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Abstract

The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to 
be related to an extension of the Kontsevich formality, namely, the Shoikhet–Tsygan formality. Effectively, 
this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction ver-
tices. As an application of these results we construct a family of Vasiliev-like equations that generate the 
Hochschild cocycles with sp(2n) symmetry from the corresponding cycles. A particular case of sp(4) may 
be relevant for the on-shell action of the 4d theory. We also give the exact equations that describe propaga-
tion of higher-spin fields on a higher-spin flat background. The consistency of formal higher-spin theories 
turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to 
cutting a polytope into simplices, namely, the Alexander–Spanier cocycle.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Despite the conceptual simplicity of higher-spin theories — in most of the cases they can 
be thought of as AdS/CFT [1–3] duals of free conformal fields theories [4–6] with the possibil-
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ity of having more interesting dualities resulting from alternate or mixed boundary conditions 
[7–10] — many bulk questions are still to be answered. For example, there is no yet any proof of 
quantum consistency of higher-spin theories, though they are expected to be quantum finite, see 
e.g. [11–13] for some one-loop results. There are many higher-spin theories that are expected to 
exist but have not yet been constructed in any form. One more obstacle is the lack of a standard1

action principle for any of the higher-spin theories that one would attempt to quantize. Neverthe-
less, higher-spin theories should be the simplest toy models teaching us that higher-spin fields, 
whether massless or massive like in string theory, are important for quantization of gravity. Study 
of any of the problems listed above should be important for achieving this goal.

Historically, higher-spin theories were attacked directly from the bulk side [22–24] long be-
fore the AdS/CFT era had begun. Since the earlier AdS/CFT papers addressing higher-spin 
theories it has been clear that knowing a CFT dual, i.e. just a free CFT, should be sufficient 
for constructing its bulk higher-spin dual, see e.g. recent [17,18,21]. The precise relation be-
tween the CFT side and the structures underlying higher-spin theories remains unclear and this is 
one of the questions we address here. Specifically, we investigate the formal algebraic structures 
behind higher-spin theories within the unfolded approach [24] or, what is the same, within the 
formal Q-manifold geometry.

The main advantage of the unfolded approach is that it allows one to treat higher-spin sym-
metries in the exact way without having to perform weak-field expansion over any specific 
gravitational background like AdS. The expansion parameter is the deviation of a higher-spin 
connection from being flat. Therefore, every interaction term added to unfolded equations con-
tributes to all orders in terms of the weak-field expansion.

Unfolding is not a panacea and some of the questions may still be difficult to answer. Knowing 
equations of motion certainly implies some information about the action, but cannot fully replace 
it, especially when the issue of quantization is addressed [25–28]. It is still an open problem 
of how to reproduce at least all tree-level AdS/CFT correlators from the bulk, for which the 
equations of motion suffice [29,30]. Another feature that has come to light recently [29,31–35]
is that formally consistent unfolded equations can be ill-defined as differential equations. In 
particular, they can easily encode vertices/redefinitions that are forbidden by locality in field 
theory.

Nevertheless, the unfolded formulation does uncover the structures that stay nontrivial even 
under a cavalier treatment of locality. It would be appropriate to refer to such structures as for-
mal, which is justified by the need to have more ingredients as to control locality, construct and 
quantize actions. Also, as we explain, such structures can systematically be generated via for-
mality theorems. Formal higher-spin theories is what we would like to study in the paper and the 
qualifier ‘formal’ may precede most of the statements made below.

The sketch of the proposal is as follows. Any free CFT is fully determined by specifying a 
representation of the conformal algebra that the fundamental field(s) belong to. The higher-spin 
algebra associated to such a CFT is just the algebra of matrix elements in this representation or 
the algebra of symmetries of the corresponding conformally-invariant equation, e.g. �φ = 0 [36]. 
The same algebra can also be understood as a quantization of the coadjoint orbit corresponding 
to the fundamental field, see e.g. [37,38]. Higher-spin algebras come as associative algebras by 

1 A non-standard action was proposed in [14], a feature being that it does not have the Fronsdal kinetic terms. There 
are attempts to reconstruct higher-spin theories directly from the CFT side, e.g. [15,16]. This way the cubic action was 
found in [17], see also [18,19] and [20] for the special case of AdS3. A part of the on-shell quartic action in d = 4 was 
reconstructed in [21].
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construction. The simplest examples of higher-spin algebras are just the Weyl algebras with gen-
erators satisfying [pi, qj ] = δi

j [39]. Therefore, higher-spin algebras can be constructed within 
the deformation quantization approach [40,41], with, for example, the Moyal–Weyl star-product 
being the trivial consequence of the Kontsevich formality theorem (which does not yet give a 
higher-spin theory). Higher-spin algebras are usually rigid and in any event it is not a deformation 
of the algebra structure that leads to formal higher-spin theories. It turns out that the first-order 
deformations are governed by certain Hochschild cocycle of higher-spin algebras. The cocycles 
can be constructed by employing an extension of the Kontsevich formality, namely, the Shoikhet–
Tsygan formality theorem [42,43], which for the case of the Weyl algebra was explicitly done by 
Feigin, Felder and Shoikhet [44].

We begin with a detour into the unfolded approach and its application to higher-spin theories, 
which was laid down by Vasiliev in [24]. The basic model is the 4d formal higher-spin the-
ory [45,46], but the statements are general enough. We show that the possibility to have global 
symmetries one the CFT side implies via Morita invariance that the interaction vertices are deter-
mined by the Hochschild cohomology of higher-spin algebras. Importantly, higher cohomology 
groups are expected to be trivial, which implies that the only non-trivial vertex is the first one 
and there are no obstructions at higher orders. Therefore, any formal higher-spin theory is fully 
determined by a single Hochschild cocycle of the relevant higher-spin algebra.

In the 4d case the first-order deformation is governed by a remarkable cocycle of the smallest 
Weyl algebra A1, [p, q] = 1, which was implicitly found in [24]. Therefore, from the formal 
point of view the 4d Vasiliev equations provide a non-linear completion of the deformation 
induced by the A1 Hochschild cocycle. There is a physically important, but mathematically 
inessential, detail that one needs to have two such independent deformations at a time — one 
copy would lead to the holomorphic truncation of the theory, which was studied in [47].

The Weyl algebra on 2n generators, which is denoted An, contains sp(2n) as a subalgebra of 
the associated Lie algebra L(An) and is relevant for higher-spin theories and M/string-theory at 
least for few small n, see e.g. [48–51] and [52–54]. For example, the multiplet of all massless 
fields in d = 4 enjoys sp(8) symmetry, [55,56]. As an application of the ideas above we construct 
a class of equations that take advantage of the An Hochschild cocycles for any n > 1, which is 
done in Section 5. This allows us to shed light on the Vasiliev construction, where one of the 
crucial steps is to embed the deformation as a trivial one in a larger space. Similar construc-
tion works for all An. Therefore, we show how simple equations can generate highly nontrivial 
Hochschild cocycles. Mathematically, we construct a resolution of the Hochschild complex.

From the point of view of An it becomes clear that the case of A1 plays a special role and some 
of the fields, which are clearly different for n > 1, can be identified for n = 1. This identification 
yields the Vasiliev equations, which also bring in additional nonlinearities in the perturbation the-
ory. Another feature is that the equations make sense without such an identification and provide 
description of fluctuations of higher-spin fields over a background of their own. It is noteworthy 
that one can directly jump from the equations for linear fluctuations over a sufficiently general 
background to the full nonlinear equations. In addition, the equations for the fluctuations allows 
one to write down the action of the global higher-spin transformations on the HS fields, with the 
Hochschild cocycle playing an important role.

It is interesting that the consistency of formal higher-spin theories can be understood geo-
metrically as a possibility to cut a polytope made of 2n + 2 vertices in 2n-dimensional space 
into 2n + 2 simplices. Dual to the Hochschild cocycle is an sp(2n)-invariant Alexander–Spanier 
cocycle that roughly speaking checks whether the origin belongs to a simplex, which for the case 
of sp(2) was found in [57].
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We conclude in Section 6 with some comments and open problems. The main sections are 
supplemented with appendices which either provide more technical details or reformulate some 
of the sloppy statements in the main text in a mathematically rigorous way.

2. Higher-spins and unfolding

By higher-spin theories we understand field theories that are non-linear completions of actions 
or at the very least equations of motion that describe free higher-spin fields when interactions are 
switched off.2 It is customary to represent free higher-spin fields by Fronsdal fields [63], with 
equations and gauge symmetries having the following schematic form3:

��m1...ms
+ ... = 0 , δ�m1...ms

= ∇m1
εm2...ms

+ permutations . (2.1)

It turned out to be a fruitful direction to replace Fronsdal fields by higher-spin vielbeins or frame 
fields [64], which generalizes the metric vs. vielbein approaches to higher-spin fields,4

�m1...ms
=⇒ e

a1...as−1
m dxm . (2.2)

When supplemented with the higher-spin analogs of the spin-connection and summed over an 
appropriate range of spins, which is infinite s = 1, 2, 3, ...., the set of higher-spin frame fields 
turns out to form a single gauge connection ω of a higher-spin algebra [23]. Higher-spin gauge 
connection ω is a natural object from the symmetry point of view and via the gauge transfor-
mations δω = dξ − [ω, ξ ] it already knows more about interactions than the free Fronsdal fields 
do. In particular, one can construct actions that are consistent up to the cubic order just by using 
this symmetry, the Fradkin–Vasiliev actions [22]. However, at higher orders the symmetry needs 
to be deformed and this is a problem that can be addressed via an extension of the frame-like 
approach — the unfolded approach [24], or, what is almost the same, the Q-manifold approach, 
and we review the two below. Next, we specialize to the simplest higher-spin theory of interest, 
the so-called Type-A model that contains fields with spins s = 0, 1, 2, 3, ....

2.1. Q-manifolds and formal unfolding

The unfolded approach was introduced in [24] as an extension of the frame-like approach and 
of the free differential algebras [65] approach to supergravities [66,67]. Mathematically, it is the 
same as Q-manifold [68], i.e. a graded manifold equipped with an odd vector field Q squaring 
to zero [41]. Such vector fields are called usually homological. In practice, the idea is to write 
equations in the form where the de Rham differential d = dxm ∂

∂xm of every field is expressed in 
terms of wedge-products of some other fields:

dWA = QA(W) , QA(W) =
∑

k

QA
B1...Bk

WB1 ∧ ... ∧ WBk . (2.3)

2 It is a commonly accepted fact that the field content of such theories should have massless fields of unbounded spin, 
i.e. the multiplet is always infinite, which is easy to justify from the AdS/CFT point of view or by directly studying 
higher-spin symmetries [23,58–62].

3 m, n, ... = 0, ..., d − 1 are the base manifold indices, which, for free Fronsdal fields, is Minkowski or anti-de Sitter 
space. ∇m is the associated covariant derivative. In most of the paper these indices will be hidden by contracting them 
with dxm and play no role.

4 a, b, ... = 0, ..., d −1 are the fiber indices where the metric is constant metric ηab of the Lorentz algebra so(d −1, 1).
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Here WA is some, possibly infinite, set of fields that are differential forms of various degrees over 
the space-time manifold. Functional QA(W) is assumed to have an expansion in terms of wedge 
products of the fields and QA

B1...Bk
are space-time independent structure constants. The simplest 

example of an unfolded system would be a flat connection of some Lie algebra, where QA
B1B2

turns out to literally be the structure constants and WA are one-forms valued in the algebra.
The formal consistency of the equations implies the Jacobi-like quadratic relations for the 

structure constants:

0 ≡ ddWA = dQA(W) = dWB ∧
−→
∂ QA(W)

∂WB =⇒ QB ∧
−→
∂ QA(W)

∂WB ≡ 0 , (2.4)

which can also we rewritten as Q2 = 0 upon introducing the odd vector field

Q = QA
−→
∂

∂WA . (2.5)

An important consequence of the integrability is that the equations enjoy the gauge symmetries

δWA = dξA + ξB
−→
∂ QA(W)

∂WB , (2.6)

with the gauge parameters ξA being differential forms of appropriate degrees. Now we would 
like to stop paying attention to the PDE’s that the unfolded equations may encode and focus 
upon the consistency conditions (2.4), a viewpoint pioneered already in [24]. The passage to 
formal structures is performed by noticing that the fact that WA are differential forms can be 
relaxed to the requirement that they are coordinates on some graded manifold, so that each WA

is assigned some non-negative degree. The de Rham differential d = dxm ∂
∂xm , in its turn, may 

also be understood as a homological vector field on the odd tangent bundle of the space-time 
manifold; in so doing, the differentials dxm are treated as odd coordinates in fibers. If we now 
regard d and Q as abstract homological vector fields on abstract graded manifolds, then the 
fields WA just provide the coordinate description of smooth maps between the two Q-manifolds 
and the space of solutions to the field equations (2.3) is identified with the maps that relate 
the homological vector fields, i.e. W ∗(d) = Q. Such a map may not exist for a given pair of 
Q-manifolds in which case the space of solutions is empty.5

It is clear that all the information about any theory is encoded in the structure constants. 
Moreover, it is also not surprising that the structure constants bear certain algebraic meaning 
whenever some of the fields are gauge connections.

2.2. Unfolding higher-spin fields

A priory it may be unclear how to reformulate a given theory (set of differential equations) 
in the unfolded language, especially when no theory is available, but if it is known passage to 
unfolding can always be done [69]. A good starting point in the higher-spin case is to rewrite the 
free equations of motion as unfolded equations, see the original work [70] for the 4d case. Free 

5 We do not address the problem of well-posedness of formal unfolded equations and it is worth stressing that a formal 
unfolded system may not correspond to well-defined differential equations in space-time if WA is promoted to a field 
and d is identified with dxm ∂

∂xm . The precise description of the class of unfolded equations that lead to well-defined 
PDE’s is not yet known.
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equations together with the knowledge of a higher-spin algebra [23,39] determine the field con-
tent and fix some of the boundary conditions to the non-linear deformations, which can then be 
systematically sought for. This is what we review below, the main difficulty being to explain why 
the unfolded equations do describe free fields of all spins. We begin with the Bargmann–Wigner 
equations, unfold them, and then attach Fronsdal fields via higher-spin connections.

2.2.1. Free data
Complementary to the Fronsdal fields, massless fields in 4d can be described by spin-tensors 

Cα1...α2s
and Cα̇1...α̇2s

of type (2s, 0) and (0, 2s), respectively, which are also known as higher-
spin Weyl tensors. They obey the Bargmann–Wigner equations6

εβγ ∂

∂xββ̇
Cγα2...α2s

= 0 , εβ̇γ̇ ∂

∂xββ̇
Cγ̇ α̇2...α̇2s

= 0 . (2.7)

It is not difficult to see that the equations can be rewritten as an equation of unfolded form

dxαα̇

(
∂

∂xαα̇
− ∂2

∂yα∂ȳα̇

)
C(y, ȳ|x) = 0 , (2.8)

where the HS Weyl tensors together with all nontrivial on-shell derivatives thereof are packed 
into a generating function

C(y, ȳ|x) =
∑
m,n

1

m!n!Cα1...αm,α̇1...α̇n yα1 . . . yαm ȳα̇1 . . . ȳα̇n . (2.9)

These equations encode the Bargmann–Wigner equations for C(y, 0|x) and C(0, ȳ|x), which are 
generating functions for the fields in (2.7). The rest of the equations identifies other components 
with the on-shell derivatives of the HS Weyl tensors:

Cα1...α2s+k,α̇1...α̇k
∼ ∂

∂xα1α̇1
. . .

