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English abstract

In this thesis, we will present the results of our studies into the nature
of four–dimensional, non-supersymmetric quantum field theory, partic-
ularly that of renormalization group flows. This is of course a vast subject
and we could not hope to cover it all. We begin our presentation by dis-
cussing two rather different models that we will return to several times
during the course of the thesis. The first is the standard model of particle
physics, where we put a great emphasis on the Higgs field and its particle,
the second is an SU(Nc) toy model which has been found to have many
interesting properties.

We then proceed to introduce the concept of renormalization, and
dedicate an extended section to a new method that we have developed
for the calculation of (especially) beta functions. We also take time to
discuss fixed points in gauge theories, and how the presence or absence
of these is determined by the parameters of the theory in question.

Next, we study the conjectured a theorem, i.e., the proposal that there
exists a function a of the couplings in a four–dimensional quantum field
theory which is monotonic along any renormalization group flow. We
test the weak form of this conjecture, which states that a is larger at UV
fixed points than at IR fixed points, and find that this holds in the toy
model even when none of the fixed points is Gaussian.

From our investigations into the a theorem, we discovered that to
preserve the symmetries of a gauge-Yukawa theory, it is necessary to
run the gauge couplings with a beta function that is calculated to one
higher loop order than the Yukawa beta functions, which must in turn be
computed to one higher loop order than the quartic beta functions. We
use this very important result to refine computations done previously by
others regarding the stability of the standard model vacuum.

Finally, we consider the renormalization group flows of a model in-
spired by the standard model lepton sector when the beta functions are
computed to different loop orders. We use this to give quantitative state-
ments regarding the trustworthiness of perturbation theory.
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Dansk sammenfatning

I denne afhandling præsenterer vi resultaterne af vore studier udi firedi-
mensionel, ikke-supersymmetrisk kvantefeltteoris natur, især med hen-
syn til renormeringsgruppestrømme. Dette er naturligvis et omfattende
emne, og vi har intet håb om at dække det hele her. Vi begynder vores
præsentation med en diskussion af to ganske forskellige modeller som
vi vil vende tilbage til flere gange i løbet af afhandlingen. Den første er
partikelfysikkens standardmodel, hvor vi lægger stor vægt på Higgsfel-
tet og dets tilhørende partikel, den anden er en SU(Nc) toy model som har
mange interessante egenskaber.

Vi introducerer derefter emnet renormering, og dedikerer et længere
afsnit til nye metoder vi har udviklet med henblik på at udregne (især)
betafunktioner. Vi afsætter også plads til at diskutere fikspunkter i gau-
geteorier, og hvordan deres tilstedeværelse eller fravær bliver afgjort af
teoriens parametre.

Det næste vi studerer er det foreslåede a-teorem, formodningen om
at der eksisterer en funktion a af koblingerne i en firedimensionel kvan-
tefeltteori der er monotonisk langs enhver renormeringsgruppestrøm. Vi
tester den svage udgave af formodningen, der siger at a er større i UV-
fikspunkter end i IR-fikspunkter, og vi finder at dette er sandt for den
specifikke teori vi undersøger, selv når ingen af fikspunkterne er gaussi-
ske.

Fra vores undersøgelse af a-teoremet finder vi at for at bevare symme-
trierne i en gauge-Yukawa-teori er det nødvendigt at lade gaugekoblingen
løbe med en betafunktion der er udregnet til én højere løkkeorden end
Yukawa-betafunktionen, der igen skal udregnes til én højere løkkeorden
end den kvartiske betafunktion. Vi bruger dette vigtige resultat til at
forfine andres beregninger af vakuums stabilitet i standardmodellen.

Endeligt betragter vi renormeringsgruppestrømmene i en model der
er inspireret af standardmodellens leptonsektor når betafunktionernerne
er udregnet til forskellige løkkeordener. Vi bruger dette til at fremsætte
kvantitative udsagn om perturbationsteoriens troværdighed.

vi



Introduction

The border between mathematics and physics has always been blurry.
Sir Isaac Newton famously made great advances in the understanding
of calculus while working on classical mechanics [7] and optics [8]. In
later centuries, Carl Friedrich Gauss made essential contributions to elec-
trostatics while working in pure mathematics. More recently, Edward
Witten was awarded the Fields Medal for, among other things, applying
ideas from physics to mathematics [9, 10].

It is tempting, for a physicist, to see mathematics purely, or primarily,
as a tool for understanding the phenomena that are observed in exper-
iments, but history has shown us that the study of mathematics and
physics have a greater synergy than that. It has even been suggested [11]
that mathematics is a fundamental part of the world, rather than merely
a language by which it can be described.

Despite the fruitful symbiosis between mathematics and physics, the
increasing specialization of the fields that we have seen during, in par-
ticular, the twentieth century means that very few people are capable of
bridging the gap between the subjects. However, this specialization has
also opened up new areas which neither attempts to describe Nature, nor
can be said to be the purview of mathematics. This disputed territory is
exactly where the focus of this thesis will be.

The greatest triumph of particle physics in the previous hundred years
is without a doubt the formulation and vindication of what we now term
the standard model. The sheer magnitude of the theory’s success was, of
course, not immediately obvious, but it has served as a benchmark for
the majority of new physics speculations for decades. However, there
are several things that the standard model does not explain, and which
makes finding a theory of Nature that goes beyond it desirable. We will
not even try to make an exhaustive list, but a few of these are the hierarchy
and cosmological constant problems, charge quantization, and the nature
of dark matter.

Much theoretical effort has been put into developing beyond the stan-
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2 INTRODUCTION

dard model physics, but with the Large Hadron Collider (and the Super
Proton Synchrotron, the TeVatron and the Large Electron-Positron Col-
lider before it) having discovered no direct evidence for any such physics,
we have not found extensions of the standard model to be a fruitful av-
enue of research.

Instead, we will take a step back and consider the framework the
standard model is built within; that of non-supersymmetric renormal-
izable quantum field theory in four dimensions. Despite the obvious
importance of understanding the framework that is our basis for our best
predictions about Nature, there are still a large number of open questions
about it. Of these we can only hope to answer a small fraction in a thesis
such as this, but we will try to address the central issues concerning the
energy dependence of the theory, or its renormalization group flow.

In particular, we will discuss and investigate the a theorem conjecture
which in its strong form asserts that renormalization group flows are
irreversible in coupling space, and in its weak form merely that there
exists a function a which is larger at high energy fixed points than at low
energy ones.

Following the insights gained in this analysis of pure field theory, we
will detail their consequences for the proper running of coupling con-
stants in a theory with many different interactions. Since the standard
model is such a theory, we find that our study of field theory has implica-
tions for Nature, and we will show how they impact the standard model
predictions for the stability of the vacuum.

Last, we will perform a detailed study of how different loop orders im-
pact the renormalization group flows in a model inspired by the standard
model lepton sector.
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1
Gauge-Yukawa theory

Quantum field theory is a very general framework that can accommodate
a great variety of different particles and interactions, subject to an even
greater variety of symmetries and constraints. Quite naturally, this means
that quantum field theory is almost never studied in its full generality.

For physical applications, it is almost always assumed that the theory
under consideration is invariant under translation and Lorentz transfor-
mations (together forming the Poincaré group). In this thesis we will
consider breaking these symmetries as a mathematical trick in Section
3.2, but this should not be taken literally. Some work has been done to
study Lorentz symmetry breaking as an approximation to quantum grav-
ity (see e.g. [12] and references therein), but we will not consider that in
this work.

Poincaré symmetry is generally considered to be implicit when work-
ing with quantum field theory, and the first really interesting class of sym-
metries we will consider is therefore gauge symmetries. Gauge symmetry
is an invariance under a local Lie group transformation. This symmetry
was present, but not considered at the time, in both Maxwell’s theory
of electromagnetism, and Hilbert’s formulation of General relativity [13].
The thought of the day was that this was a curious accidental symmetry,
useful only for simplifying calculations. However, if one takes the oppo-
site view and considers gauge symmetry to be a fundamental property
of Nature, it becomes a very powerful principle. Imposing invariance
under U(1) gauge transformations on a quantum theory of electrons au-
tomatically implies the existence of massless vector particles that can
be identified with photons, and extends the theory to the full quantum
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4 CHAPTER 1. GAUGE-YUKAWA THEORY

electrodynamics [14]. It should be pointed out that even in a gauge in-
variant theory, there are some quantities that depend on the choice of
gauge. However, since the gauge transformations do not correspond to
any physical change, observables must be explicitly gauge invariant.

One very common class of quantum field theories are the supersym-
metric ones [15, 16], where the Poincaré symmetry is extended to also
include anti-commuting generators, and each bosonic degree of freedom
is matched by a corresponding fermionic one. These theories have many
desirable qualities and are particularly well-behaved. For decades, they
have also been considered as very likely candidates for beyond the stan-
dard model physics phenomenology [17, 18]. However, despite several
generations of particle accelerators and experimental physicists looking
for them, no definite signs of supersymmetry have been seen in Nature.

The ideas of renormalization, in particular the Wilsonian picture (see
Section 2.1) make it common to deal only with interactions where the
coupling constant has a non-negative mass dimension. In four dimen-
sions, this limits us to gauge interactions, fermion and scalar masses,
scalar cubic and quartic couplings, and fermion-fermion-scalar Yukawa
interactions. This thesis will precisely deal with non-supersymmetric ex-
amples of this class of theories. Often, we will limit ourselves further
by only considering clasically conformal theories, where the only the in-
teractions with dimensionless coupling constants are considered, that is
the gauge, Yukawa and quartic interactions. Some of our discussion will
hold in general, but a very large part of it will deal with specific models,
which we will introduce here before going into their more intricate details
in later chapters.

We will primarily consider two models; the standard model of parti-
cle physics and a toy model first introduced in [19] with fermions trans-
forming under the fundamental and adjoint representations of an SU(Nc)
gauge symmetry, and a large scalar sector that is a singlet under the gauge
symmetry. In Chapter 5, we further study two variations of a different
model inspired by the standard model lepton sector.

1.1 The standard model

The standard model of particle physics is perhaps the most frustratingly
successful theory in the history of physics. Since its introduction in
the 1960’s [20–26], it has only undergone very few significant revisions.
The near non-observation of flavor-changing neutral currents demanded
a mechanism for the suppression of these, which was provided in the
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GIM mechanism [27], and suitably extended upon the observation of
CP-violation in the quark sector [28, 29]. The discovery of neutrino masses
through neutrino oscillation is likewise in contradiction with the standard
model as originally proposed. However, since it is a relatively simple
matter to introduce a neutrino mass in the standard model through the
addition of right-handed sterile neutrinos, this is not considered a prob-
lem for the theory. The reason right handed neutrinos are not generally
considered to be part of the standard model is that it is not clear from
experiments how they would enter.

At high energies, the standard model describes massless fields inter-
acting with each other via strong and electroweak gauge interactions and
Yukawa interactions. At low energy, the electroweak symmetry is spon-
taneously broken via the Higgs mechanism1, which has the interesting
property that it gives masses to the fundamental scalars, fermions and the
three weak gauge bosons, leaving only the gluons and photon massless.
In this thesis, we will mostly be interested in the standard model in the
high energy regime.

Mathematically, we describe the standard model in terms of its La-
grangian and the transformation properties of its fundamental fields (see
Table 1.1)

Lsm = Lkin +Lmass +Lyuk +Lquart (1.1)

Lmass = −µ2H†H (1.2)

Lyuk = −YEL̄HE − YDQ̄HD − YUQ̄H̃U + h.c. (1.3)

Lquart = −λ̂(H†H)2, (1.4)

whereLkin contains the canonically normalized kinetic terms, and YE,YD

and YU are the Yukawa matrices of the electron, down, and up-type fields
respectively. In flavor space, these are 3 × 3 matrices. Without loss of
generality, it is possible to choose a basis where YE and YU are diagonal,
and YD = VỸD, where ỸD is diagonal and V is the unitary CKM-matrix.

We will discuss some particulars of the standard model in Chapter 4,
in particular how the Higgs mechanism gives mass to the gauge bosons
and the eponymous Higgs boson. We do this as a preliminary exercise
before studying the stability of its vacuum at very high scales.

1Many people have contributed to the development of this mechanism, and it is
something of a historical accident that Peter Higgs gets the vast majority of the credit.
Of course, the more fitting name of Anderson-Brout-Englert-Guralnik-Hagen-Kibble-
Higgs-Weinberg-’t Hooft mechanism [25, 30–34] is rather cumbersome, and would quite
likely still leave some invaluable contributors feeling slighted.
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Fields [SU(3)c] [SU(2)W] [U(1)Y] Chirality
L 1 � −

1
2 L

E 1 1 −1 R
Q � � 1

6 L
D � 1 −

1
3 R

U � 1 2
3 R

H 1 � 1
2

Table 1.1: Transformation properties of the standard model fields under
the three constituent gauge groups. As mentioned in the text, it would
be a simple matter to add a right-handed neutrino field transforming in
the (1,1,0) representation of the standard model gauge group. However,
since these have not been directly observed, we shall omit them. For
the non-Abelian groups, we are using the Young tableau notation where
� refers to the fundamental representation of the group, 1 to the singlet
representation and �would refer to the conjugate representation. For the
U(1) group, we are using the charge convention that Q = T3 + Y, where
Q is electric charge, T3 is the z component of the weak isospin, and Y is
the weak hypercharge.

1.1.1 The role of the Higgs

Without a doubt, the most famous particle of recent years has been the
Higgs particle of the standard model, so it behooves us to spend time
describing its properties and importance. While its importance has been
blown somewhat out of proportions by the mainstream media, there is
no denying that the Higgs particle does an impressive job in the standard
model, fulfilling multiple roles in a way the other particles do not.

Masses
The first and most celebrated role of the Higgs is to bridge the gap be-
tween the high energy regime where Nature exhibits the SU(2)W ⊗U(1)Y

electroweak gauge symmetry, and the low energy one where only the
U(1)em of electromagnetism remains and where the W and Z bosons are
massive. Massive gauge bosons are in contradiction with the principle of
gauge invariance, but is accommodated by the Higgs mechanism, where
the scalar field acquires a non-zero vacuum expectation value (vev). This
leads to an effective theory where the gauge symmetry is broken and the
gauge bosons are massive.



1.1. THE STANDARD MODEL 7

To properly appreciate the second role of the Higgs, giving masses to
the standard model fermions, we will start by asking a question that to
the untrained eye seems the province of fruitless philosophizing; “what
would happen if left and right were switched around?” Or in a more
formal language: “what would be the result of a parity transformation of
the entire universe?”

In classical physics, and every day experience, the answer is simple;
nothing at all. This holds true equally well in the quantum mechanics of
the early 20th century, and even in quantum electrodynamics (QED), and
quantum chromodynamics (QCD). However, it is not true for all physical
processes. An example is the Z0-decay polarization asymmetry,

A f
LR =

Γ(Z0
→ fL f̄R) − Γ(Z0

→ fR f̄L)

Γ(Z0 → fL f̄R) + Γ(Z0 → fR f̄L)
(1.5)

which is a non-zero number that changes sign under a parity transfor-
mation. The reason for this asymmetry is that the weak force (unlike
the electromagnetic and strong forces) distinguishes between particles of
left- and right-handed chirality.

This chiral nature of the weak force puts very stringent bounds on
what kinds of mass terms the particles of the standard model can form.
In particular, invariance under the weak gauge symmetry implies that
none of the standard model fermions can have a fundamental mass.
However, they can form Yukawa interactions with the Higgs field, and
once the Higgs field acquires its vev, these interaction terms give effective
masses to the standard model fermions. If we were to include a right-
handed neutrino field N, this would be able to form a Majorana mass
term, 1

2mNNN in addition to a Yukawa coupling with the Higgs and
Lepton fields, YNL̄H̃N.

It is, however, very important to stress that this is not actually the
source of most mass in the universe. The masses of the up and down
quarks are (according to the Particle Data Group) 2.3 MeV and 4.8 MeV
respectively [35], giving a naı̈ve estimate for the proton mass of 9.4 MeV,
two orders of magnitude less than its physical mass of 938.3 MeV [35].
The remainder of the mass comes from non-perturbative QCD effects.
The inner workings of the proton and other hadrons is an immensely
fascinating and important subject that we sadly do not have space to
cover in this work.

Unitarity
Although the ability to provide masses for the standard model particles
is the Higgs boson’s most celebrated role, it is by no means its only one.
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It has even been argued that it is not its most important one [36]. We will
not here make any such arguments, but merely point out that the Higgs
has at least one other very important role to play in the standard model.

Quantum field theory, and indeed all quantum theory, is by its nature
probabilistic. When two particles interact, it is impossible to say with
certainty what the result of the interaction will be, it is merely possible
to calculate the probabilities of each possible outcome. One particular
interaction where the Higgs boson plays a crucial role is the longitudinal
scattering of W bosons (see Figure 1.1).

�Z0

W+

W−

W+

W−

�γ

W+

W−

W+

W−

�H
W+

W−

W+

W−

�Z0

W+

W−

W+

W−

�γ

W+

W−

W+

W−

�H

W+

W−

W+

W−

�
W+

W−

W+

W−

Figure 1.1: Diagrams contributing to the longitudinal scattering of W
bosons.

Let us, for a moment, assume that Nature does not contain a Higgs
boson, or that its coupling to the W bosons is not what the standard
model predicts. Then we would find that the perturbative prediction of
the probability of the longitudinal scattering of W bosons occurring would
diverge as the center of mass energy in the interaction increased [37, 38].
However, it can be shown that non-perturbative effects can still render
the total probability finite [39]. If there is a standard model Higgs, its
contribution to the amplitude exactly cancels the divergence and renders
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the the perturbative prediction finite [37];

T(W+
L W−

L →W+
L W−

L ) = −
√

2GFM2
H

(
s

s −M2
H

+
t

t −M2
H

)
. (1.6)

Here GF is the Fermi constant, s and t (and u which does not enter here)
are the Mandelstam variables, and MH the mass of the Higgs boson. This
amplitude (and the others like it, see [37] for details) is well behaved for
a Higgs boson mass

MH ≤Mc =

√
8π
√

2/(3GF) ≈ 1 TeV . (1.7)

Renormalizability
It is a well known and much lamented fact that a very large fraction of the
integrals central to quantum field theory calculations are divergent. For-
tunately, the method of renormalization (which we will expound greatly
on in Section 2.1) has been developed to make these divergences tractable
for a very large class of theories. In four dimensions, this includes all the-
ories with gauge, Yukawa and scalar quartic self-couplings, as well as
fermion and scalar mass terms and scalar trilinear couplings.

However, the fact that non-Abelian gauge fields, and in particular
massive ones, are renormalizable was not known, and was in fact sus-
pected not to be the case, before the seminal work of ’t Hooft and Veltman
[40–42]. In [41], it is shown that for massive gauge fields to be renormal-
izable, it is absolutely crucial that the masses are acquired via a Higgs
mechanism, and are not intrinsic properties of the gauge fields.

