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Chapter 1

Motivation

Since Gell-Mann and Zweig invented the concept of quarks as the constituents
in hadrons [1–3], quark models have had a huge success in the qualitative as
well as quantitative description of the hadron spectrum, in particular since
their realization as fundamental fields in a quantum gauge theory, quantum
chromodynamics (QCD), it is widely believed that quarks are part of the set of
fundamental elementary particles that build our world.

During the decades of hadron phenomenology by means of quarks, many
approaches appeared, which range from non-relativistic quantum mechanical
constituent quark models, to their relativistic extensions, perturbative QCD,
effective field theories, QCD sum rules, Lattice QCD, AdS/QCD and, what is
performed in this thesis, coupled DSE/BSE calculations. Next to the masses,
decay widths are essential components of the hadron spectrum. Hadronic decay
widths are particularly important for the understanding of the behavior of the
strong interaction, since they connect the behavior of elementary degrees of
freedom of QCD, quarks and gluons, to reactions between observable states,
such as mesons and baryons.

In this thesis we want to describe hadronic transitions within the Green
functions approach of coupled Dyson-Schwinger–Bethe-Salpeter calculations of
QCD, which has been done previously for mesonic transitions [4, 5], and achieved
reasonable results. Here we want to revisit this calculations for the ρ → ππ-
transition and add some insight with regard to model details. Additionally we
extend this approach also to the baryon case and provide first exploratory study
there. In this way we open a field of important processes, which had up to now
not yet been considered in this approach.

An intrinsic feature of the coupled Dyson-Schwinger–Bethe-Salpeter ap-
proach is that one extracts gauge independent observables, such as masses and
decay widths, from gauge dependent objects, such as Green functions and Bethe-
Salpeter amplitudes. The choice of a gauge is always a matter of the question one
tries to answer, but also of convenience. In this thesis we choose Landau gauge,
since it is manifestly Lorentz covariant by construction and thus allows Lorentz
covariant statements. In addition many other hadron studies in the coupled
Dyson-Schwinger-Bethe-Salpeter approach in the last decade, where performed
in this setup and thus providing a broad and well studied background and ba-
sis for this work. We work in the isospin-symmetric limit and in Euclidean
momentum space.
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Chapter 2

The S-matrix and Green

Functions in QCD

In modern theoretical physics a theory is characterized by its Langragian or,
equivalently, its action. But these quantities alone do not make any physics,
yet. As physics is a natural science, it is always connected to experiment. So
one has to extract information about the behavior of particular mathematical
objects in the Langragian and translate them to a corresponding behavior of
an object in nature. In classical theories, both mechanics and field theories,
one extracts information about the movement of a particle, e.g., its equation
of motion via the Euler-Lagrange equations, which are a mathematically and
physically sophisticated version of Newtons laws, out of the Langragian. With
the rise of quantum theories and their formulation in terms of the Feynman path
integral formalism and Schwingers variational principle the situation changed
and new methods had to be invented. One, that sticks to the spirit of the
Euler-Lagrange formalism and provides the equations of motion of the Green
functions is the Dyson-Schwinger approach.

In this chapter we want to set up the theoretical framework of the Bethe-
Salpeter and Dyson-Schwinger equations and their application to hadron phe-
nomenology. This will enable us to make statements about the behavior of
physical objects susceptible to the strong nuclear force.

2.1 S-matrix and Green functions

S-matrix elements and Green functions are the central objects of attention for
any theoretical physicist doing phenomenology by means of quantum field the-
ories, since they connect the theoretical formalism to observables. They usually
stand at the beginning of every quantum field theory course and the main as-
pects of this section can be found in any introductory book to quantum field
theory. For this reason we will be quite brief, present only the main results and
for details refer to, e.g., [6, 7].

2



CHAPTER 2. THE S-MATRIX AND GREEN FUNCTIONS IN QCD 3

2.1.1 The S-matrix

Already in quantum mechanical scattering theory one uses the Heisenberg S-
matrix to connect transition probabilities to measurable quantities as, e.g., scat-
tering cross sections or decay widths. Also in quantum field theories all theo-
retical approaches have to use the instrument of the S-matrix, if they want to
connect their theoretical formalism to measurable quantities.

The S-matrix, also called the infinite time evolution operator U(∞), is the
transition operator between asymptotic states, with its matrix elements being
defined as transition amplitudes, thus giving transition probabilities, from an
initial state i to a final state f ,

Sfi = 〈f |i〉 , (2.1)

which can we rewritten in terms of j incoming and n− j outgoing particles

S[φ1 . . . φn] = 〈φj+1 . . . φn|φ1 . . . φj〉 . (2.2)

The S-matrix can be decomposed in an interacting part T, where scattering
occurs and a non interacting part, where the ingoing objects remain unaffected,

Sfi = δfi + Tfi . (2.3)

By extracting momentum conservation we can define the invariant transition
matrix element M between an initial state i and a final state f

Tfi = (2π)4δ(4)(pf − pi) Mfi , (2.4)

where pi,f are the sets of the momenta of the incoming and outgoing particles.
Experiments in elementary particle physics almost exclusively deal with pro-

cesses where bulks of particles collide and scatter off each other. Thus, one very
important observable is the scattering cross section, which is a measure for the
probability of a certain event, i.e. occurring of a particular final state. Hav-
ing this probability interpretation of both the S-matrix and the scattering cross
section, it is possible to find a relation among them and one can express the
differential cross-section in terms of the invariant S-matrix element M,

dσf = N
∫
dΠf |Mfi |2 , (2.5)

with N being a normalization constant and
∫
dΠf a phasespace integral over

the final states. By considering a decay of one particle into two decay products
one can connect the scattering cross section to the Breit-Wigner decay width
and fix the normalization constant to

Γ =
1

2M

∑

f

∫
dΠf |Mfi |2 , (2.6)

with M being the mass of the decaying particle.
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2.1.2 Green functions and LSZ reduction formula

In the formalism of second quantization n-point connected Green functions are
interpreted as the time ordered vacuum expectation value of n Heisenberg cre-
ation and annihilation operators

G(n)[φ1 . . . φn] := 〈Ω|T [φ1 . . . φn]|Ω〉 . (2.7)

A connection between Green functions and S-matrix elements in this picture
can be given by the Lehmann, Symanzik and Zimmermann (LSZ) reduction
formula in second quantization language

G(n)[φ1 . . . φn] ∼
n∏

i=1

Di S[φ1 . . . φn] , (2.8)

where Di are propagators of the respective fields and ∼ means that the pole
structure on both sides are equivalent [6].

In usual perturbation theory, the calculations of S-matrix elements or Green
functions are performed by means of the Feynman theory. To proceed one would
now draw all Feynman graphs that represent interactions which contribute to a
certain process up to a given order in the structure constant α, calculate them
using the Feynman rules, sum them and then finally get the differential cross
section calculated up to this order. This suggests that one is able to calculate
any cross section of any process up to any precision, provided one has enough
time and calculational power to perform these calculations.

However, this expansion in the coupling constant is only valid for α < 1.
In quantum electrodynamics, where α−1 ≈ 137 this approach works to a very
high precision, making QED the up to now most precisely experimentally tested
theory in physics. In QCD this kind of perturbation theory is also quite success-
ful in the high energy regime due to asymptotic freedom. One very important
part of physics, namely that concerned with the constituents of ordinary mat-
ter, made out of light hadrons, such as protons, neutrons and pions, however,
is dominated by an energy scale of the order of one GeV and thus cannot be
investigated by this otherwise so highly successful tool. To describe QCD in the
low-energy domain one has to find a way to calculate S-matrix elements without
performing the expansion in the coupling constant.

2.1.3 Dyson’s equations

One further manifestation of the strong connection between the S-matrix and
Green functions are the Dyson equations. In references [8, 9] Dyson developed
two sets of equations for 1-particle or 2-point and vertex or 3-point QED-Green
functions. The former can straightforwardly be generalized to all connected n-
particle Green functions in quantum field theories by summing up all n-particle
irreducible interactions by means of Feynman diagrams. Thus these equations
are only valid up to given order in perturbation theory, and can not be addressed
as fully non-perturbative. However, similar to the assumption that if a theory is
renormalizable up to any order in perturbation theory it is also renormalizable
non-perturbatively, the Dyson equations are assumed also to be valid in the non
perturbative regime.



CHAPTER 2. THE S-MATRIX AND GREEN FUNCTIONS IN QCD 5

KG G= +

Figure 2.1: The Dyson equation for the three-particle Green function (2.9b)

In the first set of his equations Dyson expressed the Green function in terms
of what is nowadays called the T-matrix, for the second he introduces proper
n-particle irreducible Green functions, by the implicit definition that these kinds
of Green functions can not be written as a sum of two or more parts of which
one is again a proper n-particle irreducible Green function.

These equations read in the compact operator notation

G(n) = G
(n)
0 +G

(n)
0 T(n)G

(n)
0 (2.9a)

G(n) = G
(n)
0 +G

(n)
0 K(n)G(n) , (2.9b)

with G
(n)
0 =

∏n
i Di being the product of n one particle propagators Di and

the n-particle interaction kernel K(n) being the sum over all proper k-particle
irreducible interactions with 2k ≤ n,

K(n) = K
(n)
irr +

∑

i

K
(n−1)
irr ⊗D−1

i + . . . .

By performing some algebraic manipulations, one can find a Dyson equation
for the T-matrix

T(n) = K(n) +K(n)G
(n)
0 T(n) = K(n) + T(n)G

(n)
0 K(n) , (2.9c)

and also some reexpressions of (2.9b) and (2.9c)

G(n)−1 = G
(n)−1
0 −K(n) (2.10a)

T(n)−1 = K(n)−1 −G
(n)
0 . (2.10b)

All equations (2.9) and (2.10) are equivalent and can be used interchangeably.
The Dyson equations go beyond standard perturbation theory in the sense

that after perfroming a skeleton expansion of the n-particle interaction kernel
K(n) in (2.9b) or (2.9c), the equation sums this kernel up infinitely many times,
as one can see from the iterative reinsertion of the full Green function into the
Dyson equation (2.9b),

G(n) = G
(n)
0 +G

(n)
0 K(n)G

(n)
0 +G

(n)
0 K(n)G

(n)
0 K(n)G

(n)
0

+G
(n)
0 K(n)G

(n)
0 K(n)G

(n)
0 K(n)G

(n)
0 + . . . (2.11)

Thus terms up to any order are taken into account, but again, due to the
finite expansion of the interaction kernel, only a finite subset of all possible
interactions will be taken into account.
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2.2 The path integral formalism

There are many ways to quantize a classical theory. One approach that is used
quite often in contemporary calculations like lattice QCD and Dyson-Schwinger
studies, since it allows both perturbative and non-perturbative calculations, is
the path-integral approach to quantum field theories. It rests on an (functional)
integral over all possible field configurations, which contains all information
about the theory and is quite similar to the partition function in classical statis-
tical mechanics. Knowing this object in all details is equivalent to having solved
the theory.

However, this approach has its own caveats. On the background of a contin-
uous spacetime for example the mathematical existence of the path integral can
not be taken to be guaranteed. Also, the Wick-rotation necessary for numerical
treatments can become impossible with the unexpected appearance of singu-
larities. Nevertheless the functional integral formalism provides an additional,
complementary way to gain new insight into quantum field theories. Especially
its relationship to the Euler-Lagrange formalism via the Schwinger-Dyson equa-
tions, its strong founding on the action of the theory and its relationship to
statistical physics make it highly attractive.

2.2.1 The path integral

As mentioned above, one way to define a quantum field theory is to write down
its generating functional of the full Green functions, as functional integral over
all field configurations weighted by means of their action, which in Euclidean
space reads

Z[J ] =

∫
Dφ e−S[φ]+Jφ , (2.12)

where φ now stands for any ensemble of possibly interacting fields and J for
the corresponding sources. For brevity we suppressed here all dependencies
on spacetime coordinates and possible inner quantum numbers, such as spin,
flavor and color. The product in the exponential in the above equation has
to be understood as a product in all occurring spaces. Thus it implicitly
includes integration over spacetime and corresponding sums over matrix in-
dices in spaces with discrete quantum numbers. Explicitly this product reads
Jφ =

∑
i,c

∫
dzJ i

ac(z)φ
i
cb(z), with i labeling fundamental fields and their sources,

respectively, and a, b, c representing sets of matrix indices.
Green functions are now obtained by functional derivatives of the generating

functional at zero external sources

Gfull[φ1 . . . φn] =
δ

δJ1
· · · δ

δJn
Z[J ]

∣∣∣∣
J=0

. (2.13)

In general on distinguishes between full, connected and proper one particle
irreducible (1PI) Green functions. While the full n-point Green functions take
all kinds of interactions between these n points into account (including vacuum
bubbles), the connected ones only include these Green functions for which all
external points are connected to at least one other. The proper 1PI Green
functions consist of all Green functions that can not be divided into two parts.

The functional Integral Z[J ] as described in (2.12) is the generating func-
tional for the full Green functions. The generating functional for the connected
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Green functions is obtained by

W [J ] = − lnZ[J ] . (2.14)

The generating functional of the proper 1PI Green functions is a Legendre trans-
form of W [J ] with respect of the “classical” fields, φ̃ = 〈Ω|φ|Ω〉. It reads

Γ[φ̃] = −W [J ] + Jφ̃ . (2.15)

If it is not mentioned otherwise we will concentrate on the connected Green
functions in the following. As already mentioned, these can be related to the
vacuum expectation value of time ordered fields,

〈Ω|T [φ1 . . . φn]|Ω〉 := G[φ1 . . . φn]

=
δ

δJ1
· · · δ

δJn
W [J ]

∣∣∣∣
J=0

=
1

Z[0]

δ

δJ1
· · · δ

δJn
Z[J ]

∣∣∣∣
J=0

. (2.16)

2.2.2 LSZ reduction formula revisited

As in the second quantization formalism, it is also possible in the path integral
approach to find a relation between Green functions and S-matrix elements. It
is just the functional integral representation of the LSZ reduction formula, now
expressed by means of the generating functionals,

S = : exp

(
φiD

−1
i

δ

δJi

)
: Z[J ]

∣∣∣∣
J=0

(2.17a)

= Z[0] : exp

(
φiD

−1
i

δ

δJi

)
: W [J ]

∣∣∣∣
J=0

, (2.17b)

with the colon denoting normal ordering and D−1
i being the corresponding in-

verse propagator of the field φi. In this form the LSZ formula represents a direct
connection between the S-matrix and the generating functionals Z[J ] and W [J ].
This expression can be transformed into a relation between S-matrix elements
and Green functions,

Sfi =

n∏

i=1

φiD
−1
i Gfull[φ1 . . . φn] (2.18a)

= Z[0]

n∏

i=1

φiD
−1
i G[φ1 . . . φn] . (2.18b)

These equations show a deep relation between the S-matrix elements and Green
functions. Not only the pole structures are equivalent as stated in the last sec-
tion, but, by amputating or attaching external leg factors, the S-matrix elements
and the corresponding full Green functions can be transformed into each other,
as already indicated in the Dyson equation, all statements that are made about
S-matrix elements can be transferred onto Green functions and vice versa.

2.2.3 Dyson-Schwinger equations

Following Section 2.1.3 it is desirable to establish relations between Green func-
tions also in the path integral formalism. Schwinger [10, 11] derived such a set
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=
−1 −1

+

Figure 2.2: The fermion DSE

of relations. It became clear that the equations derived in this way are the same
as stated by Dyson in [9] for 2 and 3-point Green functions, but extend them
to all n-point Green functions. Thus these equations are nowadays called the
Dyson-Schwinger equations of a quantum field theory.

Following the pathway of the Euler-Lagrange-equations, where the action
of a theory is assumed to be extremal and thus is invariant under an infinitely
small change of the fields, for the Dyson-Schwinger equations one assumes that
the generating functional of the full Green functions is invariant under such a
shift in the fields. This can be translated into the condition, that the derivative
of the generating functional with respect to a field vanishes [12, 13]

0 =

∫
Dφ δ

δφ
e−S+Jφ . (2.19)

This condition leads to the generating Dyson-Schwinger equations for the con-
nected Green functions,

− δS

δφi

[
δW

δJ
+

δ

δJ

]
+ Ji = 0 , (2.20)

where the index i specifies one particular field and its source, respectively.
Higher n-point functions can now be derived by acting with n − 1 functional
derivatives with respect to the sources onto Equation (2.20).

For example, the Dyson-Schwinger equation for the fermion propagator S in
QED and QCD reads

S−1 = S−1
0 +

∫
g D̃µν γ̃µS Γ̃ν . (2.21)

where D̃µν is the gauge boson propagator, γ̃µ the bare fermion-boson vertex and

Γ̃ν the dressed fermion-boson vertex. In fact it is the Dyson equation (2.10a)
for n = 1 and the particle being a fermion.

The Dyson-Schwinger equations are the equations of motion for the Green
functions. Thus, solving these equations means solving the theory. A com-
plete solution is not possible in general, since the Dyson-Schwinger equations
couple different Green functions to each other. As we can read off (2.21) the
Dyson-Schwinger equation for the quark propagator in QCD couples to the
quark-gluon vertex and the gluon propagator. These again via their respective
Dyson-Schwinger equations involve, e.g., the triple gluon vertex and the ghost
propagator. This gives a system of infinitely many coupled equations. To solve
at least a small subset of these equations means to truncate the infinite tower
of equations. A simple demonstration of how this can be achieved will be given
in Appendix A. However, if one is only interested in the behavior of the Green
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functions in a small momentum regime, e.g. the infrared, one is able to extract
information about the scaling behavior without any truncation, thus taking the
whole set of DSE’s into account [14, 15].

To derive the equations for higher n-point functions and more involved La-
grangians is a tedious task. An algorithmical derivation is implemented in the
Mathematica package DoDSE [16].

2.3 Bound state equations

In quantum field theories bound states appear as poles in Green functions. Thus,
in the attempt to describe n-particle bound states, one has to investigate the
2n-point Green function and investigate its properties at the poles where the
total momentum squared of the Green function equates a bound state mass. In
Euclidean metric this condition reads P 2 = −M2. The starting point therefore
is the generalized Dyson equation as discussed in Section 2.1.3 for the 2n-point
Green function G(n) Equation (2.9b)

G(n) = G
(n)
0 +G

(n)
0 K(n)G(n) (2.22)

The crucial step now is to assume that at a bound state pole the Green
function is dominated by a transition amplitude of the n constituents into a
bound state, propagating as bound state and then again split into the con-
stituents. With Ψ(n) = 〈Ψ|T [

∏n
i φi]|Ω〉 denoting this transition amplitude the

pole assumption reads,

G(n) P 2=−M2

−→ Ψ(n) C(P )

P 2 +M2
Ψ̄(n) (2.23)

where C(P ) is a function depending on the spin of the bound state. Plugging
the pole assumption into (2.22), and dropping the first term on the right-hand
side, since it does not contribute at the pole, yields,

Ψ(n) C(P )

P 2 +M2
Ψ̄(n) = G

(n)
0 K(n) Ψ(n) C(P )

P 2 +M2
Ψ̄(n) , (2.24)

which can be simplified to

Ψ(n) = G
(n)
0 K(n)Ψ(n) . (2.25a)

One can introduce vertex amplitudes Γ(n) = G
(n)−1
0 Ψ(n), as the transition am-

plitudes with amputated legs, which yields

Γ(n) = K(n)G
(n)
0 Γ(n) . (2.25b)

Equations (2.25a) and (2.25b) can be used interchangeably depending on
the specific problem one deals with, and according to convenience. Note that
instead of handling the Dyson equation for the Green functions one could have
also started with the Dyson equation for the T-matrix (2.9c) making the pole
assumption and then end up with (2.25b) directly.
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S

Figure 2.3: The homogenous Bethe-Salpeter equation for the vertex ampli-
tude Γ, Equation (2.30).

Normalization

As any homogenous equation, Equations (2.25), and especially their solutions,
are only defined up to a multiplicative scalar factor. Thus one has to find a
physically motivated normalization condition, e.g. claiming probability conser-
vation, which is expressed in the condition that the residue at the pole has to be
1. To achieve this one differentiates the inverse Dyson equation Eq.(2.10a) with

respect to the total momentum Pµ, using the relation
(
A−1

)′
= A−1A′A−1, [17]

∂

∂Pµ
G(n)−1 = G(n)−1

(
∂

∂Pµ
G(n)

)
G(n)−1 =

∂

∂Pµ

(
G

(n)−1
0 −K(n)

)

(2.26)

∂

∂Pµ
G(n) = G(n) ∂

∂Pµ

(
G

(n)−1
0 −K(n)

)
G(n) (2.27)

and then introduces the pole assumption,

∂

∂Pµ

Ψ(n)C(P )Ψ̄(n)

P 2 +M2
=

Ψ(n)C(P )Ψ̄(n)

P 2 +M2

∂

∂Pµ

(
G

(n)−1
0 −K(n)

) Ψ(n)C(P )Ψ̄(n)

P 2 +M2
.

