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Abstract: Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics ca-
pabilities through the improvement of the real-time event processing techniques. Machine learning
methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics
as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA
(Field Programmable Gate Array) hardware has only just begun. FPGA-based trigger and data
acquisition systems have extremely low, sub-microsecond latency requirements that are unique to
particle physics. We present a case study for neural network inference in FPGAs focusing on a
classifier for jet substructure which would enable, among many other physics scenarios, searches for
new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific
example, the lessons are far-reaching. A companion compiler package for this work is developed
based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs.
The use of HLS increases accessibility across a broad user community and allows for a drastic
decrease in firmware development time. We map out FPGA resource usage and latency versus
neural network hyperparameters to identify the problems in particle physics that would benefit from
performing neural network inference with FPGAs. For our example jet substructure model, we fit
well within the available resources of modern FPGAs with a latency on the scale of 100 ns.
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1 Introduction

Over the last several decades, as physicists have pursued a deeper understanding of particle physics
phenomena, particle detectors have been made larger, more granular, and capable of processing data
at ever increasing rates. This has led to a dramatic increase in data volumes that need to be efficiently
analyzed in real time to reconstruct and filter events of interest. Machine learning (ML) methods
deployed in the final stages of data processing have been demonstrated to be extremely effective in
many different tasks across particle physics. Thus far, their use in real-time selection hardware, based
on Field Programmable Gate Arrays (FPGAs), has been limited due to implementation complexity
and FPGA resource demands. In this study, we explore the implementation of neural networks
in FPGAs, mapping out resource usage and latency for various deep neural network architectures
and hyperparameters, demonstrating the feasibility of deep learning techniques in very low-latency
(sub-microsecond) FPGA applications.

The Large Hadron Collider (LHC) at CERN serves as a perfect example. The LHC is the
world’s highest energy particle accelerator, operating at the highest data rates ever achieved. Its
goal is to understand the very basic laws of nature and the building blocks of the universe. In the
first run of data-taking that concluded in 2012, the ground-breaking highlight was the discovery of
the Higgs boson [1, 2]. The current data-taking campaigns are devoted to a full characterization of
the Higgs-boson properties and to the search for physics phenomena beyond the standard model of
particle physics, including the search for dark matter.

Due to the extreme frequency of 40MHz at which proton bunches collide at the LHC, data
rates at the two multipurpose experiments, CMS [3] and ATLAS [4], are of the order of hundreds of
terabytes per second. With such high data rates, there are challenges for both real time and offline
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processing of collision events. The task of the real-time processing is to filter events to reduce data
rates to manageable levels for offline processing is called triggering. It is typically performed in
multiple stages [5, 6]; two stages are used in the CMS detector. Because of the extreme input data
rates and size of the data buffers, the first stage, Level-1 (L1), of data processing typically uses
custom hardware with ASICs or, increasingly, FPGAs, to handle the initial data rate using pipelined
algorithms with latencies of hundreds of nanoseconds totalling microseconds. The second stage of
triggering, High Level Trigger (HLT), uses commercial CPUs to process the filtered data in software
with longer latencies on the timescale of hundreds of milliseconds in total.

Machine learning methods, most recently deep learning, have a wide range of applications in
event processing at the LHC [7–13], from lower level energy cluster calibration and regression to
high level physics object classification, e.g. jet tagging with substructure information, and physics
analyses. More sophisticated ML algorithms in the trigger will allow LHC experiments to preserve
potential new physics signatures such as those related to the Higgs, dark matter, and hidden sec-
tors [14] that would otherwise be lost. This can be achieved through overall more performant trigger
algorithms or fast data analysis techniques such as data scouting or trigger level analysis [15–17].
In this study, we explore the implementation of neural network inference in FPGAs by mapping out
resource usage and latency for various network architectures and hyperparameters. The goal is to un-
derstand the range of possible neural network designs that may be implemented in FPGAs given the
resource and latency constraints for different LHC event processing applications. As a case study, we
consider the case of usingMLmethods for jet substructure [18] classificationwhich, when employed
in the trigger, enable searches for new dark sector particles and importantmeasurements of theHiggs
transverse momentum spectrum. The lessons learned in this case study are broadly applicable.

An important complementary result of this work is the companion compiler, hls4ml,1 which
translates ML models from common open-source software packages such as Keras [19] and
PyTorch [20] into RTL (Register-Transfer Level) abstraction for FPGAs usingHigh-Level Synthesis
(HLS) tools, which have demonstrated considerable progress in recent years [21]. There are many
types of HLS, and our particular package and the results of this study are based on Vivado HLS
2017.2 [22] though the general techniques can be used in other applications with other FPGAs.

In high energy physics, engineering support with long development cycles is required to
translate physics-motivated data processing algorithms into firmware. However, engineering is a
scarce and valuable resource. The hls4ml tool allows physicists to rapidly prototypeML algorithms
for both firmware feasibility and physics performance without extensive Verilog/VHDL experience,
thus greatly decreasing the time for algorithm development cycles while preserving engineering
resources. We focus on the task of the FPGA-based triggers of the ATLAS and CMS experiments
with algorithm latencies in the microsecond range, fully pipelined to handle the 40MHz LHC
collision rate. For this task, solutions with either CPUs or GPUs are not possible due to the severe
time limitation imposed. Such latencies are unique to LHC trigger challenges, and therefore few
general tools exist for this application. Nonetheless, the hls4ml package is a general purpose tool
and is designed to serve a broad range of applicatons in particle physics and beyond, from trigger
and data acquisition tasks (DAQ) to longer latency trigger tasks (milliseconds) and CPU-FPGA
co-processor hardware.