1.2 SU(Nc) toy model
The goals of this thesis is to understand Nature in terms of the standard
model, and to explore aspects of quantum field theory both as they relate
to it, and on their own terms. To accomplish the second goal, it is useful
to have a toy model that can be used as a playground for quantum field
theory, both to investigate phenomena that do not occur in the standard
model, and to elucidate various aspects of ones that do.

1.2.1 Previous work

The toy model we consider was first introduced in [19] to study the dila-
ton, the Goldstone boson associated with the breaking of scale invariance.
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The motivation for this study was twofold; several theories of beyond the
standard model (BSM) physics predict that the Higgs may in fact be such
a dilaton, and secondly the spontaneous breaking of conformal symme-
try in quantum field theory is an interesting phenomenon on its own
account.

The analysis of the breaking of conformal symmetry in this theory
was further expanded in [1], where it was discovered that the two–loop
beta functions of the theory have a fixed point that can be perturbatively
turned off at a non-zero value of the couplings, leading to the celebrated
phenomenon of walking coupling constants, and Miransky scaling [43–
45]. While these features were extremely appealing, we later discovered
that the two–loop beta function analysis is invalid because it violates the
Weyl consistency conditions [4, 46, 47] (see also Section 3.2).

In [3], we brought the toy model closer to the standard model by
considering the impact on the dilaton of the theory coming from an
electroweak sector and a top quark-like Yukawa interaction. We found
that for a large range of the model’s parameters, the salient features were
preserved, adding credence to the idea that the Higgs boson could be a
dilaton of some underlying theory.

A prominent feature of the model is that it possesses several fixed
points, and for certain values of the parameters, these include non-Banks-
Zaks type fixed points. Since we are interested in the nature of confor-
mality in gauge-Yukawa theories, we studied the conjectured a theorem2

within this theory [2]. We showed that the ã function of Jack and Osborn
[46] does indeed satisfy the (weak version of the) a theorem in the present
theory. We will return to this analysis in great detail in Chapter 3.

Lagrangian and fields
We now turn our attention to the particulars of the model under investi-
gation. It has an SU(Nc) gauge symmetry under which there are fermions
transforming in the fundamental, conjugate fundamental and adjoint rep-
resentations, and it also features a global SU(N f )L × SU(N f )R symmetry
(see Table 1.2 for the details). The fundamental and conjugate fundamen-
tal Weyl fermions can be thought of as forming a Dirac vector fermion in
analogy with QCD, but we find the present description more convenient.
In the original analysis, only one adjoint fermion was considered, but we
will also investigate cases where it is illuminating to regard `, the number

2The c theorem is a fully proved theorem in two dimensional conformal field theory.
The a theorem is a conjectured equivalent in four dimensions. We apologize for this
awkward naming convention and will return to the subject in Section 3.1.
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of these, to be different from 1. If ` > 1, this will lead the introduction of
to an additional global SU(`) symmetry. The Lagrangian of this theory is

L = −
1
4

FµνFµν + iλ /Dλ̄ + iq̄ /Dq + i ¯̃q /Dq̃ + ∂µH†∂µH

+ (yHq̃Hq + h.c.) − u1(Tr[H†H])2
− u2 Tr[(H†H)2] , (1.8)

where λ is the adjoint fermion, q and q̃ are (anti)fundamental fermions
and H is a singlet scalar field.

Fields [SU(Nc)] SU(N f )L SU(N f )R U(1)V U(1)AF Chirality
λ Adj 1 1 0 1 L
q � � 1

N f−Nc

Nc
−

Nc
N f

L

q̃ � 1 � −
N f−Nc

Nc
−

Nc
N f

L

H 1 � � 0 2Nc
N f

Gµ Adj 1 1 0 0

Table 1.2: The field content of the model and the related symmetries.

Superficially, this model bears very little relation to the standard
model, however, it can be regarded in several fashions that make it
relevant to realistic physics. The fundamental and anti-fundamental
fermions coupled together by a scalar field bears a striking resemblance
to the quark sector of the standard model, and the scalar quartic coupling
is identical to that of the SU(N f )⊗SU(N f ) linear sigma model, which cap-
tures many features of mesonic physics. Another angle to bring the model
into contact with Nature is to consider it an approximation of an effec-
tive Technicolor theory, with the scalar sector imitating the technimesons
which give rise to the masses of the W and Z bosons, and possibly also
dark matter (see e.g. [48]). The variation of the model without adjoint
fermions is also being studied as an approximation of the bosonized ver-
sion of the gauged Nambu–Jona-Lasinio model [49–51]. This version has
also been explored in the context of asymptotic safety, and found to have
this desirable property for all the coupling constants [52].
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The renormalization group

As mentioned in Section 1.1.1, divergent integrals are near-omnipresent
in quantum field theory calculations. In this chapter, we will concern
ourselves with ultraviolet divergences arising from integrations over the
internal momenta in Feynman diagrams with loops. Taming these di-
vergences will lead us to the renormalization group and a deeper under-
standing of quantum field theory.

2.1 Renormalization

Renormalization is the name given to a number of related methods for
bringing ultraviolet divergences in quantum field theory under control.
We will begin our study of the subject with a definition that appears
overly naı̈ve, but allows for a very useful classification of all possible
quantum field theories.

2.1.1 Superficial divergence

The structure of the loop diagrams is that for each loop, there will be d
integrations over momenta, and for each propagator, there will be one (for
fermions) or two (for bosons) powers of momentum in the denominator
of the integrand. This leads to the superficial degree of divergence

D ≡ (power of k in numerator) − (power of k in the denominator) (2.1)
= dL − P f − 2Pb, (2.2)

13
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where d is the number of space-time dimensions, L is the number of
loops, P f the number of fermion propagators, and Pb the number of boson
propagators. A priori, we would expect an integral to be polynomially
divergent in the ultraviolet if D > 0, logarithmically divergent if D = 0,
and convergent if D < 0. Things are, unsurprisingly, more complicated
than that, but we will not go into a detailed discussion of it here.

In theories with only a few types of interactions, it is convenient to
rewrite Equation 2.2 in terms of the number of external legs and the
number of vertices. For QED, this can be done and the superficial degree
of divergence is [14]

D = d +
d − 4

2
V −

d − 2
2

Nγ −
d − 1

2
Ne, (2.3)

where V is the number of vertices, Nγ the number of external photon legs,
and Ne the number of external electron legs. We immediately notice that
in four dimensions, this has the very peculiar result that D is independent
of V. This implies that D does not increase with loop order. Had this
not been the case, QED in four dimensions would not have been a renor-
malizable theory. It is tempting at this stage to speculate on whether this
is a deep truth, implying that four space-time dimensions is somehow
privileged, or essential for life as we know it; or if it is a coincidence, and
would not have seemed significant at all if mathematics and theoretical
physics had developed along different lines. There may be a more down-
to-earth answer to this question, however, as we will discuss in Section
2.1.3.

While the superficial degree of divergence is not the whole story, it
does allow us to divide all possible theories into three distinct kinds based
on whether D decreases or increases with the numbers of loops [14]

Super-renormalizable theory: Only a finite number of Feynman dia-
grams superficially diverge.

Renormalizable theory: Only a finite number of amplitudes
superficially diverge; however, diver-
gences occur at all orders in perturba-
tion theory.

Non-renormalizable theory: All amplitudes are divergent at a suffi-
ciently high order in perturbation the-
ory.

In renormalizable and super-renormalizable theories, the divergences
can be cured as described in the next section, in non-renormalizable,
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they cannot. However, non-renormalizable theories can still be useful
as effective theories up to a certain cutoff scale. Historically, many non-
renormalizable theories have been exceedingly successful in describing
Nature, perhaps most notably the Fermi theory of beta decay [53, 54].

2.1.2 Renormalized perturbation theory

The way to deal with divergences in renormalizable and super-renormal-
izable theories without introducing a cutoff involves renaming the fields
and couplings in the Lagrangian as the bare fields and couplings, and then
decomposing these in terms of well-behaved renormalized fields, physical
renormalized couplings, and counterterms. In the case of φ4 theory, this can
be done:

L =
1
2

(∂µφ)2
−

1
2

m2
0φ

2
−
λ0

4!
φ4 (2.4)

=
1
2

Z(∂µφr)2
−

1
2

Zm2
0φ

2
r −

λ0

4!
Z2φ4

r (2.5)

=
1
2

(∂µφr)2
−

1
2

m2φ2
r −

λ
4!
φ4

r

+
1
2
δZ(∂µφr)2

−
1
2
δmφ

2
r −

δλ
4!
φ4

r .
(2.6)

The physical couplings and counterterms are fixed order by order
in terms of specific Feynman diagrams evaluated at specific momentum
scales,

� =
i

p2 −m2 + (terms regular at p2 = m2) (2.7)	


amputated

= −iλ at s = 4m2, t = u = 0 . (2.8)

Once these renormalization conditions have been imposed, all other calcu-
lations within the theory can be performed and give finite predictions.

With the renormalization conditions in place, we find that when we
calculate loop diagrams rather than simple tree-level ones, the ampli-
tudes depend on the external momenta. However, since we identify the
coupling constants with diagrams at specific external momenta, this run-
ning of the effective coupling is not visible at tree level. This means that
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depending on the energy at which a diagram is evaluated, it is possible
that the next order in perturbation theory gives a very large contribu-
tion. Since the implicit assumption of perturbation theory is that each
new order only gives a small correction to the previous, this behavior is
undesirable.

In order to overcome this issue, we may adopt Wilson’s approach to
renormalization theory [55], where we integrate out the high momen-
tum modes, and find that this yields perturbations of the bare cou-
pling constants, and the introduction of all higher dimensional (non-
renormalizable) operators. The introduction of these new operators
seems worrying, but they turn out to be well under control [14], and
in fact they can be exploited to understand the full non-perturbative be-
haviour of the theory using the functional renormalization group [56–61],
but that is sadly beyond the scope of this thesis.

2.1.3 Renormalization group flows

To demonstrate Wilson’s method, let us consider the generating func-
tional for φ4 theory with a cutoff Λ,

Z =

∫
[Dϕ]Λ exp

(
−

∫
ddx

[1
2

(∂µϕ)2 +
1
2

m2ϕ2 +
λ
4!
ϕ4

])
(2.9)

[Dϕ]Λ =
∏
|k|<Λ

dϕ(k), (2.10)

where k is the Euclidean momentum. We can now integrate out the high
momentum modes with bΛ < |k| < Λ for some 0 < b < 1. We do this by
redefining

ϕ(k) = φ(k) + φ̂(k), (2.11)

where

φ(k) =

{
ϕ(k) for k < bΛ
0 for bΛ ≤ k < Λ

(2.12)

φ̂(k) =

{
0 for k < bΛ
ϕ(k) for bΛ ≤ k < Λ

(2.13)
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With these definitions, we can rewrite the generating functional as

Z =

∫
Dφ

∫
Dφ̂ exp

(
−

∫
ddx

[1
2

(∂µφ + ∂µφ̂)2 +
1
2

m2(φ + φ̂)2

+
λ
4!

(φ + φ̂)4
] ) (2.14)

=

∫
Dφe−

∫
L(φ)

∫
Dφ̂ exp

(
−

∫
ddx

[1
2

(∂µφ̂)2 +
1
2

m2φ̂2

+λ
(1
6
φ3φ̂ +

1
4
φ2φ̂2 +

1
6
φφ̂3 +

1
4!
φ̂4

)] )
,

(2.15)

where the quadratic termsφφ̂ and ∂µφ∂µφ̂ vanish since the Fourier modes
of different wavenumbers are orthogonal.

The integral over φ̂ is in general cumbersome, but it can be performed,
leading to an effective Lagrangian

∫
ddxLe f f =

∫
ddx

[1
2

(1 + ∆Z)(∂µφ)2 +
1
2

(m2 + ∆m2)φ2

+
1
4!

(λ + ∆λ)φ4 + ∆C(∂µφ)4 + ∆Dφ6 + . . .
]

(2.16)

where the “. . . ” covers higher order terms, and the corrections ∆Z, ∆m2,
∆λ, ∆C, ∆D, etc. all arise from the integral over φ̂. These values will, of
course, depend on our choice of b. We can incorporate this dependency
into the effective Lagrangian by rescaling the momenta and distances,

k′ = k/b x′ = xb, (2.17)

which yields

∫
ddxLe f f =

∫
ddx′b−d

[1
2

(1 + ∆Z)b2(∂′µφ)2 +
1
2

(m2 + ∆m2)φ2

+
1
4!

(λ + ∆λ)φ4 + ∆Cb4(∂′µφ)4 + ∆Dφ6 + . . .
]
. (2.18)
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We can now absorb b into the field and coupling constants,

φ′ = [b2−d(1 + ∆Z)]1/2φ (2.19)

m′2 = (m2 + ∆m2)(1 + ∆Z)−1b−2 (2.20)

λ′ = (λ + ∆λ)(1 + ∆Z)−2bd−4 (2.21)

C′ = (C + ∆C)(1 + ∆Z)−2bd (2.22)

D = (D + ∆D)(1 + ∆Z)−3b−2d−6, (2.23)

and write the effective Lagrangian∫
ddxLe f f =

∫
ddx′

[1
2

(∂′µφ
′)2 +

1
2

m′2φ′2

+
1
4!
λ′φ′4 + C′(∂′µφ

′)4 + D′φ′6 + . . .
]
, (2.24)

with similar substitutions for the higher order terms included in the
ellipsis.

The combined process of integrating out the high momentum modes
and rescaling the distances and momenta has thus been rewritten as a
transformation of the Lagrangian. This process can be performed suc-
cessively, and if we choose each b to be infinitesimally close to 1, this
is a continuous process. These continuously generated transformations
are, for historical reasons, known as the renormalization group1 (RG), and
one can think of them generating a flow in the theory space of all possi-
ble Lagrangians with all possible operators composed of the constituent
fields.

Let us take a moment to consider the simplest place in this theory
space; where m2 = λ = C = D = . . . = 0. Here the theory is governed by
the free-field Lagrangian

L0 =
1
2

(∂µφ)2, (2.25)

this is the Gaussian fixed point2, and here the renormalization group trans-
formation leaves the Lagrangian unchanged. If we make a small pertur-
bation around this point, we may ignore ∆Z,∆m2, etc. in the transforma-
tions and Equations (2.20)-(2.23) get the very simple form

m′2 = m2b−2, λ′ = λbd−4, C′ = Cbd, D′ = Db2d−6, . . . (2.26)

1Since the process of integrating out the degrees of freedom is not invertible, it is
not formally a group.

2It is called a Gaussian fixed point because at this point, the probability distribution
for the field is Gaussian, making the theory solvable.
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Since b < 1, it is very easy to see that the operators that are multiplied
by positive powers of b will become increasingly less important as we
perform the successive transformations, and vice versa for those with
negative powers of b. For this reason, we name the former irrelevant
operators and the latter relevant. Those that are multiplied by b0 are
termed marginal, and to determine their behavior under the renormaliza-
tion group, we must consider loop corrections, which is exactly the focus
of the next section.

Before we consider the running of marginal operators, let us take a
moment to address the more philosophical question posed in Section
2.1.1, regarding the fact that QED is a renormalizable theory only in
four space-time dimensions. In the viewpoint we adopted there, it was
considered essential for a theory to be fundamental, that it had a well-
defineds limit as Λ→∞. However, in this Wilsonian setup, we consider
the presence of a cutoff, where the theory stops being sensible, to be
a fundamental property of any theory, and we have indicated that any
theory defined at high energy can be expressed in terms of relevant and
marginal operators at low energy. Thus, it is entirely possible that the
fundamental theory behind QED is not at all renormalizable, or well
behaved, but due to the renormalization group flow from the high to
the low scale, the effective theory that we experience is guaranteed to be a
renormalizable one.

2.1.4 The beta function

While the Wilsonian picture is extremely useful in giving us a better
understanding of the nature of renormalization, and of quantum field
theories in general, it can be rather cumbersome to work with. It is
therefore desirable to combine the ideas contained within with those
of renormalized perturbation theory described above. We do this by
imposing modified renormalization conditions, not at the scale of the
physical mass, but rather at an arbitrary renormalization scale µ


p
1PI = 0 at p2 = −µ2; (2.27)

d
dp2

�p
1PI

 = 0 at p2 = −µ2; (2.28)
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�p1

p2

p3

p4

= −iλ at (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 = −µ2 .

(2.29)

Note here that the first two renormalization conditions are for one particle
irreducible (1PI) diagrams only.

Since the renormalization scale is arbitrary, it cannot enter into any
physical quantities. This implies that the only impact it can have on a
Green’s function is a rescaling of the field. Under a change of renormal-
ization scale, the coupling constant and field will naturally also change

µ→ µ + δµ (2.30)
λ→ λ + δλ (2.31)
φ→ (1 + δη)φ, (2.32)

leading to a change in the n-point Green’s function

G(n)(x1, . . . , xn) = 〈Ω|Tφ1(x1) · · ·φn(xn)|Ω〉connected (2.33)

→ (1 + nδη)G(n)(x1, . . . , xn). (2.34)

We may consider G(n) to be a function of µ and λ, in which case we can
express this as

dG(n) =
∂G(n)

∂µ
δµ +

∂G(n)

∂λ
δλ = nδηG(n), (2.35)

and define

β ≡
µ

δµ
δλ γ ≡ −

µ

δµ
δη. (2.36)

Using these definitions, we can write down the Callan-Symanzik equation
[62, 63] [

µ
∂
∂µ

+ β(λ)
∂
∂λ

+ nγ(λ)
]

G(n)({xi}; M, λ) = 0, (2.37)

where we have made explicit the fact that β and γ do not depend on n or
the xi.

The anomalous dimension γ is of great importance in characterizing
conformal field theories, and serves an essential role in the class of BSM
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theories known as Walking Technicolor, however we will not address
it further in this thesis. For some of our work which does involve the
anomalous dimension in a crucial way, see [64].

Instead, we will turn our full attention to the beta function. From
its definition (2.36), we see that it describes the change in λ needed to
preserve the value of the Greens function as µ changes. Since the Green’s
function is independent of the renormalization scale up to a rescaling of
the fields, this implies that it must depend only on the bare coupling λ0

and the cutoff of the theory Λ. Furthermore in a renormalizable theory,
the cutoff can be taken to infinity, and its dependence removed entirely.
We may thus write

β(λ) = µ
d

dµ
λ

∣∣∣∣∣
λ0

. (2.38)

This equation tells us exactly how the beta function governs the running
of the coupling constant as a function of the renormalization scale, and we
may use it to make predictions about a theory at wildly different scales.
In Section 4.4 of this thesis, we will use it to make predictions about the
standard model at energies up to the Planck scale, 16 orders of magnitude
above the reach of current particle physics experiments.

Because we often consider renormalization scales of such different
magnitudes, it is convenient to define the renormalization group time t =
ln(µ/µ0) where µ0 is some arbitrary reference scale. In terms of the renor-
malization group time, the beta function can be expressed as

β =
dλ
dt

, (2.39)

where we see explicitly that the choice of reference scale makes no differ-
ence.

