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Abstract 

A VME to FASTBUS master interface is described. This interface executes 
FASTBUS instructions set up by a master on the VME segment. The 
instructions are decoded using finite state machines that run the FASTBUS 
master protocol and drives a FASTBUS cable segment. Al I interna I data 
and control paths are implemented using TTL level circuitry. Data is 
internaly buffered by a 64 Kb memory, 
32 bit word is possible to achieve. 

and a transfer speed of 100 ns per 

Keywords: Cable Segment, Coprocessor, 
Interface, PILS, 

FASTBUS, Finite State Machine, 
Programmable Logic Device, Protocol, VME. 

1. Introduction 

In order to test a FASTBUS master interface that can easily be driven 
from different bus systems as a coprocessor, we have developed two VME 
modules that house a VME slave interface, 
manor i es and drivers 

interrupter, registers, 
needed to run a FASTBUS cable segment. 

DMA, 
The main 

blocks are shown in figure 1 and 2. 

A high level FASTBUS operation can be handled directly as an instruction 
with parameters. This operation is loaded from VME into dedicated 
registers [l] . On a start signal asserted in the WE control register, a 
set of finite state machines (FSM) decode the instruction. These FSMs 
are implemented using programnable logic devices (PLD), for example the 
16L8 and 2OL8 PAL circuits. 

The FSM handling the data transfers is running the handshaking protocol 
defined in the FASTBUS specification [2]. A pipeline register,between an 
internal 64 Kb memory and the FASTBUS segment, 
transfer speed of 100 ns per 32 bit word. 

makes possible a block 
On the completion of a FASTBUS 

operation, either polling or a vectored interrupt can be used to signal 
the VME master. 

2. The VME interface 

All registers in the interface are seen as 32 bit words, separated in two 
sets by a buffer that is disabled when a start bit (GO) is asserted in 
the control register, see table 1. A VME master can always read and 
write to the control register. The registers that are locked from the 
WE side on a start signal comprises FASTBUS status, DMA control, address 
and word count, parameters, instruction and arbitration level. The 
internal formats of the VME control and FASTBUS status registers are seen 
in table 2. 

The VME port can transfer either 16 or 32 bit words, handled by a finite 
state math i ne as seen in figure 3. On a valid internal address and VME 
data strobe (IDS), the port is timed by two signals, READY1 and READY2. 
These signals 
register. 

show that data has been clocked into and out of a port 
The VME master using the interface is acknowledged through the 

signa I DTACK- [3] . A new cycle on the port can only start if the valid 
address and data strobe are momentarily disasserted by the VME master. 
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2.1. The DMA 

The DMA comprises two Am2940 circuits giving a 16 bit address register 
and a 16 bit word counter, which makes it possible to use up to 256 Kb of 
memory as an internal data buffer. An external address register has been 
added in order to get an address pipeline. The address and data lines 
(ADO-AD31) to the FASTBUS segment are also pipelined through a register, 
mak i ng it possible to cover some of the transfer time during a block 
transfer. The DMA is presently using a 64 Kb buffer memory. 

2.2. The parameter registers 

The parameter registers are implemented as a fast register file using 
four AS870 circuits. 
registers are used. 

In the present version of the interface, only two 

secondary 
These registers are for the FASTBUS primary and 

addresses. The remaining eight registers can be used if a VME 
master or a FASTBUS instruction pipeline is implemented in the future. 

2.3. The interrupt logic 

The interrupter part of the interrupt logic is shown in figure 4. If the 
POLL bit in the VME control register is asserted or the FASTBUS master 
coprocessor is not in the status interrupt state, activating a master 
release signal (MRl-), the interrupt acknowledge out signal (IACKOUT-) is 
passed on. If the POLL bit is disasserted when MRl’ is active and no 
interrupt acknowledge in signal (IACKIN-) is coming from the interrupt 
handler, an interrupt level (IRQX-) is asserted on VME. If a match is 
found with the interrupt vector address sent by the interrupt handler, 
the valid interrupt register 
(ENVECT-) . 

is opened by the enable vector signal 
As the address strobe (AS’) is disactivated by the interrupt 

handler a service request end signal (SREND-) is issued. This signal 
takes the FASTBUS master coprocessor to its idle state. If no match is 
found, IACKOUT’ is passed on. When the present 
ended, 

interrupt cycle has 
a new cycle is directly started until a match is found [4]. The 

present implementation of the interrupt logic uses two PLDs as shown in 
figure 5. 