1The project can be accessed at https://hls-fpga-machine-learning.github.io/hls4ml.
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The rest of the paper is organized as follows. In section 2, we describe the essential concepts
in implementing neural networks in FPGAs for trigger and DAQ. This includes a case study for
developing a jet substructure ML algorithm for FPGA implementation. In section 3, we detail
the HLS synthesis for various neural network architectures and hyperparameters and the resulting
implementation on an FPGA. Finally, we summarize our findings, detail follow-up studies, and
discuss potential broader applications in physics and other fields in section 4.

1.1 Related work

The inference of neural networks in FPGAs is a rapidly developing and high interest field. There
exists an extensive literature on the topic. However, as it pertains to the particular task for particle
physics where networks can be smaller but latency constraints are much more severe, this is the first
dedicated general purpose study of this kind in the field. Nonetheless, some ML techniques have
been deployed in the LHC trigger already, including a first implementation of a boosted decision
tree (BDT) for muon momentum measurement [23]. An early attempt to deploy convolutional
neural networks (CNNs) on FPGAs for particle physics was presented at NIPS 2017 [24].

We borrow inspiration from other works, including the RFNoC Neural Network Library [25],
on which hls4ml is based. An overview of existing toolflows for mapping CNNs on FPGAs is
given in [26]. Snowflake [27] is a scalable and efficient CNN accelerator with models specified
in Torch [28] and a single computation architecture (sequential IO) designed to perform at near-
peak hardware utilization targeting Xilinx System-on-Chips (SoCs). Caffeine [29] is another
CNN accelerator for Caffe-specified models targeting Xilinx devices that support a SDAccel15
environment and a PCIe interface between the FPGA and a host. fpgaConvNet [30–33] converts
CNNs specified in Caffe [34] or Torch formats into generated Xilinx Vivado HLS code with a
streaming architecture (parallel IO). FP-DNN (Field Programmable DeepNeural Networks) [35] is a
framework that takes TensorFlow [36]-described DNNs (CNNs, LSTM-RNNs [37], and Residual
Nets) as input, and generates the hardware implementations on FPGA boards with RTL-HLS hybrid
templates. DNNWeaver [38] is an open-source alternative, which also supports DNNs specified
in Caffe format and automatically generates the accelerator Verilog code using hand-optimized
Verilog templates with a high degree of portability.

The physics problem we take as a benchmark for our discussion is substructure-based jet
tagging, on which there is a rich literature of deep-learning applications [39–46]. In this context,
there were attempts to use CNN, RNNs, as well as physics-inspired network architectures. Jets
have been represented as grayscale images, RGB images, sequences of particles, or a set of physics-
inspired high-level features, as we do in this study.

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same
concepts are applicable for a broad class of problems. We conclude this section by discussing how
to create an efficient and optimal implementation of a neural network in terms of performance,
resource usage, and latency.

– 3 –
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2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in figure 1.

�����������
�����

�����
���������!�
	"������

#

���������-����-��
����-�-����

�����	�-���-��

��
��
�������

��
��
��� ���-��

����������-���/�����

��������-��!���
���-��

�����

��������-�������-����
����!���!��/���!

hls  4  ml

hls4ml

HLS  4  ML

Figure 1. A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in section 2.3) before settling on a final model. The blue section of the workflow is the task
of hls4ml, which translates a model into an HLS project that can be synthesized and implemented
to run on an FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second
at a relatively low power cost with respect to CPUs and GPUs. However, such operations consume
dedicated resources onboard the FPGA and cannot be dynamically remapped while running. The
challenge in creating an optimal FPGA implementation is to balance FPGA resource usage with
achieving the latency and throughput goals of the target algorithm. Key metrics for an FPGA
implementation include:

1. latency, the total time (typically expressed in units of “clocks”) required for a single iteration
of the algorithm to complete.

2. initiation interval, the number of clock cycles required before the algorithm may accept
a new input. Initiation interval (often expressed as “II”) is inversely proportional to the
inference rate, or throughput; an initiation interval of 2 achieves half the throughput as an
initiation interval of 1. Consequently, data can be pipelined into the algorithm at the rate of
the initiation interval.

– 4 –
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3. resource usage, expressed as the following FPGA resource categories: onboard FPGA
memory (BRAM), digital signal processing (arithmetic) blocks (DSPs), and registers and
programmable logic (flip-flops, or FFs, and lookup tables, or LUTs).

The hls4ml tool has a number of configurable parameters which can help the user explore and
customize the space of latency, initiation interval, and resource usage tradeoffs for their application.
Because every application is different, the goal of the hls4ml package is to empower the user to
perform this optimization through automated neural network translation and FPGA design iteration.
In practice, the time required to perform hls4ml translation of a neural netowrk is much shorter
(minutes to hours) than a designing a specific neural network architecture for an FPGA, and may be
used to rapidly prototype machine learning algorithms without dedicated engineering support for
the FPGA implementation. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and efficient, thus has the potential for the “time to physics”
to be greatly reduced.