2.2 Calculating beta functions
The values of the beta functions and anomalous dimensions of a gauge-
Yukawa theory can be computed in terms of Feynman diagrams. This
yields a perturbative expansion as a polynomial in the relevant coupling
constants where each loop order contributes a higher order term and a
loop factor of 1/(4π)2. It can be illuminating to express the beta function
as

βi =

∞∑
`=1

b(`)
i

(4π)2` , (2.40)
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where the index i distinguishes between the different couplings of the
gauge-Yukawa theory. At each new loop order, the gauge and Yukawa
couplings contribute with twice the power of the quartic coupling, this
mismatch makes it convenient to rescale the coupling constants, and we
can also take the opportunity to absorb the factors of 1/(4π). For general
gauge, Yukawa and quartic couplings g, y and λ, the rescaling would be

ag =
g2

(4π)2 ay =
y2

(4π)2 aλ =
λ

(4π)2 . (2.41)

In terms of these, the beta functions can be expanded as

βai =

∞∑
`=1

b(`)
ai
. (2.42)

When it is relevant to specify to which loop order a beta function is
calculated, we will write βai,n` where n is the number of loops in question.

For the anomalous dimension of the scalar and fermion wave func-
tions, the actual calculation is done by extracting the coefficient of the
divergent part of the scalar and fermion propagator respectively [65].
The beta functions are extracted in a similar fashion, but from the vector
propagator, Yukawa interaction and quartic self-interactions respectively.
In the latter two cases, there are also contributions from the lower loop
level fermion and scalar wave function anomalous dimensions that must
be taken into account [65–67].

With this well-defined procedure in mind, it is a straightforward, if
computationally involved, matter to calculate the quantities of interest in
any well-defined gauge-Yukawa theory. However, it is also possible to
do these calculations in a completely general setting without specifying
the theory. This yields general formulas where one simply needs to insert
the details of one’s favorite theory and they then produce expressions
for beta functions, anomalous dimensions, and more. The computation
of such general formulas has been ongoing for a long time, and is still
proceeding (see for example [65–70]).

Before proceeding further, it behooves us to remark on the gauge
and scheme dependence of beta functions, anomalous dimensions and
related quantities. The renormalization scheme refers to the way in which
counterterms are introduced to cancel the divergences of quantum field
theory, as detailed in the previous section (see for instance Equations
(2.27)-(2.29)). The formulas we have used are all computed in the MS
scheme, but the new notation introduced here is independent of the
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choice of scheme. Since none of the quantities under consideration are
physical observables, we cannot be sure of their gauge invariance, and
indeed we find [65] that the anomalous dimensions of the scalar and
fermion fields are explicitly dependent on a gauge parameter. The beta
functions on the other hand are gauge independent in the MS scheme,
but not necessarily in others.

2.2.1 General Lagrangian

The general Lagrangian that is assumed inmost general analyses [65–70]
has the form

L = Lkin −
1
2

(
yJK;AΨJΨKΦA + h.c.

)
−

1
4!
λABCDΦAΦBΦCΦD, (2.43)

where ΨJ is an all-encompassing fermion field transforming under some
(in general) reducible representation of the gauge group. Without loss of
generality, we may assume that it has a definite chirality, and that all of its
component fields are Weyl spinors. Similarly, ΦA is an all-encompassing
scalar field transforming under a reducible representation of the gauge
group. Likewise without loss of generality, we can take these to be real.
Here and in the following, we are summing over repeated indices.

Scalar or fermion mass terms, and scalar cubic terms can be included
by introducing a non-propagating dummy real scalar field ΦD̂ which is
not summed over [71]. The relevant operators can then be expressed as

L1 = −
1
2

(
yJK;D̂ΨJΨKΦD̂ + h.c.

)
−

1
4!
λABD̂D̂ΦAΦBΦD̂ΦD̂

−
1
4!
λABCD̂ΦAΦBΦCΦD̂, (2.44)

where yJK;D̂ΦD̂ = (m f )JK, λABD̂D̂ΦD̂ΦD̂ = 2m2
AB and λABCD̂ΦD̂ = hABC. The

beta functions for the relevant operators can then be obtained from those
of the corresponding marginal operators.

Any gauge-Yukawa theory can, in principle be put on the form (2.43).
How to actually accomplish this in a general way is not at all obvious,
and it is the focus of the present discussion.

To accomplish this task, we introduce an object which organizes the
specific fields (such as L̄, E and H in the standard model lepton sector,
see Section 1.1 for details) within the abstract fields ΨJ and ΦA, and keeps
track of overall indices as well as specific field indices. We call this the
structure delta

∆S
J;{ j} (2.45)



24 CHAPTER 2. THE RENORMALIZATION GROUP

where S takes values from the names of the fields in the theory (L̄, E and
H); J is the overall fermion index from (2.43); and { j} covers the gauge
and flavor indices of the field S.

This new symbol obeys the following summation rule

∆S
J;{ j}∆

S′
J;{ j′} = δSS′

∏
{ j},{ j′}

δ j j′ , (2.46)

and has the fundamental property that ΨJ∆
S
J;{ j} = S{ j} (or ΦA∆S

A;{a} = S{a} if S
is a scalar field). In the specific case of the standard model lepton sector,
this is realized in the following manner

ΨJ∆
L̄;g2, fL
J = L̄g2, fL , ΨJ∆

E
J; fE

= E fE and ΦA∆H
A;g2,c = Hg2,c. (2.47)

2.2.2 Yukawa interactions

We first illustrate how to express general Yukawa interactions by con-
sidering the leptonic part of the standard model Yukawa interaction (see
Equation (1.3)) with all flavor and gauge indices written explicitly. It is

LYuk,Lep = (YE) fE
fL

L̄g2, fLHg2E fE + h.c. , (2.48)

where g2 is the SU(2) gauge index, and fL and fE are the flavor indices
of the lepton doublet and electron-like singlet respectively. There is a
subtlety here because the standard model Higgs is a complex scalar, and
thus have twice as many degrees of freedom as its gauge index would
suggest. We take this into account by adding a complex index c and
introducing the symbol

oc =

{
1 for c = 1
i for c = 2 (2.49)

Real scalars are also normalized differently from complex ones, so we
have

LYuk,Lep =
1
√

2
(YE) fE

fL
ocL̄g2, fLHg2,cE fE + h.c. . (2.50)
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Using the structure delta (2.45), we can now write the lepton Yukawa
Lagrangian (2.50) as

LYuk,Lep =
1

2
√

2
(YE) fE

fL
oc

(
ΨJ∆

L̄;g2, fL
J ΨK∆E

K; fE
+ ΨK∆

L̄;g2, fL
K ΨJ∆

E
J; fE

)
ΦA∆H

A;g2,c + h.c.

(2.51)

=
1

2
√

2
(YE) fE

fL
oc

(
∆

L̄;g2, fL
J ∆E

K; fE
+ ∆

L̄;g2, fL
K ∆E

J; fE

)
∆H

A;g2,cΨJΨKΦA + h.c. ,

(2.52)

and simply read off

y(Lep)
JK;A =

1
√

2
(YE) fE

fL
oc

(
∆

L̄;g2, fL
J ∆E

K; fE
+ ∆

L̄;g2, fL
K ∆E

J; fE

)
∆H

A;g2,c. (2.53)

An equivalent procedure can be used to find y(Up)
JK;A and y(Down)

JK;A , and then
the Yukawa coupling for the entire standard model is just the sum,

yJK;A = y(Lep)
JK;A + y(Up)

JK;A + y(Down)
JK;A . (2.54)

2.2.3 Quartic interactions

We can find the quartic coupling λABCD in an analogous way. We start out
by taking the quartic part of the standard model Lagrangian (1.4),

Lquart = λ̂
(
H†H

)2
. (2.55)

H can be written as a complex vector,

H =
1
√

2

(
H1,1 + iH1,2

H2,1 + iH2,2

)
, (2.56)

thus

H†H =
1
2

(H1,1 − iH1,2)(H1,1 + iH1,2) +
1
2

(H2,1 − iH2,2)(H2,1 + iH2,2) (2.57)

=
1
2

(H2
1,1 + H2

1,2 + H2
2,1 + H2

2,2), (2.58)

which we can write as

H†H =
1
2

Hg2,cHg2,c , (2.59)
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where a sum over g2 and c is again assumed. Thus, in terms of the
structure deltas we have

Lquart,H =
λ̂
4

Hg2,cHg2,cHg′2,c
′Hg′2,c

′ (2.60)

=
λ̂
4

1
4!

∑
perms

∆H
A;g2,c∆

H
B;g2,c∆

H
C;g′2,c

′∆
H
D;g′2,c

′ΦAΦBΦCΦD, (2.61)

where
∑

perms is a sum over all possible permutation of A,B,C,D, and the
factor of 1

4! enters to compensate for the number of perturbations.
We can now read off

λABCD =
λ̂
4

∑
perms

∆H
A;g2,c∆

H
B;g2,c∆

H
C;g′2,c

′∆
H
D;g′2,c

′ (2.62)

2.2.4 Generators

Following the notation of [69], we refer to the generator of the (reducible)
scalar representation as SαAB, where A and B are general scalar indices, and
α is the group index running from 1 to d(G). In the case of a semi-simple
group, this is generalized to St;α

AB where t labels the simple subgroup.
Equivalently, the generator of the spinor representation is given as Rα

JK,
and Rt;α

JK if the group is semi-simple.
The normalization of S and R is such that

Tr(SαSβ) = δαβT(S), SαACSαCB = C2(S)AB, (2.63)

Tr(RαRβ) = δαβT(R), Rα
JLRα

LK = C2(R)JK, (2.64)

f αγδ f βγδ = δαβC2(G), δαα = d(G), (2.65)

where T(·) is the Dynkin index of the representation, C2(·) is the quadratic
Casimir of the representation, with C2(G) in particular being the quadratic
Casimir of the adjoint, and d(G) is the dimension of the group. As is well
known, the quadratic Casimir of an irreducible representation is just a
number times the relevant identity matrix. In a reducible representation,
this is slightly more complicated, here the quadratic Casimir is a block-
diagonal matrix with the quadratic Casimir of an irreducible component
in each block.

We can find SαAB by summing over the generators and structure deltas
of each scalar species. For U(1) this is particularly simple as the generator
is just the charge of the field. Since we are decomposing the complex
scalars into their real components, each set of indices corresponds to
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a single real scalar field. Furthermore, since the generators must be
Hermitian, this implies that they must be imaginary and anti-symmetric
in A and B. The expression for the U(1) generator is thus

SαAB =
∑

S

−iQSε
c
c′δ

fS
f ′S
∆S

A;c, fS
∆

S;c′, f ′S
B , (2.66)

where QS is the charge of the scalar species S. The sign is conventional,
and has been chosen such that the charges of the standard model fields
are as listed in Table 1.1.

For a non-Abelian group, things are more complicated as the fields
now transform in non-trivial representations of the group. Since each
scalar field under consideration is still real, we must again ensure that
each term in the generator is imaginary and anti-symmetric under an
exchange of all of the indices associated with the field.

We first observe that since the generators of the irreducible represen-
tations, Tα;a

b, only carry gauge indices, the flavor indices are contracted
through a delta function. Secondly, the generators are either real and
symmetric, or imaginary and anti-symmetric. To ensure that the final
expression is imaginary and anti-symmetric, we must multiply by iεc

c′

in the former case, in complete analogy with the U(1) case above, but in
the latter we must instead multiply by δc

c′ . We show that the following
construction is imaginary and anti-symmetric in either case:

Tα;a
b(δc

c′ + iεc
c′) − Tα;a

b (δc
c′ − iεc

c′) (2.67)

= Tα;a
bδ

c
c′ + iTα;a

bε
c
c′ − Tα;a

b δc
c′ + iTα;a

b εc
c′ (2.68)

=
symmetric

2iTα;a
bε

c
c′ (2.69)

=
antisymmetric

2Tα;a
bδ

c
c′ , (2.70)

where Tα;a
b is the transpose of Tα;a

b, and the former equality holds if
Tα;a

b = Tα;a
b and the latter if Tα;a

b = −Tα;a
b.

The final expression for the generator of the scalar representation is
thus:

SαAB =
∑

S

−
1
2

(
Tα;a

S b(δc
c′ + iεc

c′) − TαS;b
a(δc

c′ − iεc
c′)

)
δ fS

f ′S
∆S

A;c, fS,a
∆

S;c′, f ′S,b
B (2.71)

where Tα;a
S b is the generator of the representation under which the scalar

species S transform, a and b are the gauge indices of the representation,
α is the gauge index of the group, and fS, f ′S are the flavor indices of the
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scalar species S. The sign is again conventional and a change of sign
here will correspond to a change in the sign of the generators of the
representation.

The fermion case is equivalent to the scalar case, but simpler since we
do not need to keep track of the complex index c. In the Abelian case, we
have

Rα
JK =

∑
S

QSδ
fS
f ′S
∆S

J; fS
∆

S; f ′S
K . (2.72)

and in the non-Abelian

Rα
JK =

∑
S

Tα;k
S jδ

fS
f ′S
∆S

J; fS, j
∆

S; f ′S,b
K (2.73)

The expressions for the generators can be generalized to a semi-simple
group by including an index t for the subgroup in question and a product∏

t′,t δ
a′t
b′t

over the other subgroups.

2.3 Fixed points in gauge-Yukawa theory

In Section 2.1.2, we discussed that in the vicinity of the Gaussian fixed
point, the running of the couplings is particularly simple, and that exactly
at the fixed point itself, there is no running. It is interesting to ask if there
are other such fixed points around which the running is simple.

Later, in Section 2.1.4, we saw that the beta function is what governs
the flow the coupling constants at different renormalization scales. We
may well imagine that for a sufficiently complicated theory, other fixed
points will appear, and this is indeed what we find. It is perhaps more
surprising that we do not even need a particularly complicated theory in
order to find a non-trivial fixed point in four dimensions. Simply consider
an SU(N) gauge theory with N f flavors of fermions, and we find a rich
structure with fixed points for many possible choices of N,N f and the
fermion representation (see [72, 73] for details).

To make things explicit, let us consider the two–loop beta function for
just such a theory with N f Dirac fermions transforming in the fundamen-
tal representation SU(N). It is

βg = −
g3

(4π)2

(
11N

3
−

2N f

3

)
−

g5

(4π)4

(
34N2

3
+

N f

N
−

13
3

NN f

)
. (2.74)
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Setting this to zero, we can easily find the non-trivial Banks-Zaks fixed
point [72],

g∗ = 4π

√√
2N f − 11N

34N2 +
(

3
N − 13N

)
N f

(2.75)

=
4π
√

N

√
11 − 2x

13x − 34 − 3
N2

, (2.76)

where in the second equality we have introduced x = N f/N. It is easy
to see that the 3/N2 term can largely be ignored, and we can safely do
our analysis considering only the remaining terms. Here, we see that
for 34

13 ∼
< x < 11

2 , a fixed point exists. The lower limit is dictated by
the positivity of the denominator, and the upper by the positivity of the
numerator. The fixed point value is zero for x = 11

2 , and diverges as it
approaches its lower limit.

At such a fixed point, the theory does not run, and it is therefore
invariant under dilations (scale transformations). This is particularly
interesting since one of the most studied subgenres of quantum field the-
ory is conformal field theories. In addition to Poincaré invariance, these
are also invariant uner dilatations and special conformal transforma-
tions (which are an entirely separate group of transformations, that, like
Poincaré and scale transformations, preserve the angles between vectors).
Conformal field theories are surprisingly constrained and it is possible
to make far stronger statements about them than one can about general
field theories. In particular, the two- and three-point functions are com-
pletely determined up to a constant [74], and the four- and higher n-point
functions can be expressed solely in terms of the lower-point functions
through the operator product expansion.

While conformal field theories are interesting, the connection to gen-
eral quantum field theories at fixed points is not immediately clear, as
these are not, a priori, invariant under the special conformal transfor-
mations. However, it is known from classical field theory that dilation-
invariant, four-dimensional unitary and renormalizable theories are also
conformally invariant [75, 76]. Much recent work (see Section 3.1) has
discussed whether this result also holds for quantum theories [77, 78],
and there seems to be strong indications that it does.
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3
The a theorem

The so-called a theorem is perhaps the most misleadingly named concept
in physics. It is not a theorem, it is not clear to a non-expert what a is, and
it does not actually deal with a. Before going into too much detail, let us
introduce some notation. We will in this chapter concern ourselves with
classically conformal field theories, that is theories given by Lagrangians
of the form

L = Lkin + giO
i , (3.1)

whereLkin contains the kinetic terms of the fields, gi are all dimensionless
coupling constants of the theory and Oi are marginal operators. The beta
functions of the theory are given by

βi =
dgi

dt
, (3.2)

where t = log(µ/µ0) is the renormalization group time at the scale µ in
relation to an arbitrary reference scale µ0.

The name a theorem comes from a desire to generalize the more aptly
named c theorem, proven by Zamolodchikov [79] for two dimensional
field theories. It states that

1. There exists a function c(g) ≥ 0 such that

d
dt

c = βi(g)
∂
∂gi

c(g) ≤ 0 , (3.3)

where the equality only holds at fixed points where βi(g∗) = 0.

31
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2. At the fixed points, the two dimensional field theory has an in-
finite dimensional conformal symmetry whose generators form a
Virasoro algebra

[Ln,Lm] = (n −m)Ln+m +
c̃

12
(n3
− n)δn+m,0 , (3.4)

where the central charge c̃ is in general different for each fixed point,
c̃ = c̃(g∗).

3. The value of c at each fixed point is the same as the corresponding
central charge, c(g∗) = c̃(g∗).

This theorem clearly makes very strong statements about the nature of
two dimensional field theories, but alas the proof relies crucially on the
special properties of field theories in two dimensions.

3.1 In four dimensions

The conformal group in two space-time dimensions is very different from
the conformal group in higher dimensions. In particular, only in two
dimensions do the generators of the conformal symmetry form an infinite
dimensional Virasoro algebra, in higher dimensions they instead form the
Poincaré, dilatation and special conformal algebras. This means that the
properties 2 and 3 of Zamolodchikov’s c theorem cannot possibly be
satisfied in higher dimensions. Despite this, much work has been done to
find a different function which satisfies the fist property in four space-time
dimensions [46, 80, 81] (see also [82] and references therein).

The function a, proposed by Cardy [80], is identified with the integral
of the trace of the energy-momentum tensor over the four-sphere and
the coefficient of the Euler density in the conformal anomaly on a curved
space-time manifold [82]. However, it can be shown [81] that a (or βb in
the notation of [81]) is explicitly not monotonous along renormalization
group flows, but that

ã = a + wiβi , (3.5)

where wi is a function of the couplings of the theory (and differs from
Osborn’s notation [81] by a factor of 1

8 ), is monotonous to leading order
in perturbation theory. It also has the convenient property that it equals
a at fixed points where the beta functions vanish.
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More recent work [83, 84] has helped rekindle interest in this problem
by linking the scattering amplitude of a new diatonic field to the ã func-
tion. In particular, the analyticity of this scattering amplitude supports
the conjecture that ã is monotonic along renormalization group flows.

