
* Fermi National Accelerator Laboratory

FERMILAB-Pub-87/145

A VME to FASTBUS Interface Using a Finite State
Machine Coprocessor*

Dr. Leif Gustafsson
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September 18, 1987

*Submitted to Computer Standards and Interfaces

waled by Unlversitles Research Association Inc. under confracf with the United Stales Department of Energy

A WE to FASTBUS Interface using a
Finite State Machine Coprocessor. *

Dr. Leif Gustafsson
Fermi National Accelerator Laboratory **
P.O.BOX 500
Batavia, Illinois 60510

September 18, 1987
16:52:57

* This work has in part been done at CERN Ceneva,Switzerland.

** Operated by Universities Research Association for the Department of
Energy.

Page 2

Abstract

A VME to FASTBUS master interface is described. This interface executes
FASTBUS instructions set up by a master on the VME segment. The
instructions are decoded using finite state machines that run the FASTBUS
master protocol and drives a FASTBUS cable segment. Al I interna I data
and control paths are implemented using TTL level circuitry. Data is
internaly buffered by a 64 Kb memory,
32 bit word is possible to achieve.

and a transfer speed of 100 ns per

Keywords: Cable Segment, Coprocessor,
Interface, PILS,

FASTBUS, Finite State Machine,
Programmable Logic Device, Protocol, VME.

1. Introduction

In order to test a FASTBUS master interface that can easily be driven
from different bus systems as a coprocessor, we have developed two VME
modules that house a VME slave interface,
manor i es and drivers

interrupter, registers,
needed to run a FASTBUS cable segment.

DMA,
The main

blocks are shown in figure 1 and 2.

A high level FASTBUS operation can be handled directly as an instruction
with parameters. This operation is loaded from VME into dedicated
registers [l] . On a start signal asserted in the WE control register, a
set of finite state machines (FSM) decode the instruction. These FSMs
are implemented using programnable logic devices (PLD), for example the
16L8 and 2OL8 PAL circuits.

The FSM handling the data transfers is running the handshaking protocol
defined in the FASTBUS specification [2]. A pipeline register,between an
internal 64 Kb memory and the FASTBUS segment,
transfer speed of 100 ns per 32 bit word.

makes possible a block
On the completion of a FASTBUS

operation, either polling or a vectored interrupt can be used to signal
the VME master.

2. The VME interface

All registers in the interface are seen as 32 bit words, separated in two
sets by a buffer that is disabled when a start bit (GO) is asserted in
the control register, see table 1. A VME master can always read and
write to the control register. The registers that are locked from the
WE side on a start signal comprises FASTBUS status, DMA control, address
and word count, parameters, instruction and arbitration level. The
internal formats of the VME control and FASTBUS status registers are seen
in table 2.

The VME port can transfer either 16 or 32 bit words, handled by a finite
state math i ne as seen in figure 3. On a valid internal address and VME
data strobe (IDS), the port is timed by two signals, READY1 and READY2.
These signals
register.

show that data has been clocked into and out of a port
The VME master using the interface is acknowledged through the

signa I DTACK- [3] . A new cycle on the port can only start if the valid
address and data strobe are momentarily disasserted by the VME master.

Page 3

2.1. The DMA

The DMA comprises two Am2940 circuits giving a 16 bit address register
and a 16 bit word counter, which makes it possible to use up to 256 Kb of
memory as an internal data buffer. An external address register has been
added in order to get an address pipeline. The address and data lines
(ADO-AD31) to the FASTBUS segment are also pipelined through a register,
mak i ng it possible to cover some of the transfer time during a block
transfer. The DMA is presently using a 64 Kb buffer memory.

2.2. The parameter registers

The parameter registers are implemented as a fast register file using
four AS870 circuits.
registers are used.

In the present version of the interface, only two

secondary
These registers are for the FASTBUS primary and

addresses. The remaining eight registers can be used if a VME
master or a FASTBUS instruction pipeline is implemented in the future.

