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Spectral functions at finite temperature and two-loop order are investigated, for a medium consisting of
massless particles. We consider them in the timelike and spacelike domains, allowing the propagating
particles to be any valid combination of bosons and fermions. Divergences (if present) are analytically
derived and set aside for the remaining finite part to be calculated numerically. To illustrate the utility of
these “master” functions, we consider transverse and longitudinal parts of the QCD vector channel spectral
function.
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I. INTRODUCTION

In a relativistic plasma, the rates of processes like particle
production and damping are derivable from the imaginary
part of a particle’s self-energy [1,2]. That quantity, also
called the spectral function, depends on the energy k0 and
momentum k which can occur only in the combination
K2 ≡ k20 − k2 at zero-temperature. This is not so for thermal
systems, where the medium’s rest frame is distinguished
and the temperature T ≠ 0 joins k0 and k ¼ jkj as an
important scale in the problem. Introducing another scale
can dramatically alter the naive weak coupling expansion:
New infrared singularities foreshadow that next-to-leading
order (NLO) corrections are large, or even that resumma-
tion is obligatory.
One such instance is the photon spectral function in hot

QCD [3–5]. Truncating the perturbative result for the self-
energy to order e2 in the electromagnetic interactions, we
denote by ΠðlÞ the ensuing contribution from g2l to the
strong coupling expansion. The series then takes the form,

ΠμνðKÞ ¼ e2
�X∞
l¼0

g2lΠμν
ðlÞ

�
þOðe4Þ; ð1:1Þ

with a supposed ordering by powers of g2. For a strict loop
expansion, the “coefficients” of g2l are themselves func-
tions of k0 and k but independent of g. However their
dependence on the external momentum K can (and does)

spoil this power counting, e.g., when jK2j≲ g2T2. In
particular, for high-energy real photons (i.e., k0 ¼ k ∼ T)
resummation of thermal loops is a minimal requirement to
prevent an unphysical log-singularity [6–10].
For many observables only leading-order (LO) or partial

NLO results are known, making it unclear where (1.1)
actually breaks down. To obtain an approximation that is
justified for all k0, the fixed order expansion can be
“matched” with the resummed approach (which works
near the light cone). That was the idea put forward in
Ref. [11], where it was tested for ImΠμ

μ with k0 > k. Here
we also consider energies below the light cone and
separately the polarization state ImΠ00

ð1Þ, as inspired

by Ref. [12].
Our goal is to assist in the effort of quantifying another

order in perturbation theory by cataloging a general class of
two-loop spectral functions. (One of the earliest attempts in
this spirit provided the first correction to the gluon plasma
frequency [13].) What follows is rather technical, but lays
out a generic approach to evaluate those integrals fre-
quently needed in NLO computations. All code used for
determining the finite thermal parts (defined as specified
below) is supplied in Ref. [14]. The primary task of that
code is a phase space integration of amplitudes squared,
with thermal weightings appropriate to each process.
To compute loop integrals at finite temperature, we apply

the imaginary time formalism for massless particles. Free
scalar propagators, carrying either bosonic (s ¼ þ1) or
fermionic (s ¼ −1) momentum, are denoted by

ΔsðPÞ ¼
1

p2
0 − p2

; p0 ¼ i½2nþ Θð−sÞ�πT: ð1:2Þ

The integer n specifies the Matsubara frequencies and Θ is
the Heaviside step function.
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We regularize the spatial momentum in d ¼ 3 − 2ϵ
dimensions with the modified minimal subtraction (MS)
scheme and renormalization scale μ̄. The trace over
momentum P ¼ ðp0; pÞ at finite temperature is defined by

XZ
P
¼

Z
p
T
X
p0

;

Z
p
¼

�
eγμ̄2

4π

�
ϵ Z ddp

ð2πÞd ;

where γ is Euler’s constant. We follow [15] to carry out the
sums over p0, defined in (1.2).
This paper is organized as follows. In Sec. II a general

class of master sum-integrals is introduced and those
considered here are specified. They are then evaluated,
one by one, in Secs. III–VI. (For completeness, and as an
important cross-check on our results, the K2 ≫ T2 beha-
vior of each sum-integral is derived analytically in the
Appendix D.) Finally, we “sum up” in Sec. VII and
mention some potential applications.

II. LIST OF INTEGRALS

Let us define, for generic sum-integrals I as functions of
the external four-momentum K ¼ ðk0; kÞ, a uniform nota-
tion (for m ¼ n ¼ 0, cf. [16]),

I ðm;nÞ
abcdeðKÞ ¼

XZ
P;Q

pm
0 q

n
0Δa

1Δb
2Δc

3Δd
4Δe

5; ð2:1Þ

where Δi ≡ ΔsiðPiÞ. The case n ¼ 0 is abbreviated by

I ðmÞ
abcde. Together with P and Q, the integration variables, K

determines all the propagating momenta (as depicted in
Fig. 1),

P1 ≡ P; P2 ≡Q; P3 ≡ R ¼ K − P −Q;

P4 ≡ L ¼ K − P; P5 ≡ V ¼ K −Q:

(We introduced P, Q etc., to avoid the proliferation of
subscripts.) The statistical signatures s0 (for K), s1 and s2
fully determine the others by their connections at each
vertex,

s3 ¼ s0s1s2; s4 ¼ s0s1 and s5 ¼ s0s2:

Thus we summarize the statistical content of (2.1) by
ðs0; s1; s2Þ ¼ ð�;�;�Þ, not including it explicitly on the
notation.

At T ¼ 0, the statistics play no role and these integrals
can be evaluated using well-known methods [17]. The
vacuum contributions will dominate over the thermal ones
for large K2. Relative corrections are suppressed by powers
of K2 that can be formally organized with an operator
product expansion (OPE) [18]. Thermal effects are impor-
tant for K2 being of similar order to T2, the regime we
consider here to calculate the imaginary part of (2.1).1 The
remaining limit, K2 ≪ T2, is frequently associated with the
need to resum all orders in perturbation theory to cure a
diverging spectral function. With that in mind, we shall
often also discuss the master integrals for K2 ≈ 0.

A. Strategy: m, n ≥ 1

To take care of the powers of the energy in the numerator
of (2.1), namely pm

0 and qn0 with positive integers m and n,
we employ the following strategy. In special cases, the
corresponding graph has a symmetry in momenta P and Q
(i.e., if a ¼ b and d ¼ e), and one can take advantage of the
same symmetry for the powers of p0 and q0. But in general,
one should make use of the Fourier representation of the
(massive) scalar propagator,

Δsðτ; pÞ ¼ −
1

2Ep

X
v¼�

fvsðEpÞe−vEpτ; ð2:2Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2

p
and λ is the particle mass. Here we

also introduced f−s ¼ sns, fþs ¼ 1þ sns and the distribu-
tion function nsðEÞ ¼ ½expðE=TÞ − s�−1.
Beginning with the case m ¼ 1 and differentiating with

respect to τ under the Fourier transformation, one effec-
tively multiplies2 by the conjugate variable,

p0ΔsðPÞ ¼ −
Z

T−1

0

dτep0τ∂τðΔsðτ; pÞÞ: ð2:3Þ

This is inserted into (2.1) before carrying out the frequency
sum. It is straightforward to differentiate (2.2) with respect
to τ. Hence (2.3) provides an extra factor of ðvEpÞ,
counting the minus sign from integrating by parts.
The case m ¼ 2 is also elementary from the relation,

p2
0ΔsðPÞ ¼ 1þ E2

pΔsðPÞ: ð2:4Þ

By applying (2.4) and (2.3) in sequence one can reduce pm
0

form ≥ 2 in (2.1) to a sum of powers of ðvEpÞwith simpler
masters. (And the same strategy works for qn0.) The benefit
of all this, is that the frequency sums are relatable to cases
with m ¼ n ¼ 0; any complications will move to the
integration over the three momenta p and q that follows.

FIG. 1. Labeling of momenta and statistics for (2.1).

1By evaluating it at an energy k0 þ i0þ.
2Here we generalize (1.2) to have a mass: ΔsðPÞ ¼

ðp2
0 − p2 − λ2Þ−1. This will help later on, as an infrared regulator.
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B. Example: A QCD spectral function

Integrals of the form (2.1) [with statistics ðþ;−;−Þ] can
be used to express the NLO photon self-energy in an
equilibrated QCD plasma at zero chemical potential. The
emission rate is derived from the (contracted) spectral
function ImΠμ

μ [19,20], but here we also study Π00. Due to
the Ward identity at nonzero temperature, the polarization
tensor has two independent components. identified with the
longitudinal and transverse polarizations,

ΠL ¼ K2

k2
Π00; ΠT ¼ −

1

2

�
Πμ

μ þ K2

k2
Π00

�
: ð2:5Þ

The difference between ΠL and ΠT is purely thermal,
at zero temperature there is none [12]. Accordingly, Πμ

μ

and Π00 are enough to completely specify Πμν at finite
temperature.
Denoting the number of colors by N and the group factor

by CF ≡ ðN2 − 1Þ=ð2NÞ, they read (with ϵ → 0)

gμνΠ
μν
ð1Þ ¼ −8ð1 − ϵÞNCFf2ð1 − ϵÞ

× ½I ð0Þ
00120 − I ð0Þ

01020 þ K2ðI ð0Þ
11020 − I ð0Þ

10120Þ�
þ 2I ð0Þ

11010 þ 2ϵðI ð0Þ
11100 − I ð0Þ

10110Þ

−
1

2
ð3þ 2ϵÞK2I ð0Þ

11011 − 2ð1 − ϵÞI ð0Þ
1111ð−1Þ

þ 4K2I ð0Þ
11110 − K4I ð0Þ

11111g; ð2:6Þ

Π00
ð1Þ ¼ −4NCFf2ð1 − ϵÞ½I ð0Þ

00120 − I ð0Þ
01020 þ K2ðI ð0Þ

11020 − I ð0Þ
10120Þ − 4k0ðI ð1Þ

11020 − I ð1Þ
10120Þ

þ 4ðI ð2Þ
11020 − I ð2Þ

10120Þ� þ 2ð1 − ϵÞI ð0Þ
10110 þ 2ϵI ð0Þ

11100 þ ð1þ ϵÞk2I ð0Þ
11011 − 2ð1 − ϵÞI ð0Þ

1111ð−1Þ

þ 4½ð1 − 2ϵÞk20 − k2�I ð0Þ
11110 þ 8ϵk0I

ð1Þ
11110 − 8ð1 − ϵÞk0I ð0;1Þ

11110 þ ½ð1 − 2ϵÞk20 þ k2�K2I ð0Þ
11111

þ 4ϵK2I ð1;1Þ
11111 − 4ð1 − ϵÞK2I ð2Þ

11111g: ð2:7Þ

As part of the procedure to reduceΠ00 andΠμ
μ to a minimal

set of integrals, we removed angular variables in the
numerator thanks to relations like p · k ¼ p0k0 þ
1
2
ððK − PÞ2 − P2 − K2Þ. These replacements put frequen-

cies in the numerator and bring about other (usually)
simpler master integrals.
This motivates our study of the following set of master

functions. [Values for m, n are from (2.6) and (2.7).]

We have grouped themaster integrals into classes (designated
by the numeral on the graph), according to the associated
topology. The topology of the class does not necessarily
followdirectly fromtheassignmentof loopmomenta inFig.1.
A change of integration variables is sometimes required to
relate them. The first three classes are all presented together in
Sec. III because they consist of simpler one-loop subgraphs
that factorize. Classes IV, V and VI can be considered
genuinely two-loop and will receive the most attention, being
discussed in Secs. IV, V and VI respectively.
Beforemoving on, a brief comment on one-loop diagrams

is in order. They have been studied extensively in the
literature and are usually considered in the hard thermal
loop (HTL) approximation. (Higher order HTL results have
also been investigated, cf. Ref. [21].) This is common in the
high temperature limit [15] because it affords analytic
expressions for the self energy and supplies results that
are automatically gauge invariant. If one relaxes the HTL
assumption that the external momentumK2 is much smaller
than T2, the complete self-energies must be evaluated
numerically [22]. Effective field theory methods have also
been developed recently to compute associated power
corrections [23]. The imaginary parts involve phase space
integrals for 1 ↔ 2 “decays” which are needed for our
master diagrams II and III aswell as certain terms arising inV
andVI.AppendixAgives details on the integrationmeasure,
where we also discuss the 2 ↔ 2 and 1 ↔ 3 processes to be
utilized when more intermediate states can go on shell.
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III. DIAGRAMS I-III (FACTORIZABLE
TOPOLOGIES)

Those diagrams we assigned to classes I, II and III are
reducible to products of simpler one-loop integrals. They
can all be recast as those having c ¼ 0 in (2.1),3 which
implies that P and Q dependence of the integrand does not
mix. It is thus useful to recap a general one-loop function,
defined by

J ðmÞ
ab ðKÞ ¼

XZ
P
pm
0 Δa

s1ðPÞΔb
s2ðK − PÞ: ð3:1Þ

The frequency sum over p0 is well known [15], and we
organize the subsequent integration over spatial momentum
p according to Appendix A.
The cases where b ¼ 0 are local contributions. For the

one with a ¼ 1 we abbreviate the integral by

Imðs1Þ≡ J ðmÞ
10 ¼ T2

�
Θð−s1Þ
2mþ1

− 1

�
ð2πTÞmζð−m − 1Þ;

where ζ is the Riemann zeta function [24]. Type I self-
energies are then constant, and we need not discuss them
because they have no imaginary part. Moreover, since In is
zero in vacuum (form ≥ 0), the type II integrals are entirely
thermal corrections.
For a ¼ b ¼ 1, integrals of the form (3.1) are usually

considered in the limit k0 ∼ k for which the HTL functions
can be used. But in general, the emerging integral expres-
sions must be evaluated numerically [22]. Only when
taking the imaginary part, thus putting internal momenta
on shell, is the integral doable analytically.
Let us introduce three useful functions F, G and H that

make the statistics explicit,

FmðK; s1; s2Þ ¼ ImJ ðmÞ
12 ; m ¼ f0; 1; 2g;

GmðK; s1; s2Þ ¼ ReJ ðmÞ
11 ;

HmðK; s1; s2Þ ¼ ImJ ðmÞ
11 ; m ¼ f0; 1g: ð3:2Þ

With help from these intermediate functions, the imaginary
part of our relevant two-loop master integrals can be written

ImI ðm;nÞ
11020 ¼ Inðs2ÞFmðK; s1; s4Þ;

ImI ðm;nÞ
11011 ¼ ½GmðK; s1; s4ÞHnðK; s2; s5Þ�

þ ½m ↔ n; s1 ↔ s2; s4 ↔ s5�: ð3:3Þ

(The same spectral functions in Ref. [25] were labeled by a
“d” and “g” respectively.)
Since In was given above, we now turn to the

K-dependence of Fm, for the particular cases needed.

