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Abstract. We review Ashtekar’s variables in physics and in mathematics notation. The first
one uses local indices, the second one is given by global objects within fibre bundles.

1. Introduction

The coalescence of gravity and quantum theory has remained one of the greatest challenges of
modern physics. Over almost one century there have been many attempts to solve that issue.
One of the most promising ones was initiated a quarter of a century ago, when Abhay Ashtekar
presented his “new variables” [1] in 1986. These new variables ultimately turned gravity into
an SU(2) gauge field theory with constraints and opened the door to a Dirac-like canonical
quantization of gravity. This theory is called loop quantum gravity today. The original success
of Ashtekar’s variables consisted in a remarkable simplification of the constraints in comparison
to the standard Wheeler-DeWitt approach, as they removed non-polynomialities that spoiled
quantization. Nevertheless, loop quantum gravity is by far not a theory of full quantum gravity
yet; in particular, many dynamical issues have remained unsolved so far.

Although Ashtekar’s variables form the heart of loop quantum gravity and although the
early success of loop quantum gravity is heavily based on its mathematical rigor, a geometric
description of Ashtekar’s variables themselves in more mathematical terms has been missing for
a long time. Only in recent years, there have been some efforts [2, 3, 4, 5] to describe these
variables in the language of differential geometry using fibre bundles. In this short paper, we
are going to summarize these developments together with a review of the usual formulation of
Ashtekar’s variables in physics.

We start in Section 2 with the very basic structures in classical canonical gravity. After fixing
some notation in Section 3, we will review the standard index definitions of Ashtekar’s variables
in Section 4. We will introduce the notion of dreibeinen which lead to the first half of Ashtekar’s
variables, and then give the notion of spin connection and extrinsic curvature that lead to the
Ashtekar connection, i.e., the second half of Ashtekar’s variables. This section is closed by listing
the constraints of Ashtekar gravity. Then, in Section 5, we will represent Ashtekar’s variables
within the language of fibre bundles. First, we are doing this for the tangent bundle, where
the expressions are particularly simple. This comprises frames (they correspond to dreibeinen,
see Subsection 5.1), some vector field operation (generalizing the vector product on R

3) and
the Weingarten mapping (encoding the extrinsic curvature, for both see Subsection 5.2). This
will give us a covariant derivative in the tangent bundle. Using associate bundle techniques and
a spin structure, we may deduce from this the SU(2) Ashtekar connection living in a certain
principal fibre bundle, the so-called spin bundle (Subsection 5.4). After a naive derivation
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of the constraints and the application of Ashtekar’s variables to Friedmann-Robertson-Walker
spacetimes, we conclude by regaining the index notations in Section 6.

2. Canonical Gravity

Since its very beginning, general relativity has been described by a metric g of Lorentzian
signature on some spacetime manifold, this means a 4-dimensional, connected, time-oriented
and oriented Lorentz manifold. Its behaviour is governed by two (up to certain technicalities,
e.g., along boundaries) equivalent formulations. First, g is required to solve Einstein’s equations1

Rµν − 1

2
gµνR = 0 , (1)

where Rµν is the Ricci tensor w.r.t. g, and R the corresponding Ricci scalar. Or, second, g is a
stationary point of the Einstein-Hilbert action

∫

M

√
det g R , (2)

corrected with appropriate boundary terms. In order to rewrite general relativity as a canonical
theory, we need some splitting of M into R×Σ, where the R part is supposed to carry the time
variable and Σ to denote some embedded spacelike hypersurface. For this to be possible, one
usually assumes that the spacetime is globally hyperbolic as it is the case iff (M,g) is isometric2

to (R×Σ,−f dτ2 + gτ ) for some f : R −→ R and a family gτ of Riemannian metrics on Σ. [6, 7]
It is somewhat surprising that this equivalence, although conjectured for a long time, has been
established many years after the invention of Ashtekar’s variables that had already heavily used
such a splitting. Given such a splitting, g can be uniquely reconstructed from the reduction q of
g to Σ and the second fundamental form (extrinsic curvature) K describing the shape of Σ as
a submanifold of M . However, not every choice of a Riemannian metric q and of a symmetric
bilinear form K originates in some spacetime metric g. Indeed, certain constraints are to be
fulfilled. If they are met, classical results [8, 9, 10] guarantee the (at least local) solvability of
the corresponding initial-value problem. The metric q on Σ and some expression that is (up to
some weight) linear in K, form a set of canonically conjugate variables.