(2.28)

Now performing the derivative on the lhs and comparing the residues on both
sides the normalization condition reads:

2Pµ = Ψ̄
∂

∂Pµ

(
G

(n)−1
0 −K(n)

)
Ψ (2.29a)

= Γ̄

(
∂

∂Pµ
G

(n)
0 −G

(n)
0

(
∂

∂Pµ
K(n)

)
G

(n)
0

)
Γ . (2.29b)

We now found a set of equations, whose solutions describe general n-particle
bound states. The homogenous equations (2.25) and the corresponding nor-
malization conditions (2.29) determine the transition amplitude Ψ and vertex
amplitude Γ completely.

2.3.1 Bethe-Salpeter equation

The Bethe-Salpeter equation [17–19] is concerned with two-particle bound states.
In fact it is the special case of Equation (2.25) for n = 2.
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In this case the vertex amplitude has two independent momenta, which
can be expressed as the total momentum P and the relative momentum q. In
addition it can also depend on inner quantum numbers like spin, flavor or color.
Writing down explicitely the dependence on momentum and inner quantum
numbers, Equation (2.25) for two fermions (Di := Si) reads

Γab(P, q) =

∫
d̄4k K(P, q, k)a′b′

ab Sa′c′(k − ηP ) Γc′d′(P, k)Sd′b′(k + η̄P ) , (2.30)

where d̄4k is short for d4 k
(2π)4 , and η and η̄, with η + η̄ = 1, are momentum

partitioning parameters. The Latin indices here stand for a collective set of
matrix indices for all occurring inner quantum numbers, which are flavor, color
and spin in the QCD case. A graphical representation of the Bethe-Salpeter
equation is given in Figure 2.3. The interaction kernel K contains all proper
two particle irreducible interactions. In Feynman language it can be expressed
as an infinite sum of all possible interaction graphs that can appear in the theory.
A diagrammatical representation of the first few terms of a skeleton expansion of
the meson and diquark BSE-kernel is given in Figure 2.5. Obviously in practical
calculations one can not take all processes into account, thus one has to truncate.
When solving the Bethe-Salpeter equation explicitely in Appendix A we will
perform such a truncation.

Another ingredient needed to solve the Bethe-Salpeter equation are the prop-
agators. Since the Bethe-Salpeter equation itself does not constrain them any
further, they have to be seen as external input. One could either use the free
fermion propagators, or model dressed propagators by pole sums. An approach
that sticks to the ambition of a self-consistent Lorentz covariant set-up is to use
the propagators as solutions of their corresponding Dyson-Schwinger equation.

The vertex amplitude Γ for the Bethe-Salpeter equation is called the Bethe-
Salpeter amplitude. For the case of mesons, consisting of a quark-antiquark
pair, the Bethe-Salpeter amplitude can be interpreted as an effective quark-
meson vertex. When performing these kinds of calculations it is helpful to keep
such a physical interpretation in mind.

When the interaction kernel does not depend on the total momentum, which
is true for the later used ladder truncation of the Bethe-Salpeter equation, the
normalization condition, Equation (2.29b), reduces to

2Pµ = Γ̄
∂

∂Pµ
(S1 ⊗ S2)Γ , (2.31)

which, multiplied by Pµ, yields

2P 2 = Γ̄Pµ
∂

∂Pµ
(S1 ⊗ S2)Γ , (2.32)

which for full momentum and inner quantum number dependence reads

2P 2 = Pµ
∂

∂Pµ
trDcf

{∫
d̄4k Γ̄(−P̃ , k)S (k+) Γ(P̃ , k)S (k−)

} ∣∣∣∣∣
P 2=P̃ 2=−M2

.

(2.33)
with k± = k ± 1

2P and where we already wrote the terms within the trace in
the right order for the matrix multiplication in Dirac, color and flavor space. A
graphical representation of the BSE norm in this sense is shown in Figure 2.4.
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2P 2 = Pµ

∂

∂Pµ

trDcf

S(k − P
2
)

S(k + P
2 )

Γ(P̃ , k)

Γ̄(−P̃ , k)

k

Figure 2.4: The norm of the Bethe-Salpeter equation in ladder truncation, Equa-
tion (2.33).

2.3.2 Covariant Faddeev equation

In quark models baryons are interpreted as three-fermion bound states. To
treat baryons in the self consistent Dyson-Schwinger-Bethe-Salpeter equation
approach1, one has to consider the case n = 3 of Equation (2.25b),

Γ(3) = K(3)G
(3)
0 Γ(3) , (2.34)

with the interaction kernel

K(3) = K
(3)
irr +

3∑

i=1

K
(2)
irr ⊗ S−1

i , (2.35)

where i in each case denotes the spectator quark, which does not interact with
the other two. The Faddeev assumption states that the 3-particle irreducible
interactions can be neglected and one can approximate the kernel by

K(3) =
3∑

i=1

K
(2)
irr ⊗ S−1

i :=
3∑

i=1

Ki (2.36)

where the subscript i denotes the respective spectator quark. To proceed further
now, it is helpful to define the Faddeev components Γi by inserting (2.36) into
(2.34)

Γ(3) =

3∑

i=1

KiG
(3)
0 Γ(3) :=

3∑

i=1

Γi (2.37)

and also the 2-particle T-matrix in the 3-body problem by using (2.9c)

Ti = Ki + TiG
(3)
0 Ki . (2.38)

Multiplying Equation (2.38) with G
(3)
0 Γ(3) from the right yields,

TiG
(3)
0 Γ(3) = KiG

(3)
0 Γ(3) + TiG

(3)
0 KiG

(3)
0 Γ(3) (2.39)

= (1 + TiG
(3)
0 )Γi (2.40)

Γi = TiG
(3)
0 (Γ3 − Γi) (2.41)

Γi = TiG
(3)
0 (Γj + Γk) . (2.42)

1For a more detailed discussion of the following see, e.g., [20]
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= +K ++ + . . .

Figure 2.5: The first few terms of a skeleton expansion of the quark-antiquark
interaction kernel in the meson BSE and quark-quark interaction in the diquark
BSE.

We have now found a set of coupled equations for the Faddeev components
that make up the three-particle vertex amplitude according to (2.37). Thus
we found equations whose solutions will provide us with descriptions of the
3-particle bound state. The only missing link is the 2-particle T-matrix Ti.

Diquark BSE

Up to now we neglected 3-particle interaction, thereby assuming that the baryon
2-quark correlations give the dominant contributions to the 3-quark bound
states. This concept can be made use of by introducing the diquark as a corre-
lation of two quarks. This allows us to approximate the 2-particle T-matrix Ti

with the pole assumption, as stated at the beginning of this section,

Ti
P 2=−M2

a−→ χa
i D

a
i χ̄

a
i ⊗ S−1

i , (2.43)

where a denotes the specific diquark correlation, i.e. its spin, color and flavor

structure, χa = Γ
(2)
a the diquark vertex amplitude, andDa = Ca(P )

P 2+M2
a

the diquark

propagator. For the case of diquark bound states we can write down the Bethe-
Salpeter equation for the diquark a

χa = K(2)G
(2)
0 χa . (2.44)

Note that a particular three-body bound state can contain more than one
kind of diquark. Thus, to make an ansatz for the whole Ti-matrix we have to
sum over all possible diquark correlations such that

Ti =
∑

a

χaDaχ̄a ⊗ S−1
i . (2.45)

Quark-diquark BSE

The main advantage of the quark-diquark set-up is that the three body problem
is reduced to two two-body problems. We already solved the first one, since in
the diquark we have to take into account interactions of two quarks which in
QCD is described via gluons. For example we can perform an skeleton expansion
for the quark-quark kernel and get a Bethe-Salpeter equation for two quarks as
described in the last section.

For the next step, the quark-diquark BSE, the quark-diquark interaction
kernel is not known a priori either. We will see in the following that the quark-
diquark interaction kernel is not a gluon, but an iterative quark exchange: the
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quarks iteratively form diquark bound states with each other, and thus all three
quarks are bound together.

To see this we first define the quark-diquark Bethe-Salpeter amplitudes Φi

by means of the Faddeev components Γi,

Γi =
∑

a

χaDaΦa
i , (2.46)

which can be inserted into the Faddeev equation (2.42) and leads to

Φa
i =

∑

b

χ̄a
i Sk χ

b
j SjD

b
jΦ

b
j +

∑

c

χ̄a
i Sj χ

c
k SkD

c
kΦc

k (2.47)

which for identical quarks can be simplified, and thus reads in a symbolic nota-
tion

Φa =
∑

b,c

χ̄a S χb

︸ ︷︷ ︸
Kab

SDbc
︸ ︷︷ ︸

G0

Φc . (2.48)

To clarify that we deal with a Bethe-Salpeter equation we specified the BSE
interaction kernel K and the free propagators G0, and we got the expected
result. The three-body problem of the baryon can be reduced to a coupled set
of two-body problems. At first one has to solve the Bethe-Salpeter equation
for diquarks whithin a given model and then one can construct a quark-diquark
Bethe-Salpeter equation, whose interaction kernel is a quark exchange between
the diquark bound states.

2.4 Intrinsic structure of QCD Green functions

QCD features an opulent intrinsic structure, which has to be reflected by its
Green Functions and analogously in its S-matrix elements. Every object in
QCD carries certain Lorentz, Dirac, flavor and color quantum numbers. So the
general structure of one particular QCD Green function depending on a certain
set of external parameters si is:

G(si) =
∑

µαaA

FµαaA(si) ·
[
Lµ(si) ⊗ Dα(si) ⊗ fA(si) ⊗ ca(si)

]
, (2.49)

where F (si)µαaA are scalar functions that contain only scalar combinations of
the external parameters si. L, D, f and c stand for particular elements of a
particular representation of the underlying symmetry group of Lorentz, Dirac,
flavor and color structure, respectively. Since we are usually working with matrix
representations they are in general matrix valued objects.

In QCD mainly two kinds of true representations occur, namely fundamental
representations (i.e. quarks, anti-quarks) and the adjoint representation (i.e.
gluons) of SU(N) groups or combinations thereof, e.g., the flavor space of a
diquark is SU(Nf ) ⊗ SU(Nf ).

All elements of a Lie-group can be expressed in terms of linear combinations
of the Lie-algebra, which is the tangential space of the group manifold in the 1-
element. Both of the above kinds of representations are connected to the algebra
of the group, so they do not only feature their intrinsic group structure, but also
they inherit the algebraic structure of the group-algebra, which implies linear
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space properties. Thus, we can find a basis and with the trace it is even possible
to imply a scalar product on these spaces, so we can define orthogonality. In this
sense it is possible to expand the group structure L, D, f and c onto a particular
chosen basis and then find the corresponding functions F . The aim is now to
find a suitable, not necessarily orthonormal, basis in the corresponding group
spaces and span the investigated Green function onto them.

Note that, eventhough they are not Green functions in the strict meaning
of the term, since they are no vacuum expectation values of fundamental fields
and as can be seen in the derivation of the Bethe-Salpeter equation, the Bethe-
Salpeter amplitudes are parts of the residue of a 4-point Green function at a
bound-state pole. In this sense the BSA’s inherit a color, flavor and Dirac
structure from their particular parent Green function at a certain pole.



Chapter 3

The triangle diagram and

its ingredients

As already mentioned in Section 2 the coupled Bethe-Salpeter-Dyson-Schwinger
approach to hadron phenomenology is rich in accessible observables. Calcula-
tions of electromagnetic form factors of pseudoscalar mesons substantiated the
long-standing hypothesis of vector meson dominance (VMD) in this approach
[21, 22]. The VMD-hypothesis states that the hadronic part of the vacuum
polarization of the photon is dominated by the ρ0-meson, since it is the lightest
hadron with the same quantum numbers as the photon. One important conse-
quence is, that the quark-photon vertex should contain a pole at a momentum
transfer that corresponds to the ρ0-meson mass squared, as could also be found
in the Dyson-Schwinger–Bethe-Salpeter formalism in [21]. This motivated the
calculation of the ρ→ ππ transition self-consistently in the same approach, as it
was performed in [4, 5]. In this chapter we will set up the calculational structure,
and present all ingredients that we need to calculate hadronic transitions.

As we want to describe decays or three-composite-particle interactions, the
skeleton for our calculations is represented by the triangle diagram, which in
the term shown in Figure 3.1 corresponds to a generalized impulse approxima-
tion. The input needed for its treatment are expressions for propagators and

Γ3Γ2

Γ1

S2S3

S1

Figure 3.1: Triangle diagram
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amplitudes of the participating particles, which are in our case quarks, diquarks,
mesons and baryons. This is a well known setup and has been used for calcula-
tions of e.g. meson [22–24] and baryon [25–27] electromagnetic form factors, two
photon decays of mesons [28–30] and, as we intend to calculate, meson hadronic
transitions [4].

The building blocks are (numerical) soultions of the corresponding integral
equations: the quark Dyson-Schwinger equation, the Bethe-Salpeter equations
for mesons and diquarks as well as the quark-diquark Bethe-Salpeter equation
for baryons. They serve as mathematical representations of the underlying
physical objects and processes.

3.1 Quarks

One basic quantity in all of our calculations is the dressed quark-propagator,
which is the two-point Green function of the quark field.

S(p) = G(2)[ψ†(p), ψ(p)] = 〈Ω|T [ψ†(p), ψ(p)]|Ω〉 , (3.1)

In this section, I would like to present its general structure, different param-
eterizations and its Dyson-Schwinger equation. Afterwards I present the general
strategy how to solve this equation and even solve it for a simple toy model with
massless quarks in Appendix A. Even in this simple case, the quark propagator
already shows some interesting properties that are generic for non-perturbative
QCD calculations.

3.1.1 Color and flavor structure

We will now study the QCD intrinsic structure of the quark propagator as
explained in the last section.

A quark will not change its color, when it is propagating in spacetime and
only self interactions occur. So the only structure in color space, that has a non
vanishing scalar function is just proportional to 1c in color space. The same is
true for its flavor part since the fundamental interaction in QCD is flavor-blind.
So by now the quark propagator with specified color and flavor structure looks
like:

SαβABab(p) = Sαβ(p) ⊗ 1√
Nf

δAB ⊗ 1√
Nc

δab , (3.2)

where Sαβ(p) still contains the Lorentz and Dirac structure.

3.1.2 Lorentz and Dirac structure

If one is dealing with Dirac fermions one often chooses the Dirac-γ-matrices
{γ1, γ2, γ3, γ4} to define a simultaneous representation in Dirac and Lorentz
space. This can be done since the commutators of components of the Lorentz
vector made out of these matrices

γµ = (γ1, γ2, γ3, γ4) (3.3)

are generators of the Lorentz-group

Sµν = −1

4
[γµ, γν ] . (3.4)
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Thus, the construction of a particular basis in Lorentz and Dirac space in the
course of this thesis will often be handled simultaneously by use of the Lorentz
vector of the Dirac-matrices γµ.

The quark propagator depends on the Lorentz vector pµ but is itself a Lorentz
scalar. To find a suitable basis in Dirac and Lorentz space we have to look for
Lorentz scalars that can be constructed out of pµ and γµ. There are only three
possibilities, the momentum squared pµ pµ = p2, the scalar product pµ γµ = /p,
and the square γµ γµ = 41D. Since the two squares are linearly dependent, we
found two linearly independent elements for the combined Dirac-Lorentz basis
for the quark propagator {1D, /p}.

The invariant amplitudes depend on scalars that are constructed out of the
external parameters. In this case there are four external parameters pµ which
can be combined to one Lorentz scalar p2 which is then the only variable for
the scalar functions.

Now, naming the functions according to their associated physical meaning,
vectorial and scalar part, σv and σs, we have found the full structure of the
quark propagator:

S(p) =
(
−iσv(p

2) /p+ σs(p
2)1D

)
⊗ 1√

Nf

1f ⊗ 1√
Nc

1c , (3.5)

where the −i in front of the first term stems from the conventions in Euclidean
space.

In many calculations one is not interested in the quark propagator but its
inverse. Also sometimes it is of interest to point out the difference between
dressed and free quark propagator more clearly. Suppressing color and flavor
dependence for the moment, one can parameterize the inverse quark propagator
as

S−1(p) = A(p2)i /p+B(p2)1D , (3.6)

in comparison with the inverse of the free quark propagator S−1
0 (p) = i /p+m1D.

Sometimes also a third parameterization is used, which allows a interpretation
of the dressing functions in a physical sense:

S(p) =
Z(p2)

i /p+M(p2)
. (3.7)

Where M(p2) is referred to as the momentum (and gauge) dependent “quark
mass function“ and Z(p2) as the ”quark wave function renormalization”. All
three parameterizations are connected to each other via algebraical manipula-
tions and can be used interchangeably.

σv(p2) =
A(p2)

A2(p2) p2 +B2(p2)
σs(p

2) =
B(p2)

A2(p2) p2 +B2(p2)
(3.8a)

A(p2) =
σv(p2)

σ2
v(p2) p2 + σ2

s(p2)
B(p2) =

σs(p
2)

σ2
v(p2) p2 + σ2

s(p2)
(3.8b)

Z(p2) =
1

A(p2)
M(p2) =

B(p2)

A(p2)
(3.8c)

As we have seen in Section 2.2, in quantum field theories for every Green func-
tion there exists a corresponding equation of motion, its Dyson-Schwinger equa-
tion. The quark Dyson-Schwinger equation, synonymously called the “QCD gap
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=
−1 −1

+

Figure 3.2: The quark DSE in rainbow truncation

equation”, reads

S−1(p) = S−1
0 (p) +

∫
d̄4k Dab

µν(p− k)

(
g
λa

2
γµ

)
S(k) gΓb

ν(k, p) . (3.9)

It contains the dressed quark Propagator S(p), depending on the quark-momen-
tum p, and its inverse, the inverse of the free quark propagator S0(p), the dressed
gluon propagator Dab

µν(p − k), the dressed quark-gluon vertex Γb
ν(k, p) and the

bare quark-gluon vertex λa

2 γµ each with coupling g. The λa represent the Gell-
Mann matrices, as generators of the fundamental representation of SU(3)c.
The second term in (3.9) is also called the quark self energy. A diagrammatical
representation of the equation was already given in Figure 2.2.

3.1.3 Rainbow truncation

In Appendix A I will present an explicit solution of the quark Dyson-Schwinger
equation in a simple model. Here I will only present the main steps.

As already mentioned above, to perform a calculation using the quark Dyson-
Schwinger equation one has to know descriptions of the dressed gluon propagator
and the dressed quark-gluon vertex. The most easy possibility is to replace the
dressed terms by their bare expressions. The mismatch introduced by this
truncation is compensated by an effective interaction strength,

g2Dµν(p− k) Γa
ν(k, p) → G((p− k)2)

Tµν(p− k)

(p− k)2
λa

2
γν (3.10)

and thus the quark-Dyson Schwinger equation in rainbow truncation reads

S−1(p) = S−1
0 (p) +

4

3

∫
d̄4k

G((p− k)2)

(p− k)2
Tµν(p− k) γµ S(k) γν . (3.11)

See also Figure 3.2 for a graphical representation.
By using one of the parameterizations for the quark propagator given above

one can proceed further and transform Equation (3.11) into a set of two coupled
equations, as it will be shown in Appendix A.1.1. When using the parameteri-
zation (3.6) for the inverse quark propagator one gets:

B(p2) = m+ 4

∫
d̄4k

G((p− k)2)

(p− k)2
B(p2)

A2(p2) p2 +B2(p2)
(3.12a)

p2A(p2) = p2 +
4

3

∫
d̄4k

G((p− k)2)

(p− k)2
(p2 − p · k)(p · k − k2)

(p− k)2
A(p2)

A2(p2) p2 +B2(p2)
.

(3.12b)
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To achieve an explicit solution of (3.12) one piece is still unknown. The cou-
pling strength G is unspecified and has to be modeled. One the one hand this
can account for truncation artefacts, on the other hand it represents physical
input and by introducing reasonable parameters one can attempt to learn some-
thing about the nature of the strong interaction. Within the last decades several
models have been developed, starting with the first simple model by Munczek
and Nemirovsky [31], which even gives analytic solutions in some limits, and
which will be under investigation in more detail in Appendix A, going to more
sophisticated models, which try to model the strong interaction in an realistic
way and match perturbative QCD to one [21, 32] and two loops [33] and have
to be solved numerically, to others which are dominated by the mid-momentum
regime for the sake of numerical simplicity [34]. After choosing one certain kind
of interaction one solves the coupled system of integral equations (3.12) with
standard numerical techniques. For the calculations of the decays we consis-
tently used the model by Maris and Tandy [21], which will be introduced in
Section 4.2 and in which case all equations have to be solved numerically.