As derived in Appendix B (and applicable for both
k0 > k and k0 < k),

FmðK; s1; s2Þ

¼ −s1s2
n−10
64πk

�
kmþ
k−

ns1ðkþÞns2ðk−Þ −
km−
kþ

ns1ðk−Þns2ðkþÞ
�
;

ð3:4Þ

where the distribution function ns was defined below (2.2)
and is evaluated at light cone momenta k� ¼ ðk0 � kÞ=2.
We abbreviated the quantity s0ns0ðk0Þ by n0.
Figure 2 shows the associated master integral with

m ¼ n ¼ 0. We display all permutations of s0 and s1;
the value of s2 plays no role other than to change the
vertical scale via Inðs2Þ in Eq. (3.3). (Fm is evaluated at s1
and s4 ¼ s0s1.) Note that the entire master has been
multiplied by k2−, which clarifies the nature of the pole
at k0 ¼ k: It is simple if s1 ¼ −1 and repeated if s1 ¼ þ1.
Moving along to the functions Hm, for m ¼ f0; 1; 2g,

after the frequency sum we have

Hm ¼ −
X
v

Z
p;q

ð2πÞdþ1

4E1E2

δðdþ1ÞðK − v1P − v2QÞ

× ðfv1s1fv2s2 − f−v1s1 f−v2s2 Þðv1E1Þm; ð3:5Þ

where the summation extends over v1;2 ¼ �1 [a definition
of fvs is given below Eq. (2.2)]. The strategy discussed in
Sec. II was applied to cover the cases m ≥ 0. Dimensional
regularization is adopted because the related function Gm
will include a customary ultraviolet divergence: Take G0

and H0 for instance, which are real and imaginary parts
(respectively) of the same function. Their zero temperature
limits can be read from

lim
T→0

J ð0Þ
11 ¼ 1

ð4πÞ2
�
1

ϵ
þ κ þ 2þOðϵÞ

�
;

κ ≡ log
μ̄2

K2
− iπΘðK2Þ: ð3:6Þ

FIG. 2. Energy dependence of the type II master integral with
m ¼ n ¼ 0, for various statistics at k ¼ T.

3For example, because I10120 is equal to I11020 with s2 → s3.
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Branches of the logarithm are made explicit; we write logX
to mean log jXj. Thus G0 bears an ultraviolet divergence
and so OðϵÞ terms must be kept in H0 when multiplying
them together. For that reason we write

Gm ¼ 1

ð4πÞ2
�
G½−1�

m

�
1

ϵ
þ log

μ̄2

K2
þ 2

�
þ G½0�

m þ…

�
;

Hm ¼ −
1

16π

�
H½0�

m

�
1þ ϵ log

μ̄2

K2

�
þ ϵH½1�

m þ…

�
; ð3:7Þ

to make the dependence on the scale μ̄ explicit. Setting

d ¼ 3 in (3.5) allows us to find H½0�
m : With help from the

moments ψ ðmÞ, provided in Eq. (A6) of Appendix A, one
can express

HmðK; s1; s2Þjϵ→0 ¼ −km0 ψ
ðmÞ
s1;s2=ð16πÞ:

Thus H½0�
m ¼ km0 ψ

ðmÞ
s1;s2 is easily read off. Also needed are

G½−1�
0 ¼ 1 and G½−1�

1 ¼ 1
2
k0. The order ϵ terms H½1�

m are

presented in Appendix B, as is the function G½0�
m

for m ¼ f0; 1g.
Turning to the class III integral, according to Eq. (3.3) it

can be written

ImI ðm;nÞ
11011 ¼

−1
4ð4πÞ3

�
G½−1�

m H½0�
n

�
1

ϵ
þ 2 log

μ̄2

K2
þ 4

�

− ð2G½−1�
m −G½0�

m ÞH½0�
n þ G½−1�

m H½1�
n þ sym:

�
;

where the last term is from a symmetry as specified in (3.3).
The first line above includes all divergences and yields the
entire result for T ¼ 0. The second line is purely a finite
thermal function which is not present in vacuum. Note that
the divergent first line is also a function of the temperature
and we omit it in Fig. 3, where the master integral is
displayed.
On the light cone, a logarithmic singularity in this

thermal part may arise from ψ . This divergence is softened
by the extra weight K2=T2 that was used in Fig. 3, and
the plotted function is zero at k0 ¼ k. We note that if
s0 ¼ 1 (implying s1 ¼ s4 and s2 ¼ s5), some simplifying
relations hold

I ð1Þ
11011 ¼ I ð0;1Þ

11011 ¼
k0
2
I ð0Þ
11011:

IV. DIAGRAM IV (SETTING SUN)

We now consider the first genuine two-loop structure,
specifically the integral I ð0Þ

11100, which gives e.g., the first
nonzero contribution to the imaginary part of the self
energy in a scalar φ4-theory [26]. Another master of the

same class, I ð0Þ
01110 ¼ 0, is identically zero due to integration

by parts identities [24]. The “setting sun” graph is given in
vacuum by

lim
T→0

I ð0Þ
11100 ¼

−K2

4ð4πÞ4
�
1

ϵ
þ 2κ þ 13

2
þOðϵÞ

�
; ð4:1Þ

where κ was introduced in Eq. (3.6). This vacuum result has
an imaginary part for K2 > 0, associated with the threshold
for massless particle production. In a thermal medium, the
Landau-damping mechanism explains why this imaginary
part also builds up below the light cone [27]. Explicitly,

ImI ð0Þ
11100 ¼

X
v

Z
p;q;r

ð2πÞ6
8E1E2E3

× δð4ÞðK − v1P − v2Q − v3RÞ
× ðfv1s1fv2s2fv3s3 − f−v1s1 f−v2s2 f−v3s3 Þ; ð4:2Þ

where fvs was defined just below (2.2) and takes the
arguments at energies E1 ¼ j pj, E2 ¼ jqj and E3 ¼ jrj
which are on shell. This integral is labeled “f” in Ref. [25].
Let us clarify the physical content of Eq. (4.2). The

sum over the signs vi ¼ �1 enumerates eight distinct
physical interactions, with external momentum K ¼
ðk0; kÞ. We denote the corresponding fields ϕi for argu-
ment’s sake with si ¼ þ1. As an example, the term with
v1¼v2¼v3¼þ1 represents the probability for decay
ϕ0→ϕ1ϕ2ϕ3, with a statistical weight of ð1þnBÞð1þ
nBÞð1þnBÞ for spontaneous emission, minus the proba-
bility for creation ϕ1ϕ2ϕ3 → ϕ0, with a weight nBnBnB

FIG. 3. The finite part of the type III master integral, as a
function of energy. We show here, for k ¼ f0; 1

10
; 1; 10gT, the

two cases m ¼ 0 (upper) and m ¼ 1 (lower).

TWO-LOOP THERMAL SPECTRAL FUNCTIONS WITH … PHYS. REV. D 100, 116019 (2019)

116019-5



for absorption. There are many other processes, such as
ϕ0ϕ2ϕ3 → ϕ1 minus ϕ1 → ϕ0ϕ2ϕ3 and so on [1].
Equation (4.2) may be simplified into a two-dimensional

integral (now for general si),

ImI ð0Þ
11100 ¼

n−10
ð4πÞ3

Z
dpdqWIVðp; qÞn1n2n3; ð4:3Þ

where we abbreviated ni ¼ sinsi and agree that the argu-
ments4 of the distribution functions may be negative. The
“kernel”WIV (defined below) also depends on k0 and k, but
not on the temperature. The momentum moduli p and q
have been generalized to negative values, which implicitly
incorporates the sum over the signs fvig. And the statistical
weight has accordingly been reexpressed using

fþs1f
þ
s2f

þ
s3 − f−s1f

−
s2f

−
s3 ¼ n−10 n1n2n3; ð4:4Þ

An explanation that starts with Eq. (4.2) is given in
Appendix C, where we also show how to calculate WIV
from kinematic constraints. Here we simply state the result,

WIVðp; qÞ ¼
1

2k
fjp − kþj þ jq − kþj − jpþ q − kþj

− jp − k−j − jq − k−j þ jpþ q − k−j
−min½k0; k�g; ð4:5Þ

where k� ¼ ðk0 � kÞ=2 are the light cone momenta.
Of note is that WIVðp; qÞ ≃ p=k for p → 0, which

suppresses the log divergence from nBðpÞ. Furthermore,
WIV ¼ 0 in regions that are kinematically forbidden,
providing limits on the p and q integrals. Continuity of

ImI ð0Þ
11100 at k0 ¼ k follows from the very same property in

(4.5). We note that the limit k → 0 is also well-defined and
leads to WIV ¼ sgnðpqðk0 − p − qÞÞ where it has nonzero
support.
The statistical factor (4.4) includes the vacuum con-

tribution for v1 ¼ v2 ¼ v3 ¼ þ1, i.e., where p and q
are positive and pþ q < k0. It is the leading term in
Eq. (4.4), after expanding in combinations of the distribu-
tion functions,

fþs1f
þ
s2f

þ
s3 − f−s1f

−
s2f

−
s3 ¼ 1þ

X
i

ni þ
X
i<j

ninj:

In Fig. 4, the energy dependence of ImI ð0Þ
11100 is shown

for k ¼ f0; 1
10
; 1; 10g × T. Here the vacuum result (4.1) was

subtracted; i.e., we actually plot

Im I ð0Þ
11100 − ΘðK2Þ K2

8ð4πÞ3 : ð4:6Þ

Because the master integrals are holomorphic in the
upper half of the complex k0-plane, (4.2) is an odd
function of real energies. (Meaning, in particular, that it is
zero for k0 ¼ 0.) The exception, for massless particles,
occurs when k ¼ 0 so that there is an essential singularity
at k0 ¼ 0 [28]. Hence the zero momentum curve in Fig. 4
is finite for k0 → 0 and not equal to the same limit at
fixed jkj > 0.

A. Kinematics

The region(s) where Eq. (4.5) provides nonzero support
for WIV can be understood by elementary kinematic
reasoning. It is necessary to belabor this point because
the argument will reveal why it holds in general for the real
corrections. To illustrate, we first consider the simpler case
k → 0 and then explain what happens when k < k0 and
k > k0 separately.
The functionWIV is not Lorentz invariant—if it were, we

could perform the whole calculation in the rest frame.
Nevertheless, specializing to k ¼ 0 will be useful as a
starting point. For example, in the channel with v1 ¼ v2 ¼
v3 ¼ þ1 we require vectors p and q that satisfy

k0 ¼ j pj þ jqj þ j pþ qj: ð4:7Þ

Clearly pþ q ≤ k0 in general, with equality if and only if
p ¼ −q and j pj ¼ 1

2
k0. Moreover, by the triangle inequality

we have jp − qj < j pþ qj < pþ q (here p; q > 0). The
upper limit thus gives 1

2
k0 < pþ q, while the lower limit

leads to p < 1
2
k0 if p > q and q < 1

2
k0 if p < q. That

defines the relevant domain in the (p; q)-plane; see “1” in
Fig. 5, where WIV ¼ þ1.
If v1 ¼ v2 ¼ þ1 ¼ −v3, instead of (4.7) we need

k0 ¼ j pj þ jqj − j pþ qj: ð4:8Þ

FIG. 4. The imaginary part of the scalar self energy (with
si ¼ þ1), according to Eq. (4.6). Shown here is the dependence
on k0 for various values of the external momentum.

4To avoid possible ambiguity, but referring ahead, (6.3)
summarizes our shorthand notation for the distribution functions
explicitly.
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This time pþ q ≥ k0 and the very same triangle inequal-
ities give p > 1

2
k0 if q > p and q > 1

2
k0 if q < p. Similar

results hold if v3 ¼ þ1 and if exactly one of v1, v2 is equal
to −1. However if two or more of fv1; v2; v3g are negative,
the equivalent of (4.7) cannot be satisfied (for k0 > 0).
Hence in the sum over fvig, only half of the summands
contribute.
This is summarized by the wedge-shaped regions “2”,

“3” and “4” in Fig. 5. In each of these three regions,
WIV ¼ −1. Although they include arbitrary large momenta
(in absolute value), those much larger than the temperature
are cut off by the thermal distribution functions.
We now consider k > 0, but still less than k0 so that

k− ¼ 1
2
ðk0 − kÞ is positive. The external vector k now plays

a role; i.e., (4.7) is supplanted by

k0 ¼ j pj þ jqj þ jk − p − qj: ð4:9Þ

Of course pþ q ≤ k0 still holds, but now equality can
occur for all q ∈ ½k−; kþ�. The triangle inequality gives
kþ j pþ qj > jk − p − qj, and therefore,

2k− ¼ ðk0 − kÞ < j pj þ jqj þ j pþ qj < 2ðpþ qÞ:

Hence the lower bound on pþ q is diminished to k−.
Similarly, the other side of the triangle inequality gives
jk − p − qj > j pþ qj − k. That produces kþ ≥ maxðp; qÞ,
which is higher than the upper bound for k ¼ 0.
Generalizing to other channels is trivial; see Fig. 6.
These restrictions are reflected in the function WIV. In
the “new” bands that open up for p; q; r ∈ ½k−; kþ�, tilted
facets make WIV a continuous function compared to the
case where k ¼ 0. Moreover, the exact form (4.5) renders
the product of distribution functions integrable.