2.3. The interrupt logic

The interrupter part of the interrupt logic is shown in figure 4. If the
POLL bit in the VME control register is asserted or the FASTBUS master
coprocessor is not in the status interrupt state, activating a master
release signal (MRl-), the interrupt acknowledge out signal (IACKOUT-) is
passed on. If the POLL bit is disasserted when MRl’ is active and no
interrupt acknowledge in signal (IACKIN-) is coming from the interrupt
handler, an interrupt level (IRQX-) is asserted on VME. If a match is
found with the interrupt vector address sent by the interrupt handler,
the valid interrupt register
(ENVECT-) .

is opened by the enable vector signal
As the address strobe (AS’) is disactivated by the interrupt

handler a service request end signal (SREND-) is issued. This signal
takes the FASTBUS master coprocessor to its idle state. If no match is
found, IACKOUT’ is passed on. When the present
ended,

interrupt cycle has
a new cycle is directly started until a match is found [4]. The

present implementation of the interrupt logic uses two PLDs as shown in
figure 5.

2.4. The Instruction and Arbitration level registers

The instruction and arbitration level registers are located on the second
board. The function of the bits in the instruction register is seen in
table 3.
is

In the arbitration level register (FASTBUS CSR#S) the priority
set for the interface when participating in a FASTBUS arbitration

cycle.

3. The FASTBUS interface

When the start signal is asserted in the control register the interface
is running autonomously using seven state machines, see figure 6. The
state machines can be categorized as arbitration supervisor arbitration
machine, primary address supervisor, primary address machine, secondary
address and data cycle supervisor, data cycle machine and data transfer
machine.

Page

3.1. The arbitration supervisor

The arbitration supervisor is started by asserting the GO bit in the VME
contra I register, see figure 7. The INAR bit in the FASTBUS instruction
register indicates whether an arbitration is required. If arbitration is
not required and we are already the current FASTBUS master, control
passes directly onto the primary address supervisor by asserting the
signal STARTl. If arbitration is required and there is no internal GK
signal (ICK) set, a SETAR signal is asserted which starts the arbitration
machine and an arbitration timer. When FASTBUS mastership is granted,
the primary address supervisor is started.

Should an error occur during the arbitration process, the error is
encoded in a status encoder PLD and clocked into the FASTBUS status
register by the state asserting the master release 1 signal (MRl).
Before returning to the idle state, either polling or a vectored
interrupt is used to signal the VBE master that the operation has
finished. When the vectored interrupt mechanism is used, the return to
the idle state is governed by the SREND- signal generated by the
interrupter logic. If no vectored interrupts are required, the POLL bit
should be asserted in the VME control register.

3.2. The arbitration machine

The arbitration is implemented following the assured access protocol as
described in the FASTBUS specification [2]. The state machine version is
shown in figure 8. When the SETAR signal is asserted and the arbitration
inhibit signal (AI) from the ancillary logic is not asserted, an internal
arbitration request (IAR) is generated. Arbitration is started when an
arbitration grant signal (AC) is asserted by the FASTBUS arbitration and
timing controller (ATC).
compa r i son

During the arbitration process a continuous
of arbitration levels proceeds until AC is disasserted. If

the master containing the arbitration machine is the winner of the
arbitration cycle the arbitration logic asserts ISMINE and the
arbitration machine asserts ICK. The GK signal is only disasserted if a
release GK signal (RELGK) in the instruction register and the MRl signal
are set. Figure g details the actual hardware implementation. It is
important that the vector comparison is done within the time limits set
up by the FASTBUS specification.
delay not exceeding 15 ns [5] .

If TTL PLDs are used, they must have a

3.3. The primary address supervisor

Before starting the primary address machine, it is necessary to verify if
certain criteria are fulfilled. Figure 10 shows the different criteria
used by the primary address supervisor.
signal (PRIM) is

If the primary address cycle
asserted in the instruction register, a check is done

for the address strobe (AS) and address acknowledge (AK) signals. This
condition is called an AS/AK lock. If no lock exists, PRIAC is generated
which enables the primary address register and starts the primary address
machine.
machine,

Two status conditions may be signalled by the primary address
AK timeout (AKTD) and a slave status (SS) greater then zero.

If the AS/AK lock is established without errors, the supervisor machine
for the secondary address is started. If the user has specified that no

Page 5

primary address cycle should occur, the operation will only proceed if an
AS/AK lock already exists.