While the above mentioned work has mainly concerned itself with
generalizing property 1 of the c theorem, progress has also been made in
making generalizations of the second property. As pointed out in Section
2.3, a quantum field theory at a fixed point is automatically dilatation
invariant, and it has long been known that in classical field theory, this
would imply that it is also fully conformally invariant [75, 76]. Recent
work [77, 78, 85] indicates that this may also hold true for a unitary quan-
tum field theory in four space-time dimensions. If true, this is perhaps as
close to a generalization of the second property of the c theorem as we
are likely to get. Since there is no object in the four dimensional confor-
mal algebra that corresponds to the central charge, the third property is
unlikely to be generalized.

A completely different candidate function for fulfilling the first prop-
erty of the c theorem in four dimensions has been proposed in [86, 87]. It
is based on the number of perturbative degrees of freedom in the theory,
and we will not discuss it here.

3.2 The Weyl consistency conditions

As mentioned above, the a function can be considered either in the context
of the trace of the energy momentum tensor of the theory, or in that of the
Weyl anomaly. Here, we will consider both approaches, starting with the
former and returning to the latter once we have established the a function.

In four dimensions and for a general quantum field theory, the vacuum
expectation value of the trace of the energy–momentum tensor for a
locally flat metric γµν reads

〈
Tµµ

〉
= c W2(γµν) − a E4(γµν) + . . . , (3.6)

where a and c are real coefficients, E4(γµν) the Euler density and W(γµν) the
Weyl tensor. The dots represent contributions coming from operators that
can be constructed out of the fields defining the theory. Their contribution
is proportional to the beta functions of their couplings. E4 and W2 are
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defined in terms of the curvature tensors,

W2 = RµνρσRµνρσ − 2RµνRµν +
1
3

R2 (3.7)

E4 = RµνρσRµνρσ − 4RµνRµν + R2 (3.8)

The coefficient a is the one used in Cardy’s conjecture [80], and for a free
field theory it is [88]

afree =
1

90(8π)2

(
ns +

11
2

n f + 62nv

)
, (3.9)

where ns, n f and nv are respectively the number of real scalars, Weyl
fermions and gauge bosons.

The change of a along the RG flow is directly related to the underlying
dynamics of the theory via the beta functions. To study this, we follow the
second approach mentioned at the beginning of this section and consider
the Weyl anomaly.

Keeping track of the classical conformal symmetry after the theory
has been renormalized is not straightforward. A convenient way to do so
is to promote the couplings to functions of space-time, i.e. gi = gi(x), and
to work in an arbitrary curved background γµν. Under these assump-
tions, a conformal transformation of the space-time metric γµν → e2σ(x)γµν
is partially compensated by a change in the renormalized coupling as
gi(µ)→ gi(e−σ(x)µ), up to a number of terms that vanish in the limit of flat
space-time and constant couplings. This can be explicitly encoded in the
infinitesimal variation of the generating functional W = log

[∫
DΦ ei

∫
d4xL

]
,

parametrized as

∆σW ≡
∫

d4x σ(x)
(
2γµν

δW
δγµν

− βi
δW
δgi

)
(3.10)

= σ
(
aE4(γ) + χi j∂µgi∂νg jGµν

)
+ ∂µσwi ∂νgiGµν + . . . (3.11)

where a and wi are functions of the renormalized couplings that we intro-
duced in Equation (3.5), χi j is a new function of the couplings which we
will consider in detail later and Gµν = Rµν

−
1
2γ

µνR is the Einstein tensor.
The right-hand side of the equation contains all possible dimension-four
Lorentz scalars constructed out of the metric and derivatives of the cou-
plings, ∂µgi, and only the three terms relevant to our discussion have been
shown here. The functions a, χi j and wi are completely determined by
the theory and can be explicitly computed in a perturbative expansion in
the couplings gi. The essence of the Weyl consistency conditions is that
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these functions are not independent of each other. In particular, the Weyl
anomaly expressed by Equation (3.10) is of abelian nature, and therefore
must satisfy

∆σ∆τW = ∆τ∆σW. (3.12)

This equation gives a number of relations between the terms to the right-
hand side of Equation (3.11), among which the one we will make the most
use of is1 [47]

∂iã = −χi jβ j + (∂iw j
− ∂ jwi)β j , (3.13)

where ã is defined in Equation (3.5) and ∂i = ∂
∂gi

. From this equation it
follows that

d
dµ

ã = −χi jβiβ j , (3.14)

so that ã is monotonically decreasing along the RG flow, provided thatχ is
a positive definite matrix. χ is indeed positive definite at lowest order in
perturbation theory [46], however not necessarily non-perturbatively (see
e.g. Reference [2]). Establishing the positivity of χ beyond perturbation
theory would immediately prove that the first property of the c theorem
could be generalized to the a theorem [80] and the irreversibility of the
RG flow in four dimensions2. We stress that equation (3.13) relies neither
on the space dependence of the couplings nor the space-time metric.
Henceforth we will work in ordinary Minkowski background.

For a generic gauge-Yukawa theory, the function wi turns out to be an
exact one-form at the lowest orders in perturbation theory [46], so that
the terms in Equation (3.13) involving derivatives of wi cancel out, and
we will use in the following the simplified consistency condition

∂ã
∂gi

= −βi , βi
≡ χi jβ j . (3.15)

χi j can be seen as a metric in the space of couplings, used in this case
to raise and lower the latin coupling space indices. We note that if χi j

is invertible, all beta functions can be derived from the same quantity ã,
1It is worth mentioning that the Weyl consistency conditions used above assume

that the trace of the energy–momentum tensor vanishes when all the beta functions are
zero simultaneously. Exceptions are known to exist [89] and in this case one modifies
the consistency conditions [77, 78] in order to build ã.

2Using analyticity arguments, it was shown recently that the function ã in the ultra-
violet (UV) is bigger than in the infrared (IR) [83, 84]. However, this method does not
permit to draw any conclusions on the behaviour of ã along the RG flow.
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which has profound implications. The flow generated by the modified
beta functions βi is a gradient flow, implying in particular

∂β j

∂gi
=
∂βi

∂g j
, (3.16)

which gives relations between the beta functions of different couplings.
These consistency conditions can be used as a check of a known compu-
tation, but could, in principle, also be used to determine some unknown
coefficients at a higher loop order in perturbation theory. Sadly, this is
impractical as it requires calcluations of χi j and wi that are in general at
least as complicated as the ones that would be required to find the beta
functions directly.

3.3 The a theorem in gauge–Yukawa theories
We consider a Lagrangian of the basic form (2.43), but restrict ourselves to
a simple gauge group, and scalars that are singlets under it. To exemplify
our results, we will consider gauge theories for which the Yukawa and
quartic interactions only depend on a single parameter in the following
manner

yJK;A ≡ y TJK;A , λABCD ≡ λTABCD , (3.17)

where the T’s are specified by the specific theory in question. There are
therefore three couplings in our setup: gauge g, Yukawa y and quartic λ.
In analogy with Equation (2.41), we define

αg =
g2

(4π)2 , αy =
y2

(4π)2 , αλ =
λ

(4π)2 . (3.18)

The generic structure of the associated beta functions reads3

βαg = −2α2
g

[
b0 + b1αg + byαy + b2α

2
g + b3αgαy + b4α

2
y

]
, (3.19)

βαy = 2αy

[
c1αy + c2αg + c3αgαy + c4α

2
g + c5α

2
y + c6αyαλ + c7α

2
λ

]
, (3.20)

βαλ = d1α
2
λ + d2αλαy + d3α

2
y . (3.21)

The expansion to three loops in the gauge coupling, two loops in the
Yukawa and one in the quartic coupling leads to a consistent expression

3The factors of 2 in the definition of the gauge and Yukawa beta functions follow
from the definitions (3.18). One has for example βαg/αg = 2βg/g.
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for ã to order α3. If the scalars were charged under the gauge group,
terms proportional to αgαλ would also appear.

Having established the generic form of the beta functions, we move
to determining the metric χ and one–form w. They can be found by
examining the relevant Feynman diagrams which enter the computation
of the trace anomaly, as shown in Appendix A. We find

χ =


χgg

α2
g

(
1 + Aαg + B1α2

g + B2αgαy

)
B0 0

B0
χyy

αy

(
1 + B3αy + B4αg

)
0

0 0 χλλ

 .
(3.22)

The coefficient χgg enters at the one–loop order, A and χyy at two loops,
while χλλ and the Bi’s appear only at three loops. Similarly, the one–form
w takes the form

wg =
1
αg

(
D0 + D1αg + C1α

2
g + C2αgαy

)
,

wy = D2 + C3αy + C4αg , (3.23)

wλ = D3αλ .

The general structure of χ confirms that it is sufficient for all our purposes
to consider the Yukawa beta function (3.20) to two–loop order and the
quartic one (3.21) to one–loop only.

The leading coefficients χgg, χyy and χλλ are [46]

χgg =
d(G)

128π2 , (3.24a)

χyy =
1

128π2

(1
3

TJK;AT∗JK;A

)
, (3.24b)

χλλ =
1

128π2

( 1
72

TABCDTABCD

)
, (3.24c)

where we used the T’s defined in Equation (3.17) and d(G) denotes the
dimension of the adjoint representation G of the underlying gauge group,
i.e. the number of gluons. A is given by [46]

A = 17C2(G) −
10
3

NR T(R), (3.25)

where C2(G) is the quadratic Casimir of the adjoint, NR the number of
Weyl fermions in the representation R and T(R) is the trace normalization
satisfying T(R)δαβ = Tr(RαRβ), Rα being the generators of the fermions
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under the gauge group (see also Section 2.2.4). With these coefficients,
the metric χ is positive definite near the origin of the coupling constant
space. It is however clear that in the absence of a theorem, the positivity
of χ away from the origin is not guaranteed. The remaining coefficients
of χ and w are yet to be determined, but, as we shall show, they are not
needed to determine ã at the fixed points to the order investigated here.

3.3.1 Power of the consistency relations and the ã function

The system of first order differential equations in Equation (3.13) allows
us to derive the following conditions relating the different coefficients of
the beta functions as well as χ and w,

χggby = − χyyc2 , (3.26a)

χyyc6 = χλλd3 , (3.26b)

4χyyc7 = χλλd2 , (3.26c)
2χggb4 + χyy (B4c1 + B3c2 + c3) = 2 (B0 − C2 + C4) c1 , (3.26d)

χgg
(
B2b0 + Aby + b3

)
+ 2χyy (B4c2 + c4) = (B0 − C2 + C4) c2

+ 2 (B0 + C2 − C4) b0 .
(3.26e)

In the first three equations, we note that c2, d2 and d3 are one–loop co-
efficients, and by, c6 and c7 are two–loop coefficients, meaning that these
consistency conditions link together beta function terms of different loop
orders. They can thus be used to either test or determine some of the
higher order coefficients of the beta functions since we know the metric
factors. The remaining equations can be used in a similar fashion. How-
ever, given that the Bi coefficients have not been explicitly computed we
use the knowledge of the beta functions to deduce, for example, B3 and
B4 assuming that c2 does not vanish.

For ã to cubic order in the couplings, and using the consistency rela-
tions above, we have

ã = afree + ã(1) + ã(2) + ã(3) + . . . , (3.27)

where afree is the free–field theory value (3.9), and the one–, two– and
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three–loop coefficients are

ã(1) = − 2χggb0αg , (3.28)

ã(2) = − χgg (b1 + Ab0)α2
g − 2χggbyαgαy + χyyc1α

2
y , (3.29)

ã(3) = − χgg
[2
3

(b2 + Ab1)α3
g +

(
b3 + Aby

)
α2

gαy + 2b4αgα
2
y

+
1
3

c1

c2

(
4b4 −

c1

c2

(
b3 + Aby

))
α3

y

]
+ χyy

[2
3

(
c5 −

c1

c2
c3 +

(c1

c2

)2

c4

)
α3

y

+ c6α
2
yαλ + 2c7αyα

2
λ

]
+

1
3
χλλa1α

3
λ +

βαg

α2
g

f
(
α3

i

)
+
β2
αy

αy

B0 − C2 + C4

4c2
,

(3.30)

where we defined

f
(
α3

i

)
= χgg

(
B1

3
α3

g +
B2

2
α2

gαy −
B2

6

(c1

c2

)2

α3
y

)
+

B0 + C2 − C4

3

(c1

c2

)2

α3
y . (3.31)

Remarkably, the unknown coefficients Bi and Ci appear only in the last
two terms of ã(3), where they are multiplied by beta functions and hence
vanish at fixed points4. This was also observed to occur in supersymmet-
ric theories [90].

It is instructive to calculate a to the second order using (3.5) and re-
calling that the leading coefficients entering the one–form w are D0 = χgg,
D1 = 1

2Aχgg and D2 = 1
2χ

yy [46]. We find the simple expression

a = afree + χgg
(
b1α

2
g + byαgαy

)
+ O

(
α3

i

)
, (3.32)

where, remarkably, the term linear in αg, the one quadratic in αy as well as
the term linear in A canceled out. Because the signs of b1 and by depend on
the gauge theory, a is not generally a monotonically decreasing function
along the perturbative RG flow.

3.3.2 ã at fixed points

We can now move on to the study of the fixed points and determine
the variation of ã between two of them. A convenient way to search
for the zeros of the system of beta functions (3.19)-(3.21) is to first solve

4We have taken the liberty of adding higher order terms in order to rewrite the
coefficients as beta functions. These terms are irrelevant when computing ã between
perturbative fixed points.
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analytically for βαλ = 0 which permits us to relate αλ to αy, then set βαy to
zero, further relating αy to αg, so that finally we can search for the zeros
of the following effective beta function in αg

βeff
αg

= −2α2
g

[
b0 + beff

1 αg + beff
2 α

2
g

]
, (3.33)

where5

beff
1 = b1 −

c2

c1
by , (3.34)

beff
2 = b2 −

c2

c1
b3 +

(c2

c1

)2

b4 −
by

c1

[
c4 −

c2

c1
c3 +

(c2

c1

)2

ceff
5

]
, (3.35)

with

ceff
5 = c5 −

d3

d1
c7 −

d2

2d1

(
c6 −

d2

d1
c7

) 1 ±

√
1 −

4d1d3

d2
2

 . (3.36)

At this order in perturbation theory, there can be at most two perturbative
fixed points for each sign in ceff

5 , if both b0 and beff
1 are tuned to be small. An

example of this is provided in the following section. Using Equation (3.34)
and (3.35), the difference in the function ã — or equivalently a — between
the UV and IR fixed points can then be written as

∆ãperturbative ≡(ãUV
− ãIR)perturbative (3.37)

= − 2χgg
[
b0

(
αUV

g − α
IR
g

)
+

1
2

(
beff

1 + Ab0

) (
(αUV

g )2
− (αIR

g )2
)

+
1
3

(
beff

2 + Abeff
1 + Bb0

) (
(αUV

g )3
− (αIR

g )3
)]
, (3.38)

where αUV
g and αIR

g denote the values of the gauge coupling at the UV and
IR fixed point respectively, and we defined

B ≡ B1 −
c2

c1

(
B2 +

B0

χgg

)
. (3.39)

The expression (3.38) reduces to the case of a gauge theory without
Yukawa interactions by replacing beff

1 and beff
2 with b1 and b2.

Inspecting the effective beta function, there is a perturbative fixed
point for small b0, which reads

αBZ
g = −

b0

beff
1

+ O
(
b2

0

)
. (3.40)

5Note that there was a typo in the original paper [2] where the coefficient of b4 in
be f f

2 was written as (c1/c2)2 rather than (c2/c1)2.
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For positive b0 and negative beff
1 , this is the generalized Banks–Zaks (BZ)

IR fixed point (see also Section 2.3). The situation in which the BZ fixed
point is of UV nature is equally possible. This occurs by reversing the
signs of both b0 and beff

1 . The trivial fixed point at the origin will in the
first case be an UV fixed point and in the second an IR one. The finite
change in ã between the UV and IR fixed points can be computed either
way, and we obtain

∆ãBZ = ∓χgg b2
0

beff
1

. (3.41)

Here, the sign reflects the sign of beff
1 (which in turn reflects the sign of

b0), such that ∆ã is positive for any physical fixed point. However, ∆ã can
formally become negative when the value of the coupling αg at the fixed
point is on the unphysical negative axis.

To three–loop order in the effective beta function, one can have the
two following physical zeros

αBZ
g = −

beff
1

2beff
2

(
1−

√
1 −

4b0beff
2

(beff
1 )2

)
, α��BZ

g = −
beff

1

2beff
2

(
1+

√
1 −

4b0beff
2

(beff
1 )2

)
(3.42)

For small values of b0, the solution with negative sign corresponds to the
usual BZ fixed point, with the following corrections

αBZ
g = −

b0

beff
1

(
1 +

b0beff
2

(beff
1 )2

+ O
(
b2

0

))
. (3.43)

This expression holds provided b0/(beff
1 )2 is small. We shall see below that

there are cases where this is not true. Using (3.43), we can compute the
three–loop corrections to the variation of ã,

∆ãBZ = ∓χgg b2
0

beff
1

(
1 − (Abeff

1 − 2beff
2 )

b0

3(beff
1 )2

)
. (3.44)

We now turn our attention to the second zero, α��BZ
g . The first observation is

that for a generic value of beff
1 , this fixed point occurs at a non–perturbative

value of the coupling. This is what happens in general for gauge theories
with fermionic matter in a given irreducible representation of the gauge
group [91]. However, for gauge theories with Yukawa interactions and/or
multiple matter representations, the possibility that both b0 and beff

1 are
small exists. An explicit example is provided below. Furthermore, when
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beff
2 = (beff

1 )2/(4b0), the two fixed points merge. This phenomenon can
happen within the purview of perturbation theory. At the merger, one
has αmerger = −2b0/beff

1 , which, when plugged into Equation (3.38), gives

∆ãBZ
∣∣∣
merger

= ∓χgg 4
3

b2
0

beff
1

. (3.45)

The virtues of this expression is studied in more detail elsewhere [92].
Having in our hands the explicit tools, we can explore the a theorem

for gauge theories with interesting fixed point structures.