As k is increased beyond k0, the virtuality K2 ¼ 4kþk−
becomes negative. The channel with v1 ¼ v2 ¼ v3 ¼ þ1
ceases to be accessible; conservation of energy (4.9) cannot
be satisfied if k0 < k. This simply means that there is no
vacuum contribution below the light cone, as expected.
New wedges open up in the (p; q)-plane—they corre-

spond to having exactly two of fv1; v2; v3g equal to −1. In
Fig. 7 they are labeled “5”, “6” and “7”. Regions “2”, “3”
and “4” are carried over from the case k < k0, with
modified boundaries: For example in “2”, the same triangle
inequality as before gives jqj < −k−. Region “5” has v1 ¼
v2 ¼ −1 and v3 ¼ þ1, so in some sense it is the inter-
section of “2” and “3”. In “5” we have p and q negative
such that pþ q < k−. (And there are similar constraints for
“6” and “7”.) We note that adjacent regions are separated by
lines where p, q or r is zero. These boundaries are

FIG. 5. The boundaries to the integration regions for the four
(real) corrections. Each region corresponds to a physical process,
e.g., “1” is described in the paragraph below (4.2). The dashed
line represents momenta that satisfy pþ q ¼ k0.

FIG. 6. As before, now with 0 < k < k0. The red dashed lines
give the boundaries between different channels, i.e., where one of
p, q or r ¼ ðk0 − p − qÞ changes sign.

FIG. 7. As before, now with k > k0 so that k− < 0. (The blue
hatched region is forbidden by kinematics. It is, incidently, also
where the vacuum contribution comes from.)
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important because they mark the location of potential
singularities coming from bosonic distribution functions.
The expression in (4.5) can be simplified in each of the

demarcated regions discussed for k0 > k and k0 < k. In the
former case, we recover Eqs. (33)–(43) of Appendix B
in Ref. [25] (with an adjustment in variables, namely
p → k0 − p). For the more complicated master integrals
still to be studied, the same regions must be considered,
though the kernel functions will be different. Hence, the
foregoing analysis serves to spell out what must be
included for the task of numerical integration.

V. DIAGRAM V (THE SQUINT)

In the previous section there is only one “contribution” to
the imaginary part: all of the three internal energies are set
to their on shell value giving (4.2). But more generally, the
discontinuity may always be written in terms of products of
two amplitudes that are separated by on shell “cut”
propagators [1]. For classes V and VI, there is more than
one way to do this; see Fig. 8. These contributions, which
may be readily identified after carrying out the Matsubara
sums, are separately infrared divergent. They differ by one
extra loop momentum being on shell in the real case,
yielding a tree-level decay that may be treated in a similar
manner to that of the previous section. The virtual
correction has an internal loop due to one fewer final state
particle than before and includes a two-body phase space
integration. The latter is also ultraviolet divergent, seen in
the vacuum result [κ was introduced in Eq. (3.6)]

lim
T→0

I ð0Þ
11110 ¼

1

ð4πÞ4
�
1

2ϵ2
þ 2κ þ 5

2ϵ
þ κðκ þ 5Þ

þ 19

2
−
π2

12
þOðϵÞ

�
; ð5:1Þ

which, for K2 positive, contains an imaginary part ∝ 1=ϵ.
This divergence will then acquire a temperature depend-
ence in the medium. When assembled together, these
infinite parts cancel in actual observables.
The two terms shown in Fig. 8 also have separate

collinear divergences which exactly compensate only in
their sum. This cancellation is somewhat intricate at finite
temperature and affirms the Kinoshita-Lee-Nauenberg
(KLN) theorem, in this case applied to individual graphs
[29,30]. The amplitude (a) in Fig. 8 may contain a large
“eikonal factor” if the denominator of an internal line is
zero,

L2 ¼ K2 − 2ðv1pÞðk0 − k cos θkpÞ ≈ 0; ð5:2Þ

where θkp is the angle between p and k. Such configura-
tions exhibit two collinear outgoing (massless) particles
that should be removed from the definition of a physical
production rate, i.e., by including (b) from Fig. 8. The
conditions for some θkp to satisfy Eq. (5.2) are inferred
according to the sign of K2: If K2 > 0 then ðv1pÞ must be
in the interval Ω ¼ ½k−; kþ� (spanned by the light cone
momenta). While if K2 < 0, (5.2) can be satisfied if and
only if ðv1pÞ is in the complementary region Ωc ¼ RnΩ.
A fictitious mass λ (for the momentum R) is convenient

to use as a calculational tool [17].5 It prevents L2 → 0 in
(5.2) and proves that the whole expression,

ImI ðm;nÞ
11110 ¼

n−10
ð4πÞ3

Z
dppm

�Z
dqqnWVðp; q; λÞn1n2n3

þUðnÞ
V ðp; λÞn1n4

�
; ð5:3Þ

is rendered finite as λ → 0. [See ahead (6.3) for the
abbreviations ni.] The first term above represents the real
correction and involves the thermal weight (4.4) from
before. Virtual corrections lead to the second term and
depend on the mass λ so as to compensate for the
contingent singularity in the first. Equation (5.3) is valid
for m, n ≤ 1; otherwise there could be more terms.
We may obtainWVðp; q; λÞ by the techniques laid out in

Appendix C. A compact formula for it can be given with the
help of some funny notation,

p̂ ¼ max½k−;min½kþ; p��:

To also indicate whether p is in the interval Ω ¼ ½k−; kþ�,
we define

op ¼ Θððkþ − pÞðp − k−ÞÞ ¼
�
1 if p ∈ Ω
0 otherwise:

Thus the complementary set Ωc ¼ RnΩ contains p if the
value of ōp ¼ 1 − op is equal to unity. Using op and ōp will
signal terms that are included or not, depending on the
relative ordering of k, k0 and p. With these definitions, and
regulating through λ → 0, the weight function can be
expressed as6

WVðp; q; λÞ ¼
1

4kl

�
logW0

V þ Θðk−Þ logW00
V

þ ōp logW000
V þ ðΘðk−Þ − ōpÞ log

4lr
λ2

�
;

ð5:4Þ

(a) (b)

FIG. 8. Cut type II diagrams. Real (a) and virtual (b).

5The parameter λ is not related to renormalization.
6Compare with Eqs. (57)–(67) of Appendix B in Ref. [25].
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where we have introduced the ratios,

W0
V ¼ ðl − q̂Þðl − r̂Þ

q̂ r̂
; W00

V ¼ k−
p − kþ

; W000
V ¼ k0 − p̂

p − p̂
:

An explicit log-divergence in (5.4) lingers if p ∈ Ω (for
k0 > k) or if p ∈ Ωc (for k0 < k). This implies that it is too
soon to set λ ¼ 0 in those domains of the (p; q)-plane and
brings us to incorporate the missing virtual pieces.
Again deferring details to Appendix C, we write, for

λ → 0,

Uð0Þ
V ðp;λÞ

¼ ōp −Θðk−Þ
4k

×

�
−
1

l

Z þ∞

−∞
dq

�
n2n3
n4

log
λ2

4lq
þ s3sgnðrÞns3ðjrjÞ log

q2

r2

�

þ 1

ϵ
þ 2 log

μ̄2

K2
þ log

K2k2

4l2ðp− k−Þðp− kþÞ
þ 2

�
:

ð5:5Þ

This reveals how the anticipated ultraviolet divergence in
(5.1) emerges from the loop in (b) of Fig. 8. At the same
time, it can be seen that the λ-dependence in (5.3) cancels
for λ ¼ 0, with the logarithmic mass singularities compen-
sating perfectly,

log
4lr
λ2

þ log
λ2

4lq
¼ log

r
q
;

and in exactly the domains where (5.2) is satisfied. They
coalesce in this way both above and below the light cone.
For the purpose of plotting, we subtract a piece that is

ultraviolet divergent from (5.3) and coincides with its
vacuum result for T ¼ 0. What remains is thus finite and
proportional to T2 for large photon virtualities; see Fig. 9.
The function is continuous across the light cone unless it
diverges there, in which instance the singularity is the same
if k0 → k is approached from either above or below. That is
why, in Fig. 9, we multiply the whole function by jK2j
which is enough to render the blowup finite on the light
cone. (It also gives the whole master integral a dimension of
T2.) To be clear, and following [25] (in which this master is
labeled “h”), the part subtracted is

ImI ð0Þ
11110jdiv: ¼ −

ψ ð0Þ
s1;s4

4ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 5

�
; ð5:6Þ

where ψ is defined in Eq. (A6) of the Appendixes. The
large k0-expansion of the whole master integral is given
in Eq. (D12).
Next, let us consider the case m ¼ 1 and n ¼ 0. The

modification in (5.3) is trivial; only an extra factor of p

needs to be included in the integrand. The kernels WV and

Uð0Þ
V are unaffected, and hence the λ-dependence (and

ultimate lack thereof) is the same as before. For plotting
in Fig. 9, we subtract

Im I ð1Þ
11110jdiv: ¼ −

k0ψ
ð1Þ
s1;s4

4ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 11

2

�
ð5:7Þ

from the result. The shape is similar to ImI ð0Þ
11110, but ratios

of the large-k0 limit to its value on the light cone are
different.
For m ¼ 0 and n ¼ 1, the virtual parts need to be

reconsidered. The result, with details available in
Appendix C, can be written, for λ → 0,

Uð1Þ
V ðp;λÞ

¼ ōp−Θðk−Þ
4k

×

�
−
Z þ∞

−∞
dq

q
l

�
n2n3
n4

log
λ2

4lq
þ s3sgnðrÞns3ðjrjÞ log

q2

r2

�

þl
2

�
1

ϵ
þ2 log

μ̄2

K2
þ log

K2k2

4l2ðp−k−Þðp−kþÞ
þ1

��
:

ð5:8Þ
Figure 10 displays the result as a function of positive

invariant mass M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2

p
. We have followed

Refs. [16,25] by using M to define

FIG. 9. The imaginary part of the type V master (with all
si ¼ þ1), in units of the asymptotic result. Shown here is the
dependence on k0 for various values of the external momentum,
including k ¼ 0.
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k2aveðMÞ≡ 3MTK3ðM=TÞ
K2ðM=TÞ ; ð5:9Þ

as a proxy for the average three momentum squared. (Kν

are modified Bessel functions.) This quantity assumes
Boltzmann distribution functions to average k2 for a fixed
mass. The curves shown in Fig. 10 use k →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2aveðMÞ

p
as a

rather crude substitute for “typical” momenta. As M → 0,
we note the clear log-divergent behavior of the master
integral for the statistics shown in the figure.
The divergent piece that was subtracted is given by [note

the ordering of s4 and s1 on ψ ð1Þ]

ImI ð0;1Þ
11110jdiv: ¼ −

k0ψ
ð1Þ
s4;s1

8ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 9

2

�
:

We have also checked numerically that ImI ð0;1Þ
11110 ¼

1
2
ðk0ImI ð0Þ

11110 − ImI ð1Þ
11110Þ provided s2 ¼ s3. This relation

follows by a shift of integration variables, but it seems
difficult to discern this rule by simply looking at the explicit
form of the integrand.
In Sec. II we listed among the type V integrals, one with

a propagator of negative power e ¼ −1. It is significant
because of a logarithmic divergence for K2 ≪ T2 that
makes it dominant over those that are merely finite on the
light cone (when scaled by K2 to have the appropriate
dimension). This brings about its appearance in many
applications. Moreover, the continuity across the light
cone (that some previous masters seemed to enjoy) is no
longer guaranteed. This issue reveals itself explicitly in the
QCD corrections to the photon spectral function (2.6) [used
in (1.1)],

ImΠμ
μ ≃ e2g2T2

NCF

16π
½1þ 2n−ðk0Þ� log

T2

K2
ð5:10Þ

for K2 ≪ T2 [3–5]. This is the singularity alluded to in the
Introduction, which mandates screening effects to be
incorporated through resummation. The log-singularity
on the light cone can be traced back to the integral we
are about to discuss.
Let us consider the particular combination of master

integrals defined by

I⋆
11110 ≡ I ð0Þ

10110 þ K2I ð0Þ
11110 − I ð0Þ

1111ð−1Þ

¼
XZ

P;Q

2K ·Q
P2Q2ðK − P −QÞ2ðK − PÞ2 : ð5:11Þ

(This one is labeled by “h0” in Ref. [25].) After carrying
out the Matsubara sum, one arrives at Eq. (C2) in the
Appendix. Along the same lines as (5.3), this can be
expressed by

ImI⋆
11110 ¼

n−10
ð4πÞ3

Z
dp

�Z
dqW⋆ðp; q; λÞn1n2n3

þU⋆ðp; λÞn1n4
�
; ð5:12Þ

where the two terms are the real and virtual parts respec-
tively. The first weight includes the same manner of
λ-dependence as that previously defined in (5.4), which
allows the previous argument to be partially recycled here.
To explicitly define W⋆, let

gðxÞ≡ ðk20 þ k2 − 2k0p − 2klxÞ2:

Accordingly, in the first summand of (5.12), we have

W⋆ðp; q; λÞ

¼ q
l

�
K2WV −

sgnðpÞ
4kl

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxmax

2 Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxmin

2 Þ
q 
�

:

ð5:13Þ

The arguments of g are defined in Appendix C; see
Eq. (C9). Virtual corrections in (5.12) require the function,

U⋆ðp; λÞ ¼
1

l
K2Uð1Þ

V þ ōp − Θðk−Þ
4k

ðK2 − 2lk0Þ

×

�
1 −

2

l2

Z þ∞

−∞
dqq

n2n3
n4

�
: ð5:14Þ

We see that the auxiliary mass λ enters only in the

previously defined functions, WV and Uð1Þ
V , so that the

pattern of cancellation is unchanged and allows us to set
λ ¼ 0. The divergent piece that we choose to subtract is

FIG. 10. Here we display the type V master with m ¼ 0 and
n ¼ 1, minus the divergent part.Various statistical configurations
are shown with s0 ≠ s1 (so that these cannot be reduced to a linear
combination of master integrals with n ¼ 0). The first two orders
from the OPE asymptotics, Eq. (D15), start agreeing from
about M ≳ 30T.
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ImI⋆
11110jdiv: ¼ −

ψ ð0Þ
s1;s4

8ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 9

2

�
:

We have checked numerically that ImI⋆
11110 ¼

1
2
ðK2ImI ð0Þ

11110 þ ImI ð0Þ
11100Þ if s2 ¼ s3. As far as the nature

of the function across the light cone is concerned in this

case, it may be discontinuous if ImI ð0Þ
11110 is singular; see the

earlier discussion about that master integral. The master

ImI ð0Þ
11100 is continuous.