A more detailed derivation of Equations (3.12) and an explicit solution of
the quark DSE within the model of Munczek and Nemirovsky will be presented
in Appendix A, where, in the chiral limit, these equations can be solved analyti-
cally. Note that both as input in the BSE and the triangle diagram the dressing
functions of the quark propagator have to be known in a parabolic domain in
the complex p2-plane. A short introduction and further references regarding
this issue can be found in Appendix B.3.

3.2 Mesons

In quark models and QCD phenomenology mesons basically1 are viewed as
quark-antiquark bound states, which makes them the most simple hadrons and
interesting objects to be studied. For several decades now, they were intensely
studied in terms of any model of hadron phenomenology. Especially the pion
attracted lots of interest, as it is seen as would-be Goldstone-boson of dynamical
chiral symmetry breaking, and at the same time can be regarded as a qq̄ bound
state, which is, e.g., problematic in a constituent-quark picture.

Two-particle bound states in quantum field theories can be described by
means of Bethe-Salpeter amplitudes as solutions of the Bethe Salpeter equation
as described in Section 2.3. Following the procedure of the last section at first
I will shortly present the Bethe Salpeter equation and then list suitable param-
eterizations of the Bethe-Salpeter amplitudes in color, flavor and Dirac space.
Again, calculational details are shifted to Appendix A, which also includes an
explicit solution of the meson Bethe-Salpeter equation for pseudoscalar and vec-
tor mesons in the Munczek-Nemirovsky model, where an analytical solution is
possible. For more sophisticated models this is not the case and one has to solve
the Bethe-Salpeter equation numerically. This is usually done by a simple iter-
ation method, but the use of more elaborated algorithms is of great advantage
[36].

1Contemporary discussions of some mesons as, e.g., diquark-antidiquark boundstates,
tetraquarks, meson-molecule states or mixing effects with glue-balls, etc. are not taken into
account here. See e.g. [35] and references therein
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As derived in Section 2.3 the homogenous Bethe-Salpeter equation reads

Γαβ AB ab(P, q) =

∫
d̄4k K(P, q, k)α′β′ A′B′ a′b′

αβ AB ab

[S(k − ηP ) Γ(P, k)S(k + η̄P )]α′β′ A′B′ a′b′ , (3.13)

with its solution the Bethe-Salpeter amplitude Γab AB αβ(P, q) and an interaction
kernel K(P, q, k) not further specified up to now. The indices label the Dirac
(Greek), flavor (capital Latin) and color (lowercase Latin) indices of the quark
and the anti-quark.

The terms S(p) in the Bethe-Salpeter equation are quark propagators, which
we take as solution of their Dyson-Schwinger equation. In order to make the
calculations as self-consistent as possible we will have to specify the BSE ker-
nel according to the effective interaction in the gap equation, as well as the
rainbow truncation used there. This truncation will be explicitely performed in
Appendix A.2.1. Here we only quote the ladder truncated interaction kernel,

K(P, q, k) → −4

3
G((q − k)2) γµ

Tµν(p− k)

(p− k)2
γν (3.14)

which give the meson Bethe-Salpeter equation in ladder truncation

Γαβ(P, q) = −4

3

∫
d̄4k

G((q − k)2)

(q − k)2
Tµν(q − k)

γµ S(k − P

2
) Γ(P, k)S(k +

P

2
) γν . (3.15)

As mentioned above, coupled Bethe-Salpeter–Dyson-Schwinger equation stu-
dies require the quark propagator to be calculated in the complex plane. This
can be directly extracted from (3.13). Recall the arguments of the quark propa-
gator dressing functions σv,s(p

2), which yields in the Bethe-Salpeter amplitude

(k − ηP )2 = k2 + η2 P 2 − 2η k · P = k2 − η2M2 − 2i η k4M (3.16a)

(k + η̄P )2 = k2 + η̄2 P 2 + 2η̄ k · P = k2 + η̄2M2 − 2i η̄ k4M (3.16b)

where we assumed to work in the rest frame of the bound-state and thus Pµ =(
~0 , iM

)
with M being the bound-state mass. One sees that the domain in the

complex plane in which both quark propagators have to be known is smallest
for equal momentum partitioning η = η̄ = 1

2 , which we will use from now
on. We also can read off (3.16) that the domain increases with the mass of
the bound state. Due to possible singularities in the quark dressing functions
σv,s(p

2), this is among the biggest technical restrictions onto the prospects of
this approach to hadron phenomenology until methods are developed to deal
with such singularities [37].

Bethe-Salpeter amplitudes inherit a color, flavor and Dirac structure from
their parent Green function. In practical calculations, when doing phenomenol-
ogy, one chooses a certain channel by imposing particular quantum numbers,
especially in flavor and Dirac space, onto the Bethe Salpeter amplitude. This
is done via taking a subset of a chosen basis in these spaces.
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3.2.1 Flavor and color structure

In the isospin-symmetric limit we have to find representations of the combination
of one quark and one anti-quark, being in the fundamental and the conjugate
fundamental representation of SU(2) flavor. In Appendix B.1 we give a detailed
discussion about the construction of the SU(2)⊗SU(2) multiplets in the differ-
ent representations and the corresponding Clebsch-Gordan coefficients, so here
we only state the results for the isovector triplet r

+0− and isoscalar singlet r
s

r
+ = |ud̄〉 =

1

2
(σ1 + iσ2) (3.17a)

r
0 = 1√

2

(
|uū〉 − |dd̄〉

)
= − 1√

2
σ3 (3.17b)

r
− = −|dū〉 = −1

2
(σ1 − iσ2) (3.17c)

r
s = |uū〉 + |dd̄〉 =

1√
2
1 (3.17d)

which are normalized to trf

{(
r
I
)†

r
J
}

= δIJ .

As mesons are measured in experiments for them the confinement hypothesis
implies that their color structure is the one of a color singlet, which is derived
in Appendix B.1 and for a quark-antiquark system is just proportional to 1c.
We are already able now to explicitely write down the color and flavor part of
the meson Bethe-Salpeter amplitude

ΓI
αβ AB ab = Γαβ ⊗ r

I
AB ⊗ 1√

3
δab̄ (3.18)

Since we work in the isospin-symmetric limit, all three isovector states will
be degenerate in mass. So in explicit calculations of the mass we can just choose
one particular I3 projection. It is convenient to choose the I3 = 0 component,
which we will do in the following. For calculations of flavor coefficients in the
triangle diagram in Chapter 4 one has to take all possibilities into account.

3.2.2 Dirac structure – pseudoscalar meson

The spin of a particle dictates its behavior under continuous Lorentz transfor-
mations. For mesons, being bosons, we only have integer-valued spins, so they
behave like Lorentz scalar, vector, or higher spin objects. The discrete Lorentz
transformations specify the particles further, in terms of being even or odd un-
der parity, and charge parity in case of equal mass constituents. The particular
mesons we want to investigate dictate the particular behavior under Lorentz-
transformations, which has to reflect in the corresponding Bethe-Salpeter am-
plitude. So the guiding principle to the Dirac-structure of the different Bethe-
Salpeter amplitudes are the quantum numbers of the particular mesons we want
to describe. As we will be concerned with pseudoscalar and vector mesons only,
we will stick to the cases J = 0, 1. For further details, discussion and expansion
to higher spins, see [21, 32, 38–40].

In a Bethe-Salpeter amplitude we have, like in general in any two-body state,
two independent momenta, the total momentum Pµ and the relative momen-
tum between the constituents qµ. Like in the case of the quark propagator we
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can combine them with the Dirac matrices γµ to give us the appropriate be-
havior under Lorentz transformations. We will now first construct a basis for
a scalar Bethe-Salpeter amplitude from which we then can easily switch to the
pseudoscalar or pion Bethe-Salpeter amplitude.

The three vectors above can be combined to six Lorentz scalars, which are
just their squares P 2 = −M2, q2, γµγµ = 41D and scalar products i /P , i /q
and P · q. All vector squares and the scalar product P · q are, in Dirac space,
proportional to 1D, so they are linearly dependent, but linearly independent
to the other two. Looking for other basis vectors, we find the commutator
− 1

2

[
/q, /P

]
, which is linearly independent to the other three basis vectors found

so far and completes the set of possible basis states, since any other combination
of Pµ, qµ and γµ can be shown to be proportional to the ones already found.
Note that all basis functions are, as all scalar products of two Lorentz vectors,
even under parity transformation, thus we found a basis for scalar-meson Bethe-
Salpeter amplitudes

τ
(s)
1 = 1

τ
(s)
2 = i /P

τ
(s)
3 = i /q

τ
(s)
4 = −1

2

[
/q, /P

] , (3.19)

which we could use to start an investigation of scalar mesons. But, since we
want to expand this approach also to other kinds of mesons some further inves-
tigations are needed.

One meson that is of interest in hadron phenomenology in general and in
this thesis in particular is the pion. The pion is not a scalar, but a pseudo-scalar
particle. That means that it is not an even parity eigenstate like a scalar but an
odd one. To achieve this different behavior one multiplies a factor ±iγ5, which
is odd under parity transformation, to every basis vector from the left. Thus a
basis for a general pseudoscalar meson reads

τ
(ps)
1 = i γ5 1

τ
(ps)
2 = γ5 /P

τ
(ps)
3 = γ5 /q

τ
(ps)
4 = − i

2
γ5

[
/q, /P

] (3.20)

For C-Parity eigenstates like the π0, it is convenient to choose a basis where all
basis elements behave in the same manner under C-Parity. A C-Parity trans-
formation flips all internal quantum numbers, including the relative momentum
inside the Bethe-Salpeter amplitude q, but not the total momentum P . So the
scalar product q · P is odd under C-Parity transformations and it can be ex-
plicitely pulled out of every invariant amplitude F and attached to the basis
vector. While τ1, τ2 and τ4 in the basis (3.20) are even under C-Parity, τ3 is
not, thus we write explicitely a factor of P · q in front of τ3 and we get our basis
for the pion Bethe-Salpeter amplitude:

τ
(π)
1 = i γ5 1

τ
(π)
2 = γ5 /P

τ
(π)
3 = P · q γ5 /q

τ
(π)
4 = − i

2
γ5

[
/q, /P

] (3.21)

Now we have constructed a basis which perfectly fits the quantum numbers
of the π0-state JPC = 0−+. Since all the basis functions are even under C-
Parity, all amplitudes F must be so, too. If the investigated state is not a
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C-parity eigenstate the behavior of the basis will not play such an important
role. Now finally we can write down a basis for the internal structure of the
Bethe-Salpeter amplitude for a general π-meson of isospin projection I

Γ(π)(P, q) =
∑

i

FiI(P, q) τ
(π)
i ⊗ r

I ⊗ 1√
3
δab̄ (3.22)

The invariant amplitudes Fi(P, q) are Lorentz scalars, and so can only depend
on the three Lorentz-scalar combinations that can be constructed from P and
q, namely, P 2, q2, and P · q. The latter is often replaced by the cosine z =
P · q/

√
P 2 q2 with −1 ≤ z ≤ 1.

Γ(π)(P, q) =
∑

i

Fi

(
P 2, q2, z

)
τ

(π)
i ⊗ r

I ⊗ 1√
3
δab̄ (3.23)

As P is the total momentum, it will be fixed at the bound state poles by the
on-shell condition P 2 = −M2. We can use this on-shell condition to differentiate
between the particular states, e.g. ground state with P 2 = −M2

0 , first excitation
with P 2 = −M2

1 , etc. Thus at these poles, as a necessary condition for solutions
of the homogenous BSE, P 2 is just a discrete parameter and we can write for
solutions of the homogenous Bethe-Salpeter equation

Γ(π)(P, q) =
∑

i

FP 2=−M2

i

(
q2, z

)
τ

(π)
i ⊗ r

I ⊗ 1√
3
δab̄ (3.24)

Chebyshev expansion

One efficient tool to reduce numerical effort is to expand the dependence of

the invariant amplitudes FP 2=−M2

i

(
q2, z

)
in z onto Chebyshev polynomials of

second kind U(z). Since they converge for complex values in the unit circle,
i.e. for a real variable in the interval [−1, 1], they are suitable for the expansion
of a cosine. In Bethe-Salpeter studies of ground state mesons with equal mass
constituents one does not need to take many of them into account.

When performing this expansion a Bethe-Salpeter amplitude reads

Γ(P, q) =
∑

i,j

jfP 2=−M2

i

(
q2
)
Uj(z)τi ⊗ r

A ⊗ 1√
3
δab (3.25)

where we suppressed the reference to pseodoscalar mesons since this expansion
is quite general and can be performed for any kind of Bethe-Salpeter amplitude.
For clarification we want to fix here the nomenclature of the different building
blocks of a Bethe-Salpeter amplitude.

Γ(P, q) Bethe-Salpeter amplitude with total

momentum P and relative momentum q

τi Lorentz (basis) covariants

Fi(P
2, q2, z), FP 2=−M2

i

(
q2, z

)
Lorentz (invariant) amplitudes

depending on P 2 and q2 and z

Uj(z) Chebyshev-Polynomials of second kind

depending on the cosine z

jfi(P
2, q2), jfP 2=−M2

i

(
q2
)

Chebyshev moments depending on P 2 and q2
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3.2.3 Dirac structure – vector meson

Following the route above, in principle we are able to construct a Bethe-Salpeter
amplitude for any meson. The next step will be a vector meson Bethe-Salpeter
amplitude. Since the color and flavor structure is the same as for the pseu-
doscalar the only difference is the Dirac structure.

A vector meson has its name from the behavior under Lorentz-transforma-
tions, which corresponds to angular momentum J = 1. Still having the same
building blocks as above, Pµ, qµ and γµ, we have to construct Dirac elements
that behave like a Lorentz vector. As they are already Lorentz vectors, the only
thing we have to do is to multiply them with any Lorentz scalar that we can
construct out of them. But these are exactly (3.19), so we are immediately able
to write down a first basis for the vector-BSA

τµ 1 = γµ

τµ 2 = i γµ /P

τµ 3 = i γµ /q

τµ 4 = −1

2
γµ

[
/q, /P

]

τµ 5 = qµ1

τµ 6 = i qµ /P

τµ 7 = i qµ /q

τµ 8 = −1

2
qµ
[
/q, /P

]

τµ 9 = Pµ1

τµ 10 = iPµ /P

τµ 11 = iPµ /q

τµ 12 = −1

2
Pµ

[
/q, /P

]
(3.26)

Any Bethe-Salpeter amplitude is a Lorentz scalar. The basis we have con-
structed so far behaves like a Lorentz vector, which implies that we need another
Lorentz vector to create a Lorentz-scalar. Spin polarizations will help us here.

For a massive J = 1 particle there exist three spin-polarizations that are all
transverse to its total momentum. So for any polarization λ of a J = 1 particle
moving with total momentum Pµ there exists a normalized vector ελ

µ(P ) with

ελ
µ(P )Pµ = 0 . (3.27)

These polarizations are complete, which means that the normalized sum over
all polarizations gives the transversal projection operator Tµν

1

nλ

∑

λ

ελ†
µ (P ) ελ

ν (P ) := Tµν(P ) = δµν − PµPν

P 2
, (3.28)

with nλ being the number of polarizations, which in this case is nλ = 3, and we
choose them as orthogonal,

ελ
µ ε

λ′

µ ∝ δλλ′

. (3.29)

For a vector meson at rest, thus having a total momentum of Pµ = (0, 0, 0, iM)
one choice for the ελ

µ(P ) can be ε1µ(P ) = (1, 0, 0, 0), ε2µ(P ) = (0, 1, 0, 0) and
ε3µ(P ) = (0, 0, 1, 0).

If we now contract the basis in (3.26) with a certain ελ
µ and sum over all λ,

all the longitudinal parts vanish. Since we will do this only at the very end of
the calculations, we still keep the Lorentz index now, but only keep that part
of (3.26) that survives the contraction in the end. With the ρ-meson in mind
we additionally specify the behavior under discrete Lorentz transformations and
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end up with a basis for vector Bethe-Salpeter amplitudes

τµ 1 = γT
µ

τµ 2 = i γT
µ /P

τµ 3 = i
[
γT

µ , /q
]

τµ 4 =
1

2
γT

µ

[
/q, /P

]
− qT

µ /P

τµ 5 = i qT
µ1

τµ 6 = qT
µ /P

τµ 7 = qT
µ /q

τµ 8 = i qT
µ

[
/q, /P

]
(3.30)

where the index T connotes the transversal part kT
µ = Tµν(P ) kν for any Lorentz

vector k.
After constructing a basis we can, similar to (3.23), write down the general

structure for a vector Bethe-Salpeter amplitude

Γµ(P, q) =
∑

i

FP 2=−M2

i

(
q2, z

)
τµ i ⊗ r

I ⊗ 1√
3
δab̄ . (3.31)

3.3 Baryons

In this thesis baryons are treated as bound states of quarks and diquarks. This
concept it introduced by means of the three particle bound state equation in
Section 2.3.2. By introducing the Fadeev approximation we were able to turn
the three particle equation into a set of coupled two-particle problems

Φa =
∑

b,c

Γ̄a S Γb SDbcΦc , (3.32)

where S denotes a quark and D a diquark propagator, Φa denotes the quark-
diquark amplitudes and Γa the diquark Bethe-Salpeter amplitudes with spec-
tator quark a, respectively. The binding mechanism that binds a baryon in
the quark-diquark picture, is given by the iterative union of two quarks into a
diquark bound state.

3.3.1 Diquarks

Diquarks are two-quark correlations that can be used to describe baryons by
reducing the three-body problem to two two-body problems as described in
Chapter 2. In rainbow-ladder truncation of the DSE/BSE system they appear as
timelike poles in the quark-quark scattering matrix, so the homogenous Bethe-
Salpeter equation can be employed. In this sense they are quite similar to
mesons and we can apply the techniques developed above. We only have to
find the corresponding color, flavor and Dirac structure for the Bethe-Salpeter
amplitude and then solve the diquark-BSE.

Here we only present the structure that has been used in our calculations.
A detailed investigation of the structure of diquarks can be found in Appen-
dices A.3 and A.4 of [20] and Section 3.2 of [41] and references therein.

While mesons are quark-antiquark correlations, diquarks are quark-quark
correlations. In Feynman diagrammatical language this can be interpreted as
flipping one external leg. Thus the main structure is the same but some inner
quantum numbers and the behavior under discrete Lorentz transformations can
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change compared to the meson case. This is achieved by adding charge con-
jugation matrices to the corresponding Bethe-Salpeter amplitude and turning
around the momentum in one quark propagator. Thus we immediately can
write down the diquark Bethe-Salpeter equation in ladder truncation [42, 43]

Γαβ(P, q)C = −2

3

∫
d̄4k

G((q − k)2)

(q − k)2
Tµν(q − k)

γµ S(−k +
P

2
)
(
Γ(P, k)C

)
S(k +

P

2
) γν . (3.33)

where the only difference from the meson Bethe-Salpeter equation (3.15) is the
Charge conjugation matrix C at the Bethe-Salpeter amplitudes, one quark mo-
mentum and the different color factor, which reduces the coupling about a factor
2, but stays in the attractive channel. This shows that in ladder approximation
diquarks are a valid bound-state concept. A calculation of the color factor is
performed in Appendix A.2.

In deducing diquark Bethe-Salpeter amplitudes from the meson case one
guiding line is the Pauli principle, which implies that diquarks have to be anti-
symmetric under quark exchange, in particular regarding the relative momen-
tum in the diquark and all inner quantum numbers. The Pauli principle implies
for diquark Bethe-Salpeter amplitudes

Γab AB αβ(P, q) = −Γba BA βα(P,−q) . (3.34)

Color structure

Diquarks are colored objects. Therefore the color structure of the diquark am-
plitude is not as simple as in the meson case. Baryons are color singlets built
out of three colored quarks in the fundamental representation. Thus in color
space we have to find representations of the multiplet 3⊗ 3⊗ 3.

In a group theoretical language this product can be calculated as, see [44],

3⊗ 3⊗ 3 = (3̄⊕ 6) ⊗ 3 = 1⊕ 8︸ ︷︷ ︸
3̄⊗3

⊕ 8⊕ 10︸ ︷︷ ︸
6⊗3

. (3.35)

Thus the only possibility to form a color singlet baryon from three funda-
mentally charged quarks, is to build a color anti-triplet diquark out of two of
them. We see that diquarks are antisymmetric color antitriplet states, which
can be expressed by means of the normalized Levi-Civita tensor 1√

6
ǫabc.