∂

∂xαkα̇k
Cαk+1...α2s+k

, idem. for Cα1...αk,α̇1...α̇2s+k
. (2.10)

The zeroth component C(0, 0|x) turns out to obey the massless Klein–Gordon equation. A small 
change of notation allows one to cast the equations into the unfolded form

dC(y, ȳ|x) = hαα̇ ∂2

∂yα∂ȳα̇
C(y, ȳ|x) , dhαα̇ = 0 , (2.11)

where we introduced the vielbein one-form hαα̇ = σαα̇
m dxm = dxαα̇ . We added dh = 0, so that 

d of all the fields are expressed in terms of the other fields (or vanish). Therefore, the set of 
fields is WA = {hαα̇, Cα1...αm,α̇1...α̇n}. The next step would be to add spin-connection as to allow 
for coordinates other than Cartesian. Instead, we jump to AdS4 that can be described as any 
non-degenerate solution of

dhαα̇ = �α
β ∧ hββ̇ + �α̇

β̇ ∧ hαβ̇ ,
d�αβ = �α

γ ∧ �γβ + hα
α̇ ∧ hβα̇ ,

d� α̇β̇ = �α̇
γ̇ ∧ �γ̇ β̇ + hα

α̇ ∧ hαβ̇ ,
(2.12)

6 α, β, ... = 1, 2 and α̇, β̇, ... = 1, 2 are the indices of the fundamental and anti-fundamental representations of the 
Lorentz algebra sl(2, C) ∼ so(3, 1). There are two invariant tensors, εαβ and εα̇β̇ , εαβ = −εβα , ε12 = 1 and idem. for 
εα̇β̇ , which are used to raise and lower the indices according to vα = εαβvβ , vαεαβ = vβ , where εαβεαγ = δ

β
γ . As a 

part of the vector-spinor dictionary an so(3, 1)-vector, say va , corresponds to a bi-spinor vαα̇ via the usual σ -matrices, 
σαα̇
m . For example, dxm can be replaced by dxαα̇ in flat space.



544 A. Sharapov, E. Skvortsov / Nuclear Physics B 921 (2017) 538–584
where �αβ = �βα and �α̇β̇ = �β̇α̇ are the (anti)-selfdual components of the spin-connection 
�

a,b
m dxm. Here the cosmological constant was chosen as to have 1 in front of the h ∧ h terms. 

The AdS4 lift of the unfolded Bargmann–Wigner equations is [24]

D̃C(y, ȳ|x) ≡ ∇C + ihαα̇(yαȳα̇ − ∂α∂α̇)C = 0 , (2.13)

where we rescaled the fields as to account for the i-factor in D̃, which is more natural from the 
HS algebra point of view. ∇ is the Lorentz-covariant derivative:

∇ = d − �ααyα∂α − �α̇α̇ȳα̇∂α̇ , (2.14)

which rotates in the right way all the spinorial indices that are contracted with yα and ȳα̇ . 
Upon restoring the cosmological constant � it can be seen that the new, as compared to (2.11), 
term hαα̇yαȳα̇ is of order � and vanishes in the flat limit, where in Cartesian coordinates, i.e. 
�αβ, �α̇β̇ = 0, we find (2.11).

The Fronsdal field �m1...ms
is represented by two spin-tensors φα1...αs ,α̇1...α̇s and

φ′
α1...α̇s−2,α̇1...α̇s−2

that correspond to the trace-free part of �m1...ms
and its trace. The Bargmann–

Wigner fields, or the HS Weyl tensors, are the order-s curls of the Fronsdal fields:

Cα1...α2s
= ∇α1

α̇1 ...∇αs

α̇s φαs+1...α2s ,α̇1...α̇s ,

Cα̇1...α̇2s
= ∇α1

α̇1 ...∇αs
α̇s φα1...αs ,α̇s+1...α̇2s

, (2.15)

where the symmetrization over the 2s free indices is implied in both of the cases. The Weyl 
tensors can be shown to be gauge-invariant and to be consistent with (2.13). The same time the 
HS frame-like fields can be packed into a similar generating function ω = ωm(y, ȳ|x)dxm. The 
Fronsdal fields reside in the diagonal components of ω:

�m1...ms
= ωm1|α2...αs ,α̇2...α̇s h

α2α̇2
m2

. . . hαs α̇s
ms

+ permutations . (2.16)

The appropriate equations for ω read [24,70]:

Dω ≡ ∇ω − hαα̇(yα∂α̇ + ȳα̇∂α)ω = V(h,h,C) , (2.17)

where the term on the right-hand side glues C to the ω-equations and is

V(h,h,C) = hα
ν̇ ∧ hβν̇∂α∂βC(y, ȳ = 0) + hν

α̇ ∧ hνβ̇∂α̇∂β̇C(y = 0, ȳ) . (2.18)

Eq. (2.17) sets to zero almost all components of Dω. It can be shown that it imposes the Fronsdal 
equations, see e.g. [71]. The gluing term makes a dynamically trivial equation (2.15) that identi-
fies some components of C with the order-s curl of the Fronsdal field and should be read from 
right to left as a definition (2.15).

It is high time to introduce the higher-spin algebra hs that explains the field content and most 
of the equations. We would like to study bosonic fields only and require the generating functions 
to have Taylor coefficients with even number of spinorial indices, i.e. C(y, ȳ) = C(−y, −ȳ) and 
ω(y, ȳ) = ω(−y, −ȳ).

The relevant higher-spin algebra hs is simply the even part of the Weyl algebra A2 in four 
generators ŷα, ˆ̄yα̇ , [39]. The canonical normalization of the defining relations is

[ŷα, ŷβ ] = 2iεαβ , [ ˆ̄yα̇, ˆ̄yβ̇ ] = 2iεα̇β̇ . (2.19)

The quadratic monomials can be shown to form the anti-de Sitter algebra sp(4) ∼ so(3, 2)

Pαα̇ = − i

4
{ŷα, ˆ̄yα̇} , Lαβ = − i

4
{ŷα, ŷβ} , L̄α̇β̇ = − i

4
{ ˆ̄yα̇, ˆ̄yβ̇} , (2.20)
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where P , L and L̄ are the generators of translations and Lorentz transformations sl(2, C) ∼
so(3, 1). It is also convenient to replace operators with symbols thereof, which are functions of 
commutative variables yα , ȳα̇ , and multiply symbols with the Moyal–Weyl star-product:

(f � g)(y, ȳ) = f (y, ȳ) exp i

[ ←−
∂

∂yα
εαβ

−→
∂

∂yβ
+

←−
∂

∂ȳα̇
εα̇β̇

−→
∂

∂ȳβ̇

]
g(y, ȳ) . (2.21)

The elements of the HS algebra, hs, are identified with even symbols f (y, ȳ) = f (−y, −ȳ), 
which makes the bosonic projection. The background fields can be packed into a single sp(4) ∈
hs connection

� = 1

2
�αβLαβ + hαα̇Pαα̇ + 1

2
�α̇β̇L̄α̇β̇ (2.22)

and the defining equations (2.12) of AdS4 can be recognized as a flat sp(4)-connection, d� =
� � �. The covariant derivatives (2.13), (2.17) turn out to be

Dω = dω − � � ω + ω � �, D̃C = dC − � � C + C � π(�) , (2.23)

where one of the most important points is that ̃D is a twisted derivative, where π flips the sign of 
the translation generators, π(Pαα̇) = −Pαα̇ and leaves the Lorentz generators intact. It is realized 
as the HS algebra automorphism: π(f )(y, ȳ) = f (−y, ȳ) = f (y, −ȳ).

The term V(�, �, C) = V(h, h, C) will be studied in the next Section. It is responsible for 
the identification (2.15), which looks like an empty equation. Nevertheless, there is a sense in 
which V(�, �, C) is a true cohomology: no redefinition ω → ω + f (�, C) can trivialize it. If it 
were the case the connection ω would be pure gauge, Dω = 0.

It is worth stressing that the free equations are not only formal, but are well-defined differential 
equations, whose content is to impose the Fronsdal equations on fields with s = 0, 1, 2, 3, ... and 
express the other components of ω and C as derivatives of the Fronsdal fields. We also note that 
C contains derivatives of the Fronsdal fields of any order.

2.2.2. Nonlinear unfolded equations
The main consequence of having unfolded equations for free higher-spin fields is the iden-

tification of the field content: the one-form gauge connection ω of the HS algebra hs and 
the zero-form C in the peculiar twisted-adjoint representation, so that the coordinates of the 
Q-manifold are WA = {ω, C}. Therefore, the full unfolded equations should read [24]

dω = Qω(ω,C) , (2.24a)

dC = QC(ω,C) , (2.24b)

where Qω and QC are two structure functions related by the nilpotency of Q = Qω∂ω + QC∂C . 
It would be hard to guess the full system at once and a natural expansion scheme is to treat C as 
an expansion parameter (in fact, infinitely many of such parameters): 

Qω(ω,C) = V(ω,ω) + V(ω,ω,C) + V(ω,ω,C,C) + ... , (2.25a)

QC(ω,C) = U(ω,C) + U(ω,C,C) + U(ω,C,C,C) + ... . (2.25b)



546 A. Sharapov, E. Skvortsov / Nuclear Physics B 921 (2017) 538–584
The knowledge of the free equations suggests that the first two vertices are7

V(ω,ω) = ω � ω , U(ω,C) = ω � C − C � π(ω) . (2.26)

The gluing term V(�, �, C), where � is a flat sp(4)-connection, should be the AdS4 limit of 
some V(ω, ω, C) that is defined on the full HS algebra hs. Indeed, if we replace ω → � + ω

and pick the terms of the zeroth and of the first order in ω we find exactly the equations (2.12), 
(2.13), (2.17) from the previous Section, provided that V(�, �, C) gets reduced to (2.18).

Therefore, the expansion parameter C is the deviation of ω from a flat connection. Flat con-
nection is a topological solution since locally it is pure gauge. It should be stressed that this 
expansion scheme is in some sense orthogonal to the usual weak-field expansion where the vac-
uum solution is AdS and it is the Fronsdal fields that are treated as small. As an illustration let 
us write the first two orders in the weak-field expansion scheme, see [33] for explicit results,

ω = � + ω(1) + ω(2) + ... , C = 0 + C(1) + C(2) + ... , (2.27)

and confront it with the scheme above: 

Dω(1) = V(�,�,C(1)) , (2.28a)

D̃C(1) = 0 , (2.28b)

Dω(2) − V(�,�,C(2)) = ω(1) � ω(1) + V(�,ω(1),C(1)) + V(�,�,C(1),C(1)) , (2.28c)

D̃C(2) = ω(1) � C(1) − C(1) � π(ω(1)) + V(�,C(1),C(1)) . (2.28d)

Here ω(1), C(1) are free fields and the equations are equivalent to the Fronsdal ones, while the 
second-order fields ω(2), C(2) have sources bilinear in ω(1), C(1). It is clear that the pure star-
product, whose only trace in the free equations is to build up the AdS covariant derivative, 
contributes to the interactions at the second order and higher via ω(1) � ω(1). Likewise, the term 
V(�, �, C(1)) at the free level serves to identify the order-s derivative of the Fronsdal field with 
the HS Weyl tensor, but its HS algebra covariantization V(ω, ω, C) contributes to the second 
and higher order interactions. The term V(�, �, C(1), C(1)) should have an interpretation of the 
gauge-invariant part of the HS stress-tensors and its full structure, V(ω, ω, C, C), starts to be 
effective at the fourth order in weak fields, but at the second order in C.

The conclusion is that the expansion in scheme where C is treated small is more powerful than 
the usual weak-field expansion over AdS since it keeps track of the full HS algebra covariance 
and resums the terms that would contribute to different orders within the weak-field expansion.

3. Unfolding and Hochschild cohomology

The upshot of the review above is that the unfolded equations for HS fields should be looked 
for in the following form8

dω = ω � ω + V(ω,ω,C) + ... , (3.1a)

dC = ω � C − C � π(ω) + ... , (3.1b)

7 The π -automorphism can be extended from the AdS-subalgebra of the HS algebra to the full HS algebra since 
any HS algebra results from the universal enveloping algebra of the AdS algebra. In the 4d case, it is obvious that 
π(f ) = f (−y, ̄y) = f (y, −ȳ) works for the whole HS algebra.

8 At the beginning we follow the seminal paper [24], but the interpretation of some of the steps is somewhat new.
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where the first vertex to be determined is V(ω, ω, C).9 There is also a boundary condition (2.18)
that it should obey, which comes from the free equations over AdS. The Frobenius integrability 
dd = 0 or QQ = 0 implies the following consistency condition

V(ω � ω,ω,C) − V(ω,ω � ω,C) + V(ω,ω,ω � C − C � π(ω))

− ω � V(ω,ω,C) + V(ω,ω,C) � ω = 0 ,
(3.2)

which should be understood as a cohomology problem modulo trivial vertices induced by non-
linear field-redefinitions:

ω → ω + g(ω,C) . (3.3)

Formally, the problem is that of the Chevalley–Eilenberg cohomology of the HS algebra hs, 
viewed as a Lie algebra, valued in hs and with coefficients in the twisted-adjoint representation, 
which is difficult to say anything about. Fortunately, there are AdS/CFT -inspired simplifying 
assumptions, which were present already in [24] for a different reason. We would like to recall 
that higher-spin algebras are associative, while in the equations above we seem to consider them 
as Lie algebras constructed via commutator.

Gauging CFT global symmetry in the bulk and Morita invariance It turns out that one can con-
siderably simplify the problem by noticing that the very possibility to have global symmetries in 
the CFT duals of higher-spin theories allows one to replace the Chevalley–Eilenberg cohomology 
with the Hochschild one.

Bearing AdS/CFT in mind we expect HS theories to be generically duals of free CFT’s. In any 
free CFT it should be possible to add global symmetries, say u(M).10 In the dual picture of HS 
theories global symmetries on the CFT side should result in a local gauge group, say u(M). Ef-
fectively, this means that each HS field is now ‘matrix-valued’. Mathematically, the possibility to 
extend free CFT’s with global symmetries results in replacing the original HS algebra hs with the 
tensor product11 hs⊗ MatM . Therefore, one should study the Chevalley–Eilenberg cohomology 
of hs⊗ MatM viewed as a Lie algebra.

Firstly, there is a fairly general statement that the Chevalley–Eilenberg cohomology of a Lie 
algebra obtained by tensoring an associative algebra, say hs, by a matrix algebra is essentially 
equivalent to the Hochschild cohomology of hs, provided that the size of matrices is large 
enough.12 The second step is to note that due to the Morita invariance the Hochschild coho-
mology of any associative algebra, say hs, tensored with matrices of any size is isomorphic to 

9 The linearized and more generally weak-field analysis reveals that this vertex should contain two parts: one of them 
makes the right-hand side of the Fronsdal equations, i.e. it is zero in the free case and contains some interaction terms that 
are nonlinear in the Fronsdal fields otherwise. Another part is the non-linear completion of the HS Weyl tensor definition 
(2.15) that is compatible with the interaction terms. Both of them have to be HS algebra covariant.
10 Here we discuss the global symmetries that remain after the singlet constraint is imposed.
11 This corresponds to the simplest u(M)-gauging. For so(M) or usp(M) gaugings there are certain symmetry con-
straints, e.g. fields with odd spins should be in adjoint of so(M) and fields with even spins be symmetric matrices of 
so(M), see e.g. [72]. The simplest u(M) option will suffice for our purpose. Let us note, however, that the usp and so
truncations result from certain anti-automorphisms of hs ⊗ MatM and are not associative algebras by themselves, which 
can, in principle, lead to exceptional solutions of the deformation problem, see also footnote 12.
12 We would like to note that the condition of ‘size large enough’ is important. For smaller matrices, there can be addi-
tional solutions that we miss. Such solutions may, for example, be relevant for super-symmetric extensions of higher-spin 
theories that, as in the case of super-gravities, rely on non-trivial low-dimensional Fierz identities. So far all the super-
symmetric extensions of higher-spin theories were obtained by tensoring with Clifford algebras [73,74].
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the Hochschild cohomology of hs. These facts strengthen again the idea that HS theories should 
be based on associative algebra structures. For a brief explanation of the Morita invariance see 
Appendix B.