That brings us to the case s2 ≠ s3, shown for s0 ¼ þ1
and s1;2 ¼ −1 in Fig. 11, for which this master integral is a
new object. Indeed the outstanding q-integral in (5.14) can
be found by recalling s4 ¼ s2s3 and mapping the argu-
ments of the distribution functions to positive values, viz.,

Z þ∞

−∞
dqq

ns2ns3
ns4

¼
Z

l

0

dqq

þ 2

Z
∞

0

dqqðs2ns2ðqÞ − s3ns3ðqÞÞ

¼ l2

2
þ T2ðs2 − s3Þ

π2

4
:

This makes the square brackets in (5.14) a difference
between two thermal moments; see (D20), for the particular
statistics s2 and s3. If they are the same, it gives zero.
A noteworthy feature is the behavior for K2 → 0, where the
functionsW⋆ and U⋆ simplify. There is a discontinuity due
to the latter, cf. Ref. [31], defined by the function’s limit
k0 → kþ 0þ minus k0 → k − 0þ. For a general statistical
configuration, it is given by

ImI⋆
11110jdisc¼T2ðs3− s2Þ

n−10
256π

Z þ∞

−∞
dp

n1n4
k0−p

; ð5:15Þ

where the integration is meant in the principal valued sense.

VI. DIAGRAM VI (CAT’S EYE)

The most complicated form of (2.1) that we consider
here is a ¼ b ¼ c ¼ d ¼ e ¼ 1, which requires a careful
cancellation of real and virtual diagrams. We can deploy the
same strategy as in Sec. V, albeit now with two real and two
virtual amplitudes. (Each is related by the symmetry s1 ↔
s4 and s2 ↔ s5.) An auxiliary mass λ is again attached to
E3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ λ2

p
so that collinear singularities can be

regulated.
In Ref. [16], the function ImI ð0Þ

11111 (it was labeled with
“j” there) was computed above the light cone. For that case,
with m ¼ n ¼ 0, we do not need to worry about ultraviolet
divergences. The vacuum result, given by

lim
T→0

I ð0Þ
11111 ¼

6ζð3Þ
ð4πÞ4K2

þOðϵÞ; ð6:1Þ

is finite and has no imaginary part. The leading contribution

to ImI ð0Þ
11111 is therefore thermal. Those masters with

m, n ≠ 0 are more complicated and can have nonzero
vacuum parts with ultraviolet divergences.
For m, n ≤ 1, one can directly use (2.3) to express

ImI ðm;nÞ
11111 ¼

n−10
ð4πÞ3

�Z
dpdqpmqnðWVIðp; q; λÞn1n2

þWVIðl; v; λÞn4n5Þn3
þ
Z

dppmUðnÞ
VI ðp; λÞn1n4

þ
Z

dqqnUðmÞ
VI ðq; λÞn2n5

�
: ð6:2Þ

The real (virtual) contributions are in the first and second
(third and fourth) lines above, inheriting the notation from
earlier sections. As before, p and q may take on negative
values. Here the arguments of the distribution functions
were omitted, they are

n0 ¼ s0ns0ðk0Þ;
n1 ¼ s1ns1ðpÞ;
n2 ¼ s2ns2ðqÞ;
n3 ¼ s3ns3ðrÞ; r ¼ k0 − p − q;

n4 ¼ s4ns4ðlÞ; l ¼ k0 − p;

n5 ¼ s5ns5ðvÞ; v ¼ k0 − q: ð6:3Þ

The weight functionWVI that is needed in (6.2), carrying
over some notation from (5.13), reads for k0 > k and
λ → 0,

FIG. 11. The special master diagram defined in (5.11), for s0 ¼
þ1 and s1 ¼ s2 ¼ −1. With these statistical factors, the function
cannot be reduced to any masters already discussed. It also bears
a logarithmic divergence on the light cone.
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WVIðp;q; λÞ ¼
1

4kK2r

�
logW0

VI þ ōp logW00
VI þ ōq logW000

VI

þ op log
K2r2ðp− qÞðp− k−Þ
λ2plðq− k−Þðq− kþÞ

þ oq log
K2r2ðp− qÞðq− k−Þ
λ2qvðp− k−Þðp− kþÞ

�
: ð6:4Þ

Below the light cone (k0 < k), the function should
instead be

WVIðp; q; λÞ ¼
1

4kK2r

�
logW0000

VI − ōp log
K2r2ðp − p̂Þ
λ2plðv − p̂Þ

− ōq log
K2r2ðq − q̂Þ
λ2qvðl − q̂Þ

�
:

In Eq. (6.4) the following ratios were defined:

W0
VI ¼

ðl − r̂Þðv − r̂Þ
ðq − p̂Þðp − q̂Þ ; W00

VI ¼
p − k−
p − p̂

;

W000
VI ¼

q − k−
q − q̂

; W0000
VI ¼

ðl − r̂Þðv − r̂Þ
pq

:

We note the appearance of a log-divergence, just where
expected and signaled by the coefficients op and oq. The
formulas forWVI are symmetric in arguments p and q, as is
(then) the other real correction, which comes from p →
k0 − p and q → k0 − q.
The case m ¼ 2 and n ¼ 0 can also be written in the

form of (6.2). One way of seeing this is to follow (2.4) and
rewrite

I ð2Þ
11111 ¼ I ð0Þ

01111 þ
XZ

P;Q
E2
1Δ1Δ2Δ3Δ4Δ5;

where the explicit integrands for the two terms can be found
in Appendix C. (After s1 is interchanged with s5 in the first
term above.) Equation (6.2) can be recovered after some
manipulations of integration variables.
The virtual corrections are triangle diagrams, one of

which is given by the curly braces in (C3) of the
Appendixes. Their calculation is similar to those studied
in the previous section and is given explicitly in
Appendix C. Taking up part of the third line in Eq. (6.2)
(the fourth line is treated analogously), for λ → 0 it can be
expressed by

UðnÞ
VI ðp; λÞ ¼

ōp − Θðk−Þ
4kK2

Z
dqqn

r

×

�
ðn2 − n5Þ log

ðq − k−Þðq − kþÞ
qv

þ n2n3
n4

log
λ2lv
K2r2

−
n3n5
n1

log
λ2pq
K2r2

�
: ð6:5Þ

Together, the last two terms in (6.2) are seen to combine
with the real corrections [see (6.4)] so that the complete
expression is λ-independent.
We show the case m ¼ n ¼ 0 in Fig. 12, for all bosonic

statistics. (This figure confirms Ref. [16] above the light
cone.) The curves appear continuous across the light cone
because we multiplied the whole function by sgnðK2ÞK4 ¼
jK2jK2. That supports the symmetrical nature of the
discontinuity at k0 ¼ k. No subtraction is necessary for
large-k0, since according to (6.1) the whole master has no
imaginary part in vacuum.
If we consider m ¼ 1 and n ¼ 0, see (D17), no vacuum

subtraction is necessary. The symmetric case m ¼ 0 and
n ¼ 1 is obtained by an appropriate exchange of statistics:
s1 ↔ s2 and s4 ↔ s5. Moreover, the case s0 ¼ þ1 implies
s1 ¼ s4 and s2 ¼ s5 which allows a change of integration

variables to show ImI ð1Þ
11111 ¼ 1

2
k0ImI ð0Þ

11111. We have
checked this numerically.
Form ¼ n ¼ 1, there is a leading vacuum term in (D18).

At finite temperature it originates from the two symmetrical
virtual expressions. They do not diverge, but we subtract
them nonetheless,

ImI ð1;1Þ
11111 −

ψ ð0Þ
s1;s4 þ ψ ð0Þ

s2;s5

32ð4πÞ3 : ð6:6Þ

Based on a numerical study, I conjecture that the disconti-
nuity across the light cone takes the simple form,

K2ImI ð1;1Þ
11111jdisc: ¼

T2

512π
ðs1 þ s2 þ 2Þðs3 þ 1Þ:

There thus seems to only be a discontinuity in the statistical
configurations: ðþ;þ;þÞ, ð−;þ;−Þ and ð−;−;þÞ, the
first of which case is shown in Fig. 13, plotted after
Eq. (6.6)’s subtraction was made.
One needs to be careful for m ¼ 2 because a genuine

ultraviolet divergence must be subtracted. That divergence

FIG. 12. The imaginary part of the type VI master (with
si ¼ þ1), in units of the asymptotic result. Shown here is the
dependence on k0 for various values of the external momentum.
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is temperature dependent and originates from the virtual

contribution Uð2Þ
VI ðqÞ. It is equal to

ImI ð2Þ
11111jdiv: ¼ −

ψ ð0Þ
s2;s5

16ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 11

2

�
; ð6:7Þ

which we subtract for plotting purposes. (For the related
master integral with m ¼ 0 and n ¼ 2, one replaces s2 →

s1 and s5 → s4 in the above.) Figure 14 depicts ImI ð2Þ
11111 as

a function of energy. Although not shown, this quantity also
seems to be discontinuous across the light cone. The figure
uses an average three momentum-squared, defined in
Eq. (5.9), and the energy k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2ave

p
.

VII. RESULTS AND CONCLUSIONS

We have computed a list of spectral functions that
originate from self-energy diagrams with two loops, gen-
eralizing the results of Refs. [16,25] to below the light cone
and considering a larger set of master integrals with
m; n > 0. In so doing, we have separated the ultraviolet
divergence where appropriate and shown how to determine

the finite remainder numerically. Validity of the KLN
theorem was explicitly demonstrated in Secs. V and VI,
by careful analysis of the collinear phase space. We
considered any arrangement of propagating bosons or
fermions allowed by the diagram’s topology. The code
used for our numerical evaluation is publicly available
at Ref. [14].
Returning at last to the QCD corrections for the photon

spectral function, which was our original motivation, the
imaginary parts of Eqs. (2.6) and (2.7) can now be
evaluated. Firstly, all the temperature dependent divergen-
ces that were individually isolated end up canceling and the
vacuum NLO result is recovered. Since the thermal parts
carry no ultraviolet difficulties, zero-temperature counter-
terms suffice for renormalization. Some integrals give zero
because they have no k0-dependence prior to taking the
imaginary part, specifically,

ImI ð0Þ
01020 ¼ ImI ð0Þ

00120 ¼ ImI ð0Þ
01110 ¼ 0:

Other terms in (2.6) and (2.7) also do not contribute, in
particular those proportional to ϵ without a compensating
divergence in the master integral. It is important to keep
some of these terms so that the vacuum result is recovered,

but ImI ð0Þ
11100 and ImI ð1;1Þ

11111 end up not contributing at all.
And (2.7) can be simplified thanks to exact relations like

K2ImI ð0Þ
11020 − 4k0ImI ð1Þ

11020 þ 4ImI ð2Þ
11020 ¼ 0: ð7:1Þ

At finite temperature the spectral function for the
current-current correlator is specified by two scalar func-
tions, ρT;L ¼ Im½ΠT;L� according to (2.5). Figure 15 shows
the energy dependence of the NLO spectral functions for
several momenta. The behavior in (5.10) prevails near the
light cone for the transverse polarization, while the factor of
K2 is enough to ensure that ρL is zero there. Both functions
approaches zero for k0 → 0, as they should. The large K2

behavior (of the NLO parts) can be found in Eq. (D21) of
the Appendix.
In heavy-ion collisions [19,20], the observable photon

and dilepton rates are proportional to −ImΠμ
μ ¼ 2ρT þ ρL

for K2 ¼ 0 and K2 ≥ 4m2
l respectively (ml is the lepton’s

mass), where perturbative studies have hitherto focused.7

The complementary region, K2 < 0, is not merely aca-
demic: It provides an opportunity to cross-check the weak
coupling framework, e.g., with nonperturbative Euclidean
correlators (of either polarization) provided by lattice
QCD [12].
As noted in the Introduction, our results are relevant for

deploying (fixed-order) perturbation theory in contexts
where simplifying kinematic assumptions are not justified.
It is nevertheless worthwhile, e.g., if analytic expressions

FIG. 14. The dependence of the type VI master, withm ¼ 2 and
n ¼ 0, on the invariant mass. An ultraviolet divergent part was
subtracted; see Eq. (6.7).

FIG. 13. Like Fig. 12, but with m ¼ n ¼ 1 and with all
si ¼ þ1. The discontinuity is indicated by a vertical line. Large
k0 behavior was subtracted according to (6.6).

