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ABSTRACT 
.- , 

This paper presents an investigation of the phenomenon of deadlock in 

various types of resource allocation systems. A basic model of resource 

allocation systems is described, and assumptions about its behavior defined. 

The problem of deadlock is then identified and discussed in the terms of 

this formal model, and linear algorithms are developed to detect deadlock 

in a dynamic manner. A modification of the basic model is then considered 

to permit a more flexible type of resource control, and the deadlock 

phenomenon reconsidered in terms of the new system. Again a linear 

algorithm for deadlock detection is presented. Finally a second modifica- 

tion to the basic model is considered, which permits the linear algorithms 

already developed to be used in such a way that deadlock is prevented from 

occurring. 
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Chapter I. Introduction 

Many types of modern computer systems, including large-scale time- 

sharing systems [ 25,30,39] , multi-programmed remote entry systems [ 351 , 

and real-time data acquisition and control systems [ 2,261 , can be effectively 

characterized as a set of asynchronous sequential processes [ 3,8,21] (tasks, 

users, jobs) contending for a finite and often very limited set of resources 

(such as processors, memory, I/O devices, I/O channels, etc. ). Although 

there may be many objectives in designing such systems, one of the more 

common goals is to maximize the resource utilization as a function of time, 

since unused resources add to the cost of a system without providing any bene- 

fit. A common method of accomplishing this is to process a number of jobs 

(i.e. , resource users) simultaneously, allocating to each only that subset of 

the total system resource set necessary for the job to make progress. By 

judicious selection of jobs processed so that their resource requirements 

complement one another, it is often possible to utilize all (or most) of the 

system resources simultaneously. This is especially true if the resources 

required by any one job constitute only a small portion of the resources in the 

system. 

Although quite desirable, multiprocessing systems pose a number of non- 

trivial problems that arise as “side effects” of the multiprocessing; problems 

that do not exist in systems that do not attempt concurrent job processing, One 

of these problems which has come under extensive study recently is that known 

as Y1deadlocklt. Quite simply, a system is deadlocked when the legitimate 

resource requirements of one or more jobs in the system can never be fulfilled. 

For example, suppose there are two resource elements ra and rb and two jobs 

JI and J2. We assume that a job is not required to release control of its 
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resources until it is finished with them, and that a resource element can be 

allocated to at most one job at a time. Suppose also that at time t, ra is alloca- 

ted to J1 and rb to J2. If at time tl > t, J1 requests allocation of rb, it will 

have to wait u&i1 J2 releases control of rb. If at time t2 > tj, , J2 requests 

allocation of r,, then it will have to wait until J1 releases control of ra. Th.e 

system is now deadlocked, since J1 is waiting for J2 which is waiting for J 1’ 
and this will obviously persist forever. 

Dijkstra [ 81 introduced a detailed discussion of this problem, which he 

called the “Deadly Embrace” or “Circular Wait” phenomenon. His l’Ra.n!~.er’s 

Algorithm” gives a method for preventing deadlock in systems con&sting of a 

set of n independent jobs, Jl, J2, . . . , Jn, and RMAX independent resource 

elements that are functionally equivalent. Each job Ji specifies at the time it 

enters the system a number Mi that is the maximum number of resource 

elements it will ever need. to control at a single time. The actual allocation 

state of each job at time t is represented by Ai( the number of elements 

currently assigned to Ji, and Ci(t), the number of additional elements needed 

by Ji before it can continue. If Ci(t) is zero, the job is assumed to have al% the 

resources necessary and is expected to proceed at its own rate, independently 

of and asynchronously to all other jobs in the system. The value Di(t) = Mi -A.(t) 
1 

represents the potential demand of job Ji; that is, the number of resource 

eSeme.rito it may request at some future time. At any time t the system is free 

from deadlock if and only if there exists a sequence F of all jobs such that 

(renumbering the jobs so that Jk is the kth job in F): 

. 

i 
Mi 5RFREE(t)+ c Ak(t) fori= 1, 2,...,n 

k=l 
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where : 

n 
RFREE(t) = RMAX - c Aktt ) 

k=l 

is the number of resource elements not assigned to any job at time t. The 

number of operations required by Dijkstra’s algorithm to find the sequence F 

using a repetitive search technique is proportional to n2. 

Habermann [ 11,121 extended Dijkstra’s results to the case of m resource 

classes, each class Rj containing RMAXj functionally equivalent elements of , 

type j. .th Each job Ji specifies a maximum demand vector zi, such that the J 

component of Gi is the maximum number of resource elements of type j that 

might be needed at any single time by Ji. Similarly, Ai( Ci(t), Di(t), 

RFREE(t), and RMAX are extended to m-component vectors in an analogous 

fashion. The conditions for a system free from deadlock are then the vector 

equivalents of Dijkstra’s conditions, namely the existence of a sequence 

F = {J,, J2: . . . , Jn/ such that: 

i 
zi(t) 5 RFREE(t) + c ‘l$) for i =l, 2, . . . . n. 

k=l 

Habermann’s algorithm for finding this sequence F is also based on a search 

technique and the number of operations required is proportional to n2m, 

although he also proved a property of the sequence F that permits the search to 

terminate early in most cases, thus costing considerably less. 

Habermann’s results form the basis for subsequent work by Hebalkar [ 14, 

15,16,17] , who developed a graph model, and Shoshani [ 31,32,33] , who devel- 

oped an algebraic model, both giving similar results. These models require 
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that at entry into the system a job specify considerably more information about 

its resource requirements than in Habermann’s model, Instead of specifying 

the maximum potential need over the entire lifetime of a job, these models 

require that a job be broken down into sequential phases such that during each 

phase the resource requirements remain constant (or decrease only). Although 

this is a great deal more information for a job to specify in advance, the result 

is better resource utilization, as is demonstrated quite succinctly by Shoshani. 

Essentially, the more precise information about resource utilization as a 

function of time, and the smaller, less demanding job steps enable the scheduler 

to piece things together better, thereby increasing the resource utilization. 

However, this increased efficiency is offset by the fact, proved by Hebalkar , 

that algorithms to perform the allocation cannot be linear in n. 

Another method of preventing deadlock was considered by Havender [ 131 , 

and later Shoshani [ 31,341 . This method consists of defining a set of restric- 

tions on the legitimate job behavior such that a deadlock becomes impossible. 

Shoshani has shown that by defining a set of necessary conditions for a deadlock, 

systems that violate one or more of those conditions are known a priori to be 

free from deadlock. He gives an example of such a system for parallel access 

to a data base, and Havender’s discussion of OS/hWT provides another example 

of such a system. This type of “static” deadlock prevention has also been dis- 

cussed elsewhere by the author [ 271. There it is shown that any system which 

can be represented in terms of a “hierarchical allocation” graph is a priori 

free from deadlock. 

The problem of detecting deadlocks as they occur, rather than trying to 

prevent them, was investigated somewhat later than Dijkstra’s and Habermann’s 

work, although their algorithms for prevention are based on a detection principle. 
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Shoshani’s detection algorithm is essentially a special case of Habermann’s 

algorithm. Murphy [ 231 , however, investigated the problem of deadlock in a 

system which allows simultaneous sharing of the same resource element by 

more than one job, although he dealt only with a first come, first serve (FIFO) 

ordering of requests, and considered the case of only one element per resource 

class. His detection algorithm for these specialized systems is based on matrix 

manipulation techniques. 

The plan of this thesis is as follows : Chapter II presents a basic model for 

representing a class of resource allocation systems. The nature of deadlock 

is defined and discussed more precisely in the terms of this model, and a set 

of primitives is defined that can be used for scheduling resource allocation. 

Using this model, linear algorithms capable of detecting deadlock dynamically 

are presented. Chapter III considers a modification to the model of Chapter II 

in order to permit simultaneous sharing of resource elements by two or more 

jobs. This represents a generalization and unification of Murphy’s and 

Habermann’s results. A linear deadlock detection algorithm for that system is 

also presented and discussed. Chapter IV considers a different modification to 

the model of Chapter II in order to permit deadlock to be prevented rather than 

just detected. It is shown that by minor adjustments to the basic model, the 

same linear detection algorithms presented in Chapter II can be used in the new 

system for deadlock prevention. The last part of Chapter IV applies both 

previous extensions of the basic model to produce a system with simultaneous 

resource sharing in which the linear algorithm of Chapter III is used to prevent 

deadlock dynamically. The models discussed in Chapter IV represent a differ- 

ent departure from Habermann’s results than that taken by Shoshani and 

Hebalkar, who considered systems in which more advance information is 
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available, whereas we still accept Habermann’s minimal assumption of only 

“worst case” advance information about a job’s resource needs, but by careful 

definition of the scheduler data base and the resource allocation primitives, we 

are able to make more efficient use of this information to construct practical 

operating systems with fast algorithms. 

This thesis incorporates and extends the work of Habermann, Murphy, and 

Shoshani with the following aims: (1) defining a general model of a resource 

allocation system; (2) discussing the problem of deadlock in the formal terms 

of the model; (3) presenting linear algorithms for dynamic deadlock detection 

so that it becomes feasible, from the standpoint of computational overhead, to 

incorporate this framework into operational computer systems; (4) demon- 

strating how the technique of deadlock detection can be coupled with advance 

information on resource requirements of jobs to enable deadlock to be prevented; 

(5) considering systems that permit simultaneous sharing of resource elements 

between jobs, thereby making the model more attractive as a basis for opera- 

tional multiprocessing systems. 
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Chapter II. Dynamic Deadlock Detection 

A. The Basic Model for System S 

A System S consists of a set of m resource classes R = {RI, R2,. , . ,Rm/, 

asetofnjobsi= {Jl, J2,... , Jn 1, a scheduler data base B, and a scheduler S. 

Each resource class Rj consists of RMAXj independent and functionally equiva- 

lent resource elements of type j (Rj = { rjI, rj2,. . . , r jRMAX 1). Resource 

elements are the entities, either hardware, software, or firmware, that perform 

the basic work functions in the system. They are atomic building blocks of 

system S whose substructure is of no interest in this model. As such, they 

cannot be created, destroyed, or made to change class membership. 
* 

Jobs are the entities in system S to which resources are attached for the 

purpose of performing a desired computation. A job directs and coordinates 

the actions of the otherwise independent resource elements. Each job is com- 

pletely independent of all other jobs in the system, and has no way to detect the 

existence of any other job. Jobs are the resource users, and may be both 

created and destroyed in the terms of this model. 

Both jobs and resource elements are defined intuitively as “sequential 

processes” [ 7,8,21] , and are describable in terms of a process definition, a 

process state-vector, and a rule by which the state of the process may change 

over time. The details of this description are not considered in this model. 

The scheduler data base B is a set of data structures representing the 

status of all jobs and resource elements, including information on the resource 

requirements and resource allocations of each job. In this model, the scheduler 
A 

data base B can be considered as the llstate-vectorll of the entire system S. 

Changes in the state of the system are accomplished only by the actions of a 

hierarchical set of “primitives I1 acting upon the data structures in B. This set 
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of primitives defines the scheduler S, and is designed to fulfill four basic 

requirements necessary for the operation of system S: (1) as a means by 

which a job makes known its desire to acquire or release control of resource . - 

elements; (2) as a means by which the desires of a job are satisfied in a 

manner consistent with the operating constraints imposed by the model; (3) as 

a means for communication between a job and its assigned resources; and 

(4) as a means by which jobs are created and destroyed. Only primitives 

necessary for the first two of these functions will be discussed in this thesis. 

. . 
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B. Sys tern Operation 

Since this model is concerned primarily with the definition and implementa- 

tion of the scheduler primitives mentioned above, the behavior of individual jobs 

or resource elements can largely be ignored insofar as any computation or work 

performed by them is concerned. We are interested only in a very select type 

of state transition which may be made by the sequential process that defines a 

job or resource element, and this is the type of transition involving a primitive 

of scheduler S. 

We therefore define two possible states for each job in j, called active and 

waiting, and two possible states for each resource element in 6, called free 

and owned. At any instant of time a process is in exactly one of the two possible 

states allowed to it, and transitions between the states are caused only by the 

actions of scheduler primitives. The state diagram for jobs is given in figure 

II. B. 1, and for resource elements in figure II. B. 2. The edges are labelled 

with the names of the scheduler primitives that cause the state transition 

represented by the edge. 

A job in the active state has all the resources necessary for it to perform 

its computation, and it is therefore able to make progress with that computation 

(by changing its process state-vector in an asynchronous manner not considered 

by this model) without any assistance from the scheduler. During the course 

of its activity, however, an active job may reach a state in which further prog- 

ress is impossible without more resources. At this point the job invokes the 

REQUEST primitive operation, supplying as a parameter to this primitive a 

vectorN= (NI, N2,..., .th N,), defined such that the J component, Nj , is the 

number of resource elements of type j being requested. This primitive causes 

the job to enter the waiting state, where it will remain until the scheduler 
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decides to satisfy this request. This decision is made by the ASSIGN primitive, 

and will depend on the particular scheduling algorithm embodied in the primitive 

definition. This can involve many considerations, but the primary concern of 

this thesis will be algorithms formulated to detect or prevent deadlock situations 

arising from satisfaction of a request. For any choice of an ASSIGN primitive, 

a minimum requirement for choosing a request to be satisfied is that enough 

resource elements of the requested types be in the free state. (This require- 

ment can be relaxed if simultaneous resource sharing between several jobs is 

allowed, see Chapter III. ) When a request is to be satisfied, the scheduler must 

invoke the ALLOCATE primitive for each resource element requested in order 

to select a free element and allocate control of that element to the job, thereby 

changing the state of the element from free to owned. After all requested 

allocations are made to the job, the ASSIGN primitive will change the job’s 

state from waiting back to active, thereby enabling the job to proceed once again 

with its computation. 

Whenever an active job determines that it no longer needs control of some 

of its owned resource elements, it invokes the RELEASE primitive, specifying 

as a parameter the set of names of resource elements that are no longer needed. 

This primitive causes the job to enter the waiting state until the resource 

elements have been deallocated. This is accomplished by the UNASSIGN primi- 

tive, which must invoke the DEALLOCATE primitive for each resource element 

specified by the job in order to remove control of the element from the job, 

thereby changing the state of the deallocated resource element from owned to 

free. After all resource elements have been deallocated, ASSIGN will change 

the state of the job from waiting back to active. 

- 10 - 



Although not considered in this thesis, it.is obvious that some mechanism 

is necessary to synchronize the control of resource elements and to guarantee 

the access security of an allocation. This is considered elsewhere by the author 

and others [7,8,19,22,28,29]. 
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REQUEST/RELEASE 

ASSIGN/UNASSIGN 

Figure II. B. 1 State Diagram for Jobs in J. 

r owned 

DEALLOCATE 

ALLOCATE 
2054Al 

A 

Figure II. B. 2 State Diagram for Resource Elements in R. 
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C. Hierarchy of Primitive Pairs 

The scheduler primitives are arranged in a hierarchical set of primitive 

pairs, such that primitives at one level can invoke other primitives only at a 

lower level, and, except at the highest level, only one member of a pair is 

permitted to be “executing” at any instant. The highest level contains the 

primitive pair REQUEST and RELEASE, and in an extended version of this 

model, would also contain primitives to initiate and terminate jobs, and primi- 

tives to communicate between a job and its controlled resource elements. These 

are called “job primitives”, since they can be invoked only by jobs, and are the 

only primitives available to a job. In keeping with the notion of a sequential 

process, a job can be executing only one of these primitives at any instant of 

time, and the job primitives are designed to be always executable, since all 

blocking of the progress of a job is done as part of the primitive itself. 

The second level in the hierarchy consists of the ASSIGN and UNASSIGN 

primitive pair. These primitives define the true “schedulingf’ aspects of the 

scheduler S, in the sense that these primitives embody the decision rules for 

determining whether or not REQUESTS and RELEASES can be satisfied, as 

well as the algorithms for enforcing any constraints imposed on the scheduler, 

such as the one that it operate in a deadlock-free manner. 

The lowest level contains the ALLOCATE and DEALLOCATE primitive 

pair, which have already been mentioned as causing the state changes of 

resource elements and as performing the details necessary for establishing 

and deleting access control between a job and resource elements. In addition, 

this level also contains a BLOCK and UNBLOCK primitive pair to perform the 

details necessary for job state transitions, and an ENQUEUE and DEQUEUE 

primitive pair, to perform the details necessary for proper queue management. 
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In an extended model, this level would also contain a primitive pair for attending 

to the details of job creation and job deletion. All primitives at the lowest 

level perform basic bookkeeping functions that are necessary for proper function- 

ing of a system. However, the actual details of how these functions are imple- 

mented are of no interest in this model (see however [ 281 ), so that primitives 

at the lowest level will not be further defined. The detailed definitions of the 

other primitives will be given in the following sections. Figure II. C. 1 sumrna- 

rizes the primitive pair hierarchy and the functions performed by each primitive,, 
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Lowest Level 

ENQUEUE( J,q) 

DEQUEUE( J,q) 

BLOCK(J) _ 

UNBLOCK( J ) 

ALLOCATE( J, j) 

DEALLOCATE( J, r) 

ASSIGN( i ,%) 

UNASSIGN( i, N) 

REQUEST( #) 

RELEASE(N) 

add job J to queue q 

remove job J from queue q 

change state of job J from active to waiting 

change state of job J from waiting to active 

establish access between job J and a free 
resource element of type j, changing the 
state of the selected element from free to 
owned 

remove access of resource element r from 
job J, and change the state of r from owned 
to free 

Intermediate Level 

attempt to satisfy the demand E of job Ji 
to gain control of the number and type 
of resource elements represented by the 
vector N 

attempt to satisfy the demand of job Ji 
to release control of the resource 
elements in set N 

Highest Level (Job primitives, issued by job J 

prevent job J from proceeding until it 
obtains access control of the type and 
number of resource elements specified by 
the vector N 

prevent job J from proceeding until access 
control between J and the resource elements 
named in set N has been removed 

Figure II. C. 1 Summary of Scheduler Primitives 
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D. Intuitive Considerations of Deadlock 

Although defined precisely in section II. G, an intuitive definition of 
* 

deadlock in system S at time t is the existence of at least one job that is unable 

to complete its computation in a finite time due to an inability to obtain needed 

resources. Therefore, a system will be deadlock-free at time t if (and only if) 

there exists a sequence of resource allocations, consistent with any constraints 

on the operation of the system, that will supply all the needed resource elements 

to all jobs in a finite time. Such a sequence is called a finishing sequence (or 

an allocation schedule), and is also defined formally in section II. G. 

A deadlock detection scheme is a method of ascertaining at any time 

whether or not a finishing sequence exists for system S in its current state. 

A deadlock prevention scheme is further classified into two categories, called 

static and dynamic. A static prevention scheme consists of a set of permanent 

restrictions on the behavior of all jobs in the system so that any permissible 

sequence of resource allocations from any state of the system can be proved 

a priori to form a finishing sequence. A dynamic prevention scheme consists 

of a rule for changing the state of a system that, given any state that is known 

to have a finishing sequence, will allow only transitions to a next state that also 

has a finishing sequence. It is assumed that without this rule, it cannot be 

shown a priori that all possible allocation sequences will also be finishing 

sequences. 

Shoshani [ 311 has defined a set of conditions that are necessary for the 

occurrence of deadlock. A static prevention scheme can, therefore, be seen 

as restrictions to job behavior that cause one or more of these necessary 

conditions to be absent from the operation of the system. Static deadlock 

prevention is discussed elsewhere by the author [ 271 and will not be covered 
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any further here. The remainder of this chapter and the next one will be 

devoted to considerations of dynamic deadlock detection. Dynamic deadlock 

prevention is discussed in Chapter IV as an extension of deadlock detection. 
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E. Properties of the Model 

Inherent in the discussion so far, and in all that is to follow, are five very 

basic assumptions about the systems being represented in the model. 

Assumption 1: (Job Independence) Each job is a unique f’sequential processff 

or ffcomputationlY that is independent of, and asynchronous 
h 

to, all other jobs in the system S. Each job is totally 

unaware of the existence of other jobs, and has no way to 

detect their presence. 

Assumption 2: (N on-virtual Resources) A job can request and be allocated 

at most a maximum of all the resource elements that exist 

in each resource class. There are no %irtual” resources 

accounted for in this model. 

Assumption 3: (R esource Element Equivalence) Resource elements are 

grouped into fixed equivalence classes such that each 

element of a class performs identically as far as a job 

controlling it is concerned. A job can make requests only 

for ‘Iany element” of a specified type, and must accept the 

elements chosen by the scheduler primitives. Further, 

elements of a resource class are uniquely distinguishable, 

but are unordered, so that there is no notion of ffneighboringff 

or %onsecutive” elements within a class (as for example, 

consecutive pages of core storage). 

Assumption 4 : (Finite Control) A job can make only a finite number of 

REQUESTS and RELEASES. Further, if provided with all 

requested resources, a job must attain in finite time a 

state in which all resources controlled previous to that 
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time are released. Termination of a job implies RELEASE 

of all resources controlled by the job at that time. 

Assumption 5: (N on-shared Resource Elements) A resource element can 

be controlled by at most one job at any instant of time. 

There is no simultaneous sharing of a single resource 

element by two or more jobs. 

This last assumption is not necessary in its entirety, since systems in 

which simultaneous control of a single resource element is allowed can still 

encounter deadlock problems, as is discussed in the next chapter. However, it 

simplifies the following discussion to make this assumption now, and then 

consider the consequences when it is later relaxed, Note however, that if all 

resource elements were completely shareable at all times, no deadlock could 

arise. This is obvious, since any request for resources could be immediately 

satisfied at any time. We state next the modified version of assumption 5, but 

postpone discussion of it until the next chapter. 

Assumption 5’: It must be possible for a job to request and be granted 

control of resource elements in either of two possible 

modes: exclusive, in which only this job has control of 

the element; or shared, in which other jobs may also 

have control of the element at the same time. 

With these assumptions in mind, we can delimit some of their implications 

for the model. 

Consequence 1: The only source of delay to the progress of a job is an unsatisfied 

REQUEST or RELEASE. This follows from the independence of a job from all 

others, and the fact that the only communication between a job and its environ- 

ment is by the use of these two scheduler primitives. Therefore, scheduler 
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actions are the only thing which can prevent a job from making progress. It 

will be shown later that a RELEASE can always be satisfied immediately upon 

invocation. Hence only an unsatisfied REQUEST will cause a delay to the real- 

time progress of a job. This implies that deadlock can be caused only by “poor 

scheduling”, not by the direct interaction of the jobs themselves. It further 

implies that once the resource scheduler has been guaranteed correct, dead- 

lock in the entire system is eliminated, since there exists no other source of 

interference to the progress of a job (such as waiting for another job to do 

some thing). 

Consequence 2 : Since they are independent, jobs can be run to completion in an 

arbitrary order. In particular, a strategy could be chosen such that only one 

job at a time would be allowed to control any resources. This would prove 

extremely wasteful of resources, since many would be unused much of the time, 

but due to assumption 4 and consequence 1, it is guaranteed that jobs can be 

processed in a strictly sequential manner, and due to assumption 4, resources 

allocated to that job will always be freed for the next job in the sequence. (This 

is usually called a “batch processingff type of scheduling. ) The occurrence of 

deadlock is therefore a direct consequence of allowing two or more jobs to 

compete simultaneously for a limited number of resources. 

Consequence 3: In keeping with the assumed independence of jobs, the REQUEST 

and RELEASE primitives are defined such that they can affect only the status of 

resource elements allocated to the job invoking the primitive. A job cannot 

explicitly request or release resources on behalf of another job, nor can it do 

so implicitly by causing the scheduler to change the allocation of resource 

elements to other jobs in response to a REQUEST or RELEASE. This eliminates 

resource preemption, and implies that there is no hierarchy between jobs, in 
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which one job exercises control over the resource requirements of another 

subordinated job. 