Based on this formulation, there have been several attempts to quantize gravity. As already
mentioned, one of the main obstacles has been the complicated structure of constraints. The
Ashtekar variables have provided an option to overcome at least some of these problems. For the
moment, we would only like to mention that the Ashtekar variables consist of an appropriately
densitized dreibein field together with an SU(2) connection. Below we are now going to describe
them a bit more in detail both from the physical and from the mathematical point of view, the
analysis remaining classical all over the paper.

3. Notation

Throughout the whole paper, let Σ be some oriented three-dimensional manifold, and let M be
some manifold diffeomorphic to R × Σ. We will identify Σ, if necessary, with {0} × Σ. Next,
let q be some Riemannian metric on Σ. We write 〈X,Y 〉 := q(X,Y ) for all vector fields X,Y
on Σ. Moreover, we let g be a metric on M inducing q on Σ. Recall, that all objects we are
dealing with are in the smooth category. When working with indices, we denote spatial indices
by a, b, c, . . . and “internal” SO(3) or SU(2) indices by i, j, k, . . . (for expansions w.r.t. some Lie
algebra basis) or I, J,K, . . . (if they are matrix indices). Lifting as well as lowering of indices is

1 Here, we have ignored any matter or cosmological terms as we will do throughout the paper.
2 Unless otherwise noted, all functions, metrics, isometries etc. are assumed to be smooth.
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made by means of the metric qab in the spatial, and by the Kronecker delta δij in the internal
case, respectively.

To end up with the preliminaries, we would like to mention some deviation from a nowadays
predominant convention. In contrast to the original version, Thiemann [11] defines the Ashtekar
field as the weight-one densitized dreibein E divided by the Barbero-Immirzi parameter β.
The deeper reason for this is that E/β is the canonically conjugate variable to the Ashtekar
connection. However, as we are less interested in the dynamics here, we give the old version
without dividing by β.

4. From indices . . .

Common to any definition of Ashtekar’s variables is that first the phase space of classical general
relativity gets extended. But, how this is done has changed a little bit over the time. Originally
[1, 12], Ashtekar started his construction by introducing the so-called soldering form σ and its
canonically conjugate momentum C, a density of weight 1. The soldering form plays a similar
rôle for SU(2) as the dreibein field does for SO(3). As the soldering form is determined only
up to internal SU(2) transformations, C is constrained by C [ab] = 0. Now, given a phase space
point (σ,C), Ashtekar defined two connections D± by

D±

a abI := ∇aabI ± i
G√

2 det q

[
CaI

J − 1

2
σaI

Jσc
KLCc

KL
]
abJ . (3)

Here, G is the gravitational constant. Note that the bracket term plays the same rôle w.r.t.
C, as the extrinsic curvature does for the canonically conjugate momentum to q. Now, the two
connections correspond to connection one-forms (A±)JaI via

D±

a aI = ∂aaI + GAaI
JaJ . (4)

One can prove that A± and
√

det q σ are (up to some constant ±i/
√

2) canonically conjugate
variables. If then F± is the curvature two-form corresponding to A±, one gets the constraints

tr σaF±

ab = 0 and tr σaσbF±

ab = 0 . (5)

Moreover, C [ab] = 0 can be rewritten as D±
a σa

IJ = 0. It was mostly the polynomial form
of these constraints (they are even Yang-Mills like) that triggered the success of Ashtekar’s
variables. This was also despite the fact that one lets oneself in for complex structures due to
the i in the definition of the connection. Indeed, in order to return to the real structure, certain
reality conditions had to be imposed.