In practice, the advantage is that we can split all the functionals according to the ordering ω
and C, thinking of them as having additional matrix factors. Essentially following [24] let us 
write down the consistency relations for V that include all possible orderings:

V = V1(ω,ω,C) + V2(ω,C,ω) + V3(C,ω,ω) . (3.4)

Denoting ω̃ ≡ π(ω), the consistency relations for different orderings are: 

0 = V1(ω � ω,ω,C) − ω � V1(ω,ω,C) + V1(ω,ω,ω � C) − V1(ω,ω � ω,C) , (3.5a)

0 = V1(ω,ω,C) � ω − V1(ω,ω,C � ω̃) + V2(ω � ω,C,ω) − ω � V2(ω,C,ω)

− V2(ω,ω � C,ω) , (3.5b)

0 = V2(ω,C,ω) � ω − V2(ω,C,ω � ω) − ω � V3(C,ω,ω) + V3(ω � C,ω,ω)

+ V2(ω,C � ω̃,ω) , (3.5c)

0 = V3(C,ω,ω) � ω − V3(C,ω,ω � ω) + V3(C,ω � ω,ω) − V3(C � ω̃,ω,ω) , (3.5d)

and likewise for the redefinitions we have

ω → ω + g1(ω,C) + g2(C,ω) . (3.6)

In the last step we can look for a solution of the system with V2 = V3 = 0 as it is equivalent to 
the solution of the full system, i.e. by reducing everything to the Hochschild cohomology of the 
HS algebra hs: 

0 = V1(ω � ω,ω,C) − ω � V1(ω,ω,C) + V1(ω,ω,ω � C) − V1(ω,ω � ω,C) , (3.7a)

0 = V1(ω,ω,C) � ω − V1(ω,ω,C � ω̃) . (3.7b)

The discussion in this Section is dimensional independent and the same arguments apply to any 
HS theory in arbitrary number of space-time dimensions.13

3.1. Hochschild cocycle

Bearing in mind that one can take advantage of associative structures we can rewrite the 
consistency conditions (3.7) as 

V(a � b, c, d) − V(a, b � c, d) + V(a, b, c � d) − a � V(b, c, d) = 0 , (3.8a)

V(a, b, c) � d = V(a, b, c � d̃) , (3.8b)

where we use a, b, c, d for four arbitrary elements of the HS algebra. The last equation, which 
we refer to as equivariance condition, allows one to solve V(a, b, c) for the third argument:

V(a, b, c) = �(a,b) � c̃ . (3.9)

As a result, the first equation is of the form E � d̃ = 0, where

E = −a � �(b, c) + �(a � b, c) − �(a,b � c) + �(a,b) � c̃ = 0 . (3.10)

13 This is true unless we would like to have mixed-symmetry gauge fields that are described by forms of higher degrees 
[75–77].



A. Sharapov, E. Skvortsov / Nuclear Physics B 921 (2017) 538–584 549
This is one of the most important equations. It implies that the first order deformation is governed 
by the Hochschild two-cocycle �(a, b) with values in the twisted-adjoint representation of the 
higher-spin algebra. Therefore, the vertex is V(ω, ω, C) = �(ω, ω) � C̃.

We would like to massage it a little bit assuming that there is a non-degenerate super-trace 
operation str on the HS algebra such that str(x � y) = str(ỹ � x).14 Then E = 0 is obviously 
equivalent to str(E � d̃) = 0 for arbitrary d . On the other hand, we can write

str(E � d̃) = str
(
−a � �(b, c) � d̃ + �(a � b, c) � d̃ − �(a,b � c) � d̃ + �(a,b) � c̃ � d̃

)
= 0 (3.11)

and use the property of the super-trace str(x � y) = str(ỹ � x) as to move c, d to the left:

str(E � d̃) = str (−d � a � �(b, c) + d � �(a � b, c) − d � �(a, b � c) + c � d � �(a, b))

= 0 . (3.12)

Again, the equation above is the equation for the Hochschild cocycle

f (x � y|z,w) − f (x|y � z,w) + f (x|y, z � w) − f (w � x|y, z) = 0 , (3.13)

where the cocycle is

f (x|y, z) = str(x � �(y, z)) . (3.14)

It is clear that f (x|y, z) is a two-cocycle of the HS algebra hs with values in hs∗. Canonically, 
values in hs∗ can be traded for a functional on hs, which is what we did here-above. This is the 
case whenever a higher-spin algebra is the Weyl algebra and the π -automorphism is realized as 
f̃ (y) = f (−y), e.g. in the 4d bosonic HS theory. Assuming the natural Z2-grading on the Weyl 
algebra, there exists a super-trace strf (y) = f (0), see e.g. [46,78].

Therefore, we see that the first-order deformation of the higher-spin equations is governed by 
the Hochschild cocycle of the higher-spin algebra. In practice, it is also convenient to work with 
(3.10). Let us emphasize again that the knowledge of this single cocycle gives information about 
all orders in the usual weak-field expansion scheme. The obstructions to promoting this vertex to 
higher orders in C’s are controlled by the third cohomology groups of a particular HS algebra. For 
the 4d HS algebra (or more generally for HS algebras that are Weyl algebras) all the obstructing 
groups seem to vanish (see Appendix C). This is also confirmed by the results of [79], where the 
second-order deformation was explicitly constructed and by the Vasiliev equations [45,46]. It is 
likely the case for all of the HS algebras, so that the higher-order interactions are unobstructed 
and simply provide a nonlinear completion of V (ω, ω, C).15

Additional simplifications take place in the case of the 4d HS theory. The simplest bosonic 
HS algebra hs is the even subalgebra of the Weyl algebra A2 with yα and ȳα̇ as generators. It 

14 For the case of the 4d HS algebra the deformation factorizes into the one for y and another one for ȳ and the 
supertrace should be understood with respect to half of the variables, see also below.
15 Going to higher orders, at every second order one can use �(ω, ω) �(C �C̃)k �C̃ as a new interaction vertex (there are 
two such vertices, which is what makes it nontrivial, otherwise it can be obtained via C → C + (C̃ �C)k �C redefinition), 
which is exactly the ambiguity in one function that the original Vasiliev equations have [80]. This ambiguity seemingly 
leads to infinitely many couplings constants that start to affect higher correlators on the CFT side while having no effect 
on the three-point functions, which is inconsistent with CFT, [81]. Such vertices can be shown to be too non-local when 
one is trying to pass from formal unfolded equations to PDE’s [33]. Not surprisingly, they destroy the near boundary 
analysis too [82]. Therefore, such vertices should be forbidden. This is one of the simplest examples of formal structures 
that make no sense within field theory, AdS/CFT or just as PDE’s.
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turns out that the problem can be reduced to just A1 of either yα or ȳα̇ . Indeed, explicit realization 
of the π -automorphism is π(f )(y, ȳ) = f (−y, ȳ) = f (y, −ȳ), where the last equality is thanks 
to the truncation to the even subalgebra. Moreover, the Lorentz symmetry does not allow us 
to mix yα and ȳα̇ . Therefore, one should look for the deformation �(a, b) that acts either on 
y or ȳ. We have presented some plausible arguments, but this fact can be rigorously proved, 
see Appendix C, and, in fact, the cohomology is known. As a result, one has to solve (3.10)
for arguments in A1, i.e. for the functions of y only. We note that f (−y, ȳ) = f (y, −ȳ) but as 
functions of only y (or ȳ) they are not constrained by parity. Therefore, the first vertex in the 
4d theory is determined by the Hochschild cocycle of A1. We will give explicit formulas below 
when it comes to the general case of An.

As a historical comment, we would like to note that the existence of the Hochschild cocycle 
discussed above, as well as of its higher-dimensional generalizations, has been long known. Its 
analytical structure was discussed e.g. in [83]. It turns out that the Hochschild homology is much 
simpler than the cohomology and from the fact that there is a natural pairing of cycles with 
cocycles it follows that there exists a nontrivial Hochschild cocycle. Its explicit form, however, 
was not available before [44] and for the simplest case of A1 it was implicitly found in [24].

4. Hochschild cohomology and formality

We have pointed out that the Hochschild cocycle of the relevant higher-spin algebra turns out 
to govern the deformations of the unfolded equations to the first order. The problem is how to 
construct such a cocycle. It turns out that there is an explicit formula for the cocycle [44], which 
results from the formality theorems [41–43].

Most of this Section is devoted to the Hochschild cocycle for the general case of the Weyl 
algebra An. Its finite-dimensional subalgebra is sp(2n) which, for different n, has already showed 
up in the HS studies [48–51,55,56] and we also note that sp(2, 2) is the Lorentz algebra in AdS5. 
We review the results of [44] and extend them by using some of the ideas of [57]. In particular, 
we show that the Hochschild cocycle is a transform of a remarkable function of 2n +1 symplectic 
vectors that form a simplex and the cocycle condition has a geometric interpretation of cutting 
a polytope into simplices. This allows to represent the Hochschild cocycle as a coboundary in a 
larger space and explains the doubling trick behind the Vasiliev equations [45].

At the end we also sketch the idea of the Shoikhet–Tsygan formality [42] that gives explicit 
formulas for the Hochschild cocycles. This part makes use of the formality nomenclature.

4.1. Hochschild cocycle of Weyl algebra

Paying tribute to the conventions widely used in the higher-spin literature we define Weyl 
algebra An on 2n generators as

[yα, yβ ]� = 2iCαβ , α,β, ... = 1, ...,2n , (4.1)

where we immediately assume that we work with the symbols of the elements of the Weyl al-
gebra and some ordering for yα1 ...yαk

is chosen. We prefer to choose the Weyl ordering, i.e. the 
symbols correspond to totally symmetrized monomials yα1 ...yαk

. Therefore, the product on the 
Weyl algebra is mapped to the Moyal–Weyl star-product

(f � g)(y) = f (y) exp i

[ ←−
∂

∂yα
Cαβ

−→
∂

∂yβ

]
g(y) . (4.2)
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In practice we have to work with multi-linear operators and for that reason it is convenient to use 
the form of the star-product adopted to several arguments:

(f � g)(y) = exp i[−iyν(∂1 + ∂2)ν + (∂1)ν(∂2)
ν]f (y1)g(y2)

∣∣∣
yi=0

= exp i[p0 · p1 + p0 · p2 + p1 · p2]f (y1)g(y2)

∣∣∣
yi=0

,
(4.3)

where in the last line we denoted iy = p0, ∂1 = p1, etc. The scalar product is as usual q · p ≡
qαpβCαβ . We will omit |yi=0 hereafter. More information can be found in Appendix D.1. For 
example, the star-product of several functions corresponds to

(f1 � ... � fk)(y) = exp i

⎡⎣ ∑
0=i<j=k

pi · pj

⎤⎦f1(y1)...fk(yk) . (4.4)

The Hochschild cohomology is one-dimensional and is concentrated in degree 2n, see Ap-
pendix B. Therefore, the equation for the An Hochschild cocycle, which is a natural general-
ization of the A1-case (3.10), reads

−a1 � �(a2, ..., a2n, a2n+1) + �(a1 � a2, ..., a2n, a2n+1) − ... + �(a1, a2, ..., a2n) � ã2n+1

= 0 . (4.5)

In the language of symbols of operators one has to find a differential operator �̂(p0, ..., p2n) that 
obeys the analog of the equation above and is nontrivial, i.e. cannot be obtained as a coboundary. 
The case of A1 can be approached by elementary methods, see Appendix E for more detail.

The solution for any n was found by Feigin, Felder and Shoikhet (FFS) [44] and has a re-
markably simple form as a generating function of pi :

�̂(p0, ..., p2n) = det |p1, . . . , p2n|
∫
�

d2nu exp i

⎡⎣ ∑
0≤i<j≤2n

(1 + 2ui − 2uj )(pi · pj )

⎤⎦ ,

(4.6)

where the integration is over the 2n-simplex �:

� : u0 = 0 ≤ u1 ≤ u2 ≤ . . . ≤ u2n ≤ 1 . (4.7)

In addition to the cocycle property and manifest sp(2n)-invariance, which follows from the fact 
that pi ·pj are contracted with the sp(2n)-invariant tensor Cαβ , the FFS cocycle has a remarkable 
property that it is sp(2n)-basic:

i=2n∑
i=1

�(f0, ..., fi−1,Lαβ,fi+1..., f2n−1)(−)i = 0 , Lαβ = − i

4
{yα, yβ} , (4.8)

i.e. it vanishes whenever one of the arguments belongs to sp(2n) that is generated by Lαβ and 
is anti-symmetrized with f1, . . . , f2n−1. This property is advantageous in higher-spin theories 
whenever sp(2n) is the (generalized) Lorentz symmetry. It implies that the spin-connection does 
not appear outside the Lorentz-covariant derivative, which is a form of the equivalence principle.
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4.2. Geometric interpretation

The FFS cocycle can be represented in the form

∫
d2nu exp i

⎡⎣ ∑
0≤i<j≤2n

pi · pj + 2u ·
2n∑
0

pi

⎤⎦
× �(u + p0, u + p0 + p1, ..., u + p0 + ... + p2n) , (4.9)

where � is a function of 2n + 1 arguments and it checks roughly speaking if a (2n + 1)-tuple of 
vectors in 2n-dimensional space forms a simplex such that it contains the origin.16 The precise 
definition is

�(a1, ..., a2n+1) =
∫

dβ

2n+1∑
i=1

(−)i+1 det |a1, ..., âi , ..., a2n+1|δ2n

(
2n+1∑
i=1

βiai

)

× δ
(∑

βj − 1
)

, (4.10)

where βj ≥ 0. The prefactors are the volumes of certain simplices. The delta function with ∑
βiai contributes only if the origin belongs to the simplex. It is straightforward to see that

• � is the characteristic function of the oriented simplex and takes three values 0, ±1;
• � is Sp(2n) invariant, i.e. any linear symplectic map ai → Aai leaves it invariant;
• it is totally anti-symmetric under the permutation of all the arguments, while the FFS cocycle 

has more complicated symmetries: any permutation of the last 2n arguments needs to be 
accompanied with the appropriate rearrangement of the simplex;

• any linear transformation A of all the vectors multiplies � by sign detA;
• � vanishes whenever two arguments coincide, which, together with other properties, implies 

that the FFS cocycle vanishes on sp(2n), (4.8);
• the Hochschild cocycle condition can be interpreted in the following geometric way:∑

i

(−)i�(a1, ..., âi , ..., a2n+2) = 0 (4.11)

which expresses the fact that the polytope made of 2n + 2 points in 2n-dimensional space 
can be split into 2n +2 simplices. The origin then can be shown to belong to an even number 
(possibly zero) of such simplices with the appropriate sign factor and orientation ensuring 
the cancellation.

• � is the Alexander–Spanier cocycle of R2n. Introducing the Alexander–Spanier differen-
tial ∂ ,

(∂f )(a0, ..., ak+1) =
i=k+1∑
i=0

f (a0, ..., âi , ..., ak+1)(−)i , (4.12)

we see that (4.11) amounts to ∂� = 0.

16 In the case of A1 similar representation was discovered in [57].
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One of the crucial observations made in the case of A1 in [57] was that the cocycle property of 
� implies that it can formally be represented as its own coboundary:

�(a1, ..., a2n+1) = (∂�)(z, a1, ..., a2n+1) , (4.13)

where z is a fixed 2n dimensional vector and it is not acted on by the differential ∂ . There seems 
to be a contradiction with the fact that � corresponds to the cohomology. However, it is easy to 
see that the resulting coboundary (or the field-redefinition) is singular — there is a singularity 
whenever any of the arguments coincides with z. There is a trick that still allows one to take 
advantage of the ‘coboundary’ representation: z can be thought of as a new variable that y can 
never coincide with. This is essentially the rationale behind the doubling of oscillators that occur 
in the Vasiliev equations [45]. We will make this more precise in the next Section.