Consequence 4: By construction, only active jobs can invoke primitives, and as 

stated above, these affect only resource elements allocated to that job, There- 

fore, once a REQUEST or RELEASE is invoked by an active job, no further 

REQUESTS and/or RELEASES affecting that job can occur until the pending 

REQUEST or RELEASE is satisfied by the scheduler and the job becomes active 

again. In other words, only the scheduler can reactivate a waiting job, and this 

can happen only by fulfilling the REQUEST or RELEASE that caused the job to 

enter the waiting state. 

Consequence 5: While .in the waiting state a job can retain control of all resource 

elements previously allocated to it and not yet released. 

Consequence 6: There is no necessary ordering by which requests must be 

chosen for satisfaction, provided that all resource elements necessary to satisfy 

a single REQUEST are allocated as part of a single ASSIGN. Therefore the 

choice of a selection rule is left completely open as far as the basic model is 

concerned. 

Consequence 7: There is no restriction on the order in which jobs make requests 

for resources, and except for the limitations imposed by assumption 2, each 

REQUEST can be for any number of elements from any resource classes. 

These assumptions and consequences are important to the problem of 

deadlock for several reasons. We must postulate that a job will release control 

of all its resource elements within a finite time after a finite number of requests 

have been satisfied since, in general, it is impossible to prove whether or not 

a computation will indeed attain such a state [ 361 , and moreover, the details 

of how and when a job will reach such a state are of no interest to this model. 
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Job termination will not require any special mention, except where specifically 

noted, since it implies RELEASE for all controlled resource elements of the 

terminating job, and can therefore be treated under the general considerations 

of a RELEASE in most of what follows. 

If virtual resources could be created whenever needed, no deadlock would 

be possible since a REQUEST could always be satisfied by simply creating the 

requested resources. (Other problems may arise, however, such as the 

thrashing phenomenon discussed by Denning [ 5,6] . ) Therefore virtual resources 

are eliminated from consideration in this model by assumption 2. For the same 

reason, resource elements which are not available for exclusive control by a 

single job at a time are eliminated from this model by assumption 5. Conse- 

quence 2 implies that deadlock is not inherent in the use of resources by inde- 

pendent jobs, since a trivial allocation scheme always exists, but that it arises 

from the attempt to increase resource utilization by allocating resource elements 

to two or more simultaneously progressing jobs. Consequence 4 indicates that, 

due to the limited type of communication possible between a job and the scheduler, 

only the actions of the scheduler can cause a deadlock to arise. 

Resource preemption would alleviate the problem of deadlock to a large 

extent, since requests by priority jobs could always be satisfied by “borrowing” 

resources from lower priority jobs. The problem then reduces to that of 

detecting or preventing deadlock in the allocation of resources among jobs of 

equal priority (where preemption is impossible), or to reducing the cost of pre- 

emption to a minimum (see [ 311 ). Consequence 3 rules out preemption in this 

model, either explicit or implicit, thereby requiring the scheduler to t’forsee” 

potential deadlock situations and to avoid them if deadlock is to be prevented, 

since preemption cannot be used as an f’escape’t. 
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Consequence 6 permits the system designer to specify a method of selecting 

REQUESTS to be satisfied in a manner that is consistent with the operating 

constraints he wishes to impose upon the scheduler. In particular, it will be 

seen that this ability is essential to guarantee that deadlock does not exist, since 

an imposed ordering, such as first come, first serve, may create deadlocks 

that could otherwise be avoided [20,23] . 

Consequence 7 implies that the jobs operate completely dynamically in a 

“laissez-faire” environment. The resource needs of a job depend only on that 

job itself and are decided upon within a job’s internal processing, the only 

restriction from the system environment being that the system resource capacity 

cannot be exceeded (assumption 2). 
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F. Scheduler Data Base BJ 

This section describes scheduler data base Bl, the first version of data 

base B in the model that will be investigated. A schematic diagram of the data 

structures comprising BJ is given in figure II. F. 1. Each data item is defined 

separately, and its function described, in the following. 

The following notation will be used throughout. Subscripts are always used 

to specify a sing1.e element of a matrix or vector. The ith row of a matrix A 

will be indicated by xi. Most items in data base B can be changed by the action 

of scheduler primitives, and hence are functions of time. All functional depend- 

ence will be indicated by the use of parentheses ( ), but whenever the meaning is 

clear, the functional dependence on time, (t), will not be written explicitly. 

1: Item RMAX--an m-component vector, called the “total resources” vector. 

The j th component is the number of resource elements that exist in 

resource class R.. 
J 

By assumption this number is constant over all 

time, since resource elements cannot be created, destroyed, or made 

to change class membership. 

To simplify the discussion it is assumed that each resource class Rj contains at 

least one element, since otherwise any REQUEST for an element in that class 

could never be satisfied. This implies the following relationship for RMAX: 

0 < RMAX. 
J 

forallj =l, 2 ,..., m. (Il. F. 1) 

Item 2: RFREE--an m-component vector, called the “free resourcesIt vector. 

At any instant of time t, the j th component of RFREE is the number 

of resource elements in class Rj that are in the free state. 

Obviously for any instant of time t we must have: 

0 5 RFREEj(t) < RMAX. 
J 

for all j =l, 2, . . . . m. 
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Item 3: A--an n by m matrix, called the “current assignment” matrix. The 

ith row of A corresponds to job Ji (15 i <n), and is defined such that 
.th at any instant of time t, the J element of row i is the number of 

resource elements of type j controlled by job Ji at that time t. 

Due to assumption 2 we have the following relationship at all times: 

0 <Aij(t) LRMAX. 
J 

foralli =1, 2, . . . . n 

andall j =l, 2, . . . , m. 

(II. F. 3) 

The sum of all elements in the j th column of A is just the total number of 

resource elements of type j that are controlled by the n jobs in j. By the 

defimtion of RMAX we must therefore have at all times: 

n 
0 I c Aij(t)<RMAX. 

J 
forallj =-1, 2, . . . . m. (II. F. 4) 

i-1 

But resource elements that are controlled by a job are by definition in the owned 

state, and since a resource element always must be in exactly one of the two 

possible states owned or free, - ~ at any instant of time t we must also have: 

n 
RFREEj(t) = RMA.X. - 

3 
c Aij(t) for all j =l, 2, . . . , m. (II. F. 5) 
iz:l 

Item 4 : D--an n by m matrix, called th.e t9msatisfied demand” matrix. The 
ith row of D corresponds to job Ji (15 i 1. n), and is defined such that 

the j th element in row i i.s the num.ber of resource elements of type j 

that have been previously requested by job Ji but have not yet been. 

allocated to that job. 

We observe that job Ji is in the active state if and only if all elements in 

the ith row of D are zero. Since the ith row of A represents the resource 
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elements already controlled by Ji, and the ith row of D represents any additional 

elements required by Ji, assumption 2 can be restated as the following relation, 

valid for any time t: 

0 I Aij(t) + Di,j(t) F RMAXj forallj =l, 2, . . . . m (II. F. 6) 

andalli =l, 2, . . . . n. 

It is important to note that these first four data structures, plus items 9 

and 10 discussed later, are the only ones that would be necessary to define in B 

for the functioning of a set of scheduler primitives S that do not utilize the fast 

deadlock detection algorithms to be presented later. (In fact, having both RMAX 

and RFREE provides an unnecessary redundancy, since one can always be 

computed from the other by means of relation(I1. F. 5).) The following items are 

data structures that are present in B for the sole purpose of keeping track of 

inform.ation that will be needed by the fast deadlock detection algorithms. As 

will be shown later; keeping this information at all times up-to-date in the data 

base B, rather than computing it each time it is needed to check for deadlock, 

is the key to formulation of the fast algorithms. 

Item 5: DNUMB--an n-component vet tor , called the “measure of D”. At any 
.th instant of time t , the 1 component of DNUMB is the number of 

.th positive elemems in the 1 row of matrix D. 

This can be expressed more precisely by first defining the function: 

0 if Dij(t) = 0 
A(i,j,t) = 

1 if Dij(t) >O 

then DNUMB is defined as: 
m 

DNUMBi(t) = c A(i,j,t) foralli=l, 2, . . . . n. 
j=l 
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Obviously for any instant of time t the following relationship holds: 

0 5 DNUMBi(t) I m foralli =l, 2, . . . . n. (II. F. 7) 

Item 6: RAVAIL--an m-component called the “available resources” vector. 
.th The J component of RAVAIL is the total number of resource elements 

of type j that are either in the free state, or are controlled by a job 

Ji with DNUMBi = 0. 

Intuitively, resource elements counted in RAVAIL are the only resource 

elements that are potentially available in a next assignment, since these are 

the only resource elements that are free or might be released from the control 

of a job before a new assignment is attempted. (Consequence 4 indicates that 

resource elements cannot be taken away from jobs that are waiting for an 

unsatisfied request, i. e. , from jobs Ji with DNUMBi> 0. ) 

The definition of RAVAIL can be expressed more precisely by first defining 

the function : 

I 0 if DNUMBi(t) > 0 
h(i,t) = * 

I 1 if DNUMBi(t) = 0 

then RAVAIL is defined as : 

n 
RAVAILj(t) = RFREEj(t) + c h (i, t)Aij(t) forallj =l, 2, . . . . m. 

i=l 

.th Item 7: Q --an n by m matrix, called the “request queue” matrix. The J 

column of Q represents a linear queue, or ordered list, of indices 

of jobs with unsatisfied demands for resource elements of type j. 

That is, at time t, index i is in column j of Q if and only if Dij(t) > 0. 
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Item 8: QSIZE--an m-element vector, called the “queue size” vector. The 

.th th 
J element of QSIZE is the number of job indices in the j column of 

matrix Q. 

As discussed in consequence 4, a job can make only one REQUEST or 

RELEASE at a time, which must be satisfied before a new REQUEST or RELEASE 

is made. This implies that the index i for job Ji will appear at most once in 

column j of Q, and then only if Dij(t) > 0. Since there are exactly n jobs, we 

have : 

0 L QSIZEj(t) F n forallj =l, 2, . . . . m. (II. F. 8) 

Column j of matrix Q may contain anywhere from 0 to n job indices, since 

there may be unsatisfied demands for resource elements of type j by anywhere 

from 0 to n jobs, and it is important to note that indices appearing in one 

column may or may not appear in other columns (depending of course on the 

job ‘s demand). In the Q matrix the i th row does not correspond in any way with 

job Ji, as was the case for the A and D matrices. In fact, the concept of a row 

in relation to matrix Q is somewhat misleading, since each column is an 

independent queue, with no necessary relationship between the items in corre- 

sponding row positions of different columns. It is assumed that the indices in 

a column are arranged such that the first QSIZEj elements of column j will be 

the indices of the jobs with unsatisfied demands for resource elements of type j, 

and the remaining (n - QSIZEj) elements will be undefined. 

Since it is only the first QSIZEj elements that are of interest in what 

follows, conceptually it is possible to consider the length of each queue to be 

variable over time, with n the maximum possible length. The matrix notation 

is chosen here simply for convenience in formulating the algorithms, but in 
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some implementations it may be more efficient to represent Q as a set of 

ordered lists, one list for each resource class, and then the length of each list 

would vary dynamically with the corresponding value of QSIZE. 

The elements in column j of Q must be ordered according to increasing D. . . 1J 
This is an essential part of the fast deadlock detection algorithm and is discussed 

in section II. J. 

Item 9: COUNT--a scalar variable whose value is the number of jobs Ji with 

DNUMBi > 0. 

In terms of the function lambda defined previously, COUNT can be expressed 

precisely as : 
n 

COUNT(t) =n - c A(U) 
i=l 

This obviously implies the following relationship for all times t: 

0 5 COUNT(t) I n (II. F.9) 

Item 10: z--an n-component vet tor , called the “allot ation sequence” vet tor . 

It represents an ordered list of indices of jobs Ji with DNUMBi > 0. 

The number of indices in z is given by the value of COUNT, since a job 

index is entered in E only once for a REQUEST, regardless of the number of 

different resource classes affected by the REQUEST. As with the columns of 

Q, E is represented as a vector simply for convenience in formulating the 

algorithms which follow. In some implementations it might be better constructed 

as a variable length list whose length is given by COUNT. The order of indices 

in E represents the order in which jobs with unsatisfied demands are to be 

satisfied. In other words, E represents the schedule to be followed in 
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allocating resources when they become available. This allocation sequence is 

produced by the deadlock detection algorithms. 
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Figure II. F. 1 Scheduler Data Base Bl for System S. 
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G. Formal Properties of S 

Definition 1: (Finite Control) For each job Ji, if for every time t such that 

DNUMBi(t) > 0 there exists a time t’ L t such that DNUMBi(t’) = 0, 

then after a finite number of such t and t’ there exists a time t” 

greater than all t and t’ such that Aij(tl) = 0 for j = 1, 2, . . . , m. 

This first definition is just a restatement of assumption 4 in terms of the 

data structures defined in BI. 

Definition 2: At time t job Ji is in permanent wait if DNUMBi(t) > 0, and for 

all time t’ L t, DNUMBi(t’) > 0. 
A 

Definition 3 : A system S is deadlocked at time t if and only if there exists at 

least one job Ji in j that is in permanent wait. 

Since much of what follows will be dealing with ordered sequences of the 

jobs in set j, the following notion will be useful. 

Definition 4 : A set J ’ containing the n elements J;, Ji, . . . , JA is a permutation 
A 

of set J containing the n elements J1, J2, . . . , Jn if and only if 

for every i, 1 5 i L n there exists a k, 1 5 k I n such that: 

(a) J; = Jk 

(b) J; # Jj for any j # k 

Such a set j’ will be called a permutation, or permutation sequence of set 

i 

It will also be assumed that operations on vectors are just a notational 

convenience for indicating that an operation is to be applied to each component 

of the vector. Thus, if w and 7 are k-component vectors, and c is a scalar: 

w > c is true if and. only if Wi> cfori=l, 2, . . . . k 

w I v is true if and only if Wil Vifor i =I, 2, . . . . k 

W + VmeansWi+Vifor i =l, 2, . . . , k. 
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Definition 5 : A finishing sequence F(t) for system g at time t is a permutation 

sequence j’ = (J;, J,& . . . , 
* 

Jh) of set J such that associated with 

each job Ji is a time ti and an ordering of these times 

t =t,<_ t 2 L . ..I tn < 03 suchthatforeachi=l, 2, . . . . n 

the following is true: 

DNUMBi(t’) > 0 for any t’ with t I t’ < ti 

DNUMBi(ti) = 0. 

Theorem 1: A system i is not deadlocked at time t if and only if there exists 

at least one finishing sequence F of all jobs in i. 

Proof: 

2: Existence of F implies that for each job Ji in i there exists a time t. 1 

when D~MBi(ti) = 0, by definition 5. Therefore, by definition 2, no job 

is in permanent wait, which by definition 3 implies that i is not deadlocked. 

Only if: Suppose that i is not deadlocked. By definition 3, no job in j is 

in permanent wait. Therefore, by definition 2, for each job Ji in i there 

must exist a time ti, t I ti < 00 such that DNUMBi(ti) = 0. Let 

t’ = (t’ 1’ t$, **a, th) be a permutation sequence of the set of times 
A 

t = (t 1’ t2, *a*, t,), arranged such that t; S tH <_ . . . 5 th. The set J’ is 
A 

then constructed as a permutation sequence of set J by arranging the jobs 
A 

in J’ in the same order as their associated times are ordered in t’. This 

set i1 satisfies definition 5, by construction, and hence forms a finishing 

sequence for 6 at time t. Q. E. D. 

In all the following theorems, it is assumed that F is a permutation sequence 
h 

of all jobs in J, with the jobs renumbered so that Jk is the kth job in F. 
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Theorem 2: If F is a finishing sequence for system 6 at time t, then the 

following conditions are satisfied by jobs in F: 

El(t) I RFREE(t) 

i- 1 
Di(t) _<RFREE(t) + c xk(t) i =2, 3, . . . . n 

(II. G. 1) 

k=l 

Proof (by induction): 

Let F be a finishing sequence at time t. By definition 5, for the first job 

in F, J1, we will have ?i,(t,) = 0 at some time tl, t 5 tI I. ti for 

i-22, 3, . . . . n. Assume that condition (II. G. 1) does not hold for JI at 

time t. This implies that for at least one value of j, Dlj(t) > RFREEj(t) 2 0. 

Hence El(t) cannot be reduced to zero by an assignment of resource elements 

of type j until RFREEj increases. This happens only by a RELEASE invoked 

by some job Jk currently allocated resource elements of type j, and k f 1 

by consequence 4. However, only jobs Ji with Di = 0 can invoke a RELEASE 

primitive, so that Jk must have Dk(tl) = 0 at some time tk, t 5 tk < tl, 

in order to be able to invoke RELEASE at time tl’, tk < t;, 5 tI. Therefore, 

at time tk Dk(tl) = 0 but Dlj(tk) > 0 for at least one value of j, and since 

t< A& < tl’ Jk must precede J1 in F, by definition 5. This contradicts 

the assumption that Jl is the first job in F. Therefore, (II. G. 1) must hold 

for JI at time t. Next assume (II. G. 1) holds for jobs J1, J2, . . , , Ji-I in 

F. We will show that it also must hold for the next job in F, J1. Assume 

that (II. G. 1) does not hold for Ji. By definition 5, all jobs Jk, with 

i <_ kl n, must have Dk(t’) > 0 for all t’ such that t <_ t’ 5 ti 1. Since none 

of the resource elements assigned to these jobs can be released during this 

time, by consequence 4, the maximum value of RFREE at time timl is 
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n n 
RhIAX- - kti Ak(ti_l) =RMAX -kf, xk(t). This maximum can be achieved . 

only if all jobs J 
P’ 

with p <i, have released control of all their resource 

elements by time ti .I. Using relation (II. F. 5) to substitute for RMAX, the 

above limit on RFREE becomes RFREE(ti) 5 RFREE(t) +‘i’ xk(t), and since 
k=l 

we assume (II. G. 1) does not hold for Ji, this gives us RFREE(ti) < Di(ti). 

Therefore even if all jobs Jp with p < i have released control of all their 

resources by time ti I, an assignment to Ji still cannot occur at time t. 
1 

since sufficient free resources do not exist. Thus we cannot achieve 

Di(ti) = 0 for any ti > ti I until some other job J k with k > i RELEASES some 

of its resource elements. But this job Jk would have to have Dk(tl) = 0 at 

some time tk < ti in order to be able to invoke RELEASE at time t’, with 

tk < t’ 5 ti. Therefore at time tk, we have for at least one value of j , 

Dij(tl) > 0, but Bk(tl) = 0, and since tk < ti, Jk must precede Ji in sequence 

F, by definition 5. However, this contradicts the assumption that Ji is the 

next job in F. Therefore (II. G. 1) must also hold for Ji, which proves the 

induction. Q. E. D. 

Theorem 2 gives a necessary condition that must be satisfied by all finishing 
. 

sequences of S. Therefore, if at time t there does not exist any permutation 
A 

sequence of J satisfying conditions (II. G. 1)) it is obvious that there cannot exist 

a finishing sequence, and hence S is deadlocked, by theorem 1. This is stated 

formally in the next theorem. 

Theorem 3: If at time t there does not exist a permutation sequence F of all 

jobs in i that satisfies conditions (II. G. l), system ^s is deadlocked 

at time t. 
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But what if such a sequence does exist --is it still possible that i is dead- 

locked? In other words, is the existence of a permutation sequence of j 

satisfying (II. G. 1) also a sufficient condition for ^s to be not deadlocked? The 

answer is that without advance information about the future resource require- 

ments of the jobs in J, it is impossible to say. Even though it may be possible 

to arrange the jobs into a permutation sequence satisfying (II. G. l), there is no 

way to guarantee that job demands will be satisfied in that order. Active jobs 

may make new requests that will force a rearrangement of the allocation order 

predicted by F. New jobs may be created and existing jobs may terminate, so 

that F will no longer be a permutation sequence for i. 

However, it is conceivable that no new demands will be made, or that they 

will not destroy the order predicted by F; that no new jobs will be created; and 

that no jobs will terminate, or that they will terminate in the order predicted 

by F. Therefore F could, in fact, turn out to be a valid finishing sequence, but 

at time t there is no way of accurately predicting this without advance information 

on job behavior. At least deadlock is not inevitable, since a possible finishing 

sequence does exist. Given the present state of a system, and the lack of any 

advance information on job behavior, existence of a permutation sequence of all 

jobs in i satisfying (II. G. 1) implies that deadlock cannot be detected at this time. 

Only future actions of the jobs themselves will create or ascertain a deadlock 

situation. 

The next theorem shows that by making a simple assumption on the future 
A 

resource requirements of jobs in J, it is possible to take one of the permutation 

sequences satisfying (II. G. 1) at time t and allocate resources to jobs in the order 

that they appear in the sequence, with the result that all current resource 
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requests will be satisfied in a finite time. A finishing sequence is thereby 

produced, so that S is not deadlocked at time t under this assumption. 

Theorem 4 : Without advance information, any permutation sequence F of all 

jobs in j that satisfies (II. G. 1) at time t is a finishing sequence 

for system S under the assumption that no new resource REQUESTS 

will be made at any future time t’ > t. 

Proof (by induction): 

J1 is the first job in F, so that El(t) <, RFREE(t), by (II. G. 1). Therefore, 

at time t0 _ > t, if E,(t) > 0, it is possible to make an assignment to J1 that 

will make El(to) = 0, X,(t,) = xl(t) + El(t), and reduce RFREE(tO) to 
-- 
RFREE(t) - El(t). (If E,(t) = 0, no assignment to J1 is necessary, since 

to = t, RFREE(tO) = RFREE(t) - cl(t), and rl(to) =x,(t) + El(t) trivially. ) 

By assumption no job in j will make any new REQUEST after time t, so that 

by definition 1, J1 will RELEASE all its resources at some finite time 

t1> to, thereby returning all the resources X,(to) to the free state. Hence 

RFREE(t+ = RFREE(tO) + A&to) = RFREE(t) - El(t) -I- Al(t) + n,(t) = RFREE(t) 

+ X1(t)* 

Now assume that jobs J1, J2, . . . , Jisl have had their demands satisfied and 

have released their resources by time tiBl, and that 
i-l 

RFREE(ti.& = RFREE(t) + 
c ‘#). 
k=l 

(It. G. 2) 

We will show that at some time t. 1 timI, J 1 
‘ob Ji will also achieve this state 

and (II. G. 2) will hold for i. By condition (II. G. l), 

i-l 
Ei(t) i RFREE(t) + 

c 
Ak(t) = RFREE(tiDl). 

k=l 
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Since assignments have been made only to jobs Jp with p < i, Di(t) =si(ti-I) 

and xi(t) = xi(ti-I). Therefore time t’, t’ L ti 1, if Dij(t) r 0 for at least 

one value of j, it is possible to make an assignment to Ji that will make 

Ei(t’) = 0, Ai =xi(t) +ci(t), and RFREE(t’) =RFREE(ti-I) - Di(ti-I) 
i-l 

= RFREE(t) + 2 xk(t) - Ei(t). 
k=l 

(If ci(t) = 0, then these values of Di(t’), 

Ai( and RFREE(t’) are obviously valid without an assignment. ) By 

assumption Ji will not make any new REQUEST after time t, so that by 

definition 1, Ji will RELEASE all its resources by some finite time ti 1 t’, 

thereby returning all Ai resources to the free state. This gives: 
i-l 

RFREE(ti) = RFREE(t’) + xi(V) = RFREE(t) + c ;ik(t) - q(t) 
k=l. 