We first introduce some terminology and concepts for the inference of deep, fully connected
neural networks. Consider the network illustrated in figure 2 with M layers, where each layer m
has Nm neurons. The input layer has N1 input neurons and the output layer has NM output neurons.
The vector of neuron output values at each layer are denoted by xm. For the mth fully connected
layer (m > 1),

xm = gm
(
Wm,m−1xm−1 + bm

)
, (2.1)

whereWm,m−1 is the matrix of weights between layers m − 1 and m, bm are the bias values, and gm
is the activation function for layer m. The size of matrixWm,m−1 is Nm ×Nm−1 and thus the number
of multiplications required to compute the neuron values of layer m is implicitly also Nm × Nm−1.

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2. A cartoon of a deep, fully connected neural network illustrating the description conventions used
in the text.
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In hls4ml, the calculation of each layer xm is performed independently and sequentially. The
inference is pipelined and accepts a new set of inputs after its initiation interval, as described above.
The total number of multiplications required to infer a given neural network is:

Nmultiplications =

M∑
m=1

Nm−1 × Nm. (2.2)

Non-trivial activation functions, such as sigmoid, softmax, and hyperbolic tangent, are precomputed
for a range of input values and stored in BRAMs. The ReLU activation function is implemented in
programmable logic. The effect of the neural network hyperparameters on the latency, throughput,
and resource usage informs the optimal network implementation for any given application.

2.2 Case study: jet substructure

Jets are collimated showers of particles that result from the decay and hadronization of quarks q
and gluons g. At the LHC, due to the high collision energy, a particularly interesting jet signature
emerges from overlapping quark-initiated showers produced in decays of heavy standard model
particles. For example, the W and Z bosons decay to two quarks (qq̄) 67%–70% of the time and
the Higgs boson is predicted to decay to two b-quarks (bb̄) approximatly 58% of the time. The top
quark decays to two light quarks and a b-quark (qq̄b). It is the task of jet substructure [18, 47] to
distinguish the various radiation profiles of these jets from backgrounds consisting mainly of quark
(u, d, c, s, b) and gluon-initiated jets. The tools of jet substructure have been used to distinguish
interesting jet signatures from backgrounds that have production rates hundreds of times larger than
the signal [48].

Jet substructure at the LHC has been a particularly active field for machine learning techniques
as jets contain O(100) particles whose properties and correlations may be exploited to identify
physics signals. The high dimensionality and highly correlated nature of the phase space makes this
task an interesting testbed for machine learning techniques. There are many studies that explore
this possibility, both in experiment and theory [18, 39–47, 49–51]. For this reason, we choose to
benchmark our FPGA studies using the jet substructure task.

We give two examples in figure 3 where jet substructure techniques in the trigger can play an
important role: low mass hidden hadronic resonances [52] and boosted Higgs produced in gluon
fusion [53]. Both processes are overwhelmed by backgrounds and current trigger strategies would
select only on the energy of the jet. By introducing jet substructure techniques in the hardware
trigger, we can further greatly reduced backgrounds and preserve significantly more of these types
of signals in the future. There are many other physics signatures which could benefit from jet
substructure in the trigger. In this case study, we focus on the task of classifying a jet as either a
quark (q), gluon (g), W boson (W), Z boson (Z), or top quark (t) jet .2

Input generation and features. Events are generated at
√

s = 13 TeV for comparison to LHC
performance. Parton-level (unshowered quark) W+W−, Z Z , tt̄, qq̄, and gg events are first produced
at leading-order using MadGraph5_aMC_at_NLO [54] (version 2.3.1)with theNNPDF23LO1parton

2The Higgs boson is not included in this study as its mass and substructure are quite similar toW and Z bosons and are
otherwise difficult to distinguish in absence of track vertexing information, a situation common to current FPGA-based
triggers.
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Z ′

q

q̄

g

q̄

q

1

g

g

g

h

1

Figure 3. Example Feynman diagrams of interesting physics signatures that would benefit from jet substruc-
ture algorithms in the hardware trigger.

Table 1. A summary of the observables used in the analysis.
Observables

mmMDT

Nβ=1,2
2

Mβ=1,2
2

Cβ=0,1,2
1

Cβ=1,2
2

Dβ=1,2
2

D(α,β)=(1,1),(1,2)2∑
z log z

Multiplicity

distribution functions (PDFs) [55]. To focus on a relatively narrow kinematic range, the transverse
momenta of the partons and undecayed gauge bosons are generated in a window with energy
spread given by δpT/pT = 0.01, centered at 1 TeV. These parton-level events are then decayed
and showered in Pythia8 [56] (version 8.212) with the Monash 2013 tune [57], including the
contribution from the underlying event. For each final state, 200,000 events are generated.

To build a complete list of expert features, we implement a variety of jet recombination
algorithms and substructure tools via the FastJet 3.1.3 and FastJet contrib 1.027 packages [58,
59]. As a baseline, all jets are clustered using the anti-kT algorithm [60], with a distance parameter of
R = 0.8. Even though the parton-level pT distribution is narrow, the jet pT spectrum is significantly
broadened by kinematic recoil from the parton shower and energy migration in and out of the jet
cone. We apply a cut on the reconstructed jet pT to remove extreme events from the analysis, vetoing
those outside a window of 0.8 TeV < pT < 1.6 TeV for the pT = 1 TeV bin.