4.3. Vasiliev double

Given the FFS cocycle, let us rewrite the integral over the simplex as an integral over the 
hypercube, which can be constructed by blowing up some of the edges into faces — the idea is 
to disentangle the variables that are constrained by inequalities:

u0 = 0 ≤ u1 ≤ u2 ≤ . . . ≤ u2n ≤ 1 . (4.14)

The appropriate change of variables is

u1 = t0...t2n−1 , u2 = t0...t2n−2 , . . . u2n−1 = t0t1 , u2n = t0 , (4.15)

with the Jacobian being (t0)2n−1(t1)
2n−2 . . . t2n−2. The variables in the FFS cocycle do not fac-

torize, of course, and we cannot represent it as a star-product of several elements that depend on 
less variables. Nevertheless, the idea that a simplex can be replaced by a hypercube suggests that 
one can create the integrals and the integrands step by step: adding successively one dimension 
to the integration domain.

To be precise, let us enlarge the Weyl algebra An generated by yα by introducing auxiliary 
variables zα and postulate that for symbols of operators we have

f (y) � V (iy, iz;p2, ..., pk) → V (p0 + p1, iz − 2p1;p2, ..., pk)e
ip0·p1 . (4.16)

This induces some ‘entanglement’ between y and z, while the star-product on the functions of 
y remains unchanged. This does not fix the star-product uniquely. It is convenient to assume 
that yα and zα form doubled Weyl algebra A2n with a star-product realization constrained by 
(4.16) — we call it the Vasiliev double. Let also �n be an operator that resembles the contracting 
homotopy of the de Rham complex:

�n[f (z)] =
1∫

0

dt tn f (zt) . (4.17)

The FFS cocycle can be created by repeating a number of simple steps. One starts with

� = exp i[p0 · (iz)] , (4.18)

and it is easy to see that

�(f1, ..., f2n)

= det(p1, ..., p2n)f1(y) � �0
[
f2(y) � �1

[
...f2n(y) � �2n−1[�]]] ∣∣∣

z=0
. (4.19)
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At each of the steps i = 0, 1, ..., 2n −1 one multiplies the function from the left by the (2n − i)-th 
argument of �; then one rescales z → zt2n−i+1 and multiplies by the Jacobian t2n−i

2n−i+1. The 
determinant in front of the cocycle can also be created in this process if one starts with

Z = εα1...α2n
exp i[p0 · (iz)] , (4.20)

viewed as a 2n-form in the z-space. Then � becomes the contracting homotopy δ−1 of the de 
Rham complex in the z-space: given a k-form fα1...αk

(z) we set

δ−1[f (z)] = zν

1∫
0

dt tk−1 fνα1...αk−1(zt) . (4.21)

Let us illustrate this process in the simplest case of A1. The chain of transformations is

εαβei[p0·(iz)] → t0z
αεαβei[t0p0·(iz)] → −it0(iz

α − 2pα
2 )εαβei[t0(p0+p2)·(iz−2p2)+p0·p2] →

→ −it0(iz
αt1 − 2pα

2 )zβεαβei[t0(p0+p2)·(t1iz−2p2)+p0·p2] →
→ −t0(iz

αt1 − 2pα
2 )(izβ − 2p

β

1 )

× εαβei[t0(p0+p1+p2)·(t1iz−2t1p1−2p2)+p0·p1+p0·p2+p1·p2] →
→ 4t0(p1 · p2)e

i[t0(p0+p1+p2)·(−2t1p1−2p2)+p0·p1+p0·p2+p1·p2]

= 4t0(p1 · p2)e
i[p0·p1(1−2t0t1)+p0·p2(1−2t0)+p1·p2(1−2t0+2t0t1)] ,

where we omit the integral signs and omit the arguments ω(y1) and ω(y2). Also, in the last but 
one line we set z = 0 and in the last line one can easily see the integrand of the Hochschild 
cocycle. In what follows we will write the equations making this process automatic and more 
flexible in the choice of a representative.17

4.4. Hochschild cohomology from Shoikhet–Tsygan formality

Below we just would like to sketch the general relation between higher-spin algebras, 
Hochschild cocycles and the formality theorems [41–43]. The main point is that the proofs of 
the formality theorems are constructive and provide explicit formulas for the relevant structures.

It is known, see e.g. [37], that all higher-spin algebras underlying the corresponding gauge 
theories can be identified with the �-product algebra of functions on appropriate coadjoint orbits 
of the AdSd+1 group SO(d, 2). Since the coadjoint orbits are symplectic manifolds, the Fedosov 
deformation quantization [40] would suffice, in principle, to construct the higher-spin algebra 
in any dimension. Application of the formality theorems, however, gives rise to a much richer 
quantum geometry. Besides the noncommutative algebra of functions it involves the differential 
forms and polyvector fields forming the full quantum calculus. Loosely, the role of quantum 
differential forms is played by the Hochschild chains, while the graded Lie algebra of polyvector 
fields is substituted by the differential graded Lie algebra of continuous Hochschild cochains. 
The formality map relates the classical and quantum objects in a way respecting all the calculus’ 
operations. One can linearize the formality map at any solution to the Maurer–Cartan equation in 
the Lie algebra of polyvector fields. The corresponding tangent map yields then a homomorphism 

17 It is not hard to build a bi-complex where one differential is the Hochschild one and another one is the de Rham 
differential in the z-space, dzα ∂

α . Such resolution will give exactly the FFS cocycle via (4.19).

∂z
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Fig. 1. Graph for Moyal–Weyl star-product.

between the cohomology spaces. Particular solutions to the Maurer–Cartan equation are provided 
by the Poisson bivectors. Having in mind the higher-spin algebras, one can construct a linearized 
formality map around the Poisson bivector on a coadjoint orbit of the AdS group.

This must induce an isomorphism between the Hochschild homology of the higher-spin alge-
bra, i.e. the �-product algebra of functions on the coadjoint orbit, and the complex of differential 
forms with coboundary operator being given by the Lie derivative along the Poisson bivector.18

Finally, the dual to the tangent map should relate the corresponding cohomology spaces. Effec-
tively, this allows one to write down explicit formulas for nontrivial Hochschild cocycles in terms 
of the Kontsevich-type integrals, the Shoikhet integrals.

Due to the remarkable isomorphism SO(3, 2) ∼ Sp(4) the minimal coadjoint orbit of the 
AdS group is given by the carrier space of the fundamental representation of Sp(4). The residual 
manifold R4\{0} appears to be a homogeneous symplectic manifold with respect to the canonical 
symplectic structure and linear action of Sp(4). The minimal representation corresponds to the 
3d free conformal scalar field and the higher-spin algebra is the even subalgebra of A2. Algebra 
sp(2n), which is a subalgebra of An, does also make sense for applications to higher-spin the-
ories. The interactions are governed by the Hochschild cocycles and the precise specification of 
the relevant cocycle depends on the details, e.g. what is the realization of the twist map. Never-
theless, whenever the Weyl algebra is at the core of a higher-spin algebra, the relevant cocycle 
should be the FFS one.

For the minimal coadjoint orbit of Sp(2n) the symplectic structure corresponds to the constant 
Poisson bivector Cαβ and the deformation quantization by means of the formality map gives 
then the usual Moyal–Weyl �-product. All the configuration space integrals can be done for the 
Moyal–Weyl case, see Fig. 1 for the typical graph where each bulk point represents Cαβ and the 
two points on the boundary stay for the arguments in f � g.

The FFS cocycle for the Weyl algebra An results from the Shoikhet graphs [43] and all but 
the boundary configuration space integrals can be done for the constant Poisson bivector. There 
still remains a 2n-fold integral over the ordered points on the boundary, which is what leads to 
the integral over the simplex (4.7). The typical graphs for A1 and A2 are shown in Figs. 2, 3, 
where the boundary points correspond to the arguments of the cocycle and the central vertex to 
the ε-symbol.

One may expect that the same technique of generating nontrivial Hochschild cocycles for 
higher-spin algebras works for other cases as well, even though the corresponding symplectic 
structures and the group actions may not be linear anymore.19

18 To some extent this explains the appearance of the auxiliary differential form Z in the constructions of Section 5.2.2.
19 See e.g. [84] for the review of the quasi-conformal approach that allows one to realize the minimal unitary represen-
tations by a minimal number of oscillators.



556 A. Sharapov, E. Skvortsov / Nuclear Physics B 921 (2017) 538–584
Fig. 2. A1 graph.

Fig. 3. A2 graph.

5. Higher higher-spin theories

Inspired by the existence of the Hochschild cocycles of the Weyl algebra An for any n, we 
would like to find unfolded equations where such cocycles could serve as interaction vertices. 
We also construct Vasiliev-like equations that generate such cocycles upon solving for the extra 
variables. As it was already mentioned in the Introduction, sp(2n)-symmetries are often occur in 
the higher-spin context and we expect the systems below to be of some interest not only as a tool 
for generating nontrivial Hochschild cocycles. The 4d Vasiliev equations result from a special 
truncation that is possible for A1. In particular, we show how to dissect the Vasiliev equations 
in such a way that only the V(ω, ω, C)-vertex is generated and no more nonlinearities in C are 
needed. This also gives description of higher-spin fluctuations over a higher-spin background. 
The sp(4) system may be relevant for constructing the on-shell action for the 4d HS theory, see 
also [82].

5.1. Unfolded realization of the Hochschild cocycles

As a starting point we assume the existence of a nontrivial function �(a1, ..., a2n) of 2n

variables that obeys the Hochschild cocycle condition for some HS algebra:

−a1 � �(a2, ..., a2n, a2n+1) + �(a1 � a2, ..., a2n, a2n+1) − ... + �(a1, a2, ..., a2n) � ã2n+1

= 0 . (5.1)

Here we do not have yet to assume that the HS algebra is the Weyl algebra An, though we 
will make such an assumption in the next Section. First of all, the simplest unfolded equations 
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where � can be used as an interaction vertex20 require a (2n − 1)-form U in the twisted-adjoint 
representation of the HS algebra: 

dU = ω � U + U � ω̃ + �(ω, ...,ω) , (5.2a)

dω = ω � ω . (5.2b)

The Frobenius integrability of this equation, bearing in mind the passage from the Lie to asso-
ciative structures, is exactly the Hochschild cocycle condition. A natural extension of the system 
(5.2) is to add zero-forms K that are in the adjoint representation of the HS algebra: 

dU = ω � U + U � ω̃ + V(ω, ...,ω,K) , (5.3a)

dω = ω � ω , (5.3b)

dK = ω � K − K � ω . (5.3c)

The equivariance condition, cf. (3.8b), implies that

V(ω, ...,ω,K) = �(ω, ...,ω) � K . (5.4)

Fields in the complementary representations, i.e. zero-forms in the adjoint and one-forms (or 
higher forms) in the twisted-adjoint representations naturally occur in the higher-spin context. 
When ω is an AdS-connection, the equation for K decomposes into an infinite set of equa-
tions for Killing tensors. Whenever some unfolded equations are available one can realize the 
π -automorphism as an inner one by enlarging the set of generators. The equations remain 
consistent but the field content is at least doubled with additional fields taking values in the 
complementary representations, see e.g. [46]. In practice, one usually tries to get rid of such 
fields as they can mix with the physical ones, see e.g. [20].

A more natural, in the HS sense, way to take advantage of � is to introduce a (2n − 1)-form 
G in the adjoint representation of the HS algebra, while the discrepancy in the type of represen-
tations can be compensated by introducing a zero-form C in the twisted-adjoint representation: 

dG = ω � G + G � ω + V(ω, ...,ω,C) , (5.5a)

dω = ω � ω , (5.5b)

dC = ω � C − C � ω̃ . (5.5c)

The equivariance equation, cf. (3.8b), implies that21

V(ω, ...,ω,C) = �(ω, ...,ω) � C̃ . (5.6)

From the Hochschild cocycle vantage point the need for C is to merely adjust the type of repre-
sentation.

All the unfolded equations above are complete in the sense that no nonlinear corrections 
are needed, which is due to the fact that there is no backreaction: the fields G or U that the 
Hochschild cocycle makes a source to are different from the arguments of the cocycle. This can 
also be applied to the case n = 1.

20 In this Section, ‘interaction vertex’ simply means something nonlinear in fields.
21 Cocycles with higher powers of C may exist in the formal sense and are obtained by adding more powers of C � C̃. 
However, it is worth stressing that those are non-local when the formal unfolded equations are turned into differential 
equations. See footnote 15.
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Higher-spins on background of their own It turns out that the case of the Hochschild cocycle 
being a two-cocycle is special. In this case G is a one-form and, after renaming G to ω and ω to 
�, the system reads 

d� = � � �, (5.7a)

dω = � � ω + ω � � + V(�,�,C) , (5.7b)

dC = � � C − C � �̃ , (5.7c)

where V(�, �, C) = �(�, �) � C̃. Therefore, ω is of the same nature as �. It is important to 
stress that no higher-order terms are needed. In the context of the 4d HS theory, see Section 2.2.1, 
whenever � is a non-degenerate flat connection of sp(4), it defines AdS4. It is clear that ω and C
form the linearized unfolded equations reviewed in Section 2.2.1, which describe free higher-spin 
fields on AdS4. The equations make perfect sense for any flat �. As a result, we have exact 
equations that describe the propagation of higher-spin fields over a higher-spin flat background. 
Due to the importance of such equations we write them down explicitly in Appendix F. Clearly, 
the equations above are not bound to 4d and work the same way for any higher-spin theory in 
any other dimension d ≥ 4 whenever the Hochschild cocycle can be written down or proved to 
exist. Also, we can write down the global higher-spin algebra transformations: 

δω = ξ � ω − ω � ξ + V(ξ,�,C) − V(�, ξ,C) , (5.8a)

δC = ξ � C + C � ξ̃ , (5.8b)

where ξ are the ‘Killing tensors’, i.e. the symmetries of the vacuum that obey

δ� ≡ dξ − � � ξ + ξ � � = 0 . (5.9)

Eq. (5.8b) shows that the zero-forms belong to the twisted-adjoint representation of the HS al-
gebra. The most interesting part is in Eq. (5.8a): roughly speaking, the Fronsdal fields belong to 
the adjoint of the HS algebra with the correction due to the Hochschild cocycle hidden in V . An 
advantage of the unfolded approach is that this nontrivial transformation law is obtained just by 
replacing one � with ξ in (5.7), in accordance with the general rule (2.6).

As a final remark, it may be interesting to make the fields backreact onto themselves, which 
should call for the non-linear completion of the system. An infinite series of terms can only come 
from expansion in zero-forms. Having enough zero-forms one can use the Hochschild cocycle as 
a source for the forms with degrees all the way down to zero: 

dG2n−1 = ω � G2n−1 + G2n−1 � ω + V(ω, ...,ω,C) , (5.10a)

dGA
2n−2 = ω � GA

2n−2 − GA
2n−2 � ω + CA δ

δω
V(ω, ...,ω,C) , (5.10b)

.... , (5.10c)

dω = ω � ω + ... , (5.10d)

dCA = ω � CA − CA � ω̃ + ... . (5.10e)

The idea of this system is to replace step-by-step one-forms ω with zero-forms CA, which allows 
us to use the same Hochschild cocycle as a vertex for forms of lower degree. When we reach 
one-forms G1 we can identify those with ω, which makes fields backreact.
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5.2. Vasiliev resolution

On one hand we have a number of interesting unfolded equations where the Hochschild co-
cycles constitute the interaction terms. On the other hand it was observed in Section 4.2 that the 
Hochschild cocycle can be thought of as being a coboundary in a space with the doubled set of 
generators yα, zα and with a nontrivial star-product that mixes y and z; we called this the Vasiliev 
double. Also, the Vasiliev equations can be thought of as a device to build the Hochschild cocycle 
for A1 and a non-linear completion of it.