-I- xi(t) + E(t) 

i 
=RFREE(t) + 

c ‘k@) 
k=l 

which proves the induction. Q. E. D. 

Theorem 5: If there exists a permutation sequence F of all jobs in J that 

satisfies (II. G. 1) at time t, then it is impossible to detect a 

deadlock for system S at time t without further information on 
A h 

the resource requirements of jobs in J. A system S for which such 

a sequence exists is said to be deadlock free at time t. 

Proof: 

Existence of such an F means that deadlock is not inevitable at time t, since 

by theorem 4 there is an assumption about future job behavior which is 
A 

sufficient for this F to be a finishing sequence for S. To disprove this 

. .’ 
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assumption requires knowing at time t that some job in i will in fact make 

a request for additional resource elements at some time t’ > t. Without 

this information on future resource requirements, it cannot be shown that 

F is not a finishing sequence for s at time t, and hence it cannot be shown 

that ^s is deadlocked at time t, by theorem 1. Q. E. D. 
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. . 

H. Scheduler Primitives 

1) Job Primitives 

The definition of REQUEST and RELEASE, the two job primitives at the 

highest hierarchical level in system S, is given in figure II. H. 1. As stated in 

section II. C , these are the only primitives which can be invoked directly by jobs, 

and obviously a job can invoke only one primitive in this pair at any instant of 

time. There exists the possibility for several jobs to execute REQUEST and/or 

RELEASE simultaneously, which necessitates the introduction. of the critical 

section procedu.re ‘STARTUP’ that is invoked as part of the RELEASE primitive. 

This procedure constitutes a critical section as defined by Dijkstra [ 81 , so that 

it can be executed by at most one job at any instant of time. The need for this is 

explained below e 

The REQUEST primitive is extremely simple: it invokes the BLOCK primi- 

tive to cause the job making the REQUEST to enter the waiting state, and then 

invokes the ASSIGN primitive on behalf of this job. The decision as to whether 

or not the assignment can be made, and the bookkeeping associated with the 

outcome of this decision, are clearly left up to the ASSIGN primitive which is on 

the next level in the hierarchy below the job primitives. Control is not returned 

from the ASSIGN to the REQUEST primitive until the request has been satisfied 

by the actions of the ASSIGN. At that time, the REQUEST is completed by 

invoking the UNBLOCK primitive to permit the job to proceed in the active state 

once again. 

The RELEASE primitive is only slightly more complicated than the REQUEST. 

It first invokes BLOCK to cause the job invoking the RELEASE to enter the 

waiting state, then it invokes the UNASSIGN primitive on behalf of this job. The 

UNASSIGN must decide when the resource elements can be released, and only 

-40 - 



after this has been accomplished will control be returned from UNASSIGN to 

RELEASE. At this point, the procedure STARTUP is called. 

Procedure STARTUP is needed for the following reason. Resources have 

been returned to the free state by the UNASSIGN which is completed just prior 

to the call to STARTUP, and which causes an increase in the number of resource 

elements that exist in the free state. It is possible that after such an increase, 

there would be a sufficient number of free resources to satisfy the resource 

demand of one of the jobs that is l’asleeplf on the E list. These jobs were put 

onto this list by PUTASLEEP at the time they invoked the REQUEST primitive 

because an insufficient number of resource elements of the correct types were 

free to satisfy the demand at that time. The object of STARTUP is simply to 

reinvoke the ASSIGN primitive on behalf of all the sleeping jobs in E, so that 

ASSIGN can determine whether or not their demands can now be satisfied, and 

if so, to make the assignment and get the job awake again. This procedure must 

be a critical section so that a job in the waiting state will not be reactivated 

more than once for the same request, a situation that could arise if STARTUP 

were being executed simultaneously by two or more jobs. Upon completion of 

the critical section STARTUP, the RELEASE primitive completes its execution 

by invoking UNBLOCK, thereby permitting the job to proceed. 

The job primitives contain no reference to deadlock detection and/or 

prevention, or any other scheduling constraints, since these functions are 

embodied in lower level primitives that constitute the true scheduling aspects 

of any system. The job primitives can be considered as simply the interface 

between the users of the scheduling facilities and these facilities themselves. 
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2) Intermediate Level Primitives 

The definition of the two intermediate level primitives, ASSIGN and 

UNASSIGN, is given in figure II. H. 2. As stated in section II. C , primitive pairs 

at this level are constructed so that only one of the primitives in the pair can be 

executing at any instant of time. Thus the pair forms a critical section of the 

same type as was mentioned above. This is clearly necessary, since these 

primitives modify data structures in data base B that relate to the global state 

of the system rather than to the state of a single job, as was the case for the 

job primitives. It is essential that these modifications be carried out in an 

integral sequence in order to have well defined results and proper system 

behavior, 

The actions of the ASSIGN primitive are quite straightforward. If insufficient 

resource elements are in the free state to satisfy the demand N, the procedure 

PUTASLEEP is called to enter the job onto list z, the list of all jobs with unsat- 

isfied demands, and to perform any additional bookkeeping necessitated by the 

scheduler’s operating constraints. If sufficient free resources do exist, the 

demand is immediately satisfied. In this case, the first step is to call the 

procedure GETAWAKE in order to perform any bookkeeping for the scheduler 

constraints (such as deadlock detection), and to remove the job from the list E 

if it was put there previously by PUTASLEEP. The next step is to increase the 

vector x for this job and decrease the vector RFREE by the amount c, and then 

invoke the ALLOCATE primitive for each resource element demanded in order to 

select a free element of the proper type and establish access between it and the 

job. The details of this selection and the method of establishing control are 

contained in the ALLOCATE primitive, and are of no interest in this model. 
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The procedures PUTASLEEP and GETAWAKE, defined in figure II. H. 3, 

are really part of the ASSIGN primitive (they are called nowhere else), but have 

been written as auxiliary functions for two reasons: to demonstrate the sym- 

metry in the definitions of ASSIGN and UNASSIGN; and to isolate the extra book- 

keeping needed for the deadlock detection algorithms, thereby demonstrating its 

symmetry and simplifying the analysis of the costs of deadlock detection (see 

section II. K). This also permits the definition of the ASSIGN primitive to 

become independent of the operating constraints imposed by the scheduler, and 

to retain the same definition for a large class of systems that are describable 

by the model, whether or not they detect deadlock dynamically. (It must be 

shown that this ASSIGN is in fact correct for a scheduler that does attempt to 

detect deadlock dynamically--see theorem 6. ) 

The UNASSIGN primitive is the complement of the ASSIGN primitive as 

far as most of the bookkeeping is concerned, but is considerably simpler 

because the decision making functions are eliminated. (It is proved in theorem 

7 that resources can always be unassigned at any time without creating a dead- 

lock. ) Therefore the UNASSIGN simply decreases the ‘7i vector for the job and 

increases the RFREE vector by the number of resource elements being released, 

and then invokes the DEALLOCATE primitive for each of these elements to 

remove the access between that element and the job. This will also return the 

element to the free state. 

In the definition of UNASSIGN we have introduced the notation 6(N), where 

N is a set of resource elements, to mean the m-component vector, called the 

“measure” of set N, whose j th component 6(N). is the number of resource 
J 

elements of type j in set N. 
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3) Formal Properties of the Primitives 

The ASSIGN primitive defined in figure II. H. 2 satisfies a demand R from 

job Ji at time t if and only if N L RFREE(t). This is done independently of any 

deadlock detection scheme (which has yet to be introduced). The next theorem 

proves that this is in fact the correct decision mechanism for the ASSIGN 

primitive, since when the condition 

0 < n L RFREE(t) (II. H. 1) 

is true, an assignment to Ji cannot create a deadlock. 

Theorem 6 is stated in terms of dem.and Di for job Ji, to be consistent with 

the other formal results. However, in the definition of the primitive ASSIGN 

the demand is represented by parameter 3, both as a matter of convenience and 

to demonstrate that if the demand can be satisfied at the time ASSIGN is invoked 

by REQUEST, the extra bookkeeping to copy the value of 5 into si is not 

necessary, since Di will be immediately reset to zero. The copying and 

resetting are contained in the procedures PUTASLEEP and GETAWAKE re- 

spectively to indicate that it is necessary in an operational situation only when 

a job is being put asleep or gotten awake. Conceptually parameter v is identical 

to vector Di, both representing the unsatisfied demand of job Ji. 
A 

Theorem 6: If Bi(t) < RFREE(t) for some job Ji at time t and S is deadlock- 

free at time t, then S will remain deadlock-free after an ASSIGN 

Proof: 

to Ji at time t. 

Let F be a sequence of all jobs in J that satisfies (II. G. 1) at time t (there 

must be at least one if ^s is deadlock-free, by theorem 5)) and let the jobs 

be renumbered so that Jk is the kth job in F. Suppose the assignment is 
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made to Ji at time t. Consider the state of the system at time t’ immediately 

after the assignment is complete: 

RFREE(t’) = RFREE(t) - zi(t) > 0 

z(t’) = 0 

Ai =qq + qt) 2 0 

Consider the sequence F’ constructed from F by removing Ji from its 

position in F and making it the first job in F’, so that 

F’ = { Ji, Jl, J2, . . . , Ji-1, Ji+l, Ji+2, . . . , Jn 1. Then F’ will satisfy 

(II. G. 1) for system i at time t’, as is shown next. 

Obviously 0 = zi(t’) h RFREE(t’), so that Ji satisfies (II. G. 1) as the first 

job in sequence F’. For any job Jk with k < i, we have: 
k-l 

Dk(V) = Dk(t) L RFREE(t) + 
c Tptt) 
p=l 

k-l 

=RFREE(t’) + Ei(t) + c Kptt’) 
p=l 

k-l 

=RFREE(t’) + xi(V) - zi(t) + 
c $tu 
p=l 

k-l 
= RFREE(t’) + xi(V) + c KpV’) 

p=l 

where we have used the fact that rp is always non-negative and that for 

p # i, rp(tf) = zp(t). Therefore these jobs also satisfy (II. G. 1) in the 

order in which they appear in F’. Next consider any job Jk with k > i. 
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We have then: 

k-l 
Ek(V) = Ek(t) L RFREE(t) + 

c ~ptt) 
p=l 

i-l k-l 
=RFREE(t) + 

c 
Kp(t) + q(t) + c Tpw 

p=l p=i+l 

i-l k-l 
=RFREE(t’) + j%(t) + 

c Kp(V) + xl(V) - E(t) + c Kp(t’) 
p=l p=i+l 

k-l 
=RFREE(t’) + 

c 
p=l 

Therefore, (II. G. 1) holds for these jobs as well, which implies that S is 

deadlock-free at time t”, by theorem 5. Q. E.D. 

The next theorem proves that the UNASSIGN primitive can always perform 

a deallocation of resources without creatin,g a deadlock. Therefore, there is 

no need for a decision mechanism in the UNASSIGN primitive as there was in 

the ASSIGN, and since there is no possibility of the job invoking the RELEASE 

to be delayed until the number of free resources is changed by some other job, 

the elaborate PUTASLEEP and GETAWAKE mechanism is also unnecessary. 

Theorem 7: If job Ji issues a RELEASE at time t and S is deadlock-free at 

time t, then S will remain deadlock-free after an UNASSIGN 

from Ji at time t. 

Proof: 
A 

Let F be a sequence of all jobs in j satisfying (II. G. 1) at time t (if S is 

deadlock-free at time t there must be at least one such F, by theorem 5), 

with the jobs renumbered so that Jk is the kth job in F. Assume the 

’ . 

I  ,  
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UNASSIGN is made at time t, so that at time t’ immediately after the 

UNASSIGN is complete : 

RFREE(t’) =RFREE(t) + 6(N) 

z(t’) = E(t) = 0 

xi(V) =xi(t) - 6(N) 

and Ak(t’) =Kk(t), Ek(t’) =Ek(t) for all k # i. 

Then F will still satisfy (II. G. 1) at time t’, as is shown next. For any job 

Jiwithk _ < i, since F satisfies (II. G. 1) at time t: 
k-l 

El&t’) = El&t) 5 RFREE(t) + 
c xpw 
p=l 

k-l 
=RFREE(t’) - 6(N) + 

c 
x&t’) 

p=l 
k-l 

= RFREE (t’) + c ~pto 
p=l 

Therefore job Jk with k 5 i satisfies (II. G. 1) at time t’. Next consider any 

job Jk with k > i. We then have: 

k-l 
Dk(t’) =Dk(t) 5 RFREE(t) + 

c %tt) 
p=l 

i-l k-l 
= RFREE(t) + 

c 
Ap(t) + x(t) + 

c %tt) 
p=l p=i+l 

i-l k-l 
= RFREE(t’) - 6(N) + 

c 
xp(t’) + xi(t’) + 6(N) + 

c xpw 
p=l p=i+l 

k-l 
= RFREE(t’) + 

c 
Kp(V). 

p=l 
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Therefore (II. G. 1) holds for these jobs at time t’ also, which implies that 

F satisfies (IL G. 1) at time t’, and hence i is deadlock-free at time t I, by 

theorem 5. Q. E. D. 
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REQUEST(%) invoked by job Ji 

begin 

BLOCK(Ji); 

ASSIGN(i) E); 

UNBLOCK(Ji); 

end 

RELEASE(N) invoked by job Ji 

begin 

BLOCK(Ji); 

UNASSIGN(i, N); 

STARTUP; 

UNBLOCK(Ji); 

end 

critical section procedure STARTUP; 

begin 

parallel for each k g E do ASSIGN(k) Ek); 

end 

Figure II. I% 1 The Job Primitives in System i 
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Sl: 

ASSIGN(k ,%) 

then begin 

GETAWAKE(k, N); 

parallel for j & [ 1, m] do - 

begin 

Akj +:= Nj; 

RFREE. -:= N.; 
J 3 

for p from 1 step 1 up to Nj & ALLOCATE(Jk, j); -- 

end: 

end 

else PUTASLEE P(k, R); 

UNASSIGN(k, N) 

parallel for j & [ l,m] 5 

Ul: begin 

A 
kj + s(N’j’ 

RFREEj +:= 6(N).; 
J 

for each ri of type j g N do DEALLOCATE(Jk, ri); - 

*; 

Figure II. H. 2 The Intermediate Level Primitives for System ^s 
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procedure PUTASLEEP(k, 3); 

if k not in z then - -- - 

Pl: begin 

parallel for j in [ 1, m] do -- 

P2: begin 

RAVAIL. -:=A * 
J kj’ 

if Nj > 0 then 

begin 

QSIZEj +:= 1; 

ENQUEUE(Jk, qj); 

DNUMBk +:= 1; 

D . +:= N.; 
kJ J 

g; 

end : 

COUNT +:= 1; 

ENQUEUE(Jk, E’); 

g; 

Figure II. H. 3 Auxiliary Scheduling Functions for Deadlock Detection 
Bookkeeping 
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procedure GETAWAKE(k, z); 

if k in E then -- 

Gl: begin 

parallel for j g [ l,m] & 

G2: begin 

RAVAIL +:= Akj; 

if N. > 0 then 
-J - 

begin 

QSIZEj -:= 1; 

DEQUEUE( Jk, y,; 

DNUh’IBk -:= 1; 

Dkj -:= Nj; 

g; 

C?&; 

COUNT -:= 1; 

DEQUEUE(Jk, E); 

g; 

Figure II. H. 3 (continued) 
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I. Incorporating Deadlock Detection Algorithms 

The previous section demonstrated that an UNASSIGN can never create a 

deadlock, and neither can an ASSIGN when the condition (II. H. 1) is true. This 

implies that a deadlock can only occur when this condition does not hold; in other 

words, when: 

Nj > RFREEj(t) for at least one j. (II. I. 1) 

This is in fact correct for jobs which are just making new REQUESTS that are 

unsatisfiable at the time they are made. This seems reasonable, since it is at 

this time that a job is entered onto the list x (the wait list) by the procedure 

PUTASLEEP, where it must remain until some other job releases sufficient 

resources to get this job awake again. During the time a job is “asleept, on the 

list E, the resources already allocated to it are ,‘frozen,‘, as stated in conse- 

quence 5, and by consequence 4, there is no way control of these elements can 

be removed from the sleeping job until the job becomes active. Frozen 

resources are always owned, and must remain owned at least until the job 

owning them is awakened. Clearly there is a danger that the number of resources 

frozen in this way will be very large, and the situation may arise where even if 

all the unfrozen resource elements were in the free state, there would still be an 

insufficient number to satisfy the demand of any_ sleeping job. Hence these jobs 

would “sleep forever,‘, i.e. , they would be in permanent wait and hence the 

system S is deadlocked. 

With this in mind, it is easy to see how to formulate an efficient method of 

deadlock detection. We assume that in its initial state, system S is not dead- 

locked. Since no RELEASE, and no REQUEST satisfying (II. H. 1) can cause a 

deadlock, only REQUESTS with (II. I. 1) true will require a check to see if the 
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critical threshold of frozen resources will be passed when this job is put asleep. 

Clearly this check only has to be made when a job is first put asleep, since it is 

at this time that the resources become frozen. If at some later time an ASSIGN 

on behalf of this job is invoked by STARTUP, and the condition (II. H. 1) still 

does not hold, no additional check is necessary because no new deadlock can be 

created at that time. Therefore the checking algorithm need be executed only 

once, at the time a job is first put asleep, which is when it is entered onto the 

E list. In fact, a very simple way to integrate a deadlock detection algorithm 

into the definitions given so far is simply to make it the procedure which 

enqueues a new item onto the E list (i. e. , ENQUEUE(Jk, E) ). 

The reasoning for this is quite straightforward. The list E is defined as the 

order to be followed in satisfying the demands of sleeping jobs. The algorithm 

for deadlock detection, formulated in the next section, constructs a sequence of 
h 

the jobs in J that satisfies (II. G. 1). By theorem 4, this sequence is a potential 

finishing sequence for system S at time t, which implies that it defines an order 

in which job demands can be satisfied without causing a deadlock. If such an 

ordering does not exist, the system is deadlocked, as was shown in theorem 3. 

It should be clear that in such a sequence, if k jobs are active at time t, 

the first k jobs in that sequence can be these jobs, since zi(t) = 0 for 

i =l, 2, . . . . k, and (II. G. 1) is satisfied trivially, regardless of the ordering 

between these jobs in the sequence. Therefore an algorithm to check for the 

existence of a sequence satisfying (II. G. 1) can always assume that the first k 

jobs in the sequence will be the k jobs Ji with ci(t) = 0. Therefore, if the 

initialization for the algorithm is done properly (which is the function of the 

bookkeeping on the RAVAIL vector), a deadlock detection algorithm need only 

be concerned with the ordering of the elements in E that will make this list, 
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prefaced by the list of active jobs in arbitrary order, a sequence satisfying 

(II. G. 1). 

Therefore we simply define the ENQUEUE procedure for list E to be the 

deadlock detection algorithm. This algorithm will be formulated to attempt to 

order the jobs in z to satisfy conditions (II. G. 1) (when prefaced by the active 

jobs). If it succeeds, no deadlock is detectable at that time. If no such ordering 

exists, a deadlock has been created by the job being enqueued. 
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J. Algorithm LI 

The first deadlock detection algorithm to be considered is given in figure 

II. J. 1, with the critical section procedure needed by LI given in figure II. J. 2. 

The algorithm requires the following data structures for use as temporary 

storage : 

MARK--an m-component vector associated with the Q matrix; the j th 

component is the index of the ,,nextY, item in column j of Q to be 

used in Li. 

THRESH--an m-component vector associated with RAVAIL and A; its 

value is defined below. 

m-an n-component vector associated with DNUMB; its value is defined 

below. 

N--a scalar associated with the list E. 

OLDN--a scalar whose value is the value of N at the start of the current 

iteration of LI. 

The intuitive idea behind the algorithm LI is quite simple. Our objective 

is to order the jobs in E so that conditions (II. G. 1) are satisfied. One possible 

way of doing this is to build up the sequence in g by repeatedly searching the 

entire set of waiting jobs not already ordered in x for a next one which satisfies 

(II. G. 1). This is the method proposed by Habermann [ 121 , and is guaranteed 

to find a sequence satisfying (II. G. 1) if one exists. However, if there are n 

jobs, this algorithm requires up to (n-l) searches, the first search requiring 

up to (n-l) comparisons, the second search (n-2) comparisons, etc. , giving an 
n 

algorithm that, in the worst case, requires on the order of n”/Z operations to 

order z. (In many practical cases, this extreme limit can be avoided, see [ 111.) 

If we can eliminate the repeated searching by always having the “next’, job ready 
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to test in condition (II. G. 1)) the work involved will be reduced to at most n 

operations in the worst case, a significant improvement, 

The function of the Q matrix is simply to have the %ext,, job ready to test 

in algorithm L1. Each column j of Q contains the indices i of jobs Ji with 

Dij > 0 (i. e. , with unsatisfied demands for resources of type j), and these 

indices are ordered according to increasing size of the demand D.. . 
1J 

Definition 6 : The ordering rule in system ^s for elements in each column of Q 

is such that if i precedes k in column j of Q, then: 

0 < Dij <_ D 
kj 

(II. J. 1) 

for all such i and k in column j. 

Each column of Q is independent of all other columns, and this ordering must 

be produced by the lowest level primitive ENQUEUE when applied to columns of 

Q (i.e. , ENQUEUE(Jk, y)). 

Algorithm L1 is an iterative procedure, with at most n iterations, con- 

structed to order as many jobs as possible in sequence Eon each iteration. 

Beginning at the top of each column j of Q on the first iteration, and on succeed- 

ing iterations picking up where the previous iteration left off, the algorithm 

tests the next item in the column, say i, to see if: 

Dij I THRESH.. 
J 

(II. J. 2) 

.th If so, job Ji is t,approvedtt and testing continues with the next item in the J 

column. If there is no next item, or if (II. J. 2) does not hold for the current 

index i, the iteration for this value of j terminates. The j th component of the 

m-component vector MARK is used to ,,remembert which is the ,%exttt item in 

column j of Q at each step. At the beginning of each iteration, the vector 
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THRESH will have as its value: 
k 

THRESH =RFREE + 
c 

Ti: 
P 

p=l 
(II. J. 3) 

where k is the number of jobs %ompletely approved” at the start of this itera- 

tion. In the initialization of Li, THRESH is set to RAVAIL, so that on the 

first iteration k is simply the number of jobs Ji with DNUMBi = 0, and THRESH 

represents the number of ‘Ymfrozen” resource elements in the system at that 

instant. Job Ji is “completely approved” only after it has been separately 

l,approved,t once for each component of Di greater than zero, which means a 

total of DNUMBi separate approvals for ea.ch waiting job Ji. When a job becomes 

tcompletely approved”, it is added to i? as the next job in a sequence satisfying 

(II. G. 1). At the end of an iteration, if all waiting jobs have been ordered in E, 

the algorithm is finished and no deadlock is detected. If no jobs were added to 

E in this iteration, the algorithm is “stuckt’, since there is no next job satisfying 

(II. G. 1) and as shown in theorem 9 this means that there exists no sequence 
A 

satisfying (II. G. 1) for system S at this time, which by theorem 3 means that S 

is deadlocked. The key concept in being able to show that this is true is that, 

due to the ordering of the columns of Q, if condition (II. J. 2) does not hold on. 

any iteration for job Ji, then for any k following i in the j th column of Q, 

Dkj L Dij > THRESH.. 
J 

(II. 5.4) 

This means that if job Ji fails the test (II. J. Z), all other jobs following Ji in 

column j of Q are also known to fail the test without having to be checked. 

