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Abstract

We investigate exponential solutions (i.e. the solutions with the scale factors change ex-
ponentially over time so that the comoving volume remains the same) in the Einstein-Gauss-
Bonnet gravity. We obtain all possible exact vacuum and Λ-term cosmological solution in
(4+1) and (5+1) dimensions, generalize some of these solutions to the arbitrary number of
spatial dimensions and obtain necessary conditions for exponential solutions to exist in the
presence of matter in the form of perfect fluid.

1 Introduction

Exact solutions play important role in any gravitational theory, especially nonlinear. The
striking example of the nonlinear theory of gravity is the Lovelock gravity [1] – the most general
metric theory of gravity with second order equations of motion (in contrast, for instance, to
f(R) gravity which gives fourth order dynamical equations). The Lovelock gravity is a natural
generalization of Einstein’s General Relativity: it is known [2, 3, 4] that the Einstein tensor is,
in any dimension, the only symmetric and divergenceless tensor depending only on the metric
and its first and second derivatives with a linear dependence on second derivatives; if one drops
the condition of linear dependence on second derivatives, one can obtain the most general tensor
which satisfies other mentioned conditions – the Lovelock tensor.

The Lovelock gravity has been intensively studied in the cosmological context (see, e.g., [5,
6, 7, 8, 9, 10, 11]). Many interesting results have been obtained for flat anisotropic metrics
due to the fact that its cosmological dynamics is much richer in the Lovelock gravity than in
the Einstein one. Since the resulting equations of motion turn out to be complicated enough,
researchers usually study some special kind of metric – for example, metrics with with power-
law and exponential time dependence of scale factors. The first of them is a generalization
of Kasner solution [16, 17]; the latter can be considered as anisotropic generalization of the
de Sitter (exponential) expansion. Our study is devoted to the exponential solutions in the
Einstein-Gauss-Bonnet gravity.

2 The set-up.

The action under consideration is1:

S =
1

2κ2

∫

dD+1x
√−g

(

R + α
[

RαβγδR
αβγδ − 4RαβRαβ + R2

]

+ Lm

)

, (1)
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where D is the number of spatial dimensions, κ2 is the (D + 1)-dimensional gravitational con-
stant, R,Rαβ , Rαβγδ are the (D + 1)-dimensional scalar curvature, Ricci tensor and Riemann
tensor respectively, α is the coupling constant, Lm is the Lagrangian of a matter; we consider
a perfect fluid with the equation of state p = ωρ as a matter source. The action (1) gives the
gravitational equations as

Gµν + αHµν = κ2Tµν (2)

where

Gµν = Rµν − 1

2
gµνR, Tµν = −2

δLm

δgµν
+ gµνLm (3)

Hµν = 2

(

RRµν − 2RµαRα
ν − 2RαβRµανβ + R αβγ

µ Rναβγ − 1

2
gµνLGB

)

(4)

The spacetime metric is

ds2 = −dt2 +

N
∑

k=1

e2Hktdx2
k, Hk ≡ const (5)

It is easy to show that

R0i
0i = H2

i , Rj1j2
j1j2

= Hj1Hj2 , j1 < j2, Rαβ
µν = 0, (α, β) 6= (µ, ν), (6)

the dot denotes derivative w.r.t. t. So, arbitrary component of the Riemann tensor takes the
form:

Rµν
λσ =







∑

k

H2
kδ

[µ
0 δ

ν]
k δ0

[λδk
σ] +

∑

i<j

HiHjδ
[µ
i δ

ν]
j δi

[λδj

σ]







, (7)

square brackets denote the antisymmetric part on the indicated indices. In view of (3)-(7)
equations (2) take the form

∑

i6=j

H2
i +

∑

{i>k}6=j

HiHk + 4α
∑

i6=j

H2
i

∑

{k>l}6={i,j}
HkHl + 12α

∑

{i>k>l>m}6=j

HiHkHlHm = −ωκ (8)