In this Section we construct the equations that: (i) are simple enough; (ii) are easy to check 
to be consistent; (iii) over an appropriate vacuum they give first-order differential equations with 
respect to zα ; (iv) upon solving these equations one generates the Hochschild cocycle for any 
An. The cocycle condition results from the general consistency of the system. The non-triviality 
follows from the fact that the interactions cannot be redefined away. Mathematically, we construct 
the injective resolution of the Hochschild complex in the sense of Cartan–Eilenberg [85]. This 
allows one to arrive at the Hochschild cocycle in much simpler way.

We begin with rigorous definitions of the algebra and then discuss the simplest instance of the 
equations that do not have zero-forms (5.2) and then turn to more interesting cases (5.3), (5.5).

5.2.1. Algebraic preliminaries
Firstly, we define the algebra of differential forms in x–z space that are also functions of 

x, y, z and discuss various natural operations.22 Let us introduce the bigraded associative algebra 
of differentials forms A =⊕Ap,q , whose generic element reads 

a = a(y, z|x|dx, dz) = am1···mpα1···αq (y, z|x)dxm1 ∧· · ·∧dx
mp ∧dzα1 ∧· · ·∧dzαq ∈ Ap,q .

(5.11)

Here the coefficients am1···mpα1···αq are assumed to be smooth functions in x’s and polynomial in 
y’s and z’s. The associative product in A, denoted by �, combines the usual exterior product of 
forms and the star-product of z’s and y’s23: 

(a � b)(y, z) = a(y, z) exp i

( ←−
∂

∂yα
+

←−
∂

∂zα

)
Cαβ

( −→
∂

∂yβ
−

−→
∂

∂zβ

)
b(y, z) . (5.12)

The star-product is the Moyal–Weyl one for y and z separately and is normal ordered with respect 
to y ± z. As the whole construction depends crucially on doubling of the variables from y to y, z
and on some of the properties of this star-product we refer to it as the Vasiliev double.

The algebra A is unital and 1 � a = a � 1 for all a ∈ A and 1 ∈C. Associated to the bigrading 
is the total grading Am = ⊕p+q=m Ap,q . The algebra A admits the pair of anti-commuting 
differentials: d and δ, such that dδ + δd = 0 and

d : Ap,q → Ap+1,q , d = dxi ∧ ∂

∂xi
, d2 = 0 ,

δ : Ap,q → Ap,q+1 , δ = dzα ∧ ∂

∂zα
, δ2 = 0 .

(5.13)

22 Similar objects — extensions of the Vasiliev equations with higher forms in x and z spaces — have already appeared 
in recent papers [14,82,86,87].
23 As it was already mentioned in Section 4.3, the star-product that allows one to generated the Hochschild cocycle is 
not unique and we choose the simplest representative introduced in [80]. See also [88] for some variations.
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The differentials make A into a bicomplex. It is clear that

d(a � b) = da � b + (−1)ma � db , δ(a � b) = δa � b + (−1)ma � δb , (5.14)

for all a ∈ Am and b ∈ A. One of the key ingredients that will explain some, otherwise strange, 
sign factors in the equations is to observe that the bigraded, bidifferential algebra (A, d, δ) admits 
an involutive automorphism π : A → A defined as 

(πa)(x, y, z|dx, dz) = a(x,−y,−z|dx,−dz) . (5.15)

It is easy to see that for all a, b ∈ A we have

π(a � b) = π(a) � π(b) , π2 = id , π(da) = dπ(a) , π(δa) = δπ(a) .

(5.16)

Using the �-product above and the involution π , we can define the usual commutator and the 
π -commutator as follows:

[a, b] = a � b − (−1)nmb � a ,

[a, b]π = a � b − (−1)nmb � π(a) ,
∀a ∈ An , ∀b ∈ Am . (5.17)

The commutator makes A into the Lie superalgebra L(A) endowed with the adjoint action 
ad : L(A) → End(A). The π -commutator gives rise to one more representation adπ : L(A) →
End(A), called twisted-adjoint. By definition,

L(A) � a �→ adπ
a : A → A, adπ

a b = [a, b]π , ∀b ∈ A. (5.18)

Unlike the adjoint the twisted-adjoint action is not a derivation of the associative algebra A.
In practice, we will have to deal with certain non-polynomial elements of the star-product al-

gebra and it has always been appreciated that a product of two such elements can be ill-defined. 
In the Vasiliev equations, which include the backreaction of fields onto themselves, such poten-
tially dangerous products do appear and a proof was given that no infinities arise in the formal 
perturbation theory, see e.g. [45,46]. In the case under consideration a weaker assumption will 
suffice.

Denote by Â the completion of the space A. This is given by the differential forms (5.11)
with coefficients being smooth functions in x’s and formal power series in y’s and z’s. Note that 
unlike A the completion Â is not an algebra with respect to �-product (5.12) due to the possible 
divergences. Nonetheless, Â can still be viewed as a bimodule over A.

5.2.2. Simplest equations
Let us take two elements W = Wm(y, z|x)dxm ∈ A1,0 and S = Sα(y, z|x)dzα ∈ A0,1, which 

will serve as connections along x and z. The boldface letters will be used to denote fields taking 
values in the full algebra of (y, z), i.e. in the Vasiliev double, while the usual letters are reserved 
for the z-independent fields like ω, C. We can endow the bigraded space Â with the operators 

˜DW ,DW : Âp,q → Âp+1,q , ˜DW = d − adπ
W , DW = d − adW , (5.19a)

˜DS ,DS : Âp,q → Âp,q+1 , ˜DS = δ − adπ
S , DS = δ − adS , (5.19b)

as well as their sums

˜D ,D : Âm → Âm+1 , ˜D = ˜DW + ˜DS , D = DW + DS . (5.20)

Here the action of the operators d , δ, ada and adπ
a naturally extends from A to the bigger space Â.
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Using the geometric language, we will refer to ˜D as the connection in Â. Then the curvature 

R ∈ A2 of the connection ˜D is defined in the usual way, ˜D
2 = −adπ

R , or D2 = −adR for D, 
which gives the same curvature, of course. It has three different components: along dx ∧ dx, 
dx ∧ dz and dz ∧ dz.

Following the Fedosov terminology [40], we say that ˜D or D is an abelian connection if 
R ∈ keradπ or R ∈ kerad and we call it flat if R = 0. The zero-curvature condition R = 0
amounts to

dW = 1

2
[W ,W ] , δW + dS − [S,W ] = 0 , δS = 1

2
[S,S] . (5.21)

Any abelian connection ˜D makes Â into a cochain complex with respect to the total degree.
In the case of the usual adjoint action the center of the Weyl algebra is known to be constants. 

On contrary, the center of the twisted-adjoint action is nontrivial and the kernel of the operator 
˜D : A → A is obviously nonzero. In particular, the center contains the element

Z = � dz1 ∧ · · · ∧ dz2n ∈ A0,2n , � = eiyνzν , ˜DZ = 0 , (5.22)

where � is known as the inner Klein operator [80].24 The Klein operator satisfies

� � � = 1 , � � f (y, z) � � = f (−y,−z) , f (y, z) � � = f (−z,−y)� , (5.23)

and thereby realizes the twist map (5.15) on y, z as an inner automorphism. Note that it does not 
act on dz. One may ask whether the 2n-cocycle Z is nontrivial. To answer this question let us 
consider the equation

˜DU = Z , (5.24)

where the l.h.s. makes a set of forms U to transform in the twisted-adjoint representation. Ex-
panding U in homogeneous components,

U = U0 + U1 + · · · + U2n−1 , (5.25)

where U k ∈ A2n−1−k,k , we get the following chain of equations: 

˜DSU2n−1 = Z , (5.26a)

˜DSU k−1 = −˜DWU k , k = 1, . . . ,2n − 2 , (5.26b)

˜DWU0 = 0 . (5.26c)

Connection S being flat, let us write the equations in the gauge S = 0. Firstly, we find that

δW = 0 , dW = 1

2
[W ,W ] , (5.27)

i.e. W is z-independent and we can recover the flat connection ω via W = ω(y|x). For the rest 
of the equations we find 

δU2n−1 = Z , (5.28a)

δU k−1 = −˜DωU k , k = 1, . . . ,2n − 2 , (5.28b)

˜DωU0 = 0 . (5.28c)

24 If we keep track of the Planck constant h̄, which enters the star-product as exp i[h̄←−
∂ · −→

∂ ], we find that the Klein 
operator is of quasi-classical nature exp i

[
1 z · y

]
.

h̄
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It is worth emphasizing that ˜Dω acts nontrivially on functions of z, cf. (4.16), and to large extent 
this is the most important part of this action. In order to solve the equations we introduce the 
standard contracting homotopy operator δ−1 such that δδ−1 + δ−1δ = 1. In practice, having a 
δ-closed q-form in the z-space R ≡ Rα1...αq (z)dzα1 ∧ ... ∧ dzαq we can define δ−1 as

(δ−1R)α2...αq (z) dzα2 ∧ ... ∧ dzαq = zν

1∫
0

dt tq−1Rνα2...αq (zt) dzα2 ∧ ... ∧ dzαq . (5.29)

Here the possible dependence of y, x and dx is irrelevant. Now we can solve all but one equations 
in the following way: 

U2n−1 = δ−1Z + δQ2n−2 , (5.30a)

U2n−m−1 = (−δ−1
˜Dω)m(δ−1Z) + ˜DωQ2n−m−1 + δQ2n−m−2 , m = 1, . . . ,2n − 2 ,

(5.30b)

U0 = (−δ−1
˜Dω)2n−1(δ−1Z) + ˜DωQ0 + U , (5.30c)

where Qk ∈ A2n−k−2,k parametrize the solution of the homogeneous equations, or, in other 
words, δ-exact forms. In the solution to the last equation there is a z-independent function U , 
which by the form-degree counting argument must be a (2n − 1)-form in the x-space. U rep-
resents δ-cohomology, which is concentrated in degree-zero forms in the z-space. Using the 
relations

dδ−1 + δ−1d = 0 , δ˜Dω + ˜Dωδ = 0 , (δ−1)2 = 0 , (5.31)

we observe that the d-part of ˜Dω does not contribute at all, i.e. the solution for U0 is

U0 = P + ˜DωQ0 + U , P ≡ (δ−1adπ
ω )2n−1(δ−1Z) . (5.32)

Finally, we need to substitute this into the last equation (5.28c). We note that ˜DωU0 does not 
depend on z. Indeed, we can see that

δ˜DωU0 = −˜DωδU0 = ˜Dω
˜DωU1 ≡ 0 (5.33)

thanks to the flatness of ω. The ˜DωQ0 part of U0 represents the standard gauge transformations 

and does not contribute to ˜DωU0 due to ˜D
2
ω = 0. The U -part is already z-independent. Therefore, 

the only nontrivial statement is that ˜DωP is z-independent. In any case, we can set z = 0 in the 
last equation since it has been proven to be z-independent:

˜DωU = −˜DωP
∣∣∣
z=0

= adπ
ω P
∣∣∣
z=0

, (5.34)

where we used that dδ−1 . . . |z=0 = 0. As a result, the equation reads

dU = [ω,U ]π + �(ω, . . . ,ω) , �(ω, . . . ,ω) = adπ
ω (δ−1adπ

ω )2n−1(δ−1Z)

∣∣∣
z=0

.

(5.35)

Together with the flatness of ω we discover the equations of type (5.2). Applying the operator 
˜Dω to both sides of (5.34) yields the identity 

[ω,�(ω, . . . ,ω)]π = 1

2

i=2n∑
i=1

(−)i+1�(ω, . . . , [ω,ω]︸ ︷︷ ︸, . . . ,ω) , (5.36)
i
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where we used that ω is flat. In other words, � is a 2n-cocycle of the Lie algebra L(An) with 
coefficients in the twisted-adjoint representation. Taking advantage of the fact that the equations 
make sense for matrix-valued fields as well, we can always go from L(An) to L(An ⊗ Mat)
and with the help of Appendix B this shows that the cocycle above is equivalent to the FFS 
Hochschild cocycle of Section 4.1. In order to get exactly the FFS cocycle (its anti-symmetric 
part) one should adjust the gauge ambiguity represented by the δQk-terms. It can be shown that 
the representative (5.35) is not sp(2n)-basic, cf. (4.8).

We would like to evaluate the cocycle on the simplest connection that is linear in y: ω =
ξα
myαdxm. It is abelian whenever ξα

m is x-independent, i.e. its curvature belongs to the center. 
One can make it into the flat connection

ω = ξα
myαdxm + iξα

mξβ
n xmdxnCαβ . (5.37)

The cocycle gives

�(ω, ...,ω) = 1

2n!ξ
α1 ∧ ... ∧ ξα2nεα1...α2n

. (5.38)

Let us explain why the cocycle � is nontrivial. The first evidence is that the cocycle, which is 
z-independent by construction, is obtained as ˜Dω of a potential P that is z-dependent, (5.34). 
This suggests that it cannot be represented as ˜Dω of anything that is z-independent. Indeed, if it 
were the case we would find from (5.28b)

adπ
ω (δ−1adπ

ω )2n−2(δ−1Z)

∣∣∣
z=0

= 0 . (5.39)

This is disproved by evaluating it on (5.37), which gives a multiple of ξα1 ∧ ... ∧ ξα2n−1 ×
εα1...α2n−1νdzν . Another side of the same coin is that Eqs. (5.28) are nontrivial because the initial 
system has an ‘interaction term’ Z that cannot be redefined away. Had we chosen Z to be form 
of degree less than 2n we would have found a nontrivial constraint δZ = 0. Thanks to Z being a 
top-form in the z-space we have δZ ≡ 0.

5.2.3. Equations with zero-forms
We now turn to the systems which are reminiscent of the unfolded equations for higher-spin 

fields in that there are zero-forms. The first system to reproduce is (5.3). The proposal is 

˜D
2 = 0 , (5.40a)

˜DU = Z , Z = (K � �)dz1 ∧ · · · ∧ dz2n , (5.40b)

DK = 0 , (5.40c)

where K ∈ A0,0, i.e. it is a zero-form. Z is ˜D-closed due to DK = 0. The consistency requires 
only that DWK = 0 because Z is a top-form in the z-space and its closure is trivial. Here we can 
use

˜DW (K � �) = (DWK) � � , (5.41)

i.e. the twisted-adjoint derivative is mapped to the adjoint one. However, it is important to impose 
DK = 0, which is consistent. Upon choosing the simplest S = 0 gauge we again find W = ω

and, in addition,

dK = [ω,K] , K = K(y|x) , δK = 0 . (5.42)
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The rest of the analysis does not change and at the end of the U-chain we find

dU = [ω,U ]π + V(ω, . . . ,ω,K) ,

V(ω, . . . ,ω,K) = adπ
ω (δ−1adπ

ω )2n−1(δ−1Z)

∣∣∣
z=0

, (5.43)

which is a system of type (5.3).
We now turn to the system (5.5) that contains zero-form C in the twisted-adjoint representa-

tion of the higher-spin algebra. The proposal is 

D2 = 0 , (5.44a)

DG = Z , Z = (B � �)dz1 ∧ · · · ∧ dz2n , (5.44b)

˜DB = 0 . (5.44c)

Here G ∈ A2n−1 and B ∈ A0. The trick is the opposite: the D-closure of Z does not lead to 
any constraints on B along the z-direction but imposes ˜DWB = 0. The latter equation can be 
supplemented with ˜DSB = 0. Again in the S = 0 gauge we can associate W with ω and find

dC = [ω,C]π , B = C(y|x) , δB = 0 . (5.45)

After lifting Z to the last component G0 of G, which belongs to A2n−1,0, we have

dG = [ω,G] + V(ω, . . . ,ω,C) , V(ω, . . . ,ω,C) = adπ
ω (δ−1adπ

ω )2n−1(δ−1Z)

∣∣∣
z=0

,

(5.46)

where δG = 0 represents the δ-cohomology that contributes to the solution for G0. In such a way 
we recover (5.5).