3.4. The primary address machine

The primary address machine is started on the assertion of a delayed
PRIAC signal (DPRIAC) from the primary address supervisor, see figure 11.
The primary address from the primary address register is clocked (CLKRl)
in to the pipeline register, described above. The MS code bits from the
instruction register are enabled directly out onto the FASTBUS segment.
After a delay time compensating for the pipeline register internal delay,
an internal address strobe signal (IAS) is generated and an AK timer is
started. On AK timeout, a status signal ERR5 is asserted. When AK is
returned by the FASTBUS slave the SS lines are checked. If SS is equal
to zero, the primary address transfer machine retains AS until a release
AS (RELAS) and a master ready signal (MRl) are asserted.

3.5. The secondary address and data cycle supervisor

The supervisor machinery starts on a signal START2 from the primary
address supervisor, see figure 12. The supervisor will abort if either
;LE~~I;T;; strobe (DS) or data acknowledge (DK) signals are already

. If the user has requested a secondary address cycle (SEC), the
content of the secondary address register is enabled and the data cycle
machine is started.
special master status

A secondary address cycle is a data cycle with a
code (MS=2). The secondary address cycle is

terminated if there is a DK timeout (DKTO) or SS is greater then zero.

Following a successfully completed secondary address operation and if the
user has requested data cycles (DATC), the data transfer machinery is
started (START3) and the FASTBUS operation proceeds as in
address cycle. The secondary

the secondary
address and data cycle supervisor then

‘loops” waiting for the data cycle to complete. Upon completion, it
returns to the idle state which allows the primary address supervisor to
return in turn to it’s idle state.
becomes idle.

Finally, the arbitration supervisor

3.6. The data cycle machinery

Compared with other bus protocols,
treatment of block transfers.

the FASTBUS protocol is unique in its
A data word can be transferred on each

edge of DS. In order to be able to use our FSM design in other bus
systems, we have decided to split the data protocol into two state
machines, the data cycle machine and data transfer machine, where the
latter handles the special FASTBUS protocol [2].

The data cycle machine is shown in figure 13. The machine can run in
both reading and writing mode using the FASTBUS read signal RD as
steering signal for input and output functions. In the FASTBUS read
mode, the machine works as follows.

When the START3 signal is asserted by the supervisory machine, the data
cycle machine ensures that the transfer ready fastbus signal (TRFB) and a
ready signal (READY4) from the memory control logic are present. The
actua I data transfer on FASTBUS is managed by the data transfer machine.

Page 6

This machine is started by a start fastbus signal (STFB) . When
handshaking takes place between the two machines, the pipeline register
is c I ocked (CLKR2) . Depending on the type of transfer, random or block,
a signal called word count zero (WCZ) is generated by the memory transfer
logic indicating whether the machine should fetch another word or should
end the transfer. If another transfer is required, the memory control
logic calculates the next address by clocking the address reg i ster
(CLKADRl) and the DMA logic signal CDMA. When terminating the transfer,
only a CLKADRl signal is generated.

In the FASTBUS write mode, the data cycle machine operates in a similar
way as when in the read mode. Write mode, however, reverses the order of
the different test operations and output signals.

3.7. The data transfer machine

As mentioned above, the actual data transfer on FASTBUS is managed by the
data transfer machine, shown in figure 14. This machine does not support
parity check, but it would be easy to implement. When the STFB signal is
asserted, DS is toggled by the TOGDS signal. The TOGDS signal is also
used to start a DK timer. Using handshaking, the transfer machine waits
for DK to come to the same level as DS. If DK is not back before the DK
timeout signal is asserted, an error is indicated. When DK is back
without DK timeout, a check is done on the SS response.

4. The cable segment

To get the FASTBUS signals into a cable segment, a differential driver
and receiver pair are used as outlined in figure 15 [2]. The cable
segment can be connected to a FASTBUS segment interconnect module (SI) or
a cable to crate segment converter module in order to reach FASTBUS slave
modules [6], [7] .

5. Performance

Tests of the interface have been done in a VME based system called
VALET-p I us [8] . By using a programming language called PILS in this
system, programs have been written implementing most of the FASTBUS
standard routines, enabling us to run random and block transfers to
different slave modules [l]. The PILS code used in a block transfer
write is shown in figure 16.