7Including the special case ml → 0.
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are available, to check that these numerical results
reproduce the correct behavior in those limits. We have
done this using the OPEs in Appendix D for K2 ≫ T2 in
each integral studied. Our results are also compatible
with recent HTL self-energies at NLO, in the limit k0,
k ≪ T [32].
It is worth recalling that the individual masters are not

(usually) themselves physical, rather they supply a
convenient “basis” from which observables can be built.
That ubiquity makes a dedicated study constructive
because of the valuable resource it provides for future
NLO developments at finite-T. Although by no means
all-inclusive, the list of loop integrals compiled here
should satisfy a wide variety of needs or take little
generalizing to do so.
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APPENDIX A: THERMAL PHASE SPACE

In this Appendix, we discuss two important phase space
integrals which were used in the main text. The following

results are valid both above and below the light cone:
k0 ≶ jkj. Without loss of generality, we assume k0 is
positive. Energy conservation is imposed by cutting the
diagram, handled with the replacement,

Im
1

k0 þ i0þ − A
→ −πδðk0 − AÞ:

1. Two-particle decay

The production rate due to binary encounters, e.g.,
qq̄ → γ� (the asterisk indicates a virtual photon), is given
by a phase-space integration over the momenta of interact-
ing partons. For a given external momentum K ¼ ðk0; kÞ,
we simplify the integration measure,

Z
½1;2�

≡X
v

Z
p;q

ð2πÞdþ1

4E1E2

δðdþ1ÞðK − v1P − v2QÞ; ðA1Þ

with the (on shell) energies E1 ¼ j pj, E2 ¼ jqj. The
vi ¼ �1 are summed over, for i ¼ f1; 2g, so that in
(A1) each channel is represented. Here we also used
dimensional regularization for the terms OðϵÞ needed later.
Integrating over ddq is trivial; momentum conservation
fixes q ¼ v2ðk − v1pÞ. The on shell energy is therefore

E2 ¼ jk − v1pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2 − 2v1pk cos θkp

q
; ðA2Þ

where θkp is the angle between k and p.
The external vector k distinguishes an orientation with

which to organize the remaining ddp-integration. We
choose to align the pz axis with k, so that the azimuthal
integration is also trivial. And instead of a polar integra-
tion over θkp, we integrate over the magnitude q ¼ E2

given by (A2). The angular limits accordingly translate
into a kinematic restriction; jk − v1pj < q < jkþ v1pj (see
Fig. 16). Let us therefore express the angular integration by

μ̄2ϵ
Z

∞

0

dpp2−2ϵ
Z

π

0

dθkpsin1−2ϵθkp

¼
Z

v

0

dp
Z jkþv1pj

jk−v1pj
dq

pq
k

�
4k2μ̄2

4p2q2 − ðk2 − p2 − q2Þ2
�

ϵ

:

All the necessary scalar products can be formed in terms of
these variables.
The combination v1p and v2q appears repeatedly

above,8 suggesting that we formally extend the magnitudes
p and q to negative values in lieu of summing over fvig.

FIG. 15. Transverse (upper panel) and longitudinal (lower
panel) spectral functions for k=T ¼ 0.5, 1, 1.5. Since ρT ¼ ρL
for a photon at rest, the curves with k ¼ 0 are identical. As
defined in Eq. (1.1), e2 was factored out, and we used a fixed
strong coupling g ¼ 3 for illustration. The thin dashed lines are
the LO result (i.e., g ¼ 0).

8The very same combinations will appear in the relevant
integrands.
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Thus the subsequent (p; q)-integration covers all channels,
see Fig. 16, and reads

X
v

Z
dpdq ¼

Z þ∞

−∞
dp

�Z
−jk−pj

−jkþpj
dqþ

Z jkþpj

jk−pj
dq

�
:

ðA3Þ

When the internal lines are on shell, energy conservation
implies that k0 ¼ pþ q allowing the q integration in (A3)
to be carried out. Therefore the final result is supported only
along dashed line shown in Fig. 16 and reads

Z
½1;2�

¼ 1

8πk

Z 0
dp

�
1þ ϵ log

μ̄2k2

K2ðp − k−Þðp − kþÞ

þOðϵ2Þ
�
: ðA4Þ

The p-integral was flagged with a prime as it depends on
whether K2 is positive or negative. In the former case (with
k0 > 0), only the channel having v1 ¼ v2 ¼ þ1 contributes
in (A3). Precisely one of v1 and v2 equals −1 in the
latter case.
Altogether, one hasZ 0
dp≡ Θðk−Þ

Z
kþ

k−

dp − Θð−k−Þ
�Z

k−

−∞
dpþ

Z
∞

kþ
dp

�
:

ðA5Þ
The discontinuity at k0 ¼ k is thus given by an integral over
all real p, in the principal valued sense. In the rest frame,
k ¼ 0, (A4) has the net effect of setting p ¼ k0=2.
As an application of the foregoing discussion, define

ψ ðνÞ
s1;s2 ¼

n−1s0
k

Z 0
dpns1ðpÞns2ðk0 − pÞ

�
p
k0

�
ν

ðA6Þ

and consider it for ν ¼ f0; 1; 2g in particular. This function,
which is needed for the one-loop discontinuity, was also
used in the virtual parts of our two-loop calculations.
Letting the exponentials be abbreviated by

E� ≡ exp½−βjk�j�;

we find that

ψ ð0Þ
s1;s2 ¼ Θðk−Þ þ

T
k
log

ð1 − s1EþÞð1 − s2EþÞ
ð1 − s1E−Þð1 − s2E−Þ

; ðA7Þ

ψ ð1Þ
s1;s2 ¼

1

2
Θðk−Þ þ

T
kk0

�
k0 log

1 − s2Eþ
1 − s2E−

þ kþ log
1 − s1Eþ
1 − s2Eþ

− k− log
1 − s1E−

1 − s2E−

− TðLi2ðs1EþÞ þ sgnðk−ÞLi2ðs1E−Þ − Li2ðs2EþÞ − sgnðk−ÞLi2ðs2E−ÞÞ
�
; ðA8Þ

ψ ð2Þ
s1;s2 ¼

1

4k20

�
k20 þ

k2

3

�
Θðk−Þ þ

T
kk20

�
k2þ log

1 − s1Eþ
1 − s2E−

− k2− log
1 − s1E−

1 − s2Eþ
− 2TkþðLi2ðs1EþÞ þ sgnðk−ÞLi2ðs2E−ÞÞ þ 2Tk−ðLi2ðs2EþÞ þ sgnðk−ÞLi2ðs1E−ÞÞ

− 2T2ðLi3ðs1EþÞ − Li3ðs1E−Þ þ Li3ðs2EþÞ − Li3ðs2E−ÞÞ
�
: ðA9Þ

These quantities are discontinuous on the light cone, explicitly with

ν 0 1 2

ψ ðνÞ
s1;s2 jk0¼kþ0þ − ψ ðνÞ

s1;s2 jk0¼k−0þ 1 1
2
þ 2 T2

k2 ðLi2ðs1Þ − Li2ðs2ÞÞ 1
3
− 4 T2

k2 Li2ðs2Þ
:

FIG. 16. Allowable integration region in (A1), where p ¼ v1E1

and q ¼ v2E2. The dashed line is the energy constraint
k0 ¼ pþ q, while the blue shading is forbidden by the on shell
condition for P and Q ¼ K − P. (Here K2 > 0.)
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2. Three-particle decay

It is sufficient to work in d ¼ 3 dimensions for phase
space integrations of the real two-loop corrections (those
where three propagating particles are put on shell).
Extending (A1), we defineZ
½1;2;3�

≡X
v

Z
p;q;r

ð2πÞ4
8E1E2E3

δð4ÞðK − v1P − v2Q − v3RÞ;

ðA10Þ
with the (on shell) energies E1 ¼ j pj, E2 ¼ jqj and E3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ λ2

p
. (The regulator λ is necessary to observe the

canceling divergence between real and virtual corrections.)
The vi ¼ �1 are summed over, for i ¼ f1; 2; 3g. One of the
integrals may be simplified using energy and momentum
conservation; we choose the r-integral, and complete it by
writingZ

r

1

2E3

¼ 2π

Z
r

Z þ∞

−∞

dr0
2π

δðR2 − λ2ÞΘðr0Þ:

Hence, by fixing R ¼ v3ðK − v1P − v2QÞ, we are left withZ
½1;2;3�

¼ 2π
X
v

Z
p;q

v3
4E1E2

Θðr0ÞδðR2 − λ2Þ: ðA11Þ

Let us now specify a coordinate system in order to
proceed. We choose, following Ref. [33], to align the
z-axis along the direction of k and orient the zy-plane to
contain p, viz.,

k ¼ kð0; 0; 1Þ;
p ¼ pð0; sin θ1; cos θ1Þ;
q ¼ qðsin θ2 sinϕ; sin θ2 cosϕ; cos θ2Þ: ðA12Þ

The integral over the azimuthal angle ϕ can then be
performed in (A11). To do so, express the argument of
the δ-function by R2 − λ2 ¼ Aþ B cosϕ, where

A ¼ K2 − λ2 þ 2½v1pv2qð1 − x1x2Þ
− v1pðk0 − x1kÞ − v2qðk0 − x2kÞ�;

B ¼ −2
	
v1p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x21

q 
	
v2q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x22

q 

: ðA13Þ

Here we have abbreviated xi ¼ cos θi. Consider then the
integral of a function gðϕÞ,

Z
2π

0

dϕδðR2 − λ2ÞgðϕÞ ¼ ΘðhÞffiffiffi
h

p
X
�
gðϕ�Þ;

where h ¼ B2 − A2 and the angles ϕ� ¼ π � acosðA=BÞ.
For our purposes, the function g depends on ϕ via cosϕ and
hence

P
� gðϕ�Þ → 2gðϕ�Þ.

We have accomplished five of the nine integrals in (A10)
and are left withZ

½1;2;3�
¼ 1

4ð2πÞ4
X
v

Z
dpdx1

Z
dqdx2

× sgnðk0 − p − qÞpqΘðhÞffiffiffi
h

p ; ðA14Þ

which cannot be simplified further in general. The combi-
nation v1p and v2q in (A13) once again suggests that we
formally extend the magnitudes p and q to negative values.
The factor of Θðr0Þ in (A11) has been dropped because
r0 ¼ v3ðk0 − v1p − v3qÞ and so exactly one term in the
sum over v3 ¼ �1 will contribute. (The relevant value for
v3 is determined for a given p and q—extended to take
negative values.) And then, as before, we can just forget the
sum over fvig.
The h-function of (A14) is quadratic in each of its

arguments p, x1, q, and x2. Requiring h ≥ 0 (equivalent to
taking the real part of

ffiffiffi
h

p
) summarizes the allowable

phase space.

APPENDIX B: ONE-LOOP AUXILIARY
FUNCTIONS

1. Fm for m= 0, 1, 2

The formula for F0 was already given in the main text;
see (3.4). Here we derive that result after discussing some
simple properties. The expansion of the function F0 about
the light cone energy, k0 ¼ k, is

F0ðK; s1; s2Þ ¼
−1

32πkðk0 − kÞ
�
T

1þ s2
ðk0 − kÞ

þ
�
1

2
þ s1ns1ðkÞ

�
þOðk0 − kÞ

�
: ðB1Þ

Whether the leading term has a double-pole depends upon
s2 ¼ þ1, implying the propagator that appears twice is
bosonic. If rather s2 ¼ −1, then the pole is only simple.
Equation (3.4) includes the vacuum result −1=ð16πK2Þ,
which we subtract in Fig. 17. Therefore the vertical
intercept (at k0 ¼ 0) in this figure is merely k2=T2.
A mass regulator λ helps to evaluate F0, by writing the

repeated propagator as

Δ2
s2ðLÞ ¼ ∂λ2ðΔs2ðLλÞÞjλ→0;

where Lλ ¼ ðl0;lλÞ is a four momentum with jlλj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ λ2

p
. This calls for the one-loop results, provided in

Appendix A, to be endowed with a mass on one of the
propagators.
The integration methods are only slightly modified by

the presence of a mass term above. On shell energies are
then E1 ¼ j pj and E2 ¼ jlλj, and the integration limits are
determined by energy conservation. We find, by general-
izing definition (A1) to massive particles,
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Im
XZ

L
Δs1ðK − LÞΔs2ðLλÞ

¼ −
Z
½1;2�

ðfv1s1fv2s2 − f−v1s1 f−v2s2 Þ

¼ −
n−1s0
8πk

Z
dpdl

pl
E1E2

δðk0 − e1 − e2Þns1ðe1Þns2ðe2Þ:

ðB2Þ
The signed energies introduced are e1 ¼ sgnðpÞE1 and
e2 ¼ sgnðqÞE2. It is necessary to take the derivative of (B2)
with respect to λ2 (and evaluate it at λ ¼ 0). For this
purpose the integration variables are changed to e1 and e2
so that λ-dependence is swept into the limits of integration.
The δ-function then imposes the following limits on the p-
integration:(

p > k− þ λ2

4k−
and p < kþ þ λ2

4kþ

p < k− þ λ2

4k−
or p > kþ þ λ2

4kþ

for k ≶ k0:

We only need to evaluate the integrand at the appropriate
boundary values (with λ ¼ 0) to obtain F. The result is
stated in Eq. (3.4), in a way that is valid for either sign
of K2.
Using the approach stated in Sec. II A to include powers

of p0 into the above derivation, one obtains expressions for
F1 and F2. Casting them altogether gives (3.4). The
resulting functions are plotted in Fig. 18, omitting the
large-k0 behavior of (3.4), namely [see also Eq. (D9)],

F0 ¼ −1=ð16πK2Þ; F1 ¼ −k0=ð16πK2Þ;
F2 ¼ −3k20=ð64πK2Þ; k0 → ∞:

We note that in this limit, the coefficient of the T2 thermal
contribution is zero. (Which is also the case for the
statistical combinations not plotted.)
Some relations can be derived for these functions.

For the special case that s1 ¼ s2, one has F1 ¼ k0F0.

In general, F2 is actually expressible by F1 and F0 due to
the identity:

K2F0 − 4ðk0F1 − F2Þ ¼ 0;

which can be used in (3.3) for the first of the two master
integrals when m ¼ 2.