Flavor and Lorentz-Dirac structure

Since the full Bethe-Salpeter amplitude of a diquark has to be anti-symmetric
and the color part is already anti-symmetric, the product of flavor and Dirac
part has to be symmetric. Since in the two-flavor case, flavor and Lorentz-Dirac
structure are representations of SU(2) ⊗ SU(2) which can be decomposed into
the multiplet structure 2⊗2 = 1a⊕3s with the singlet being anti-symmetric and
the triplet being symmetric, it follows that in this case we have diquarks that are
either both in the singlet representation, so Lorentz-scalar isoscalar states, or
both in the triplet representation, so Lorentz-axialvector isovector. According
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to Appendix B.1 the isoscalar and isovector matrices for the diquarks read

s
s = 1√

2
(ud− du) =

1√
2
iσ2 (3.36a)

s
+ = uu =

1

2
(1 + σ3) (3.36b)

s
0 = 1√

2
(ud+ du) =

1√
2
σ1 (3.36c)

s
− = dd =

1

2
(σ1 − σ3) (3.36d)

The Lorentz-Dirac structure can be derived by what has been accomplished
in the last section, where we already found the Dirac structure for pseudoscalar
and vector mesons. The exchange of an antiquark in the meson with a quark
for the diquark also changes the behavior of the corresponding Bethe-Salpeter
amplitude under parity transformations. A J+ meson becomes a J− diquark
and vice versa. Thus the scalar diquark corresponds to the pseudoscalar meson
and the axial vector diquark corresponds to the vector meson. For these we
already found a basis in Dirac space. We span the scalar diquark on basis (3.21)
and the axialvector diquark on basis (3.30).

Now, that we found a suitable basis for the scalar and axialvector diquark
in color, flavor and Dirac space, we can span the Bethe-Salpeter amplitude onto
it and get

Γ(sd)(P, q) =
∑

i

Fi

(
P 2, q2, z

){
τ

(ps)
i C

}
⊗ s

I ⊗ 1√
6
ǫabc (3.37)

Γ(avd)
µ (P, q) =

∑

i

Fi

(
P 2, q2, z

)
{τµ i C} ⊗ s

I ⊗ 1√
6
ǫabc , (3.38)

where C is a charge conjugation matrix and the mass squared M2 is still a
parameter, since the diquark is not necessarily fixed on its mass shell.

Diquark propagator

For our calculations of baryon decays via the triangle diagram we need to know
the propagator of the diquarks. By imposing the pole condition onto the inverse
Dyson equation (2.10a)

G−1 = G−1
0 −K (3.39)

(χD χ̄)
−1

= G−1
0 −K (3.40)

we get a defining Dyson equation for the diquark propagator

D−1 = χ̄ G−1
0 χ− χ̄K χ = Γ̄G0 Γ − Γ̄G0KG0 Γ , (3.41)

where χ are the diquark Bethe-Salpeter wave functions and Γ the diquark Bethe-
Salpeter amplitudes as solutions of the diquark BSE. This equation provides us
the diquark propagator. A detailed discussion about the solution process of this
equation and the off-shell behavior of the diquark propagator can be found in
[20].
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3.3.2 Quark-diquark amplitudes

Now all ingredients of Equation (3.32) are known. Only the quark-diquark
amplitudes are not specified yet. For them one also has to find a certain color,
flavor and Dirac structure and span them onto the chosen basis.

Color and flavor structure

Being color singlets the color structure of baryons is the same as in the meson
case, namely ∝ δab̄. The flavor structure is somewhat more subtle, since now
we have to combine three quarks,

2⊗ 2⊗ 2 = (1⊕ 3) ⊗ 2 = 2︸︷︷︸
1⊗2

⊕ 2⊕ 4︸ ︷︷ ︸
3⊗2

, (3.42)

we get two flavor doublets and one flavor quartet. The quartet can clearly be
identified with the Delta baryon, thus it only contains isovector diquarks. For
the Nucleon is a flavor doublet and thus the situation is not so clear. Indeed
it is a mixture of the two doublets above and contains isoscalar and isovector
components.

The flavor structure of the individual Nucleon and Delta isospin projections
are now calculated via the corresponding Clebsch-Gordan coefficients and the
diquark flavor representations (3.36). With the basis u =

(
1
0

)
and d =

(
0
1

)
, for

the individual nucleon isospin projections we get the following Clebsch-Gordan
representations [20],

p =

(
u
∣∣∣
√

2
3 d , −

√
1
3 u , 0

)
, n =

(
d
∣∣∣ 0 ,

√
1
3 d , −

√
2
3 u

)
, (3.43)

which has to be understood in such a way that the first component has to be
tensorial multiplied with the scalar diquark basis matrix, and the other three
are multiplied with the axial vector basis matrices. For example the flavor part
of the proton Bethe-Salpeter amplitude reads

pf = u× s
s +

√
2
3 d× s

+ −
√

1
3 u× s

0 . (3.44)

The corresponding Clebsch-Gordan coefficients for the Delta baryon read

∆++ =
(
u , 0 , 0

)

∆0 =

(
0 ,
√

2
3 d ,

√
1
3 u

)
∆+ =

(√
1
3 d ,

√
2
3 u , 0

)

∆− =
(

0, 0, d
) , (3.45)

where there now is no scalar diquark projection.

Dirac structure

In the last section we found a strong correspondence between the flavor and
the Dirac structure of diquarks. The isoscalar diquark has to be also a scalar
in Dirac space and the isovector diquark corresponds to an axial vector. For
the nucleon, being a mixture of isoscalar and isovector diquarks, we get the
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following basis for the quark-diquark amplitude Γ(P, q) with P being the total
momentum and q the relative momentum between quark and diquark [26],

τ
(Ns)
1 = 1

τ
(Nav)
µ 1 = γT

µ

τ
(Nav)
µ 3 = i q̂T

µ1

τ
(Nav)
µ 5 = P̂µ1

τ
(Ns)
2 = −i /̂q

T

τ
(Nav)
µ 2 = i

(
γT

µ /̂q
T − q̂T

µ

)

τ
(Nav)
µ 4 = qT

µ /̂qT −
(
q̂T
)2

3
γT

µ /P

τ
(Nav)
µ 6 = i P̂µ /̂q

T
,

(3.46)

where the hat means normalized vectors and the superscript T denotes the
transversal projection with respect to the total nucleon momentum. We nor-
malized before we performed the transversal projection, k̂T

µ = Tµν(P )
(

kν

k2

)
.

The corresponding basis for the Delta baryon reads [20],

τ
(∆)
µν 1 = δµν 1

τ
(∆)
µν 3 = −

√
3P̂µ pν /p

τ
(∆)
µν 5 = −γT

µ pν /p

τ
(∆)
µν 7 = γT

µ pν /p− δµν 1− 3 pµ pν 1

τ
(∆)
µν 2 =

1√
5

(
2 γT

µ pν − 3 δµν /p
)

τ
(∆)
µν 4 = −

√
3 P̂µ pν 1

τ
(∆)
µν 6 = −γT

µ pν

τ
(∆)
µν 8 =

1√
5

(
δµν/p+ γT

µ pν + 5 pµ pν /p
)
,

(3.47)

where there appears an additional Lorentz index since the Delta amplitude is
contracted with a Rarita-Schwinger spinor, and pµ = i

Tµνqν

(Tµνqν)2
.

The Bethe-Salpeter amplitudes for the Nucleon and Delta-baryon without
flavor and color part read

Γ(Ns)(P, q) =

2∑

k=1

F
(Ns)
k (q2, z) τNs

k Λ+(P ) (3.48a)

Γ(Nav)
µ (P, q) =

6∑

k=1

F
(Nav)
k (q2, z) τNav

µ k Λ+(P ) (3.48b)

Γ(∆)
µν (P, q) =

8∑

k=1

F
(∆)
k (q2, z) τ∆

µρ k Pρν(P ) , (3.48c)

with the positive energy projector

Λ+(P ) =
1

2

(
1D +

/P

iM

)
(3.49)

and the Rarita-Schwinger projector

Pρν(P ) = Λ+(P )

(
Tρν − 1

3
γT

ρ γ
T
ν

)
(3.50)

where the transversality is to be taken with respect to the ∆-total-momentum
Pµ and µ, ν and ρ are Lorentz-indices.



Chapter 4

Calculations and results

The aim of this thesis is to calculate hadronic transitions between asymptotic
states, which, in quantum field theories, are described via the S-Matrix formal-
ism as introduced in Section 2.1. After having set up all the building blocks
and with the solutions of all equations already obtained elsewhere [20, 39, 45]
we can go ahead and perform calculations in the triangle diagram. In the first
section we will be concerned with the invariant amplitude connected to the tri-
angle diagram and how to calculate decay widths and coupling constants from it.
Then we will introduce a certain interaction model which was used when solving
the Dyson-Schwinger and Bethe-Salpeter equations and then finally present the
results of these calculations.

For mesons we calculated the ρ → ππ transition, which has already been
under investigation in the same approach [4, 5], but also in constituent quark
models [46–49], Lattice QCD [50–55] and chiral perturbation theory [56, 57].
For the baryonic case, we studied the ∆ → Nπ transition which has been under
investigation, e.g., in relativistic constituent quark models [58, 59], QCD sum
rules [60–62] and also Lattice QCD [63].

For better readability we shifted the investigation of kinematical issues within
the triangle diagram to Appendix B.2, and we will just use what is described
there. In fact it turns out, that we need to know the propagators and Bethe-
Salpeter amplitudes in a certain region in the complex plain. For the propaga-
tors, this problem already appears when solving the Bethe-Salpeter equation,
which is well known and under control. We give a short review about the
corresponding ideas in Appendix B.3. For the Bethe-Salpeter amplitudes this
problem I solved via a Taylor expansion as described in Appendix B.4.

4.1 Invariant amplitude, decay width and

phasespace

In impulse approximation the investigated transitions can be represented by
the triangle diagram as presented in Figure 3.1 and correspond to a transition
matrix element

M = trDfc

{∫
d̄4k Γ2 S3 Γ1 S2 Γ3 S1

}
(4.1)

31
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where the Γi are descriptions of the participating particles, in our case Bethe-
Salpeter amplitudes for mesons and baryons, and the Si are quark and/or di-
quark propagators, respectively.

In experiments concerning decays one very important term is the decay
width, which is directly connected to the lifetime of a particle. In terms of a ma-
trix element in quantum field theories the scattering width, see Equation (2.6),
reads

Γ =
1

2M

∑

f

∫
dΠf |Mfi |2 , (4.2)

with M being the mass of the decaying particle and
∫
dΠf being a phase-space

integral. Following [6, p.107] and Appendix D of [5] we want to calculate this
phase-space integral now.

For a process of one particle with mass M and momentum p1 decaying
into two particles with masses M2,3 and momenta p2,3, all momenta defined as
incoming, the invariant phase-space integral reads

∫
dΠf =

∫
d̄3~p2

∫
d̄3~p3

(2π)4δ(4)(p1 + p2 + p3)

(−2i )
√
M2

2 + ~p2
2 (−2i )

√
M2

3 + ~p2
3

, (4.3)

where we split the 4-vectors pi into their spacelike and timelike components
p = (~p, i p4). Note that one only integrates over the spacelike parts. Integration
over ~p3 only eliminates δ-functions and yields

= −
∫
d̄3~p2

2π

4
√
M2

2 + ~p2
2

√
M2

3 + ~p2
2

δ

(
M1 −

√
M2

2 + ~p2
2 −

√
M2

3 + ~p2
2

)
.

(4.4)

Now one uses the relation δ(f(x)) = δ(x−ξ)
|f ′(ξ)| with ξ being the roots of f

= −1

4

∫
d2Ω

(2π)2

∫
d

(√
~p2
2

) √
~p2
2√

M2
2 + ~p2

2 +
√
M2

3 + ~p2
2

δ(
√
~p2
2 − ξ) , (4.5)

and ends up with ∫
dΠf = − ξ

4πM1
, (4.6)

where we used in the last step that the denominator exactly equals M1 due to
momentum conservation. The roots ξ are given by the condition

ξ =

√
(M1 +M2 +M3)(M1 +M2 −M3)(M1 −M2 +M3)(M1 −M2 −M3)

2M1
,

(4.7)
and, if the two decay products have the same mass M2 = M3, ξ simplifies to
ξ = 1

2

√
M2

1 − 4M2
2 and we finally get

∫
dΠf = − 1

8π

√

1 − 4M2
2

M2
1

. (4.8)
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4.2 Interaction model

As already mentioned in Chapter 3 several interaction models for the coupled
system of quark-DSE and meson-BSE in rainbow-ladder truncation are used in
the literature. For the triangle calculations we consistently used solutions that
were obtained for the model by Maris and Tandy [21],

G(q2)

q2
=

4π2

ω6
Dq2e(q

2/ω2) + 4π
γm π

(1
2 ln

[
τ + (1 + q2

ΛQCD
)2
] F (q2) (4.9)

with F (q2) = [1 − exp
(
− q2

4m2

t

)
]/q2, mt = 0.5GeV, τ = e2 − 1, ΛQCD = 0.234

GeV and γm = 12
33−2Nf

and Nf = 4. While all these parameters are used to con-

nect ansatz (4.9) to one-loop-order perturbative QCD the two remaining model
parameters {D,ω} together with the current quark mass at a certain renormal-
ization point in the quark propagator can be used to fit hadron observables, such
as masses or leptonic decay constants. For this particular ansatz, one finds that
in a certain parameter range ground state properties remain constant, if one
fixes D · ω = const [21]. Together with one particular current quark mass this
defines a one-parameter model. For the interaction the parameter ω is chosen
in the range of

ω ∈ [0.3, 0.5] (4.10)

D · ω = 0.372 GeV3 , (4.11)

and we vary the current quark mass from the chiral limit up to the strange
quark mass.

Since the model does not describe all π- and ρ-meson observables equally
well at the same time for a particular choice of the current quark mass, one
has one has to choose one observable to fix this parameter, e.g. the meson
masses. Here we want to highlight two parameter sets, in which, for ω = 0.4, we
reproduce the pion and rho-meson mass respectively. In the following we will
call them repeatedly A for the case where the parameters are fitted to the pion
mass and B for the rho-meson mass, see also Table 4.1. Comparing our results
to lattice studies, one can refer to set-up A as the physical point or the whole
range between A and B as the physical region of our calculations.

4.3 Mesons: ρ → ππ

According to Equation (4.1), the general matrix element for the ρππ-transition
reads

Mρππ = trDcf

{∫
d̄4k Γ̄π S Γρ S Γ̄π S

}
(4.12)

where the S are quark propagators as solutions of the quark-DSE and the Γi

are Bethe-Salpeter amplitudes. Since we work in the isosymmetric limit and
neglect any kind of electro-magnetic interaction, the π- and ρ-triplet states
are degenerate. The only difference is their flavor content, i.e. their isospin
projections.

When calculating the flavor trace, we have to take into account, that an
outgoing π+ corresponds to an incoming π− and vice versa. As derived in
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Figure 4.1: The ρ and π-meson masses over the quark mass parameter. As our
model perserves a generalized GMOR-relation [64], for small quark masses the
pion mass goes proportional to

√
mq. The bands represent the dependencies

on the ω-parameter. The red (vertical) lines correspond to the parameter sets
A and B, the green (horizontal) lines to the experimental values of π-, ρ-, and
φ-meson, respectively.

Appendix B.1 (r+)
†

= −r
− and

(
r
0
)†

= r
0. Exemplary, for the ρ0 → π+π−

process the flavor trace yields

trf

{
r0r−r+ − r0r+r−

}
= trf

{
r0 [r+, r−]

}

=
1

4
√

2
trf {σ3[σ1 + iσ2, σ1 − iσ2]} =

1

4
√

2
trf {σ3 2i [σ2, σ1]}

=
1

4
√

2
trf {σ3 4σ3} =

1√
2

trf {1f} =
√

2 . (4.13)

The relative minus sign in the first line of (4.13) stems from the fact that the
triangle diagram contains a fermion loop and we have to sum over all final
states, which in this case means going clockwise and counter-clockwise through
the diagram. The flavor factors of the other decays yield the same as (4.13) since,
e.g., in the ρ+ → π0π+ transition the outgoing π+ corresponds to a r− matrix
such that one gets trf

{
r+r0r− − r+r−r0

}
, which is the same as (4.13) due to

the cyclic property of the trace. The same is true for ρ− → π0π−, and thus for
every possible ρππ-transition we get the same flavor factor. Furthermore, since
this is the only difference between the three transitions, all have the same form
factors, coupling constants and decay widths. From now on we will not refer
to one certain isospin projection but only be concerned with the ρππ-transition
in general, since there is no way to distinguish between the three cases in our
calculations.

With
(
δab̄
)†

= δbā, the color part of Equation 4.12 gives

trc

{
δcd̄
π δac δab̄

ρ δf̄ b̄ δef̄
π δd̄e

}
= trc {1c} = 3 . (4.14)

So we find for the matrix element of the ρ → ππ-transition with already
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traced out color and flavor part

Mρππ = 3
√

2 trD

{∫
d̄4k Γ̄π S Γρ S Γ̄π S

}
. (4.15)

The Lorentz-Dirac part of the calculation is somewhat more involved. The
ρ-meson is a massive vector-meson and thus appears in three polarization states
which have to be summed over. We can perform this summation at the very end
of our calculation by pulling out the polarization vectors of the matrix element

Mρππ = 1√
nλ

∑

λ

Mλ
ρππ = 1√

nλ

∑

λ

ελ
µΛρππ

µ (4.16)

where nλ is the number of polarizations, in case of a vector nλ = 3 and we
defined the vertex amplitude

Λρππ
µ = 3

√
2 trD

{∫
d̄4k Γ̄π S Γρ

µ S Γ̄π S

}
, (4.17)

which is the central term in our calculations of the ρππ-transition. Usually
transition matrix elements are parameterized in terms of form factors as pa-
rameterizations of the corresponding currents. The Lorentz-vector Λµ can have
two linearly independent structures

Λρππ
µ = F

(
P 2, Q2, P ·Q

)
2Qµ +G

(
P 2, Q2, P ·Q

)
Pµ (4.18)

with the two linearly independent momenta Pµ andQµ defined in Equation (B.35).
However, as we already mentioned when constructing the Dirac-basis of the
vector meson, all longitudinal parts of the vector meson, which give exactly
the longitudinal parts of the vertex amplitude, vanish when summing over all
polarizations. Thus the term proportional to Pµ vanishes as

|M|2 =
∑

λ

|Mλ|2 = 1
nλ

∑

λ

ελ
µ(P )Λρππ

µ ελ ∗
ν (P )Λρππ ∗

ν

= 1
nλ
Tµν(P ) Λρππ

µ Λρππ ∗
ν = 1

nλ

(
ΛT

µ

)2
, (4.19)

and we end up with only one formfactor defined by

F (P 2, Q2, P ·Q) =
QµΛρππ

µ

2Q2
. (4.20)

The corresponding coupling strength is defined as the form factor, when all
external legs go on-shell,

gρππ = iF (P 2, Q2, P ·Q)
∣∣∣
P 2

i =−M2

i

. (4.21)

The corresponding decay width is calculated via Formula (4.2) with the
phase space factor calculated in Equation (4.8). In terms of the effective coupling
strength we end up with the hadronic decay width of the ρ-meson decaying into
two pions

Γρππ =
1

2Mρ

1

8π

√
1 − 4M2

π

M2
ρ

1

3
|2 QT gρππ|2

=
1

12 πMρ

√
1 − 4Mπ

Mρ
κ2 |gρππ|2 , (4.22)
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Set fitted to Mπ Mρ fπ fρ g Γ

A Mπ 139 742 131 207 5.19 106
B Mρ 230 774 136 213 5.32 76

Exp. 139.57 775 130 216 5.98 149

Table 4.1: Results and some characteristical values for the two parameter sets
A and B as described in the text. The leptonic decay constants fi are usually
used as check for, e.g., PCAC relations. The experimental values are taken from
[65]. All quantities, beside the dimensionless effective coupling strength g, are
given in MeV.

with κ being defined in Equation B.34.
The Dirac matrix multiplication and trace in (4.17) have to be understood

in such a way that for every µ ∈ {1, 2, 3, 4} one has to perform these calculations
individually and then gets the components of the Lorentz vector Λµ. Explicitly
it is done via taking the trace first in every component and then integrate over
the resulting expressions.

Now we have everything at hand. We know how to calculate the pion Bethe-
Salpeter amplitudes for complex momenta, and we know how to calculate the
expression Λµ and extract the form factor from it. We performed this calcula-
tion with solutions of the homogeneous Bethe-Salpeter equation, which already
implies the on-shell condition.

The results for the effective coupling strength gρππ and the decay width of
the ρ meson Γρ are presented in Figures 4.2 and 4.3, respectively, and for the
two parameter sets A and B explicitly given in Table 4.1. We see a slowly linear
growth of the coupling strength with increasing quark mass, and for the physical
region, between the parameter sets A and B, we are roughly 10 to 15% below
the experimental value. With increasing pion mass squared the decay width is
decreasing fast and at value of around 0.22 GeV2 the channel closes and decays
are not allowed anymore. This strong dependency of the decay width, which
goes along with only a weak dependency of the coupling constant is due to the
kinematical phase-space factor (4.8), which goes into the decay width, but not
the effective coupling constant. The ratio of pion and rho masses increases,
and thus the phasespace becomes smaller and vanishes. Since these masses are
model dependent quantities the decay width is much more dependent on model
details than the effective coupling strength g.