In all the tests, a 10 m cable segment was connected to a cable to crate
segment converter [7]. It was possible in all tests to confirm that an
internal response time of 100 ns was possible to cover through the
pipeline register used in the interface, figure 17. In order to test
arbitration, another master was used, alternating the mastership of the
FASTBUS segment.

6. Conclusions

The interface has been shown to fulfil the handshaking part of the
FASTBUS master protocol, making it possible to collect data from FASTBUS
slave modules and process it in a VME system.

There are some
i.e wait (WT),
request (SR) .
extensions.

Page 7

features that have been left out in this first version,
parity (PA,PE), reset bus (RB), bus halt (BH), and service
These functions may be implemented by slight changes and

As long as no conclusive decision has been made on how the syncronous
mode of the FASTBUS data transfer protocol should be handled on the
systems level, we have not atempted any implementation of it. But by
including a speed register and a new data tranfer machinery, it should be
no problem to support this mode.

A future extension of the present internal configuration can also include
a pointer unit! pointing to different portions of a memory holding
FASTBUS instructlons and parameters.
model of the interface very simple.

This would make the programing

By changing the FASTBUS part of the design to ECL circuitry, it should be
possible to at least double the transfer speed into the internal buffer
memory.

If a FASTBUS slave part is developed on a separate VME module, the
present FASTBUS port can be used with it. This would require changing
the PAL expressions for the signals
receivers.

stearing the segment drivers and

References

PI

PI
131

[41

151

PI

[71

PI

U.S.
15’87.

NIM Committee, DOE/ER-0325. FASTBUS Standard Routines, March

FASTBUS specification, ANSI/IEEE Std 960-1986.

VME specification, Rev. C. IEEE P1014/Dl.O, Feb. 1985.

Gustafsson,L. and GalIno,P.
programmable logic. Proc.

VME bus protocol chipset
of VMEbus conference, CERN, 1985.

using

Fremont,G. and Sanches,E. A general purpose PAL based master and
slave FASTBUS coupler. CERN/EF’-F6803, March 1985.

Downing,R.
Trans.

and Haney,M. The FASTBUS Segment Interconnect. IEEE
on Nucl. Sci. NS-29, No. 1, 94 (1982) .

Swoboda C. and Moore G.
internal report.

Cable to Crate Segment Converter. FNAL

Berners-Lee,T. et al.
Phys i cs Applications.

The VALET-PLUS, a VMEbus Microcomputer for
Fifth conference on Real Time Computer

Applications in Nuclear, Particle and Plasma Physics- San Francisco,
May 1987.

PORT AND
SLAVE CONTROL

INTERRUPTER

I BUFFER I,-,

DATA
BUFFER

5 VME CSR

I DECODER

DATA
PORT

TO BOARD #2-

DMA MEMORY PARAMETER
REGISTER

FILE

;-----b FASTBUS
I MASTER I

VME r-----j
SLAVE I

I
Figure 1

FROM
BOARD #l

l

CSR
#8 ARBITER

L l I

A

1 INSTRUCTION 1 INSTRUCTION
AND

CONTROL B

REGISTER

4 l

* *

FASTBUS
MASTER

c CONTROL . .

A A

v v

STATUS STATUS
REGISTER REGISTER

FASTBUS
CABLE

SEGMENT
BUFFER

Figure 2

BASE + $00
$02
$03
$04
$05
$06
$07
$08
$09
$OA

.

$1;
$11

$4;

$180000 + .
.
.

VME CONTROL REGISTER
NO ERROR INTERRUPT REGISTER
ERROR INTERRUPT REGISTER
FASTBUS STATUS REGISTER
VME ADDRESS PIPELINE REGISTER
DMA CONTROL REGISTER
DMA ADDRESS COUNTER
DMA WORD COUNTER
DMA REINITIALIZATION
EXTERNAL DMA CLOCKING

PRIMARY ADDRESS REGISTER
SECONDARY ADDRESS REGISTER

FASTBUS INSTRUCTION REGISTER

CSR #8

MEMORY

.

.