On the other hand if jobs were added to ?? on an iteration, but not all jobs 

are ordered in E at the end of that iteration, the resources x controlled by the 
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jobs added to ?? on that iteration are added to THRESH, so that, when the next 

iteration is begun, its value will be given by (II. J. 3). 

The next theorems prove formally that this algorithm uniquely determines 

whether or not a sequence satisfying (II. G. 1) exists for system ^s at time t. 

The proof of theorem 8 is by induction, showing simply that at the beginning of 

each execution of the loop labelled REPEAT in figure II. J. 1, the value of 

THRESH is given by (II. J. 3), and that the jobs as ordered in E, preceded by 

the active jobs in any order, satisfy (II. G. 1). Theorem 9 shows that if this 

algorithm fails to add a new job to Eon any iteration, then no sequence satisfy- 

ing (II. G. 1) exists. This proof is based on the ordering of the elements in the 

columns of Q. 

Theorem 8: A permutation sequence F of all jobs in i that is composed of all 

jobs with 5 
P 

= 0, followed by the list z generated by algorithm 

LI, will satisfy (II. G. 1). 

Proof (by induction) : 

Assume that the jobs are renumbered so that the k jobs Jp with 5 p = 0 have 

indices less than or equal to k (plk). Since 0 5 RFREE (by II. F. 2)) 

obviously: 

Ep = 0 ,< RFREE forp=l, 2, . . . . k. 

Since Xi ? 0 for all i (by II. F. 3), it is also obvious that 

P-1 
Ep 5 RFREE + 

c 
xi forp=Z, 3, . . . . k, 

i=l 

which means that (II. G. 1) is satisfied by the first k jobs in F, regardless 

of their order in F. 
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In the initialization phase of Li, THRESH is set to the value of RAVAIL, 
k 

which is defined in item 6 to be RFREE + 2 Ai, since only jobs Ji with 
i=l 

i 5 k have Di = 0 and hence DNUMBi = 0. The vector %% is initialized to 

the value of DNUMB, which is defined in item 5 such that the i th component 

is the number of resource classes Rj for which Dij > 0. Scalars N and 

OLDN are initialized to zero, and the vector MARK, whose j th component 

is a pointer to the ‘,next,, element in the j th column of Q, is initialized to 

one to indicate that initially the next item in each column is in fact the 

first item. The inductive assumption is that at the start of each execution 

of the statement labelled REPEAT in figure III. J. 1, the sequence of jobs 

in F, consisting of the k jobs Ji with DNUMBi = 0 followed by the N jobs Ji 

with DNUMBi > 0 so far ordered in E by algorithm LI, satisfies (II. G. 1)) 

and the value of THRESH is: 

k+N 
THRESH =RFREE + 

c 
xi. 

i=l 
(II. J. 5) 

(For notational convenience in this proof we have also assumed that at the 

start of each iteration, the jobs are renumbered so that Ji is the ith job in 

F , 1 I i 5 k+N , and the jobs Ji with i > k+N are not yet in F. ) Obviously 

the inductive assumptions are satisfied at the start of the first iteration 

(N = 0), due to the initialization mentioned above. 

Next consider the jobs Jp with Dp > 0 (and of course p > k). At each step, 

F is a “partialtt sequence satisfying (II. G. l), and each iteration adds one 

or more jobs to the end of the partial sequence until it either becomes a 

complete sequence of all jobs in j, or it is impossible to find a next job 

satisfying (II. G. 1). 
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Consider the block labelled L1 for some j. The test: 

MARKj I QSIZE. 
J 

(II. J. 6) 

insures that the block labelled L2 will not be executed if all the QSIZE. 
J 

elements in the j th column of Q have been checked and “approvedft on 

previous iterations. The test : 

Dij s THRESH. 
J 

(II. J. 7) 

is the jth component of condition (II. G. 1) (due to the value of THRESH). 

Only if this test is true will the block labelled L3 be executed; if it is 

false the execution of block Ll for this value of j terminates, with the value 

of MARKj unchanged so that next time Ll is executed for this value of j, 

the same job Ji will be tested again. Job Ji is “approved” in block L3 by 

calling procedure APPROVE to decrement DNi by one in order to indicate 

that another one of the DNUMBi non-zero components of Bi has satisfied 

(II. J. 7). For each i and j this DNi is decremented at most once, because 

upon return from procedure APPROVE, the marker MARKj is immediately 

incremented by one, thereby pointing to the next element in column j of 

Q. Since MARK is never decremented or reset in this algorithm, and since 

the index i for job Ji appears at most once in column j of Q, it is clear that 

this is the case. Control is then transferred back to the line labelled 

AGAIN in order to repeat this sequence of operations for the new value of 

MARK.. 
J 

For this value of j block L2 is executed repeatedly until the test 

(II. J. 6) fails or until the test (II. J. 7) fails, at which time the execution of 

block Ll for this j terminates. Note that as soon as the test (II. J. 7) fails 

for some job Ji in column j, then it must also fail for all other jobs 
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following Ji in column j , due to (II. J. 4). When execution of block Ll 

terminates for some j, MARKj retains the index of the next item in column 

j of Q. 

Since each column j of Q is being tested in parallel, it is necessary to have 

global coordination of the separate approvals of a single job Ji. This is 

the purpose of making the procedure APPROVE a critical section. After 

this procedure has been called with parameter i a total of DNUMBi times, 

all DNUMBi components of Bi greater than zero are known to satisfy 

(II. J. 7), and hence: 

k+N 
-- 

Di 5 THRESH =RFREE + c lT 
P’ 

p=l 
(II. J. 8) 

which means that Ji satisfies (II. G. 1) as the next job in E. Since DNi was 

initialized to DNUMBi, when it is decremented to zero in APPROVE, Ji 

is added to the list E as the next job. On one execution of the statement 

REPEAT for all values of j , DN may be decremented to zero for several 

jobs, but the order in which these jobs are added to E is irrelevant since 

they all satisfy (II. J. 8). Therefore, if Ji becomes the k + lst job in z 

and Jq becomes the k + 2 nd , Jq will obviously satisfy: 

k+N 
“g 2 THRESH +xi = RFREE + 

c 
p=l 

(II. J. 9) 

which is just (II. G. 1) for the k + 2 nd job in F if Ji is the k + 1’ t. 

When the statement labelled REPEAT has finished execution for all m values 

of j, the tests at L4 are made. If N has reached the value COUNT, then all 

jobs in i have satisfied (II. G. 1) and hence the complete sequence F has been 
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constructed. If N is not equal to COUNT, then there exists at least one 

job that has not satisfied (II. J. 7) in at least one component j. In this case, 

N is tested against OLDN, the value of N at the start of this iteration, to 

see if any job was added to the list z on this iteration. If not, then future 

repetition of REPEAT will be futile since the value of THRESH will not 

change and hence the results of test (II. J. 7) cannot change. Theorem 9 

proves that if this happens, no sequence satisfying (II. G. 1) exists for 

system ^s at this time, and hence it is deadlocked. If however N > OLDN, 

then (N - OLDN) new jobs have been added to Eon the iteration just com- 

pleted. In this case block L5 is executed to add the x vectors of these 

newly added jobs to THRESH, giving (II. J. 5) as the new value which is 

used at the start of the next iteration when control returns to REPEAT. 

Hence the conditions of F and THRESH assumed in the induction hypothesis 

hold as claimed, which proves the induction. . 

One final point should be made concerning the decrementing of DN. It is 

both possible and probable that on any single iteration, DNi will be decre- 

mented one or more times, but will not reach zero, indicating that (II. J. 7) 

does not hold for all components of Di. However, for any components for 

which (II. J. 7) is true on this iteration, it will remain true on all subsequent 

iterations, since obviously each component of THRESH either remains 

constant or increases on each iteration, while the matrix D remains 

constant. Therefore there is never any need to “backup” and retest D.. 
iJ 

once it has passed the test (II. J. 7). Q. E. D. 

Theorem 9: If algorithm LI fails to generate a permutation sequence F of 
,. 

all jobs in J satisfying (II. G. l), then no such sequence exists 

for system s^ at time t. 
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Proof: 

Suppose LI fails to produce a sequence of all jobs in j that satisfies 

(II. G. l), but that there does exist a sequence T of all jobs in j that does 

satisfy (II. G. 1) at time t. Let F be the partial sequence generated by LI 

up to the point it stopped, with the jobs renumbered so that 

F = { Ji, J2, . . . , Jk/, and P = { Jk+l, Jk+2, . . . , J,\. There must be 

at least one job in set P or the algorithm L1 would not have failed, and 

obviously a job must be either in F or P, but not both. At the end of the 

iteration of Li that added Jk to F the value of THRESH is given by (II. J. 3), 

and failure of any DNi to be reduced to zero on the next iteration implies 

that for each job Ji in P (i.e. , not yet added to F), at least one component 

j of Di did not satisfy (II. J. 2) (this is true for all jobs in P due to the 

ordering of the columns of Q). Let Ji be the first job in sequence T that 

is also in set P. This defines a set Q of all jobs that precede Ji in T, and 

obviously Q is a subset of F, since by construction no job ahead of Ji in T 

is in P. This gives: 
k 

c xp I c xp = c K 
Jp in Q Jp in F p=l p 

But since ‘I’ satisfies (II. G. 1)) by assumption, and Ji is in T, we have: 

k 
Di _< RFREE + 

c 
‘ib’RFREE+ 

c 
x = THRESH 

Jp in Q p=l p 

by (II. J. 3). But this means that job Ji satisfies (II. J. 2) in all m components 

of Ei, which contradicts the earlier assertion that (II. J. 2) does not hold 

for at least one component of Ep for every job Jp in P, and Ji is in P. 
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Therefore, a sequence T satisfying (II. G. 1) cannot exist at time t if 

algorithm L1 fails. Q. E. D. 

Theorem 10: Without advance information, algorithm Ll determines uniquely 
A 

whether or not system S is deadlock-free at time t. 

Proof: 

If Li succeeds in generating a complete permutation sequence of all jobs 

in i, this sequence will satisfy (II. G. l), by theorem 8, which implies that 

S is deadlock-free at time t, by theorem 5. 

If LI fails to generate a complete permutation sequence of all jobs in J, 
A 

then no sequence of all jobs in J satisfying (II. G. 1) can exist for ^s at time 

t, by theorem 9, which implies that ^s is deadlocked, by theorem 3. 

Q. E.D. 
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begin 
parallel for j & [ 1, m] do 

begin 
THRESH. := RAVAIL.; 

MARKj :I 1; 
J 

parallel for i & [ 1 ,n] do DN. := DNUMB. ; 
- 

1 1 
N :=OLDN :=O; 
parallel for j G [ 1, m)c& 

begin 
if MARKj 5 QSIZEj do 

begin 
i : =Q MARKj, j’ 

REPEAT: 
Ll : 

AGAIN: 
L2 : 

L3 : 

LA: 

L5 : 

if D.. -I. THRESHj then 
- 11 

begin 
APPROVE(i); 
MARK, +:= 1; 
g t0 AGAIN; - 
gg; 

end; 
end: 

. 

if N = COUNT then <no deadlock> else - 
if N = OLDN then <deadlock> else 

begin 
forifromOLDN+lsteplztoNdo -- - - 

parallel for j & [ l,m] &I THRESHj +:= AE j; -, 
OLDN := N; 1 

E to REPEAT; - 
g; 

g, 

Figure II. J. 1 Deadlock Detection Algorithm L1 

- 66 - 



Al: 

critical section procedure APPROVE(i); 

begin 

DNi -:= 1; 

‘fDNi =Oe 

begin 

N +:= 1; 

EN := i; 

end: 

Figure II. J. 2 Procedure APPROVE used in Algorithm L1. 
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K. Cost Considerations and Algorithm L2 

1) The Cost of Algorithm L1 

In this subsection we will give an analysis of the costs associated with a 

single execution of the algorithm L1. The next subsection describes the total 

cost of deadlock detection in system S when the overhead required by L1 is 

taken into account, and the last subsection gives a new algorithm, L2, designed 

to operate at a lower cost than L1. 

The initialization statements for algorithm L1 (i.e. , those statements 

preceding the label REPEAT in figure II. J. 1) are executed only once, and will 

incur a fixed cost C o, which is proportional to n + m. The statement labelled 

REPEAT will be executed a maximum of n times, with the maximum being 

achieved only in the case when a single job is added to list Eon each iteration. 

The block labelled Ll will be entered m times on each iteration, once for each 

of the m values of j , giving an upper limit of n x m entries into the block. The 

test (II. J. 6) on the line labelled AGAIN may be executed more than this due to 

the return of control to AGAIN from within block L3. It is clear however that 

over all iterations, the block labelled L3 can be entered at most n times for 

each of the m values of j, since each time this block is executed, MARKj is 

increased by one, and after n such increments its value will be n + 1 (since it 

is initialized to l), which is larger than the maximum possible value of 

QSIZEj (see II. F. 8), and hence test (II. J. 6) must fail thereafter. If the cost 

of one execution of block L3 is C 2, then the maximum total cost of L3 to the 

entire algorithm is m x n x C 2’ 

Block L3 is executed only if both tests (II. J. 7) and (II. J. 6) are true, so 

both together can give a true result at most n times for a single value of j. 

If either test fails, that iteration for that value of j stops, so that the total 
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number of failures over all iterations of both tests together can be at most n 

for a single value of j (due to the fact that there can be at most n full iterations 

of the REPEAT statement). Therefore, if Ca is the cost of test (It. J. 6)) and 

Cb is the cost of test (II. J. 7) plus the cost of assigning a value to i, the total 

cost of the entire block Ll will be at most: m x n x (2 x Ca + 2 x Cb + C2). 

Defining Cl = 2 x Ca + 2 x Cb as the cost of block Ll excluding block L3, this 

expression simplifies to m x n x (Cl + C2). 

To make C2 a true constant, we must separate from the cost of block L3 

the cost of executing the block labelled Al in the procedure APPROVE, since 

this is executed only when DNi = 0. This block is executed at most n times 

(once for each job Ji with DNUMBi > 0). In addition, the tests labelled L4 

and the block labelled L5 can also be executed a maximum of n times, and this 

maximum occurs when only one job is added to E on each iteration. Grouping 

the costs of these three items into one figure C3, a conservative maximum for 

the total cost of executing algorithm L1 is: Co + n x (C3 + m x (Cl + C,)). 

In a practical situation, the average cost of this algorithm will be consider- 

ably less, due to the following considerations. The statement labelled REPEAT 

will never be executed a full n times, since only jobs Ji with DNUMBi > 0 are 

checked by this algorithm. If k jobs have DNUMBi = 0, the maximum number 

of iterations is (n - k). Therefore the multiplier n in the above cost expression 

should be replaced by (n - k). Defining the factor p = (n - k)/n (0 5 p < l), the 

reduced total cost of L1 becomes: Co+~xnx(C3+mx(C1+C2)). 

A second cost reduction is achieved by noting that most jobs will not 

require elements from all m resource classes on each demand, but on the 

average will need elements from only L different classes, 1 I. Q 5 m. Therefore 

block L2 will be executed only 1 times for each of the (n - k) jobs in E, rather 
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than the m times described above, and hence the multiplier m of C2 should be 

replaced by 1. Defining the factor p =1/m (0 I p L 1) as the average fraction 

of the total number of resource classes needed in any single demand, the total 

cost of executing L1 becomes: Co +p x (Cl + m x (Cl + p x C,)). 

We should also note at this point that since there are an average of (n - k) 

jobs Ji with DNUMBi > 0, the total number of indices in the Q matrix will 

average about B x (n - k), and since there are m columns in Q, the average 

number of indices in a single column of Q will be q = e x (n - k)/m, Defining 

the factor y =q/n as the average fraction of all jobs in a single column of 

Q (0 i y 5 l), we get the relationship y = p x p , which will be useful later. 

2) Overhead Costs for L1 

It is clear from the previous discussion that the cost of one execution of 

algorithm Ll is proportional to n, rather than to n2 as was true for Habermann’s 

[ 121 algorithm, but it is also clear that algorithm LI requires more overhead 

bookkeeping than was necessary for his algorithm. It is important to show that 

these added costs do not erase the gain represented by L1. In this section we 

will show that the additional costs due to the overhead are also proportional to 

n, and that they are added to the total cost of L1, giving a total cost of deadlock 
A 

detection in system S that is proportional to n. 

The overhead for the deadlock detection algorithm consists of the book- 

keeping necessary to maintain the vectors RAVAIL and DNUMB, and the matrix 

Q. According to the primitive definitions given in section II. H all this extra 

bookkeeping is isolated in the two procedures PUTASLEEP and GETAWAKE. 

Referring to figure II. H. 3, it is clear that the main blocks of these procedures 

(blocks labelled Pland Gl respectively) are executed only once on each 

REQUEST, since once a job has been entered into list ??, further ASSIGNS will 
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not cause Pl to be executed, and Gl is executed only once at the time the job 

is to be removed from E. 

Within block Pl the only significant costs will be due to the m parallel 

executions of block P2, since the cost of ENQUEUE(Jk, E) is just the cost of 

the deadlock detection algorithm L1 previously discussed. Within block P2, it 

must be noted that the ENQUEUE(Jk, a.) operation to enter a new item into 
J 

column j of matrix Q may require up to n operations. Letting the cost of one 

of these operations be C4, the cost of the ENQUEUE is n x C4. Letting C5 be 

the cost of executing all other statements in block P2 once, the total cost of 

block Pl for the m values of j will be at most m x (n x C4 + C5). 

Due to the symmetry with PUTASLEEP, the costs for procedure 

GETAWAKE will be identical except for the additional cost of the DEQUEUE(Jk,@ 

when an item is to be removed from the list z. Since there can be up to n jobs 

on this list, a single DEQUEUE may require up to n operations to remove an 

item and readjust the list, so that if the cost of one such operation is C6, the 

total DEQUEUE cost is n x C6. 

Therefore, the cost of executing blocks Pl and Gl once each on a single 

REQUEST is: 2 x m x (n x C4 + C5) f n x C6, plus the cost of the deadlock 

detection algorithm itself. Once again this is a conservative upper limit on 

the costs, since the same reduction factors discussed in the previous section 

are also applicable here. Therefore, we can replace the n multiplying C4 with 

q, the average number of indices in a single column of Q; the n multiplying 

C6 with (n - k), the average number of jobs in %; and the m multiplying C4 

with L, the average number of different resource classes needed in each demand, 

to obtain as a conservative estimate of average cost: 

2 x m x (n x /3 x y x C4 + C5) + n x p x C6, plus the cost of algorithm Ll. 
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This average can be reduced still further by noting that not every REQUEST 

requires the execution of blocks Pl and Gl. If the requested number and type 

of resource elements are free at the time of the REQUEST, neither Pl or Gl 

is executed. Letting a! be the ratio of the number of REQUESTS causing Pl and 

Gl to be executed to the total number of REQUESTS, the total cost of a single 

REQUEST will be reduced by the factor oz. (Clearly 0 5 a! I 1. ) This gives as 

the average cost per REQUEST for deadlock detection with algorithm L1: 

Co +p x n x (C3 + m x (Cl + P X C,))). 

Regrouping the terms, and using the relationship y = p x I-L, we get: 

3) Algorithm L2 

We can reduce the costs of deadlock detection even further by taking 

advantage of a special property of sequences satisfying (II. G. 1). If system S 

is deadlock-free at time t and job Jk makes a REQUEST that cannot be imme- 

diately satisfied, system S remains deadlock-free at time t’ immediately after 

the bookkeeping in procedure PUTASLEEP if and only if there exists a partial 

permutation sequence F’ that satisfies (II. G. 1) and ends with job Jk. It is 

proved in theorem 11 that existence of such a partial permutation sequence, 

coupled with the known fact that system S was deadlock-free before Jk made 

its REQUEST, uniquely determines whether or not system S remains deadlock- 

free at time t’. An algorithm to produce such a partial sequence will reduce 

the number of iterations of the statement labelled REPEAT by an average 

amount p, 0 < p 5 1. 
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Theorem 11: Without advance information, a system S that is deadlock-free 

at time t remains deadlock-free after an unsatisfiable REQUEST 

by job Jk at time t if and only if there exists a partial permuta- 

tion sequence of jobs that satisfies (II. G. 1) and ends with job Jk. 

Proof: 

If a partial sequence ending in Jk does not exist, then a complete permuta- 

tion sequence of all jobs in i also cannot exist, which by theorem 3 means 
A 

that S is deadlocked at time t. 

Suppose there does exist a partial sequence F’ that satisfies (II, G. 1) and 

ends in Jk. We show how to make this into a complete sequence of all jobs 
* 

in J, which by theorem 5 makes S deadlock-free. Let P be the set of jobs 
_. 

of J that are not in F’ , with all jobs renumbered so that F’ = { J1, J2, . , . , Jki, 

and p ={Jk+l, Jk+2, .  l l ,  Jn/. The complete sequence is constructed by 

repeatedly removing a job from P and adding it to the end of F’ so that 

(II. G. 1) is satisfied at each step. 

Between time t when job Jk invoked the REQUEST and time t’ immediately 

after the bookkeeping in PUTASLEEP has been performed, the only change 

which has occurred in data base B1 is that Dk(tt) > 0, whereas Dk(t) = 0. 

Let F be a sequence satisfying (II. G. 1) for system S at time t (by theorem 1 

there must be at least one such sequence F if S is deadlock-free at time t), 

and let Ji be the first job in F that also belongs to P. This defines a set 

Q of all jobs that precede Ji in F. Jobs in Q cannot be in P, so they must 

belong to F’, by the definition of P and the selection of Ji. Therefore Q is 

a subset of F’, and : 
k 

c 
%(t’) 5 

c 
4(V) = c Ap(t’) 

Jp in Q Jp in F’ p=l 
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Since Ji satisfied (II. G. 1) in its position in F at time t, and only Dk changed 

between time t and time t’, we have: 

k 
Bi(t’) 5 RFREE(t’) + c 

%(t’) 5 RFREE(t’) + 
c ‘ipUT ) 

Jp in Q p=l 

Thus Ji satisfies (Il. G. 1) as the k + lSt job to be added to F’ to form a new 

partial sequence F” of k + 1 jobs satisfying (II. G. 1). To find the next job 

to add to F”, simply remove Ji from P to give P’, and repeat the above 

proof for F” and P’. This should be continued until all jobs originally in 

P have been added to the sequence to give a complete permutation sequence 

of all jobs in i that satisfies (II. G. 1) by construction, 
h 

and hence S is 

deadlock-free by theorem 5. Q. E.D. 

The new algorithm is almost identical to the previous one, with most changes 

occurring in the procedure APPROVE. The new version of APPROVE is given 

in figure II. K. 1. The basic changes are as follows: 

1) The test labelled A3 in figure II. K. 1 is added to check whether or not 

the job for which DN is decremented to zero is Jk, the job being 

enqueued on the z list in the call ENQUEUE(Jk, z). If it is, the 

algorithm should terminate immediately with an indication of no 

deadlock. 

2) Since the new algorithm would generate only a partial sequence in E, 

ending with job Jk, it becomes necessary to add a mechanism to 

construe t the full schedule in E, since z is defined in item 10 to be a 

list of all jobs Ji with DNUMBi = 0. It is shown in the proof of theorem 

11 that this can be done by simply appending the remaining jobs onto 
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z in the order in which they appeared in the previous schedule, This 

requires the following: 

a) Include in the temporary storage used by L2 an n-component. 

vector called OLDE, used to hold a copy of the previous state of 

vector E; and an n-component bit vector called ?, used to mark 

each job.as it is entered in the new list %!. 

b) Add to the initialization phase of L2 the statement: 

parallel for i @  [ 1, n] do 

begin 

OLDEi := Ei; 

Yi := 1; 

t?&; 

This is the only modification necessary to algorithm L1 as 

shown in figure II. J. 1 to give algorithm L,. All other changes 
Y 

Cl 

d) 

occur in procedure APPROVE. 