Overall we can state, that we could reproduce experimental values of the
coupling strength and decay width in the ρππ-system in our approach to a
reasonable but not perfect accuracy. The main reason is that in this effective
model the ρ-meson is treated as a bound-state, but not a resonance. Explicit
inclusion of decays in the interaction kernel of the Bethe-Salpeter equation are
expected to cure this deficiency. Naturally, also non-resonant corrections to the
rainbow-ladder truncation will improve the result.



CHAPTER 4. CALCULATIONS AND RESULTS 37

0.1 0.2 0.3 0.4
MΠ

2@GeV2D

1

2

3

4

5

6

7

gΡΠΠ

Figure 4.2: The development of the coupling constant g versus the pion mass
squared. The bands denote the dependence on the ω-Parameter.
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Figure 4.3: The decay width Γ versus the pion mass squared. The bands denote
the dependence on the ω-Parameter.
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Figure 4.4: Comparison between our results for the effective coupling constant
gρππ and different lattice results. Note, that for better readability we shifted
the result of the Göckeler group slightly to the right of the physical point, since
they only state one value for the coupling valid for the whole quark mass range.

In recent years lattice simulations of QCD reached lower and lower pion
masses towards the physical point. With the pion mass, the ratio

Mρ

Mπ decreases
such that it became possible for these studies to investigate the ρππ-transition
via the simulation of ππ-scattering processes and extracting corresponding the
phase-shift. In Figure 4.4 we compare our results for the effective coupling gρππ

with lattice results of different groups: The symbols denote data from references
[51] (circles), [52] (diamonds), [53] (triangle down), [54] (triangle up) and [55]
(squares). We find reasonable agreement with most of the lattice data and are
mostly within the errors provided.

4.4 Baryons: ∆ → Nπ

For the baryons we investigated the ∆Nπ-transition which is represented by the
matrixelement

M∆Nπ = trDcf

{∫
d̄4k Γ̄N D Γ∆ S Γ̄π S

}
. (4.23)

The color trace of Equation (4.23) is the same as the color trace in the ρππ-
system, Equation (4.14),

trc

{
δc̄d
N δāc̄ δāb

∆ δfb δēf
π δdē

}
= 3 . (4.24)

In flavor space there are six different transition, where each flavor factor
is calculated vie the Clebsch-Gordan composition of the baryons according to
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transition ∆++ → pπ+ ∆+ → pπ0 ∆+ → nπ+

flavor factor
√

2
3

2
3

√
2

3

transition ∆0 → nπ0 ∆0 → pπ− ∆− → nπ−

flavor factor 2
3

√
2

3

√
2
3

Table 4.2: The individual transitions in the ∆Nπ-system and their correspond-
ing flavor factors.

Equations (3.43) and (3.45), with the flavor matrices of the diquarks (3.36).
We will present here one calculation explicitly, the other ones are calculated
accordingly and given in Table 4.2. The flavor factor for the ∆+ → pπ0 decay
reads

trf






(√
1

3
d× s

+ +

√
2

3
u× s

0

)
(
r
0
)†
(√

2

3
d× s

+ −
√

1

3
u× s

0

)†





= trf

{(√
1

3
d× s

+ +

√
2

3
u× s

0

)
r
0

(√
2

3
d̄× s

+ † −
√

1

3
ū× s

0 †
)}

= trf

{(√
1

3
d× s

+

)
r
0

(√
2

3
d̄× s

+ †
)

−
(√

2

3
u× s

0

)
r
0

(√
1

3
ū× s

0 †
)}

=

√
2

3
trf

{
d r

0 d̄− u r
0 ū
}

=

√
2

3

(
1√
2

+
1√
2

)
=

2

3
(4.25)

From Table 4.2 we get that the flavor factor for the invariant amplitude of
the ∆++ and ∆− are the same. For the other two charge eigenstates one has
to sum over all final states as

cf =

√

|2
3
|2 + |

√
2

3
|2 =

√
4

9
+

2

9
=

√
2

3
. (4.26)

Thus for all four charge eigenstates of the ∆ we get the same flavor factor for
the decay matrix element M and thus, as for the ρππ-transitions, the same
effective coupling strength and decay width.

The invariant transition element with specified color and flavor factors be-
comes

M∆Nπ = 3

√
2

3
trD

{∫
d̄4k Γ̄ND Γ∆S Γ̄πS

}
. (4.27)

This allows the definition of a vertex amplitude analogous to the mesonic
case, where we have to take the fermionic nature of the baryons into account
via the appropriate spinor constructions. This is done via the positive energy
and Rarita-Schwinger projectors as defined in Section 3.3. Since in the ∆Nπ-
system there are again two linearly independent external momenta, e.g., Pµ

and Qµ as defined in Equation (B.42), the situation is completely analogous to
Equation (4.18) and the vertex amplitude becomes

Λ∆Nπ
µ = F

(
P 2, Q2, P ·Q

)
2Qν ΛN

+ P
∆
νµ , (4.28)
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where the form factor F defines an effective coupling strength if all particles are
on-shell [61, 63], which can be parameterized as,

Λ∆Nπ
µ =

g∆Nπ

2
√
MNM∆

2Qν ΛN
+P

∆
νµ . (4.29)

The matrix element for one specific spin configuration and the vertex amplitude
are connected via projections onto the particular nucleon Dirac-spinor, denoted
by

√
2MNus, and ∆-baryon Rarita-Schwinger spinor, denoted by

√
2M∆us′

µ ,

Mss′

∆Nπ = 2
√
MN M∆ūsΛ∆Nπ

µ us′

µ (4.30)

One then gets via inserting Equation (4.29) into (4.30)

Mss′

∆Nπ = 2
√
MNM∆ūsΛ∆Nπ

µ us′

µ = 2 g∆NπQν ūs ΛN
+ P

∆
νµ us′

µ

= 2 g∆NπQν ūs us′

ν , (4.31)

and, connecting Equations (4.30) and (4.27),

Λ∆Nπ
µ = 3

√
2

3

∫
d̄4k Γ̄N

σ Dσρ Γ∆
ρµS Γ̄πS , (4.32)

with the Bethe-Salpeter amplitudes of the nucleon and Delta defined in Equa-
tion (3.48). Summing over all possible spin combinations yields

|M∆Nπ|2 =
∑

ss′

|Mss′

∆Nπ|2 = 4 g2
∆NπQµQ

∗
ν

∑

ss′

ūsus′

ν ūs′

µ us (4.33)

= 4 g2
∆NπQµQ

∗
ν

∑

s

ūs
P

∆
νµus

= 4 g2
∆Nπ

∑

s

ūsΛ∆
+

(
|QT |2 −

1

3
|/QT |2

)
us (4.34)

= 4 g2
∆Nπ

2 κ2

3

∑

s

ūsΛ∆
+us =

8λκ2

3
g2
∆Nπ , (4.35)

where we defined the parameter λ as

λ =
∑

s

ūsΛ∆
+us = trD

{
Λ∆

+ΛN
+

}
=

1

4
trD

{(
1 +

/P∆

iM∆

)(
1 +

/PN

iMN

)}

=
1

4
trD

{
1 +

κ

iMN
γ4γ3 +

√
M2

N + κ2

MN
γ4γ4

}
= 1 +

√
M2

N + κ2

MN
. (4.36)

With these definitions we get for the effective coupling strength in the ∆Nπ-
system and the strong decay width of the ∆-baryon

g∆Nπ =
3
√
MNM∆

2λκ2
trD

{
QµΛ∆Nπ

µ

}
(4.37a)

Γ∆Nπ =
1

2M∆

ξ(M∆,MN ,Mπ)

4πM∆

8λκ2

3
g2
∆Nπ

=
ξ(M∆,MN ,Mπ)

3πM2
∆

λκ2 g2
∆Nπ , (4.37b)
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with ξ(M1,M2,M3) defined in Equation (4.7).
A numerical treatment of the coupling and the decay width of the ∆-baryon

is not straight-forward. The main reason is that the Chebyshev moments of the
Nucleon Bethe-Salpeter amplitude have to be known in a sizable (∼ M∆) re-
gion of the complex relative-momentum-squared plane (analogous to the quark-
propagator case), which is done here for the first time. In particular, the Taylor
expansion is very sensitive to the numerical accuracy of the Chebyshev mo-
ments close to zero relative momentum squared. To avoid these difficulties,
we use only Chebyshev moments up to first order and by this approximation
introduce a systematical error which we estimate to be smaller than 10%.

As results for the coupling and decay width of the ∆-baryon we get for our
calculations after this numerical simplification

g∆Nπ = 5.5 gexp
∆Nπ = 8.4 (4.38)

Γ∆Nπ = 82 MeV Γexp
∆Nπ = 118 MeV , (4.39)

i.e., roughly 2/3 of the experimental values of the coupling strength and also of
the decay width are reproduced, which is a very reasonable result.

To understand the quality of this result as well as the discrepancy with re-
spect to the experimental value, several factors need to be taken into account.
First of all, the truncation has several consequences: the structure of the in-
teraction is simple via the rainbow-ladder truncation employed throughout, but
consistent in that the axial vector as well as vector WTIs are satisfied in this
setup, leading to a generally excellent description of pion properties. The next
important point is the diquark approximation for baryons: while its results for
the nucleon mass have been recently compared successfully to the corresponding
results in a three-quark setup [66], one cannot necessarily expect negligible ef-
fects of this approximation for matrix elements like the transition studied here.
In particular, the impulse approximation with the pion only coupling to the sin-
gle quark in the quark-diquark baryon may have a sizable effect compared to an
analogous three-quark calculation. Last but not least, the inclusion of explicit
pion degrees of freedom as well as nonresonant corrections to rainbow-ladder
truncation are expected to have an effect as well.

At the same time it should be stressed, however, that our result is a predic-
tion of the model in the sense that all parameters were fixed already to pion
observables and no adjustments or additional parameters were introduced at
the baryon level. It is also noteworthy that mesons and baryons are treated
on the same footing here, a feature certainly contributing to the success of the
approach.



Chapter 5

Conclusions and Outlook

In this thesis we calculated hadronic decays within the Dyson-Schwinger–Bethe-
Salpeter approach to hadron phenomenology. In particular we studied the
ρ → ππ transition in the mesonic and the ∆ → Nπ transition in the baryonic
sectors, respectively. For the mesonic case we re-investigated earlier studies and
found interesting results beyond those already known. In particular we demon-
strated that our value of the coupling constant, as a function of the pion mass,
agrees reasonably with contemporary studies of this transition in lattice QCD as
well as experiment, and we have provided an estimate of the model-parameter
dependence in our result.

For the baryonic case we could provide the first exploratory study of a
hadronic transition among baryons in the DSE-BSE approach to QCD, in a
model setup and truncation that is determined by meson phenomenology and
the AVWTI only. In this way we provide a prediction of a quark-core setup for
the strong ∆ baryon decay width. The numerical result provides about 65%
of the experimental value for the coupling, which is perfectly reasonable in this
context: Corrections like the inclusion of higher Chebyshev moments in the nu-
cleon amplitude, the contributions from explicit pion degrees of freedom as well
as non-resonant contributions to the Nucleon and ∆ amplitudes are expected
to be non-negligible. Furthermore the treatment of the baryons as three-quark
instead of quark-diquark states is expected to further change the result, since
the diquark contribution to the decay is not taken into account here.

In both the meson and baryon cases a treatment of the involved hadrons
as resonances is needed to provide a reliable picture of hadronic transition pro-
cesses in QCD. With further algorithmic and numerical improvements, such an
approach seems feasible in the near future. More immediate applications for the
methods used in this work are the NNπ coupling and the related Goldberger-
Treiman relation, the ∆Nγ transition as well as, more generally, the correspond-
ing form factors.

42



Appendix A

The chiral

Munczek-Nemirovsky

model

In this appendix I want to present the explicit solutions of the quark Dyson-
Schwinger equation in rainbow truncation and the Bethe-Salpeter equation in
ladder truncation for pseudoscalar and vector mesons by means of a simple
interaction with massless quarks. This model was first introduced by Munczek
and Nemirovsky [31] with massive quarks and can be seen as a starting point of
the analysis of the hadron spectrum within the coupled Dyson-Schwinger-Bethe-
Salpeter approach. By construction the integral equations are transformed into
algebraic equations. Thus this model can be seen as a simple toy model, which
can be used to demonstrate the main steps which have to be performed when
solving the coupled system of equations, but circumvents all the technical issues
that appear when solving Integral equations numerically.

The form of interaction we want to use in this appendix reads [31]

G(q2)

q2
= 8π4Dδ(4)(q) , (A.1)

where G(q2) is the effective coupling in the quark DSE and meson BSE, which
mimics the combined effect of the dressing of the gluon propagator and quark-
gluon vertex, q2 is the gluon momentum squared and D is the coupling strength.
The main structure of this construction is the Dirac-δ, which one the one hand
simplifies the solution process a lot, since it turns the integral equations into
algebraic ones, but one the other hand in several aspects over simplifies the
equations, such that it will give rise to several model artefacts we will come
across during the solution process.
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A.1 Quark Dyson-Schwinger equation

In Section 3.1 the Dyson-Schwinger equation of the quark propagator was in-
troduced,

S−1(p) = S−1
0 (p) +

∫
d̄4k Dab

µν(p− k)

(
g
λa

2
γµ

)
S(k) gΓb

ν(k, p) . (A.2)

To solve this equation one needs to know the dressed gluon propagator and
the dressed quark-gluon vertex. These are Green functions, too, and thus obey
their own Dyson-Schwinger equations which are again coupled to other Green
functions and thus their Dyson-Schwinger equations and so on. At a certain
point one has to truncate this infinite system of equations and make ansätze
for those Green functions, whose Dyson-Schwinger equation is not taken into
account.

Since here we are only interested in the quark propagator and do not want
to dive into a more detailed investigation of QCD’s Dyson-Schwinger equations,
for our purpose it is sufficient to only stick to the quark-DSE (A.2) and make
ansätze for the gluon propagator and the quark gluon vertex.

A.1.1 Rainbow truncation

In Landau gauge the gluon propagator takes a quite simple form [12],

Dab
µν(p) =

Z(p2)

p2
Tµν(p) δab , (A.3)

where Tµν is the transversal projector and Z(p2) the gluon renormalization
function.

The quark-gluon vertex has a more delicate role. One the one hand it consists
of twelve linearly independent Lorentz covariants, and on the other hand, as the
conjoining part between matter and glue sector, it plays a central role in chiral
symmetry breaking and the connection between gluon and quark confinement
[67]. Nevertheless, since we want to perform phenomenological calculations and
are not interested in the details of the respective structures of the QCD Green
functions, we stick to the most simple approximation of the quark-gluon vertex.
In our calculation we approximate the Lorenz part of the quark-gluon vertex by
γµ and get

gΓb
ν(k, p) ≃ g F (k2, p2, k · p) λ

b

2
γµ , (A.4)

where the λb are the Gell-Mann matrices and F (k2, p2, k· ) is the quark-gluon
vertex dressing function.

Up to now we specified the color and Lorentz structure for the gluon prop-
agator and the quark gluon vertex but the two dressing functions Z(p2) and
F (k2, p2, k · p) are still unknown and have to be modeled, too. This is usually
done via a so called effective coupling G(k, p), which models the combined effect
of the gluon renormalization function and the quark-gluon vertex dressing func-
tion, and also the mismatch that is done by throwing away all other Lorentz
structures of the quark gluon vertex than γµ.
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Now we have everything at hand and can perform the following truncation
of the quark Dyson-Schwinger equation (A.2)

g2Dab
µν(p− k) Γb

ν(k, p) → G((p − k)2)

(p− k)2
Tµν(p− k) δab λ

b

2
γν (A.5)

and we get

S−1(p) = S−1
0 (p) +

∫
d̄4k

G((p− k)2)

(p− k)2
Tµν

(
λa

2
γµ

)
S(k)

(
λa

2
γν

)
. (A.6)

This is the so called rainbow truncation of the quarks DSE as already intro-
duced in Section 3.1.

To proceed further in the solution of the quark DSE, we insert the parame-
terizations of the quark propagator (3.5) and its inverse (3.6) into the truncated
equation (A.6),

(
A(p2)i /p+B(p2)

)
⊗ 1f√

2
⊗ 1c√

3
=
(
i /p+m

)
⊗ 1f√

2
⊗ 1c√

3

+

∫
d̄4k

G((p− k)2)

(p− k)2
Tµν(p− k)

(
λa

2
γµ

)

(
−σv(k2) i/k + σs(k

2)
)
⊗ 1f√

2
⊗ 1c√

3

(
λa

2
γν

)
. (A.7)

In flavor and color space one now has to take projections, which become quite
simple, since on the lhs only one basis sate occurs. In flavor space we just pull
out the 1√

2
1f on the rhs and thus get

trf

{
1
†
f√
2

1f√
2

}
= 1 (A.8)

on both sides. In color space at first we have to perform some simplifications in
the self-energy term

λa

2

1c√
3

λa

2
=
λa λa

4

1√
3

=
4

3

1√
3
1c , (A.9)

and then pulling out the 1√
3
1c factor we get on both sides of Equation (A.7)

trc

{
1
†
c√
3

1c√
3

}
= 1 . (A.10)

Thus, after performing the traces in flavor and color space the rainbow trun-
cated quark DSE becomes

A(p2)i /p+B(p2) = i /p+m

+
4

3

∫
d̄4k

G((p− k)2)

(p− k)2
Tµν(p− k) γµ

(
−σv(k2) i /k + σs(k

2)
)
γν , (A.11)
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with the factor of 4
3 in front of the integral stemming from the color trace (A.9).

To proceed further we reduce the second and third line of (A.11) to

(
δµν − (p− k)µ(p− k)ν

(p− k)2

)
γµ

(
−iσv(k2)/k + σs(k

2)
)
γν

= σv(k
2) i

(
/k +

(p · k − k2) (/p− /k)

(p− k)2

)
+ 3σs(k

2) , (A.12)

and simplify further to

A(p2)i /p+B(p2) = i /p+m+
4

3

∫
d̄4k

G((p− k)2)

(p− k)2

×
(
σv(k2) i

(
/k +

(p · k − k2) (/p− /k)

(p− k)2

)
+ 3σs(k

2)

)
(A.13)

On both sides there are parts that are, in Dirac space, proportional to the basis
elements 1D and i /p. If we project onto them we get two coupled equations:

B(p2) = m+ 4

∫
d̄4k

G((p− k)2)

(p− k)2
σs(k

2) (A.14a)

p2A(p2) = p2 +
4

3

∫
d̄4k

G((p− k)2)

(p− k)2
(p2 − p · k)(p · k − k2)

(p− k)2
σv(k2) (A.14b)

Whether to calculate the functions for the propagator, σv and σs, or its inverse,
A and B, is a matter of convenience since they are directly connected via equa-
tions (3.8). Here we will calculate the inverse propagator by inserting (3.8b)
into (A.14) and then calculate the σ-functions via (3.8a).

The next step is to specify the effective interaction G(q2). In this appendix
we want to use the model introduced by Munczek and Nemirovsky as introduced
in Equation (A.1), which will allow us a simple reduction of the coupled system
of equations (A.14).

Inserting (A.1) into (A.14) yields

B(p2) = m+ 2D

∫
d4k δ(4)(p− k)

B(k2)

k2A2(k2) +B2(k2)
(A.15a)

p2A(p2) = p2 +
2

3
D

∫
d4k δ(4)(p− k)

(p2 − p · k)(p · k − k2)

(p− k)2
A(k2)

k2A2(k2) +B2(k2)
.

(A.15b)

With the relation δ(4)(q) = 1
π2q2 δ(q

2) this can be simplified further to

0 = B3(p2) −mB2(p2) + (p2A2(p2) − 2D)B(p2) −mp2A(p2) (A.16a)

0 = p2A3(p2) − p2A2(p2) + (B2(p2) −D)A(p2) −B2(p2) , (A.16b)

and finally in the chiral limit we end up with

0 = B3(p2) + (p2A2(p2) − 2D)B(p2) (A.17a)

0 = p2A3(p2) − p2A2(p2) + (B2(p2) −D)A(p2) −B2(p2) . (A.17b)
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Figure A.1: Left panel: Solutions A(p2) (red) and B(p2) (blue) as given in
(A.19) the dotted lines correspond to solution (A.19a) the solid to (A.19b).
Note that the two A-functions cross and B(2) becomes valid at exactly the same

point D
2 . Right Panel: The quark mass function M(p2) (blue) and the quark

wave function renormalization Z(p2) (red) as obtained from (A.20)

These are the equations we want to solve. As we see the Dirac-δ in the
interaction tranformed the integral equations (A.14) into the algebraic equations
(A.17), which are of third order.