The situation got somewhat changed in the mid-90s. Barbero [13] and Immirzi [14] observed
that the constant i in the definition above can be replaced by any non-zero complex number
β, later called Barbero-Immirzi parameter. In particular, for real β one gets rid of the reality
conditions, hence one is dealing with SU(2) instead of SlC(2) connections. This ultimately
paved the road for loop quantum gravity, although its foundations (in particular, the Ashtekar-
Lewandowski measure [15] needing compact gauge groups) had been laid a few years earlier.
However, this switch came with a drawback: In the scalar (Hamilton) constraint, a non-
polynomial term prefactored by 1 + β2, popped up. Hence, the constraints are of simple
polynomial form iff β = ±i. But, this puzzle was solved as early as Thiemann [16] observed that
the new term can be written by means of certain Poisson brackets.

About that time, the derivation of Ashtekar’s variables changed a bit (without modifying
the final point). A standard reference for this is Thiemann’s book [11] that we will follow here
closely (up to the overall factor β−1 for the Ashtekar field mentioned in Section 3). We will
start with the definition of the Ashtekar fields based on dreibeinen and then define the Ashtekar
connections by means of spin connection and extrinsic curvature.
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4.1. Dreibeine

Consider a local3 (oriented) orthonormal basis (e1, e2, e3) of the tangent space TΣ. Using some
local coordinate system xa, we may expand each basis vector into ei = ea

i ∂a defining the dreibein4

ea
i . At each single point in Σ, we may view ea

i as a non-singular matrix. Its inverse is denoted

by ei
a and called co-dreibein. The metric q on Σ can be reconstructed via qab = δije

i
ae

j
b. From

this, we may define the first part Ea
i of the Ashtekar variables: Ea

i :=
√

det q ea
i is the densitized

dreibein of weight 1. Both ea
i and ei

a can be used to replace spatial by internal indices and vice
versa. One immediately checks that multiplying ea

i with any SO(3) matrix keeps qab invariant.
Note that, using the isomorphism between su(2) and so(3), one can regard ei

a also as a local
SU(2)-valued one-form.

4.2. Ashtekar Connection

The second type of the Ashtekar variables is an SU(2) connection Ai
a on Σ that is built up from

the spin connection and the extrinsic curvature. The spin connection, on the other hand, comes
from the Levi-Civita connection associated to our given Riemannian metric q on Σ. Indeed,
one first extends the spatial covariant derivative ∇ from standard tensors on Σ to tensors on Σ
carrying also internal SO(3) indices. So, e.g., we have

∇aai := ∂aai + Γai
jaj (6)

and extend this to arbitrary tensors by linearity, Leibniz rule and contractivity. Imposing
metricity ∇ae

i
b = 0, the Γai

j terms are given by

Γai
j = eb

i

[
∂ae

j
b − Γc

abe
j
c

]
(7)

with Γc
ab being the Christoffel symbols for q. One checks that Γa takes values in SO(3). Let

now {M1,M2,M3} be the basis of so(3) with (Mi)jk = εikj. We use them to expand Γa into
Γi

aMi, giving the spin connection Γi
a. We may interpret the internal SO(3) indices also as SU(2)

indices w.r.t. the adjoint representation as this is isomorphic to the fundamental representation
at Lie algebra level.

Next, let us introduce the extrinsic curvature term. For this, we now need that Σ is considered
as a hypersurface of M , whose normal w.r.t. g will be denoted by n. The extrinsic curvature is
then just half the Lie derivative of g w.r.t. n. More explicitly, it is given by Kab := g(∂a,∇bn).
Using the dreibein as above to replace the spatial index b by the internal index i, we get Ki

a.
Altogether, we define the Ashtekar SU(2) connection by

Ai
a := Γi

a + βKi
a . (8)

The corresponding covariant derivative will be denoted by ∇A.

4.3. Constraints

Directly from metricity of the dreibein, we get the Gauß constraint

Gi = ∇A
a Ea

i ≡ ∂aE
a
i + εij

kAj
aE

a
k = 0 (9)

which shows exactly the structure of a gauge field theory constraint. Indeed, this constraint is the
justification for considering Ashtekar gravity as an SU(2) gauge theory. Additional constraints
are the (spatial) diffeomorphism constraint (also called vector constraint)

Va = F i
abE

b
i = 0 (10)

3 As Σ is orientable, it has a spin structure and is parallelizable. [17] Therefore we may assume w.l.o.g. that this
basis is even a global basis.
4 also called triad
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and the Hamilton constraint (also called scalar constraint)

H =
[
F i

ab − (1 + β2)εi
lmK l

aK
m
b

]εi
jkEa

j Eb
k√

det q
= 0 (11)

(both provided the Gauß constraint is met).