3.4 A concrete example

We consider the SU(Nc) gauge theory introduced in Section 1.2. For
convenience, we repeat the Lagrangian of the theory,

L = −
1
4

FµνFµν + iλ /Dλ̄ + iq̄ /Dq + i ¯̃q /Dq̃ + ∂µH†∂µH

+ (yHq̃Hq + h.c.) − u1(Tr[H†H])2
− u2 Tr[(H†H)2] , (3.46)

Throughout this section, we will work with rescaled couplings which
enable a finite Veneziano limit of the theory with `, the number of adjoint
fermions, fixed. That is, we let Nc,N f → ∞ while keeping x ≡ N f/Nc

fixed. The appropriately rescaled couplings are

ag =
g2Nc

(4π)2 , aH =
y2

HNc

(4π)2 , z1 =
u1N2

f

(4π)2 , z2 =
u2N f

(4π)2 . (3.47)

This model was introduced in [19] to investigate near–conformal dynam-
ics, at the one–loop level, and its impact on the spectrum of the theory with
special attention payed to the properties of the dilaton. The model was
further investigated at the two–loop level in [1]. To compute ã, following
the previous section, we need to determine the three–loop contribution
to the gauge beta function.
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Using [6, 65–67, 69, 93, 94] and taking the Veneziano limit, we find

βag = −
2
3

a2
g

[
11 − 2` − 2x + (34 − 16` − 13x) ag + 3x2aH +

81x2

4
agaH

−
3x2(7 + 6x)

4
a2

H +
2857 + 112x2

− x(1709 − 257`) − 1976` + 145`2

18
a2

g

]
,

(3.48)

βaH = aH

[
2(x + 1)aH − 6ag + (8x + 5)agaH +

20(x + `) − 203
6

a2
g

− 8xz2aH −
x(x + 12)

2
a2

H + 4z2
2

]
,

(3.49)

βz2 = 2
(
2z2aH + 4z2

2 − xa2
H

)
. (3.50)

Here one can see that the double trace coupling z1 does not participate
in the running of the remaining couplings. In addition, using (3.24) and
(3.25), the metric coefficients for this theory can be found:

χgg =
N2

c

27π2 , χyy =
N2

f

3 · 27π2 , χz2z2 =
N2

f

3 · 26π2 , A = 17 −
10
3

(x + `) .
(3.51)

One can check that the expressions above satisfy the consistency rela-
tions given in (3.26a)-(3.26c), and therefore it constitutes an independent
check of the correctness of the beta functions. We now turn to the fixed
point analysis of the model which will reveal an interesting perturbative
structure.

3.4.1 Leading order analysis: Banks–Zaks fixed point

In order to see a fixed point of the Banks–Zaks type (see Section 2.3 and
[72]), the one–loop coefficient of the gauge beta function has to be small
and the signs of b0 and beff

1 have to be opposite. Therefore, our first task is
to find a region in the parameter space of the model where the physical
BZ fixed point exists. We use (3.34)

b0 =
1
3

(
11 − 2(` + x)

)
, beff

1 =
1
3

(
34 − 16` − 13x +

9x2

(x + 1)

)
. (3.52)

From the asymptotic freedom (AF) boundary condition b0 = 0, we obtain
that x = (11 − 2`)/2. Substituting this value of x into beff

1 , we have

beff
1AF = −

25
2
− ` −

3(11 − 2`)2

4` − 26
, (3.53)
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where the last term comes from the Yukawa interactions. We immediately
notice that beff

1AF can be made to vanish, which happens when `∗ ≈ 0.37.
Below, we will consider the cases ` = 1 for which beff

1AF is negative and
` = 0 for which it is positive. In the first case we have a standard IR
BZ fixed point, and in the second, we obtain a new UV BZ fixed point.
It is worth noticing that in the absence of Yukawa interactions, beff

1AF is
always negative, and therefore the physical BZ fixed point can only be
the standard IR fixed point.

` = 1 case
In this case, there exists a perturbative IR fixed point regardless of whether
we consider the presence of Yukawa interactions. In Figure 3.1.a, we show
the leading order result for the change in ã between the Gaussian (trivial)
fixed point and the BZ IR one at leading order, both in the presence (blue
line) and absence (red line) of Yukawa interactions. Both curves cross
zero at x∗ = 9/2, when asymptotic freedom is lost. For x > 9/2, where
b0 < 0, there is an unphysical BZ UV fixed point with negative α∗g yielding
a negative ∆ã. The Yukawa interactions in (3.53) imply |beff

1 | < |b1|, which
leads to a larger ∆ã in the case of the gauge theory with scalars.

Yukawa
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x

D a�

Χgg

Figure 3.1.a ∆ã between the Gaussian
and BZ fixed points normalised to χgg

at leading order for the ` = 1 case. The
solid red (dashed blue) line
corresponds to the model without
(with) Yukawa interactions. In both
cases the physical BZ fixed point is an
IR one.

Yukawa
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{=0

5.0 5.2 5.4 5.6 5.8 6.0

-0.03
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0.03

x

D a�

Χgg

Figure 3.1.b ∆ã between the Gaussian
and BZ fixed points normalised to χgg

at leading order for the ` = 0 case. In
the absence (presence) of Yukawa
interactions, the physical BZ fixed
pont is an IR (UV) one. The color code
is the same as on the left panel.

` = 0 case
We now turn to the ` = 0 case where, rather than having a BZ IR fixed
point, the theory develops a UV fixed point when asymptotic freedom
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is lost, i.e. when b0 < 0. Of course, this is possible only because of the
presence of the Yukawa interactions. In Figure 3.1.b, the leading order
result for the change in ã between the Gaussian and BZ fixed points
without Yukawa interactions is shown in red, and the one with Yukawa
interactions in blue. Both curves cross zero for x∗ = 11/2 when asymptotic
freedom is lost.

3.4.2 Next–to–leading order analysis: Fixed point merger

At the next perturbative order, we deal with the full system of Equa-
tions (3.48)–(3.50) and from now on, we concentrate only on the physical
fixed points.

IR

ag
*

z2
*

{=1
aH

*

3.4 3.6 3.8 4.0 4.2 4.4
0.00

0.05

0.10

0.15

0.20

x

Figure 3.2.a The next–to–leading order
physical fixed point structure for the
` = 1 case with Yukawa and quartic
interactions.
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{=1

Figure 3.2.b ∆ã normalised to χgg for the
` = 1 case. The red and dashed blue lines
are leading order results from Figure 3.1.a
while the dotted black and green lines are
the next–to–leading order corrections.

` = 1 case
We start again with the ` = 1 theory and in Figure 3.2.a, we display
the fixed point structure for the model with Yukawa and quartic inter-
actions. We notice that at x ≈ 3.25, the fixed point value of the gauge
coupling vanishes. However, this happens in the region beyond applica-
bility of perturbation theory since the two remaining coupling constants
are large. In Figure 3.2.b, we plot the change in the ã–function for the
next–to–leading order BZ IR fixed point and compare it with the corre-
sponding leading order results from Figure 3.1.a. As a general feature,
we notice that the next–to–leading order corrections reduce the value of
∆ã in the perturbative regime. It is clear from the plots that for the theory
with Yukawa interactions, perturbation theory breaks down earlier when
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IR
IR
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Figure 3.3.a The next–to–leading
order physical fixed point structure
for the ` = 0 case with Yukawa and
quartic interactions. The vertical
dash–dotted green line represents the
point where asymptotic freedom is
lost.
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Figure 3.3.b ∆ã normalised to χgg for the
` = 0 case. The red and dashed blue lines
are leading order results from Figure 3.1.b
while the dotted black and green lines are
next–to–leading order corrections.

moving away from the critical value x∗ = 9/2, than in the theory without
Yukawa interactions.

` = 0 case
We now turn to the ` = 0 theory where, as discussed above, there is
no BZ IR fixed point. However, in the asymptotically free regime there
is a new physical IR fixed point emerging at the next–to–leading order.
This non–BZ IR fixed point is present also when asymptotic freedom is
lost, i.e. for x > 11/2. In this region there is also a BZ UV fixed point
that was discussed in Section 3.4.1. The complete fixed point structure
is shown in Figure 3.3.a. The UV and IR fixed points merge around
x ≈ 5.6. In Figure 3.3.b, we plot the change in the ã–function at next–
to–leading order together with the corresponding leading order results
from Figure 3.1.b. We notice that ∆ã becomes negative just before the
merger which is incompatible with the a theorem. We interpret this
effect as the breakdown of the perturbative expansion, rather than a
counterexample to the conjecture, since the fixed point values of the
couplings at the merger are quite large, as can be seen from Figure 3.3.a.
See also discussion below.

So far, all our calculations of ∆ã were for the flow connecting the trivial
fixed point at the origin of the coupling constant space with the BZ one.
However, it is relevant also to determine ∆ã for the branch connecting the
two non–trivial fixed points. In the theory with ` = 0 and x > 11/2 this
is the RG flow between the BZ UV fixed point and the non–BZ IR one.
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We display the change in the ã–function in Figure 3.4.a. Of course, at the
merger ∆ã vanishes.

` = 0.35 case: The perturbative merger
If we regard both ` and x as continuous parameters, it is formally pos-
sible to study the merging phenomenon within the perturbative regime.
This happens around `∗ ≈ 0.37. Therefore we provide an example with
` = 0.35. The change in the ã–function for the two RG flows are shown
in Figure 3.4.b. Since for this value of `, perturbation theory holds, we
observe a positive and well behaved ∆ã all the way to the merger. This
supports our interpretation from above that the negative value of ∆ã was
due to a breakdown of perturbation theory.
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Figure 3.4.a ∆ã normalised to χgg for
the RG flow between the BZ UV fixed
point and the non–BZ IR fixed point.
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Figure 3.4.b ∆ã normalised to χgg for the
` = 0.35 case. The magenta curve
corresponds to the flow between the BZ
UV and the non–BZ IR fixed points. The
green curve is the result between the
Gaussian IR fixed point and the UV BZ
one.
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4
Vacuum stability in the

standard model

One of the most celebrated features of the standard model Higgs field is
that its potential does not have its global minimum at the origin (see also
Section 1.1). To understand the Higgs potential in detail, it is instructive
to consider the simplest realization of the Higgs mechanism; the abelian
Higgs model.

4.1 The Higgs mechanism
We consider the Lagrangian

L = −
1
4

FµνFµν + |Dµφ|
2
− V(φ) , (4.1)

V(φ) = −µ2φ∗φ +
λ
2

(φ∗φ)2 (4.2)

where Dµ = ∂µ + ieAµ, µ2 > 0 and λ > 0. This Lagrangian is invariant
under the combined U(1) gauge transformation

φ(x)→ eiα(x), Aµ(x)→ Aµ(x) −
1
e
∂µα(x) . (4.3)

With both µ2 and λ positive, it is easy to see that the potential is at its
minimum when

φ = φ0 =

√
µ2

λ
, (4.4)

49
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or any other value related to this by a U(1) transformation. It is therefore
convenient to expand the complex field φ(x) in terms of two real fields,

φ(x) = φ0 +
1
√

2

(
φ1(x) + iφ2(x)

)
. (4.5)

Using this expansion, the potential becomes

V(φ1, φ2) = −
µ4

λ
+

1
2

2µ2φ2
1 + O(φ3

i ) , (4.6)

yielding a theory where φ1 is the massive Higgs particle, with a mass of
√

2µ, and φ2 is a massless Goldstone boson coming from the breaking of
the U(1) symmetry (4.3).

We can further apply this expansion to the kinetic energy term and
find

|Dµφ|
2 =

1
2

(∂µφ1)2 +
1
2

(∂µφ2)2 +
√

2eφ0Aµ∂
µφ2 + e2φ2

0AµAµ + . . . (4.7)

where the ellipsis contains all terms of third order or higher in the fields
Aµ, φ1 and φ2.

The most interesting term here in the context of the standard model
is of course the gauge boson mass term e2φ2

0AµAµ the generalization of
which is what gives the experimental mass of the W and Z bosons. There
are several other subtleties involved in this, concerning among other
things the disappearance of the Goldstone boson and the appearance of a
longitudinal mode for the massive vector bosons, but we will not go into
further detail here.

4.1.1 The Higgs potential

What we will concern ourselves with is the Higgs potential (4.2). As we
saw, for low values of the field, or low energies, this can best be expressed
by expanding around its minimum. The location of the minimum can be
measured experimentally, and is identified with the Higgs field vacuum
expectation value v ≈ 246 GeV. In Figure 4.1, we show a sketch of this
potential for relatively modest values of the Higgs field.

As we saw above, the masses of the Higgs particle and the gauge
bosons come from the expansion around the global minimum of the
potential. It is meaningful to make this expansion because objects in
Nature will naturally tend towards the minimum of their respective po-
tential functions. The question we will be investigating in this section is
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Figure 4.1: Sketch of the standard model Higgs potential for values of the
Higgs field not much larger than twice the vacuum expectation value. We
notice the so-called “Mexican hat” or “wine bottle” shape characterized
by a raised center around a circular valley, and rising against at the edges.

whether the minimum we have chosen to expand around is in fact the
true minimum of the standard model, and what the consequences are if
it is not.

Since the standard model is a quantum theory, two crucial things
can happen to disrupt the situation we have described in the preceding
section. First, as established in Section 2.1, the coupling constants of a
quantum field theory are not actually constants, but rather functions of
the energy at which they are probed. In this case it is possible that if
we run the couplings of the theory towards higher energies, the sign of
the quartic coupling λ may change. If this happens, the Higgs potential
either develops a new minimum or becomes unbounded from below, and
the minimum around which we expand is not a true global minimum of
the theory. Classically, this would not pose a problem, but in a quantum
theory, particles may tunnel through a potential barrier and into the
true minimum, without having sufficient energy to traverse the barrier
classically.

If the Higgs coupling never changes sign, or does so above the cut off
of the standard model (which is commonly taken to be the Planck scale
MP = 1.22 × 1019 GeV), the theory is stable and there is no problem. If the
time it takes to tunnel through the barrier is larger than the lifetime of
the universe so far, there is no contradiction with our observation of the
universe’s existence (and we expect that there will not be a problem with
its future existence either), and we say that the theory is metastable. If,
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however, the standard model Higgs potential is unbounded from below
or has a very deep second minimum, and the tunneling time is signifi-
cantly lower than the lifetime of the universe, the theory predicts that the
universe is unstable and would, in all probability, already have decayed
to its true vacuum. Since this has clearly not happened, we may use the
continued existence of the universe as proof that the theory is false.

In this chapter, we will investigate whether or not this actually does
happen in the standard model, and if so what the consequences are. How-
ever, we will first consider the Weyl consistency conditions introduced in
Sections 3.2 and 3.3.1, and the implications they have on the running of
the standard model coupling constants.

4.2 The Weyl consistency conditions in the stan-
dard model

The central set of conditions we arrived at in Section 3.2, and which we
will refer to as the Weyl consistency conditions, is, to leading order,

∂β j

∂gi
=
∂βi

∂g j
, βi

≡ χi jβ j , (4.8)

which relates the beta functions of different couplings to each other
through the coupling space metric χ.

We now specialize these conditions to the important case of the stan-
dard model of particle interactions. The couplings we consider are the
gauge couplings, the top-Yukawa and the quartic interaction of the Higgs
field. Due to the nature of the perturbative corrections, it is convenient
to redefine the coupling set {gi} as {α1, α2, α3, αt, αλ}, where

α1 =
g2

1

(4π)2 , α2 =
g2

2

(4π)2 , α3 =
g2

3

(4π)2 , αt =
y2

t

(4π)2 , αλ =
λ

(4π)2 . (4.9)

Here, g1, g2, g3 are the U(1)Y, SU(2)W and SU(3)c gauge couplings re-
spectively. Similarly, we denote by β1, β2, β3, βt and βλ their respective
beta functions, defined1 as βi ≡ µ2 dαi

dµ2 . At leading order in the couplings,
the matrix χ is diagonal, and reads [46]

χ = diag
(

1
α2

1

,
3
α2

2

,
8
α2

3

,
2
αt
, 4

)
. (4.10)

1Note that this convention is different from the one we introduced in Section 2.1.4.
It is related to that one through µ2 dαi

dµ2 = µ2 dµ
dµ2

dαi
dµ = 1

2µ
dαi
dµ .
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We find that after using the coupling space metric to raise the coupling
space index, βg features two fewer orders of αg than the original βg; the
Yukawa βt is related to βt with one less power of αt, while βλ carries
the same powers in αλ as βλ. We note that this would exactly cancel
out the universal prefactors of α2

g and αy that were present in Equations
(3.19)-(3.21), the generic beta functions of a gauge-Yukawa theory.

The condition (4.8) therefore plays an important role, since it relates
coefficients of different beta functions at different loop orders. Explicitly,
the lowest order consistency conditions that we obtain are

2
∂
∂αt

βλ =
∂
∂αλ

(
βt

αt

)
+ O

(
α2

i

)
, (4.11a)

4
∂
∂α1

βλ =
∂
∂αλ

(
β1

α2
1

)
+ O

(
α2

i

)
, (4.11b)

4
3
∂
∂α2

βλ =
∂
∂αλ

(
β2

α2
2

)
+ O

(
α2

i

)
, (4.11c)

2
∂
∂α1

(
βt

αt

)
=

∂
∂αt

(
β1

α2
1

)
+ O

(
α2

i

)
, (4.11d)

2
3
∂
∂α2

(
βt

αt

)
=

∂
∂αt

(
β2

α2
2

)
+ O

(
α2

i

)
, (4.11e)

1
4
∂
∂α3

(
βt

αt

)
=

∂
∂αt

(
β3

α2
3

)
+ O

(
α2

i

)
, (4.11f)

1
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∂
∂α2

(
β1

α2
1

)
=

∂
∂α1

(
β2

α2
2

)
+ O

(
α2

i

)
, (4.11g)

1
8
∂
∂α3

(
β1

α2
1

)
=

∂
∂α1

(
β3

α2
3

)
+ O

(
α2

i

)
, (4.11h)

3
8
∂
∂α3

(
β2

α2
2

)
=

∂
∂α2

(
β3

α2
3

)
+ O

(
α2

i

)
. (4.11i)

We can now proceed to test these relations for the standard model
beta functions. We take them from Reference [95–97], and make the
slight modification that we do not use the SU(5) normalisation for the
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hypercharge:

β1 = 2α2
1
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β3 = 2α2
3

{
−

11
2

+
2nG

3
+

11nG

36
α1︸  ︷︷  ︸

Eq. (4.11h)

+
3nG

4
α2︸ ︷︷ ︸

Eq. (4.11i)

+
(
−51 +

38nG

3

)
α3

+

(
−

65nG

432
−

605n2
G

972

)
α2

1 −
nG

48
α1α2 +

77nG

54
α1α3

+

(
241nG

48
−

11n2
G

12

)
α2

2 +
7nG

2
α2α3

+

(
−

2857
4

+
5033nG

18
−

325n2
G

27

)
α2

3

+ αt

[
−1︸︷︷︸

Eq. (4.11f)

−
101
48
α1 −

93
16
α2 − 20α3 +

(9
4

+
21nt

4

)
αt

]}
,

(4.12c)

βt = 2αt

{
9
4
αt − 4α3︸︷︷︸

Eq. (4.11f)

−
17
24
α1︸︷︷︸

Eq. (4.11d)

−
9
8
α2︸︷︷︸

Eq. (4.11e)

+ 3α2
λ − 6αtαλ︸        ︷︷        ︸
Eq. (4.11a)

−6α2
t

+ 18α3αt + α2
3

(
−

202
3

+
40nG

9

)
+ αt

(131
32
α1 +

225
32
α2

)
+

1187
432

α2
1 −

3
8
α1α2 +

19
18
α1α3 −

23
8
α2

2 +
9
2
α3α2

}
,

(4.12d)
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Eq. (4.11c)

+
3

16
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1 −
3
2
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Eq. (4.11b)

+
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Eqs. (4.11b & 4.11c)

+12α2
λ
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Eq. (4.11a)

.
(4.12e)

Here nG is the number of generations, which we set to 3 in actual
calculations, and nt is the number of top quarks, i.e. 1. These parameters
are kept general here to enable more detailed comparison with other
calculations. Note that although we considered the gauge beta functions
to three loops, we show only the two–loop top-Yukawa and the one–loop
Higgs quartic beta functions. This, as we will demonstrate momentarily,
leads to a Weyl consistent expansion in the couplings up to O(α3

i ).
To help the reader immediately identify the terms in the beta functions

that must satisfy the Weyl consistency conditions given in Equation (4.11),
we have color-coded the contributions. Furthermore, beneath each rele-
vant term we have noted the equation number of the Weyl consistency
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condition it refers to. Note that the term 3
8α1α2 in βλ enters into both

Equation (4.11b) and Equation (4.11c).
This illustrates that the one–loop coefficients of the quartic βλ-function

are related to the two–loop coefficient of the Yukawa βt-function, and to
the three–loop beta functions of the electroweak gauge couplings. Re-
stricting the computation to these orders, namely adopting a 3-2-1 loop
counting in the gauge, Yukawa and quartic beta functions, corresponds
to a truncation of the function ã at order α3

i . For illustration, we show
the terms in the function ã which contribute to the one–loop quartic βλ-
function:

− ã = . . . +
9
4
α2

2αλ − 9α2
λα2︸            ︷︷            ︸

Eq. (4.11c)

+
3
4
α2

1αλ − 3α2
λα1︸            ︷︷            ︸

Eq. (4.11b)

+
3
2
α1α2αλ︸    ︷︷    ︸

Eqs. (4.11b & 4.11c)

+16α3
λ + 12α2

λαt − 12α2
tαλ︸              ︷︷              ︸

Eq. (4.11a)

+ . . . (4.13)

4.3 A consistent perturbative expansion
When considering terms in the beta functions of higher order than the
ones present in Equation (4.12), one implicitly includes terms of order α4

i
or higher in ã. For instance, let us study a typical two–loop term in the
quartic beta function,

βλ = . . . +
45
4
α2αtαλ + . . . . (4.14)

It involves a term of the form α2αtα2
λ in ã2, whose presence demands a

term of order α2αtα2
λ in βt, which only appears at the three–loop level,

and another of order α2
2αtα2

λ in β2, which is a four-loop term.3 When
truncating all beta functions to three loops, the absence of these terms
explicitly violates the Weyl consistency conditions.

