppressed and the spectrum becomes more red-

tilted. As such, for p = 1/2, a combination of

these two effects brings predictions within the

68% confidence contours of the recent Planck

results.6 See [64] for a more detailed analysis of

this example model.

6We would like to thank Laila Alabidi for providing us
with the data for these confidence contours.

4. Conclusions

In this article we have given a brief review of

aspects relating to the curvature perturbation

generated during inflation, focusing in particu-

lar on the time dependence of ζ at linear order

and the δN formalism as a tool to determine ζ

to non-linear order.

After reviewing the standard results in the

context of GR, in Sec. 3 we considered how the

situation changes on the introduction of non-

minimal coupling. Even in the presence of non-

minimal coupling, it is possible to bring Ein-

stein’s equations into the form Gµν = T eµν/M
2
Pl,

where T eµν is the effective energy-momentum

tensor defined in (3.2). As such, the analysis

with regard to the time dependence of ζ at lin-

ear order follows through exactly as in the min-

imally coupled case, but with quantities such

as δρ, δp and δpnad now being those associated

with T eµν . In the case of multi-field inflation,

we saw that — as in the standard case — δpnad

is given in terms of isocurvature perturbations

that do not lie along the background trajectory

in field space. Unlike the standard case, how-

ever, ζ is not necessarily conserved when the

background trajectory is a geodesic of the field-

space.

Whilst the above results pertain to the origi-

nal Jordan frame, we also discussed the quantity

ζ̃ associated with the conformally related Ein-

stein frame and its relation to ζ in the Jordan

frame. The Einstein frame action is of canoni-

cal form, meaning that all standard results re-

garding the time dependence of ζ̃ and its non-

Gaussianity apply. We saw that the difference

between ζ and ζ̃ is given in terms of the isocur-

vature perturbations associated with multi-field

inflation, which agrees with the known result

ζ = ζ̃ in the single-field case. Under the as-

sumption that an adiabatic limit is reached be-

fore the radiation dominated phase — such that

eventually ζ = ζ̃ — the potentially different evo-

lutions of ζ and ζ̃ in the preceding non-adiabatic

phase gives rise to the possibility that the in-

terpretation of the generation of the primor-

dial curvature perturbation is very different in
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the two frames. Indeed, this was the case in

the non-minimally coupled “spectator” example

presented in the final subsection. In the case

that isocurvature modes persist, perhaps even

until the present day, one has to be very careful

to determine exactly how ζ and ζ̃ are related

to the observed temperature fluctuations of the

CMB. So long as we are careful to keep track

of how the non-minimal coupling affects mat-

ter, rulers and clocks in the two frames, then,

at least classically, predictions for observables

should be independent of the frame in which

they are calculated. The physical interpreta-

tion in the two frames, however, may be very

different.

Moving beyond linear order perturbations we

considered the validity of the δN formalism in

the presence of non-minimal coupling. Provided

that the non-minimal coupling function f does

not decay faster than 1/a3, we saw that the

key results of the δN formalism remain unaf-

fected. In calculating the correlation functions

of δN = ζ, however, we saw that one has to be

careful to take into account the fact that the cor-

relators for δφaR as defined in the Jordan frame

do not take on the standard form. By relating

δφaR to δφaR̃ as defined in the Einstein frame,

however, one is able to determine the correla-

tion functions of ζ. Using our results we were

able to compare ζ and ζ̃ to non-linear order, and

were able to confirm that in the adiabatic limit

we recover ζ = ζ̃.

Looking beyond the results summarised in

this article, the frame dependence of quantum

corrections is another issue that has recently at-

tracted much attention, see e.g. [69, 70]. Such

considerations are of particular importance in

the context of Higgs inflation, where predictions

are very sensitive to quantum corrections and

the running of Standard Model couplings. It is

our hope that some of the results discussed in

this article will prove useful in resolving these

quantum issues.
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