Due to the chiral limit (A.17a) has a vanishing solution B(p2) = 0. This
leads to a vanishing solution for A(p2) = 0 and for A(p2) 6= 0 one can turn
(A.17b) into a quadratic equation which can be solved using standard formulas.
For B(p2) 6= 0 one can turn (A.17a) into a quadratic equation and insert the
solutions into (A.17b). The solutions for the rainbow-truncated quark Dyson-
Schwinger equation in the Munczek-Nemirovsky model with massless quarks
are:

B(1)(p
2) = 0

A(1,1) = 0 (A.18a)

A(1,2/3)(p
2) =

1

2

(
1 ±

√
1 +

4D

p2

)
(A.18b)

B(2,3)(p
2) = ±

√
2D − p2A2(p2)

A(2,3)(p
2) = 2 . (A.18c)

The dressing functions A(p2) and B(p2) do not have any direct physical inter-
pretation, but the two secondary terms Z(p2) = 1

A(p2) , the quark wave function,

and M(p2) = B(p2)
A(p2) , the quark mass function. The physical conditions for Z(p2)

and M(p2) to be real and non-negative imply the same for A(p2) and B(p2).
Thus by physical reasons we choose only a subset from (A.18) (additionally
dropping A(p2) = B(p2) = 0):

A(1)(p
2) =

1

2

(
1 +

√
1 +

4D

p2

)
B(1)(p

2) = 0 (A.19a)

A(2)(p
2) = 2 B(2)(p

2) =
√

2D − 4 p2 . (A.19b)



APPENDIX A. THE CHIRAL MUNCZEK-NEMIROVSKY MODEL 48

Note that solution (A.19b) is only valid in the range of momentum p2 < D/2.
The terms σv(p2), σs(p

2), Z(p2) and M(p2) can be deduced from the solu-
tions of A(p2) and B(p2) by the relations (3.8).

σv (1)(p
2) =

2

p2 + p2
√

1 + 4D
p2

σs (1)(p
2) = 0 (A.20a)

Z(1)(p
2) =

2

1 +
√

1 + 4D
p2

M(1)(p
2) = 0 (A.20b)

σv (2)(p
2) =

1

D
σs (2)(p

2) =

√
2D − 4p2

2D
(A.20c)

Z(2)(p
2) =

1

2
M(2)(p

2) =
1

2

√
2D − 4p2 (A.20d)

The solutions (A.19) for A(p2) and B(p2) are shown in Figure A.1 together
with the deduced results for the quark wave and mass functions Z(p2) and
M(p2) from (A.20). Even in this simple model we can already see, at least
qualitatively, one striking feature of non-perturbative low energy QCD calcula-
tions. The crossing of the two possible solutions and the emergence of a new
possible solution at a certain value of p2 respectively, indicate a transition. In
fact, what can be seen here is the dynamical mass generation of QCD due to
chiral symmetry breaking. At high energies we have the massless quark we
started with, i.e. M(p2) = 0, but below a certain momentum scale, defined

by the coupling strength D, namely p2

D ≤ 1
2 dynamical mass generation is ap-

parent and M(p2) 6= 0. Thus we observe dynamical broken chiral symmetry.
The “physically realized” solution is defined piecewise as (A.19a) for p2 > 1

2D
and (A.19a) for p2 ≤ 1

2D. The chiral-quark propagator as the solution of its
Dyson-Schwinger equation in rainbow truncation and the Munczek-Nemirovsky
interaction model then reads:

SMN (p) =





− 1

D
i /p+

√
2D − 4p2

2D
; p2 ≤ D

2

−2(
1 +

√
1 + 4D

p2

)
p2

i /p ; p2 > D
2

(A.21)

A.2 Meson Bethe-Salpeter equation

In the approach to hadron phenomenology we want to use in this thesis mesons
are described by Bethe-Salpeter amplitudes as solutions of the quark-antiquark
Bethe-Salpeter equation as introduced in Section 2.3 and 3.2. As presented in
Equation (3.13) the Bethe-Salpeter equation for mesons reads,

Γαβ AB ab(P, q) =

∫
d̄4k K(P, q, k)α′β′ A′B′ a′b′

αβ AB ab

[S(k − ηP ) Γ(P, k)S(k + η̄P )]α′β′ A′B′ a′b′ , (A.22)

where Γαβ AB ab(P, q) are total and relative momentum dependent Bethe-Salpeter
amplitudes with their inner quantum numbers spin (Greek letters), flavor (up-
percase Latin letters) and color (lowercase Latin letters), S(q) are quark prop-
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agators and K(P, q, k)α′β′ A′B′ a′b′

αβ AB ab is the interaction kernel. The quark prop-
agators are taken as a solution from the quark DSE as presented above, the
Bethe-Salpeter amplitudes Γ are the solutions of the equation, thus the only
part missing is the interaction kernel K. In the derivation of the Dyson equa-
tion in Section 2.1.3 the n-particle interaction kernel K(n) got introduced. For
the case n = 2, K(2) represents all proper 2-particle irreducible interactions,
these can be represented by Feynman diagrams that cannot be divided into
parts by cutting any amount of fermion lines, and one of them is still a proper
2-particle irreducible interaction.

A.2.1 Ladder Truncation

As in the case of Dyson-Schwinger equations the interaction kernel is a infinite
set that has to be truncated. The most simple, so to say 0th order, of the skeleton
expansion of the interaction Kernel K(2) is a one-gluon exchange between the
two quarks. For the sake of consistency with the rainbow truncated quark DSE
one chooses the two occurring quark-gluon vertices and the gluon propagator as
bare, dressed by the effective coupling strength G(q). This truncation of the BSE
is called the ladder truncation, and in connection with the rainbow truncation
of the quark DSE this coupled system of equations is called the rainbow-ladder

truncation of the coupled Dyson-Schwinger-Bethe-Salpeter equations.
Thus, taking the whole Dirac, flavor and color structure into account the

interaction kernelK(2) of the quark-antiquark Bethe-Salpeter equation in ladder
truncation reads1:

K(P, q, k)α′β′ A′B′ a′b′

αβ AB ab → −G((q − k)2)

[
λi
]a′

a

2
[γµ]

α′

α

Tµν(p− k)

(p− k)2
δij

[
λj
]b′
b

2
[γν ]

β′

β δA′

A δB′

B (A.23)

As mentioned at the beginning of the section, we also want to preserve the
pion’s nature as would-be Goldstone boson in the chiral limit. The guiding line
to achieve this is given by the axial-vector Ward-Takahashi identity (AVWTI)
as relation between the quark self energy and the quark-antiquark scattering
kernel. And indeed it can be shown that the quark self energy in rainbow
truncation and the Bethe-Salpeter equation in ladder truncation satisfy the
AVWTI, [21, 32, 64]. In this sense we can expect that in a calculation with
massless quarks there will be a massless pseodoscalar state.

With this in mind, we can write down the ladder truncated Bethe-Salpeter
equation

Γαβ(P, q) = −4

3

∫
d̄4k

G((q − k)2)

(q − k)2
Tµν(q − k)

[γµ]
γ
α

[
S(k − P

2
) Γ(P, k)S(k +

P

2
)

]

γδ

[γν ]
δ
β . (A.24)

1Note that there does not exist a definite sign convention. If one defines the quark self-
energy in the quark DSE with an additional minus sign, this has to be attached by hand.
Important is that we are here in an attractive channel.
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=

Γ Γ

Figure A.2: Bethe-Salpeter equation in ladder truncation

Where we already performed the projections in color,

trc

{(
1√
3
δab

)†
λi

aa′

2
δij λ

j
bb′

2

1√
3
δa′b′

}
=

1

12
δab λ

i
aa′ λi

bb′ δa′b′

=
1

12
λi

aa′ λi
aa′ =

4

3
, (A.25)

and flavor space,

trf

{
r
I
AB δ

A′

A δB′

B r
I
A′B′

}
= trf

{
r
I
AB r

I
AB

}
= 1 . (A.26)

This is a quite general result and the usual starting point for rainbow-ladder
truncated Bethe-Salpeter studies. Now we proceed further with our toy model
calculations and insert the interaction (A.1) into (A.24),

Γ(P, q) = −4

3

∫
d4k

D

2
δ(q − k)Tµν(q − k) (A.27)

γµ S(k − P

2
) Γ(P, k)S(k +

P

2
) γν

= −
∫
d4k

D

2
δ(q − k) δµν γµ S(k − P

2
) Γ(P, k)S(k +

P

2
) γν (A.28)

Γ(P, q) = −D
2
γµ S(q − P

2
) Γ(P, q)S(q +

P

2
) γµ (A.29)

where we used the general relation

∫
d4l δ4(l)

(p · l)(q · l)
l2

f (p, q, l) =
1

4

∫
d4l δ4(l)(p · q)f (p, q, l) . (A.30)

Equation (A.29) has a somewhat subtle structure, which is due to the simple
model we used. The point like interaction is already integrated out, but still
(A.29) has solutions for every relative momentum q. Usually, as it was also done
in the original paper [31], one chooses q = 0. Several arguments for this choice
can be found and we will present one physically motivated here.

The effective interaction in the Munczek-Nemirovsky model (A.1) is a point-
like interaction in momentum space with its peak exactly at q2 = 0. This implies
that the gluon, exchanged between the two quarks, does not transport momen-
tum, thus it will not change the momentum of the quarks. As a consequence
any solution with non-vanishing relative momentum q, would remain with this
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property forever and the quarks will just drift apart. Since the concept of a
bound state principally implies a finite spacial extension, two forever with con-
stant speed dispersing particles clearly can not form a bound state2. To describe
bound states, only the solution q = 0 will give us physically meaningful results.

Thus, from the infinitely many possible solutions of Eq. (A.29), we choose
the one with q = 0 for physical reasons and get

Γ(P, 0) = −D
2
γµ S(−P

2
) Γ(P, 0)S(

P

2
) γµ . (A.31)

A.2.2 Pseudoscalar meson

To proceed further we have to specify which kind of mesons we want to calculate.
Therefore the Bethe-Salpeter amplitude Γ(P, q) is spanned on a set of basis
vectors in flavor, color and Dirac-space as deduced in Section 3.2.2. In equations
(A.25) and (A.26) we already used the fact that mesons as measurable quantities
are color singlets and also that we work in the isospin symmetric two-flavor
case, thus only the Lorentz and Dirac parts remain. Following the derivation of
Equation (3.21), in Dirac space one basis for a pseudoscalar meson is

τ
(π)
1 = i γ5 1

τ
(π)
2 = γ5 /P

τ
(π)
3 = P · q γ5 /q

τ
(π)
4 = − i

2
γ5

[
/q, /P

] . (A.32)

Following above discussion we choose q = 0 which is a model artefact and
simplifies the solution of our equation enormously, since the structures of the

Bethe-Salpeter amplitude proportional to q vanish and only τ
(π)
1 and τ

(π)
2 survive

in (A.32). Furthermore their coefficients become constant. With this simplifi-
cations we get

F1 i γ5 + F2 γ5 /P = −D
2
γµ

(
i
/P

2
σv

(
P 2

4

)
+ σs

(
P 2

4

))

×
(
F1 i γ5 + F2 γ5 /P

)(
−i

/P

2
σv

(
P 2

4

)
+ σs

(
P 2

4

))
γµ

(A.33)

= 2D
(
s2F1 − iF2 σs

(
P 2

4

)
σv

(
P 2

4

)
P 2
)
γ5 (A.34)

+D
(
s2F2 − iσv

(
P 2

4

)
σs

(
P 2

4

)
F1

)
γ5 /P

with s2 = −P 2

4 σ
2
v

(
P 2

4

)
+ σ2

s

(
P 2

4

)
.

If we project onto the Dirac basis we get a linear system of two equations

(
F1

F2

)
=



 2Ds2 −iσs

(
P 2

4

)
σv

(
P 2

4

)
P 2

iDσv

(
P 2

4

)
σs

(
P 2

4

)
−D s2




(
F1

F2

)
. (A.35)

2One can imagine an analogous situation in classical mechanics, where force is change of
momentum in time. If one takes two particles with initial momenta, and this momenta does
not change, then one would say that there is no mutual force actioning between this two
particles. In this sense one could even say that this interaction model used here does not lead
to a force in the Newtonian sense.
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This is a homogenous system of equations ~F = K~F , which is a very general
feature in the solution process of the homogenous Bethe-Salpeter equation. In
numerical studies a high-dimensional system of equations of this kind appears.
In these studies, the system is solved via considering it as an Eigenvalue-equation
λ(P 2)~F = K~F which is only true for λ(P 2) = 1. Thus, the problem reduces
to calculate the first few Eigenvalues of the matrix K, as functions of P 2 [36].
Applying the condition λ(P 2) = 1 gives with the on-shell condition P 2 = −M2

the mass of the bound state. The different Eigenvalues are then interpreted as
different excitations, with the same quantum numbers.

Nevertheless, since the matrix in (A.35) is only two dimensional we can

take a more traditional path. The homogeneous system ~F = K~F has a non-
trivial solution, if the homogenous system 0 = (K− I)~F has one. Therefore the
sufficient condition det [K − I] = 0 leads to

0 = −D
2

8

(
σ2

v

(
P 2

4

)
P 2 + 4σ2

s

(
P 2

4

))2

+
D

4

(
σ2

v

(
P 2

4

)
P 2 − 4σ2

s

(
P 2

4

))
+ 1 .

(A.36)
Now we are very close to a solution of the Bethe-Salpeter equation. The

last step is to include the functions σv and σs as they are calculated from our
solutions of the quark Dyson-Schwinger equation above and stated in (A.20).
The quark propagator (A.21) is only piecewise defined, due to the simple inter-
action model we use and the chiral limit. Since we work in Euclidean space for
a bound state the on-shell condition P 2 = −M2 requires to evaluate the quark
propagator dressing function at negative p2. In (A.21) we did not make any
explicite assumptions about this domain, and so we will just extrapolate from
the positive half axis.

The solution process is now straightforward. If we plug (A.20c) into (A.36),
we get

0 = −D
2

8

(
2

D

)2

+
D

4

(
2
P 2 −D

D2

)
+ 1 (A.37)

0 =
P 2

2D
, (A.38)

which can only be true if P 2 = 0
Now let’s take a step back and again get some overview about what we have

done. At first we implied several conditions, needed to describe a particular
meson, on the Bethe-Salpeter amplitude. In this case we implied the color, fla-
vor and Dirac quantum numbers for a pseudoskalar meson whose constituents
have the same mass, which corresponds directly to the pion. Afterwards we
plugged its Bethe-Salpeter amplitude into the Bethe-Salpeter equation, which
we truncated in a setup that is consistent with the truncation of the quark
Dyson-Schwinger equation whose solution we took as an input into the BSE.
We found one valid bound state which has P 2 = −M2 = 0. So we found a
massless pseudoscalar bound state out of two fermions with dynamically gener-
ated mass. This is exactly what one would expect from [68] and we recover the
Pion as Nambu-Goldstone boson of chiral symmetry even in this simple model
calculation.

To specify the solution further and to really calculate the π-Bethe-Salpeter
amplitude we have to solve (A.35) for the case P 2 = 0 which leads to the simple
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equations

F1 = 2Dσ2
s(0)F1 = F1 ≡ c (A.39a)

F2 = iDσv(0)σs(0)F1 −Dσ2
s(0)F2 =

i
√

2

3
√
D
c , (A.39b)

and we end up with the unnormalized Bethe Salpeter amplitude for the pion in
the Munczek-Nemirovsky model with massless quarks

Γ(π)(P, 0) = c(π) i γ5 +
i
√

2

3
√
D
c(π) /P . (A.40)

Normalization

The last step in the explicit solution of the Bethe-Salpeter equation would be
to specify the last free parameter c(π) by the normalization condition derived in
Section 2.3. But again, due to the simple model structure and the chiral limit
an awkward situation arises.

If we plug Eq.(A.40) into the normalization condition for the BSE (2.33),
we just get the result 0 = 0. The canonical normalization condition thus is not
wrong or invalid, but, in this simple model, it does not give us any new infor-
mation about the Bethe-Salpeter amplitudes. One now could think of different
kinds of normalizations, e.g. normalization of the vector (F1, F2) together with
a normalization of the basis elements, but, since we will not use the solutions
in further calculations we can stop at this point.

A.2.3 Vector meson

As for the pseudoscalar BSA we can also find an explicit analytic solution for
the vector BSA in the Munczek-Nemirovsky model in the chiral limit. Choosing
the same color and flavor structure as for the pseudoscalar meson or pion, the
corresponding vector meson would be the rho-meson.

Pulling out the polarization factors of the vector meson amplitude Γv(P, q) =
1√
nλ

ελ
µΓµ, Equation (A.31) becomes

Γµ(P, 0) = −D
2
γν S(−P

2
) Γµ(P, 0)S(

P

2
) γν , (A.41)

and thus from the basis of the vector meson BSA (3.30) only two covariants
survive, which gives us the equation

F1 γ
T
µ + F2γ

T
µ /P = −4D

(
s2F1 − iF2 P

2 σs

(
P 2

4

)
σv

(
P 2

4

))
γT

µ , (A.42)

where the second covariant on the right hand side vanishes due to

γνγ
T
µ γργνPρ = γνγνγ

T
µ γρPρ − 2γνδ

T
µνγρPρ + 2γνγ

T
µ δνρPρ

= 2γT
µ γρPρ + 2γργ

T
µ Pρ = 4γT

ρ Pρ = 0 . (A.43)

Thus we have F2 = 0 and come to the equation

F1 = −4D

(
−P

2

4
σ2

v

(
P 2

4

)
+ σ2

s

(
P 2

4

))
F1 , (A.44)
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which again for p2 ≤ D
2 can only be solved for

P 2 = −4D −→M = 2
√
D . (A.45)

Note that (A.44) is true for any constant F1 as long as (A.45) is fullfilled. Thus
the Bethe-Salpeter equation gives us a condition for the mass of the vector meson
bound state. In fact the mass of the bound state comes out as a byproduct of
the solution process of the BSE. This is a quite general feature of BSE-studies
and one reason why this equation is so popular in many areas of theoretical
physics. In solving this equation to get descriptions of a certain bound-state,
the mass, one of the most important observables, of the bound state just drops
out.

Now at the very end of our calculation we have to contract the solution with
the polarizations and sum over them and we get the unnormalized solution of
the Bethe-Salpeter equation for the vector meson in the Munczek-Nemirovsky
model in the chiral limit

Γ(ρ)
µ (P, 0) = cv γ

T
µ , (A.46)

which has to be contracted with the polarizations ǫλµ to give the vector meson
Bethe-Salpeter amplitude

Γ(ρ)(P, 0) =
1√
nλ

∑

λ

ǫλµ Γ(ρ)
µ (P, 0) . (A.47)

A.2.4 Diquarks

The main difference between diquark and meson studies in the rainbow lad-
der truncated DSE/BSE studies is the color factor in the Bethe-Salpeter equa-
tion. Thus we will not go further into details of a study of diquarks within
the Munczek-Nemirovsky model, because everything what was said about the
mesons can qualitatively be transported to the diquark case. Our starting point
now is the ladder truncated Bethe-Salpeter equation (A.24)

Γαβ(P, q) = cccf

∫
d̄4k

G((q − k)2)

(q − k)2
Tµν(q − k)

[γµ]γα

[
S(k − P

2
) Γ(P, k)S(k +

P

2
)

]

γδ

[γν ]δβ . (A.48)

with a color and flavor factors cc, cf . The flavor trace is simple, since all flavor
matrices are properly normalized,

cf = trf

{
s
I
AB δ

A′

A δB′

B s
I
A′B′

}
= trf

{
s
I
AB s

I
AB

}
= 1 . (A.49)

The color trace gives,

cc = trc

{(
1√
6
ǫabc

)†
λi

aa′

2
δij λ

j
bb′

2

1√
6
ǫa′b′c

}

=
1

24
(δaa′ δbb′ − δab′ δba′) λi

aa′ λi
bb′ =

1

24

(
λi

aa λ
i
bb − λi

ab λ
i
ba

)

=
1

24
(0 − 16) = −2

3
, (A.50)
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which exactly leads to an attractive diquark channel, but the coupling strength
is only half of what it is in the meson case.



Appendix B

Technicalities

B.1 Construction of flavor and color matrices

B.1.1 Fundamental representations of SU(2)

Throughout this thesis we work with 2 quark flavors that have the same mass.
Thus symmetry in iso-spin space is not explicitly broken, a situation that usually
is called the iso-symmetric limit.