5.2.4. Comments
Let us briefly discuss some general features of the equations introduced above.

Matrix extensions Firstly, all of the systems can be generalized by letting fields take values in 
the Lie algebra built out of the tensor product of the Vasiliev double and matrix algebra. This 
fact, see also Section 3 and Appendix B, allows us to claim that the cocycles obtained above are 
equivalent to a somewhat simpler FFS cocycle of Section 4.1.

Absorbing δ The equations we discussed suffice to generate nontrivial Hochschild cocycles. 
This does not require, at least in the gauge that we employed, to use any properties of the star-
product in the z-space. Nevertheless, if we postulate the star-product to be the one in (5.12), then 
δ can be absorbed into S as a vacuum value. Indeed, [zα, f ] = −2i∂z

αf .

Higher-orders We reproduced the unfolded equations (5.2), (5.3), (5.5) with the Hochschild 
cocycle as a vertex. However, the perturbative analysis does not stop here despite the fact that 
we do not expect any corrections. It is easy to see that this is indeed so. First of all, we note 
that Sα dzα has no corrections at the first order. W does have corrections, but they are given 
by a z-independent function ω1. To cut long story shot, the perturbation theory, say for the last 
system, leads to

W = ω(y) + ω1(y) + ... , B = 0 + C1(y) + C2(y) + ... , Sα = 0 , (5.47)

i.e. to over-parametrization of ω(y) and C(y). Therefore, we can truncate at the first order or 
sum up the fluctuations into full ω(y) and C(y), for which we find (5.5).
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Relation to the Vasiliev equations As compared to Eqs. (5.5) of Section 5.1, there is an impor-
tant degeneracy in the case of A1: there are only two components in the G-field, Gαdzα and 
Gmdxm and they look similar to Sαdzα and Wmdxm. In fact, they can be identified, which re-
duces the field content and also induces additional nonlinearities in the perturbation theory. This 
way we recover the holomorphic truncation of the 4d Vasiliev equations reviewed in Appendix A:

D2 = 1

2
(B � �)dzν ∧ dzν , ˜DB = 0 . (5.48)

In this case the Z-term moves to the r.h.s. of the zero-curvature equation, i.e. R = Z and DZ = 0, 
which does not spoil the consistency. The full 4d equations are obtained by simply attaching the 
second copy of the (yα, zα) variables, (ȳα̇, ̄zα̇), and extending Sα with Sα̇ , which also requires 
one more Klein operator �̄ = eiȳν̇ z̄ν̇ and certain kinematical constraints, see Appendix A. The 
equations of this Section can also be generalized by extending y, z to several families yi, zi and 
S to Si .

The interpretation of the trick above is as follows. Eqs. (5.5) originate from system (5.44) and 
describe linear fluctuations of higher-spin fields over a HS background given by any flat connec-
tion. If the background is just AdS then they are equivalent to the free Fronsdal equations and 
contain no information about possible interactions. Here we have the equations that are valid over 
much more general backgrounds that probe all HS symmetries and it seems that this knowledge 
is enough to reconstruct the theory in one goal by identifying background and fluctuating fields 
in the generating equations (5.44).25

A2-cocycle The case of A2 is also of interest. The 4d bosonic higher-spin algebra is the even 
subalgebra of A2. Therefore, the A2 FFS cocycle gives an interesting four-form that is con-
structed out of ω, (or ω and C if we consider (5.5)). This may be interpreted as a part of an 
on-shell Lagrangian, which can be used for establishing the AdS/CFT correspondence. At free 
level such a Lagrangian was recently proposed in [89]. It should also arise from the extended 
system of [82]. We evaluate the A2-cocycle in Appendix G.

Remark on the formality It should note escape one’s notice that the nontrivial ‘interaction ver-
tex’ Z, (5.22), which eventually induces the Hochschild cocycle, is of the form of the cycle that is 
dual to this cocycle. Therefore, the proposed equations serve as a device to convert cycles, which 
are usually simple and easy to find, into cocycles, which are more complicated. In addition, the 
choice of a representative of the cohomology class is encoded in the gauge symmetries of the 
equations. It seems that the phenomenon is general enough and it would be interesting to under-
stand its precise relation to the Shoikhet–Tsygan formality. As we have already mentioned, from 
the mathematical point of view, the equations provide a resolution of the Hochschild complex 
written in the field-theoretical way.

6. Conclusions and discussion

In the paper we studied the problem of deforming higher-spin symmetries in the formal sense. 
It was shown that the first nontrivial vertex V that makes the higher-spin gauge connection ω
non-flat 

25 We are grateful to Xavier Bekaert and Maxim Grigoriev for this interpretation.
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dω = ω � ω + V(ω,ω,C) + ... , (6.1a)

dC = ω � C − C � ω̃ + ... (6.1b)

is determined by certain Hochschild two-cocycle �(a, b) of the higher-spin algebra:

−a � �(b, c) + �(a � b, c) − �(a,b � c) + �(a,b) � c̃ = 0 . (6.2)

The vertex is V(ω, ω, C) = �(ω, ω) � C̃. The Hochschild cocycle can be explicitly written down 
by employing the Shoikhet–Tsygan formality. Since the higher-spin fields backreact onto them-
selves the deformation problem does not stop at the Hochschild cocycle and higher orders are 
required. It seems that there are no obstructions at higher orders and hence reconstructing them is 
a routine procedure, which still needs to be recast in the language of formal structures. The upshot 
is that any formal higher-spin theory is completely determined by the Hochschild two-cocycle.

There are, however, cases where no non-linear completion is needed and the Hochschild cocy-
cle of the relevant higher-spin algebra is the only term beyond the higher-spin algebra structure 
constants. One example of physical importance is the propagation of higher-spin fields over 
background given by any flat connection.

There is a plenty of higher-spin theories that are expected to exist for the same reason as 
the simplest Type-A model does (its spectrum consists of totally-symmetric massless fields) and 
some tests of the AdS/CFT duality have already been done [90–96] despite the lack of any for-
mulation beyond free fields. The relevant higher-spin algebras are known and can always be 
associated with the quantization of the coadjoint orbits corresponding to the fundamental field 
of some free CFT. It is also plausible that the Hochschild two-cocycle is the only relevant coho-
mology and there are no obstructions at higher orders.

Thinking of the original problem of constructing higher-spin theories, it is also important to 
identify the structures that are responsible for locality in the field theory terms. The problem is 
that formal unfolded equations may give ill-defined differential equations upon identification of 
d with dxm∂m. The source of the problem is the appearance of nonlinearities in the zero-forms 
C that contain derivatives of the fields of unbounded order. Such nonlinearities can be present as 
they encode interactions. The C-terms cannot be just consistent with the higher-spin symmetry 
in a formal sense, but must also be constrained by locality. The other side of the coin is that 
the freedom in coboundaries corresponds to field-redefinitions and those involving powers of C
can be arbitrarily non-local while still well-defined in the formal sense, e.g. such redefinitions 
are capable of washing away the stress-tensor [31], which is clearly unphysical.26 It is possible 
to show that the deformation problem not constrained by locality is to some extent empty [97]
in the field theory terms. It would be important to at least understand which part of higher-spin 
theories is captured by formal higher-spin theories where locality is not taken into account.

One of the main applications of higher-spin theories has been to understand AdS/CFT. Con-
fining ourselves to formal structures, one can ask if there exists some way to relate formal 
higher-spin theories to the expected CFT duals. One can try to associate some invariants to the 
formal higher-spin structures and conjecture them to reproduce the CFT correlators, see e.g. [82,
98,99]. For instance, at the zeroth-order in the expansion over a flat connection of the HS algebra 
the traces are the simplest invariants [99,100]

〈j1j2...〉 = tr
(
C1 � C̃2 � ...

)
(6.3)

26 It is worth mentioning that, as was proved in [32], the 3d Prokushkin–Vasiliev equations are formally empty: can be 
reduced to flat connection/covariant constancy equations. Therefore, the nontriviality of the 3d higher-spin theories is 
entirely due to appropriate locality constraints.
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and can be shown to reproduce the free CFT correlation functions. These invariants do not cor-
respond to any field theory observables in AdS as they are non-local, but they show that the 
formal AdS/CFT duality can also make sense. It would be interesting to see if the invariants can 
be defined for the nonlinear unfolded equations, see also [82,98,99].

The simplest examples of higher-spin algebras are related to the Weyl algebra An in 2n gen-
erators. Another result is that we showed that the Hochschild cocycle for the Weyl algebra An is 
related to a remarkable function of 2n + 1 vectors in the symplectic space. The function checks 
if the origin of the space belongs to the simplex built out of the 2n + 1 vectors and it is the 
Alexander–Spanier cocycle. The Hochschild cocycle condition then has a purely geometrical in-
terpretation that a polytope made out of 2n + 2 vectors can be cut into 2n + 2 simplices. Also, 
the Hochschild cocycle can be generated by a number of simple steps by doubling the Weyl al-
gebra from yα to yα, zα : the homotopy operator of the de Rham complex in the auxiliary z-space 
is followed by the star-product with one of the arguments of the cocycle and the procedure is 
repeated till all arguments are saturated.

The observation just discussed allows one to guess the equations that generate the Hochschild 
cocycle upon solving a chain of simple δG = DG equations a la Fedosov. The nontriviality of the 
cocycle corresponds to the fact that certain ‘interaction term’ cannot be redefined away, while the 
cocycle condition is a simple consequence of DD ≡ 0. The interaction term has exactly the form 
of the cycle that is dual to the Hochschild cocycle. Therefore, the equations we found give a tool 
to convert cycles into cocycles at least for the case of the Weyl algebra. It would be interesting 
to study this problem in a more general setting.

We hope that the paper clarifies the relation between free conformal fields theories and dual 
formal higher-spin theories and can be useful for constructing more higher-spin theories. Also 
there is an interesting relation between higher-spin theories and the formality theorems that 
can be advantageous for both sides as the formality theorems give explicit formulae for the 
Hochschild cocycles and many other structures that can be of use in higher-spin theories, while it 
seems that the same structures can also be generated from certain simple higher-spin-like equa-
tions.
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Appendix A. Crash course on the Vasiliev equations

To facilitate comparison of the equations discussed in the paper with the 4d Vasiliev equations 
we review the latter below, see also [46,71]. First of all, it is easier to present what should be 
called the holomorphic truncation of the equations, see e.g. [47] for some comments. The algebra 
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is A1 and is generated by yα , where the indices α, β, ... run over two values. The doubled (y, z)
star-product is as in (5.12), but it is usually written in the integral form27: 

(f � g)(y, z) = 1

(2π)2

∫
d2ud2vf (y + u, z + u)g(y + v, z − v)eiuαvα

. (A.1)

Effectively, we have the following rules for the generating elements:

yα � f (y, z) = (yα + i∂y
α − i∂z

α)f (y, z) , zα � f (y, z) = (zα + i∂y
α − i∂z

α)f (y, z) ,

(A.2)

f (y, z) � yα = (yα − i∂y
α − i∂z

α)f (y, z) , f (y, z) � zα = (zα + i∂y
α + i∂z

α)f (y, z) .

(A.3)

The field content is

W = Wm(y, z|x)dxm , Sα = Sα(y, z|x) , B = B(y, z|x) . (A.4)

The equations (half of the equations that make the holomorphic truncation) are 

dW = W � W , (A.5a)

d(B � �) = [W ,B � �]� , (A.5b)

dSα = [W ,Sα]� , (A.5c)

[Sα,Sβ ]� = −2iεαβ(1 + B � �) , (A.5d)

{Sα,B � �}� = 0 , (A.5e)

where � is the celebrated Klein operator � = eizαyα
. The Klein operator provides the inner re-

alization of the twist automorphism, see (5.23). The simplest vacuum solution is given by a flat 
connection of the HS algebra, vanishing zero-forms and Sα is customized to induce the de Rham 
differential in the z-space:

W = ω , dω = ω � ω , B = 0 , Sα = zα . (A.6)

The perturbation theory is essentially the same as discussed in Section 5.2. The last two equations 
are equivalent to the defining relations of osp(1|2) and B � � can be get rid off, see e.g. [46,88].

Let us also note that the peculiar Eqs. (A.5d), (A.5e), after we shift S by its vacuum value 
Sαdzα → zαdzα + 2iSαdzα and rescaling B → 2iB , acquire the form of the non-zero curvature 
for S and the twisted-adjoint covariant derivative for B: 

δS = S � S + 1

2
(B � �)dzν ∧ dzν , (A.7a)

δB = S � B − B � π(S) ≡ [S,B]π . (A.7b)

Altogether the equations can be written in the form of (5.48).
The full 4d equations are obtained by proliferating the variables: yα, zα are appended by 

ȳα̇, ̄zα̇ that form the same star-product algebra. The field content is extended by the extra com-
ponent Sα̇ , which is a connection along the new direction z̄. The additional (or to be replaced) 
equations are: 

27 The normalization is such that 1 � f (y, z) = f (y, z) for any f .
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dS̄α̇ = [W, S̄α̇]� , {S̄α̇,B � �̄}� = 0 , (A.8a)

[Sα,Sβ ]� = −2iεαβ(1 + eiθB � �) , [S̄α̇, S̄β̇ ]� = −2iεα̇β̇ (1 + e−iθB � �̄) , (A.8b)

[Sα, S̄α̇]� = 0 , (A.8c)

where �̄ = eiz̄α̇ ȳα̇
and, provided the reality conditions are taken into account, there is an option 

to introduce the phase θ (the [Sα, Sβ ]� = ... equation (A.5d) needs to be replaced with the one 
above).

There are some kinematical constraints that originate from the fact that both B � � and B � �̄

must be covariantly constant with respect to W . They imply that � � B � � = �̄ � B � �̄ , i.e. 
B(−y, ȳ, −z, ̄z) = B(y, −ȳ, z, −z̄), and for the physical reasons one should impose the same 
on W .

It is obvious that instead of doubling the variables one can introduce any number M of families 
yi
α, zj

α , i = 1, ..., M with the straightforward extension of the field content by Si
α . The case of 

M = 1 corresponds to the holomorphic truncation and M = 2 is selected for physical reasons that 
the finite-dimensional subalgebra of z-independent functions is sp(4) ∼ so(3, 2). The equations 
for M > 2 are formally consistent too. The holomorphic equations present the simplest instance 
and all M > 1 cases correspond to M independent deformations acting at the same time, the only 
interdependence being via kinematical constraints on the fields.

It is interesting that the simplest gauge in the perturbation theory — the Schwinger–Fock 
gauge — yields the Hochschild cocycle that is not sp(2)-basic, see [33] for explicit formulas at 
the second order. The fact that part of the equations are the defining relations of sp(2) (actually 
osp(1|2)) allows one to find a non-linear field redefinition that restores manifest sp(2) covariance 
at higher orders [46].

Appendix B. Hochschild, cyclic and Lie algebra cohomology

Here we collect some generalities on the cohomology theory of associative and Lie algebras, 
which are mentioned in the body of the paper. For a more comprehensive and systematic exposi-
tion of the subject we refer the reader to the books [101–103].