∑

i>j

HiHj + 12α
∑

i>j>k>l

HiHjHkHl = κ, κ =
κ2ρ

2
(9)

Continuity equation reads:

ρ̇ + (ρ + p)
∑

i

Hi = 0 (10)

We see that dynamical equations is the system of pure algebraic equations for D Hubble pa-
rameters. Left hand sides of these equations does not depend on time, therefore energy density
of matter does not depend on time too and continuity equation reduces to the following form:

(ρ + p)
∑

i

Hi = 0 ⇐⇒









ρ = 0 (a)

p = −ρ (b)
∑

k Hk = 0 (c)

(11)

This fact impose a number of severe restrictions: exponential solutions exist only if at least one
of the conditions (a)-(c) is satisfied. According to these restrictions all possible exponential
solutions can be divided into two large groups: solutions with constant volume (

∑

k Hk = 0)
and solutions with volume changing in time (

∑

k Hk 6= 0); for the latter case we have only two
possibilities: vacuum case (a) and Λ-term case (b); on the contrary, the first case does not
impose constraints on choice of matter a priori.
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3 Solutions with volume changing in time (
∑

k Hk 6= 0).

Subtracting i-th dynamical equation from j-th one we obtain:

(Hj − Hi)





1

4α
+

∑

{k>l}6={i,j}
HkHl





∑

k

Hk = 0 (12)

It follows from (12) that

Hi = Hj ∨
∑

{k>l}6={i,j}
HkHl = − 1

4α
∨

∑

k

Hk = 0 (13)

These are necessary conditions for a given set H1, . . . ,HD to be a solution of Eqs. (8)–(9). In
this section we deal with the following possibilities only:

Hi = Hj ∨
∑

{k>l}6={i,j}
HkHl = − 1

4α
(14)

These conditions lead to the fact that solutions with volume changing in time exist only when set
of Hubble parameters is divided into subsets with equal values of Hubble parameters belonging
to the same subset (in other words, existence of isotropic subspaces is required).

Let us introduce the following notations for the sets of Hubble parameters representing
solutions with isotropic subspaces:

H(4)
0 ≡ {H,H,H,H}, H(4)

1 ≡ {H,H,H, h}, H(4)
2 ≡ {H,H, h, h}

H(5)
0 ≡ {H,H,H,H,H}, H(5)

1 ≡ {H,H,H,H, h}, H(5)
1∗ ≡ {H,H,−H,−H,h},

(15)

As it was mentioned above, there exist solutions with volume changing in time of two types:
vacuum solutions and Λ-term solutions (and there are no another varying volume solutions).

1. Vacuum solutions:

� D = 4: only isotropic solution with H2 = − 1
2α

, α < 0 exists.
� D = 5: solutions of two types exist:

(a) isotropic solution: H2 = − 1
6α

, α < 0;

(b) solution with (3+2) spatial splitting: H1 = H2 = H3 ≡ H, H4 = H5 ≡ ξH and

H2 =
f(ξ)

4α

∣

∣

∣

∣

∣

ξ=
3√

10

3
−

3√
100

6
− 2

3
≈−0.722

, f(ξ) = −ξ2 + 6ξ + 3

3ξ(3ξ + 2)
(16)

2. Λ-term solutions:

� solution with (3 + 2) splitting (H1 = H2 = H3 ≡ H, H4 = H5 ≡ h) obeys the
following equations:

192H6α3 − 112H4α2 + (256Λπ α + 4)H2α − 1 = 0, h = −4H2α + 1

8Hα
(17)

It is easy to check that when α > 0 equations (17) has at least one solution for any
Λ; when α < 0 equations (17) has at least one solution iff Λ > − 5

48πα
.