The jet substructure community has developed a wide variety of observables to identify the
origin of a jet based on the structure of its radiation pattern. In table 1, we list all the observables
used in this study [61–64]. A brief description of each of these variables is presented in ref. [65].
These are used as expert-level inputs to a neural network classifier which is near optimal.3

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several effective neural network architectures in FPGAs.
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16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

10 inputs

32 nodes 
activation: ReLU

1 output 
activation: Sigmoid

Figure 4. Two neural network architectures for jet substructure classification. (Left) A three-hidden-layer
model we use to categorize five classes of jets (q, g, W , Z , and t). (Right) A one-hidden-layer model used to
identify top quarks, simplified for the FPGA implementation described in section 3.3.

Benchmark networks and floating point performance. We train a neural network for the clas-
sification task of q, g, W , Z , and t discrimination. The data are randomly split into training (60%),
validation (20%), and testing (20%) datasets. The input features are standardized by removing the
mean and scaling to unit variance. The architecture, illustrated in figure 4 (left), is a fully-connected
neural network with three hidden layers. The activation function for the hidden layers is ReLU [66]
while the output layer activation function is a softmax function to provide probabilities for each
class. The categorical cross-entropy loss function is minimized with and without L1 regularization
of the weights (section 2.3) using the Adam algorithm [67] with an initial learning rate of 10−4 and
a minibatch size of 1024. The learning rate is halved if the validation loss fails to improve over
10 epochs. Training is performed on an AWS EC2 P2 GPU instance [68] with Keras. We also
consider a simpler architecture with one hidden layer, see figure 4 (right), when studying the final
FPGA implementation on a specific device. This is described further in section 3.3.

The performance of the neural network classifier is shown in figure 5. The plot is presented
using the matplotlib package [69]. The general features of this performance plot are typical of jet
substructure classification tasks. Top-quark jets, by virtue of their largemass and three-prong nature,
have the best separation from the rest of the jet types. The W and Z jets are similar in performance
because of their masses and two-prong nature while quark and gluon jets are notoriously challenging
to classify [48]. Given this multi-jet classifier performance, we explore how to implement such a
neural network architecture in an FPGA using hls4ml.

2.3 Efficient network design

We now present a general strategy for the translation of a deep neural network into an FPGA
implementation for a specific network designed for the task of jet substructure classification which
was introduced in section 2.2. We focus on tuning the network inference in a way that uses the
FPGA resources efficiently and meets latency and pipelining constraints.

– 8 –
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Figure 5. Performance of the deep neural network classifier: (Left) signal efficiency versus mis-identification
rate for quark, gluon, W boson, Z boson, and top quark jet identification. The mis-identification rate is based
on an equal admixture of the other non-signal jet types. (Right) The corresponding normalized confusion
matrix for the five classes.

Neural network inference can be made efficient with the following techniques: compression,
quantization, and parallelization. We summarize these ideas briefly:

• compression: neural network synapses and neurons can be redundant; compression attempts
to reduce the number of synapses or neurons thereby effectively reducing Nmultpliers without
suffering any performance loss;

• quantization: often 32-bit floating point calculations are not needed in the inference of
a network to achieve optimal performance; quantization can reduce the precision of the
calculations (weights, biases, etc.) in the neural network with no loss in performances;

• parallelization: one can tune howmuch to parallelize the multiplications required for a given
layer computation; in one extreme, all multiplications can be performed simultaneously using
a maximal number of multipliers, while alternatively in the other extreme, one can use only
one multiplier and perform the multiplications sequentially; between these extremes the user
can optimize algorithm throughput versus resource usage.

In the following subsections, we describe in more detail the implementation and effect of these
optimizations.

One important topic that we do not discuss is how the input features are computed before
being fed to the neural network as this depends on the specific application. For example, in the
jet substructure case study we consider, the pre-computation of the expert features can be quite
time consuming and resource intensive. However, in other cases, the neural network may take raw
detector inputs which require little preprocessing. For a more realistic scenario, it is important to
consider the computation time of the inputs to the neural network. Additionally, it is important to
consider the precision and range of the inputs; bit-shifting or translating the inputs to the appropriate
range may be important to the performance of the algorithm.
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Compression. Network compression is a widespread technique to reduce the size, energy con-
sumption, and overtraining of deep neural networks [70]. Several approaches have been successfully
deployed to compress networks, including [71]:

• parameter pruning: selective removal of weights based on a particular ranking [70, 72, 73],

• low-rank factoriation: using matrix/tensor decomposition to estimate informative parame-
ters [74–78],

• transferred/compact convolutional filters: special structural convolutional filters to save
parameters [79], and

• knowledge distillation: training a compact network with distilled knowledge of a large
network [80].

Our approach is a simplified version of iterative parameter pruning and retraining [70, 81] with
L1 regularization, where the loss function L is augmented with an additional penalty term,

Lλ(w) = L(w) + λ‖w‖1 . (2.3)

L1 regularization is known to produce sparse models, provide built-in feature selection [82], and
is a readily available option in many machine learning workflows. In principle, training with Lp

regularization with 0 ≤ p < 1 [73] may improve the sparsity and performance of the model, but
these regularizers are not always easy to implement. While we take this simplified approach, we
note that there are other, more sophisticated, approaches to compression in the literature which may
yield even better results.