5. . . . to Differential Geometry . . .

Now, we are going to overcome the index notation and discuss the mathematical structures
behind the Ashtekar variables. Dreibeine will correspond to (oriented) orthonormal frames.
They might be discussed in any dimension, whereas the Ashtekar connection will heavily rely
on the fact that the manifold Σ is three-dimensional. The deeper reason for this is the fact that
the Ashtekar connection is constructed by means of the vector product, which is defined only
for dimension 3. For simplicity, we will therefore restrict ourselves to dimension 3 throughout.

The presentation in this section follows5 closely that in [5], partially as an excerpt.

5.1. Orthonormal Frames

As already mentioned, dreibeine correspond to certain frames in the tangent bundle TΣ. To be
specific, a frame at x ∈ Σ is a vector space isomorphism

e : R
3 −→ TxΣ . (12)

Given a frame e, we define the corresponding Ashtekar field E to be the densitized frame field

E :=
1

det e
e (13)

of weight 1. Here, the determinant is taken w.r.t. some (local) basis of TxΣ and the canonical
basis of R

n. The frame can be reconstructed from the Ashtekar field via

e =
1√

detE
E . (14)

We call a frame orthonormal w.r.t. the metric q on Σ iff it is an isometry, with R
3 given the

Euclidean metric. We call it oriented iff it preserves the orientation. Whereas each frame e via

q̃(X,Y ) := 〈e−1(X), e−1(Y )〉Eucl for X,Y ∈ TxΣ (15)

yields the unique metric q̃ on Σ, such that e is orthonormal w.r.t. q̃, there exist several frames
that are orthonormal w.r.t. a given metric. More precisely, two frames e and e′ are isometries
for the same q iff e′ = e ◦ Lg for some g ∈ O(3). Here, Lg denotes the left translation by g.

Completely analogously to the definition of the tangent bundle as an appropriately
topologized union of the tangent vectors all over the points of Σ, one defines the frame bundle
Gl(Σ) as such a collection of frames. The orthonormal frames form a subbundle Oq(Σ) of Gl(Σ);
it can be obtained via reducing the structure group from Gl(3) to O(3). Further reduction to
SO(3) provides us with the bundle O+

q (Σ) of oriented orthonormal frames.

5 This does not refer to the discussion of constraints.
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5.2. Ashtekar Connection

Let us now turn the Ashtekar connection into an intrinsic object of the tangent bundle.
For any tangent vectors X, Y on Σ and any oriented q-orthonormal frame e, we define

X • Y := e
[
e−1(X) × e−1(Y )

]
, (16)

with × being the standard vector product on R
3. As the vector product is invariant w.r.t.

SO(3), one immediately checks that • depends on the metric q only rather than on the oriented
q-orthonormal frame e itself. The definition can be extended immediately to a smooth operation
on vector fields. This can also be seen from the relation X • Y = ∗(X ∧ Y ), where ∧ is the
standard wedge product and ∗ the Hodge operator w.r.t. q. The product • inherits all relevant
properties of the vector product, in particular,

X • Y = −Y • X (17)

〈X • Y,Z〉 = 〈X,Y • Z〉 (18)

X • (Y • Z) = 〈X,Z〉Y − 〈X,Y 〉Z (19)

and the Jacobi identity

X • (Y • Z) + Y • (Z • X) + Z • (X • Y ) = 0 . (20)

The second ingredient for the Ashtekar connection is the so-called Weingarten mapping.
It corresponds to the second fundamental form which is usually called extrinsic curvature in
physics. The Weingarten mapping encodes the respective shape of Σ within M ; indeed, we
will now need to assume that Σ is an embedded submanifold of a four-dimensional Lorentzian
manifold (M,g) and that q is the reduction of g to Σ. The Weingarten mapping is defined by

W : TΣ −→ TΣ . (21)

X 7−→ 4∇Xn

Here, n is the normal to Σ within (M,g), and 4∇ is the Levi-Civita connection for g on M . As
4∇ is metric and torsion-free, the Weingarten mapping is well defined and symmetric. Moreover,
it is C∞(Σ)-linear. The corresponding second fundamental form K is the quadratic form
K(X,Y ) = 〈W (X), Y 〉 defined by the Weingarten mapping. Of course, W can uniquely be
re-obtained from K, as q is non-degenerate.