The central point presented in [4] and this chapter is that for any analy-
sis requiring the running of multiple couplings, a consistent perturbative

2Note that NLO corrections in χ and w mean that several terms in ã will contribute
to each beta function.

3It is important to note, however, that one cannot simply infer the form of these
terms directly from Equation (4.14), since the metric χi j contains corrections of higher
order in αi, not shown in Equation (4.10). Some of these corrections have been computed
in Reference [46].
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expansion must be adopted in the function ã, from which the counting
of couplings in the various beta functions should then be derived. Trun-
cating ã to order α3

i corresponds to the 3-2-1 counting mentioned above.
Similarly, truncations at order α4

i or α5
i in ã yield respectively the 4-3-2 or

5-4-3 Weyl-consistent countings. If, for instance, the three–loop terms are
included for the quartic beta function [98], then the 5-4-3 counting should
be adopted. This requires an additional theoretical effort to compute the
gauge and Yukawa beta functions to the corresponding order. The key
point for any renormalization group analysis, as shown above, is that the
beta functions are linked through ã. This implies that any perturbative
truncation made at the level of ã will be consistent. Conversely if the
truncation is made at the level of the beta functions, unphysical features
may well appear.

In [1], we performed an analysis of the toy model described in Section
1.2 to two loops in each of the beta functions, and did indeed find such
unphysical features.

4.4 Vacuum stability analysis
The analysis of the vacuum stability requires knowledge of the effective
potential of the model at hand. The standard model effective potential is
known up to two loops [99], and its explicit form is given in the appendix
of Reference [98, 99]. For large field valuesφ� v = 246 GeV, the potential
is very well approximated by its RG-improved tree-level expression,

Vtree
eff =

λ(µ)
4
φ4 , (4.15)

where µ is on the order of φ. Therefore if one is simply interested in the
condition of absolute stability of the potential, it is possible to study the
RG evolution of λ and determine the largest scale Λ < MP, with MP the
Planck scale, above which the coupling becomes negative.

We now compare the RG evolution of the standard model Higgs quar-
tic coupling within the 3-2-1 Weyl consistent counting to the 3-3-3 count-
ing.4 The RG evolution of the standard model Higgs self interaction
coupling in both counting schemes is shown in Figure 4.2.a, where we
used the PDG value for the top mass Mt = 173.5 ± 1.4 GeV [35] and the
CMS measurement of the Higgs mass, MH = 125.7 ± 0.6 GeV [103]. We
observe that in both counting schemes λ crosses zero at the scale Λ ≈ 1010

4 For the 3-3-3 counting scheme we use the state-of-the-art three–loop standard
model beta functions Refs.[95–97, 100–102].
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Figure 4.2: The RG evolution of the standard model Higgs quartic cou-
pling (a) and effective coupling (b). In (a), λ333 (λ321) shows the evolution
of λ according to the 3-3-3 (3-2-1) scheme, and in (b) λ333

eff
(λ321

eff
) shows the

evolution of λeff according to the 3-3-3 (3-2-1) scheme.

GeV, although the crossing happens at a slightly lower scale in the 3-2-1
counting.

However, an accurate determination of the scale Λ has to take into
account the full structure of the Higgs potential. As was shown in [104,
105], one can always define an effective coupling λeff such that for φ� v
the effective potential assumes the form

Veff =
λeff(µ)

4
φ4 . (4.16)

The explicit expression for λeff, up to two–loop order, can be found in
[98, 99]. Within the 3-2-1 counting scheme, we only consider λeff to one–
loop order, to be consistent with the one–loop running of the quartic
coupling. On the other hand in the 3-3-3 scheme we keep the full two–loop
expression. The direct comparison between the running of the effective
quartic couplings in the two schemes is shown in Figure 4.2.b. We note a
very similar pattern to the one for λ given in Figure 4.2.a. The difference
is that the scale where λeff crosses zero is roughly one order of magnitude
larger, Λ ≈ 1011GeV.

We have also studied the possibility that the standard model is in a
metastable vacuum that may in principle decay at a later time. However,
if the time it takes for the vacuum to decay is longer than the lifetime of
the universe, this is not of immediate concern. To illustrate the situation
we have plotted the stability of the standard model as a function of the
top and Higgs masses (see Figure 4.3). The criterion for stability is that
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the quartic coupling is positive at least all the way to the Planck scale.
On the other hand, for metastability we must require that the probability
(with certain standard approximations, see [106] for details) of the false
vacuum decaying within the lifetime of the universe is less than one. This
can be expressed as

λ(φ) > −
8π2/3

4 log[φTUeγE/2]
, (4.17)

where TU is the age of the universe and γE is the Euler-Mascheroni con-
stant.
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Figure 4.3: Standard model stability analysis based on the effective stan-
dard model Higgs quartic coupling. The red region indicates instability,
the yellow metastability and the green absolute stability following the
3-2-1 counting. For comparison, the black lines indicate the bounds from
the 3-3-3 counting. The point with error bars shows the experimental
values of the top [35] and Higgs [103] masses. The red dashed lines show
the value in GeV at which λ321

eff
crosses zero.

In addition to the vacuum stability analysis, we consider the case
where the electroweak vacuum is the true ground state, but an unstable
minimum exists at higher values of the Higgs field. The condition for such
a second vacuum close to the point whenλeff vanishes is the simultaneous
vanishing of βeff = dλeff/d lnφ on the new minimum. Typically these two
conditions are met by lowering the value of the top mass. To verify this
possibility we show in the left and right panels of Figs. 4.4 the evolution
of the quartic couplings, as done in Figs. 4.2.a and 4.2.b, but adopting a
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Figure 4.4: RG evolution of the (effective) standard model Higgs quartic
coupling. The mass of the top is tuned such that for λ333

eff
the poten-

tial develops a minimum at high energy, which is degenerate with the
electroweak one.

lower value of the top mass, i.e. Mt = 171.27 GeV. It is clear from the
picture, that for this value of the top mass and within the 3-3-3 counting
scheme, the conditions for the existence of a second vacuum, degenerate
in energy with the electroweak one, are met. Indeed, in the right panel
of Figure 4.4 we observe that λ333

eff
crosses zero at Λ ≈ 1019 GeV with a

near zero slope, i.e. βeff ≈ 0. However, within the 3-2-1 counting scheme,
the situation differs as λ321

eff
crosses zero about three orders of magnitude

earlier, with non-vanishing βeff, for the same value of the top mass. We
have to substantially lower the top mass to circa Mt ≈ 171.05 GeV in this
Weyl consistent scheme to accommodate the emergence of a degenerate
minimum, giving a deviation of the order 2σ from the central value of the
top mass.
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5
A study of renormalization

group flows

In this chapter, we will investigate the renormalization group (RG) flows
of two closely related Yukawa theories at various loop orders in the beta
functions. The purpose of this is to explore the limits of perturbation
theory, and to illustrate just how desireable a well motivated counting
scheme such as the Weyl consistent one presented in Section 3.3.1, and
further explored in Chapter 4, is. Our investigations will closely follow
the discussion in [5].

5.1 Renormalization group flow analysis

The dependence of the coupling constants in a quantum field theory
on the Euclidean momentum scale µ, at which they are measured is of
fundamental importance. As established prior in this thesis (see Section
2.1.4), this behavior is described by the beta functions for the couplings
[62, 63, 107–110]. In a theory with two or more couplings, a change in µ
thus induces a renormalization group flow in the space of couplings. The
RG flow typically involves some infrared (IR) or ultraviolet (UV) fixed
points, and one can characterize these as being attractive or repulsive
along certain directions in the space of couplings. If the couplings are
sufficiently small, then the respective beta functions can be reliably cal-
culated perturbatively. As one or more of these couplings increases in
magnitude, higher-loop contributions to the various beta functions be-

61
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come important, motivating calculations of these beta functions to higher
loop order to obtain reliable results for RG flows and fixed points. If
one or more couplings become too large, then it may not be possible
to describe the RG flows, or indeed the properties of the theory, using
perturbative calculations.

A general criterion for the reliability of a perturbative calculation is
that if one calculates some quantity to a given loop order, then there
should not be a large fractional change in this quantity if one computes
it to one higher order in the loop expansion. Thus, in a situation where a
putative fixed point occurs at moderately strong coupling, it is important
to study how the value of the coupling(s) at this fixed point change(s)
if one calculates the beta function(s) to higher loop order. For example,
an asymptotically free non-Abelian gauge theory with sufficiently many
fermions in a given representation has an IR fixed point (IRFP) [111,
112]. If the number of fermions is only slightly less than the maximum
allowed by the constraint of asymptotic freedom, this IRFP occurs at
weak coupling [72]. As the number of fermions is decreased, the IRFP
moves to stronger coupling, and studies of the effect of higher-loop terms
in the beta function of the gauge coupling have been carried out in this
case [91, 113–118]. One may also investigate a possible ultraviolet fixed
point (UVFP) in an infrared-free theory such as U(1) gauge theory with
higher-loop calculations (e.g., [119–121] and references therein).

It is also of considerable interest to investigate renormalization group
flows in the more complicated case of quantum field theories that depend
on more than one interaction coupling. There have been many studies
of such flows for theories and ranges of momentum scale µ where the
couplings are reasonably weak, so that perturbative calculations are rea-
sonably accurate. This is the case for computations of RG flows of the
SU(3)c, SU(2)L, and U(1)Y gauge couplings in the standard model or the
minimal supersymmetric standard model from a reference scale of, say,
1 TeV, up to higher scales such as 1016 GeV. There has also been interest
in calculating the RG flow of the elements of Yukawa matrices in the
standard model and minimal supersymmetric standard model, and the
quartic Higgs coupling λSM in the standard model, from the 1 TeV scale to
higher scales. Again, these RG flows can be reasonably well described by
perturbative calculations, although with the measured value of the Higgs-
like boson observed by the LHC, mH ' 126 GeV (whence in the standard
model, λSM(µ) ' 0.13 at µ = mH), in the absence of new physics effects at
intermediate scales, it follows that λSM(µ) would decrease through zero
at a high scale µ ∼ 1010±1 GeV, implying that the standard model, by itself,
would be metastable above this scale [4, 93, 95, 96, 98, 101, 122–135]. See
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also the analysis in the preceding chapter, in particular Figure 4.2.
Here, we will study renormalization group flows in Yukawa theories

and assess the reliability of perturbative calculations of these flows for a
substantial range of Yukawa and quartic scalar couplings. The method
that we use for this purpose is to compare the properties of flows that we
obtain with the beta functions of these couplings calculated to different
orders in the loop expansion. To better focus on the essential features
in as simple a framework as possible, we study scalar-fermion models
without any gauge fields. We construct these models so that the global
symmetries forbid any Dirac or Majorana fermion mass terms, and we
also consider the limit where scalar masses are negligibly small relative
to the scales of interest, µ. These models depend on two dimensionless
couplings, a quartic self-coupling λ for the scalar field and a Yukawa cou-
pling y. The beta functions for these couplings comprise a set of coupled
first-order ordinary differential equations describing how the couplings
vary as functions of µ. Integrating this set of differential equations, we
determine their renormalization group flows as functions of µ. To do this,
we choose an initial scale, µ0, where the magnitudes of the couplings are
sufficiently small that perturbative calculations may be reliable, and then
perform the integration. Our method is to compare RG flows calculated
using different loop orders for the two beta functions. We recall the ba-
sic fact that in these theories, the quartic scalar self-coupling λ must be
positive for the boundedness of the energy and equivalently the stability
of the theory. As will be evident in our results, RG flows may take a
theory with positive λ to one with negative λ. In this case, a comment
is necessary. Strictly speaking, for a sufficiently small range of negative
λ the theory may still be metastable, with a sufficiently long tunneling
time that our perturbative calculations may be physically meaningful.
However, for negative values of λ of sufficiently large magnitude, the
theory is simply unstable, and the perturbative analysis is not applicable
or meaningful. In most of our analytic discussions, therefore, we will
implicitly take λ to be positive.

We remark on some earlier related work on Yukawa models. As
is well known, Yukawa proposed such models [136] as an approach to
understanding the binding of nucleons in nuclei, and pion exchange be-
tween nucleons does, indeed, play an important role in this binding. Of
course, the physics here involves the exchange of a light approximate
Nambu-Goldstone boson between two baryons, with the baryons being
much heavier than the exchanged π meson, as indicated by the ratio
of masses mπ/mN ≈ 0.15. This is quite different from our models, for
which, by construction, a global chiral symmetry forbids any fermion
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mass and the scalar mass is taken to be negligibly small relative to the
interval of Euclidean momentum scales µ for which we integrate the beta
functions to calculate the RG flows. Some early studies of perturbative
RG equations for standard model Yukawa couplings included Refs. [68,
137–140]. It was recognized early on that the one–loop beta function for
a scalar theory without fermions is positive, therefore such a theory is,
perturbatively, IR-free; that is, as µ→ 0, λ(µ)→ 0. However, it was also
recognized that if one adds fermions to this scalar theory to get a full
scalar-fermion Yukawa theory, then the fermions contribute a negative
term proportional to y4 in the beta function µdλ

dµ , and hence, for suffi-
ciently large y, this can reverse the sign of the full one–loop term in this
beta function and hence possibly render the scalar coupling in the Yukawa
theory nontrivial [137–140]. This motivated fully nonperturbative inves-
tigations, and these were carried out using lattice studies with dynamical
fermions [141–152] (some recent work includes [153–155]). One may ob-
tain a Yukawa theory starting from a full gauge-fermion-Higgs theory by
turning off the gauge couplings. In this framework, a natural approach is
to start with a chiral gauge theory (exemplified by the standard model),
which forbids bare fermion masses in the Lagrangian. However, owing
to fermion doubling on the lattice, it has been challenging to implement
chiral gauge theories in lattice calculations. We believe, therefore, that
there is continuing interest in pursuing analyses of renormalization group
evolution of continuum Yukawa theories using perturbatively calculated
beta functions. Indeed, simple scalar-fermion models have been of recent
interest in studies of quasi-scale invariant behavior (e.g., [1, 19, 156]; see
also [2, 4, 135, 157]).

5.1.1 Example models

In this chapter, we will regard two closely related models. Both are
ungauged Yukawa theories featuring two fermion fields and a scalar
field. The first will be invariant under a global SU(2) ⊗ U(1) symmetry,
and the second under a global SU(N) ⊗ SU(N f ) ⊗ U(1) symmetry. In the
former, we will use the Lagrangian level coupling constants y and λ, and
later absorb the loop factors into them (see Equation (2.41)). However,
for the latter model, it will be convenient to absorb a factor of N into each
of the rescaled couplings so that we may take the limit of infinite N and
N f , and we will refer to these as āy and āλ (see Equation (5.34)).
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5.2 Beta Function details
As discussed above, the beta functions in a simple Yukawa theory form
a set of two coupled differential equations. We integrate these for each
of the two models that we study below to calculate the resultant RG
flows. A point in the multidimensional space of couplings where all of
the beta functions vanish simultaneously is, formally, a renormalization
group fixed point. In general, RG flows may include the presence of one
or more ultraviolet fixed point(s) if the beta functions vanish as µ → ∞
and/or infrared fixed point(s), where the beta functions vanish as µ→ 0.
In general, a fixed point may be stable along some directions and unstable
along others. If the particle content of the theory does not change along
the RG flow from the reference scale µ0 to the fixed point, then it is an
exact UV or IR fixed point. In the vicinity of a (formal) fixed point, the RG
flows are slow, so that the theories exhibit approximate scale-invariance.

For our comparative study, we will perform the integrations to com-
pute the RG flows with the beta functions βay and βaλ calculated to various
different loop orders. Here, we will use the notation introduced in Section
2.2. For the SU(2)⊗U(1) model, the calculation to n and k loops, using the
βay,n` and βaλ,k` beta functions respectively is denoted (n, k). The specific
cases for which we perform the integrations are

• (1,1), i.e., βay,1` and βaλ,1`

• (1,2), i.e., βay,1` and βaλ,2`

• (2,1), i.e., βay,2` and βaλ,1`

• (2,2), i.e., βay,2` and βaλ,2`

We will use the same notation to describe the four equivalent cases
for the SU(N) ⊗ SU(N f ) ⊗U(1) model, so that in this context, the case (1,1)
refers to an RG calculation using βāy,1` and βāλ,1` and so forth for the other
cases. Some remarks are in order here. For a perturbative calculation
of quantities in a theory with multiple couplings, the naı̈ve procedure
would be to calculate to similar orders in the various couplings if they are
equally large and significant for the physics, and to calculate to higher
order in a coupling that is larger. Thus, for example, in a standard model
process, one may only need to calculate to lowest order in electroweak
couplings, but to higher order in the QCD coupling.