We train the model with L1 regularization with λ = 10−4. We then sort the weights based
on their absolute value relative to the maximum absolute value of the weights in a particular
layer. With L1 regularization we see two separate sub-populations of weights with one at smaller
values and one at larger values. Weights falling below a certain percentile, corresponding to the
smaller-value sub-population, are removed. Next, we retrain the model again with L1 regularization
while constraining the previously pruned weights to remain zero. We stop after seven iterations of
this procedure at which point the sum of the pruned weight sub-population is 3% of the original
summed weight population and the model is compressed by 70% (3051 weights pruned out of 4389
original weights and biases). Figure 6 illustrates this procedure. The top left of figure 6 shows the
distribution of the weights before compression. From the top left to the bottom right, the arrows
indicate the following steps of the pruning and retraining procedure and the resulting distribution
of weights is shown. Finally, in the bottom right, we present the final distribution of the weights
after compression. We observe no significant change in the pruned network performance when
compared with the original.

Quantization. Quantized [70, 83–86] and even binarized [87–90] neural networks have been
studied in detail as an additional way to compress neural networks by reducing the number of bits
required to represent each weight. FPGAs provide considerable freedom in the choice of data type
and precision. Both are important to consider to prevent wasting FPGA resources and incurring
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Figure 6. Illustration of the iterative parameter pruning and retraining with L1 regularization procedure.
The distribution of the absolute value of the weights relative to the maximum absolute value of the weights
is shown after each step of the pruning and retraining procedure. In the top left, the distribution before
compression is shown, while in the bottom right, the distribution after compression is displayed.

additional latency. In hls4ml we use fixed point arithmetic, which uses less resources and latency
than floating point arithmetic.

The inputs, weights, biases, sums, and outputs of each layer (see eq. 2.1) are all represented
as fixed point numbers. For each, the number of bits above and below the binary point can be
configured for the use case. It is broadly observed that precision can be reduced significantly
without causing a loss in performance [86], but this must be done with care. In figure 7, we show
the distribution of the absolute value of the weights after the compression described in section 2.3.
In this case, to avoid underflow/overflow in the weights, at least three bits should be assigned above
the binary point — two to envelope the largest absolute value and one for the sign. The neuron
values, xm, and intermediate signals in the FPGA used to compute them may require more bits to
avoid underflows/overflows. We determine the number of bits to assign below the binary point by
scanning physics performance as a function of the bit precision.

Reducing precision saves resources used for signal routing as well as resources and latency
used for mathematical operations. For many applications, the limiting FPGA resource will be the
number of DSPs, which are used primarily for multiplications. The number of DSPs used per
multiplier depends on the precision of the numbers being multiplied and can change abruptly. For
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Figure 7. Distribution of the absolute value of the weights after compression.

example, one Xilinx DSP48E1 block [91] can multiply a 25-bit number with an 18-bit number,
but two are required to multiply a 25-bit number with a 19-bit number. Similarly, the latency of
multipliers increases with precision, though they can remain pipelined. Detailed exploration of the
effect of calculation precision is presented in section 3.

As mentioned in section 2.1, non-trivial activation functions are precomputed for a range of
input values and stored in BRAMs. The binning within this range and the output bit width are
configurable in hls4ml. Lastly, we note that additional methods exist to further compress the
network architecture through quantization that have not been explored in this paper [83, 89]. In
particular, retraining the network with a quantized precision in the training can lead to equivalent
performance with significantly smaller weight precision [92]. We leave investigations of these
approaches for further work.

Parallelization. The trade-off between latency, throughput, and FPGA resource usage is deter-
mined by the parallelization of the inference calculation. In hls4ml, this is configured with a
multiplier “reuse factor” that sets the number of times a multiplier is used in the computation of a
layer’s neuron values. With a reuse factor of one, the computation is fully parallel. With a reuse
factor of R, 1/R of the computation is done at a time with a factor of 1/R fewer multipliers. This is
illustrated in figure 8.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approx-
imately

Lm = Lmult + (R − 1) × IImult + Lactiv , (2.4)

where Lmult is the latency of the multiplier, IImult is the initiation interval of the multiplier, and
Lactiv is the latency of the activation function computation. Equation 2.4 is approximate because,
in some cases, additional latency can be incurred for signal routing, for instance in the addition of
multiplication results contributing to a neuron value.

As discussed in section 2.1, we implement each layer calculation independently and sequen-
tially. The calculation of one layer cannot be initiated until the calculation of the previous layer
has completed. Therefore, the total latency is equal to the sum of latencies of each layer plus
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Figure 8. Illustration of multiplier resource usage for different values of reuse factor. The left drawing
shows the case of two neuron pairs being connected by 4 connections, implying four multiplications to be
performed. The right drawing shows how to perform these multiplications, from fully serial (top) to fully
parallelized (bottom).

the latency required to connect the layers. The number of inferences completed per unit time is
inversely proportional to the reuse factor.

3 Performance and implementation

In this section, we quantify the results from the HLS translation and optimization of the jet
substructure neural network described in section 2.2 as a function of the three basic principles
described in the previous section: compression, quantization, and parallelization. First we discuss
the classification performance of the neural network when implemented in firmware in section 3.1.
Then in section 3.2, we quantify the HLS synthesis in terms of FPGA resource usage and latency.
The combination of these two metrics, classification and firmware performance, define how to
optimally implement neural networks into FPGA hardware for a given application. Finally, in
section 3.3, we discuss the implementation for a specific FPGA and compare the actual resource
usage to the estimates from Vivado HLS, which can be obtained much more quickly.