� All the rest Λ-term solutions for D = 4, 5 are indicated in the tables 1,2,3.
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Table 1: Λ-term solutions, α > 0.
0 < Λ 6 1

16πα
Λ > 1

16πα

H(4)
2 No H2 = 1

4

(

8πΛ + 1
2α

±
√

(

8πΛ + 1
2α

)2 − 1
α2

)

, h = − 1
4αH

H(4)
1 No

H(4)
0 H2 = 1

4α

(

−1 +
√

1 + 16παΛ
3

)

Table 2: Λ-term solutions, α < 0.
Λ < − 3

16πα
Λ = − 3

16πα
Λ > − 3

16πα

H(4)
2 No H2 = h2 = − 1

4α

H2 = 1
4

(

8πΛ + 1
2α

)

±
±1

4

√

(

8πΛ + 1
2α

)2 − 1
α2 ,

h = − 1
4αH

H(4)
1 No

H2 = − 1
4α

,
h ∈ � No

H(4)
0

H2 = 1
4α

(

−1 ±
√

1 + 16παΛ
3

)

solutions with positive square root
exist for Λ < 0 only

H2 = − 1
4α

No

Table 3: Λ-term solutions.

α > 0 α < 0

H(5)
0 H2 = 1

12α

(

−1 +
√

1 + 48παΛ
5

)

, Λ > 0
H2 = 1

12α

(

−1 −
√

1 + 48παΛ
5

)

, Λ < − 5
48πα

H2 = 1
12α

(

−1 +
√

1 + 48παΛ
5

)

, Λ < 0

H(5)
1 No H2 = − 1

12α
, h ∈ �

, Λ = − 5
48πα

H(5)
1∗ H2 = 1

4α
, h ∈ �

, Λ = 1
16πα

No

4 Constant volume solutions (
∑

k Hk = 0).

In general case of constant volume solution we do not expect any additional relations be-
tween Hubble parameters (in contrast to the varying volume case, where only space-times with
isotropic subspaces are possible). The full set of solution is rather cumbersome to be written
down explicitly, so we restrict ourselves by finding conditions of its existence.

With
∑

i Hi = 0 Eqs. (8)-(9) take the form

∑

i

H2
i = −3

(

ω − 1

3

)

(

κ

2

)

,
∑

i

H4
i =

1

2

[

9

(

ω − 1

3

)2
(

κ

2

)2
+

ω − 1

α

(

κ

2

)

]

(18)

Obviously, for the system (18) to have nontrivial solutions it is necessary that

ω − 1

3
< 0,

(

ω − 1

3

)2
(

κ

2

)2
+

ω − 1

α

(

κ

2

)

> 0 (19)

We see, first of all, that the equation of state parameter w is restricted from above: w < 1/3.
However, positivity of quadratic and quartic sums is not sufficient for the solution to exist.
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Going further we denote:

ξ1 =
κ

2
, ξ2 =

1

α

(

κ

2

)

, ξ =
|ξ2|
ξ2
1

(20)

a = ξ1(1 − 3ω), r2 =
1

2

[

ξ2
1(1 − 3ω)2 + ξ2(ω − 1)

]

, ηk = H2
k (21)

Then equations (18) take the form:

∑

i

ηi = a,
∑

i

η2
i = r2 (22)

Variables η1, . . . , ηN can be considered as Cartesian coordinates in N -dimensional Euclidean
space; then the first of the equations (22) specifies (N − 1)-dimensional hyperplane which
intersects each axis of the coordinate system at the point a, the second of the equations (22)
describes (N − 1)-dimensional hypersphere of radius r centred at the origin. Since a > 0 and
all ηi > 0 we deal with fragments of the hypersphere and the hyperplane located in the first
orthant. These fragments are intersected iff r 6 a 6

√
Nr.