However, from a pure field theory point of view, the correct way to run
multiple couplings simoultanenously is to use the beta functionsβag,(n+2)`,
βay,(n+1)`, and βaλ,n`, where g denotes a gauge coupling and ag ≡ g2/(4π)2 =
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α/(4π). This follows from the Weyl consistency conditions [47] and was
described in detail in Sections 3.2 and 3.3.1 (see also Refs. [4, 135, 158]).
In the present analysis, this means that if we desired to make accurate
predictions about the behavior of the theory, we would use the (2,1)
counting scheme. However, since the purpose of the present chapter is
to study the consequences of including different loop orders, we will not
stress this issue further.

In this type of study there are several obvious caveats. First, clearly,
as couplings increase in strength, perturbative calculations become pro-
gressively less reliable. This is, indeed, a motivation for our present
work - to assess quantitatively where this reduction in reliability occurs
in the case of scalar-fermion models depending on two coupling con-
stants. Second, higher-loop terms in beta functions of multi-coupling
theories are generically scheme-dependent, and the positions of fixed
points are hence also scheme-dependent. Indeed, scheme dependence
is also present in higher-loop calculations in quantum chromodynamics
(QCD). As in common practice in QCD, we use results computed with the
MS scheme [159, 160]. One can assess the effect of scheme dependence of
RG flows and fixed points by comparing these in different schemes [91,
113–118]. However, many scheme transformations that are acceptable in
the vicinity of a fixed point at zero coupling (e.g., a UVFP in an asymp-
totically free gauge theory, or an IRFP in an infrared-free theory) are not
acceptable at a fixed point that occurs at a moderately strong coupling,
because they produce various unphysical pathologies [120, 121, 161–163].
A third caveat, related to the first, is that if one or more of the couplings is
(are) sufficiently large, the Yukawa and/or quartic scalar self-interaction
may lead to nonperturbative phenomena such the formation of a fermion
condensate, a vacuum expectation value (vev) for the scalar field, and/or
fermion-fermion bound states1 (see, e.g., [2, 157]). In the case where the
coefficient of the quadratic term in the scalar potential V is zero, there is
the related possibility of a nonperturbative generation of a nonpolyno-
mial term in V, whose minimum could lead to a nonzero vev for the scalar
field [166, 167]. Early studies of the stability of a theory in the presence of
this phenomenon and associated related bounds on fermion and Higgs
masses include [137–140, 168–171].

1There have been many studies of nonrelativistic bound states due to Yukawa inter-
actions, but these are not directly relevant to our work, since our models are constructed
to be invariant under global chiral symmetries and hence to avoid any bare fermion
mass terms, so that the fermions are ultrarelativistic. Some explorations of possible
relativistic fermion-fermion bound states resulting from a strong Yukawa interaction
include [164, 165].
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If fermion condensation occurs at some scale µc in the vicinity of a
formal IR fixed point, then the originally massless fermions gain dynam-
ical masses, spontaneously breaking the approximate scale invariance
in the theory near to an apparent RG fixed point. In the low-energy
effective field theory applicable for scales µ < µc, one integrates these
fermions out, thereby obtaining different beta functions. Thus, in this
case, the formal fixed point would only be approximate rather than exact,
since after the fermion condensation, the beta functions and flows would
be different. This spontaneous symmetry breaking of the approximate
scale invariance generically leads to the appearance of a corresponding
Nambu-Goldstone boson, the dilaton. This dilaton is not massless, since
the beta functions in the vicinity of the fixed point were small, but not
precisely zero.

If µ2
φ < 0, so that there is a vev for the scalar field, then the Yukawa

coupling leads to a mass for the fermion field(s) of the form m f ∝ yv.
However, since the vev v = (−µ2

φ/λ)1/2 and since we assume that |µφ|
is much smaller than the reference scales µ over which we integrate
the renormalization group equations, it follows that for moderate values
of the ratio y2/λ, the resultant fermion masses m f ∝ y(−µ2

φ/λ)1/2 are
negligible relative to the interval of µ that we study.

5.3 SU(2) ⊗U(1) Model

5.3.1 Field Content and Symmetry Group

The first model that we study is motivated by the leptonic sector of the
standard model, with the gauge interactions turned off. It includes a
fermion ψa

L which is a doublet under SU(2) with weak hypercharge Yψ

and a χR, which is a singlet under SU(2) with weak hypercharge Yχ,
together with the usual scalar field φa transforming as a doublet under
SU(2) with weak hypercharge Yφ. Here, a = 1, 2 is an SU(2) group index
which will often be suppressed in the notation. We assume that these
hypercharges are nonzero and that Yψ , Yχ. Since we have set the gauge
couplings to zero, the SU(2)⊗U(1) is a global symmetry group. As in the
standard model, we set

Yφ = Yψ − Yχ (5.1)
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to ensure that the Yukawa interaction term is invariant under the global
symmetry. The Lagrangian for this model is

L = ψ̄Li/∂ψL + χ̄Ri/∂χR − [yψ̄LχRφ + h.c.]

+ ∂µφ
† ∂µφ − µ2

φφ
†φ − λ(φ†φ)2 . (5.2)

Without loss of generality, we can make y(µ0) real and positive at a given
value µ0 (by changing the phase of ψL or χR or φ). We assume that this
is done. We allow µ2

φ of either sign, but assume that |µ2
φ| is negligibly

small compared with the range of µ2 of interest for our study of RG
flows2 (see also the end of Section 5.2). The global SU(2) symmetry
forbids the Majorana bilinear ψa T

L Cψb
L and the Dirac bilinear ψ̄a,LχR from

occurring inL. Since Yχ is taken to be nonzero, the U(1) symmetry forbids
the Majorana bilinear χT

RCχR (as well as ψa T
L Cψb

L and ψ̄a,LχR bilinears).
Thus, the condition thatL be invariant under this global symmetry group
implies that the fermions are massless.

5.3.2 Beta Functions

The one–loop and two–loop coefficients in the beta functions βy and βλ
can be extracted, with the requisite changes to match our normalizations,
from previous calculations (which were done in the MS scheme) [66–68,
71, 93, 95, 96, 99, 101, 172–175] (see also Section 2.2). They are

b(1)
y =

5
2

y3 (5.3)

b(2)
y = 3y(−y4

− 4y2λ + 2λ2) (5.4)

b(1)
λ = 2(12λ2 + 2y2λ − y4) (5.5)

b(2)
λ = −312λ3

− 48y2λ2
− y4λ + 10y6 . (5.6)

2The purpose of this assumption of negligibly small mφ compared with the range of
µ of interest for our RG flows is to ensure that the φ field is dynamical; if mφ were� µ
for the values of µ of interest, then we could integrate it out, obtaining a low-energy
effective field theory consisting of just the fermionsψ andχwith a resultant four-fermion
operator ∝ (1/m2

φ)
∑

a[ψ̄a,LχR][χ̄Rψa
L] + h.c. .
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In terms of the variables ay and aλ used for the figures,

b(1)
ay = 5a2

y (5.7)

b(2)
ay = 6ay(−a2

y − 4ayaλ + 2a2
λ) (5.8)

b(1)
aλ = 2(12a2

λ + 2ayaλ − a2
y) (5.9)

b(2)
aλ = −312a3

λ − 48aya2
λ − a2

yaλ + 10a3
y . (5.10)

We comment on some properties of βy or equivalently, βay . We recall
that at the initial point µ0 where we start our integrations of the renormal-
ization group equations, we have, with no loss of generality, rendered y
real and positive. A first comment is that because βy has an overall factor
of y, and βay has an overall factor of ay, it follows that the flow in y can
never take y through zero to negative values of y, and the flow in ay can
never take ay through zero to negative values of ay.

The fact that b(1)
ay > 0 means that for sufficiently small ay and aλ, βay > 0,

i.e., asµdecreases from the UV to the IR, the Yukawa coupling y decreases
as well. At the two–loop level,

b(2)
ay > 0 if aλ > (1 +

√
3/2 )ay = 2.2247ay , (5.11)

to the given floating-point accuracy. If these conditions are satisfied, then
the two–loop coefficient contributes to βay with the same sign as the one–
loop coefficient and increases the rate of change of ay as a function of µ.
If, on the other hand aλ < (1 +

√
3/2 )ay, then b(2)

ay < 0, so b(2)
ay contributes

to βay with a sign opposite to that of b(1)
ay . In this case, it is possible for βay

to vanish at the two–loop level. The condition for this to happen is that
either ay = 0 for some µ or (suppressing the argument, µ) that

5ay + 6(−a2
y − 4ayaλ + 2a2

λ) = 0 . (5.12)

Solving this equation for ay yields the physical solution

ay =
5

12
− 2aλ +

1
12

√
864a2

λ − 240aλ + 25 . (5.13)

(The polynomial in the square root is positive-definite.) Equivalently,
solving Equation (5.12) for aλ yields

aλ = ay +
1
6

√
3ay(18ay − 5) , (5.14)
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which is physical if ay ≥ 5/18, i.e., y ≥ (4π/3)
√

5/2 = 6.623. Evidently,
this zero of βay,2` is only possible for such large values of y that one
must anticipate significant corrections from higher-loop terms in βay . In
passing, we note that the other solution of Equation (5.12) for λ with a
minus sign in front of the square root is unphysical, since it can lead to a
negative λ. (As noted before, we do not attempt to consider a metastable
situation with a negative λ of small magnitude.) Also, the other solution
of Equation (5.12) for ay with a minus sign in front of the square root in
Equation (5.13) is unphysical because it can lead to a value of ay < 5/18.
Setting ay = 5/18 in Equation (5.14) yields aλ = ay = 5/18, and similarly,
setting aλ = 5/18 in Equation (5.13) yields ay = aλ = 5/18.

We next remark on some properties of βaλ . We find that

b(1)
aλ = 0 if aλ =

(
√

13 − 1)
12

ay = 0.21713ay (5.15)

and

b(1)
aλ > 0 if aλ >

(
√

13 − 1)
12

ay , (5.16)

or equivalently, ay < (1 +
√

13 )aλ = 4.60555aλ. The condition that b(2)
aλ = 0

is a cubic equation in aλ and separately a cubic equation in ay. We find
that if ay = (1 +

√
13 )aλ, such that b(1)

λ = 0, then

b(2)
aλ =

2(13 + 55
√

13)
(4π)6 λ3 = (1.073 × 10−4)λ3 , (5.17)

which is clearly positive.
In the special case where ay = 0, we find that if we consider βaλ,2`, a

non-trivial fixed point appears at

a∗λ =
1

13
= 0.076923 . (5.18)

This fixed point is repulsive in the ay-direction, since for lower values of
aλ (while keeping ay = 0), b(1)

aλ drives the flow down, and for higher, b(2)
aλ

drives it up.
We next give some illustrative numerical evaluations. Let us consider

that the theory is such that at some reference scale µ0, y(µ0) and λ(µ0)
have the values y(µ0) = 1 and λ(µ0) = 1. If one were to consider turning
on gauge fields (and adding quarks so that this theory is free of gauge
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anomalies), then these would be rather large physical values of these
couplings. For reference, considering only the third generation in the
standard model and using the relation for a fermion mass in terms of the
Yukawa coupling and the Higgs vacuum expectation value, 〈φ〉0, namely

y f 〈φ〉0 = y f
v
√

2
= m f , (5.19)

where v = 246 GeV, one has the rough values yτ ' 1 × 10−2, yb ' 2 × 10−2,
and yt ' 1. Further, using the relation for the Higgs boson mass mH in
the standard model, namely,

mH = (2λ)1/2v (5.20)

one has λ(µ) = 0.13 at µ = mH = 126 GeV, as noted above. So the
illustrative reference values y(µ0) = λ(µ0) = 1 that we have taken may be
considered to be reasonably large. Nevertheless, the variables that enter
in the beta functions are then rather small because they involve a factor
of 1/(4π2); ay(µ) = λ(µ) = 1/(4π)2 = 0.6333 × 10−2. In the beta function
βay , the one–loop term b(1)

ay = 2.005 × 10−4, and the two–loop term term
b(2)

ay = −0.4571 × 10−5, so that the ratio of the two–loop to one–loop terms
is

y = λ = 1 ⇒
b(2)

ay

b(1)
ay

= −0.02280 . (5.21)

In the beta function βaλ , the one–loop term b(1)
aλ = 1.043 × 10−3 and the

two–loop b(2)
aλ = −0.89135 × 10−4, such that

y = λ = 1 ⇒
b(2)

aλ

b(1)
aλ

= −0.0855 . (5.22)

We also note the values of the one–loop and two–loop beta functions for
ay and aλ:

y = λ = 1 ⇒
βay,1`

βaλ,1`
=

b(1)
ay

b(1)
aλ

= 0.1923 (5.23)

and

y = λ = 1 ⇒
βay,2`

βaλ,2`
=

b(1)
ay + b(2)

ay

b(1)
aλ + b(2)

aλ

= 0.2055 (5.24)
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Thus, for this illustrative case with y(µ0) = λ(µ0) = 1, the two–loop term in
βay makes only a small contribution relative to the one–loop term, so that
the perturbative expansion for βay is reasonably reliable to this two–loop
order, and similarly for βaλ .

5.3.3 RG Flows

To study the RG flows in this model, we begin by finding the fixed points,
that is the solutions to the simultaneous conditions βay,n` = 0, βaλ,k` = 0
for the values of loop orders (n, k) that we consider. We first note that the
IR-free (trivial) fixed point

a∗y = 0, a∗λ = 0 , (5.25)

is a solution to the beta functions for any of our (n, k) cases. Beyond
this IR-free fixed point, we find that the choice of loop order (n, k) in the
beta functions is quite important for the appearance and location of fixed
points. From Equations (5.7)-(5.10), we calculate the fixed point to be as
follows:

case (1, 1) ⇒ no nonzero fixed points. (5.26)

case (1, 2) ⇒ a∗y = 0, a∗λ =
1

13
= 0.07692. (5.27)

case (2, 1)⇒ a∗y =
5

318
(13
√

13 − 17) = 0.4697,

a∗λ =
5

638
(31 − 5

√

13) = 0.1020 .
(5.28)

case (2, 2) ⇒ two fixed points :

a∗y = 0, a∗λ =
1

13
= 0.07692 and (5.29)

a∗y = 0.4104, a∗λ = 0.1247 . (5.30)

The presence of a fixed point for such a low value of aλ as 1/13 means
that only a very small region of coupling space is independent of the
choice of (n, k). In Figure 5.1, we see that the flows change character
based on (n, k) when both ay and aλ are larger than approximately 0.04. In
this and the other figures, our convention is to start the analysis at a high
value of µ in the UV, integrate the renormalization group equations for ay
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Figure 5.1: The renormalization group flows for the SU(2) ⊗ U(1) model
with 0 < ay < 1/(4π) and 0 < aλ < 1/(4π). In this and the other figures,
the arrows for the flows point in the direction from the UV to the IR. The
white square region is where 0 < ay < 0.04 and 0 < aλ < 0.04, and the
gray region occupies the rest of the plot. The figures correspond to the
following different choices of loop order in the beta functions: (1,1) (upper
left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right). The red
flows for the cases (1,2) and (2,2) originate along the eigendirections of
the fixed points.

and aλ, and follow the flow from the UV to the IR, and this is indicated by
the direction of the arrows. Note, in particular, that the plots where the
two–loop term b(2)

aλ is included in βaλ have, in the upper-right hand area,
concave flows towards the trivial fixed point, whereas the ones where it
is not have convex flows towards the same in this region.
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Figure 5.2: The renormalization group flows for the SU(2) ⊗ U(1) model
with 0 < ay < 0.5 and −0.1 < aλ < 0.5. The white region is where
0 < ay < 0.04 and 0 < |aλ| < 0.04; the light gray region is where
0.04 < ay < 0.2 and 0.04 < |aλ| < 0.2; and the dark gray region occupies
the rest of the figure. The figures correspond to the following different
choices of loop order in the beta functions: (1,1) (upper left); (1,2) (upper
right); (2,1) (lower left); and (2,2) (lower right). The green flows are the
stable manifolds in coupling constant space which bound the basins of
attraction of the fixed point at the origin. The red flows in (1,2), (2,1) and
(2,2) originate along the eigendirections of the fixed points.

If we let ay and aλ increase beyond 1/(4π), changes appear quite rapidly
(see Figure 5.2), which means that one cannot trust the perturbative anal-
ysis to these orders in this region of couplings. With this caveat in mind,
we shall proceed to describe the RG flows. The first striking difference
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is that if the two–loop term β(2)
aλ in the beta function βaλ is included, then

the flow ending in the partially attractive fixed point at a∗y = 0, a∗λ = 1/13
is a separatrix which divides a region where the flows end in the trivial
fixed point at the origin, from one where they increase to large values
of aλ. The plots in this and the other figures were generated using the
Mathematica StreamPlot routine. (Because the integration routine can
lose some numerical accuracy when the beta functions approach zero
near fixed points, it does not show arrows and associated RG flows very
close to these fixed points.)

The second is that including the two–loop term in the Yukawa beta
function produces a fixed point where neither of the couplings is zero.
However, the impact that this has on the flow is very different in the (2,1)
and (2,2) cases. In the (2,1) case, the fixed point is partially attractive, and
the flow that reaches it from above forms a separatrix, separating a region
where the flows end at the origin from a region where they move toward
larger values of ay in the IR. In the (2,2) case, the fixed point is totally
repulsive, and the dominant term in the beta functions is the a3

λ term in
equation (5.10). This term drives every flow, above the one originating
in the eigendirection of positive ay from the fixed point (marked in red
on Figure 5.2), towards larger aλ in the IR, which in turn means that the
dominant term in βay,2` will eventually be the aya2

λ term, which drives
ay → 0 in the IR.

For the (2,2) flows that originate at the totally repulsive fixed point
and go in the direction of negative aλ, there is a delicate balance between
terms driving them towards the origin and terms driving them towards
highly negative aλ in the IR. This balance is manifested in the stable
manifold (marked in green on Figure 5.2) which separates the regions of
convergence to the origin and flow to (unphysical) negative values.