2.4. The Instruction and Arbitration level registers 

The instruction and arbitration level registers are located on the second 
board. The function of the bits in the instruction register is seen in 
table 3. 
is 

In the arbitration level register (FASTBUS CSR#S) the priority 
set for the interface when participating in a FASTBUS arbitration 

cycle. 

3. The FASTBUS interface 

When the start signal is asserted in the control register the interface 
is running autonomously using seven state machines, see figure 6. The 
state machines can be categorized as arbitration supervisor arbitration 
machine, primary address supervisor, primary address machine, secondary 
address and data cycle supervisor, data cycle machine and data transfer 
machine. 
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3.1. The arbitration supervisor 

The arbitration supervisor is started by asserting the GO bit in the VME 
contra I register, see figure 7. The INAR bit in the FASTBUS instruction 
register indicates whether an arbitration is required. If arbitration is 
not required and we are already the current FASTBUS master, control 
passes directly onto the primary address supervisor by asserting the 
signal STARTl. If arbitration is required and there is no internal GK 
signal (ICK) set, a SETAR signal is asserted which starts the arbitration 
machine and an arbitration timer. When FASTBUS mastership is granted, 
the primary address supervisor is started. 

Should an error occur during the arbitration process, the error is 
encoded in a status encoder PLD and clocked into the FASTBUS status 
register by the state asserting the master release 1 signal (MRl). 
Before returning to the idle state, either polling or a vectored 
interrupt is used to signal the VBE master that the operation has 
finished. When the vectored interrupt mechanism is used, the return to 
the idle state is governed by the SREND- signal generated by the 
interrupter logic. If no vectored interrupts are required, the POLL bit 
should be asserted in the VME control register. 

3.2. The arbitration machine 

The arbitration is implemented following the assured access protocol as 
described in the FASTBUS specification [2]. The state machine version is 
shown in figure 8. When the SETAR signal is asserted and the arbitration 
inhibit signal (AI) from the ancillary logic is not asserted, an internal 
arbitration request (IAR) is generated. Arbitration is started when an 
arbitration grant signal (AC) is asserted by the FASTBUS arbitration and 
timing controller (ATC). 
compa r i son 

During the arbitration process a continuous 
of arbitration levels proceeds until AC is disasserted. If 

the master containing the arbitration machine is the winner of the 
arbitration cycle the arbitration logic asserts ISMINE and the 
arbitration machine asserts ICK. The GK signal is only disasserted if a 
release GK signal (RELGK) in the instruction register and the MRl signal 
are set. Figure g details the actual hardware implementation. It is 
important that the vector comparison is done within the time limits set 
up by the FASTBUS specification. 
delay not exceeding 15 ns [5] . 

If TTL PLDs are used, they must have a 

3.3. The primary address supervisor 

Before starting the primary address machine, it is necessary to verify if 
certain criteria are fulfilled. Figure 10 shows the different criteria 
used by the primary address supervisor. 
signal (PRIM) is 

If the primary address cycle 
asserted in the instruction register, a check is done 

for the address strobe (AS) and address acknowledge (AK) signals. This 
condition is called an AS/AK lock. If no lock exists, PRIAC is generated 
which enables the primary address register and starts the primary address 
machine. 
machine, 

Two status conditions may be signalled by the primary address 
AK timeout (AKTD) and a slave status (SS) greater then zero. 

If the AS/AK lock is established without errors, the supervisor machine 
for the secondary address is started. If the user has specified that no 
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primary address cycle should occur, the operation will only proceed if an 
AS/AK lock already exists. 

3.4. The primary address machine 

The primary address machine is started on the assertion of a delayed 
PRIAC signal (DPRIAC) from the primary address supervisor, see figure 11. 
The primary address from the primary address register is clocked (CLKRl) 
in to the pipeline register, described above. The MS code bits from the 
instruction register are enabled directly out onto the FASTBUS segment. 
After a delay time compensating for the pipeline register internal delay, 
an internal address strobe signal (IAS) is generated and an AK timer is 
started. On AK timeout, a status signal ERR5 is asserted. When AK is 
returned by the FASTBUS slave the SS lines are checked. If SS is equal 
to zero, the primary address transfer machine retains AS until a release 
AS (RELAS) and a master ready signal (MRl) are asserted. 