Include.in APPROVE the statement labelled A2 in figure II. K. 

in order to change the value of Yi from one to zero whenever 

DNi is decremented to zero. 

Add the block labelled A4 to APPROVE in order to place a11 

1, 

elements of OLDE whose corresponding y value is not zero 

on to E in the same sequence-as they appear in OLDE. This is 

done only once, at the time DNk goes to zero and the partial 

sequence ending in Jk is complete in z. 
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Algorithm L2 is used identically to L1 and the expected cost reduction 

factor p can be applied to the entire cost of L1 derived in subsection 1, exclud- 

ing the initialization cost Co which actually increases slightly due to the required 

initialization of OLDE and ?. The cost C3 will also have to be increased 

slightly to reflect the additional statement A2 and the test for i = k that are 

now required for each execution of APPROVE. Finally a new cost must be 

added for the new block A4 in APPROVE. This block is executed only once, 

when the job Jk is added to E, so that its contribution to the total cost will be 

proportional to COUNT, the number of times that the statement labelled A5 

is executed. Since COUNT has an average value of ~1 x n, if we let C7 be the 

cost of one execution of the statement labelled A5 (including A6), the total cost 

of block A4 will be p x n x C7. This gives as the total cost per REQUEST for 

deadlock detection using algorithm L2: 

m x (p x Cl + p X P X C2 + 2 X P2 X C,))) 

The costs and cost reduction factors are summarized in figure II. K. 2, 

along with the average cost per REQUEST of deadlock detection with algorithms 

L1 and L2. The costs Co - C7 depend on the particular hardware being used 

to perform the algorithms, and are therefore constant only for a given proc- 

essor. The factors written as Greek letters are all fractions between zero 

and one that reflect the average use of the system. The more loaded the system 

(i.e. , the more jobs there are in relation to total resources) the closer the 

factors a!, p, y and probably also p will be to one. 
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It should be pointed out that the average cost per REQUEST does not take 

into account the high degree of parallelism in these algorithms. The cost is 

represented in terms of the total number of operations, which is proportional 

to the total number of time units to complete the operations when all the paral- 

lelism is taken out; that is, when there is only a single processor that must 

execute everything in a serial manner. If m processors were available (one 

for each resource class), the factor of m could be eliminated from the cost 

expressions in figure II. K. 2, although an additional small cost with a factor of 

m x n x p x p would have to be added to account for the disruption to the 

parallelism caused by the critical section procedure APPROVE, which cannot 

be executed simultaneously by several processors. 

Finally we should mention the amount of additional storage needed to detect 

deadlock, since it was by increasing the amount of stored information about the 

system status that we were able to decrease the time needed by the deadlock 

detection algorithms. As mentioned in section II. F, the permanent data 

structures in data base B 1 that exist solely for use in deadlock detection are 

the n by m matrix Q, the m-component vectors QSIZE and RAVAIL, and the 

n-component vector DNUMB. In addition algorithms L1 and L2 require for 

working storage the m-component vectors MARK and THRESH, the n-component 

vector DN, and for L2 only, the n-component vectors OLDE and ?. Thus the 

total additional storage for deadlock detection with algorithm Ll is 

2xn+nxm+4xmcells, andforalgorithmL2itis4xn+nxm+4xm 

cells. This represents the extra storage that is “traded off” for the extra 

speed of algorithms L1 and L2. 
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Al: 

A2: 

A3: 

A4: 

A5: 

A6: 

critical section procedure APPROVE(i); 

begin 

DNi -:= 1; 

ifDNi =Os 

begin 

N +:= 1; 

EN :=i; 

Yi := 0; 

ifi =k then 

begin 

for i from 1 step 1 up to COUNT & 

end : 

> 0 then if ‘OLDEi - 

begin 

N +:= 1; 

EN := OLDEi; 

e&; 

< stop, no deadlock > 

end: 

Figure II. K. 1 Procedure APPROVE used in Algorithm L2. 
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CO--cost of all statements in the initialization phase of the deadlock detection 

algorithms. 
Cl--cost of one execution of block Ll, excluding block L3. 
C2-- cost of one execution of block L3 including the cost of procedure 

APPROVE except for block Al. 

c3 --cost of one execution of block Al plus the cost of the tests L4 plus block 

L5. 
C4--cost of one operation used by ENQUEUE and DEQUEUE operating on 

columns of matrix Q. 
C5--cost of one execution of block P2 or G2 excluding the cost of ENQUEUE 

and DEQUEUE on list E. 

‘6 --cost of one operation in a DEQUEUE on list E. 

c7 --cost of one execution of statement A5. 
--------------- 

a-- average fraction of the total number of REQUESTS that cannot be satisfied 
at the time of issue. 

p--average fraction of the total number of resource classes needed in any one 
REQUEST. 

y-- p x p, average fraction of all jobs in any one column of Q. 

P -- average ratio of the number of iterations of statement REPEAT by L2 to 
the number of iterations required by Ll. 

P -- average fraction of all jobs in list E. 
--------------- 

Average Cost per REQUEST of Deadlock Detection with Algorightm L1: 

Average Cost per REQUEST of Deadlock Detection with Algorithm L2: 

a! x (Co f 2 x m x C5 +nXj.4x(C6+C7+pxC3+ 

mx(pxCl+pX p XC2+2XP2 XC,))). 

A 
Figure II. K. 2 Cost Summary Table for Deadlock Detection in System S. 
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Chapter III. Deadlock Detection with Simultaneous Resource Sharing 

A. Introduction 

Assumption 5 in Section II. E states that at any instant of time a resource 

element can be controlled by at most one job. With such an assumption 

resource elements are considered to be “serially reusable” by different jobs, 

but there is no possibility of two or more jobs simultaneously sharing access 

to a common resource. This has been true of all previous research on dead- 

lock detection and prevention except for Murphy’s [ 231 . He considers the 

special case where each resource class contains exactly one element, but this 

element can be controlled by jobs in one of two modes: (1) exclusive control 

mode, where there is exactly one job in control and no other job can obtain 

access to the element until the controlling job releases it; (2) shared control 

mode, where two or more jobs are permitted to have simultaneous access to 

a single element. Murphy also limits his discussion to a system in which 

resource requests must be serviced in a first-come, first-serve (FIFO) 

manner. As has been discussed by Holt [ 201 , this can cause unnecessary 

deadlocks, since a sequence of allocations that does not lead to a deadlock 

situation may exist, but the FIFO queuing discipline prevents the scheduler 

from allocating resources in the deadlock-free manner. Clearly deadlocks 

can arise without requiring that the scheduler follow a specific queuing disci- 

pline, and inall our discussions here we will assume there is no such imposed 

ordering. 

It has been claimed, by Denning [ 5,6] in particular, that simultaneous 

sharing of common resource elements can be extremely advantageous to the 

efficiency of a computer system. However, since this concept has been 

ignored in most previous research on deadlock, it may be useful at this point 
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to consider some cases where the need for such a facility may arise. The 

most obvious case will be the one in which a resource class contains a single 

element, such as a named data file in a file system, that can be either read 

or written. If a job only wishes to read the file, it can share access with any 

other job also wishing to read it; but if a job is going to write into the file, 

no other job can be permitted to either read or write into that file simultane- 

ously, since the results would in general not be well defined [ 371 . There- 

fore, when a job requests access to the file, it must also specify the mode of 

control desired, so that the scheduler can grant the allocation with the proper 

access mode. 

Simultaneous sharing of resource elements in the general case of a 

resource class containing more than one element has less obvious but still 

quite practical applications in large multi-process systems. Depending on 

how “resources” are defined in a system, these classes will usually be 

“infinite sources” (system input units), “infinite sinks” (system output units), 

or “infinite buffers” (system scratch units). For example, a system may be 

designed so that each disk drive plus its managing software is considered to 

be a separate resource element in the class of disk resources. A job may 

then require several such resource elements, but due to the internal logic of 

the disk manager, several jobs may share access to the same element 

simultaneously with no difficulty (the queuing and identification of data items 

being sent to and from the disk is handled internally by the manager). On the 

other hand, if the user wishes to use his own private disk pack, his job must 

have exclusive control of one of these resource elements in order to guarantee 

that no other job will attempt to read or write on his private files. In both 

cases, the job simply REQUESTS any available disk resource, and is not 
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particular about which of the existing elements in the class it is assigned. 

(Obviously once the assignment is made the job must be able to uniquely 

identify the element it controls, in this example so that the private disk pack 

can be mounted on the proper drive.) It is of course possible that a single 

job may require several disk resources in both modes of control. It is also 

obvious that the same resource element may at one time be allocated in 

exclusive control mode, and at another time in shared control mode. 

In order to permit resource elements to be shared simultaneously, we 

must first replace assumption 5 with assumption 5’ as was described in 

section II. E. The notation S1 will be used to indicate systems based on 

assumption 5’ rather than 5 (which was indicated by S) . The new state dia- 
A 

gram for resource elements in system S’ is given in figure 1II.A. 1. The state 

diagram for jobs in St remains the same as in S (see figure II. B. 1). Changes 

will also be required to the data base B, to the primitives defining scheduler 

S, and finally to the deadlock detection algorithms in order to reflect the extra 

work necessary for the two modes of resource control. This is discussed 

next. 

- 82 - 



DEALLOCATE(shared) 

DEALLOCATE(exclusive) DEALLOCATE(shared) 

in exclusive 
control mode 

ALLOCATE(exclusive) ALLOCATE(shared) 

c 
ALLOCATE(shared) 

2054A3 

s. 

Figure III. A. 1 State Diagram for Resource Elements in System S. 
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B. Data Base B2- 

The data base B2 which is part of system St is shown schematically in 

figure 1II.B. 1. Because a job can request and be assigned resource elements 

in one of two modes, the first obvious difference between BI and B2 is the 

* replacement of the assignment matrix A by two matrices: AE, for keeping 

track of elements controlled in exclusive mode; and AS, for keeping track of 

elements controlled in shared mode. Similarly, the demand matrix D will be 

replaced by two matrices, DE and DS, and the request queue matrix Q will be 

replaced by the matrices QE and QS for use by the new deadlock detection 

algorithm. For convenience, we will now use the notation that matrix A 

represents the n by 2m matrix formed from AE and AS - the first m columns 

of A are AE, the second m are AS. Similarily, D represents DE and DS, and 

Q represents QE and QS. Therefore, an expression such as Bi 2 0 means 

both DEi 1. 0 and Ei L 0. In addition, the vector QSIZE now represents two 

m-component vectors, QESIZE and QSSIZE, which relate to QE and QS 

respectively in such a manner that the original relationship of QSIZE to Q 

(see item 8) is maintained. 

Continued use of the notation A, D, Q, and QSIZE reflects the fact that, 

as far as much of the bookkeeping for these matrices is concerned, the effect 

of allowing two modes of control is simply to split each of the original m 

resource classes into two subclasses, the shared class and the exclusive class, 

so that the original bookkeeping functions pertaining to owned resources must 

now be applied to 2m possible subclasses of owned resource elements. 

However, since these two subclasses of each class are not completely inde- 

pendent, as are two different classes, additional bookkeeping will be required 

to handle the assignment of each existing element to one of the two possible 
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subclasses when it becomes owned. In addition, the new deadlock detection 

algorithm requires that the ordering of items in the columns of Q be defined 

somewhat differently than before (see definition 7). 

The vector DNUMB must be defined so that it will still reflect the total 

number of resource classes needed in a demand, regardless of the male of 

control being demanded. Hence in system S’, the ith component of DNUMB 

is defined as the number of positive elements in the i th row of (DE+ DS) , 

which is not ni. This reflects the fact that demands to the same resource 

class, although in different modes, are not independent, since both must be 

satisfied simultaneously from a single set of actual resource elements. 

We must also introduce three new data structures that will be necessary 

to maintain information on resource sharing. 
.th Item 11: RSHARE--an m-component vector whose j component is the 

number of resource elements of type j currently owned in 

shared control mode a 

We assume that an allocation policy will try to minimize the number of 

different resource elements of the same type that are shared simultaneously, 

so that when a request for a shared resource is encountered, elements that 

are already owned in shared control mode by other jobs will be assigned first, 

and free resources will be used only after every shared resource element of 

the proper class has been assigned to the job. However, in spite of this 

policy it is still possible for two or more jobs to have shared control of a 

disjoint set of resource elements of the same type. For example, if job JI 

has shared control of elements a and b, and job J2 has control of a in shared 

mode, then if Jl releases control of a but not b, we are left with the situation 

that a is controlled in shared mode by J2 only, b is controlled in shared mode 
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by Jl only, and a # b. This gives us upper and lower bounds on RSHARE, the 

total number of different elements shared at any one time: 
n 

c 
i=l 

ASi(t) 2 RSHARE (t) 2 max ASi (II1.B. 1) 
i 

where we use the notation that the maximum of a set of vectors is the vector 

of the maximum of the corresponding elements. The new definition of 

RSHARE requires a redefinition of RFREE and RAVAIL as follows: 

n 
RFREE = RMAX - cAEi - RSHARE (1II.B. 2) 

i=l 

RAVAIL = RFREE + c AEi + RSHARE 
DNUMBi=O 

(III. B. 3) 

= RMAX - c AEi 
DNUMBi> 0 

Item 12: SC--an s by m matrix, where s = max RMAX j’ U’e’y ’ is l< j<m -- 
the maximum number of resource elements in the largest 

resource class .) The value of element SC.. is the number of 
11 

jobs Jk with DNUMBk > 0 that have shared control of resource 

element i in class R.. 
J 

The SC matrix will be used by the deadlock detection algorithm, and enables 

that algorithm to be linear in n. 

Item 13: S---an m-component vector whose j th component is the 
.th number of positive elements in the J column of SC. 

SCNUMBj will be the total number of resource elements of type j controlled 

in shared mode by at least one job Jk with DNUMBk > 0. Since this is clearly 
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A 

only a subset of all jobs in J, we have: 

RSHARE (t) 2 SCNUMB (t) 2 max q (III. B. 4) 
DNUMBi> 0 

Looking ahead to the bookkeeping that will be necessary in the prim itive 

definitions to maintain SC, SCNUMB, and RAVAIL, it should be clear that 

these will change value only when DNUMBi for some job Ji changes from  zero 

to non-zero or vice versa. Hence the bookkeeping for these data structures 

will be contained entirely within the procedures PUTASLEEP and GETAWAKE,  

since these are called only when a job Ji is put asleep due to insufficient 

resources to satisfy a REQUEST (DNUMBi goes from  zero to non-zero), and 

when Ji is gotten awake at some later time when sufficient resources have 

become available to satisfy its demand (DNUMBi goes from  non-zero to zero). 

This is exactly what would be expected, ‘since these data structures exist in 

the data base solely for utilization by the deadlock detection algorithm  (and 

deadlock can only occur when a job is put asleep). However, the bookkeeping 

for RSHARE, as for RFREE, is essential to the scheduler for &, whether or 

not deadlock detection is to be included. Its maintenance must necessarily be 

incorporated into the prim itive definitions themselves, rather than being 

isolated in auxiliary functions. See section HI. D. 
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1 

AE AS DE 

n n c 

1 

INUMB DS 

n 

m 

r-l 

m 

QESIZE r-l 
QSSIZE I COUNT 

1 m 1 m 1 m 
1 

c 

SC 

S 

Qs E QE 

2054A4 

Figure III. B. 1 Scheduler Data Base B2 for System il. 
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h  

C . Fo rma l  P roper t ies  o f S ’ 

A t a n y  tim e  t, th e  n u m b e r  o f resource  e l e m e n ts ava i lab le  fo r  a s s i g n m e n t 

to  j ob  Ji in  exc lus ive  c o n trol m o d e  is R F R E E  (t), th e  resources  n o t yet  

ass igned  to  a n y  job,  a n d  th e  n u m b e r  ava i lab le  fo r  a s s i g n m e n t to  Ji  in  s h a r e d  

c o n trol m o d e  is ( R S H A R E  (t) - A S i(t th e  n u m b e r  s h a r e d  by  o the r  jobs  b u t 

n o t Ji, p lus  ( R F R E E  (t) - E i(t)), th e  n u m b e r  o f f ree e l e m e n ts th a t r e m a i n  

a fte r  th e  exc lus ive  a s s i g n m e n t to  Ji  is sat isf ied. H e n c e  th e  cond i t ions  wh ich  

m u s t b e  sat isf ied in  o rde r  to  b e  a b l e  to  satisfy a  d e m a n d  Di(t) by  j ob  Ji a t tim e  

t are:  

E i(t) 5  R F R E E  (t) 
( 1 1 1 .c. ij 

B i(t) +  A S i 5  R F R E E  (t) +  R S H A R E  (t) - E i(t) 

A lth o u g h  d e fin i t ions l -5  a n d  th e o r e m  1  o f sect ion II. G  r e m a i n  va l id  fo r  sys tem 
A  A  
S ’, th e  cond i t ions  th a t m u s t b e  sat isf ied by  a  fin i sh ing  s e q u e n c e  o f S ’ m u s t b e  

r e d e fin e d  in  o rde r  to  ref lect th e  n e w  cond i t ions  (IlI.C. 1 )  th a t m u s t b e  sat isf ied 

b e fo re  a n  a s s i g n m e n t c a n  b e  m a d e . T h e  n e w  cond i t ions  a re  g i ven  in  th e  n e x t 

th e o r e m , wh ich  is th e  a n a l o g y  o f th e o r e m  2 . Fo l low ing  th is  th e o r e m , th e  

n e w  cond i t ions  a re  u s e d  to  p rove  th e o r e m s  1 3 , 1 4 , a n d  1 5 , v$ ich  a re  a n a l o g o u s  

to  th e o r e m s  3 , 4 , a n d  5  respect ively.  

Un less  s tated o therwise ,  w e  a s s u m e  in  a l l  th a t fo l lows  th a t th e  jobs  in  j 

a re  n u m b e r e d  so  th a t Jk is th e  kth j ob  in  th e  p e r m u ta tio n  s e q u e n c e  F. 

T h e o r e m  1 2 : If F  is a  fin i sh ing  s e q u e n c e  fo r  sys tem S ’ a t tim e  t, th e n  th e  

fo l l ow ing  cond i t ions  a re  sat isf ied by  jobs  in  F: 

DEi( t )  5  z,(t) - m i(t) 
i =  1 , 2 , . . . . n  

E l(t) +  A S i(t) 5  z?(t)  - DEi( t )  

(III.C .2 )  
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where we define the terms zi and RSi as follows: 

gl(t) = RFREE (t) + RSHARE (t) 

i-l (III. c. 3) 

zi(t) = RFREE (t) + c Ek(t) + RSHARE (t) = giVl(t) + Eiml(t) 
k=l 

for i = 2, 3, . . . . n 

si is an m-component vector such that RSij is the 

number of resource elements of type j which are 

controlled in shared mode by at least one job Jk 

with k > i (i.e., - Jk = Ji or Jk follows Ji in F). 

From this definition we have the following relationships: 

n 

c 
k=i 

zk>RSi>max ASk 
- - k>i 

(III.C.4) 
n 

c 
k=l 

Sk2 RSHARE = Bl 2 max ASk 
k 

Neither Z nor RS is represented in data base B2 because they will be computed 

when needed in algorithm L3. They are both clearly a function of the position 

of a job in a particular sequence F, and will be written as si(F, t) and mi(F, t) 

whenever necessary for clarity. 

Proof (by induction) : 

Let F be a finishing sequence for S’ at time t and assume that Jl, 

the first job in F, does not satisfy (III. C .2), so that DNUMBl > 0 

and for at least one value of j, either: 

DElj(t) > Zlj(t) - RSlj(t) = RFREEj(t) + RSHAREj(t) - RSHAREj(t) = RFREEj(t) 
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or 

DSlj(t) + ASlj(t) > Zlj(t) - DElj(t) = RFREEj(t) + RSHAREj(t) - DElj(t) 

or both. Hence (III. C. 1) does not hold for JI at time t, which means 

that an assignment cannot be made to Jl at time t. This remains true 

until RFREE or RSHARE or both increase, which can only happen by 

a RELEASE by some other job Jk, k # 1. But Jk must have 

DNUMBk = 0 (i . e. , be active) at time tk t 5 tk < tl, in order to be 

able to invoke a RELEASE at time t’, tk 5 t’. Therefore, at time tk 
we have DNUMBl(t$ > 0 and DNUMBk(t$ = 0, so that Jk must 

precede J1 in F, by definition 5. Contradiction of our assumption 

that J1 is the first job in F. Hence (III. C. 2) must hold for Jl. 

Now assume that (II1.C. 2) holds for Jl, J2, . . . , Ji 1, but not Ji, so 

that DNUMBi > 0. Between time t and ti 1, only jobs Jk with k < i 

will achieve Ek = 0, by definition 5. If all these jobs had released 

control of all their resources by time t’, ti l( t’, we would have 

the following situation (since no other job Jk with k 1 i has 

DNUMBk = 0 (by definition 5) and hence Dk and xk remain unchanged 

between time t and t’). 

The maximum number of shared resources still assigned at time t’ 

will be those controlled in shared mode by jobs Jk with k,i. This 

is simply mitt’), which has not changed since time t, so that: 

si(t) = si(t’) 1 RSHARE (t’) . 

The maximum number of free resources at time t’ are all those free 

at time t (i.e., RFREE (t)), plus those assigned in exclusive control 
i-l 

mode to jobs Jk, kc i-l (i.e., 
k$ 

Ek(t)), plus those shared only 
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by jobs Jk with k 5 i-l (i. e. , RSHARE (t) - ‘iiSi(t)) . This gives us: 

i-l 
RFREE(t’) 5 RFREE (t) + c Bk + RSHARE (t) - si(t) 

k=l 

= z(t) - a(t) 

If Ji is to be the next job in F, we must reduce Ei to zero at some 

time ti 2 t’ . To make an assignment to Ji at time t’, condition 

(III. C. 1) must hold, which would give: 

Ei(t) = Ei(t’) ( RFREE (t’) 5 ;ti(t) - mi(t) 

and 

%(t) + ASi = mi(t’) + m,(V) ( RFREE (t’) + RSHARE (t’) - mi(t’) 

(x(t) + E(t) - z(t) - m(t) 

= z(t) - m(t) 

But these are exactly conditions (III. C. 2) which we assumed did not 

hold for J i. Therefore an assignment cannot be made to Ji at any 

time ti 2 t’ until either Rmor =ARE or both increase, which 

can only happen if some other job Jk invokes a RELEASE, and 

k > i (since all jobs Jk with k < i are already assumed to have re- 

leased their resources by time t’) . This job Jk would have to achieve 

Dk(tk) = 0 at some time tk in order to RELEASE any resources at 

time tk, andtk ~t;(. Therefore at time $ we have DNUMBi(t$ > 0, 

and DNUMBk($) = 0, which implies that Jk must precede Ji in F, by 

definition 5. 

Contradiction of our assumption that Ji is the next job in F. Hence 

(III. C. 2) must also hold for Ji, which proves the induction. 

Q.E.D. 
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Theorem 13: If at time t there does not exist a permutation sequence F 

of all jobs in i that satisfies conditions (III. C. 2)) then 

system S’ is deadlocked at time t. 

Proof: 

Obvious, since theorem 12 proves that conditions (III. C. 2) are necessary 
A 

to any finishing sequence of S’, and if no finishing sequence exists then S’ 

is deadlocked at time t, by theorem 1. Q.E.D. 