2. Hm and its OðϵÞ contribution
In this section, we explain the functions H½0;1�

m as defined
by Eq. (3.7) of the main text. To first establish Hm from
(3.5), it can be written as

HmðK; s1; s2Þ ¼ −
Z
½1;2�

ðfv1s1fv2s2 − f−v1s1 f−v2s2 Þðv1E1Þm;

ðB3Þ
for m ¼ 0, 1, 2 with the special notation of Appendix A 1.
In the special case that s1 ¼ s2, one may show that H1 ¼
1
2
k0H0 by a change of integration variables. But in general,

one must adhere to (A4) for the integration. According to
that formulation we can set v1 ¼ v2 ¼ þ1 enabling the
distribution functions to be written

fþs1f
þ
s2 − f−s1f

−
s2 ¼ ðek0=T − s1s2Þns1ns2 ;

where the arguments were omitted.
The results are immediate: [The primed integral is

defined in (A5).]

H½0�
m ¼ km0 ψ

ðmÞ
s1;s2 ;

H½1�
m ¼ n−10

k

Z 0
dppmn1n2 log

k2

ðp − k−Þðp − kþÞ
: ðB4Þ

3. Finite part of Gm

We now consider G½0�
m , defined in Eq. (3.7) of the main

text, for m ¼ f0; 1g.

FIG. 18. The energy dependence of the family of functions Fm
for m ¼ f0; 1; 2g at k ¼ 0. We show here the functions for s1 ¼
−1 and s2 ¼ þ1, with their k0 → ∞ limits subtracted out. The
m ¼ 0 curve was also shown in Fig. 17.

FIG. 17. The thermal part (i.e., we subtracted the T → 0 limit)
of the function F0ðK;þ;þÞ, for several values of the three
momentum. The continuity in the function at k0 ¼ k for k > 0 is
an aspect of the repeated pole in (B1).
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The whole function G0 is equal to the real part of

−
X
v

Z
p

1

4E1E2

v1ð12 þ s2ns2ðE2ÞÞ þ v2ð12 þ s1ns1ðE1ÞÞ
k0 − v1E1 − v2E2

:

In the sum above, where v1 ¼ v2 the “1
2
”-terms combine

into what becomes the vacuum result. Anything propor-
tional to the distribution functions gives thermal effects,
and we use a symmetry to write ns2 with the argument E1.
Making use of (A3), without imposing the energy con-
straint, it is necessary to also add the contribution coming
from k0 → −k0. We can complete all but one of the
integrations to obtain

G½0�
0 ðK; s1; s2Þ ¼

1

k

Z
∞

0

dpðs1ns1ðpÞ

þ s2ns2ðpÞÞΓ0ðp; k0; kÞ;

Γ0ðp; k0; kÞ≡ log
ðkþ þ pÞðk− − pÞ
ðkþ − pÞðk− þ pÞ : ðB5Þ

For small p relative to the external momentum, Γ0 ≃
−8pk=K2, and therefore the integral is finite even if one
of the distribution functions is bosonic. We have decided to
work with all logarithms taking the absolute values of their
arguments, but if we were careful to keep the correct sign
one could use the imaginary part of (B5) to determine H0.
The function G½0�

1 reads

G½0�
1 ðK; s1; s2Þ ¼

k0
k

Z
∞

0

dpfs2ns2ðpÞΓ0ðp; k0; kÞ

þ ðs1ns1ðpÞ − s2ns2ðpÞÞΓ1ðp; k0; kÞg;

Γ1ðp; k0; kÞ≡ p
k0

log
k2þðk2− − p2Þ
k2−ðk2þ − p2Þ ; ðB6Þ

and Γ0 is as before, see (B5). We note that G½0�
1 ¼ 1

2
G½0�

0 if
s1 ¼ s2, as can be derived from the integral expression
for G1.

APPENDIX C: TWO-LOOP KERNELS

In the diagrams labeled IV, Vand VI, index c is nonzero,
and therefore the momenta running in the loop do not
decouple. After carrying out the sums over p0 and q0 in
(2.1), following e.g., Ref. [15], the terms can be sensibly
collected according to which energies are on shell. The
main virtue of our strategy for m, n ≥ 0 (discussed in
Sec. II) is that it means we can perform the frequency sums
assuming m ¼ n ¼ 0.
For IV, the outcome is (4.2) with all intermediate

particles on shell. That is generally the form the “real”
corrections will take. Having more propagators (via d,
e ≠ 0) will facilitate other permutations of cuts. The type-V
master integral has more, which are represented by the two
terms in the following expression for the imaginary part:

ImI ð0Þ
11110 ¼

Z
½1;4�

ðfv1s1fv4s4 − f−v1s1 f−v4s4 Þ

×

�X
v2

Z
q

1
2
þ s2n2ðE2Þ

2E2ðR2 − λ2Þ

þ
X
v3

Z
r

1
2
þ s3n3ðE3Þ

2E3ðv4L − v3RÞ2
�

−
Z
½1;2;3�

fv1s1f
v2
s2f

v3
s3 − f−v1s1 f−v2s2 f−v3s3

ðK − v1PÞ2
: ðC1Þ

(The notation of the outermost integrals was defined in
Appendix A.) Three momenta are put on shell in the last
line, now with an internal propagator that was not needed
before. The virtual correction [equal to the first term from
(C1)] has factored into a binary decay amplitude multi-
plying a one-loop vertex amplitude. Note that the “mass” λ2

has been introduced as a regulator, so that R has on shell
energy E3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ λ2

p
. Later we will take the limit λ → 0

and find that the real and virtual pieces dovetail together,
leaving a result that is both finite and λ-independent. The
other energies are as before: E1 ¼ j pj and E2 ¼ jqj, and we
also denoted L ¼ K − v1P and R ¼ K − v1P − v2Q.
The imaginary part of the special integral in (5.11) is

given explicitly by

ImI⋆
11110 ¼

Z
½1;4�

ðfv1s1fv4s4 −f−v1s1 f−v4s4 Þ

×

�X
v2

Z
q

1
2
þ s2n2ðE2Þ

2E2ðR2 − λ2Þ ð2v2KQÞ

þ
X
v3

Z
r

1
2
þ s3n3ðE3Þ

2E3ðv4L−v3RÞ2
ð2v4KL− 2v3KRÞ

�

−
Z
½1;2;3�

ðfv1s1fv2s2fv3s3 −f−v1s1 f−v2s2 f−v3s3 Þ 2v2KQ
ðK−v1PÞ2

.

ðC2Þ

The most intricate two-loop topology, yet benefiting
from the most symmetry, as four different cuts contribute to
the discontinuity, given by the following expression:

ImI ð0Þ
11111 ¼

�Z
½1;4�

�X
v2

Z
q

1
2
þ s2ns2ðE2Þ

2E2ðR2 − λ2ÞV2

þ
X
v5

Z
v

1
2
þ s5ns5ðE5Þ

2E5ðR2 − λ2ÞQ2

þ
X
v3

Z
r

1
2
þ s3ss3ðE3Þ
2E3Q2V2

�

−
Z
½1;2;3�

fv1s1f
v2
s2f

v3
s3 − f−v1s1 f−v2s2 f−v3s3

ðK − v1PÞ2ðK − v2QÞ2
�

þ ½s1 ↔ s5; s2 ↔ s4�: ðC3Þ
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The meaning of the last line should be clear; the first
line is one of the virtual corrections. It possess three terms
which ought to be clarified. The momenta P and L ¼
v4ðK − v1PÞ are on shell with E1 ¼ j pj and E4 ¼ jlj.
Inside the curly braces we have defined

R ¼ v4L − v2Q ¼ v5V − v1P;

V ¼ K − v2Q ¼ v3R − v1P;

Q ¼ K − v5V ¼ v4L − v3R; ðC4Þ

together with the energies E2 ¼ jqj, E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ λ2

p
and

E5 ¼ jvj. (The necessary form to use should be clear from
the v-sum and spatial integrals.)

1. Real corrections, Wðp;qÞ
Here we derive the expression given in (4.5), by

explicitly carrying out the angular integrals from (4.2).
The result of Appendix A, and specifically Eq. (A14),
shows that we can identify

WIVðp; qÞ ¼ sgnðk0 − p − qÞpq
π

Z
dx2dx1

ΘðhÞffiffiffi
h

p : ðC5Þ

The meaning of h and the boundaries on the integrals were
given there. One may safely set λ ¼ 0 (it does not generate
the collinear logarithms), which simplifies the kinematical
constraints from h ≥ 0. Starting with the angular integra-
tion over x1 ¼ cos θkp in (A14), we write the function h ¼
hðx1Þ as a quadratic: ax21 þ bx1 þ c [33]. The coefficients,
which can be calculated from (A13), are

a ¼ −4p2ðk2 þ 2kqx2 þ q2Þ;
b ¼ 4pðk − qx2Þ½k20 þ k2 − 2ðk0 − pÞðk0 − qÞ − 2kqx2�;
c ¼ 4p2q2ð1 − x22Þ − ðK2 þ 2½pq − k0p − qðk0 − kx2Þ�Þ2:

ðC6Þ

Because a < 0, the Θ-function in (C5) dictates the upper
and lower limits on the x1 integration. We can parametrize
x1 in terms of the “angle” ξ ∈ ð0; πÞ with

x1ðξÞ ¼
−bþ cos ξ

ffiffiffiffi
Δ

p

2a
; ðC7Þ

where Δ ¼ b2 − 4ac is the discriminant. Changing
the integration variable from x1 to ξ thus removes the
Θ-function and yields

Z þ1

−1
dx1

ΘðhÞffiffiffi
h

p Fðx1Þ ¼ jaj−1
2

Z
π

0

dξFðx1ðξÞÞ:

It turns out that Δ ≥ 0 summarizes the allowable phase
space, which we have elaborated previously (in the

momenta p and q). We already assumed a permissible
(p; q) configuration by writing out the x1-integral.
Returning to (C5), this gives

WIVðp; qÞ ¼ sgnðpðk0 − p − qÞÞ

×
q
2

Z
xmax
2

xmin
2

dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2kpx2 þ p2

p : ðC8Þ

The limits above follow from requiring Δ ≥ 0 in (C7), so
that the integral has nonzero support. They are, for
sanctioned p and q values,

xmax
2 ¼ min½þ1;max½X; Y��;
xmin
2 ¼ max½−1;min½X; Y��: ðC9Þ

where

X ¼ 2k0q − K2

2kq
and Y ¼ X þ 2

kq
pðk0 − p − qÞ:

One may check that this reproduces the formula in (4.5).
The same approach works for calculating WV and WVI;

however λ ≠ 0 must be kept wherever a log-divergence
may occur. Determining h and the limits xmin

2 and xmax
2 in

each of the regions defined by Figs. 6 and 7 leads to the
expressions (5.13) and (6.4).
Let us note that the angular limits in (C9) apply to all the

real two-loop contributions. Harking back to Figs. 6 and 7,
these limits are specifiable in each region of the (p; q)-
plane. Considering them individually reveals how for
k0 ≃ k, the prima facie incompatible regions interchange
when moving from above to below the light cone: If one
takes the limit k0 → kþ 0þ (see Fig. 19), the x2-limits
coincide thus giving zero precisely where p and q are

FIG. 19. The allowable integration region in variables p and q,
as k0 approaches k from above. Region “1” from Fig. 5 has been
colored (red) and is excluded by observing that the upper and
lower limits in the x2-integration coincide.
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kinematically forbidden in the spacelike region. A similar
argument works out for k0 → k − 0þ. Moreover, the
angular limits are well-defined for k0 ¼ k in the nontrivial
regions that remain (i.e., “2”, “3” and “4” from Fig. 5). That
implies9 the functions Wðp; qÞ that we calculate are
continuous at k0 ¼ k.
This does not preclude the final master integrals from

being infinite on the light cone. However, for those that are,
the singularity must be the same whether approached from
above or below. Some of the master integrals are finite at
k0 ¼ k, others diverge either logarithmically or due to
a pole.

2. Virtual corrections, UVðp; λÞ
The two terms in the curly braces of (C1) may be

calculated by a standard Feynman parametrization. Let us
manipulate these terms assuming v1 ¼ v4 ¼ þ1 (it does
not lose any generality). We find

X
v2

Z
q

1
2
þ s2n2ðE2Þ

2E2ðR2 − λ2Þ

¼ 1

ð4πÞ2l
Z þ∞

−∞
dq

�
1

2
þ s2ns2ðqÞ

�
log

λ2

4lqþ λ2
;

ðC10Þ

where L ¼ ðl0;lÞ ¼ K − P and R ¼ L − v2Q. (Here, as
before, we absorb the sum over v2 into the sign of q.)
Similarly,

X
v3

Z
r

1
2
þ s3n3ðE3Þ

2E3ðL − v3RÞ2
¼ 1

ð4πÞ2l

×
Z þ∞

−∞
dr

r
e3

�
1

2
þ s3ns3ðe3Þ

�
log

λ2 − 2lðe3 − rÞ
λ2 − 2lðe3 þ rÞ ;

ðC11Þ

with a signed energy e3 ¼ sgnðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ r2

p
. In this term, we

change integration variables from r to q ¼ k0 − p − e3 so
that (C11) and (C10) are ready to be combined. But before
doing that, a divergent contribution needs to be salvaged
from this vertex correction. It is handily isolated (and
underlined in what follows) by writing�

1

2
þ s2ns2ðqÞ

�
¼ sgnðqÞ 1

2
þ sgnðqÞs2ns2ðjqjÞ

in (C10), and similarly a term like sgnðrÞ 1
2
in (C11). The

other parts lead to momentum integrals that are rendered

finite by the thermal weights. But the divergent vacuum
result, using dimensional regularization, is equal to

Z
Q

1

Q2½ðL −QÞ2 − λ2� ¼
1

ð4πÞ2
�
1

ϵ
þ log

μ̄2

λ2
þ 1

�
; ðC12Þ

where L2 ¼ ðK − PÞ2 ¼ 0 was needed. This is what
the curly braces in (C1) produce in vacuum. With a
large cutoff Λ on the magnitude of q, it is easy to show
how the same type of divergence arises. The restricted
integral,