3.5. The secondary address and data cycle supervisor 

The supervisor machinery starts on a signal START2 from the primary 
address supervisor, see figure 12. The supervisor will abort if either 
;LE~~I;T;; strobe (DS) or data acknowledge (DK) signals are already 

. If the user has requested a secondary address cycle (SEC), the 
content of the secondary address register is enabled and the data cycle 
machine is started. 
special master status 

A secondary address cycle is a data cycle with a 
code (MS=2). The secondary address cycle is 

terminated if there is a DK timeout (DKTO) or SS is greater then zero. 

Following a successfully completed secondary address operation and if the 
user has requested data cycles (DATC), the data transfer machinery is 
started (START3) and the FASTBUS operation proceeds as in 
address cycle. The secondary 

the secondary 
address and data cycle supervisor then 

‘loops” waiting for the data cycle to complete. Upon completion, it 
returns to the idle state which allows the primary address supervisor to 
return in turn to it’s idle state. 
becomes idle. 

Finally, the arbitration supervisor 

3.6. The data cycle machinery 

Compared with other bus protocols, 
treatment of block transfers. 

the FASTBUS protocol is unique in its 
A data word can be transferred on each 

edge of DS. In order to be able to use our FSM design in other bus 
systems, we have decided to split the data protocol into two state 
machines, the data cycle machine and data transfer machine, where the 
latter handles the special FASTBUS protocol [2]. 

The data cycle machine is shown in figure 13. The machine can run in 
both reading and writing mode using the FASTBUS read signal RD as 
steering signal for input and output functions. In the FASTBUS read 
mode, the machine works as follows. 

When the START3 signal is asserted by the supervisory machine, the data 
cycle machine ensures that the transfer ready fastbus signal (TRFB) and a 
ready signal (READY4) from the memory control logic are present. The 
actua I data transfer on FASTBUS is managed by the data transfer machine. 



Page 6 

This machine is started by a start fastbus signal (STFB) . When 
handshaking takes place between the two machines, the pipeline register 
is c I ocked (CLKR2) . Depending on the type of transfer, random or block, 
a signal called word count zero (WCZ) is generated by the memory transfer 
logic indicating whether the machine should fetch another word or should 
end the transfer. If another transfer is required, the memory control 
logic calculates the next address by clocking the address reg i ster 
(CLKADRl) and the DMA logic signal CDMA. When terminating the transfer, 
only a CLKADRl signal is generated. 

In the FASTBUS write mode, the data cycle machine operates in a similar 
way as when in the read mode. Write mode, however, reverses the order of 
the different test operations and output signals. 

3.7. The data transfer machine 

As mentioned above, the actual data transfer on FASTBUS is managed by the 
data transfer machine, shown in figure 14. This machine does not support 
parity check, but it would be easy to implement. When the STFB signal is 
asserted, DS is toggled by the TOGDS signal. The TOGDS signal is also 
used to start a DK timer. Using handshaking, the transfer machine waits 
for DK to come to the same level as DS. If DK is not back before the DK 
timeout signal is asserted, an error is indicated. When DK is back 
without DK timeout, a check is done on the SS response. 

4. The cable segment 

To get the FASTBUS signals into a cable segment, a differential driver 
and receiver pair are used as outlined in figure 15 [2]. The cable 
segment can be connected to a FASTBUS segment interconnect module (SI) or 
a cable to crate segment converter module in order to reach FASTBUS slave 
modules [6], [7] . 

5. Performance 

Tests of the interface have been done in a VME based system called 
VALET-p I us [8] . By using a programming language called PILS in this 
system, programs have been written implementing most of the FASTBUS 
standard routines, enabling us to run random and block transfers to 
different slave modules [l]. The PILS code used in a block transfer 
write is shown in figure 16. 

In all the tests, a 10 m cable segment was connected to a cable to crate 
segment converter [7]. It was possible in all tests to confirm that an 
internal response time of 100 ns was possible to cover through the 
pipeline register used in the interface, figure 17. In order to test 
arbitration, another master was used, alternating the mastership of the 
FASTBUS segment. 

6. Conclusions 

The interface has been shown to fulfil the handshaking part of the 
FASTBUS master protocol, making it possible to collect data from FASTBUS 
slave modules and process it in a VME system. 
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features that have been left out in this first version, 
parity (PA,PE), reset bus (RB), bus halt (BH), and service 
These functions may be implemented by slight changes and 

As long as no conclusive decision has been made on how the syncronous 
mode of the FASTBUS data transfer protocol should be handled on the 
systems level, we have not atempted any implementation of it. But by 
including a speed register and a new data tranfer machinery, it should be 
no problem to support this mode. 