Table 1

D5 ERROR
D4 -MREADY
D3-
D2 RESET-
Dl -POLL
DOZGO

FASTBUS ERROR BIT
MASTER READY

GENERAL RESET
POLLING BIT
START BIT

$81 ERRl*/INAR NO INAR AND NO GK
$82 ERRl*INAR INAR AND GK
$90 ART0 ARBITRATION TIME OUT
$91 ERR3 NO PRIM AND NO AS/AK LOCK
$92 ERR4 AS/AK LOCK ALREADY EXIST
$A1 ERR&/SS2*/SSl*SSO SS=l)
$A2 ERRh/SS2*SSl*/SSO-SS=2)
$A3 ERREi*/SS2*SSl*SSO -ss=3)
$A4 ERRS*SS2*/SSl*/SSO -SS=4 > PRIMARY ADDRESS CYCLE
$A6 ERRhSS2*/SSl*SSO -ss=s)
$A6 ERRS*SS2*SSl*/SSO- -SS=6)
$A7 ERRS*SS2*SSl*SSO -ss=7)
$BO ERR&AKTO AK TIMEOUT
$CO ERR0 DS OR DK (BEFORE DATA CYCLE)
$Dl ERR7*/SS2*/SSl*SSO SS=l)
$D2 ERR7*/SS2*SSl+SO-SS=2)
$D3 ERR7*/SS2*SSl*SSO -ss=3)
$D4 ERR7*SS2a/SSl*SSO -SS=4 > DATA CYCLE
$D5 ERR7*SS2*/SSl*SSOr ss=5)
$D6 ERR7*SS2aSSl*/SSO SS=B)
$D7 ERR7*SS2*SSl*SSO -yws=7)
$EO ERR7aDKTO DK TIMEOUT

Table 2

ItVMRL-.VSRL-.VML-.ENVECT-1.lDS

ab

Y .
REA-DYl

I

READY2

IDTACK-

Figure 3

IIACKIN-.(MRl-+POLL)

/lACKOUT-, /IRQX-
IMATCH-./AS-./DELI-

b ISREND-

Figure 4

I I I I

I
i
2

AD23
AD22-
AD21
AD20
AD19-
AD18 ~BLOCK BLOCK TRANSFER
AD17-IEG INTERNAL EG
ADlti -1RD INTERNAL RD
AD15
ADl4- -MSDA2)
AD13MSDAl >- DATA CYCLE MS CODE
AD12 MSDAO)
ADll-
ADlO- MSPA2)
AD9 -MSPAl >- PRIMARY ADDRESS CYCLE MS CODE
AD8 MSPAO)
AD7
AD6 RELAS RELEASE AS
ADS RELGK RELEASE GK
AD4 DATC DATA CYCLE
AD3 SEC SECONDARY ADDRESS CYCLE
AD2 PRIM PRIMARY ADDRESS CYCLE
AD1 INAR INTERNAL ARBITRATION REQUEST
ADO STCL STATUS CLOCK

Table 3

y CLKADRI

COMA

acre- c CLKR2
DK- c

-16LB- -,sl.e-
- ERR7

- mw- z Cl DATA
-RR - DATA -RD

LB- ? J MACHINE -STFBZ 0 0Kl.E
w

TRFS-
MACHINE

C -STFBl
----(ml - READY.l-

+ SSERR-
+ SrAFm

__(IN-RES- + TRFB
-

__(INT-RES-

I’ IREADY

-2OLB-

SEccNDARl
START3 ca

S”PER”w.x
REPJJY2 CQ CYCLE WEi

__(ERR7

+ READY3

ARBrrRATIoN.

-INT-RES-

Figure 6

ERRl. MFll

-IGO.(/SREND-+POLL)

(READYi+ERR3+ERR4)

Figure 7

SETAR./(EAl.Al).CSROl.CSRO2

RELGK./MRl-./SETAR /ISMINE./AG

ISMINE./AG

Figure 8

AD(O:7)+

SETAR D”’

CSROl D-
CSR02 I-

=GK-

MRl- -

INT-RES- D-

AL-R- AL-W

1 AG

20L8

ARBITRATION
MACHINE

-ISMiNE

1
‘INAL(O:5*

d

VECTOR - OAL(O:5)1,

COMPARATOR

1 i

j IGK-

j IAR-

AG

<Al

-GK

+ AR

TTL
TO/FROM

ECL
CONVERTERS

F
A
S
T
B
U
S

C
A
B
L
E

S
4=AL(O:5) E

G
M
E
N
T

Figure 9

PRIM
I I IV

I I t ERR3 1 1 It-l,” \

I I ERR4 I ! l,,”