So, system (18) has nontrivial solutions iff r2

a2 ∈
[

1
N

; 1
]

. We are concerned in such solutions
of the system (18) that satisfy the condition

∑

i Hi = 0. It turns out that there is essential
difference between even- and odd-dimensional cases. Indeed, let us consider (4+1)-dimensional
spacetime; Eqs. (22) describe 4-plane and 4-sphere; in the point of contact of these surfaces
we have H2

1 = H2
2 = H2

3 = H2
4 , therefore, one can choose H1, . . . ,H4 such that H1 = H2 =

−H3 = −H4 and the condition H1 + . . . + H4 = 0 is satisfied automatically. Clearly, there is
no way one can satisfy the condition H1 + . . . + H5 = 0 in the point of tangency of 5-plane and
5-sphere because of one extra positive (or negative) summand. This results can be generalized
to the case of arbitrary dimension: for an even-dimensional spacetime there exist solutions of
the equations

∑

i

H2
i = a,

∑

i

H4
i = r2 such that

∑

i Hi = 0 in the vicinity of the point of

contact hyperplane and hypersphere specified by Eqs. (22); for an odd-dimensional spacetime
there are no solutions in the vicinity of the aforementioned point of contact. In general, there
exist a subset I ⊆

[

1
N

; 1
]

such that

∑

i

Hi = 0,
∑

i

H2
i = a,

N
∑

i=2

H4
i = r2 for all

r2

a2
∈ I (23)

We express one of the Hubble parameters from the first of Eqs. (23) and substitute it in the
remaining equations:

(

N
∑

i=2

Hi

)2

+

N
∑

i=2

H2
i = a,

(

N
∑

i=2

Hi

)4

+
∑

i

H4
i = r2 (24)

Hubble parameters can be considered here as a Cartesian coordinates; after reducing the

quadratic form

(

N
∑

i=2
Hi

)2

+
N
∑

i=2
H2

i to the canonical form by a coordinate transformation and

converting a Cartesian coordinates to spherical (%, θ1, . . . , θN−2) Eqs. (24) take the form corre-
spondingly:

%2 = a, %4f(θ1, . . . , θN−2) = r2 (25)

where f is a polynomial in sin(θk), cos(θk) for k = 1, N − 2. Substituting %2 = a into the second
of Eqs. (25) we obtain

F (θ1, . . . , θN−2, r, a) ≡ f(θ1, . . . , θN−2) −
r2

a2
= 0 (26)
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For example, for N = 4 we have:

F (θ1, θ2, r, a) = 1
4 sin4 (θ1)

(

1
2 + 11

6 cos4 (2θ2)
)

+ 1
2

(

cos2 (θ1) + sin2 (θ1) sin2 (2θ2)
)2

+

+1
8 sin2 (2θ1) cos2 (2 θ2) + 1

3
√

2
sin (2θ1) cos (2θ2)

(

cos2 (θ1) − 3 sin2 (θ1) sin2 (2 θ2)
)

− r2

a2

(27)

So, the problem of the existence of solutions of Eqs. (23) is reduced to the problem of the
existence of zeros of function F . We solve this problem numerically. Numerical calculations
performed for N ∈ [4, . . . , 8] shows that functions F has zeros for r2

a2 ∈ [σ+;σ−], i.e I = [σ+;σ−],
where 1

N
6 σ+ < 1

2 < σ− < 1. Using this fact we get:

σ+ 6
r2

a2
6 σ− ⇐⇒

{

(2σ+ − 1)ξ2
1(1 − 3ω)2 6 ξ2(ω − 1)

(2σ− − 1)ξ2
1(1 − 3ω)2 > ξ2(ω − 1)

(28)

There are two cases, depending on the sign of the parameter α:
I. α > 0.

{

(2σ+ − 1)ξ2
1(1 − 3ω)2 6 ξ2(ω − 1)

(2σ− − 1)ξ2
1(1 − 3ω)2 > ξ2(ω − 1)

⇐⇒ ω 6
1

3
− ξ+ +

√

ξ+(ξ+ + 24)

18
, ξ+ =

ξ

1 − 2σ+
(29)

II. α < 0.

{

(2σ+ − 1)ξ2
1(1 − 3ω)2 6 ξ2(ω − 1)

(2σ− − 1)ξ2
1(1 − 3ω)2 > ξ2(ω − 1)

⇐⇒ ω 6
1

3
− ξ− +

√

ξ−(ξ− + 24)