Theorem 14: Without advance information, any permutation sequence F of 

jobs in j that satisfies (III. C. 2) at time t is a finishing sequence 

for system S’ under the assumption that no new resource 

REQUESTS will be made at any future time t’ > t. 

Proof (by induction) : 

J1 is the first job in F, so that (III. C. 2) implies that (III. C. 1) holds at 

time t for J1,. Thus if DNUMBl(t) > 0, it is possible to make an assign- 

ment to Jl at time to 1 t that will make El(to) = 0. By assumption no 

job in j will make any new REQUEST after time t, so that by definition 

1, J1 will RELEASE all its resources at some finite time tI > to, thereby 

returning to the free state all resource elements controlled exclusively 

by J1, plus any controlled in the shared mode by J1 alone. This gives 

at time t 1 : 

- - 
RSHARE (tl) = RS2(tl) = RS2(t) 

RFREE (tl) = RFREE (t) + El(t) + RSHARE (t) - RSHARE (tl) = g2(t) - i%,(t) 

since no other x or E changed between t and tl. 

Now assume that jobs J1, J2, . . . . J i-l have had their demands Ek(t) 

satisfied and have released their resources by time ti 1, and that at 
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time ti 1: 

RSHARE (tiB1) = si(t) 

RFREE (timl) = %(t) - Bi(t) 

We will show that this will also hold for Ji at time ti 2 ti I. Since assign- 

ments have been made only to jobs Jk with k <i by time t. l-l’ 

Ep(t) = 5 (t. p l-l ) , Ap(t) = Ap(ti I), and Ep(t) = RS (t. ) for all pi i. p l-l 

Using the fact that jobs in F satisfy (III. C. 2) at time t (by theorem 12)) 

and the inductive conditions (III. C. 5)) we have: 

DEi(ti_1) = DEi(t) 1.Zi(t) - RSi(t) = RFREE (ti-1) + RSi(t) - si(t) 

= RFREE (tiMI) 

Ei(timl) + Bi(timl) = i%(t) + E,(t) zZ,(t) - m(t) 

= RFREE (tiwl) + %(t) - Ei(t) 

= RFREE (timl) + RSHARE (tiwl) - zi(ti-I) 

which are just conditions (III. C. 5) at time tiB1. 

Therefore, at time tiwl, if DNUMBi(ti l) > 0, an assignment can be made 

to Ji that reduces Ei to zero< By assumption Ji will not make any new 

REQUEST after time t, so that by definition 1, Ji will RELEASE all its 

resources by some finite time ti 2 ti 1, thereby returning to the free state 

all resource elements exclusively controlled by Ji plus any elements in 

the shared control mode that were controlled by Ji alone. Therefore at 

time ti, whether or not it was necessary to make an assignment to Ji at 

time tiel, we will have for the value of RSHARE (ti) the number of elements 

still under shared control by at least one job at time ti, which will be 
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iTSi+l(ti) = TiSi,l(t)) since for all k 5 i, Ek(ti) = 0, whereas sk(t$ =ak(t) 

fork> i. : 

The value of RFREE at time ti is given by: 

RFREE (t$ = RFREE (timl) + Ai(tiBl) + RSHARE (timl) - RSHARE (ti) 

= z?(t) - is(t) + Ai(t) + is(t) - Ei+l(t) 

= Z+p) - Si+,(t) 

where we used relation (III. C. 3) to define zi+l in terms of 2i. 

Hence conditions (III. C. 5) also hold for job Ji, the next job in F, at 

time ti 2 ti 1, which proves the induction. Q.E.D. 

Theorem 15: If there exists a sequence F of all jobs in j that satisfies 

(III. C. 2) at time t, then it is impossible to detect a dead- 

lock for system S’ at time t without further information on 
A 

the resource requirements of jobs in J. A system S’ for 

which such a sequence exists is said to be deadlock-free 

at time t. 

Proof: 

Existence of such a sequence F means that deadlock is not inevitable at 

time t, since by theorem 14 there is an assumption about future job 

behavior which is sufficient for this F to be a finishing sequence for S’. 

To disprove this assumption requires knowing at time t that some job 

in i will in fact make a request for additional resources at some time 

t’ > t. Without this advance information on future resource requirements, 

it cannot be shown that F is not a finishing sequence for S’ at time t, 

and hence it cannot be shown that S’ is deadlocked at time t, by 

theorem 1. Q.E.D. 
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So that the early termination criterion used to derive L2 from LI for 

deadlock detection in system S can be incorporated directly into L3, the 

algorithm for deadlock detection in system S’, we prove the following 

theorem which is analogous to theorem 11 in section ILK. 

Theorem 16: Without advance information, a system St that is deadlock- 

free at time t remains deadlock-free after an unsatisfiable 

REQUEST by job Jk at time t if and only if there exists a 

partial sequence of jobs that satisfies (III. C. 2) and ends 

Proof: 

with job Jk. 

Obviously if a partial sequence ending in Jk does not exist, then a com- 

plete permutation sequence of all jobs in i that satisfies (III. C. 2) also 

cannot exist, which implies that S1 is deadlocked at time t, by 

theorem 13. 

Suppose that at time t’ immediately after the REQUEST is found to be 

unsatisfiable and Jk is put asleep there does exist a partial sequence 

F’ that satisfies (III. C. 2) and ends in Jk. We show how to construct a 

complete permutation sequence of all jobs in j from this F’. 

Let P be the set of jobs of i that are not in F’, with all jobs renumbered 

so that F’ = JI, J2, . . . , Jk ’ > k+l’ Jk+2, . . . , Jn 
A 

F be a permutation sequence of all jobs in J satisfying (III. C .2) at 

time t when the REQUEST was invoked (by theorem 15 there must be 

at least one such sequence F if S’ is deadlock-free at time t). Since 

the REQUEST was unsatisfiable at time t, the only change in data base 

B2 between time t and time t’ is that D .(t’) > 0 for at least one j (and 
h 

hence DNUMBk(t’) > 0), whereas B,(t) = 0 and DNUMBk(t) = 0. RFREE, 
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RSHARE, all xi and other Di remain unchanged. Let job Ji be the first 

job in F that also belongs to P. This defines a set Q of all jobs that 

precede Ji in F, and a set of R of all other jobs in F (including Ji). 

Obviously any job in Q cannot be in P so that it must belong to F’, making 

Q is a subset of F ’ , and giving: 
k 

c np(t’) = &Ep(tt) = c mp(t) 

JPinF’ 
p=l p=l 

Using (III. C. 3) to define z and RS, we get: 

Ei(F,t) = RFREE (t) -+- c mp(t) + RSHARE (t) 
JpbQ 

k 
2 RFREE (t’) + mp(t’) + RSHARE (t’) 

= gk++F’, t’) 

Bk++F’) is the number of resource elements shared by at least one job 

Jp with p > k (i.e., so that Jp is in P) , and Ei( F) is the number of re- 

source elements shared by at least one job Jp such that either J 
P = Ji 

or Jp follows Ji in F (i. e. , so that Jp is in R) . 

Since ASi = Bi(t’) for all i: 

sk+$F’, t’) = ak++F’, t) 

and 

si(F, t) = %(F, t’) 

Since any job in P cannot be in Q, it must belong to R, making P a subset 

of R, which gives 

&?k+l(F’,t’) = Bk+l(F’,t) (mi(F,t) or -Bi(F,t) ( -Bk+l(F’,t’) 
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Since Ji satisfied (III. C. 2) as the ith job in F at time t, by theorem 12, 

we have: 

5 Zk+l(F’,t’) - =‘k+l(F’,t’) 

and 

pi + ASi = pi + Asi F ‘i(F, t) - DEi(t) 

5 Zk+l(F’ , t’) - Ei(t’) 

Thus Ji satisfies (III. C. 2) as the k+lst job of a sequence constructed by 

appending Ji at the end of F’ to form a partial sequence F” of k+l jobs. 

To find the k+2 nd job, remove Ji from P to give P’ and repeat the above 

proof for F’ and P’. Continue until a complete sequence of all jobs in 

J is formed. This satisfies (III. C. 2)) so S’ is deadlock-free at time t’, 

by theorem 15. Q.E.D. 
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D. Scheduler Primitives in Sf 

The scheduler primitives in S’ serve the same functions and are organized 

in the same hierarchical manner as were those in system S. In fact, at the 

highest level, the job primitives, no changes in the definitions given in 

section H.H (figure I1.H. 1) are necessary, provided that in system S’ the 

notation E represents a 2m-component vector whose first m elements are NE 

and whose second m components are %. Similarily set N will now contain 

two subsets, called NE and NS, which contain elements in either exclusive or 

shared control mode respectively. At the lowest level, only the primitives 

ALLOCATE and DEALLOCATE must be redefined to accept as an additional 

parameter a specification of the mode of control between the resource element 

and the job, which can be either exclusive or shared. 

The major changes in the primitives must be made to ASSIGN and 

UNASSIGN, the intermediate level primitives, since this is where all the 

decision making and bookkeeping related to the true “scheduling” (including 

deadlock detection) occurs. The new primitive definitions are given in 

figure III. D. 1, with the auxiliary functions PUTASLEEP and GETAWAKE 

in figure IH.D. 2. By comparing these definitions to those in figures II. H. 2 

and II. H. 3 for system S, it is apparent that the significant changes are: 

(1) the test in ASSIGN, which is based on conditions (III. C . 1) rather than 

II. H. 1; (2) the introduction of statements to handle the extra bookkeeping 

required by the new shared control mode possible in S’; and (3) the intro- 

duction of statements in PUTASLEEP and GETAWAKE to maintain the data 

structures SC and SCNUMB needed by deadlock detection algorithm L3. 

Theorem 17 proves that the new test in ASSIGN is the correct one, so that 

no deadlock is created if the test is satisfied and an assignment is made. 

- 99 - 



Theorem 18 proves that executing UNASSIGN whenever it is invoked will not 

cause a deadlock to arise. 

Looking first at ASSIGN, it is clear that the bookkeeping for resources 

being assigned in exclusive control mode is identical to that for system S 

(figure II. H. 2) in which this is the only possible mode of control. After these 

resources have been allocated, those in shared control mode must be allo- 

cated, and AS . adjusted to reflect the fact. 
4 

Statement S2 has been added to 

see if the total now assigned to Jk in shared mode exceeds RSHARE., the 
J 

number of different elements of type j that were previously owned in shared 

mode. If so, then elements that were previously free must be assigned to Jk 

in shared mode to satisfy the demand NS.. 
J 

In this case RFREEj is decreased 

and RSHAREj increased by the number of elements needed from the free state 

in order to maintain the values defined by relation (III. B. 2) and item 11. 

After this, job Jk is allocated shared control of the NSj elements of type j, 

which completes the assignment. 

The UNASSIGN primitive performs the complementary actions of ASSIGN, 

and once again the bookkeeping for releasing resources in exclusive control 

mode is identical to that for system i (figure II. H. 2). After those resources 

are deallocated, the shared resources must be deallocated, and AS kj 
reduced 

by an appropriate amount. Statement U2 has been added to see if job Jk is 

the last shared controller of a resource element ri of type j. If so, this ele- 

ment will return to the free state when deallocated by Jk, so that RSHARE. J 
must be decreased by one and RFREEj increased by one to reflect this fact. 

In formulating the algorithm we have assumed that there exists a function 

“sharers” such that sharers (r.) is the number of jobs currently sharing con- 1 

trol of resource element ri. After all the elements of type j in set NS have 

been checked and deallocated, the operation of UNASSIGN is finished. 
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Comparing the auxiliary functions in figure III. D. 2 with those in 

figure II. H. 3, the principal changes are: (1) the addition of the statement 

labelled P3 in procedure PUTASLEEP, and G3 in GETAWAKE, both of which 

are used to maintain the two new data structures SC and SCNUMB; (2) the 

addition of the statement labelled P5 in PUTASLEEP and G5 in GETAWAKE, 

both of which maintain the QE and QS matrices. 

In PUTASLEEP, if job Jk does not possess shared control of any elements 

of type j, block P4 is not executed; otherwise, when Jk is put asleep, the ele- 

ment of matrix SC corresponding to each of its shared resource elements 

must be incremented by one in order to preserve the correct value of SC as 

defined in item 12. Further, if the element of SC becomes non-zero in this 

process, then SCNUMBj must also be increased by one to indicate correctly 

the number of non-zero elements in column j of SC, as defined in item 13. 

This is performed in block P4, and is all that is required to maintain SC and 

SCNUMB. The statement labelled P5 checks to see if a demand for elements 

of type j exists in either mode, and if so, block P6 is executed. In block P6, 

the job Jk is enqueued in column j of QE and column j of QS, and since the 

ordering of elements in these two columns is independent (see definition 7, 

section III. E), this can be done by executing block P7 in parallel (column j+m 

of matrix Q is column j of matrix QS in our notation). Columns j and j+m of 

the D matrix are also updated in P7. A demand for elements of type j, 

regardless of the control mode desired, is entered in both the QE and QS 

matrices, but is counted only once in DNUMBk. Asbefore, the new dead- 

lock detection algorithm, L3, will be the definition of ENQUEUE(Jk, j?). 

Procedure GETAWAKE performs the complementary functions to 

PUTASLEEP. The statement G3 is added to maintain SC and SCNUMB 
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correctly, and performs the reverse operations to P3 in PUTASLEEP. This 

. . is simply to decrease the value of SCij for each element ri of type j controlled 

by Jk, since after the GETAWAKE, DNUMBk = 0. Also, if this causes SCij 

to go to zero, SCNUMBj must also be decreased by one as required by item 13. 

Theorem 17: If conditions (III. C. 1) are satisfied by some job ‘Ji with 

DNUMBi > 0 at time t and S’ is deadlock-free at time t, 

then S’ will still be deadlock-free after an ASSIGN to Ji 

at time t. 

Proof: 

Let F be a sequence of all jobs in j that satisfies (III. C. 2) ,at time t 

(there must be at least one if S’ is deadlock-free, by theorem 13), 

with the jobs numbered so that Jk is the kth job in F. Sine e conditions 

(III. C. 1) are satisfied by Ji, there are enough resources -available to 

make an assignment to Ji, so that at time t’ immediately thereafter 

we have: 

RFREE (t’) = RFREE (t) - si(t) - @SHARE (It’) - RSHARE (t)) 

E(t’) = 0 

qt’) = xi(t) + TX(t) 

and 

Ak@‘) = Ak@) , Dk(t’) = D,(t) for all k # i. 

Consider the sequence F’ constructed from F by removing Ji from its 

position in F and making it the first job in F’, so that: 

F’ = Ji, JI, J2, 1 . . . . J i-l’ Ji+l’ Ji+2’ . . . . Jn ’ 1 
A 

Then F’ satisfies (III. C. 2) for system S’ at time t’, as is shown next. 
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Since RSHARE(t’) = si(F’, t’) by (III.C.4), we have: 

0 = Ei(t’) 5 RFREE (t’) = RFREE (t’) + RSHARE (t’) - RSHARE (t’) 

= zI(F’, t’) - %I(F’, t’) 

ALSO RSHARE (V) 1 max zk(t’) 2 ASi( by (III. B. l), so that: 
k 

ASi = i%(t’) + mi(t’) 5 RSHARE (t’) 5 RFREE (t’) + RSHARE (t’) 

= zI(F’, t’) = tI(F’, t’) - Ei(t’) 

Therefore Ji satisfies condition (III. C. 2) as the first job in F’. 

Next consider any job Jk with k < i. 

Zk(F, t) = RFREE (t) + y Gp(t) + RSHARE(t) 
p=l 

= RFREE (t’) + Ei(t) + (RSHARE (t’) - RSHARE (t)) 

k-l 
+ mp(t) + RSHARE (t) 

k-l 
= RFREE (t’) + Ei(t’) - Ai + Ep(t’) + RSHARE (t’) 

k-l 
( RFREE (t’) + Ei(t’) + Ep(t’) + RSHARE (t’) 

= Ek+i(F’, t’) 

since Ji is the first job in F’ . At time t, Ji followed Jk in F, but at 

time t’, Ji precedes Jk in F’ and the position of all other jobs is 

unchanged. Hence the set of jobs following Jk at position k+l in F’ 

is a proper subset of those following Jk at position k in F, and this 
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implies : 

gk(F, t) 2 sk+l(F’, t’) or --Sk&t) 5 -Ek+l(F’, t’) 

Since F satisfies (III. C. 2) at time t, we have: 

zk(t’) = Ek(t) ( Zk(F, t) - Gk(F, t) 5 Zk+l(F’, t’) - Gk+l(F’, t’) 

and 

DSk(t’) + q&t’) = Sk(t) + zk(t) 5 Tk(F, t) - Ek(t) 

- 5 ‘k(l (F’, t’) - Ek(t’) 

Thus Jk satisfies (III. C. 2) at time t’ as the k+lst job in F’, k <i. 

Next consider any job Jk with k > i. 

tk(F, t) = RFREE(t) + 
-1 

AEp(t) + E(t) + e p=i+ 1 
xp(t) + RSHARE (t) 

= RFREE (t’) + Ei(t) + (RSHARE (t’) - RSHARE (t)) + AEp(t’) 

+ AEi(t’) - m(t) +r 
p=1+ 1 

ap(t’) + RSHARE(t) 

k-l 
= RFREE(t’) + 

c, P= 
zp(t’) + RSHARE (t’) 

= gk(F, t’) = Zk(F’, t’) 

By construction, the same set of jobs precedes and follows Jk in F’ as 

precedes and follows Jk in F, and since BP(V) = ASP(t) for p 2 k > i, 

we have sk(F, t) = Ek(F, t’) = zk(F’, t’) for job Jk at position k in both 

F and F’. 

Since Jk satisfies (III. C. 2) as the kth job in F, we have: 

Ek(t’) = Ek(t) 2 Zk(F, t) - gk(F, t) = Zk(F’, t’) - Ek(F’, t’) 
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and 

n%(t’) + rs(t’) = r%(t) + Ask(t) ( Zk(F.t) - DEk(t) 

= Zk(F’, t’,) - Ds(t’) . 

Thus Jk satisfies (III. C. 2) at time t’ as the kth job in F’. 

Therefore F’ satisfies (III. C. 2) for all its jobs, which implies St is 

deadlock-free by theorem 15. Q. E.D. 

Theorem 18: If job Ji issues a RELEASE at time t and S’ is deadlock-free 

at time t, then S’ will remain deadlock-free after an 

UNASSIGN from Ji at time t. 

Proof: 

Let F be a sequence of all jobs in J satisfying (III. C. 2) at time t (there 

must be at least one if S’ is deadlock-free, by theorem 13), with the jobs 

numbered so that Jk is the kth job in F. Consider the state of the system 
A 
S’ at time t’ immediately after the UNASSIGN is complete: 

RFREE(t’) = RFREE (t) + 6 (NE) f (RSHARE (t) - RSHARE (t’)) 

Di(t’) = E(t) = 0 

Xi(V) = x(t) - 6(N) 

and 

Ak(V) = Ak(t), ck(t’) = ck(t) for any k $ i . 
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Then F will satisfy (III. C. 2) for system S’ at time t’, as is shown next. 

Consider any job Jk with k ( i. 

Zk(F,t) = RFREE(t) + Ep(t) + RSHARE (t) 

= RFREE (t’) - 6(NE) - (RSHAREft) - RSHARE (t’)), 

+ Ep(t’) + RSHARE(t) 

5 RFREE (t’) + mp(t’) + RSHARE (t’) 

= gk(F, t’) 

By definition, i%k is the number of different resource elements con- 

trolled in shared mode by job Jk or any job following Jk in F, so that 

when ASi decreases, Rs may also decrease (it cannot increase) for 

all k zi. Therefore: 

r$$F, t) 2 zk(F, t’) or -Fs(F, t) (-%&(F,.t’) 

Since job Jk in F satisfied (III. C. 2) at time t, we have: 

E,(t’) = r%(t) cz,(t) - i%i$(t) IZ$‘) - F$Rtt’) 

Since Z$(t’) = As(t) f 01: k # i, and ASi = ASi - 6(M) 5 ASi( 

we get: 

r$i(t’) + As(f) 5 D%(t) + A%(t) 5’,@) - DEk(t) ( ‘ktt’) - Dstt’) 
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Hence Jk satisfies (III. C. 2) at time t’ as the kth job in F, k ( i. Next 

consider any job Jk with k > i. 

i-l 
Ek(F, t) = RFREE (t) + AEp(t) + icEi +gl 

p=i+ 1 
Ep(t) + RSHARE (t) 

i-l 
= RFREE (t’) - S(NE) - (RSHARE (t) - RSHARE (t’)) + BP’ t’) 

+ E(t’) -I- 6(NE) +p 
p=i+l 

Ep(t’) + RSHARE (t) 

k-l 
= RFREE (t’) + Ep(t’) + RSHARE(t’) 

= gk(F, t’) 

Since zp(t) = ap(t’) for all p 2 k > i, Fs(F, t’) = F$$F, t). Since Jk 

satisfies (III. C. 2) as the kth job in F at time t, we have: 

mk(t’) = ak(t) (tik(t) - 6,&t) = Z,(t’) - RSktt’) 

and 

Therefore all jobs in F satisfy (III. C. 2) at”time t’, implying S’ is 

deadlock-free at time t’, by theorem 15. 

Q. E.D. 
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ASSIGN(k, NE, KS) 

if NE 5 RFREE & s + As 2 RFREE + RSHARE - NE 

GETAWAKE(k, NE, KS); 

Sl: 

s2: 

s3: 

parallel for j &I [ 1, ml do 

begin 

AEkj +:= NEj; 

RFREE. -:= NE.; 
J J 

for p from 1 step 1~ toNEj do ALLOCATE(Jk, j, exclusive); 

Asj +:= NSj; 

‘fASk. 
J 

begin 

RFREE. -:= 
J A%j - RSHARE.; 

3 
RSHARE. := 

J 
A~j; 

c&; 

for p from 1 step 1 up to NSj do ALLOCATE(Jk, j, shared); 

@; 

end 

else PUTASLEEP(k, NE, &$; 

Figure III. D. 1 The Intermediate Level Primitives for System S’ 
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UNASSIGN(k, NE, NS) 

u2: 

u3: 

parallel for j & [ 1, m] & 

Ul: begin 

AEkj -:= S(NE)j; 

RFREEj +:= S(NE)j; 

for each ri of@ j g NE do DEALLOCATE(Jk, ri, exclusive); - / 

A%j -‘= 6tNs)j’ 
eachriof@jgNSdo for - 

begin 

if sharers (ri) = 1 g 

begin 

RFREEj +:= 1; 

RSHARE. -:= 1; 
J 

alcJ; 

DEALLOCATE (Jk, ri, shared); 

Figure III. D. 1 continued 

- 109 - 



procedure PUTASLEEP(k, NE, %!S) 

if k not in E e -- 

Pl: begin 

parallel for j & [ 1, ml & 

P2: begin 

RAVAIL. -:= AEkj; 
J 

P3: 

P4: 

P5: 

P6: 

P7: 

for each r. of type j controlled b-y Jk & shared mode do -- 1- -- 

begin 

if SC.. = 0 then SCNUMBj +:= 1; 
13 - 

scij +:= 1; 

e& 

ifNEj > 0 or NSj> 0s 

begin 

parallel for q := j, j + m & 

begin 

Dkq 
+:= N 

q 
; 

QSIZEq +:= 1; 

ENQUEUE (Jk, &s); 

&; 

DNUMBk +:= 1; 

&; 

c&; 

COUNT +:= 1; 

ENQUEUE(Jk, E); 

end: 

Figure III. D. 2 Auxiliary Scheduling Functions in System S’ 
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procedure GETAWAKE(k, NE, s) 

if k in E then --- 

Gl: begin 

parallel for j in [ 1, m] do -- a- 

begin G2: 

RAVAILj -I-:= AEkj; 

G3: 

G4: 

G5: 

G6: 

G7: 

for each ri of t.ype j controlled & Jk & shared mode do -- -- 

begin 

SC.. -:= 1; 
11 

if SCij = 0 then SCNUMB. -:= 1; 
J 

end: 

ifNEj>O 01‘ NSj> 0% 

begin 

parallel for q := j, j + m & 

begin 

QSIZEq -:= 1; 

DEQUEUE (Jk, a,, ; 

e&; 

DNUMBk -:= 1; 

a; 

@; 

COUNT -:= 1; 

DEQUEUE (Jk, 2); 

&; 

Figure III. D. 2 continued 
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E. Algorithm L3 

Algorithm L3, the algorithm for deadlock detection in system S1, is given 

in figure III. E. 1. The critical section procedure APPROVE used by LS is the 

same one used for algorithm L2 and is not reproduced here (see figure II. K. 1). 