Mixing all these ingredients appropriately, we get the Ashtekar connection. For this, fix some
non-zero complex number β. This number is the Barbero-Immirzi parameter introduced above.
Recall that the imaginary part of β may be non-zero. So, for non-real β, we will tacitly assume
in the following that all structures (connections etc.) will be complexified.

Now, the Ashtekar connection w.r.t. β is defined by

∇A
XY := ∇XY + β W (X) • Y . (22)

One can easily show that ∇A is metric and obeys the Leibniz rule

∇A
X(Y • Z) = ∇A

XY • Z + Y • ∇A
XZ . (23)

Its torsion is given by

TA(X,Y ) = β
[
W (X) • Y − W (Y ) • X

]
(24)

and its curvature by

RA(X,Y )Z = R(X,Y )Z + β [(∇XW )Y − (∇Y W )X] • Z

+ β2[W (X) • W (Y )] • Z . (25)
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5.3. Reconstruction

Note that both the metric q and the second fundamental form K can be reconstructed from E
and ∇A. In fact, first reconstruct q from E as in Section 5.1. Then, let ∇ be the Levi-Civita
connection to this metric q. Using β 6= 0, we now find W (X)• Y for all vector fields X,Y ∈ TΣ.
Next, with the standard orthonormal basis (e1, e2, e3) of R

3, we get

W (X) =
1

2

3∑

i=1

e(ei) •
(
W (X) • e(ei)

)
. (26)

Finally, the second fundamental form is easily derived from W as mentioned above.

5.4. Spin Bundle

In order to identify Ashtekar’s variables as entities of an SU(2) gauge field theory, we will now go
from the tangent bundle to principal fibre bundles. For this, we will first transfer the structures
to the oriented orthonormal frame bundle. This bundle, however, is an SO(3) bundle, whence
we will have to introduce a spin structure to go to the SU(2) spin bundle. Of course, the tangent
bundle is associated to both principal fibre bundles. Note that in the standard index notation of
Subsections 4.1 and 4.2 it is barely impossible to distinguish between the SU(2) and the SO(3)
case; in fact, the internal indices are Lie algebra indices, but the Lie algebras su(2) and so(3)
are isomorphic. Within principal fibre bundles, however, the structure group is encoded.

To implement this for the SO(3) case, consider the canonical action ρ of SO(3) on R
3. Given

any metric q on Σ, the usual isomorphism

O+
q (Σ) ×(SO(3),ρ) R

3 ∼= TΣ

[e, x] 7−→ e(x) (27)

identifies the tangent bundle as associated to the bundle of oriented orthonormal frames.
Moreover, it induces an isomorphism between the space of metric covariant derivatives on TΣ
and the space of metric connection 1-forms in the oriented orthonormal frame bundle. In order
to apply this identification to the Ashtekar connection, take some q-orthonormal local frame e
on U ⊆ Σ and define the local connection 1-form A by

A := 〈∇Ae, e〉 : TU −→ gl(3) . (28)

More explicitly, A(X) is uniquely given by

〈A(X)x, y〉Eucl = 〈∇A
X [e(x)], e(y)〉 (29)

for all vector fields X and x, y ∈ R
3, viewing both sides as functions on U . One immediately

checks that, as e is q-orthonormal, A maps to so(3). Now, the Ashtekar connection ωA in the
oriented orthonormal frame bundle is simply the connection that is patched together from the
local connections, i.e., mapped to A by the different pull-backs f∗ωA with f being a mapping
from some U to O+

q (Σ).
To finally establish the Ashtekar connection as an SU(2) connection, first recall [18] that

a spin structure on (Σ, q) is a pair (S(Σ),Λ) consisting of an SU(2) principal fibre bundle
π̃ : S(Σ) −→ Σ and a double covering Λ : S(Σ) −→ O+

q (Σ, q), such that the following diagram
commutes:

S(Σ) × SU(2) → S(Σ)

Σ .