18
, ξ− =

ξ

2σ− − 1
(30)

Finally we obtain:



























∑

i

Hi = 0

∑

i

H2
i = −3

(

ω − 1
3

) (

κ

2

)

∑

i

H4
i = 1

2

[

9
(

ω − 1
3

)2 (
κ

2

)2
+ ω−1

α

(

κ

2

)

]

⇐⇒ ω 6







1
3 − ξ++

√
ξ+(ξ++24)

18 , α > 0

1
3 − ξ−+

√
ξ−(ξ−+24)

18 , α < 0

(31)

Inequalities (31) can be rewritten in terms of the energy density ρ:

ρ > ρlim(ω), ρlim(ω) =











1
36πα

1
2σ+−1

ω−1

(ω− 1

3 )
2 , α > 0

1
36πα

1
2σ−−1

ω−1

(ω− 1

3)
2 , α < 0

(32)

We see that the above mentioned nonexistence of vacuum solutions has a sharper form: for any
ω there exists a low limit for ρ. In the particular case of cosmological constant ω = −1:

ρlim(−1) =

{ − 1
32πα

1
2σ+−1 , α > 0

− 1
32πα

1
2σ−−1 , α < 0

(33)

Since the function ρlim(ω) is growing, for any non-fantom (ω > −1) matter we have ρ > ρlim(−1).
For N = 4 numerical calculations give σ− = 0.76±0.01. So, for (4+1)-dimensional spacetime

we have:

ω <







1
3 − 2ξ+

√
2ξ+(2ξ+24)

18 , α > 0

1
3 − 1.92ξ+

√
1.92ξ(1.92ξ+24)

18 , α < 0

, or ρ &











− 1
18πα

ω−1

(ω− 1

3 )
2 , α > 0

− 1
1.04

1
18πα

ω−1

(ω− 1

3)
2 , α < 0

(34)

where ξ = 1
4π|α|ρ .
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For N = 5 numerical calculations give σ+ = 0.23 ± 0.01, σ− = 0.65 ± 0.01. So, for (5 + 1)-
dimensional spacetime we have:

ω <







1
3 − 1.85ξ+

√
1.85ξ+(1.85ξ+24)

18 , α > 0

1
3 − 3.33ξ+

√
3.33ξ(3.33ξ+24)

18 , α < 0
, or ρ &











1
0.54

1
36πα

ω−1

(ω− 1

3
)
2 , α > 0

− 1
0.3

1
36πα

ω−1

(ω− 1

3)
2 , α < 0

(35)

where ξ = 1
4π|α|ρ .

5 Constant volume solutions with two different Hubble param-

eters.

1. ([N − 1] + 1)-decomposition: H1 = . . . = HN−1 ≡ H ∈ R, HN ≡ h ∈ R. It follows from the
condition

∑

i Hi = 0 that h = −(N − 1)H. Substituting these H1, . . . ,HN into Eqs. (18) we
obtain:







N(N − 1)H2 = −3
(

ω − 1
3

) (

κ

2

)

2N(N − 1)(N 2 − 3N + 3)H4 = 9
(

ω − 1
3

)2 (
κ

2

)2
+ ω−1

α

(

κ

2

)

(36)

Solution of Eqs. (36) for H2 and ρ:

H2 = − 1

3α(N − 2)(N − 3)

ω − 1

ω − 1
3

, ρ =
1

36πα

N(N − 1)

(N − 2)(N − 3)

ω − 1
(

ω − 1
3

)2 , ω <
1

3
, α < 0 (37)

2.
(

N
2 + N

2

)

-decomposition, N is even: H1 = . . . = HN

2

≡ H ∈ R, HN

2
+1 = . . . = HN ≡ h ∈ R.