The intuitive operation of L3 is the same as for L2, with the only changes being 

the extra bookkeeping and testing needed when there are two possible modes 

of resource control. This also creates the need for more working storage than 

was required for La. In addition to THRESH, MARK, OLDE, and DN used by 

L2, L3 requires an s by m matrix TS, an m-component vector SCN, and an n 

by m bit matrix X. TS is initialized with a copy of SC (see item 12), and is 

changed during the operation of L3 as a means of keeping track of the number 

of controllers of a shared resource element. SCN is initialized to SCNUMR, 

and will represent RS at each step of the algorithm. X is used to coordinate 

the actions of the algorithm on the two types (exclusive and shared) of demands 

on a single resource class. 

Once again the ordering of the elements in the columns of Q is essential 
7 

to the speed of the algorithm, making it proportional to n instead of n- if a 

search technique were used. 

Definition 7: The ordering in system S’ for elements in each column of Q is 

such that if k follows i as a value in column j of QE (QS) then: 

DEij 5 DEkj (DSij + ASij 1. DSkj + ASkj ) (III. E. 1) 

for all such i and k in column j. Further, if an index i appears 

as a value in column j of QE, it must also appear in column j of 

QS, and vice versa. 

That this is the correct ordering to always guarantee that the “next” job 

. * 

is ready for testing by the algorithm can be seen from the next two lemmas 

- 112 - 



and the proof of theorems 19 and 20. As was true for the Q matrix in system 

S, each column of QE (QS) is independent of all other columns in QE (QS), 

insofar as the indices which appear there and the relative order among these 

values is concerned. However, the corresponding columns of QE and QS are 

not independent, since if an index i appears in either, then it must appear in 

both, although the relative ordering between the items in column j of QE will 

not be the same as between the items in column j of QS, due to (III. E. 1). This 

interdependence of columns of QE with columns of QS was mentioned previously 

in section III. D, when the primitives to maintain QE and QS were defined, and 

is essential to the proof of the following lemmas and hence to the proper 

functioning of algorithm L3. 

Lemma 1: For fixed j, if index i is in column j of QE and job Ji does not 

satisfy the conditions (for p = i): 

DEpj 5 Z . - RS . 
43 93 

DSpj + ASpj ( Z - DE 
ti Pj 

(III.E.2) 

then any job Jk that follows Ji in column j of QE and satisfies 

Proof: 

(III. E. 2) for p = k must precede Ji in column j of QS. 

Assume DEij > Z - RS 
sj sj’ 

Then from (III. E. 1) and the fact that Jk 

follows Ji in column j of QE, we have: 

DEkj 2 DEij > Zqj - RSSj 

implying that Jk could not satisfy (III. E. 2). But Jk is assumed to satisfy 

(III. E. 2)) so that we must have: 

DEij 5 DEkj 5 Zqj - RSqj 
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but since Jk must satisfy (lII. E. 2) and Ji must fail, we also have: 

DSij + ASij > Z 
s j 

- DE.. 
13 

and 

DSkj + Asj 2 Zqj - DEkj 

Since DEpj is non-negative for all p and j, this gives: 

DSij + ASij + DEij > Zqj 1 Dsj + Asj + DEkj 

Since DE 
kJ - 

. > DEij 2 0, this gives: 

DSij + ASij > Dsj + Asj 

which by definition 7 implies that Jk must precede Ji in column j of QS. 

(The same definition also insures that k and i will in fact be in column j 

of QS, since they are known to be in column j of QE.) 

Q.E.D. 

Lemma 2: For fixed j, if index i is in column j of QS and job Ji does not 

satisfy conditions (III. E. 2) for p = i, then any job Jk that follows 

Ji in column j of QS and satisfies (III. E. 2) for p = k must precede 

Ji in column j of QE. 

Proof: 

By definition 7, indices k and i are lmown to be in column j of QE, since 

they are both in column j of QS. 

Suppose Jk follows Ji in column j of QE. Since Ji does not satisfy (III. E. 2) 

but Jk does, Jk must precede Ji in column j of QS, by lemma 1. Contra- 

diction of the assumption of this lemma that Jk follows Ji in column j of 

QS. Hence Jk must precede Ji in column j of QE. 

Q.E.D. 
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These lemmas show that with such an ordering in all columns of Q, if 

.th job Jp in column j fails test (HI. E. 2) (which is just the J component of condi- 

tion (III. C. 2)) and job Jq in column j + m also fails (III. E. 2)) then no job Jx 

following either Jp in column j or Jq in column j + m can pass the test. This 

is used in L3 to obtain a linear scan down each column of Q, with no need for 

backup or repetitive searching. 

Theorem 19: A permutation sequence F of all jobs in i that is composed of all 

jobs Ji with Di = 0, followed by the list E generated by algorithm 

L3, will satisfy (HI. C. 2). 

Proof (by induction) : 

The inductive assumptions are that at the start of each execution of the 

statement labelled REPEAT in figure III. E. 1: (1) the partial sequence 

F, consisting of the k jobs Ji with DNUMBi = 0 followed by the N jobs Ji 

with DNUMBi > 0 so far ordered in E by L3, will satisfy (III. C. 2); (2) the 

element in row i, column j of TS is the number of jobs not yet in F that 

have shared control of element i in resource class j; and (3) the following 

values are in THRESH and S%%: 
-- 
“N = RSk+N+l 

k+N (III. E. 3) 
THRESH = RFREE + RSHARE + c 

i=l 
AEi = %k+N+l 

We have also assumed for notational convenience that at the start of each 

execution of REPEAT, the jobs in i are renumbered so that for i < k+N, 

J i is the ith job in F, and all jobs Ji with i > k+N are not yet in F. On the 

first execution of REPEAT, just after the initialization, only jobs Jp with 

p 5 k have DNUMB p = 0. Using this and relations (III. B. 3) and (HI. C. 3)) 
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we have: 
k 

THRESH = RAVAIL = RFREE + RSHARE + c AEi = %k+l 
i=l 

and (HI. E. 4) 
-- 
SCN = RSl+l 

- 
since RS is defined as the number of different resource elements con- 

P 
trolled by jobs following J 

P-l 
in a sequence, and this is the definition of 

SCNUMB (item 13) if the first p-l jobs are the only jobs Ji with 

DNUMBi = 0. Finally, since TS is initialized to SC, and only jobs Jp with 

p > k have DNUMBp > 0, it represents the number of jobs not in F with 

shared control of each resource element. 

Therefore the inductive assumptions hold the first time if we define the 

partial sequence F at this point to consist of the jobs Jp with p 5 k, and 

N = 0. These k jobs can be arranged in any order and still satisfy 

(IH.C.2), due to the fact thatEp = 0 for pIk. 

Now assume that (HI. E. 3) holds for some N > 0. We will show that selec- 

tion of the next (N+lSt) job by L3 preserves the correctness of the inductive 

assumption when control returns to REPEAT. 

Consider the block labelled Ll for some j. The test: 

mRKq L QslZE q 
(HI. E.5) 

th insures that block L2 is not executed if all QSIZEq elements in the q 

column of Q have been tested and “approved” on previous iterations. 

The test: 

DEij 5 THRESH. - SCN. 
3 I 

& DSij + ASij 5 THRESH j - DEij (III.E.6) 

is the j th component of condition (III. C. 2) for the k+N+l st job in F (due 

to the conditions (HI. E. 3) for the value of THRESH and SCN at the start 
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of this iteration). Only if this test is true will the block labelled L3 be 

executed; if it is false, the execution of block Ll for this value of q 

terminates, with MARKq unchanged so that the next time Ll is executed 

with this value of j, the same job Ji will be the first one tested. In block 

L3 the test: 

Xij > 0 (III. E. 7) 

is necessary before the call to APPROVE because the demand for a 

resource of type j will be entered into column j of Q for those elements 

required in exclusive control mode, and into column (j + m) of Q for 

those in shared control mode. However both must be tested simultaneously 

(as in (III. E. 6)) and therefore should only be “approved” once for fixed i 

and j. Xij is initialized to 1 for all i and j, and after a call to APPROVE 

when the algorithm first encounters index i in either column j or (j + m) , 

Xij is set to zero so that if and when i is encountered in the other column 

((j+m) or j respectively), procedure APPROVE will not be called a second 

time for what is essentially the same demand. 

Procedure APPROVE is identical to that used in algorithm L2. It 

decrements DNi by one, and if it goes to zero, then job Ji is added to the 

list E and is therefore the next job in F (since DNi was initialized to 

DNUMBi, when DNi is reduced to zero, all DNUMBi components of 

(Ei+ mi) that are > 0 have satisfied (III. E. 6), and hence Ji satisfies 

(III. C. 2) as the next’ job to be added to F) . If i = k (where k is the job 

requesting the assignment), then F followed by Jk is a partial sequence 

satisfying (III. Co 2) and ending in Jk, so that by theorem 16 system S’ 

is deadlock-free. In this case the block A3 of APPROVE is executed to 
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construct the complete sequence in ?? from the previous sequence in OLDE 

(as described in the proof of theorem 16), and then the algorithm ter- 

minates. For each i and j , DNi is decremented at most once, since when 

control returns from APPROVE, X.. is set to zero and MARK is incre- 
11 q 

mented by one. Due to the resetting of X.. , APPROVE will not be called 
11 

for this value of i if it is encountered for either q = j + m or q = j. Since 

MARK is never decremented or reset in this algorithm, and since index i 

for job Ji appears at most once in column 2 of Q, block L3 can never be 

entered more than once for this value of q and i. MARKq is 

incremented on every entry to block L3, whether or not it is necessary to 

call APPROVE, so that when control returns to the statement labelled 

AGAIN, it will point at the next element in column q of Q (or one beyond 

that if all elements in Q have been tested). Block L2 is thereby executed 

repeatedly for this value of q until either test (III. E. 5) or (III. E. 6) fails, 

at which time execution of block Ll for this value of q terminates. It is 

important to note that as soon as (III. E. 6) fails for some job Ji in column j, 

and for some job Jp in column j + m, there cannot be any job Jx following 

Ji in column j or following Jp in column j + m that would not fail this test 

also, due to lemmas 1 and 2, and the ordering of elements in column j 

of both QE and QS. 

When the statement labelled REPEAT has finished execution, the test at 

L4 is made. Since the algorithm did not terminate in procedure APPROVE 

on this iteration, job Jk is not yet in F and hence the number N cannot have 

the value COUNT yet (as was possible in algorithm L1 where the early 

termination criterion was not used). Therefore N is tested against OLDN, 

the value of N at the start of this iteration, to see if any job was added to 
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?? on the iteration. If not, the algorithm terminates with a “deadlock” 

indication (it is shown in theorem 20 that St is deadlocked when this 

happens). If N > OLDN then (N - OLDN) additional jobs were added to 

3 on this iteration and block L5 is executed. This involves executing 

block L6 once for each of the jobs Ji that were added to E on this itera- 

tion. The operations in this block accomplish two things: (1) all 

resource elements controlled by Ji in exclusive control mode are added 

to THRESH, so that 

THRESHnew = THRESHold + Ei = ~,,,,, -I- AEi = ‘Zk+OLDN+2 

if Ji is the k+OLDN+lSt job in F; (2) for each element rp of type j con- 

trolled by Ji in shared mode, TS . 
PJ 

is decremented by one, and if it 

goes to zero, then SCNj is also decremented by one. By assumption 

TSpj is the number of jobs not yet in F at the start of this iteration 

that had shared control of element p in class R.. 
3 

Therefore, if Ji is 

one of these controllers, when it gets added to F, TS 
Pj 

must be 

reduced to indicate one less controller not yet in F, and if it goes to 

zero, then all controllers must have been added to F, so that SCN. 
3 

also is decremented by one to maintain in it the total number of ele- 

ments of type j which are controlled in shared mode by at least one 

job not yet in F, which by definition is Rs+N+2 after k+N+l jobs are 

in F. 

After block L6 has been executed for all values of q between OLDN+l 

and N inclusive, the value in SCN is sN+l, and the value in THRESH 
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is: 

k+OLDN N 
THRESH = RFREE + RSHARE + c q+ c AEi 

i=l i=OLDN+l 

k+N 
= RFREE + c AEi + RSRARE 

i=l 

=z 
k+N+l 

Since all the jobs so far in F satisfy (III. C. 2), by construction, the 

inductive assumptions are true when control is returned to REPEAT at 

the start of the next iteration. Q. E.D. 

Theorem 20: If algorithm L3 fails to generate a permutation sequence F of 
A 

all jobs in J satisfying (II1.C. 2), then no such sequence exists 
* 

for S’ at time t. 

Proof: 

Suppose L3 fails to produce a sequence satisfying (III. C. 2)) but that such 

a sequence T does exist which satisfies (III. C. 2) at time t. Let F be the 

partial sequence generated by L3 up to the point it stopped, with the jobs 

renumbered so that F = { Jl, J2, O.. , Jk \ , and define 

’ = 1 Jk+l’ Jk+2’ . . . . Jn 1 
as the set of the remaining jobs in j. Obviously 

a job must be either in F or P but not both. 

At the beginning of the iteration after the one that added Jk to F, we have 

from conditions (III. E. 3): 
k 

THRESH = RFREE + RSHARE + c AEi = zk+l 
i=l 

-- 
andSCN=R +1 Sk 

Failure of any DNi to be reduced to zero on the next iteration implies 

that for all jobs Ji in P (i. e. , not yet in F), at least one component j 
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of Di fails to satisfy the test (III. E. 6) (due to the ordering of columns 

of Q and lemmas 1 and 2)) so that either: 

DEij > THRESH. - SCNj = Z 
.l k+l, j - RSk+l, j 

or (III. E. 8) 

DSij + ASij > THRESH. - DEij = Zk+l j - DE.. 
J , 13 

or both. Let Ji be the first job in sequence T that is also in P. This 

defines a set Q of all jobs that precede Ji in T, and a set R of all other 

jobs in T (including Ji). Obviously Q is a subset of F, since no job 

ahead of Ji in T is in P; and P is a subset of R. This gives: 

c 
Jp in Q 

AEp( c 
Jp in F 

AEp= 

If Ji is the qth job in T, then zq(T) 2 FSk+l(F), or -mq(T) ( -r%+,(F), 

since the set R includes all jobs in P (i. e. , not in F). 

Since T satisfies (III. C. 2) by assumption and Ji is the qth job in T, 

Ei(t) 5 Zq(T, t) - i?Sq(T, t) 

= RFREE (t) + c Ep(t) - RSHARE (t) 
Jp in Q 

- %qtW 

5 RFREE (t) + mp(t) + RSHARE (t) - %i+l(F, t) 

=jj k+l(F,t) - Fs+ltF, t, 

and 

pi + ASi I Zq(T, t) - DEi(t) L ‘k+l(F,t) - DEi(t) 

But this contradicts condition (III. E. 8) which must hold for every job in 

P, and Ji is in P. Therefore, there cannot exist a sequence T satisfying 

(III. C. 2) if algorithm L3 fails. Q. E.D. 
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Theorem 21: Without advance information, algorithm L3 determines uniquely 

whether or not system St is deadlock-free at time t. 

Proof: 

If L3 succeeds in generating a permutation sequence of all jobs in J, 

this sequence will satisfy (III. C. 2)) by theorem 19, which implies that 
A 
S’ is deadlock-free at time t by theorem 16. 

If L3 fails to generate a sequence satisfying (III. C. 2)) then by the pre- 
A 

vious theorem no such sequence can exist for system S’ at time t, which 
A 

implies that S’ is deadlocked, by theorem 13. 

Q. E.D. 
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begin 

parallel for j g [ 1, m] & 

begin 

THRESHj := RAVAIL.; 
J 

SCN. := 
J 

SCNUMB.; 
3 

MARKj := MARKj+m : - - 1; 

parallel for i& [l, SCNj] &TS.. :=SC..; 
11 11 

parallel for i in [l, n] do X.. :=l; -- - 11 
ellCJ; 

parallel for i & [ 1, n] * 

begin 

DNi := DNUMBi; 

OLDEi := Ei; 

Yi := 1; 

g; 

N: =OLDN: =O; 

REPEAT: parallel for j & [ 1, m] do for q := j, j+m & 

Ll: begin 

AGAIN: if MARKS 5 QSIZEq then 

L2: begin 

i :=&-Ks,9; 

if DEij < THRESH. - SCN. - - I J 
and DSij + ASij < THRESH. - DEij then 

J - 

Figure III. E. 1 Deadlock Detection Algorithm L3 
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L3: 

L4: if N = OLDN w <deadlock > else 

L5: begin 

for q from OLDN+l step 1 up to N do- 

begin 

i -= . E; q 

L6: 

L7: 

LB: 

L9: 

begin 

if Xij > 0 then begin APPROVE(i); Xij := 0; end 

MARKq +:= 1; 

go to AGAIN; 

g; 

gg; 

end: 

parallel for j & [ 1, m] * 

begin 

THRESHj +:= AE. .; 13 

for each rk of type j controlled & Ji do -- 

begin 

T% -‘= ” 
ifTsj = 0 eSCNj -:=l; 

end; 

end; 

end; 

OLDN := N; 

go to REPEAT; 

end : 

end; 

Figure III. E. 1 continued 
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F. Costs of Deadlock Detection in S’ 

Since algorithm L3 is similar to algorithms Ll and L2, and since the 
A A 

primitives in S’ are similar to those in S, the easiest way to analyze the cost 
A A 

of deadlock detection in S’ is as a series of increases to the cost in system S. 

Analyzing L3 in this manner we see first of all that, by comparing 

figure II. J. 1 with (III. E. l), the initialization cost of L3 is higher due to the 

need to initialize the m-component vector E, the second m components of 

MARK, the s by m matrix TS, and the n by m bit matrix X. These will all 

incur a constant cost, except for initializing TS, and since it is only performed 
- 

once we will indicate it as C’ 0’ replacing the Co for system S. Clearly Cb will 

be quite high, and is proportional to m X (s+n) + n, whereas Co was propor- 

tional only to m + n. The cost Ci to execute block Ll in L3 will be only mar- 
A 

ginally higher than Cl for system S, due to the replacement of test (II. J. 7) 

with (III.E.6). However it must be multiplied by a factor of 2m rather than 

m, due to the doubling of the number of columns of Q. The same is true of 

C2, although the factor of two really does not apply to the cost of executing 

APPROVE which is included in C2. We will ignore this refinement, but cannot 

ignore the increased cost of the execution of block L5 caused by the introduc- 

tion of the statement labelled LB in figure III. E. 1. Introducing a new cost C8 

as the cost of block L9 and separating this out from the cost of block L5 will 

leave C3 relatively unchanged. The factor multiplying C8 will then be 

nxmxs. Since APPROVE is unchanged in algorithm L3, cost C7 will be 

unchanged. We can also apply the averaging factors p, p, and 1-1 exactly as 

for L2, to give as a conservative estimate of the average cost of one execution 

of L 3: C~+nx~x(C7+pxC~+mxpx(sxC8+2x(C!l+/3xC2)))where 
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where Cb >> CO but C; 2 Cl, Ci 2 C2, Ci 2 C3. Clearly the cost of L3 itself 

is proportional to n and m. 

The cost of the overhead in the primitives required to maintain the data 

structures in B2 used by L3 will also be higher than that required to maintain 

BI for LI and L2, as is expected. As before, all this extra bookkeeping is 

isolated in the procedures PUTASLEEP and GETAWAKE, and by comparing 

figure B.I.D. 2 with figure II.H.3, we see that the major increase in cost will 

be due to the addition of statements labelled P3 and G3 in the new definitions. 

Letting C9 be the cost of one execution of block P4 or G4 (they contain analogous 

operations), the maximum cost of executing P3 or G3 for fixed value of j is 

s x cy which is extremely conservative since s is a maximum over all classes 

of resources. Hence the added total cost of both P3 and G3 together is 

ZxmXsxC3. Excluding this cost from the cost of executing block P2 or G2 

will leave C5 roughly unchanged, although it must now be multiplied by a 

factor of 2m rather than m for each procedure, since Q now has 2m columns 

instead of m, and block P7 (the major part of P2 after P3 is excluded) will be 

executed twice for each of the m values of j. The cost C4, for one operation 

in ENQUEUE or DEQUEUE, is unchanged, but must be multiplied by an addi- 

tional factor of two, since an index must appear in both matrix QE and matrix 

QS. Cost C6 remains unchanged. Applying the average cost reduction factors 

CY, p, y, and p, we obtain as the average overhead cost per REQUEST: 

where Ck 2 C5. 

A final cost reduction can be made by replacing s in the above expressions 

with z, the average number of resource elements in one class that are con- 

trolled in shared mode by a job. We then define the fraction o = z/s (0 ( crtl) 
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as the average fraction of the elements in a resource class controlled in shared 

mode by an average job. This allows us to replace s by ox s, giving as the 
A 

average cost per REQUEST for deadlock detection in S’ with algorithm L3: 

o!x(Cb+2xmX(2xC ~+sxoxC&+nx~x(C6+C7+pxC$ 

+mx(pXsxUxC8+2x(pxC~+pxpxC~+2xp2xC4)). \ 

We must also consider the amount of additional storage needed to detect 
h 

deadlock in system S’, since it is considerably more than is necessary for a 

system ^s’ that does not incorporate deadlock detection algorithms. It is also 

considerably more than was needed by the detection algorithms in system S, 

due to the need for the two s by m matrices SC and TS. Clearly these need 

not be true rectangular matrices, since only the first RMAXj elements in the 
.th 
J column are ever used. Therefore in an actual implementation, if the 

number of elements in different resource classes is vastly different, a packed 

representation would obviously be beneficial, even though the access mapping 

function would no longer be the simple matrix subscripting function. 

The permanent data structures in B2 solely for use in deadlock detection 

are the n by m matrices QE and QS, the s by m matrix SC, the n-component 

vectors RAVAIL, SCNUMB, QESIZE, and QSSIZE, and the n-component vector 

DNUMB, for a total of 2 x n x m + s x m + 4 x m f n storage cells. The 

working storage required by algorithm L3 includes the m-component vectors 

THRESH and m, the 2m-component vector MARX, the s by m matrix TS, 

the n by m bit matrix X, and the n-component vectors DN, OLDE, and Y, for 

a total working storage of: 4 X m + s X m + n X m + 3 x n. Hence the total 

additional storage for deadlock detection in system S’ with algorithm L3 is: 

4 x n + 3 X n x m + (8 + 2 X s) X m cells. 
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Chanter IV. Dvnamic Deadlock Prevention 

A. Introduction 

The model of resource allocation systems described in this chapter repre- 

sents a second variation on the model presented in Chapter II. This modifica- 

tion consists of removing the condition fwwithout advance information” from the 

results proven there, and demonstrating that, when some form of advance 

information is available, deadlock can be prevented rather than just simply 

detected. Following the lead of Habermann [ 11,12 ] , we will require only the 

minimum amount of advance information that is sufficient to prevent deadlock. 