π̃

→

O+
q (Σ) × SO(3)

both 2:1 Λ×λ

↓
→ O+

q (Σ)

2:1 Λ

↓ π →
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In the diagram, the structure groups act horizontally, and λ denotes the double covering from
SU(2) to SO(3). Using the isomorphism λ∗ : su(2) −→ so(3), we may lift any connection ω in
O+

q (Σ) to a spin bundle connection ω̃ via

λ∗ ◦ ω̃ := Λ∗ω . (30)

This way, the Levi-Civita connection is lifted to the spin connection ω̃LC , as well as the SO(3)
Ashtekar connection ωA is lifted to the celebrated SU(2) Ashtekar connection ω̃A. Note that the
tangent bundle is associated also to the spin bundle via

TΣ ∼= S(Σ) ×(SU(2),ρ◦λ) R
3 . (31)

5.5. Constraints

So far, we have not been able to really derive the constraints within a purely differential-geomet-
ric framework. For this, one needs to carefully implement techniques from symplectic reduction
and canonical transformations. For this short article, we refrained from doing this. Instead,
we simply translate the index expressions for the constraints (see Subsection 4.3). Therefore,
please be aware that the expressions might get modified later, if the “genuine” derivation has
been done.

Denote the image of the standard basis of R
3 under the frame e by (e1, e2, e3). Then we have

(up to constant prefactors)

G ∼
∑

i

∇A
ei

ei (32)

V ∼
∑

i,j

RA(ei, ej)[ei • ej] (33)

H ∼ RA + (1 + β2)
[
(tr W )2 − tr(W 2)

]
. (34)

5.6. Friedmann-Robertson-Walker Spacetimes

In highly symmetric cosmological models, the Ashtekar connection takes a particularly simple
form. Here, we will review the results for the Friedmann-Robertson-Walker spacetime, where
Σ is assumed to have constant sectional curvature κ. The Weingarten mapping is simply the
Hubble “constant” h times the identity. From this, we get for the Ashtekar connection

∇A
XY = ∇XY + βh X • Y , (35)

its torsion and curvature

TA(X,Y ) = 2βh X • Y (36)

RA(X,Y )Z =
[
(βh)2 − κ

]
(X • Y ) • Z , (37)

as well as the constraints

G = 0 (38)

D = 0 (39)

H ∼ 6(κ + h2) . (40)
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6. . . . and Back to Indices

We have already mentioned that Σ is parallelizable, whence it has a global oriented orthonormal
basis for TΣ. Therefore the internal indices can be assumed to be global indices. This need not
be true for the spatial ones. In fact, it might happen that the manifold Σ cannot be covered
by a single chart. Therefore, the expressions derived using indices in Section 4 will, in general,
be of local nature only. To rederive them from our index-free quantities, let χ : U −→ R

3

be a chart for some open U ⊆ Σ; this defines a local basis {∂1, ∂2, ∂3} for the tangent space.
Moreover, let {M1,M2,M3} be a basis of so(3) with [Mi,Mj ] = εij

kMk, e.g., we may take the
choice (Mi)jk = εikj from Subsection 4.2.

Taking some orthonormal frame e, we get the dreibein from e(ei) =: ea
i ∂a by means of the

canonical basis (ei) of R
3. The transition to the Ashtekar field Ea

i is now obvious. On the other
hand, one can calculate [4] that

e∗ωA(∂a) = Ai
aMi (41)

reproduces the Ashtekar connection Ai
a. In the same way, the extrinsic curvature Ki

a can be
obtained from

K̃(X) = 〈W (π∗X), e • e〉 (42)

with π being the bundle projection, as well as the spin connection Γi
a can be obtained from the

bundle version of the Levi-Civita connection. Finally, the SO(3) indices can be reduced to the
SU(2) indices by simply using the isomorphism between so(3) and su(2).
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