Z þΛ

−Λ

dq
2

�
sgnðqÞ log λ2

4lq
þ sgnðl − qÞ log λ2q

4lðl − qÞ2
�

¼ −l
�
log

4Λ2

λ2
þ 1þOðl2=Λ2Þ

�
;

where we assumed λ → 0. In this limit e3 ¼ rþ λ2

2r þ � � �,
which enabled the arguments of the logarithms to be
simplified. Hence using log 4Λ2 ¼ ϵ−1 þ log μ̄2 is the
choice consistent with the two-point function in (C12).
Returning to Eqs. (C10) and (C11), these two contribu-

tions can be drawn up against their real counterparts, by
substituting

�
1

2
þ s2ns2

�
¼ −

�
1

2
þ s3ns3

�
þ ns2ns3

ns4
;

where we identified l ¼ pþ e3 and omitted arguments of
the distribution functions. (l is the argument of ns4 and
s4 ¼ s0s1.) For small λ, the expression in curly braces from
(C1) thus simplifies,

lim
λ→0

f� � �g ¼ 1

ð4πÞ2l
Z

dq

�
ns2ns3
ns4

log
λ2

4lq

þ
�
1

2
þ s3ns3

�
log

q2

r2

�
: ðC13Þ

The first summand combines with the real corrections to
remove any dependence on λ overall. In the second, we
again single out the divergent part and calculate it with a
cutoff regulator. Namely, from

Z þΛ

−Λ
dqsgnðl − qÞ log q2

ðl − qÞ2

¼ −2l
�
1

ϵ
þ log

μ̄2

4l2
þ 2þOðl2=Λ2Þ

�
;

which was converted to dimensional regularization.
Now OðϵÞ terms in Eq. (A4) must be kept for the outer

9We skipped over the technicality of setting λ ¼ 0. However
the conclusion is still true: W is continuous for finite λ, as are the
virtual corrections. Therefore once combined, and the limit λ → 0
is taken, they remain continuous at k0 ¼ k.
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integration. The sequestered part of (C13) therefore
generates

−1
ð4πÞ2

�
1

ϵ
þ 2 log

μ̄2

K2
þ log

K2k2

4l2ðp − k−Þðp − kþÞ
þ 2

�
:

ðC14Þ

Equation (C14) contains an ultraviolet divergence, which
will end up being multiplied by a function of the temper-
ature in the final expression. The first integral of (C1) can
be written, after using signed momenta to incorporate the
sum over the fvig,

1

4ð4πÞ3k
Z 0

dpðfþs1fþs4 − f−s1f
−
s4Þf� � �g

¼ n−1s0
ð4πÞ3

Z
dpUð0Þ

V ðp; λÞns1ns4 :

The formula for Uð0Þ
V was given in (5.5) of the main text.

Including an extra power of q ¼ v2E2 [from n ¼ 1 in
(5.3)] is a simple matter. None of the Feynman para-
metrizations or angular integrals are modified. The
λ-singularities are also unchanged in (C13), apart from
an extra factor of q. The vacuum result,10

Z
Q

q0
Q2½ðL −QÞ2 − λ2� ¼

l0

4ð4πÞ2
�
1

ϵ
þ log

μ̄2

λ2
þ 1

2

�
;

ðC15Þ

must be recovered by our regularization procedure.
This can be checked by redoing the calculation with a
cutoff, as before. But now one finds that log 4Λ2 ¼ ϵ−1 þ
log μ̄2 þ 2 is needed to consistently convert the restricted
integral,

Z þΛ

−Λ
dqqsgnðl − qÞ log q2

ðl − qÞ2

¼ −l2

�
log

Λ2

l2
− 1þOðl2=Λ2Þ

�
;

to dimensional regularization. The argument is otherwise
unchanged, and altogether leads to the formula for

Uð1Þ
V ðp; λÞ that was given in (5.8).
The special master integral, defined in (5.11), also

follows along the lines above. Here we give some more
details: The curly braces of Eq. (C2) give, for λ → 0,

f� � �g ¼ 1

ð4πÞ2l2

Z
dq

�
q

�
1

2
þ s2ns2

�

×

�
2ðK2 − 2lk0Þ þK2 log

λ2

4lq

�

−
�
1

2
þ s3ns3

��
2rðK2 − 2lk0Þ− qK2 log

λ2q
4lr2

��
:

ðC16Þ
Anything in the integrand that is proportional to a dis-
tribution function ns2ðjqjÞ or ns3ðjrjÞ (evaluated at positive
arguments) will be finite. The divergent terms are easily

isolated using the same approach as forUð0Þ
V andUð1Þ

V . They
can be calculated by a cutoff regulator, and altogether must
giveZ

Q

2K ·Q
Q2½ðL −QÞ2 − λ2� ¼

−K2

2ð4πÞ2
�
1

ϵ
þ log

μ̄2

λ2
þ 1

2

�
:

Once again, the hard cutoff integral can be given explicitly,Z þΛ

−Λ
dq

�
sgnðqÞ

�
2qðK2 − 2lk0Þ þ qK2 log

λ2

4lq

�

− sgnðrÞ
�
2rðK2 − 2lk0Þ − qK2 log

λ2q
4lr2

��

¼ −l2

�
K2 log

4Λ2

λ2
þ 1

2
K2 − 4k0lþOðl2=Λ2Þ

�
:

This part of (C16) should give the complete vacuum result
for the vertex correction and consequently, should be
converted to dimensional regularization using log 4Λ2 ¼
ϵ−1 þ log μ̄2 þ 4k0l=K2. Going back to (C16) and
rearranging the distribution functions, the quantity in curly
braces becomes, for λ → 0,

f� � �g ¼ 1

ð4πÞ2l2

Z
dq

×

�
q
ns2ns3
ns4

�
2ðK2 − 2lk0Þ þK2 log

λ2

4lq

�

þ
�
1

2
þ s3ns3

��
−2lðK2 − 2lk0Þ þ qK2 log

q2

r2

��
:

ðC17Þ
The first term in the square brackets above will combine
with the real corrections; cf. Eq. (5.13). A remnant, which
is proportional to sgnðrÞ 1

2
in the second term, diverges and

can now be calculated with a regulator,Z þΛ

−Λ
dqsgnðrÞ

�
2l

�
2lk0
K2

− 1

�
þ q log

q2

r2

�

¼ −l2

�
1

ϵ
þ log

μ̄2

4l2
þ 3 −

4lk0
K2

�
:

10Again making use of L2 ¼ ðK − PÞ2 ¼ 0 to simplify.
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With that, inserted into (C17), we are able to single out a

fragment that is the same asUð1Þ
V up to a factor of K2=l. We

thus arrive at Eq. (5.14) of the main text, after using the
principal valued integral,

P
Z þ∞

−∞
dqsgnðl − qÞns3ðjl − qjÞ ¼ 0;

to drop some polynomial parts of the thermal proportion.

3. Virtual corrections, UVIðp; λÞ
Moving along to the function UðnÞ

VI ðp; λÞ needed in (6.2),
we derive it from (C3). Let us focus on the three terms in
curly braces and consider them individually. The first, for
λ → 0, is

X
v2

Z
q

ð1
2
þ s2ns2ðE2ÞÞqn

2E2ðR2 − λ2ÞV2
¼ 1

ð4πÞ2K2

Z þ∞

−∞

dqqn

k0 − p − q

×

�
1

2
þ n2

�
log

λ2ðk0 − pÞðk− − qÞðkþ − qÞ
K2qðk0 − p − qÞ2 : ðC18Þ

To carry out the vi-sums, the momenta p and q were
extended to negative values. [Here only the q integration is
made plain, the impending outer p-integration takes the
form of (A4).] Similarly we find, for λ → 0,

X
v5

Z
v

ð1
2
þ s5ns5ðE5ÞÞqn

2E5ðR2 − λ2ÞQ2
¼ 1

ð4πÞ2K2

Z þ∞

−∞

dvðk0 − vÞn
v − p

×

�
1

2
þ n5

�
log

K2vðv − pÞ2
λ2pðk− − vÞðkþ − vÞ ; ðC19Þ

where the integration variable v has been extended to
negative values. For the term where “particle-3” is on shell,
we use the integration variable r ¼ v3E3. Then, for λ → 0,

X
v3

Z
r

ð1
2
þ s3ss3ðE3ÞÞqn
2E3Q2V2

¼ 1

ð4πÞ2K2

×

�Z
−λ

−∞
drþ

Z þ∞

þλ
dr

� ðl − rÞn
r

×

�
1

2
þ n3

�
log

λ4pðk0 − p − rÞðk0 − pÞðrþ pÞ
K4r4

:

ðC20Þ

The restriction E3 ≥ λ assists to explicitly regulate the r ≈ 0
singularity. Unlike in (C18) and (C19), where the corre-
sponding integral may be understood in the principle
valued sense, the risk that s3 ¼ þ1 in (C20) would make

this futile. Therefore we keep λ to control the exclusion of
this integration interval.
Let us change integration variables to q ¼ k0 − v instead

of v and q ¼ k0 − p − r instead of r in (C19) and (C20)
respectively. The distribution functions can be rewritten in a
way that the singular terms coalesce with their real
counterparts.
We do this by using an identity to rewrite the integrand

of (C20),

�
1

2
þ n3

�
log

λ4pqlv
K4r4

¼
�
−
�
1

2
þ n2

�
þ n2n3

n4

�
log

λ2lv
K2r2

þ
��

1

2
þ n5

�
−
n3n5
n1

�
log

λ2pq
K2r2

:

The two lines above are related by the exchange p ↔ l and
q ↔ v (together with same swap in statistics). Combining
the result with (C19) and (C20) gives, for the curly braces
in (C3),

f� � �g →
1

ð4πÞ2K2

Z
dqqn

r

�
ðn2 − n5Þ log

ðk− − qÞðkþ − qÞ
qv

þ n2n3
n4

log
λ2lv
K2r2

−
n3n5
n1

log
λ2pq
K2r2

�
: ðC21Þ

And therefore, taking into account the outer limits of
integration [e.g., by using (A4)], it is clear that (C21)
contributes to a subregion of the available (p; q)-plane in
the real corrections. This is exactly where op ¼ 1 if k0 > k,
and the dependence on λ2 in the second line of (C21)
disappears when combined with the two real corrections in
Eq. (6.2). (The same occurs if k < k0, but then the can-
cellation happens when ōp ¼ 1.) Note that the last line of
(6.2) is to be included in the whole result.
The case n ¼ 2 needs to be handled with some care,

as the subsequent q-integral diverges. [Eq. (D19) of
Appendix D also exposes this fact.] That can be seen from
the ultraviolet behavior of the first line in (C21), since for
q → �∞ the difference ðn2 − n5Þ becomes �1, and the
logarithm,

log
ðk− − qÞðkþ − qÞ

qv
≃

K2

4q2

�
1þ k0

q
þ 7k20 þ k2

8q2
þ…

�
:

Hence the integration in (C21) will be log-divergent for
n ¼ 2, due to the 1=r ¼ 1=ðk0 − p − qÞ left over. It can be
attributed to the vertex correction, i.e., the three-point
function studied in Ref. [34]. The entry of the rank-2
tensor that we need, is given by
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lim
λ→0

Z
Q

q20
Q2V2ðR2 − λ2Þ ¼

1

ð4πÞ2K2

�
K2

4

�
1

ϵ
þ 4þ k2 − 6pl

K2
þ log

μ̄2

K2

�

þ
�
3

2
k20 − 5k0pþ 3p2

��
1þ log

λ2

K2

�
−
l2

2

�
π2

3
− log2

λ2

K2

��
: ðC22Þ

The “1
2
”-terms next to the distribution functions in Eqs. (C18)–(C20) concomitantly ought to reproduce this vacuum

result. Explicitly taking these equations together, with an imposed cutoff for large-q and an infrared regulator for q ≃ l, we
find, for λ → 0,

�Z
l−λ

−Λ
dqþ

Z þΛ

lþλ
dq

�
q2

2ðl − qÞ
�
sgnðqÞ log λ

2lðkþ − qÞðk− − qÞ
K2qr2

þ sgnðvÞ log K2vr2

λ2pðkþ − qÞðk− − qÞ þ sgnðrÞ log λ
4pqlv
K4r4

�

¼ −
K2

4

�
log

4Λ2

K2
þ 2þ k2 − 6pl

K2

�
−
�
3

2
k20 − 5k0pþ 3p2

��
1þ log

λ2

K2

�
þ l2

2

�
π2

3
− log2

λ2

K2

�
:

Terms that vanish as Λ → ∞ were omitted. This integral

appears in Uð2Þ
VI ðp; λÞ, to give (C22) once the dust has

settled and all factors are collected. This means that the
cutoff regulator should be replaced by

log 4Λ2 → ϵ−1 þ 2 log μ̄2 þ 2:

APPENDIX D: LARGE-K2 EXPANSIONS

For external energies k0, that are much larger than both
the temperature T and momentum k, spectral functions
can be studied by OPE techniques [18]. The resulting
approximations are applicable in the deeply virtual regime
K2 ≫ T2 and may also be obtained systematically from the
master sum-integrals themselves [35].
Carrying out the Matsubara sums of (2.1) produces terms,

besides the vacuum result, with different loop momenta put
“on shell” and weighted by a thermal distribution. These
thermal contributions are multiplied by coefficients that
resemble T ¼ 0 amplitudes of a simpler kind. In general,
we can relabel and shift integration variables until the result
is in the form (omitting a, b, c, d, e and m, n),

I ¼ lim
T→0

ðIÞ þ
X
i

Z
p
nsiðpÞ½AiðPÞ�p0¼�p

þ
X
i<j

Z
p;q

nsiðpÞnsjðqÞ½BijðP;QÞ�p0¼�p;q0¼�q: ðD1Þ

Above, within the first square bracket one may set P2 ¼ 0

and in the second one may set both P2 ¼ 0 andQ2 ¼ 0. The
presentation in (D1) folds together all the physical reactions
described by the Boltzmann equation; thus only linear and
quadratic terms in the distribution functions are present. The
former, proportional to Ai (given below), contain leading
thermal corrections of the OPE.