Let A be a complex associative algebra with unit 1. Recall that a bimodule M over A is a 
complex vector space equipped with commuting left and right actions of A: 

m �→ amb ∀m ∈ M, ∀a, b ∈ A. (B.1)

The Hochschild cohomology HH •(A, M) of the algebra A with coefficients in M is the coho-
mology of the Hochschild cochain complex 

C•(A,M) : C0 ∂−→ C1 ∂−→ C2 ∂−→ · · · (B.2)

with 

Cp = HomC(A⊗p,M) , A⊗p = A ⊗ · · · ⊗ A︸ ︷︷ ︸
p

, (B.3)

and the differential

(∂f )(a1, . . . , ap+1) = a1f (a2, . . . , ap+1) +
p∑

k=1

(−1)k+1f (a1, . . . , akak+1, . . . , ap+1)

+ (−1)p+1f (a1, . . . , ap)ap+1 . (B.4)
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The Hochschild complex C•(A, M) contains a large subcomplex C̄•(A, M) of cochains that 
vanish when at least one of their arguments is equal to 1. The latter is called the normalized 
Hochschild complex. It is easy to see that the inclusion map i : C̄(A, M) → C(A, M) induces an 
isomorphism in cohomology. This means that the Hochschild cohomology of A is isomorphic to 
that of the quotient algebra Ā = A/C1.

Of particular interest is the bimodule M = A∗, with A∗ being linear dual to the space A. Un-
like the general case, the groups HH •(A, A∗) are functors of the algebra A, meaning that for 
any homomorphism of algebras h : A → B we have the homomorphism h∗ : HH •(B, B∗) →
HH •(A, A∗) in cohomology. For this reason their notation is abbreviated to HH •(A). The 
A-bimodule structure on A∗ is given by af (c)b = f (acb) for all a, b, c ∈ A, f ∈ A∗ and the 
bimodule of p-cochains is naturally identified with the space HomC(A⊗p+1, C). In other words, 
each p-cochain is given by a C-linear map ϕ : A⊗p+1 →C interpreted as 

ϕ(a0, a1, . . . , ap) = f (a1, . . . ap)(a0) . (B.5)

The action of the Hochschild differential (B.4) takes now the form 

(∂ϕ)(a0, a1, . . . , ap+1) =
p∑

k=0

(−1)kϕ(a0, . . . , akak+1, . . . , ap+1)

+ (−1)p+1ϕ(ap+1a0, a1, . . . , ap) . (B.6)

A remarkable fact, discovered by A. Connes [104], is that the Hochschild complex C•(A, A∗)
contains an interesting subcomplex composed of the so-called cyclic cochains. A p-cochain ϕ is 
called cyclic if 

ϕ(ap, a0, a1, . . . , ap−1) = (−1)pϕ(a0, a1, . . . , ap) . (B.7)

The cohomology groups of this subcomplex are denoted by HC•(A), where the letter C refers 
either to cohomologie cyclique or cohomologie de Connes. Since its appearance in the eight-
ies, the cyclic cohomology theory has attracted both mathematicians and physicists due to its 
fundamental role in noncommutative geometry [103,105]. In many practical cases the cyclic co-
homology groups can be computed from the Hochschild cohomology due to Connes’ long exact 
sequence: 

· · · → HCp(A)
I→ HHp(A)

B→ HCp−1(A)
S→ HCp+1(A) → ·· · (B.8)

See [102,105] for the definition of the operators I , B and S.
Let Mr (C) denote the algebra of complex r × r-matrices. Tensoring this algebra with an 

associative algebra A, we get the matrix algebra Mr(A) = A ⊗ Mr (C), i.e., the algebra of 
matrices with entries in A. Similarly, tensoring an A-bimodule M with Mr (C) yields the 
Mr (A)-bimodule Mr (M) = M ⊗ Mr (C). It turns out that the functor ⊗Mr (C) affects nei-
ther the Hochschild nor the cyclic cohomology, namely, 

HH •(A,M) � HH •(Mr (A),Mr (M)) , HC•(A) � HC•(Mr (A)) . (B.9)

At the level of cochains the above isomorphisms are induced by the so-called cotrace map. For 
the Hochschild complex it is given by 

cotr : Cp(A,M) → Cp(Mr (A),Mr (M)) , (B.10)
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f (a1, . . . , ap) �→ F(a1 ⊗ u1, . . . , ap ⊗ up) = f (a1, . . . , ap)u1 · · ·up ,

ai ∈ A, ui ∈ Mr (C) ,

and for the cyclic cochains we have 

ϕ(a0, a1, . . . , ap) �→ �(a0 ⊗ u0, a1 ⊗ u1, . . . , ap ⊗ up) = f (a1, . . . , ap)Tr(u0u1 · · ·up) .

(B.11)

The homotopically inverse to the cotrace map is induced by the natural inclusions 

inc : A �M1(A) →Mr (A) , inc : M �M1(M) →Mr (M) . (B.12)

The isomorphisms (B.9) are known as the Morita invariance of the Hochschild and cyclic coho-
mology.

The above invariance of the cohomology theories is a consequence of the Morita equivalence
of the algebras A and Mr (A). By definition, two algebras A and B are said to be Morita equiv-
alent if there is an equivalence between the category of (left) A-modules and the category of 
(left) B-modules. In more technical terms, the Morita equivalence amounts to the existence of an 
A − B-bimodule P and a B − A-bimodule Q such that the following bimodule isomorphisms 
take place: P ⊗B Q � A and Q ⊗A P � B . To see the Morita equivalence of the algebras A and 
B =Mr (A) it is enough to take P = Ar (row vectors) and Q = Ar (column vector). For a more 
complete treatment of the Morita equivalence, see [102,106].

Consider now a complex Lie algebra L and let M be an L-module. We write [m, x] for the 
right action of an element x ∈ L on m ∈ M . Such a module is also called a representation of the 
Lie algebra L. Denote by �•L the exterior algebra of the space L. Then the Chevalley–Eilenberg 
cochain complex is the sequence of homomorphisms 

C•(L,M) : C0 δ−→ C1 δ−→ C2 δ−→ · · · , (B.13)

where 

Cp = HomC(�pL,M) , �pL = L ∧ · · · ∧ L︸ ︷︷ ︸
p

, (B.14)

and the differential is given by 

(δf )(x1 ∧ . . . ∧ xp+1) =
p+1∑
k=1

(−1)k[f (x1 ∧ · · · ∧ x̂k ∧ · · · ∧ xp+1), xk]

+
∑

1≤k≤l≤p+1

(−1)k+l−1f ([xk, xl] ∧ · · · ∧ x̂k ∧ · · · ∧ x̂l ∧ · · · ∧ xp) .

(B.15)

As usual x̂i means that the argument xi has been omitted. The corresponding cohomology groups 
are denoted by Hp(L, M) and called the Lie algebra cohomology groups.

Any A-bimodule M can be viewed as a right module over the associated Lie algebra L(A) if 
we set 

[m,a] = ma − am ∀a ∈ L(A) , ∀m ∈ M . (B.16)

This allows one to relate the Hochschild cohomology of A with the Lie algebra cohomology of 
L(A). The relation is established by the anti-symmetrization map

ε : C•(A,M) → C•(L(A),M) , (B.17)
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(εf )(a1 ∧ · · · ∧ ap) =
∑
σ∈Sp

sgn(σ )f (aσ(1), . . . , aσ(p)) .

It is easy to check that δε = ε∂ ; hence, ε is a cochain map inducing a homomorphism in coho-
mologies: 

ε∗ : HH •(A,M) → H •(L(A),M) . (B.18)

In general, this homomorphism is neither injective nor surjective.
A more definite relationship between the Hochschild and Lie algebra cohomologies can be 

made for the matrix Lie algebras. By the matrix Lie algebra glr(A) we mean the Lie algebra 
associated to the algebra Mr (A). The Lie bracket in glr (A) is just the matrix commutator. If M
is a bimodule over A, then Mr(M) is the natural bimodule over Mr(A) and the adjoint module 
over glr (A).

One of the central results of the cyclic cohomology theory is the following

Theorem 1. For r large enough, there exist isomorphisms

H •(glr (A),Mr (M)) � HH •(A,M) ⊗ H •(glr (A),C) ,

H •(glr (A),C) � �•(HC•−1(A)) .

As a result the groups H •(glr (A), Mr (A)) are computable from HH •(A, M) and HC•(A)

(no matrices enter). Moreover, the computation of the cyclic cohomology HC•(A) can further 
be reduced to the Hochschild cohomology HH •(A) via the Connes exact sequence (B.8). The 
homological versions of the above isomorphisms for trivial coefficients were established inde-
pendently and simultaneously by Loday–Quillen [107] and Tsygan [108]. Generalization to the 
adjoint representation was given by Goodwillie [109]. For the proof of dual isomorphisms in 
cohomologies see [102,110].

Applying the theorem above to the Weyl algebra one can deduce the following

Theorem 2. For r � 2n, 

H 2n(glr (An), glr (An)
∗) �C , Hp(glr (An), glr (An)

∗) = 0 ∀p < 2n .

See [83] for the proof.

Appendix C. Weyl algebra and around

Let V be a 2n-dimensional symplectic space over C with the Cartesian coordinates yα and 
the dual symplectic form Cαβ = C(yα, yβ). Associated to V is the Weyl algebra An defined 
as an associative, unital algebra over C generated by 2n variables yα subject to the relations 
yαyβ − yβyα = 2iCαβ .

Alternatively, one can define the Weyl algebra as the space of complex polynomials 
C[y1, . . . , y2n] endowed with the Moyal–Weyl �-product: 

(a � b)(y) = exp

(
iCαβ ∂

α

∂

β

)
a(y)b(z)|z=y , ∀a, b ∈C[y1, . . . , y2n] . (C.1)
∂y ∂z
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Passing to another set of generators, if necessary, it is possible to bring the matrix C = (Cαβ)

into the block-diagonal form 

C =

⎛⎜⎜⎜⎜⎜⎝
0 1

−1 0
. . .

0 1
−1 0

⎞⎟⎟⎟⎟⎟⎠ . (C.2)

Now it becomes clear that the algebra An is isomorphic to nth tensor power of A1. In what 
follows we will assume that the matrix C has the canonical form (C.2).

As usual, the algebra An can be viewed as a bimodule over itself: 

c �→ a � c � b ∀a, b, c ∈ An . (C.3)

This bimodule structure extends naturally from the space An to its completion Ân =
C[[y1, . . . , y2n]]. The latter is given by the formal power series in y’s with complex coefficients. 
(Notice that the �-product of two elements of Â is ill-defined.)

The group Sp(2n, C), acting in V by linear transformations preserving the symplectic form, 
defines a subgroup in the group Aut(An) of automorphisms of the Weyl algebra An. Let G be a 
finite subgroup of Sp(2n, C) and denote by ag the action of g ∈ Aut(An) on the element a ∈ An. 
Then we can define the smash product An � G of the Weyl algebra An and the group algebra 
C[G]. As a vector space An �G is given by the tensor product An ⊗C[G] and multiplication is 
given by 

(a ⊗ g)(b ⊗ h) = a � bg ⊗ gh (C.4)

for all a, b ∈ An and g, h ∈ G. Many higher-spin algebras of physical interest can be defined as 
smash products. For example, the higher-spin algebra underlying four-dimensional field theories 
with N = 2 supersymmetry [39] is given by the smash product A2 �G with 

G = Z2 ×Z2 ⊂ Sp(1) × Sp(1) ⊂ Sp(2) . (C.5)

More explicitly, the group G is generated by the pair of commuting symplectic reflections 
g1, g2 ∈ G, whose action on the canonical generators is given by 

(y1)g1 = −y1 , (y2)g1 = −y2 , (y3)g1 = y3 , (y4)g1 = y4 ,

(y1)g2 = y1 , (y2)g2 = y2 , (y3)g2 = −y3 , (y4)g2 = −y4 .

(C.6)

Associated to the Weyl algebra An is the Lie algebra L(An), with the Lie bracket given by the 
commutator [a, b] = a � b − b � a. The assignment 

L(An) � a �→ adab = [a, b] ∀b ∈ An (C.7)

defines the adjoint representation of the Lie algebra L(An) in the space An. Given an element 
g ∈ Aut(An), one can define the so-called twisted-adjoint representation by setting 

L(An) � a �→ ad
g
a b = a � b − b � ag ∀b ∈ An . (C.8)

We will refer to [a, b]g = a �b−b �ag as the g-commutator. The usual commutator corresponds 
to g = e. The twisted-adjoint representation extends in the natural way from the space An to its 
completion Ân.
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The �-product defined by Eq. (C.1) corresponds to the so-called Weyl (or symmetric) ordering 
of y’s. There are, of course, many other ways to order the generators in monomials and all of 
them can uniformly be described by means of a symmetric form Gαβ = G(yα, yβ) on V ∗, see 
e.g. [111]. For this end, one needs only to replace the matrix Cαβ in (C.1) by the sum Cαβ +
Gαβ . Let us denote the resulting product by �G. It is not hard to check directly the associativity 
of the �G-product, but this also follows from a more stronger statement: The algebras (An, �)
and (An, �G) are isomorphic to each other. The isomorphism is established by the invertible 
pseudo-differential operator U : An → An defined by 

U = e−i� , � = Gαβ ∂2

∂yα∂yβ
, U−1 = ei� . (C.9)

One can see that 

a �G b = U−1((Ua) � U(b)) ∀a, b ∈ An . (C.10)

It should be stressed that this isomorphism of the associative algebras (An, �) and (An�G)

does not extend to the isomorphism of the corresponding bimodules Ân. The reason is obvi-
ous: the action of the pseudo-differential operator U is ill-defined in the space of formal power 
series in y’s. So, one should be careful with reorderings of generators when elements of the 
space Ân are involved into the game. In the context of higher-spin theories, for example, the 
non-polynomial functions of y’s appear usually under the name of inner Klein operators [24]. 
The presence of these operators makes it difficult to pass to the Weyl ordering of all the oscilla-
tor variables in Vasiliev’s equation [80] unless more general functions on the Weyl algebra are 
introduced, see [112,113] for examples.

The Hochschild cohomology groups of the Weyl algebra as well as its smash products have 
been computed for various coefficients by making use of the Koszul resolution [106,114]. The 
existence of the Koszul resolution implies, among other things, that HHp(An, M) = 0 for any 
M and p > 2n. Let us also mention the following two results.

Theorem 1. The cohomology space HHp(An�G, An�G) is naturally isomorphic to the space 
of conjugation invariant functions on the set Sp of elements g ∈ G such that 

rank(1 − g)|V = p .

Since Im(1 − g) is a symplectic vector space it follows immediately that the odd cohomology 
of An �G with coefficients in itself vanishes.

For any given element g ∈ Sp(n, C) denote by Ang the An-bimodule such that 

c �→ a � c � bg ∀a, b, c ∈ An (C.11)

(the so-called twisted action of An on itself). Then we have

Theorem 2. If rank(1 − g) = q , then HHq(An, Ang) � C and HHp(An, Ang) = 0 for p �= q .

The proofs can be found in [115] (see also [114]). In view of the Morita invariance (B.9) the 
above theorems hold true if one replaces the Weyl algebra by its matrix extension Mr(An).

By way of illustration consider the higher-spin algebra A = A2 � G defined by Rels. (C.5), 
(C.6). The group G = {e, g1, g2, g1g2} being abelian, 

S0 = {e} , S1 = {∅} , S2 = {g1, g2} , S3 = {∅} , S4 = {g1g2} , (C.12)
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and by Theorem 1

HH 0(A,A) �C , HH 1(A,A) = 0 , HH 2(A,A) �C
2 ,

HH 3(A,A) = 0 , HH 4(A,A) �C .

The equality dimHH 2(A, A) = 2 proves that the two linearly independent deformations 
V(ω, ω, C) found in [24], see (F.3), exhaust all possibilities. The vanishing of the third group 
seems to indicate the absence of higher-order obstructions for a consistent interaction. It is not 
hard to guess the structure of cocycles representing nontrivial cohomology classes: 

1, β1β2�2(α1, α2)g1, α1α2�2(β1, β2)g2, , �4(a1, a2, a3, a4)g1g2 .

Here we interpret A2 as A1 ⊗ A1 and represent each element a ∈ A2 as a linear combination of 
monomials a = α(y1, y2)β(y3, y4) with coefficients in C[G]; �n is the standard FFS cocycle 
for An.