It follows from the condition
∑

i Hi = 0 that h = −H. Substituting these H1, . . . ,HN into
Eqs. (18) we obtain:







NH2 = −3
(

ω − 1
3

) (

κ

2

)

2NH4 = 9
(

ω − 1
3

)2 (
κ

2

)2
+ ω−1

α

(

κ

2

)

(38)

Solution of Eqs. (38) for H2 and ρ:

H2 =
1

3α(N − 2)

ω − 1

ω − 1
3

, ρ = − 1

36πα

N

N − 2

ω − 1
(

ω − 1
3

)2 , ω <
1

3
, α > 0 (39)

3. ([n + 1] + n)-decomposition, n ≡
⌊

N
2

⌋

, N is odd: H1 = . . . = Hn+1 ≡ H ∈ R, Hn+2 = . . . =
HN ≡ h ∈ R. It follows from the condition

∑

i Hi = 0 that h = −(1 + n−1)H. Substituting
these H1, . . . ,HN into Eqs. (18) we obtain:







N(1 + n−1)H2 = −3
(

ω − 1
3

) (

κ

2

)

2N(1 + n−1)(1 + n−1 + n−2)H4 = 9
(

ω − 1
3

)2 (
κ

2

)2
+ ω−1

α

(

κ

2

)

(40)

Taking into account n = N−1
2 we get solution of Eqs. (38) for H2 and ρ:

H2 = 1
3α

(N−1)2

(N−3)(N2+N+2)
ω−1
ω− 1

3

, ρ = − 1
36πα

N(N−1)(N+1)
(N−3)(N2+N+2)

ω−1

(ω− 1

3)
2 ,

ω < 1
3 , α > 0

(41)

For N = 4 only cases 1 and 2 are realized: it is (3+1)-decomposition and (2+2)-decomposition;
for N = 5 only cases 1 and 3 are realized: it is (4+1)-decomposition and (3+2)-decomposition
and there are no other options for N = 4, 5. It is easy to check that for N = 4, 5 and ω = −1
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solutions (37),(39),(41) turn to solutions derived in our paper [22] with additionally imposed
constant volume requirement

∑

i Hi = 0.
For N = 5 there is one more decomposition, containing 3 different Hubble parameters

(see [22]): H1 = H2 ≡ H, H3 = H4 ≡ −H, H5 ≡ h; but it follows from
∑

i Hi = 0 that h = 0
and it reduces to (2 + 2)-decomposition; for the same reasons decomposition H1 = . . . = Hn ≡
H ∈ R, Hn+1 = . . . = H2n ≡ −H, HN ≡ h ∈ R

(

n ≡
⌊

N
2

⌋

, N is odd
)

reduces to (n + n)-
decomposition described above. So, all possible generalization of solutions in (4+1) and (5+1)
dimensions found in [22] for w = −1 to an arbitrary w are presented in our list.

6 Conclusions

We can write down full classification of exponential solutions in (4+1) and (5+1) dimensions.

� Vacuum solution in a pure Gauss-Bonnet gravity [15]. We have shown that this solution
is a particular one and can not be incorporated in other sets of solution of the type
considered. It requires absence of both matter and Einstein-Hilbert term.

� Solutions with volume element changing in time. Such solutions require a matter only
in the form of cosmological constant. Apart from an isotropic solution, it appears that
these solutions exist only when set of Hubble parameters is divided into subsets with
equal values of Hubble parameters belonging to the same subset (so, existence of isotropic
subspaces is required).

� Solutions with constant volume element. Solutions of this type exist only when matter
density exceeds (or equal to) some critical value which depends on the equation of state
of the matter. The parameter ω of the matter should be smaller than 1/3. In general,
solutions do not have isotropic subspaces, though can have them for special cases.

As space-times with isotropic subspaces represent a particular interest (for example, if mul-
tidimensional paradigm is indeed realized in Nature, then our own world belongs to this class
and, therefore, the case with three-dimensional subspace is of special interest since it could
represent our three-dimensional (spatially) Universe (see [23])) we write down here explicit so-
lutions of constant volume element with isotropic subspaces, generalising those found in [22].
For a general case of constant volume element (without isotropic subspaces) we present the
conditions for such solutions to exist.
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