For general a, b, d, c and d,

A1 ¼ ϕaðpÞpm
0 Δd

K−P

Z
Q
qn0Δb

QΔc
K−P−QΔe

K−Q;

A2 ¼ ϕbðpÞpn
0Δe

K−P

Z
Q
qm0 Δa

QΔc
K−P−QΔd

K−Q;

A3 ¼ ϕcðpÞ
Z
Q
ðk0 − p0 − q0Þmqn0Δb

QΔa
K−P−QΔd

PþQΔe
K−Q;

A4 ¼ ϕdðpÞðk0 − p0ÞmΔa
K−P

×
Z
Q
ðk0 − q0ÞnΔe

QΔc
K−P−QΔb

K−Q;

A5 ¼ ϕeðpÞðk0 − p0ÞnΔb
K−P

×
Z
Q
ðk0 − q0ÞmΔd

QΔc
K−P−QΔa

K−Q:

These five terms are compatible with the original symmetry
of the diagram, e.g., A2 with P ↔ Q gives a result with Q
(associated with Δb

Q in the original labeling) being the on
shell momenta. In A1, ϕaðpÞ denotes the residue of Δa

P at
its positive pole p0 ¼ p, viewing the scalar propagator
ΔðPÞ ¼ ðp2

0 − p2Þ−1 as a function the complex energy. It
may be expressed using the gamma function as

ϕaðpÞ≡ ð−1Þa−1ffiffiffi
π

p Γðaþ 1
2
Þ

ΓðaÞp2a−1 : ðD2Þ

For the vacuumlikeQ integrations it is safe to expand the
integrand in P ¼ ðp0; pÞ. Doing just that, for what we
need11 (dropping any terms we can, thanks to P2 ¼ 0)

11We write four products X · Y ¼ x0y0 − x · y.
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Δa
K−P ≃

1

K2a

�
1þ 2a

K · P
K2

þ 2aðaþ 1Þ ðK · PÞ2
K4

þ…

�
;

Δa
K−P−Q ≃

1

ðK −QÞ2a
�
1þ 2a

ðK −QÞ · P
ðK −QÞ2

þ 2aðaþ 1Þ ððK −QÞ · PÞ2
ðK −QÞ4 þ…

�
;

Δa
PþQ ≃

1

Q2a

�
1− 2a

Q · P
Q2

þ 2aðaþ 1Þ ðQ · PÞ2
Q4

þ…

�
:

ðD3Þ

After the necessary expansion is inserted into the defini-
tions of each Ai, one finds a variety of ordinary vacuum
integrals. These types of integrals are all derivable from a
class of 1-loop tensors [34], viz. (not the same m, n as
before),

J μ1μ2���
m;n ≡

Z
Q

Qμ1Qμ2 � � �
Q2mðK −QÞ2n :

In particular, Lorentz invariance implies that they are
each linear combinations of independent tensor (of
appropriate rank) that can be constructed from just Kμ

and gμν. We need only those with up to four indices,
denoted

J μ
m;n ¼ Am;nKμ;

J μν
m;n ¼ Cm;ngμν þ Bm;nKμKν;

J μνρ
m;n ¼ Em;nðKmgνρ þ sym:Þ þDm;nKμKνKρ;

J μνρσ
m;n ¼ Hm;nðgμνgρσ þ sym:Þ

þ Gm;nðKμKνgρσ þ sym:Þ þ Fm;nKμKνKρKσ:

The coefficients A;B;C;D; E; F;G andH can all be related
to the fundamental scalar integral J m;n (it has no powers of
q0 in the numerator).
Without loss of generality, we assume m ≥ n so that the

pairs (m; n) of interest here are (0, 0), (1, 0), (1, 1) and (2,
0). Therefore the contractions needed are as follows:

PμJ
μ
m;n ¼ ðK · PÞAm;n

J 0
m;n ¼ k0Am;n ðD4Þ

PμPνJ
μν
m;n ¼ ðK · PÞ2Bm;n

PμJ
μ0
m;n ¼ p0Cm;n þ k0ðK · PÞBm;n

J 00
m;n ¼ Cm;n þ k20Bm;n ðD5Þ

PμPνJ
μν0
m;n ¼ 2p0ðK · PÞEm;n þ k0ðK · PÞ2Dm;n

PμJ
μ00
m;n ¼ ½ðK · PÞ þ 2k0p0�Em;n þ k0ðK · PÞ2Dm;n

ðD6Þ

PμPνJ
μν00
m;n ¼ 2p2

0Hm;n þ ðK · PÞ½ðK · PÞ þ 4k0p0�Gm;n

þ k20ðK · PÞ2Fm;n: ðD7Þ

These expressions still depend on the relative angle between
k and p. That is to be taken into account when performing
the integrals in (D1), which we carry out using e.g.,

Z
p
fðpÞ½ðK · PÞ2�p0¼�p ¼ 2

Z
p
fðpÞp2

�
k20 þ

k2

3 − 2ϵ

�
;Z

p
fðpÞ½p0ðK · PÞ�p0¼�p ¼ 2

Z
p
fðpÞp2k0;

and any other angular averaging useful for simplifying what
comes from implementing Eqs. (D3). (For example, terms in
the square bracket that are odd in p0 will vanish after
summing over p0 ¼ �p.) Such manipulations will put the
spectral function12 from (D1) into the form,

ImI ∼ ω0K2 þ ω2T2 þ ω4

T4

K2
þ…; ðK2=T2 → ∞Þ

where ωi will depend on details of the master integral. The
first coefficient, ω0, is exactly the vacuum result and there-
fore might contain a term ðϵ−1 þ 2 log μ̄2=K2Þ. Coefficients
of powers of T2, which are all finite, arise from moments of
equilibrium distribution functions. So, for instance, ω4 stems
from

R
p pnsiðpÞ ¼ OðT4Þ. Only ω0 is independent of the

statistical nature (via si ¼ �1) of the propagators.
With the abbreviation ni ≡ sinsiðpÞ, we list some of

those integrals now:
The masters that factor into a product with a tadpole

diagram are zero in vacuum: they only start at OðT2Þ. It
turns out that they also have no T4-term,

ImI ð0Þ
10110 ¼ þ

Z
p

n3
16πp

þO
�
T6

K4

�
; ðD8Þ

K2ImI ð0Þ
10120 ¼ −

Z
p

n3
16πp

þO
�
T6

K4

�
: ðD9Þ

For the cases with m ≥ 1 they can be expressed in terms of
the results above. The following equalities are only valid to
OðT6=K4Þ, although the first is true in general if s1 ¼ s4:

ImI ð1Þ
10110 ¼

1

2
k0ImI ð0Þ

10110;

ImI ð1Þ
10120 ¼ k0ImI ð0Þ

10120;

ImI ð2Þ
10120 ¼

3

4

�
k20 þ

k2

3

�
ImI ð0Þ

10120:

12The approach here could be used for the whole master
integral, but presently we focus only on the imaginary part.
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One may also obtain the masters I11010 and I11020 by
replacing s3 with s2 in the above.
The sunset integral has the expansion,

ImI ð0Þ
11100 ¼

K2

8ð4πÞ3 þ
Z
p

n1 þ n2 þ n3
16πp

þO
�
T6

K4

�
;

ðD10Þ

which is evidently symmetric in fsig for the indices i ¼ 1,
2 and 3. It also has no T4-term, and the T2-term can equal
zero if only one of the particles is bosonic, the rest
fermionic.
For the spectacle diagram, which bears an ultraviolet

divergence (from the 1-loop factor) that persists after taking
the imaginary part, we find

K2ImI ð0Þ
11011 ¼ −

K2

2ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 4

�
þ
Z
p

n1 þ n2 þ n4 þ n5
16πp

þ
Z
p

pðn1 þ n2 þ n4 þ n5Þ
4πK4

�
k20 þ

k2

3

�
þO

�
T6

K4

�
:

ðD11Þ

The result is symmetric in fsig for i ¼ 1, 2, 3 and 4. Moreover, given any combination of statistics, the T2- and T4-order
corrections are not zero.
Considering next the squint two-loop diagrams (with a ¼ b ¼ c ¼ d ¼ 1 and e ¼ 0), the simplest yields

K2ImI ð0Þ
11110 ¼ −

K2

4ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 5

�
þ
Z
p

n1 − ðn2 þ n3Þ
16πp

þ
Z
p

pð3n1 − ðn2 þ n3ÞÞ
12πK4

�
k20 þ

k2

3

�
þO

�
T6

K4

�
;

ðD12Þ

which is symmetric in s2 and s3. The master with m ¼ 1 (n ¼ 0) has the same symmetry,

K2

k0
ImI ð1Þ

11110 ¼ −
K2

8ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 11

2

�
−
Z
p

n2 þ n3
16πp

−
Z
p

p
12πK4

�
ðn2 þ n3Þ

�
k20 þ

k2

3

�
−
1

2
ð3n1 þ n2 þ n3ÞK2

�
þO

�
T6

K4

�
: ðD13Þ

So do all I ðmÞ
11110 (with n ¼ 0, for any m), but those with n ≥ 1 have no such symmetry in the statistical factors. Indeed

consider m ¼ 0 and n ¼ 1, which has the expansion,

K2

k0
ImI ð0;1Þ

11110 ¼ −
K2

16ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 9

2

�

þ
Z
p

n1
32πp

þ
Z
p

p
24πK4

�
3n1

�
k20 þ

k2

3

�
−
1

2
ð3ðn1 þ n2Þ − n3ÞK2

�
þO

�
T6

K4

�
: ðD14Þ

Within the same class of master integrals, having a ¼ b ¼ c ¼ d ¼ 1, it is also useful to cater for e ¼ −1. Then let us
consider the particular combination,

ImI⋆
11110 ≡ Im½I ð0Þ

10110 þ K2I ð0Þ
11110 − I ð0Þ

1111ð−1Þ�

¼ −
K2

8ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 9

2

�
þ
Z
p

n1
16πp

þ
Z
p

p
24πK4

ð3ðn1 − n2Þ þ n3Þ
�
k20 þ

k2

3

�
þO

�
T6

K4

�
: ðD15Þ

Finally, it remains to discuss the cats-eye topology. The simplest case (m ¼ n ¼ 0) is actually zero in vacuum, and the
expansion starts at OðT2Þ,

K4ImI ð0Þ
11111 ¼ −

Z
p

n1 þ n2 þ 2n3 þ n4 þ n5
16πp

−
Z
p

p
24πK4

ð11ðn1 þ n2 þ n4 þ n5Þ þ 6n3Þ
�
k20 þ

k2

3

�
þO

�
T6

K4

�
;

ðD16Þ
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which has, as it should, a total symmetry in fsig for i ¼ 1, 2, 4 and 5. We may assumem ≥ nwithout loss of generality, due
to the symmetry in s1 and s2. Those integrals with m < n follow from those with m > n under this exchange. We give the
first such case (with m ¼ 1 and n ¼ 0),

K4

k0
ImI ð1Þ

11111 ¼ −
Z
p

n2 þ n3 þ n4
16πp

−
Z
p

p
24πK4

�
ð11ðn2 þ n4Þ þ 3n3Þ

�
k20 þ

k2

3

�
þ 1

2
ð9ðn1 − n4Þ − 5ðn2 − n5ÞÞK2

�
þO

�
T6

K4

�
: ðD17Þ

And the closely related I ð0;1Þ
11111 may be obtained by simultaneously swapping s1 with s2 and s4 with s5. (The latter is

automatic if we enforce s4 ¼ s0s1 and s5 ¼ s0s2.) For some integrals with higher powers of energies, we obtain (with
m ¼ n ¼ 1)

K2ImI ð1;1Þ
11111 ¼ þ K2

16ð4πÞ3 þ
Z
p

p
48πK4

�
1

2
ð3ðn1 þ n2 þ n4 þ n5Þ − 2n3ÞK2

− ð9ðn1 þ n2Þ þ 2n3 þ 5ðn4 þ n5ÞÞk20
�
þO

�
T6

K4

�
; ðD18Þ

and (with m ¼ 2 and n ¼ 0)

K2ImI ð2Þ
11111 ¼ −

K2

16ð4πÞ3
�
1

ϵ
þ 2 log

μ̄2

K2
þ 11

2

�
−
Z
p

1

16πpK2

�
ðn2 þ n3 þ n4Þk20 −

1

4
ðn2 þ n5ÞK2

�

−
Z
p

p
24πK4

�
1

2
ð3ðn1 þ n4Þ þ 2ðn2 þ n3 þ n5ÞÞK2

− ð7n2 þ n3 þ 9n4 þ 2n5Þk20 þ ð11ðn2 þ n4Þ þ 3n3Þ
k20
K2

�
k20 þ

k2

3

��
þO

�
T6

K4

�
: ðD19Þ

In all the explicit expansions above, we have left the momentum integrals (over p) in the coefficients ω2 and ω4 as is. But
they are trivial to carry out for given s0, s1 and s2. They are all of the form,

Z
p
pν−2ni ¼

siTνþ1

2π2

�
1 −

Θð−siÞ
2ν

�
Γðνþ 1Þζðνþ 1Þ; ðD20Þ

where ν ¼ f1; 3g.
These expansions can be used for the photon spectral function in a QCD medium, given in Eqs. (2.6) and (2.7). The

expansions for large K2 are

Im½gμνΠμν
ð1Þ� ¼ −NCF

�
3K2

ð4πÞ3 þ
πT4

9K4

�
k20 þ

k2

3

��
þ…;

Im½Π00
ð1Þ� ¼ NCFk2

�
1

ð4πÞ3 þ
πT4

27K4

�
þ…: ðD21Þ

The leading term is the vacuum result and thermal corrections would start at OðT2Þ, but this term is absent in accordance
with [18].
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