3.1 Classification performance

To quantify the performance of our five-output classifier, we use the AUC metric, or area under
the Receiver Operating Characteristic (ROC) curve. The ROC curve is given by the background
rejection versus signal efficiency computed from sequential cuts on the classifier output, where
background rejection is (1 − background efficiency), as illustrated in figure 5. We denote the AUC
achieved by a full 32-bit floating point inference of the neural network as Expected AUC. We
evaluate the neural network with fixed point precision denoted by <X,Y> where Y is the number of
bits representing the signed number above the binary point (i.e. the integer part), and X is the total
number of bits. We perform two scans — one where we fix the number of integer bits and one
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Figure 9. Ratios of the fixed pointAUCandExpectedAUCversus fixed point precision for the fully connected
three-hidden-layer network. Optimal performance with no loss of classification power corresponds to ratios
of 1. (left) The number of integer bits is scanned. (right) The number of integer bits is fixed to six, and
the number of fractional bits is scanned. The various colored lines are AUC performance for different jet
substructure taggers (q,g,W ,Z ,t).

where we fix the number fractional bits. The results are illustrated in figure 9 where the scan of the
integer bits is on the left and the scan of the fractional bits is on the right.

Optimal performancewith no loss of classification power corresponds toAUC/Expected AUC=
1. Figure 9 shows that with fixed point calculations and a sufficient number of bits, the Expected
AUCs can be reproduced with negligible loss in performance. The number of integer bits is chosen
to be just above the point where underflows/overflows do not occur and AUC/Expected AUC = 1.
With this number of integer bits, we then scan in the number of fractional bits. Optimal performance
is achieved with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with
that of the uncompressed model. Agreement with the Expected AUC occurs at roughly the same
precision, as shown in figure 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in section 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using
a multiplier once is the most parallel (and quickly) a layer can be computed and is what we
call a reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor
the following firmware implementation metrics:

– 14 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
0
7
0
2
7

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6>
Fixed-point precision

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

AU
C 

/ E
xp

ec
te

d 
AU

C

g tagger
q tagger
w tagger
z tagger
t tagger

Full
Pruned
Full
Pruned

hls4ml

Figure 10. Ratios of the fixed point AUC and expected AUC versus fixed point precision. The solid lines
represent the fully connected network, while the dash lines denote the compressed network.

• resources: DSPs, FFs, and LUTs;

• latency: the time it takes to compute the full network;

• initiation interval: the time before a new set of inputs can be accepted.

At the moment we do not probe the block RAM (BRAM) usage, which is only used to store pre-
computed activation function values. Storing and accessing neural network weights from BRAMs,
for instance, leads to latencies longer than the requirements for the first stages of LHC L1 triggers.
For longer latency tasks, e.g. HLT applications, the capabilities of hls4ml can be expanded to allow
for weight storage in BRAMs.

The results presented below are synthesized for a Xilinx Kintex Ultrascale FPGA with part
number xcku115-flvb2104-2-i. The clock frequency is fixed at 200MHz, which is typical for the
first stages of LHC triggers. There can be variations in results versus clock frequency, but in the
O(100MHz) range, we find variations are negligible. Resource usage estimates are taken from
the Vivado HLS synthesis step and are found to be conservative in general when compared to
implementation as we will discuss in section 3.3. While conservative, the short time required to
make HLS resource estimates makes them useful for rapidly prototyping different network designs
and deriving useful trends. Discussion of our results’ dependence on the version of Vivado HLS,
the specific FPGA, and the final implementation in the FPGA are discussed in section 3.3.

Resources with compression. We first explore the effect of compression on the FPGA resources
required by the neural network. Because the compression is typically part of the training workflow,
we consider it separately from the other optimization handles. Looking at the DSP usage and the
algorithm latency in figure 11, we show the difference between our compressed and uncompressed
neural network models. In both cases, we consider the network maximally parallelized (reuse factor
of 1). With the weights stored in programmable logic, sparse matrix multiplication is handled
trivially and zero-weight multiplications are optimized out of the network FGPA implementation.
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Figure 11. A comparison between the compressed and uncompressed models, with a reuse factor of 1 for
DSP usage (left) and latency in clock cycles for a 200MHz clock frequency (right). The x-axis is a scan
in the fixed-point precision of the model and demonstrates how resource usage changes as a function of the
precision of the calculations in the network inference.

Wefind this to be a very attractive feature of HLS thoughmore sophisticated compression techniques
like those described in [93] may require more study.

As shown in figure 11 (left), the DSP usage is drastically reduced for the compressed model
compared to the original network by an amount that is proportional to the 70% compression rate
described in section 2.3. In addition, the DSP usage increases as the fixed-point precision increases.
The increases are not smoothly varying because they depend on the DSP design precisions. On
the right of figure 11, we present the latency of the algorithm in clock cycles for a 200MHz clock
frequency. Because the network still has the same structure, in terms of the number of hidden
layers, the latency is approximately the same in the compressed and uncompressed models. Note
that the total latency to infer the model is approximately 15 clock cycles which translates to 75 ns,
well within the latency budgets of the first stages of LHC triggers.

To summarize the results of the HLS synthesis of the compressed and uncompressed models,
we report some vital statistics in table 2. We note the reduced resources while maintaining the same
performance, latency, and initiation interval.