A future extension of the present internal configuration can also include 
a pointer unit! pointing to different portions of a memory holding 
FASTBUS instructlons and parameters. 
model of the interface very simple. 

This would make the programing 

By changing the FASTBUS part of the design to ECL circuitry, it should be 
possible to at least double the transfer speed into the internal buffer 
memory. 

If a FASTBUS slave part is developed on a separate VME module, the 
present FASTBUS port can be used with it. This would require changing 
the PAL expressions for the signals 
receivers. 

stearing the segment drivers and 
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FASTBUS ERROR BIT 
MASTER READY 

GENERAL RESET 
POLLING BIT 
START BIT 

$81 ERRl*/INAR NO INAR AND NO GK 
$82 ERRl*INAR INAR AND GK 
$90 ART0 ARBITRATION TIME OUT 
$91 ERR3 NO PRIM AND NO AS/AK LOCK 
$92 ERR4 AS/AK LOCK ALREADY EXIST 
$A1 ERR&/SS2*/SSl*SSO SS=l ) 
$A2 ERRh/SS2*SSl*/SSO-SS=2 ) 
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$A4 ERRS*SS2*/SSl*/SSO -SS=4 > PRIMARY ADDRESS CYCLE 
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$EO ERR7aDKTO DK TIMEOUT 
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!**************t****************************************~****~*********** 
I Parameters: PrAdd - primary address 
I ScAdd - secondary address 
! BfAdd - Memory location of VME data buffer 
I cnt - Number of words to transfer 
I 
!****************************t*******************************~************ 
SUB vfi-read-dat-bIock(IN INT32 pradd, scadd, bfadd, cnt) 

! Does a block transfer to BfAdd, transfering Cnt words. 

CONST read-dat-block-opcode = 8X1210177 ! block read opcode 

! . . . . . . . . . . . . . . . . . . . ! part checking Cnt 

vmec-run-bIock(read-dat-block-opcode, pradd, scadd, bfadd, cnt) 

ENDSUB vfi read dat block 
!*********~****t***S*************************~***~*********************** 
SUB vmec-run-bIock(IN INT32 contval, primadd, secadd, dmaadd, dmawc) 

! This routine loads the various interface resisters with the aiven ” 

! parameters, starts the interface, 
! complete the operation. 

CONST prim-rag = 16XFFFO40 I 

CONST set-reg = 161cFFFO44 ! 

CONST fb-cant-reg = 16XFFF084 ! 
CONST dma-add-reg = 16XFFFOlC ! 
CONST dma WC reg = 16XFFFO20 ! 

INT32 tarn; - 

put32(fb cent-reg, contval) I 

put32(prjm_reg, primadd) ( 

put32(sec_rag, secadd) ! 

put32(dma_add_reg, dmaadd) ! 

put32(dma WC rag, ! 
-- dmawc) 

vmec-go ! 

vmec wait I 

ENDSUB vmec-run-block 

and waits for the inteface to 

primary address register 
secondary address register 
FASTBUS control register 
DMA address register 
DMA word count register 

Load operation code 
Load primary address 
Load secondary address 
Load address for DMA transfer 
Load word count for DMA transfer 

execute operation 
wait till done 

Figure 16 
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Figure captions 

Figure 1 : Block diagram of board #l in the VME to FASTBUS master coprocessor. 

Figure 2 : Block diagram of board $2 in the VME to FASTBUS master coprocessor. 

Figure 3 : The FSM running the VME slave port, supporting 16 or 32 bit 

transfers. 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

Figure 14 

Figure 15 

Figure 16 

Figure 17 

The FSM running vectored interrupts. 

The Interrupt logic implemented as two PLDs. 

The interconnections of the different FSMs in the FASTBUS master 

control. 

The Arbitration Supervisor, with the external process interface. 

The Arbitration Machine. 

The Arbitration logic implemented as three PLDs. 

The Primary Address Supervisor. 

The Primary Address Machine. 

The Secondary Address and Data Cycle Supervisor. 

The Data Cycle Machine. 

The Data Transfer Machine. 

A part of the TTL to ECL conversion and differential driving 

for the FASTBUS cable segment. 

An example on how a FASTBUS routine is run using PILS. 

Logic analyzer photo showing the FASTBUS port timing. 

Table captions 

Table 1 : The address map of the WE to FASTBUS master coprocessor. 

Table 2 : (a) The VME control and status register bit map, 

(b) The FASTBUS status register status codes. 

Table 3 : The FASTBUS operation register bit map. 