5.4 SU(N) ⊗ SU(N f ) ⊗U(1) Model

5.4.1 Field Content, Symmetry Group, and LNN Limit

In this section, we study a model that is a two-fold generalization of the
model in the previous section. First, we construct the model so that it is
invariant under a global symmetry group

G = SU(N) ⊗ SU(N f ) ⊗U(1) , (5.31)

rather than the SU(2)⊗U(1) group of the previous model. We include an
N f -fold replication of the left-handed and right-handed fermions. The
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fermion content consists of (i)ψa
j,L, transforming as a (�,�) representation

of SU(N)⊗ SU(N f ), where a is an SU(N) group index taking on the values
a = 1, ...,N, and j is a flavor index, taking on the values j = 1, ...,N f ;
and (ii) χ j,R, with j = 1, ...,N f , transforming as a (1,�) representation of
SU(N) ⊗ SU(N f ). The model also has a scalar field φa transforming as a
(�, 1) representation of SU(N)⊗SU(N f ). The hypercharges are again taken
to be nonzero and to satisfy the conditions that Yψ , Yχ and Equation
(5.1). The transformations of ψa

j,L and χ j,R under SU(N f ) are

ψa
j,L →

N f∑
k=1

U jkψ
a
k,L , χ j,R →

N f∑
k=1

U jkχk,R (5.32)

where U ∈ SU(N f ).
The Lagrangian of this model is

L =

N f∑
j=1

[
ψ̄ j,Li/∂ψ j,L + χ̄ j,Ri/∂χ j,R

]
− y

N f∑
j=1

[ψ̄ j,Lχ j,Rφ + h.c.]

+ ∂µφ
† ∂µφ − µ2

φφ
†φ − λ(φ†φ)2 , (5.33)

where we have suppressed SU(N) indices in the notation. The SU(N) ⊗
U(1) symmetry forbids the fermion bilinears ψa T

j,L Cψb
k,L, χT

j,RCχk,R, and
ψ̄a, j,Lχk,R, so the fermions are massless. Our requirement of SU(N f ) in-
variance restricts the Yukawa coupling to the form given in Equation
(5.33). As before, we allow either sign of µ2

φ and impose the condition
that |µφ| be negligibly small relative to the range of µ over which we
calculate the RG flows (see also the end of Section 5.2).

One of the motivations for this generalization is that it enables us to
take the combined limit

N→∞ , N f →∞ with r ≡
N f

N
fixed, and

y→ 0 , λ→ 0 with

āy =
yN

(4π)2 , āλ =
λN

(4π)2 finite.

(5.34)

We will use the symbol limLNN for this limit3, where “LNN” stands for
“large N and N f .”

3Note that this limit is equivalent with what we referred to as the Veneziano limit in
Section 3.4.
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5.4.2 Beta Functions

To simplify the analysis, we take the LNN limit (5.34). In this limit, from
[66, 67, 71, 99, 172–175] (see also [93, 95, 96, 101]) we find

b(1)
āy

= (1 + 2r)ā2
y (5.35)

b(2)
āy

= −3rā3
y (5.36)

b(1)
āλ = 2(2ā2

λ + 2rāyāλ − rā2
y) (5.37)

and

b(2)
āλ = rāy(−8ā2

λ − 3āyāλ + 2ā2
y) . (5.38)

We remark on some general properties of these terms. First, because
βāy has an overall factor of āy, it follows that the flow in āy can never
take āy through zero to negative values of āy. For y , 0, the one–loop
term in βāy , namely b(1)

āy
, is positive-definite and independent of āλ. Hence,

provided that the initial values of y and λ at the starting point of the
integration are such that one can apply these perturbative calculations,
āy decreases toward zero as µ decreases from the UV to the IR. Since for
y , 0, the two–loop term, b(2)

āy
, is negative, it follows that the full two–loop

beta function, βāy,2` = ā2
y[(1 + 2r) − 3rāy] has a zero, which occurs at

ā∗y =
1 + 2r

3r
, (5.39)

independently of āλ. For weaker Yukawa couplings, i.e., āy < ā∗y, βāy,2` > 0,
so the UV to IR flow is to still weaker Yukawa couplings, while for āy > ā∗y,
βāy,2` < 0, so that the direction of the UV to IR flow is to larger āy. Note
that as r decreases toward 0, ā∗y gets sufficiently large that we cannot trust
the perturbative calculations, so this discussion is restricted to moderate
values of r. These results are shown in Figure 5.3. For the range of r
shown in Figure 5.3, ā∗y ∼ 1. As is evident from Equation (5.39), as r→∞,
āy approaches the limit 2/3 from above.

We next discuss the one–loop and two–loop terms in βāλ . The analysis
here is more complicated than that for βāy , because whereas the one–loop
and two–loop terms in βāy depended only on āy, the one–loop and two–
loop terms in βāλ depend on both āλ and āy. We find that the one–loop
term b(1)

āλ is positive (negative) if āλ is larger (smaller) than the value

āλ =
1
2

[
− r +

√
r(r + 2)

]
āy (5.40)
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Figure 5.3: The fixed point values of (i) āy, denoted as ā∗y and shown as the
red, dot-dashed curve, and (ii) āλ, denoted as ā∗λ and shown as the green
solid curve for the case (2,1) and green dashed curve for the (2,2) case,
plotted as functions of r = N f/N (with the LNN limit understood). The
curve for ā∗y is the same for the (2,1) and (2,2) cases, since, as discussed
in the text, βāy is independent of āλ to two–loop order. The curves with
āλ negative are only formal, since the theory is unstable for āλ < 0, i.e.,
λ < 0.

and zero if the equality in Equation (5.40) holds. The condition in Equa-
tion (5.40) is equivalent to āy = [1 +

√
1 + (2/r) ]āλ. The solution for āλ

in Equation (5.40) is one of the two solutions of the quadratic equation
b(1)

āλ = 0; the solution with the minus sign in front of the square root is un-
physical because it leads to a negative λ, and similarly in the equivalent
solution for āy, the other root with the minus sign in front of the square
root is unphysical. The fact that b(1)

āλ > 0 for āλ larger than the value on
the right-hand side of Equation (5.40) means that if the initial value of āλ
satisfies this condition, then along the RG flow from the UV to the IR, āλ
decreases, and similarly, if the initial value of āλ is smaller than the value
on the right-hand side of Equation (5.40), then āλ increases along the RG
flow from the UV to IR.

We come next to the two–loop term in βāλ , namely b(2)
āλ . Because this

factorizes into a linear times a quadratic factor in the LNN limit that
we consider here, it is somewhat simpler to analyze than b(2)

aλ for the
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SU(2) ⊗ U(1) model. We find that b(2)
āλ is negative (positive) if āλ is larger

(smaller) than the value

āλ =
1

16
(−3 +

√

73 ) āy = 0.34650āy . (5.41)

(The solution of the quadratic with the opposite sign in front of the square
root is unphysical, since it renders λ negative.) The two–loop term b(2)

āλ
vanishes if āy = 0 or if the condition in Equation (5.41) is satisfied. Thus,
for large āλ relative to āy, at least to the extent that our perturbative
calculations still apply, we thus find that the one–loop and two–loop terms
in the βāλ,2` have the opposite signs; b(1)

āλ > 0, while b(2)
āλ < 0. Similarly, for

sufficiently small āλ relative to āy, these terms again have opposite signs;
b(1)

āλ < 0, while b(2)
āλ > 0. It is thus plausible that the full two–loop βāλ,2`

would have a zero, where these terms cancel each other.
In Figure 5.3 we show our solutions for the value of the fixed point

in the variable āλ as a function of r. (Here and elsewhere, it is implicitly
understood that the LNN limit has been taken.) The value of r determines
the value of the fixed point in āy, the existence or non-existence of a fixed
point in āλ, and, in the former case, its value. The solutions that yield
a fixed point ā∗λ at negative values are only formal, since the theory is
unstable for āλ < 0, i.e., λ < 0. If āλ is negative but |āλ| is sufficiently small,
the theory may be metastable, but considerations of metastability and
estimates of tunneling times are beyond the scope of our present analysis
(see instead Section 4.4 for that analysis within the context of the standard
model). Thus, as regards āλ, there is only a single physical fixed point,
ā∗λ, and the calculation for the (2,1) case yields a value of ā∗λ ' 0.5 in the
range of r shown, for which perturbation theory may be reliable down to
r ' 0.2. As r→∞, this curve for ā∗λ approaches the limit 1/3. For the (2,2)
case, if r < 1, there is also only one physical (positive) fixed point, ā∗λ, but
its value grows more rapidly as r decreases, so we anticipate significant
corrections to the two–loop perturbative result already for r decreasing
below r ' 0.4. In the narrow interval of r between r = 1 and the value

r(2,2)
merger =

31 + 12
√

3
46

= 1.12575 , (5.42)

there are two physical fixed points for āλ. We shall refer to these as the
upper and lower fixed points. As r increases through the value r(2,2)

merger, the
upper and lower fixed points in āλ merge and disappear. This is exactly
the point where the solution to the equation βāy,2` = βāλ,2` = 0 becomes
complex.
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5.4.3 RG Flows

Here we present the results of our integration of the beta functions cal-
culated to various loop orders. In Figure 5.4, we plot the RG flows for
r = 0.5 and

āy <
1

4π
, āλ <

1
4π

, i.e.,
y2N
4π

< 1 ,
λN
4π

< 1 . (5.43)

We find that for this value of r and range of āy and āλ, the theory has only
the IR fixed point at the IR-free point

(ā∗y, ā
∗

λ) = (0, 0) . (5.44)

This can be understood as a result of the fact that the one–loop expression
for βay , namely, βay,1`, is positive and independent of aλ, so as µ decreases
from the UV to the IR, āy always decreases. Although the one–loop result
for βāλ , namely βāλ,1`, could initially be negative if the initial value of āy is
such that āy > (1 +

√
13 )āλ, as discussed above, βāλ,1` will eventually pass

through zero and become positive as āy decreases through this zero, and
as the flow continues toward the IR thereafter, βāλ,1` will remain positive.
This causes āλ to vanish in the IR.

These results also provide an answer to a question that we posed at
the beginning, namely how robust the perturbative calculation of the RG
flows are to the inclusion of higher-loop terms in the beta function. For
this range (5.43) of āy and āλ, all four cases (1,1), (1,2), (2,1), and (2,2) yield
qualitatively similar flows. This serves as a strong indication that for this
range (5.43), our perturbative calculations are reliable.

Next, we increase r from 0.5 to 1.1. The results are shown in Figure
5.5. We reach the same qualitative conclusions for this case r = 1.1 as for
r = 0.5.

We then study a larger range of āy and āλ, namely 0 < āy < 1.5 and
0 < āλ < 1.5. We show the RG flows for r = 0.5 and r = 1.1 in Figs. 5.6
and 5.7.

For reference, in these plots we distinguish three regions: (i) a white
square region where 0 < āy < 1/(4π) and 0 < āλ < 1/(4π); (ii) a light gray
region where 1/(4π) < āy < 1 and 1/(4π) < āλ < 1

(
1/(4π) < āy < 0.75

and 1/(4π) < āλ < 0.75 in Figure 5.7
)
; and (iii) a dark gray region where

1 < āy < 1.5 and 1 < āλ < 1.5
(
0.75 < āy < 1.5 and 0.75 < āλ < 1.5 in

Figure 5.7
)
. In the case where r = 0.5 (Figure 5.6), the four light gray

regions are still quite similar, but now the inclusion of the two–loop term
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Figure 5.4: The renormalization group flows for r = 0.5 with
0 < āy < 1/(4π) and 0 < āλ < 1/(4π). The figures correspond to the fol-
lowing choices of inclusion of different-loop terms in the beta functions:
upper left: (1,1); upper right: (1,2); lower left: (2,1); lower right: (2,2). The
red flows in the (2,1) and (2,2) cases originate along the eigendirection of
the upper fixed point (see Figure 5.3).

in βāλ has a significant effect. In the left-hand plots where this term is not
included, we note that the flows that reach the fixed points seem to be
attracted to a central flow, which, in the (2,1) (lower left) plot is identified
with the one flowing in the eigendirection from the upper fixed point. In
the right-hand plots that include the two–loop term in βāλ , this behavior
is reversed for relatively large values of āy, and they are instead repulsed
by this line. In (1,1) and (2,1) cases, the RG flows in the light gray region
where āy < 1 and āλ < 1, look similar to the flows in the white square
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Figure 5.5: The renormalization group flows for r = 1.1 with
0 < āy < 1/(4π) and 0 < āλ < 1/(4π). The figures correspond to the follow-
ing choice of inclusion of different loop-order terms in the beta functions:
upper left: (1,1); upper right: (1,2); lower left: (2,1); lower right: (2,2). The
red flows in the (2,1) and (2,2) cases originate along the eigendirection of
the upper fixed point (see Figure 5.3).

region where āy < 1/(4π) and āλ < 1/(4π).
The largest changes in the flows occur in the dark gray area where

āy and āλ are largest. When considering this region, it is important to
recall that this is where we expect perturbation theory to break down,
partly because higher-order terms in the beta functions are of comparable
size compared with lower-order terms, and partly because completely
nonperturbative effects such as fermion condensates can appear for such
strong values of the couplings. However, continuing in the context of
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Figure 5.6: The renormalization group flows for r = 0.5 with 0 < āy < 1.5
and 0 < āλ < 1.5. The white square region is where 0 < āy < 1/(4π)
and 0 < āλ < 1/(4π); the light gray region is where 1/(4π) < āy < 1 and
1/(4π) < āλ < 1; and the dark gray region occupies the rest of the plot.
The figures correspond to the following choices of inclusion of different
loop-order terms in the beta functions: (1,1) (upper left); (1,2) (upper
right); (2,1) (lower left); and (2,2) (lower right). The red flows in (2,1) and
(2,2) originate along the eigendirections of the fixed points.

the perturbative analysis, we see that fixed points appear in the (2,1) and
(2,2) plots, and correspondingly the flows are changed by their presence.

The inclusion of the two–loop term in βāλ fundamentally changes the
nature of the fixed points. In the (2,1) plot, we see that the non-trivial
fixed point is attractive along the vertical direction, and repulsive along
the approximately horizontal direction, but the fixed point in the (2,2) case
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Figure 5.7: The renormalization group flows for r = 1.1 with 0 < āy < 1.5
and 0 < āλ < 1.5. The white square region is where 0 < āy < 1/(4π) and
0 < āλ < 1/(4π); the light gray region is were 1/(4π) < āy < 0.75 and
1/(4π) < āλ < 0.75; and the dark gray occupies the rest of the plot. The
figures correspond to the following choices of inclusion of different loop-
order terms in the beta functions: (1,1) (upper left); (1,2) (upper right);
(2,1) (lower left); and (2,2) (lower right). The red flows in (2,1) and (2,2)
originate along the eigendirections of the fixed points.

occurs at a roughly similar position, it is now repulsive in all directions.
In Figure 5.7, we note that (1,1), (1,2), and (2,1) plots are similar to

those in Figure 5.6, except that the fixed point in the (2,1) plot now occurs
at a value of āy < 1. However, in the (2,2) plot, the flows are very
different. Most dramatically, the lower fixed point (see Figure 5.3) has
become positive, and is very close to merging with the upper one.
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Thus, our comparative calculations of RG flows for these (1,1), (1,2),
(2,1), and (2,2) cases in this model show that a perturbative calculation
of the RG flows and fixed points is reasonably reliable for the region
0 < āy ∼

< 1/(4π) and 0 < āλ ∼< 1/(4π) but is unreliable when these variables
increase to sizes of order 1 or greater.





Conclusion

Quantum field theory is a very large subject which can be realized in
a myriad of different ways. For the purpose of describing Nature, all
experimental evidence points to the standard model of particle physics,
a non-supersymmetric four dimensional gauge-Yukawa theory. In this
thesis, we have elucidated several aspects of this subject in a general
manner and applied some of them to the standard model itself, leading
to modified predictions for its very high energy behavior.

The early part of our work was devoted to introducing not only the
framework of gauge-Yukawa theory, but also the two example models
that are used in the majority of this thesis. These are the standard model,
where we put a special emphasis on several aspects of the Higgs field and
its associated particle. With the basic setup established, we proceeded
to describe the concept of renormalization in quantum field theory, with
an emphasis the importance of renormalization group flows and the beta
function.

This allowed us to discuss a new method for making calculations in
any particular gauge-Yukawa theory. Much previous work has been done
to establish an expansive literature of calculations done in completely
general gauge-Yukawa theories, in particular the beta functions have
been computed up to three loops in the gauge coupling, and two loops in
the Yukawa and quartic couplings. Our work provides a straightforward
procedure for applying these formulas to any particular theory. This
should be especially helpful for beyond the standard model theories
where a complicated new physics sector is often present.

We then proceeded to discuss one of the deepest issues of current stud-
ies of quantum field theory. The conjectured a theorem in its strong form
stipulates that there should exist a function which is monotonic along
renormalization group flows. If true, this would immediately ensure
that the renormalization group flows are also irreversible and would put
strong constraints on what is possible to achieve within the framework of
quantum field theory. In its weak form, it merely states that there exists
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a function which is always larger at a high energy fixed point than at a
low energy one. We showed that the weak form holds true in a specific
theory, even in a case where none of the fixed points under consideration
were Gaussian in nature.

However, the most important lesson that we drew from our study of
the a theorem came from its relation to the Weyl consistency conditions.
These imply a set of highly non-trivial relations between the beta func-
tions of a theory with multiple couplings, such as the standard model
which features three gauge couplings, a top quark Yukawa coupling (and
several other subleading ones), and a quartic scalar self-interaction. In
order to satisfy these conditions at lowest order, the beta functions of
such a theory must be run at three loops in the gauge coupling, two in
the Yukawa and one in the quartic.

Using these conditions, we went on to explore the stability of the
standard model vacuum, and found that the Weyl consistency conditions
imply that the standard model is less stable than the naı̈ve running of
three loops in each beta function would have led us to believe.

Partly inspired by the discovery of the implications of the Weyl consis-
tency conditions, we moved on to perform a study of the renormalization
group flow within a simple ungauged Yukawa theory. Our procedure
was to study how the renormalization group flowed as we changed the
number of loops to which the beta function under consideration is calcu-
lated. We found that this can have very significant implications, and thus
that having definite conditions that dictate the orders we should consider
is very helpful.
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A
Trace anomaly diagrams

The structure of the coupling space metric (3.22) and one–form (3.23)
entering in the trace anomaly can be determined by looking at vacuum
polarisation diagrams containing in addition to the usual vertices of the
quantum field theory the following counterterms:

βg

g ∼
βαg

αg
βg ∼

βαg

α1/2
g

gβg ∼ βαg

βg ∼
βαg

α1/2
g

βy ∼
βαy

α1/2
y

βλ ∼ βαλ

The terms entering the metric (3.22) are the ones proportional to two
powers of the beta functions while the ones with one power of βi fix the
one form w (3.23). All the vacuum polarisation diagrams up to three–loop
order as well as the form of their contribution are shown in Table A.1.
Note that more diagrams would be present if the scalar field were charged
under the gauge group.
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Diagrams Contributions to χ Contributions to w

β2
αg

α2
g

βαg

αg

β2
αg

αg
βαg

β2
αy

αy
βαy

· · ·

β2
αg

αgβαg

β2
αy

αyβαy

β2
αg

αg
αy,

β2
αy

αy
αg, βαgβαy αyβαg , αgβαy

β2
αλ

αλβαλ

Table A.1: One, two and three–loop vacuum polarisation diagrams en-
tering the computation of the metric (3.22) and the one–form (3.23).
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