In this case the up and down quark form a doublet under SU(2), which is
exactly the spin group of, e.g., an electron, in a fundamental representation.
Also their anti-quarks form a doublet under SU(2) in a fundamental represen-
tation. However, these two representations are not identical. While the quarks
transform according to what usual is called the fundamental representation, in
the following denoted by 2, the anti-quarks transform according to the conjugate

complex fundamental representation1[44], denoted by 2̄.
We will now impose several transformation properties onto the

(
u
d

)
doublet

and the
(

ū
d̄

)
anti-doublet. These can be seen as phenomenological input, or also

just as definitions for up and down (anti-)quark. From these general transfor-
mation properties we will find the generators of the representations.
The projection of the up quark onto an arbitrary chosen 3-axis in isospin-space
usually is defined as isospin + 1

2 , while the down quark has − 1
2 . Like in usual

quantum mechanics, we can also define ladder operators, that rise and lower the
isospin. Thus we choose the following definitions :

τ3u = +
1

2
τ3d = −1

2
(B.1a)

τ+u = 0 τ+d = u (B.1b)

τ−u = d τ−d = 0 , (B.1c)

from which we can read off the matrix representations

τ+ =

(
0 1
0 0

)
τ− =

(
0 0
1 0

)
τ3 =

(
1
2 0
0 − 1

2

)
. (B.2)

1Indeed there are even 4 fundamental representations of the general linear group [69, p.
264]

56
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With the identification τ± = τ1 ± i τ2 one recognizes in (B.2) the Pauli
matrices σi as (twice the) generators of the 2 representation,

τ1 =
1

2

(
0 1
1 0

)
=
σ1

2
, τ2 =

1

2

(
0 −i
i 0

)
=
σ2

2
, τ3 =

1

2

(
1 0
0 −1

)
=
σ3

2
.

(B.3)

We can apply the same procedure to the anti-doublet. If we define the anti
quarks as follows,

τ̄3ū = −1

2
τ̄3d̄ = +

1

2
(B.4a)

τ̄+ū = −d̄ τ̄+d̄ = 0 (B.4b)

τ̄−ū = 0 τ̄−d̄ = −ū , (B.4c)

we find the ladder operators of the conjugate complex fundamental representa-
tion 2̄,

τ̄+ =

(
0 0
−1 0

)
τ̄− =

(
0 −1
0 0

)
, (B.5a)

and its generators,

τ̄1 =
1

2

(
0 −1
−1 0

)
τ̄2 =

1

2

(
0 −i
i 0

)
τ̄3 =

1

2

(
−1 0
0 1

)
. (B.5b)

So, starting from transformation properties of the doublet, we could find
matrix representations of the fundamental representation 2 and its complex
conjugate 2̄. One could also go the other way round in postulating the existence
of the complex conjugate representation, and then find that the generators of
both representations are connected via

τ̄i = −τ∗i (B.6)

as it was done for SU(3) in [44]. Here we took this path since it is more
reasonable for what follows. Note that the generators are normalized according

to tr
{
τ†i τi

}
= 1.

In the theory of angular momentum in quantum mechanics, as described,
e.g., in [70], one can identify eigenstates of rotation operators uniquely by the
quadratic Casimir operator, J2, and the 3-axis projection, J3, by their eigen-
values

~J2 |j,m〉 = j(j + 1) |j,m〉 Jz |j,m〉 = m |j,m〉; − j ≤ m ≤ j . (B.7)

For both cases above we can recover the quadratic Casimir of SU(2)

∑

i

τ2
i =

∑

i

τ̄2
i =

1

4

∑

i

σ2
i =

3

4
1 , (B.8)

which corresponds to the value j = 1/2.
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B.1.2 Irreducible representation of SU(2) ⊗ SU(2)

A central issue in this thesis are two-body problems. On the quark level these
are mesons and diquarks. While both require to find irreducible representations
of the product group SU(2)⊗SU(2), the cases have one subtle difference. While
diquarks are build out of two quarks, such that we need to combine doublets
from the same representation 2, mesons are built of a quark and an antiquark,
such that we have to combine the two representations 2 and 2̄. This will lead
to quite different matrix representations of the product group.

In a general group theoretical notation one can write

2⊗ 2 = 1a ⊕ 3s , (B.9)

which is also valid for 2 ⊗ 2̄. This means that the irreducible representations
of the product group will be an anti-symmetric singlet and a symmetric triplet
state.

Clebsch-Gordan coefficients

In quantum mechanics, finding an irreducible representation of a product group
is reduced to the recursive calculation of Clebsch-Gordan coefficients. For di-
quarks SU(2) ⊗ SU(2) is just the same as one would combine two spin- 1

2 elec-
trons, since both quarks (as both electrons) correspond to the 2-doublet and this
calculation is demonstrated in many introductory books to quantum mechanics,
like, e.g., [70]. The idea is that one implements a basis transformation from the
separate basis of the two 2 representations (left hand side of Equation (B.9) )
to a basis of the two irreducible representations (right hand side of Equation
(B.9)) |j1,m1, j2,m2〉 −→ |j,m〉,

|j,m〉 =
∑

m1,m2

|j1,m1, j2,m2〉〈j1,m1, j2,m2|j,m〉

=
∑

m1,m2

|m1,m2〉〈m1,m2|j,m〉 , (B.10)

where we subpressed the ji’s on the right hand side since they are already fixed.
In general this procedure is done via fixing one particular j, choosing the

maximal m(j), since there is only one state corresponding to this, and then
applying J− = J1− ⊕ J2− with J±|j,m〉 =

√
(j ∓m)(j ±m+ 1)|j,m± 1〉 onto

the respective side.
Before we proceed in this way, we should choose a convention of the basis in

the product state. We are looking for a basis of the group SU(2)⊗SU(2). Above
we constructed bases for SU(2) starting from their doublets. One convenient
choice, which follows this path, is to choose the outcome of the outer product
of the two doublets. In general this will be 2 × 2-matrices. In the space of
hermitian 2 × 2-matrices the Pauli-matrices together with the 1 form a basis.
We want to express the outer product in this basis, e.g. a diquark made of two
up quarks corresponds to

|u u〉 =

(
1
0

)
⊗
(

1
0

)
=

(
1 0
0 0

)
=

1

2
(1 + σ3) . (B.11)
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Now we can go back to the bracket notation and perform the calculation
of the Clebsch-Gordan coefficients. For the isovector diquark we start with the
|u u〉-state, apply T 2⊗2

− = τ− ⊕ τ− and bring the coefficients on the right side,
such that we get

s
+ = |u u〉 =

1

2
(1 + σ3) (B.12a)

s
0 = 1√

2
(|u d〉 + |d u〉) =

1√
2
σ1 (B.12b)

s
− = |d d〉 =

1

2
(1− σ3) . (B.12c)

In calculations of Clebsch-Gordan coefficients it is always more involved to
change the multiplet. In our case this would lead too far. We just argue,
that a singlet state is always anti-symmetric. Therefore we write the basis for
the isoscalar diquark as

s
s = 1√

2
(|u d〉 − |d u〉) =

1√
2
iσ2 . (B.12d)

To find the singlet representation one could also just argue that, in the space
of hermitian 2× 2 matrices there is only one matrix left that is orthonormal on
the other three.

The same procedure can now be applied for the mesons. The state in the
isovector triplet with maximal isospin-3 component is the |u d̄〉 state. If we

apply now T 2⊗2̄

− = τ− ⊕ τ̄− we get additional minus signs. Again expanding in
the basis of Pauli-Matrices and 1 yields

r
+ = |u d̄〉 =

1

2
(σ1 + iσ2) (B.13a)

r
0 = 1√

2
(|d d̄〉 − |u ū〉) = − 1√

2
σ3 (B.13b)

r
− = −|d ū〉 = −1

2
(σ1 − iσ2) (B.13c)

r
s = 1√

2
(|d d̄〉 + |u ū〉) =

1√
2
1 (B.13d)

There is some arbitrariness in the choice of the minus signs here (one could also
start with |d ū〉 and then apply J+ which leads to a all over minus sign), because
the basis elements are only normalized to trf

{
ri †rj

}
= δij . When performing

calculations one usually implies conditions onto the observables, and the signs
are adjusted then.

B.1.3 Color-singlet representation of SU(3) ⊗ SU(3)

As in the flavor case, also in color space quarks transform according to the
fundamental representation. Thus for the quarks we can write down the basis

r = (1, 0, 0) g = (0, 1, 0) b = (0, 0, 1) , (B.14)
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τ
(12)
+ τ

(12)
− τ

(13)
+ τ

(13)
− τ

(23)
+ τ

(23)
−

r 0 g 0 b 0 0
g r 0 0 0 0 b
b 0 0 r 0 g 0

τ̄
(12)
+ τ̄

(12)
− τ̄

(13)
+ τ̄

(13)
− τ̄

(23)
+ τ̄

(23)
−

r̄ 0 −ḡ 0 −b̄ 0 0
ḡ −r̄ 0 0 0 0 −b̄
b̄ 0 0 −r̄ 0 −ḡ 0

Table B.1: Transformation properties of the basis (B.14) and (B.17) under the
ladder operators (B.19).

where the generators of the group can be expressed in terms of the Gell-Mann
matrices

λ1 =




0 1 0
1 0 0
0 0 0



 λ2 =




0 −i 0
i 0 0
0 0 0



 λ3 =




1 0 0
0 −1 0
0 0 0





λ4 =




0 0 1
0 0 0
1 0 0



 λ5 =




0 0 −i
0 0 0
i 0 0



 λ6 =




0 0 0
0 0 1
0 1 0



 (B.15)

λ7 =




0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3




1 0 0
0 1 0
0 0 −2





as

τi =
λi

2
. (B.16)

Anti-quark as well as diquarks transform according to the complex conjugate
fundamental representation 3̄ with the basis

r̄ = (1, 0, 0) ḡ = (0, 1, 0) b̄ = (0, 0, 1) . (B.17)

Parallel to the flavor SU(2) case and Eq. (B.6) the generators of this represen-
tation can be expressed in terms of the λi by

τ̄i = −λ
∗
i

2
. (B.18)

The construction of the SU(3) multiplets is some more involved and a de-
tailed treatment of the SU(3)-flavor multiplets can be found in [44]. In the color
case one very important simplification occur: hadrons are color singlets. Thus,
from the product 3⊗ 3̄ = 1⊕ 8, for our purpose, we only need to construct the
anti-symmetric singlet-1-state.

Therefore, as for the SU(2)-flavor case, we can build ladder operators out
of the λi’s and find out the transformation behavior of the basis under these
ladder operators. The transformation laws under the ladder operators defined
by
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τ
(12)
± = τ1 ± i τ2 τ̄

(12)
± = τ̄1 ∓ i τ̄2

τ
(13)
± = τ4 ± i τ5 τ̄

(13)
± = τ̄4 ∓ i τ̄5 (B.19)

τ
(23)
± = τ6 ± i τ7 τ̄

(23)
± = τ̄6 ∓ i τ̄7 ,

can be found in Tab. B.1.
Inspired by Eq. (B.13d) we can write down the color-singlet representation

c
s = 1√

3
(|r r̄〉 + |g ḡ〉 + |b b̄〉) =

1√
3
1c , (B.20)

where 1c is the unity matrix in the space of complex 3×3-matrices. The anti-
symmetry of this singlet state can be shown by means of the transformation
properties Tabular B.1. In terms of two arbitrary color quantum numbers a, b
this state can by expressed by the Kronecker delta 1√

3
δab̄.

B.2 Kinematics in the triangle diagram

In this appendix kinematical issues of the triangle diagram shall be presented
in some detail. At first we will write down the most general kinematical set up
and the special choices of the parameters used corresponding to the particular
cases. In all cases we want to assume the participating external particles to be
on-shell and conservation of total momentum being valid.

B.2.1 General considerations

The general kinematics of a Bethe-Salpeter amplitude with incoming total mo-
mentum P and relative momentum q, outgoing quark-momentum q+ and outgo-
ing anti-quark momentum (or incoming quark momentum) q−, see also Figure
B.1(a), reads

P = q+ − q−

q = η̄ q+ + η q−
(B.21)

q+ = q + η P

q− = q − η̄ P
(B.22)

where η + η̄ = 1 are momentum partitioning parameters, to distribute the
total momentum onto the two constituents. One fixes these parameters prior to
solving the Bethe-Salpeter equation. Thus, in our calculations they appear as
fixed values, depending on the Bethe-Salpeter amplitudes under investigation.

In the triangle diagram we have three Bethe-Salpeter amplitudes, thus three
total momenta. For these general considerations we want to assume all of them
as incoming. Working on the physical state space the momentum conservation
is valid, which yields in this conventions

P1 + P2 + P3 = 0 , (B.23)

and leaves us two independent external momenta.
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q+

q−
P, q

(a)

P3, q3P2, q2

P1, q1

p2p3

p1

(b)

Figure B.1: Kinematics of a Bethe-Salpeter amplitude (a) and in the triangle
diagram (b).

Implementing the kinematics of the Bethe-Salpeter amplitudes above into
the triangle diagram, see also Figure B.1(b), we get for quark momenta ex-
pressed at the respective Bethe-Salpeter amplitudes:

BSA 1 : p2 = q1 − η̄1 P1 p3 = q1 + η1 P1 (B.24a)

BSA 2 : p3 = q2 − η̄2 P2 p1 = q2 + η2 P2 (B.24b)

BSA 3 : p1 = q3 − η̄3 P3 p2 = q3 + η3 P3 . (B.24c)

Now, we can set the respective quark momenta to be equal and find relations
among momenta of different Bethe-Salpeter amplitudes

p2 : q1 − η̄1 P1 = q3 + η3 P3 −→ q3 = q1 − η3 P3 − η̄1 P1 (B.25a)

p3 : q2 − η̄2 P2 = q1 + η1 P1 −→ q2 = q1 + η1 P1 + η̄2 P2 (B.25b)

p1 : q3 − η̄3 P3 = q2 + η2 P2 −→ 0 = P1 + P2 + P3 , (B.25c)

where the third line gives the conservation of total momentum if one inserts the
relations for q2 and q3. This can be used as a cross-check.

Now we have written down the most general kinematics for the triangle
diagram, Figure B.1(b). In practical calculations one needs to choose a certain
inertial frame, like the rest frame of the decaying particle, or the Breit frame
in electromagnetic form factor calculations, which means to fix the external
momenta. Also one has to choose a momentum of integration k = (k1, k2, k3, k4),
k · k = k2, see further Equation (B.69). The result of the calculations should be
independent of the choice of the frame and momentum of integration, but it is
favorable to choose this parameter in a for the practical calculations convenient
manner.

B.2.2 Breit frame

When not describing transitions, in calculations of electromagnetic form factors
one often uses the so called Breit frame, where the momentum transferred by
the photon becomes purely spacelike. In this setup one identifies the Bethe-
Salpeter amplitude 3 in Figure B.1(b) with the incoming boundstate of mass
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M , P3 := Pi , q3 := qi and the Bethe-Salpeter amplitude 2 with the outgoing
boundstate with the same mass, P2 := −Pf , q2 := −qf . At spot 1, one inserts
the constituent-photon vertex Γµ(P1 := Pγ , q1 := qγ), with the incoming photon
momentum Q = Pγ . The kinematics is chosen as such that incoming and
outgoing bound states share the momentum transfer symmetrically,

Pi =




0
0
−κ

i
√
M2 + κ2


 Pf =




0
0
κ

i
√
M2 + κ2


 . (B.26)

One free external momentum is now identified with the photon momentum,
the other is an average momentum of the two bound-state momenta, the so
called Breit momentum,

Q := Pγ = Pf − Pi =




0
0
2κ
0


 P :=

1

2
(Pf + Pi) =




0
0
0

i
√
M2 + κ2


 , (B.27)

which has the advantage that the photon momentum Q is only spacelike, thus
real, and the Breit momentum P becomes only timelike, thus imaginary. If we
invert these equations we get

Pi = P − Q

2
Pf = P +

Q

2
. (B.28)

The constituent-photon vertex is symmetric, thus a simple choice will be
ηγ = 1

2 . For an elastic form factor, the initial and final state will be the same
bound state, thus the momentum partitioning parameter will not change and
we have in the following ηi = η̄f := η.

Now, rephrasing the first two equations of (B.25), and expressing them in
the two external momenta yields

qi = qγ − η P − η̄

2
Q (B.29a)

qf = qγ − η P +
η̄

2
Q . (B.29b)

The aim is now to push all imaginary parts into the constituent-photon
vertex, leaving the relative momenta of the Bethe-Salpeter amplitudes real.
This can be done via defining the momentum of integration as

k = qγ − η P (B.30)

and one ends up with

qi = k − η̄

2
Q (B.31a)

qf = k +
η̄

2
Q (B.31b)

qγ = k + η P , (B.31c)
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and their squares

q2i = k2 + η̄2 κ2 − 2η̄ κ k3 (B.32a)

q2f = k2 + η̄2 κ2 + 2η̄ κ k3 (B.32b)

q2γ = k2 − η2
(
M2 +

κ

2

)
+ i 2η

√
M2 + κ2 k4 , (B.32c)

where the two relative momenta, and thus also their squares, of the Bethe-
Salpeter amplitudes are now purely real, and thus no continuation of the Cheby-
shev moments into the complex plane is needed. All the complex parts are
transferred to the constituent-photon vertex.

Finally for the constituent momenta we get

p1 = k − η̄P (B.33a)

p2 = k + η P − Q

2
(B.33b)

p3 = k + η P +
Q

2
, (B.33c)

thus all propagators have to be evaluated in some region in the complex plane.

B.2.3 ρ → ππ

One can interpret the kinematics of the ρ → ππ transition either as a Breit
frame calculation, where the photon gets exchanged with the ρ-meson, or as the
kinematics, where one chooses the decaying particle to be at rest. In the end
both interpretations will lead to the same kinematics.

At first we want to identify the ρ-meson with spot 1 in Figure B.1(b), P1 :=
Pρ, q1 := qρ, which shall be at rest, and the two outgoing Pions with spots 2 and
3, P2,3 := −Pπ2,π3

, q2,3 := −qπ2,π3
, with both pions fly in different directions,

but with the same amount of momentum κ, which is defined via momentum
conservation in the four-component

Pρ =




0
0
0

iMρ


 Pπ2

=




0
0
κ

i
√
M2

π + κ2


 Pπ3

=




0
0
−κ

i
√
M2

π + κ2


 . (B.34)

Here we choose the first free external momentum to be the ρ-meson mo-
mentum, and the second free external momentum as the relative momentum
between the two outgoing pions. With

P = Pρ =




0
0
0

iMρ


 Q =

1

2
(Pπ2

− Pπ3
) =




0
0
κ
0


 (B.35)

we get exactly the same structure as for the Breit frame, Equations (B.27), if
one takes into account the conservation of external momentaMρ = 2

√
M2

π + κ2.
The inverse of Equations (B.35) are

Pπ2
=

1

2
P +Q Pπ3

=
1

2
P −Q . (B.36)
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The difference to the Breit Frame is, that we do not want to push all the
complex parts into the ρ-Bethe-Salpeter amplitude, since this would imply to
analytically continue its Chebyshev moments in a big region in the complex
plane. Instead we push the imaginary part symmetrically onto both pion Bethe-
Salpeter amplitudes. Additionally since we work in the isospin-symmetric limit
and thus the quark and the anti-quark have the same mass, the momentum par-
titioning parameter is set to η = η̄ = 1

2 , which will yield further simplifications.
Recalling Equations (B.25) and (B.29), we get

−qπ3
= qρ − 1

2
Q− 1

4
P (B.37a)

−qπ2
= qρ − 1

2
Q+

1

4
P . (B.37b)

One choice could be k = qρ, but to decrease the region in the complex plane.
where the Bethe-Salpeter amplitudes have to be known, we choose

qρ = k +
1

2
Q (B.38a)

−qπ3
= k − 1

4
P (B.38b)

−qπ2
= k +

1

4
P , (B.38c)

which have the squares

q2ρ = k2 +
κ2

4
− κk3 (B.39a)

q2π3
= k2 − M2

ρ

16
− i

Mρ

2
k4 (B.39b)

q2π2
= k2 −

M2
ρ

16
+ i

Mρ

2
k4 . (B.39c)

We see, that the ρ momentum is real and just shifted on the real axis, both pion
Bethe-Salpeter amplitudes have to be known in the same region of the complex
plane.