This will be in the form of a requirement on each job to specify in advance the 

maximum number of resource elements in each class that it will need to 

control at any single instant of time. We state this in the form of an assump- 

tion to be added to the list of five assumptions given in II. E. 

Assumption 6 : (Advance Information) At the time it is created, each job 

must specify a “maximum resource demand” for each resource 

class, such that at all times during its existence the job can 

request and be allocated at most the specified number of 

elements in each class. 

This is the only advance information required of a job; no assumption is made 

about the sequence in which resources are required, or the duration of their 

use by the job. 

The other five assumptions from section II. E are still valid, with a slight 

rewording of assumption 2 to conform with the requirements of assumption 6. 

Assumption 2: (N on-virtual Resources) A job can specify as its maximum 

demand in each resource class at most all the resource 

t 
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elements that exist in that class. There are no “virtualtt 

resources accounted for in this model. 
,. 

We use the notation Sa for the first type of system to be considered in this 

chapter, which is based on assumption 5 of section II. E, not assumption 5’. 

With this assumption resource elements can be controlled by only one job at a 

time; no simultaneous resource sharing is allowed. The second part of this 

chapter considers a system S’a that is based on assumption 5’, along with a 

version of assumption 6 modified to incorporate simultaneous resource sharing. 
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B. Data Base B3 

A 
The data base B3 for system Sa is shown schematically in figure IV. B. 1. 

It is identical to data base B1 for system S, shown in figure II. F. 1, but with 

the addition of matrix C and vector w, which are defined below. 

The elements A, RMAX, and RFREE in B3 describe the current status of 
A 

system Sa exactly as they did in S, and remain as defined in Chapter II. ri 

represents the number of elements of each type controlled by Ji (all of which are 

assigned exclusively to Ji since simultaneous resource sharing is not allowed 

in Isa)* RMAX represents the number of elements that exist in each resource 

class, and RFREE is the number of these currently in the free state. We must 

however distinguish two types of demands that exist in system Sa: the current 

actual demand, and the current potential demand. In system S there was no 

advance information about resource requirements, so that there was no potential 

demand other than the current actual demand, and the D matrix represented 

them both simultaneously. In that system, if si = 0, then job Ji was able to 

progress without further scheduler intervention. There was no way for the 

scheduler to know whether or not job Ji would require any additional resources 

at any time in the future. 

In system ^s, job Ji, at the time it is created, specifies a maximum demand 

vector ‘“ii which will remain constant for the entire existence of the job. At 

any time Ji can request and be allocated at most M.. resource elements of 
1J 

type j, and by assumption 2: 

0 <-@.LRIL!LAX 
1 

foralli=1,2, . . . . n. 

The D matrix is defined to be the potential demand matrix, such that: 

qt, = mi - x(t) for all i =l, 2, . . . . n. 

(IV. B. 1) 

(IV. B.2) 
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Thus Dij is the maximum number of resource elements of type j not yet 

allocated to Ji at time t but which could be requested by Ji at some future time 

in accordance with assumption 6. Clearly (IV. B. 1) and (IV. B. 2) together give: 

0 I xi(t) + Ei(t) =%fi 5 RMAX for all i =l, 2, . . . , n (IV. B. 3) 

which is simply the requirement of assumption 6 in terms of the items in data 

base B3. Since zi is constant over the life of a job, and can always be computed 

from (IV. B. 3), there is no need to represent it in data base B3, provided that 

at the time a job Ji is created we require Ei = ?$ and xi = 0, which in effect 

says that at the time a job is created its potential demand is identical with its 

maximum possible demand. 

To represent the current actual demand at time t we introduce the new 

matrix C. 

Item 14: C--an n by m matrix, called the “current demand” matrix. If all 

the elements in the i th row of C are zero, then job Ji is currently 

ac tive . Otherwise job Ji is in the waiting state due to an unsatisfied 

REQUEST for Cij resource elements of type j. 

Ci(t) represents the unsatisfied resource demand of Ji that does exist at time 

t (i.e. , that must be satisfied before Ji can proceed), and Ei(t) is the demand 

which might exist at any time t’ L t (i.e. , that might have to be satisfied before 

Ji can be guaranteed to return any resources, by assumption 4). This implies 

the following relationship: 

0 L E(t) 5 E(t) for all i = 1, 2, . . . , n. (IV. B.4) 

Using the redefined version of matrix D, all the previous definitions of the 

items DNUMB, E’, COUNT, Q, and QSIZE in terms of D will remain identical, 

although the implications in terms of active and waiting states of a job are no 
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longer valid. That is, if Bi = 0, thenTi = 0, by (IV. B. 4), and job Ji must be 

active . But if Ei(t) > 0, it is still possible for Ei(t) = 0 to hold, in which case 

Ji is active according to item 15. Since both DNUMB and E retain their 

original definitions in terms of D, it is no longer true that a job Ji with 

DNUMB~ > 0 will necessarily be in the waiting state, and since the list of 

jobs Ji in E will still be those with DNUMBi > 0, list E no longer represents 

the list of waiting jobs, since some of the jobs on E may in fact be active. We 

therefore must introduce another n-component vector w to maintain a list of 

the indices of all jobs Ji in the waiting state at time t (i.e. , with Cij(t) > 0 for 

at least one j). A job is put onto this list when it enters the wait state due to 

an unsatisfiable REQUEST, and is removed from @when it again enters the 

active state. 

Item 15: w--an n-component vector, called the “waiting list”. It represents 

an ordered list of indices of jobs Ji with Cij(t) > 0 for at least one 

value of j. 

Each of the jobs represented in the list E at time t will be in the wait state due 

to an unsatisfied current demand Ci. The ordering of the indices in E is 

irrelevant to the problem of deadlock prevention, provided the STARTUP pro- 

cedure is as defined in figure IV. D. 1. Depending on the ordering rule actually 

implemented, it may be preferable to represent w as a variable length list 

rather than a fixed length vector. 
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Figure IV. B. 1 Scheduler Data Base B3 for System ^sa. 
- 133 - 



c. Formal Properties of ^sa 

The new definition of matrix D does not invalidate definitions l-5 of 

Chapter II, but simply requires that they be interpreted in a different manner 

for system Sa than for system S. They now mean that a system S, is considered 

to be deadlocked if the potential demand of at least one of the jobs in j cannot be 

satisfied in a finite time, and that a finishing sequence ^sa is a permutation 

sequence of all jobs in i ordered according to the time at which their potential 

demands are met. The reasons for accepting such an interpretation are as 

follows : 

We have demanded that, at the time it is created, a job must specify its 

maximum possible resource demand. This is the only advance information 

about job behavior the scheduler has, and is the minimum necessary to be able 

to prevent deadlock. Since the scheduler has no knowledge about the sequence 

in which resources are required by a job, and knows nothing about the length 

of time each resource will be controlled by a job, it has very little to go on 

in its task of preventing deadlock. Therefore, it must assume that the llworst 

possible case” will happen, which is that at some time t, all jobs will simul- 

taneously demand all their resources, so that all the potential demands Ei 

become actual demands (L e. , Ci(t) = Di(t) for all i). If no deadlock is detect- 

able with this assumption, then clearly no actual situation can be any worse in 

terms of resource demands. If deadlock is detected in the worst case, then 

since this was only a hypothetical situation, the scheduler can take steps to 

insure that it does not become a real situation. The whole philosophy of a 

deadlock prevention scheduler is to be able to detect deadlock in the worst case, 

so that all definitions and theorems about deadlock must be stated in terms of 

the worst case demand D. 
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With this revised interpretation of deadlock and finishing sequences it is 

clear that theorem 1 applies to system ia as well as to i, since it depends only 

on the formal definitions l-5, and these remain unchanged (even if somewhat 

reinterpreted). With advance information in system Ga we are able to prove in 

the next theorem that conditions (II. G. 1) are not only necessary but are also 

sufficient for deadlock to be detectable in system sa. This is a stronger result 

than that of theorems 2 and 4, as is shown in the proof, and is exactly what is 

needed to be able to guarantee that a scheduler can foresee potential deadlocks 

and prevent them from developing into actual deadlocks. 

It is important to note that whenever an assignment to job Ji is made, xi 

will be increased by an appropriate amount, N, and due to relation (IV. B. 3)) Ei 

will be decreased by exactly the same amount R (since %ii must remain constant 

in (IV. B. 3)). The fact that A and D always change by the same amount (in 

opposite directions) is the basis of the proofs of theorems 2 and 4, and since it 

remains true in system ^s,, these proofs will also remain valid. 

Theorem 22 : A permutation sequence F of all jobs in j is a finishing sequence 

for system ^sa at time t if and only if the following conditions 

are satisfied by jobs in F: 

i?,(t) 2 RFREE(t) 
i-l (Iv. c. 1) 

ni(t) s RFREE(t) + 
c s(t) for i =2, 3, . . . , n. . 

k=l 

where we have assumed that the jobs are numbered so that Jk is the kth job in 

F. Note that conditions (IV. C. 1) are identical to (II. G. 1). 
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Proof: 

“on1 Only If: The y if” part of this theorem is identical to theorem 2, and 

the proof remains identical since, for system S,, only if 7Yk = 0 is it 

guaranteed that job Jk will RELEASE all its resources in finite time, by 

definition 1. 

If: The proof of the Itiff1 part of this theorem is identical to that for - 

theorem 4 for the following reason. The statement of theorem 4 said : 

“without advance information” we must make “the assumption that no new 

resource requests will be made at any future time”. The “no new requests” 

in system S meant that once Ei is reduced to zero, job Ji would not invoke 

the REQUEST primitive for more resources at any future time. With this 

hypothesis in the statemen.t of that theorem it was shown in the proof that 

a permutation sequence satisfying (IV. C. 1) [(II. G. l)] was a finishing 

sequence. However with the advance information required in system Sa it 

is known that once Ei is reduced to zero, Ji cannot make any more 

REQUESTS for resources (since to do so would violate assumption 6). 

Therefore the condition hypothesized in theorem 4 for system ^s is always 

true for Sa, due to the advance information, and the proof remains valid. 

Q. E. D. 

Since a system S, is not deadlocked if and only if there exists at least one 

finishing sequence, by theorem 1, we can obviously combine this fact with the 

results of the previous theorem to get the following theorem, which is the 

counterpart for S, to theorem 5 for ^s. 

Theorem 23 : A system Sa is guaranteed not to be deadlocked at time t if and 

only if there exists a permutation sequence F of all jobs in 2 
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6  

sat isfy ing (IV . C . 1).  A  sys tem S a  fo r  wh ich  such  a  s e q u e n c e  

exists a t tim e  t is sa id  to  b e  dead lock - f ree  a t tim e  t. 
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D. Deadlock Prevention in ^s, 

1) Prevention via Detection 

The objective of the scheduler S is to maintain system ^sa in a deadlock- 

free condition at all times. With the additional advance information about 

maximum resource demands, it becomes possible to guarantee that an alloca- 

tion will never be made that leads to a deadlock situation. For systems with 

no advance information, deadlocks could be detected only at the instant when 

they occurred, which was when a job made a REQUEST that could not be 

satisfied from the current free resources and had to be placed into the waiting 

state. If the system was previously deadlock-free, the entrance of a job into 

the waiting state might create a deadlock, and the detection algorithm had to 

be executed to decide. However, if the demand could be satisfied a new dead- 

lock was impossible. 

With advance information it is not the entry of a job into wait state due to 

insufficient free resources to satisfy a current demand, but rather the actual 

assignment of free resources to satisfy a current demand that can create a 

deadlock where none existed previously. Although this may seem strange at 

first, it becomes obvious when we note that since the definition of a finishing 

sequence is in terms of conditions that must be satisfied by D, any change in 

a value of D may cause a sequence F which previously satisfied (IV. C. 1) to no 

longer satisfy it. If a system ^s or Sa is known to be deadlock-free at some 

time t, a deadlock can be created where none existed before if a change is 

made to some Ei so that it becomes impossible to find a permutation sequence 

of jobs in i that satisfies (IV. C. 1). 

In system ^s, Ei changes only when a new REQUEST cannot be satisfied 
A 

immediately (i.e. , when a job is put asleep). In system Sa, relation (IV. B. 2) 
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implies that the potential demand Di changes only when Ai changes (i. e. , when 

a job is allocated or deallocated control of resources), Deadlock is created in 
A . 

system S when a REQUEST is not satisfiable; it is created in Sa when a -- 

REQUEST k satisfied. (It is shown in theorem 26 that a RELEASE cannot 

create a deadlock in S a, and theorem 7 showed this was also the case in 6. ) 

Another way to phrase it is that deadlock is created in system ^s when a job is 

put asleep; in Sa it is created when a job is gotten awake. 

It is exactly the fact that deadlock is created in Sa only when a REQUEST 

is satisfied that enables the scheduler to prevent deadlock by simply not 

satisfying the REQUEST that creates it. The strategy for deadlock prevention 

in system S, is as follows: if enough free resources exist to satisfy a current 

demand, change the state of the data base as if the demand were satisfied, then 

check to see if a deadlock is created. If no deadlock is detected, the job is 

allowed to proceed, since its demand is satisfied. If a deadlock is detected, 

simply restore the data base to its previous state (which is known to be deadlock- 

free) and then put the job asleep until some future time when more free 

resources become available. 

In a sense our approach to deadlock prevention is to design a scheduler 

that detects deadlock when it occurs in a hypothetical worst case situation, and 

then is able to “recover” so that the worst case is never allowed to develop into 

an actual situation. Hence the deadlock is avoided. The recovery technique is 

simple and obvious, due to the fact that deadlocks can occur in S, only when a 

current demand is satisfied: just postpone satisfaction of the demand until a 

more opportune time; let the job that made the REQUEST remain in the waiting 

state for however long it takes to guarantee that satisfaction of the REQUEST 

will not cause a deadlock. Note that the existence of at least one finishing 
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sequence for Sa at the time the REQUEST is made guarantees that the job will 

not have to wait forever, and that when job Ji is put asleep Ei is not changed, 

so that the finishing sequence will also not change. 

There are other recovery techniques to consider, such as preempting 

resources from other jobs (which is not possible in this model due to conse- 

quence 3). In this situation a scheduler should attempt to minimize the pre- 

emption costs (see [ 311). Another approach would be to simply terminate the 

job that made the REQUEST causing the deadlock, although this would hardly 

be considered a 9ecovery1’ from the point of view of a system user. 

The next theorem gives the formal proof that after a REQUEST by job Jk 

is satisfied, the system Sa will remain deadlock-free if and only if there is a 

partial permutation sequence ending in Jk and satisfying (IV. C. 1). This is the 

counterpart for Sa of theorem 11 for 6, and provides the formal basis for the 

assertion in the next section that algorithm L2 as formulated for system ^s 

remains valid for system Sa. 

Theorem 24 : A system Sa that is deadlock-free at time t remains deadlock- 

free after satisfaction of a REQUEST by job Jk if and only if 

there exists a partial permutation sequence of jobs that 

satisfies (IV. C. 1) and ends with job Jk. 

Proof: 

If a partial sequence ending in Jk does not exist, then a complete permuta- 

tion sequence of all jobs in 2 that satisfies (IV. C. 1) cannot exist, which by 

theorem 23 means that Sa is deadlocked. At time t’ immediately after the 

REQUEST (for R resource elements) is satisfied, suppose there exists a 

partial sequence F’ that satisfies (IV. C. 1) and ends in Jk. We will show 

how to make this into a complete sequence of all jobs in i, which by 
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theorem 23 makes Sa deadlock-free. Let P be the set of jobs of j that are 

not in F’, with all jobs renumbered so that F’ = { Jl, J2, . . . , Jk\, and 

p={Jk+l, Jk+2, .--, J& The complete sequence is constructed by 

repeatedly removing a job from P and adding it to the end of F’ so that 
= 

(IV. C. 1) is satisfied at each step. At time t’ we have: 

7ik(V) =xk(t) + 3 

Ek(V) = Dk(t) - z 

RFREE(t’) = RFREE(t) - m 

and xi(t’) =xi(t), Ei(t*) =]Si(t) for all i { k. 

Let F be a finishing sequence for system Sa at time t (by theorem 1 there 

must be at least one such F if S, is not deadlocked at time t), and let Ji be 

the first job in F that also belongs to P. This defines a set Q of all jobs 

that precede Ji in F. Obviously these jobs must also belong to F’, by the 

definition of P and the selection of Ji. Therefore Q is a subset of F’, and 

since Jk is known to be in F’, and may or may not be in Q, we have: 
k 

c Kp(t) 5 c 
Jp in Q Jp in Q  

Ap(t’) = c %(t, + N 

P 
p=l 

.th . Since Ji satisfied (IV. C. 1) as the 1 Job in F at time t, 

Di(t’) = Di(t) ( RFREEQ + c 
Jp in Q 

Ap(t) 

k 
5 RFREE(t’) + N+ c x,(V) - E 

p=l 
k 

ZZ RFREE(t’) + c Ap(t’) 
p=l 
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Hence Ji satisfies (IV. C. 1) as the k+lst job to be added to F’ to form a 

new partial sequence F” of k+l jobs satisfying (IV. C. 1). To find the next 

job to add to F”, simply remove Ji from P to give P’ and repeat the above 

proof for F” and P’. Continue until a complete permutation sequence of all 

jobs in i is formed, and by construction this satisfies (IV. C. l), so that 
h 
Sa is deadlock-free, by theorem 23. 

2) Scheduler Primitives in ^sa 

Q.E.D. 

The scheduler strategy for deadlock prevention will require a major 

revision to the intermediate level primitives ASSIGN and UNASSIGN, since now 

it is no longer sufficient to merely detect creation of a deadlock; action must 

be taken to undo it. The new definitions of ASSIGN and UNASSIGN are given 

in figure IV. D. 2, with auxiliary functions in figures IV. D. 3 and IV. D. 4. 

Figure IV. D. 1 describes the job primitives. These are nearly identical 

to the job primitives for system S in figure II. H. 1, with changes made only to 

the procedure STARTUP so that jobs in v rather than E are used as candidates 

to be awakened after an UNASSIGN, and so that the current demand C rather 

than D is used as a parameter to the ASSIGN. This is due to the obvious facts 

that w is the wait list in S,, and C is the current demand in ia, whereas E 

was both the wait list and finishing sequence and D both the current and potential 

demand in S. 

Looking first at the ASSIGN primitive, the test: 

3 5 RFREE (IV. D. 1) 
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checks to see if enough free resources exist in each class to satisfy the current 

demand. If not, an assignment obviously cannot be made and PUTASLEEP is 

called to put the job to sleep on the list w, if it is not already there. If (IV. D. 1) 

is satisfied, then an assignment is possible and ASSUME is called to do the 

bookkeeping and allocate control of the resources to Jk. If the result of this is 

that DNUMBk = 0 on return from ASSUME, then no deadlock is created (as is 

shown in theorem 25) and GETAWAKE is called to remove Jk from the wait list 

w. Otherwise, ENQUEUE(Jk, E>, which as before will be the deadlock detection 

algorithm, is called to see whether the actions of ASSUME have created a dead- 

lock. We suppose that ENQUEUE is designed to produce a “true” indication if 

no deadlock is detected and the sequence of jobs in E, prefaced by all jobs Ji 

with DNUMBi = 0, satisfies (IV. C. 1). In this case the assignment is completed 

by calling GETAWAKE to remove Jk from the list m’, if necessary. If however 

the deadlock detection algorithm returns a “false”, a deadlock is detected, and 

since none existed before, the allocation in ASSUME must have created it. There- 

fore UNASSUME is called to rlundot’ all the changes to data base B3 performed in 

ASSUME, and then the job Jk is put asleep on list c by calling PUTASLEEP. 

When a job Jk is put asleep, only ck changes; Ek, $, and RFREE are unchanged, 

so that the finishing sequence for S, will not have to be changed either. 

With this formulation of ASSIGN, the same deadlock detection algorithms 

L1 and L2 that were used to define ENQUEUE(Jk, E) in system S can be used in 
* 

system Sa (modified to return “true” or “false” as described above). This is due 
A h 

to the fact that the conditions for deadlock to be detected in Sa are the same as in S, 

as shown in theorem 23, and the partial sequence criterion for detection in S remains 
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valid in S a, as shown in theorem 24. Thus the bookkeeping operations performed 

in ASSUME and UNASSUME for S, on Q, QSIZE, RAVAIL, D, and DNUMB are 

the same as those performed in GETAWAKE and PUTASLEEP in S, although 

their order in the assignment sequence is different due to the changed interpre- 

tation of D. 

The UNASSIGN primitive is considerably simpler than ASSIGN, since no 

decisions have to be made, as is shown in theorem 26. UNASSIGN calls proce- 

dure UNASSUME to perform the bookkeeping on data base B3 necessary to 

indicate that resource elements are being released from Jk, and to deallocate 

each of these elements by.calling DEALLOCATE to remove them from the 

control of Jk and return them to the free state. 

In procedures ASSUME and UNASSUME it is important to note the book- 

keeping associated with D, Q, DNUMB, and RAVAIL, the items in data base 

B3 used by the deadlock detection algorithms. In ASSUME, if N. > 0 then, 
J 

since D 
kj- J 

> N. > 0 must always hold or else assumption 6 is violated, job Ji 

must be enqueued in column j of Q (by item 7). Therefore, when D 
k j 

changes 

value, Jk must be removed from the position in column j of Q based on the old 

value of D . and then, if the new value of D 
kJ k 1 

is not zero, reentered into the 

same column at a position based on the new value of D If D . is zero, the kj’ k] 
job is not enqueued in the j th column of Q, and DNUMBk must be reduced by one 

since the number of non-zero elements in Ek is reduced by one (see item 5). 

After this has been done for all j elements of g, DNUMBk is checked to see if it 

is zero, and if so, zk must be added to RAVAIL in accordance with item 6. 

Procedure UNASSUME performs the complementary actions to ASSUME. 

It also must reposition Jk in column j of Q according to the new value of Ei, 

and must maintain the correct value of DNUMB and RAVAIL. It also calls 
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DEALLOCATE to remove the elements being released from the control of Jk, 

thereby returning them to the free state. 

In system S, all the overhead bookkeeping for the deadlock detection 

algorithms is embodied in the two new procedures ASSUME and UNASSUME, 

whereas the procedures GETAWAKE and PUTASLEEP have become extremely 

simple and are no longer concerned with the bookkeeping for deadlock detection, 

but merely maintain the current demand matrix C and the waiting list w. This 
A 

reflects the fact that in system Sa deadlock is created under different circum- 

stances than it was in S, and the fact that the scheduler in ^s, uses the detection 

algorithm to prevent a deadlock from actually occurring. 

3) Formal Properties 

The next two theorems prove that an ASSIGN to Ji that reduces DNUMBi to 

zero does not create a deadlock, and that an UNASSIGN can always be performed 

at the time it is invoked. 

Theorem 25 : If condition (IV. D. 1) is satisfied by some job Ji with DNUMBi> 0 
h 

Proof: 

at time t and Sa is deadlock-free at time t, then ^sa will remain 

deadlock-free after an ASSIGN (ASSUME) to Ji at time t, 

which reduces DNUMBi to zero. 

Condition (IV. D. 1) must be satisfied by a demand E of job Ji in order to 

have enough resources of the proper type to make the assignment. At 

time t’ immediately after the ASSUME of E resources we have 

DNUMBi(t’) = 0 which implies Di(tf) = 0. Therefore we clearly have 

Ei(t’) = 0 5 RFREE(t’) 

which means Ji satisfies (IV. C. 1) as the first job in a partial sequence that 
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