Table 2. A summary of the vital statistics and HLS resource estimates of the uncompressed and compressed
jet substructure tagging model with a network precision of fixed-point <16,6> and fully pipelined with clock
frequency of 200MHz synthesized on a Xilinx Kintex Ultrascale FPGA.

Network Uncompressed network Compressed network
AUC / Expected AUC 99.68% 99.55%

Parameters 4389 1338
Compression factor - 3.3×

DSP48E 3329 954
Logic (LUT + FF) 263,234 88,797

Latency 75 ns 75 ns
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Compressed three-hidden-layerModelResults. Wenowconsider our compressed three-hidden-
layer neural network model as the benchmark model for our use case and perform detailed scans of
FPGA resources versus network precision and reuse factor. In figure 12 and figure 13, we examine
the DSP, FF, and LUT usage as a function of precision of the fixed point calculations, <X,6>.
From the findings in section 3.1, we scan the number of fractional bits by scanning X while fixing
the integer bits at Y = 6, guaranteeing no underflows/overflows. Different curves are shown for
different values of reuse factor.
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Figure 12. DSP usage in the compressed three-hidden-layer model as a function of the network precision.
The various curves illustrate resource usage for different resource usage factors.
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Figure 13. LUT and FF usage in the compressed three-hidden-layer model as a function of the network
precision. The various curves illustrate resource usage for different resource usage factors.

In figure 12, we show how the reuse factor is used to control the number of times a multiplier
is used in the neural network. As the reuse factor increases, we are able to control the DSP usage
proportionally to the reuse factor. The DSP resource usage has steps in the resource usage as a
function of the network precision. This is consistent for all values of reuse and comes from the
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precision of the Xilinx FPGA DSPs. In the figure, we also indicate the maximum number of DSPs
available in this particular Xilinx Kintex Ultrascale FPGA. In figure 13, the LUT (left) and FF
(right) usage is shown. For both the LUTs and the FFs, the resource usage relative to the FGPA’s
capacity is small compared to that of the DSPs. Additionally, we observe spikes in FF usage at
the DSP precision limits. We find that they are removed when performing the implementation
(discussed in section 3.3). We note a general trend across figure 12 and figure 13 that the reuse =

1 case can tend to deviate from the trends for the other cases when reuse > 1. We believe in the
reuse = 1 case, HLS is able to do further optimizations on a single multiplier for a given network
design, and it does not have that optimization freedom when a multiplier is tasked with multiple
operations when reuse > 1.
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Figure 14. Latency (left) and initiation interval (right) in the compressed three-hidden-layer model as a
function of the network precision. The various curves illustrate resource usage for different resource usage
factors. The latency is given in clock cycles for a 200MHz clock frequency.

Next, we examine the aspects of the FPGA implemenetation related to latency and throughput.
In figure 14, on the left (right), we show the latency (initiation interval) of the algorithm versus
precision for a number of different reuse factors. The latency of the network inference increases
by 4 clocks, corresponding to the four layers of neuron values that must be computed, with each
increment in reuse factor. This is in line with expectations from eq. 2.4 where additional reuse of
multipliers in a given layer calculation incurs added latency. By design, the initiation interval and the
reuse factor match as a new input can be introduced to the algorithm only when all multiplications
for a given multiplier are completed. At very low network precision, the HLS synthesis initiation
interval is smaller than the reuse factor as multiplications are no longer implemented in DSPs but
through FFs and LUTs.

3.3 FPGA implementation

To get a qualitative understanding of the differences between Vivado HLS resource estimates and
a final “placed and routed” implementation, we use a “bare” firmware design that uses minimal
resources beyond those required by the neural network. This “bare” implementation consists
of a simple VHDL wrapper that connects the hls4ml firmware block directly to the FPGA’s
general purpose input/output pins to prevent Vivado from optimizing out the logic we are trying to
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characterize. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage to the Vivado HLS estimates.

When performing the implementation, we note that the clock period targeted by HLS was not
initially achieved due to the design not meeting timing constraints during the implementation step,
so we increased the clock period in the final FPGA implementation to meet the timing constraints.
The required increase in clock period became larger with NN complexity; algorithms that took a
large part of the FPGA required longer clock periods. For the three-hidden-layer pruned neural
network at 32-bit precision, a clock period of 8 ns was needed to implement an HLS block designed
for 5 ns. This was observed for all reuse factors. A simple solution to overcome this issue is to
synthesize the HLS design for a slightly smaller clock period than intended. We also note that
different versions of Vivado HLS have varying degrees of success meeting timing constraints. We
had more success meeting timing constraints at the HLS target with Vivado 2016.4 than 2017.2.

The power usage is shown in figure 15. For all implementations, a clear trend towards more
power usage for larger network precision is present. As expected, as the throughput is decreased by
increasing the reuse factor, power usage also goes down.
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Figure 15. Power usage (W) for the baseline three-hidden-layer model as a function of precision.

We connect each bit of input/output directly to a unique pin under the assumption that all
inputs are delivered on the same clock edge. In this “bare” implementation, we do not use the
high speed transceivers that would allow significantly higher bandwidth input/ouput. Due to the
limited number of pins, we now consider a different neural network model with fewer inputs. The
model, illustrated in figure 4 (right), has ten input neurons and one output neuron with one hidden
layer between. We also tested the three-hidden-layer pruned network and find similar quantitative
conclusions in the regime where the number of pins was sufficient for implementation. For the
rest of this subsection, we present results with the one-hidden-layer network using an 8 ns clock at
implementation.