The quark momenta then become

p1 = k +
1

2
Q (B.40a)

p2 = k − 1

2
P − 1

2
Q (B.40b)

p3 = k +
1

2
P − 1

2
Q . (B.40c)

B.2.4 ∆ → Nπ

The kinematics in the ∆Nπ-System is some more involved than the two cases
above, since one has particles with three different masses and three different
momentum partitioning parameters. We will set the ∆-baryon to be at rest
P1 := P∆, q1 := q∆, η1 = η̄∆, decaying into the outgoing Nucleon P2 := −PN ,
q2 := −qN ,η2 = η̄N , and pion P3 := −Pπ, q3 := −qπ. Introducing a new
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momentum partitioning paramenter ηQ in the triangle, the external momenta
are similar to the ρ→ ππ case,

P∆ =




0
0
0

iM∆


 PN =




0
0
κ

i
√
M2

N + κ2


 Pπ =




0
0
−κ

i
√
M2

π + κ2


 (B.41)

and

P = P∆ =




0
0
0

iM∆


 Q = (η̄Q PN − ηQ Pπ) =




0
0
κ
0


 , (B.42)

with

ηQ =

√
M2

N + κ2

√
M2

N + κ2 +
√
M2

π + κ2
η̄Q =

√
M2

π + κ2

√
M2

N + κ2 +
√
M2

π + κ2
. (B.43)

Again we could write down two independent momenta of the triangle, one of
which is spacelike and one timelike. As above they give the nucleon and pion
momenta:

PN = Q+ ηQ P Pπ = −Q+ η̄Q P . (B.44)

from which one can derive the relative momenta

−qπ = q∆ − 1

2
Q+

( η̄Q

2
− η∆

)
P (B.45a)

−qN = q∆ − ηN Q+ (η̄∆ − ηNηQ)P . (B.45b)

Now it is not possible to put all imaginary parts into one of the relative momenta,
due to the different momentum partitioning parameters, which are due to the
different masses of the participating particles. We choose the momentum of
integration such that one minimizes the area in the complex plane, where the
nucleon has to be evaluated:

q∆ = k + ηN Q (B.46a)

−qN = k + (η̄∆ − ηN ηQ)P (B.46b)

−qπ = k +

(
ηN − 1

2

)
Q+

(ηQ

2
− η∆

)
P , (B.46c)

which reduce to Equations (B.38) in the case of ηQ = ηN = η∆ = 1
2 . Finally we

end up with the relative momentum squares

q2∆ = k2 + η2
Nκ

2 − 2ηNκ k3 (B.47a)

q2N = k2 − (η̄∆ − ηNηQ)2 M2
∆ + i 2 (η̄∆ − ηNηQ)M∆ k4 (B.47b)

qπ = k2 +

(
ηN − 1

2

)2

κ2 −
(ηQ

2
− η∆

)2

M2
∆

+ 2

(
ηN − 1

2

)
κ k3 + i 2

(ηQ

2
− η∆

)
M∆ k4 , (B.47c)
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and the quark momenta

p1 = k + (1 − η∆ − ηQ)P −Q (B.48a)

p2 = k − ηN Q− η∆ P (B.48b)

p3 = k − ηN Q+ η̄∆ P . (B.48c)

B.3 The quark propagator in the complex plane

Performing calculations in Euclidean spacetime has the disadvantage of intro-
ducing complex variables. In our calculations this leads to the fact that we need
to know the quark propagator for complex p2-values. To self-consistently solve
the quark-DSE in the complex p2-plane the idea is to solve the DSE on the
real p2-axis first, then shift the momentum of integration from the quark to the
gluon momentum, such that the gluon dressing function G(q2) only has to be
evaluated at real arguments. Then the quark momentum becomes complex and
one has to solve (3.12) on a complex grid. Using Cauchy’s formula it is sufficient
to solve the equation not on the whole grid, but on a contour, that surrounds
the required area [71]. In coupled BSE/DSE calculations, it is advantageous to
solve the quark DSE on a parabola combined with fits to the real axis solution
at large momentum-squared and then uses a numerically reliable representation
of the Cauchy formula

f(z) ≈
∑

j
wj f(zj)

zj−z∑
j

wj

zj−z

f ′(z) ≈
∑

j
wj f(zj)
(zj−z)2 − f(z)

∑
j

wj

(zj−z)2∑
j

wj

zj−z

(B.49)

which is especially suitable for Bethe-Salpeter equation studies of heavy quarko-
nium systems and excited states [72]. For our calculations we use such a repre-
sentation of the quark propagator dressing functions.

B.4 Taylor expansion

Throughout this thesis we used Bethe-Salpeter amplitudes that were solved
numerically, thus they, or to be more specific their Chebyshev moments, were
only known on a finite grid on the real q2-axis. This grid was not the same for
all of the amplitudes and also not equidistant. To know the amplitudes on any
point on the positive real q2-axis and also in the complex plane, we performed
a Taylor-expansion from the nearest grid point.

f(q2) ≈ f(q2i ) +
f ′(q2i )

1!

(
q2 − q2i

)
+
f ′′(q2i )

2!

(
q2 − q2i

)2
+ . . .

· · · + f (n)(q2i )

n!

(
q2 − q2i

)n
(B.50)

To perform such an expansion up to n-th order one needs to know the values
of the derivatives up to n-th order in the point q2i . Several possibilities exist to
obtain approximations for these derivatives, e.g., performing a Padé approxima-
tion and taking the derivatives of the approximation function or performing a
spline fit up to n-th order. Throughout this thesis we calculated our derivatives
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via the method of divided differences, which we will explain in the following.
For a more detailed treatment and mathematical proofs we refer to [73].

To begin with, we assume to know a function f which is continuous and dif-
ferentiable up to (n+1)-th order, only on a finite set of grid points {x0, x1, x2, . . .
. . . , xn}. The aim is now to know the function on the entire axis.

Therefore we define the divided differences

〈xi〉 = f(xi) (B.51a)

〈x0 , x1〉 =
〈x0 〉 − 〈x1 〉
x0 − x1

(B.51b)

〈x0 , x1 , x2〉 =
〈x0 , x1〉 − 〈x1 , x2 〉

x0 − x2
(B.51c)

...
...

〈x0 , x1 , x2 , . . . , xn〉 =
〈x0 , x1 , . . . , xn−1 〉 − 〈x1 , x2 , . . . , xn 〉

x0 − xn
, (B.51d)

with which we can express the function f as

f(x) = 〈xi〉 + 〈x0, x1〉 (x− x0) + 〈x0, x1, x2〉 (x− x0) (x− x1)

+ 〈x0, x1, x2 . . . , xn〉 (x− x0) (x− x1) . . . (x− xn−1) +Rn(x) , (B.52)

where Rn(x) is the remainder term. This is the so called Newton interpolation

formula, which represents a generalization of the Taylor formula. In fact it turns
out that one can express the remainder term as

Rn(x) =
(x− x0) (x − x1) . . . (x− xn)

(n+ 1)!
f (n+1)(ξ) , (B.53)

with ξ being a point in the interval containing the whole set {x, x0, . . . , xn}.
For simplicity we want to assume from now on x0 = min{x0, . . . , xn} and xn =
max{x0, . . . , xn}. Since Equation (B.53) is true for any order k ≤ n, we find for
any such k

f (k)(ξk)

k!
= 〈x0 , x1 , x2 . . . , xk 〉 , ξk ∈ [x0, xk] . (B.54)

Expressed the other way round we found that for the divided difference of
order k of a function f on the gridpoints {x0, . . . xk}, there exists at least one
point ξ ∈ [x0, xk] with Equation (B.54) being valid. In fact Equation (B.54)
will lead us to an approximation for the derivatives at the grid points xi. For
even k we approximate the derivatives by:

f (k)(xi)

k!
≈
〈
xi−k/2 , . . . , xi , . . . , xi+k/2

〉
, for k even. (B.55a)

For odd k Equation (B.54) is not symmetric. Therefore we symmetrize between
the forward and backward difference

f (k)(xi)

k!
≈ 1

2

(〈
xi−(k+1)/2 , . . . , xi , . . . , xi+(k−1)/2

〉

+
〈
xi−(k−1)/2 , . . . , xi , . . . , xi+(k+1)/2

〉)
, for k odd. (B.55b)
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The only caveat with this definitions (B.55) is that they are not well defined
for points xj with j < k

2 and j > n− k
2 . Since in practical calculations the order

of the Taylor expansion k will be much smaller than the number of grid points
k << n, these problems will only occur at border terms. In our calculations we
replaced the not defined derivatives with the nearest well-defined derivatives

for k = 1, 2 :

f (k)(x0) := f (k)(x1) f (k)(xn) := f (k)(xn−1) (B.56a)

for k = 3, 4 :

f (k)(x0) = f (k)(x1) := f (k)(x2) f (k)(xn) = f (k)(xn−1) := f (k)(xn−2) .
(B.56b)

A side-effect of this method is, that one reduces oscillation effects in the boarder
range that can occur when performing approximation on functions on a finite
set of grid points.

Thus, now we found an approximation for the derivatives for any of the grid
points xi and we can rewrite Equation (B.50)

f(q2) ≈ f(q2i ) +

〈
q2i−1 , q

2
i

〉
+
〈
q2i , q

2
i+1

〉

2

(
q2 − q2i

)

+
〈
q2i−1 , q

2
i , q

2
i+1

〉 (
q2 − q2i

)2
+ . . . (B.57)

This formula is now valid for any q2 in the complex plane, as long as one is
not in a neighborhood of poles and branch cuts.

In our calculations of the triangle diagram we performed Taylor expansions
up to fourth order.

B.5 Euclidean spacetime

In this appendix I want to collect the main issues, when performing calculations
in four dimensional Euclidean space instead of 3 + 1 dimensional Minkowski
spacetime.

Conventions and translation rules

The defining difference between 4D-Euclidean space and (3 + 1)D Minkowski
spacetime is the metric gµν . While for the Euclidean space it is just the Kro-
necker Delta gµν = δµν , in Minkowski spacetime it becomes the flat Minkowski
metric gµν = ηµν with ηµν = diag {1,−1,−1,−1}.

A general vector in Minkowski spacetime reads

aM
µ =

(
a0

~a

)
(B.58)

(
aM
)2

= aM
µ aM

ν ηµν = a2
0 − ~a2 = a2

0 − a2
i , (B.59)

where i runs from 1 to 3. In Euclidean space the Minkowski vector (B.58) is
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represented by the vector

aE
µ =

(
~a

i a0

)
(B.60)

(
aE
)2

= aE
µ a

E
ν δ

µν = a2
i − a2

0 . (B.61)

If one compares (B.59) and (B.61) one finds:

(
aE
)2

= −
(
aM
)2

. (B.62)

Gamma-algebra

The defining equation for the Clifford algebra in Euclidean space,
{
γE

µ , γ
E
ν

}
= 2δµν , (B.63)

is satisfied if

γE
i = −i γM

i (B.64)

γE
4 = γM

0 , (B.65)

where the γM
µ are the Dirac Gamma-Matrices in Minkowski spacetime which

satisfy the Clifford Algebra
{
γM

µ , γM
ν

}
= 2ηµν .

As in the Minkowski case one can define a Matrix γ5 that commutes with
all other Gamma matrices as

γE
5 = −γE

1 γ
E
2 γ

E
3 γ

E
4 . (B.66)

The γ-matrices become expressed by means of the Pauli-Matrices (B.3) and in
standart representation they read

γE
i =

(
0 −iσi

iσi 0

)
γE
4 =

(
1 0
0 −1

)
γE
5 =

(
0 1

1 0

)
, (B.67)

and the slash product becomes

/a
E = aE

µ γ
E
µ = aE

i γ
E
i + aE

4 γ
E
4 = −i aM

i γM
i + i aM

0 γM
0 = i /a

M . (B.68)

Integral measure

A general four vector in Euclidean space can be expressed in spherical coordi-
nates as

k =




k1

k2

k3

k4


 =

√
k2




sinψ sin θ sinϕ
sinψ sin θ cosϕ

sinψ cos θ
cosψ


 =

√
k2




√
1 − z2

√
1 − y2 sinϕ√

1 − z2
√

1 − y2 cosϕ√
1 − z2 y
z


 ,

(B.69)
with k2 = |k|2. This parameterization gives the following integral measure in
momentum space

∫
d̄4k =

1

(2π)4

∫ ∞

0

dk2 k
2

2

∫ 1

−1

dz
√

1 − z2

∫ 1

−1

dy

∫ π

−π

dϕ . (B.70)



Bibliography

[1] M. Gell-Mann. “A schematic model of Baryons and Mesons.” Physical

Letters, 8;3: 2. 1964

[2] G. Zweig. “An SU(3) model for strong interaction symmetry and its
breaking I.” CERN preprint, pp. TH–401. CERN-TH-401. 1964

[3] G. Zweig. “An SU(3) model for strong interaction symmetry and its
breaking II.” CERN preprint, pp. TH–412. CERN-TH-412. 1964

[4] D. Jarecke, P. Maris and P. C. Tandy. “Strong decays of light vector
mesons.” Phys. Rev. C, 67: 035202. 2003

[5] D. W. Jarecke. “Properties of mesons from Bethe-Salpeter amplitudes.”
Ph.D. thesis, Kent State University. Advisor: Tandy, Peter C. 2005

[6] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field
Theory (Westview Press, 1995)

[7] L. H. Ryder. Quantum field theory. second edn. (Cambridge University
Press, 1996)

[8] F. J. Dyson. “The Radiation Theories of Tomonaga, Schwinger, and
Feynman.” Phys. Rev., 75: 486. 1949

[9] F. J. Dyson. “The S Matrix in Quantum Electrodynamics.” Phys. Rev.,
75: 1736. 1949

[10] J. Schwinger. “On the Green Functions of Quantized Fields II.” PNAS,
37: 455. 1951

[11] J. Schwinger. “On the Green Functions of Quantized Fields I.” PNAS,
37: 452. 1951

[12] R. Alkofer and L. von Smekal. “The infrared behavior of QCD Green’s
functions: Confinement, dynamical symmetry breaking, and hadrons as
relativistic bound states.” Phys. Rept., 353: 281. 2001

[13] R. J. Rivers. Path Integral methods in quantum field theory (Cambridge
University Press, 1987)

[14] R. Alkofer, M. Q. Huber and K. Schwenzer. “Infrared Behavior of
Three-Point Functions in Landau Gauge Yang-Mills Theory.” Eur. Phys.

J., C62: 761. 2009

71



BIBLIOGRAPHY 72

[15] M. Q. Huber, R. Alkofer and S. P. Sorella. “Infrared analysis of
Dyson-Schwinger equations taking into account the Gribov horizon in Lan-
dau gauge.” Phys. Rev., D81: 065003. 2010

[16] R. Alkofer, M. Q. Huber and K. Schwenzer. “Algorithmic derivation
of Dyson-Schwinger Equations.” Comput. Phys. Commun., 180: 965. 2009

[17] N. Nakanishi. “A general survey of the theory of the Bethe-Salpeter
equation.” Supplement of the Progress of Theoretical Physics, 43: 1. 1969

[18] E. E. Salpeter and H. A. Bethe. “A Relativistic Equation for Bound-
State Problems.” Phys. Rev., 84: 1232. 1951

[19] M. Gell-Mann and F. Low. “Bound States in Quantum Field Theory.”
Phys. Rev., 84: 350. 1951

[20] G. Eichmann. “Hadron properties from QCD bound-state equations.”
Ph.D. thesis, Institut für Physik, Karl Franzens Universität Graz. 2009

[21] P. Maris and P. C. Tandy. “Bethe-Salpeter study of vector meson masses
and decay constants.” Phys. Rev. C, 60: 055214. 1999

[22] P. Maris and P. C. Tandy. “π, K+, and K electromagnetic form fac-
tors.” Phys. Rev. C, 62: 055204. 2000

[23] M. S. Bhagwat and P. Maris. “Vector meson form factors and their
quark-mass dependence.” Phys. Rev. C, 77: 025203. 2008

[24] P. Maris and P. Tandy. “QCD modeling of hadron physics.” Nu-

clear Physics B - Proceedings Supplements, 161: 136 . Proceedings of
the Cairns Topical Workshop on Light-Cone QCD and Nonperturbative
Hadron Physics. 2006

[25] R. Alkofer, A. Holl, M. Kloker, A. Krassnigg and C. D. Roberts.
“On nucleon electromagnetic form factors.” Few Body Syst., 37: 1. 2005

[26] G. Eichmann, A. Krassnigg, M. Schwinzerl and R. Alkofer. “A
covariant view on the nucleons’ quark core.” Annals Phys., 323: 2505. 2008

[27] D. Nicmorus, G. Eichmann and R. Alkofer. “Delta and Omega elec-
tromagnetic form factors in a Dyson- Schwinger/Bethe-Salpeter approach.”
ArXiv: 1008.3184. 2010

[28] C. D. Roberts. “Electromagnetic pion form-factor and neutral pion decay
width.” Nucl. Phys., A605: 475. 1996

[29] P. Maris, C. D. Roberts, S. M. Schmidt and P. C. Tandy. “T-
dependence of pseudoscalar and scalar correlations.” Phys. Rev., C63:
025202. 2001

[30] P. Maris and P. C. Tandy. “Electromagnetic transition form factors of
light mesons.” Phys. Rev., C65: 045211. 2002

[31] H. J. Munczek and A. M. Nemirovsky. “Ground-state qqbar mass
spectrum in quantum chromodynamics.” Phys. Rev. D, 28: 181. 1983



BIBLIOGRAPHY 73

[32] P. Maris and C. D. Roberts. “π- and K-meson Bethe-Salpeter ampli-
tudes.” Phys. Rev. C, 56: 3369. 1997

[33] H. J. Munczek and P. Jain. “Relativistic pseudoscalar q anti-q bound
states: Results on Bethe-Salpeter wave functions and decay constants.”
Phys. Rev., D46: 438. 1992

[34] R. Alkofer, P. Watson and H. Weigel. “Mesons in a Poincare covari-
ant Bethe-Salpeter approach.” Phys. Rev. D, 65: 094026. 2002

[35] S. Prelovsek et al. “Lattice study of light scalar tetraquarks with
I=0,2,1/2,3/2: are sigma and kappa tetraquarks?” Phys. Rev. D, 82:
094507. 2010

[36] M. Blank and A. Krassnigg. “Matrix algorithms for solving
(in)homogeneous bound state equations.” ArXiv: 1009.1535. 2010

[37] M. S. Bhagwat, M. A. Pichowsky and P. C. Tandy. “Confinement
phenomenology in the Bethe-Salpeter equation.” Phys. Rev. D, 67: 054019.
2003

[38] C. H. Llewellyn-Smith. “A relativistic formulation for the quark model
for mesons.” Ann. Phys., 53: 521. 1969

[39] A. Krassnigg. “Survey of J = 0, 1 mesons in a Bethe-Salpeter approach.”
Phys. Rev. D, 80: 114010. 2009

[40] A. Krassnigg and M. Blank. “A covariant study of tensor mesons.”
ArXiv: 1011.6650. 2010

[41] G. Eichmann. “The Analytic Structure of the Quark Propagator in the
Covariant Fadeev Equation of the Nucleon.” Master’s thesis, Institut für
Physik, Karl Franzens Universität Graz. 2006

[42] P. Maris. “Effective masses of diquarks.” Few Body Syst., 32: 41. 2002

[43] P. Maris. “Electromagnetic properties of diquarks.” Few Body Syst., 35:
117. 2004

[44] W. Greiner and B. Müller. Quantum Mechanics - Symmetries. 2nd
edn. (Springer Verlag, 1994)

[45] D. Nicmorus, G. Eichmann, A. Krassnigg and R. Alkofer. “Delta-
baryon mass in a covariant Faddeev approach.” Phys. Rev. D, 80: 054028.
2009

[46] R. Ricken, M. Koll, D. Merten and B. C. Metsch. “Strong two-body
decays of light mesons.” Eur. Phys. J., A18: 667. 2003

[47] S. Godfrey and N. Isgur. “Mesons in a Relativized Quark Model with
Chromodynamics.” Phys. Rev., D32: 189. 1985

[48] R. Kokoski and N. Isgur. “Meson decays by flux-tube breaking.” Phys.

Rev. D, 35: 907. 1987



BIBLIOGRAPHY 74

[49] R. P. Feynman, M. Kislinger and F. Ravndal. “Current Matrix Ele-
ments from a Relativistic Quark Model.” Phys. Rev. D, 3: 2706. 1971

[50] S. Aoki, M. Fukugita, K.-I. Ishikawa, N. Ishizuka, K. Kanaya,
Y. Kuramashi, Y. Namekawa, M. Okawa, K. Sasaki, A. Ukawa and
T. C. Yoshié. “Lattice QCD calculation of the ρ meson decay width.”
Phys. Rev. D, 76: 094506. 2007

[51] M. Gockeler et al. “Extracting the rho resonance from lattice QCD
simulations at small quark masses.” PoS, LATTICE2008: 136. 2008

[52] X. Feng, K. Jansen and D. B. E. Renner. “Scattering from finite size
methods in lattice QCD.” PoS, LATTICE2009: 109. 2009

[53] X. Feng, K. Jansen and D. B. E. Renner. “Resonance Parameters of
the rho-Meson from Lattice QCD.” ArXiv: 1011.5288. 2010

[54] S. Aoki and others (PACS-CS collaboration). “Calculation of ρ
meson decay width from the PACS-CS configurations.” ArXiv: 1011.1063.
2010

[55] J. Frison and others (BMW collaboration). “Rho decay width from
the lattice.” ArXiv: 1011.3413. 2010

[56] C. Hanhart, J. R. Pelaez and G. Rios. “Quark mass dependence of the
rho and sigma from dispersion relations and Chiral Perturbation Theory.”
Phys. Rev. Lett., 100: 152001. 2008
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