(ASAK)./ERRS

READYkTARTl ER-R6

WEA” - START2

Figure 10

CLKRl

ooo +DPRIAC~ 001 IDCLK-‘I oil I

Figure 11

START2 (DS;DK)

ISTiRT2 SEC.IDS;IDK

SECAC, START3

/READY3 ISEC.IDS.IDK

Figure 12

READY3
RD.(STFBl),
/RD.(CLKADRl,CDMA)

r

000 START3.TRFB.IREADY4- 001

abc

RD.READY4-+

I IRD.ITRFB

ISTART3.(RD./READY4-+
/RD.TRFB+ERR7) / RD./TRFB +/R ID.READY4-

ISTA ,i.

RD.(CLKADRl,CDMA),
/RD.(STFB2),

ERR7

RD*READY4-+
IRD.ITRFB TRFB. IREADY4-

CLKR2

i-3

Ri(CLKADRl),
/RD.(STFB2),
CLKR2 Figure 13

TRFB TOGOS

/(STFBl+STFBZ)

SSERR-.
/(STFBl+STFBP)

Ml31

-o-

101

I

ERR7

(DK. I DS+
/DK.DS)

ISSERR- DKTO

(/DK./DS+DK.DS)

Figure 14

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

!**************t**~****~***********
I Parameters: PrAdd - primary address
I ScAdd - secondary address
! BfAdd - Memory location of VME data buffer
I cnt - Number of words to transfer
I
!****************************t*******************************~************
SUB vfi-read-dat-bIock(IN INT32 pradd, scadd, bfadd, cnt)

! Does a block transfer to BfAdd, transfering Cnt words.

CONST read-dat-block-opcode = 8X1210177 ! block read opcode

! ! part checking Cnt

vmec-run-bIock(read-dat-block-opcode, pradd, scadd, bfadd, cnt)

ENDSUB vfi read dat block
!*********~****t***S*************************~***~***********************
SUB vmec-run-bIock(IN INT32 contval, primadd, secadd, dmaadd, dmawc)

! This routine loads the various interface resisters with the aiven ”

! parameters, starts the interface,
! complete the operation.

CONST prim-rag = 16XFFFO40 I

CONST set-reg = 161cFFFO44 !

CONST fb-cant-reg = 16XFFF084 !
CONST dma-add-reg = 16XFFFOlC !
CONST dma WC reg = 16XFFFO20 !

INT32 tarn; -

put32(fb cent-reg, contval) I

put32(prjm_reg, primadd) (

put32(sec_rag, secadd) !

put32(dma_add_reg, dmaadd) !

put32(dma WC rag, !
-- dmawc)

vmec-go !

vmec wait I

ENDSUB vmec-run-block

and waits for the inteface to

primary address register
secondary address register
FASTBUS control register
DMA address register
DMA word count register

Load operation code
Load primary address
Load secondary address
Load address for DMA transfer
Load word count for DMA transfer

execute operation
wait till done

Figure 16

Figure I7

Figure captions

Figure 1 : Block diagram of board #l in the VME to FASTBUS master coprocessor.

Figure 2 : Block diagram of board $2 in the VME to FASTBUS master coprocessor.

Figure 3 : The FSM running the VME slave port, supporting 16 or 32 bit

transfers.

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

The FSM running vectored interrupts.

The Interrupt logic implemented as two PLDs.

The interconnections of the different FSMs in the FASTBUS master

control.

The Arbitration Supervisor, with the external process interface.

The Arbitration Machine.

The Arbitration logic implemented as three PLDs.

The Primary Address Supervisor.

The Primary Address Machine.

The Secondary Address and Data Cycle Supervisor.

The Data Cycle Machine.

The Data Transfer Machine.

A part of the TTL to ECL conversion and differential driving

for the FASTBUS cable segment.

An example on how a FASTBUS routine is run using PILS.

Logic analyzer photo showing the FASTBUS port timing.

Table captions

Table 1 : The address map of the WE to FASTBUS master coprocessor.

Table 2 : (a) The VME control and status register bit map,

(b) The FASTBUS status register status codes.

Table 3 : The FASTBUS operation register bit map.