Figure 16 shows the DSP usage for the implemented design compared with the DSP estimate
obtained from the HLS synthesis. For all cases, the DSP usage in the implemented design is
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observed to be smaller than the HLS estimate, and in particular, we find the HLS synthesis estimate
and the implementation agreewell formultiplicationswhich require oneDSP (< 24 bits). Deviations
between HLS estimates and Vivado implementation are evident above 24 bits, however, as other FF
and LUT resources can further be used to optimize DSP usage in the final implementation.
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Figure 16. Comparsion of the DSP usage of the one-hidden-layer implemenation on the Xilinx Kintex
Ultrascale FPGA as a function of the precision for various reuse factors.

Figure 17 compares the FF and LUT usage between the HLS estimate and the implementation.
Large differences are present between the HLS estimates and implemented FF usage. The HLS
estimates are typically factors of 2–4 high, becoming particularly large for implementations using
more than 32 bits. The LUT usage is similarly overestimated by the HLS calculation, with the
spikes at 22 bits and 38 bits optimized away during the implentation step. For all points, excluding
the 26-bit implemenation of the LUTs, the HLS estimate is more conservative than the firmware
implementation.
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Figure 17. Comparison of the FF performance (left) and the LUT performance (right) for the Kintex
Ultrascale processor as a function of the precision for 1 and 4 reuse factors.
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4 Summary and outlook

We introduce hls4ml, a deep neural network compiler based on HLS capable of porting fully
connected networks to an FPGA trained from conventional training frameworks such as Keras and
PyTorch. For the first result using this framework, we focus on the application of real-time event
reconstruction and filtering at the LHC in custom electronics with FPGAs. This requires pipelined
network inference with latencies on the scale of 1 µs. For such low latencies, networks necessarily
have a smaller number of parameters. For this paper, we consider a specific case study and train a
fully connected neural network to identify jets as originating from a light quark, gluon, W boson, Z
boson, or top quark. The original model has 4389 parameters, and applying network compression
and reduced precision, it is possible to implement a fully-connected three-hidden-layer network in
a Xilinx Kintex Ultrascale using roughly 10% of the available DSPs, with results varying with the
initiation interval. The latency of the inference is approximately 75–150 ns with a clock frequency
of 200MHz. This fits well into the allowed hardware trigger reconstruction budget of LHC detectors
such as ATLAS and CMS.

The accessibility and ease of configurability in HLS allows for physicists to quickly develop
and optimize machine learning algorithms targeting FPGA hardware. This greatly decreases
both firmware development time over traditional VHDL/Verilog-based algorithms and engineering
resources in physics which are scarce. We discuss generic techniques such as network compression,
parallelization, and reduced precision, which can be applied to design efficient neural network
implementations tailored for different applications at the LHC and beyond. The results presented
use hls4ml to scan the network precision and parallelization to optimize DSP and other resource
usage. We compare results of estimated resources from HLS synthesis with the resource usage
at implementation. HLS resource estimates are conservative, particularly for FFs and LUTs. The
HLS resource estimate for DSP usage is comparable to the implemented design although it can be
conservative across designed DSP precisions.

While we have demonstrated the hls4ml framework in the context of fully-connected neural
networks, we intend for hls4ml to be a general tool for translating many types of neural network
architectures that are commonly used in physics. For example, we envision expanding the framework
to include convolutional neural networks (CNNs) and recurrent neural networks (RNNs), such as
Long Short Term Memory (LSTM) units [37]. CNNs are typically used in image based problems
including calorimeter cluster reconstruction [39, 94]. LSTMs are used to process a dynamic list
of objects; for jet substructure tagging, they have been used to process lists of particle properties
belonging to a single jet. At their core, both network architectures would build on the existing
hls4ml framework, and the same efficient network design principles apply. In addition, hls4ml can
be extended to target FPGAs from other vendors, such as Intel FPGAs using the Quartus HLS
compiler. We currently support Keras and PyTorch based implementations.

There are further interesting extensions of this line of research using FPGA co-processors
for machine learning, pioneered by efforts such as Micrsoft Brainwave [95, 96] and others. At
experiments like CMS and ATLAS, the first tier of reconstruction is limited to the microsecond
timescale. However, the second tier of reconstruction, the high-level trigger, is limited to reconstruct
and understand events on the 100ms timescale. This second tier currently reads the output of the
first tier at a rate reduced by a factor of 400 from the original collision rate. At these timescales, the
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inference times can be as long as 10ms. For such long timescales, a large reuse factor can allow
for large machine learning algorithms to placed on FPGAs. FPGAs can consequently be used as
a co-processor accelerator to significantly reduce the time needed to perform complex, core LHC
reconstruction algorithms such as track reconstruction. With the ability to infer O(100) times faster
than CPUs [97], FPGAs can be employed as a low-power, low-cost co-processor in conjunction
with CPUs that can be used to significantly speed up the high-level trigger, and potentially improve
its performance. In future works, we look forward to more detailed comparisons of neural networks
for physics applications on CPU, GPU, and FPGA hardware.

Beyond the LHC, the scope is very broad. We believe this tool can be used in many different
scientific applications. Increasingly in nuclear and particle physics, more intense beams and higher
rate experiments are being developed, and readout and processing in these experiments often require
high speed inference of complex data inputs.
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