Appendix D. Equations for the vertex

The equation for the Hochschild cocycle are discussed in the main text. In this Appendix we 
would like to reduce it to a functional equation for the symbols of operators.

D.1. Symbol calculus

The Moyal–Weyl star-product can be defined as

(f � g)(y) = exp i[−iyν(∂1 + ∂2)ν + (∂1)ν(∂2)
ν]f (y1)g(y2)

∣∣∣
yi=0

(D.1)

= exp i[p0 · p1 + p0 · p2 + p1 · p2]f (y1)g(y2) , (D.2)

where we introduced the following notation: p0 = iy, p1 = ∂1, ..., pn = ∂n, pij = pi · pj =
piαpjβCαβ . In practice, it is also important to express the star-product with a twisted element 
g̃(y) = g(−y) of the Weyl algebra in terms of g(y):

f � g̃ = exp i[p0 · p1 − p0 · p2 − p1 · p2]f (y1)g(y2) (D.3)

and we systematically omit |yi=0 at the end of the formulae. Mnemonically the rule is: see the 
twist — reverse the sign of the corresponding p. The operators acting on n functions can be 
understood as functions of pi :

V (a1, ..., an) = v(iy, ∂1, ..., ∂2)a1(y1)...an(yn)

∣∣∣
yi=0

. (D.4)

The dictionary between symbols of the operators and various ways of adding one more argument 
via taking star-product is:

a1 � V (a2, ..., an+1) → v(p0 + p1,p2, ..., pn+1)e
+ip0·p1 ,

V (a1, ..., an) � an+1 → v(p0 − pn+1,p1, ..., pn)e
+ip0·pn+1 ,

V (a1, ..., an) � ãn+1 → v(p0 + pn+1,p1, ..., pn)e
−ip0·pn+1 ,

V (a1, ..., ak � ak+1, ..., an+1) → v(p0, ..., pk−1,pk + pk+1,pk+2, ..., pn+1)e
+ipk ·pk+1 ,

V (a1, ..., ak � ãk+1, ..., an+1) → v(p0, ..., pk−1,pk − pk+1,pk+2, ..., pn+1)e
−ipk ·pk+1 ,

a1 � Ṽ (a2, ..., an) → v(−p0 − p1,p2, ..,pn+1)e
+ip0·p1 .



576 A. Sharapov, E. Skvortsov / Nuclear Physics B 921 (2017) 538–584
Also it is important that

Ṽ (a1, ..., an) = V (ã1, ..., ãn) (D.5)

unless V breaks sp(2n). It is sometimes convenient to remove the twist from the argument:

V (a1, ..., ãk, ..., an) → v(p0, ...,−pk, ...,pn) . (D.6)

D.2. Vertex

With the help of the dictionary above the equations for the first vertex can be written as28:

0 = −v1(p0 + p1,p2,p3,p4)e
ip01 + v1(p0,p1 + p2,p3,p4)e

ip12

− v1(p0,p1,p2 + p3,p4)e
ip23 + v1(p0,p1,p2,p3 + p4)e

ip34 ,

0 = v1(p0 − p4,p1,p2,p3)e
ip04 − v1(p0,p1,p2,p3 − p4)e

−ip34

+ v2(p0,p1 + p2,p3,p4)e
ip12 − v2(p0 + p1,p2,p3,p4)e

ip01

− v2(p0,p1,p2 + p3,p4)e
ip23 ,

0 = v2(p0 − p4,p1,p2,p3)e
ip04 − v2(p0,p1,p2,p3 + p4)e

ip34

+ v2(p0,p1,p2 − p3,p4)e
−ip23

+ v3(p0,p1 + p2,p3,p4)e
ip12 − v3(p0 + p1,p2,p3,p4)e

ip01 ,

0 = v3(p0 − p4,p1,p2,p3)e
ip04 − v3(p0,p1,p2,p3 + p4)e

ip34

+ v3(p0,p1,p2 + p3,p4)e
ip23 − v3(p0,p1 − p2,p3,p4)e

−ip12 .

The field-redefinitions result in

δv1(p0,p1,p2,p3) = g1(p0 + p1,p2,p3)e
ip01 − g1(p0,p1 + p2,p3)e

ip12

+ g1(p0,p1,p2 + p3)e
ip23 ,

δv2(p0,p1,p2,p3) = g2(p0 + p1,p2,p3)e
ip01 − g2(p0,p1 + p2,p3)e

ip12

+ g1(p0 − p3,p1,p2)e
ip03 − g1(p0,p1,p2 − p3)e

−ip23 ,

δv3(p0,p1,p2,p3) = −g2(p0,p1,p2 + p3)e
ip23 + g2(p0 − p3,p1,p2)e

ip03

+ g2(p0,p1 − p2,p3)e
−ip12 .

Choosing the left ordering once and for all, i.e. V2 = V3 = 0, we end up with 

0 = −v1(p0 + p1,p2,p3,p4)e
ip01 + v1(p0,p1 + p2,p3,p4)e

ip12 (D.7a)

− v1(p0,p1,p2 + p3,p4)e
ip23 + v1(p0,p1,p2,p3 + p4)e

ip34 ,

0 = v1(p0 − p4,p1,p2,p3)e
ip04 − v1(p0,p1,p2,p3 − p4)e

−ip34 . (D.7b)

These equations are equivalent to the Hochschild cocycle condition, as shown in the main text. 
The second equation is easy to solve.

28 As different from [24] we do not factorize the star-product out of v.
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Appendix E. Simple solution of the Hochschild problem

It turns out that the case of the A1 Hochschild cocycle is relatively simple and does not require 
anything beyond elementary mathematics. The equation for the cocycle

−a � �(b, c) + �(a � b, c) − �(a,b � c) + �(a,b) � c̃ = 0 (E.1)

should be rewritten in the language of generating functions, which gives

−�̂(p0 + p1,p2,p3)e
ip0·p1 + �̂(p0,p1 + p2,p3)e

ip1·p2 − �̂(p0,p1,p2 + p3)e
ip2·p3

+ �̂(p0 + p3,p1,p2)e
−ip0·p3 = 0

The same equation is obtained by plugging the solution of (D.7b) into (D.7a). The only challenge 
to solve the equation comes from the last term where one has a twisted element of the algebra, c̃. 
Had it not been for the twist a simple solution would have been to take �(a, b) = a � b, whose 
generating function is

�̂(p0,p1,p2) = ei[p0·p1+p0·p2+p1·p2] (E.2)

and see that all the four terms cancel pairwise. In terms of generating functions this means that 
the shifts of the arguments get appropriately compensated by the exponential factors. There is no 
cohomology in this case, but it is important to realize that the ansatz for solution should contain 
some exponentials that are linear in the scalar products pi ·pj , otherwise there is no way to have 
cancellation between the terms in the equation. The pure star product ansatz is unable to solve 
the right equation because of the very last term: while the first two still cancel each other, the 
third one remains unpaired because the fourth term yields a completely different exponential due 
to the twist. Therefore, one has to add one more exponential to the ansatz that would compensate 
the fourth term. This is possible, but the cancellation is not perfect as one more exponential is 
generated. One needs to add the third exponential to the ansatz, which closes the chain: there are 
three exponentials in the ansatz and they generate four different exponentials via equations and 
should cancel each other in triplets. It is important that the form of the exponentials is thus fixed. 
The cancellation in triplets cannot be achieved with constant coefficients. Also, any manifestly 
smooth solution has good chances to be a coboundary. These two arguments makes one think of 
the Plucker identities:

(p0 · p1)(p2 · p3) + (p1 · p2)(p0 · p3) − (p0 · p2)(p1 · p3) ≡ 0 , (E.3)

which express a simple fact that it is impossible to have more than two linearly independent 
vectors in two dimensions. Let us assume that the Hochschild cocycle has the form of the three 
already found exponentials multiplied by a number of fractions:

�̂(...) ∼
∑

i

N

Di

eai , (E.4)

where N is the common factor. In order to make the Plucker identities effective one has to make 
the denominators be the product of two factors that are linear in the scalar products:

�̂(...) ∼ N

d1d2
ea1 + N

d2d3
ea2 + N

d3d1
ea3 . (E.5)

Then it turns out that the denominators are completely fixed by the requirement for �̂ to be 
regular. Therefore, the only problem that remains is to fix the nominator N , which can be found 
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by looking at the Taylor expansion of the cocycle equation, N = p1 · p2. It is then easy to see 
that N is a unique numerator that solves all the four equations. The fact that the higher terms in 
the Taylor expansion of �̂ cannot affect the lower ones makes it easy to see that the solution is a 
cohomology. The final form of the solution is:

�̂(p0,p1,p2) = z

[
ei[x+y+z]

(x + y)(y + z)
− ei[x−y−z]

(x − z)(y + z)
+ ei[−x−y+z]

(x + y)(x − z)

]
, (E.6)

where x = p0 · p1, y = p0 · p2, z = p1 · p2. It coincides with the FFS cocycle (4.6), where the 
integrand for the A1 case is exp i[x(1 − 2u1) + y(1 − 2u2) + z(1 + 2u1 − 2u2)].

If we need to find a higher-order cocycle, for example for sp(4), it is again clear that one 
should have four factors in denominators and five exponentials to close the chain of equations, 
which is due to the Plucker identities being of higher order, see Appendix G.

Another approach In the seminal paper [24] where the foundations of the unfolded approach 
to HS theories were laid done, a slightly different strategy was used. First of all, one can look at 
the set of two equations (D.7) resulting after setting V2,3 = 0. The idea of [24] is to look for a 
seemingly trivial cocycle that comes from a singular coboundary, though the cocycle itself must 
be regular. The fact that it is represented as a formal coboundary ensures that it is closed, while 
the singularity of its coboundary representation guarantees that it cannot be exact in the class of 
regular functions. The singular coboundaries that do the job are

ĝ1(p0,p1,p2) = zei[x−y−z]

(z − x)(y + z)
− zei[−x−y+z]

(x + y)(z − x)
, (E.7)

ĝ2(p0,p1,p2) = zei[−x+y−z]

(x − y)(x + z)
. (E.8)

In verifying that the cocycle is regular it is important to use the Plucker identities. At the end of 
the day the two methods outlined above are similar to each other and the problem is to a find a 
function of three variables with specific properties.

Appendix F. Higher-spins on background of their own

As it was discussed in Section 5.1, having the Hochschild two-cocycle one can immediately 
write down the equations that describe propagation of higher-spin fields over a background of 
their own that is represented by a flat connection of the higher-spin algebra. For the case of the 
4d HS theory the relevant vertex can be found in [24]. Changing slightly notation we have 

d� = � � �, (F.1a)

dω = � � ω + ω � � + V (�,�,C) , (F.1b)

dC = � � C − C � �̃ . (F.1c)

Using the calculus of symbols of operators of Appendix D.1 one, for example, finds

� � C = ei[p01+p02+p12+p̄01+p̄02+p̄12]�(y1, ȳ1)C(y2, ȳ2)

∣∣∣
y1,y2,ȳ1,ȳ2=0

, (F.2)

where pij ≡ pi · pj . The vertex V consists of two elementary vertices, one for y and another 
for ȳ:
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V̂ (p0,p1,p2,p3; p̄0, p̄1, p̄2, p̄3) = eiθ v̂(p0,p1,p2,p3; p̄0, p̄1, p̄2, p̄3)

+ e−iθ v̂(p̄0, p̄1, p̄2, p̄3;p0,p1,p2,p3) (F.3)

that act on �(y1, ȳ1)�(y2, ȳ2)C(y3, ȳ3). The elementary vertex is

v̂(p0,p1,p2,p3; p̄0, p̄1, p̄2, p̄3)

= p12e
i
[
p̄01+p̄02+p̄03+p̄12+p̄13+p̄23

]
×
∫

ei
[
(1−2u1)(p01−p13)+(1−2u2)(p02−p23)+(1+2u1−2u2)p12−p03

]
,

where the integration is over the 2d simplex 0 ≤ u1 ≤ u2 ≤ 1 and the vertex represents �(�, �) �
C̃. Using the pure gauge representation for �, � = −g−1 � dg, where g = g(y, ȳ|x) can be 
multivalued, we reduce the equations to

dω0 = g � V(g−1 � dg,g−1 � dg,g−1 � C0 � g̃) � g−1 , dC0 = 0 . (F.4)

Let us note that in the case of higher-spin fields in 3d the equations are much simpler:

dC = A � C − C � B , dA = A � A, dB = B � B , (F.5)

where A and B are two one-forms and C is a zero-form, all taking values in the higher-spin 
algebra hs(λ), [116,117]. The equations describe a scalar field on a higher-spin background 
defined by A and B , see also [118]. The simplicity is due to the fact that there are no Weyl 
tensors for massless fields with spin s = 2, 3, ....

Higher-spin fluctuations have to obey (F.1) in any d > 3. In d > 4 the Hochschild cocycle is 
known implicitly from [119]: it is the product of the A1 cocycle and a pure star-product with 
respect to some additional oscillators ya

α with certain factorization over an ideal required to get 
its action on the higher-spin algebra.

Appendix G. Sp(4) cocycle

As an illustration and in view the possible importance of the A2 Hochschild cocycle for the 4d

higher-spin theory let us evaluate the integrals over the simplex in (4.6). We use the FFS formula 
directly, which should correspond to some gauge in equations (5.24), the advantage being that 
the FFS cocycle vanishes on sp(2n). The answer is convenient to write in terms of

x = p01 + p02 − p03 − p04 + p12 − p13 − p14 − p23 − p24 + p34 ,

y = p01 − p02 − p03 − p04 − p12 − p13 − p14 + p23 + p24 + p34 ,

z = −p01 − p02 − p03 − p04 + p12 + p13 + p14 + p23 + p24 + p34 ,

u = p01 + p02 + p03 + p04 + p12 + p13 + p14 + p23 + p24 + p34 ,

v = p01 + p02 + p03 − p04 + p12 + p13 − p14 + p23 − p24 − p34 ,

�̂ =det |p1,p2,p3,p4|

×
[

eix

(u − x)(v − x)(x − y)(x − z)
+ eiy

(u − y)(y − v)(y − x)(z − y)
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+ eiz

(u − z)(v − z)(x − z)(y − z)
+ eiu

(u − v)(u − x)(u − y)(u − z)
(G.1)

+ eiv

(u − v)(v − x)(v − y)(z − v)

]
.

Thinking of the AdS/CFT applications we should evaluate it on the boundary-to-bulk propagators 
for ω. First of all we see that � is local, i.e. � contains a finite number of derivatives, provided 
the spins of the four arguments are fixed. The next correction to it, which is of order ω4C, is 
also local. The ω-propagators29 are of the schematic form h exp[iy · χ], where h is the vielbein, 
whose indices are contracted with polarization spinors introduced in [100]. The most important 
fact is that they are simple exponential functions. Therefore, the vielbeins eventually make a 
volume form, while the arguments pi can be directly identified with χ . The cocycle starts to be 
effective from s = 2 due to the determinant factor, but due to the fact that the Hochschild cocycle 
can be made to vanish when one of the arguments is in sp(4), i.e. it is sp(4)-basic, it starts with 
s = 3. Therefore, all of the arguments should correspond to fluctuating fields: if one of them 
is replaced by the AdS-background the cocycle vanishes identically. It is worth emphasizing 
again that the expansion scheme here is in powers of zero-forms C and counting the orders in 
the weak-field expansion scheme is different: the full quartic on-shell action30 in the weak-field 
expansion requires the knowledge of the terms of order ωCk , k = 0, 1, ..., 4. The same time, each 
of these terms contributes to infinitely many orders in the weak-field expansion. For example, one 
good candidate is the quantum trace [44]:

Tr(f ) =
∫

str[�(ω,ω,ω,ω) � f ] , (G.2)

where f is covariantly constant with respect to ω, e.g. Killing tensor.
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