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Abstract. A new Landau parameter set for nuclear matter is calculated for the SKaan-

U14 Skyrme interaction. The effective mass, incompressibility and symmetry energy 

of nuclear matter are obtained by the new Landau parameter set. The results obtained 

are in good agreement with those obtained by various authors with different Landau 

parameters. 
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1. INTRODUCTION 

Hartree-Fock (HF) and Random Phase Approximation (RPA) approach to 

nuclear structure are very successful for describing ground states of spherical 

nuclei and their excitations, especially the giant resonances and some low-lying 

states. The success is partly based on the density-dependent effective 

interactions [1]. One of the most convenient and popular interactions is the Skyrme 

interaction [2, 3]. 

The Skyrme nucleon-nucleon interaction has been used in nuclear HF 

calculations since 1970s  [4]. The pioneering implementation of density-dependent 

Skyrme type effective nucleon-nucleon (NN) interaction in HF calculations is due 

to Vautherin and Brink [5]. The density-dependent Skyrme type effective NN 

interaction is useful and successful for nuclear HF calculations. Because this model 

has been one of the most popular microscopic tools to describe the ground-state 

properties of the finite nuclei as well as that of the symmetric nuclear matter 

(SNM) and pure neutron matter (PNM) [6]. 

HF calculations are also useful for the establish the relationship between the 

Landau parameters and the Skyrme parameters in nuclear matter. Landau 

parameters have been calculated before by Gogny and Padjen [7] from the density-

dependent Gogny interaction [8] for symmetric nuclear matter. Backman et al. [9] 

have also evaluated these parameters from the Skyrme interactions. The parameters 

of the effective interactions are chosen so as to reproduce certain specific static 

properties of finite and infinite nuclear systems in a microscopic approach and are 
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then employed to calculate other physical observables [10]. Jackson et al. have 

investigated the density dependence of the Landau parameters for the Bethe-

Johnson and Reid potentials [11]. Prakash and Bedell [12] studied density 

dependence for above two interactions along with the Skyrme interactions SIII and 

SKM*.  

The aim of this study is to determine a new Landau parameter set which 

describe the properties of nuclear matter. A new Landau parameter set is obtained 

from SKaan-U14 Skyrme parameter set. We investigate the effective mass, 

incompressibility and symmetry energy of nuclear matter by using the new Landau 

parameter set.  

2. VMC CALCULATIONS OF NUCLEAR MATTER 

2.1. INTERACTION POTENTIAL 

The Hamiltonian operator of a free system of N particles can be written as a 

two-body interaction potential Vij 
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For the correctly reproduces the saturation point of nuclear matter, ıt is 

necessary for any realistic two-body potential. Therefore, it is essential to have a 

method for reliably calculating, for an assumed two body potential, the binding 

energy of nuclear matter as a function of density. 

In this paper we use Urbana V14 potential, which was proposed by Lagaris 

and Pandharipande. The parameters of the potential were obtained by fitting the 

phase-shift data from low energy NN scattering experiments and the properties of 

the deuteron [13]. The phase-shift data varies greatly from channel to channel and 

it is necessary to have operator components, and Urbana V14 potential contains 14 

operator components. 
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Due to the translational invariance of the infinite nuclear matter the terms 

depending on the relative angular momentum operator L , do not considerably 

effect the binding energy. Furthermore, as the contributions of latter terms are 
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much smaller than those of the first four, their effect is smaller than the statistical 

fluctuations inherent to the Monte Carlo technique so the inclusion of these terms 

was pointless. Therefore only first four terms of the Urbana potential retained in 

the VMC calculations. Thus, we have  
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c
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for the two-body interaction. Where ,,,  VVV c
 and 

V  depend only on the 

distance between the nucleons i and j. In the Urbana potential each term in Eq. (2) 

has three parts 
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interactions. The long range part of the interaction )( iV  is nonzero only for 

i  and is given by 
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where 7.0 fm
-1

 is the inverse compton wavelength for pions. The intermediate 

and short range parts are 
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respectively. Values of the potential strengths I
i
 and S

i
 and the parameters c, R, a 

were given by Lagaris and Pandharipande [13]. 
It is well known that all two–nucleon interaction models estimate too large 

equilibrium densities for nuclear matter. Therefore, the three and more body 

interactions should be incorporated into any consistent nuclear matter calculation. 

In this study, we use the phenomenological approach assuming the density 

dependent term to be proportional to short ranged part of the Urbana potential and 

we assume that the total interaction, including the many body effects, is of the form 

 


 )(14 ssI vvvvTNIv  , (8) 
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where   is the number density of nucleons.   and   in the above equation are 

free parameters and adjusted so as to obtain the correct binding energy and 

saturation density of SNM. 

2.2. THE VARIATIONAL MONTE CARLO METHOD 

We use a Monte Carlo method which is same as our previous study [6]. In 

the VMC calculations to obtain the properties of bulk nuclear matter we consider a 

cubic box of side L containing N nucleons with periodic boundary conditions. The 

trial wave function used in the present study is a Jastrow type wave function in the 

form 

 



ji

ijjj rf )()(R , (9) 

where   is the many particle wave function for the system of non-interacting 

particles and R is a 3N dimensional vector representing the coordinates of particles, 

while jf  is the two particle correlation function. Jastrow suggests that this 

correlation function in general be an operator function [14]. However in most 

applications jf  is assumed to depend only on the interparticle distance, 

jiij rrr  .  

One can use plane waves 
rk

r
.)( ie  for the single particle wave 

functions of the nucleons in bulk matter. We consider nucleons to be restricted to a 

cubic box of side L, so that the wave number 2π / Lk n  and n  is an integer 

vector. In order to conserve the rotational invariance of bulk nuclear matter we 

perform VMC calculations only for the numbers of neutrons (N) and protons (P) 

corresponding to completely filled energy shells. We assume that the space and 

spin parts of the wavefunction is separable. Under these conditions choosing a 

many particle trial wave function with  

 
 NNPP DDDD)(R  (10) 

is quite reasonable because the spin-isospin dependent parts of the interaction  

potential is relatively weak. Also it is well known that the expectation value of  the 

total energy is not very sensitive to small changes in the wave function. The 

determinants 
PD , 

PD , 
ND  and 

ND  in Eq.(10) are the slater determinants of 

single particle wave functions for corresponding spin, isospin state then   

 )det( s

ij

s dD  , (11) 



586 K. Manisa 5   

 

where 

 )),(( ij

s

ij sd r . (12) 

The nuclear forces are short ranged and saturates very quickly, thus the 

radial distribution function is not expected to have very long range correlations 

therefore for the two particle correlation function fj in eq.(9) we use a function in 

the form  
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where t, r0  and a are variational parameters. We define a pseudo potential )(ru  for 

practical reasons such that ))(exp()( ijijj rurf   then our variational wave 

function becomes 
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We sample the 3N dimensional space with the probability distribution  
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using a random walk created by the usual Metropolis method. The method given 

above is a slightly modified version of the VMC method for fermions defined by 

Ceperley et al. [15]. They have also discussed in detail the use of a trial wave 

function of this form. 

The expectation value of any operator F is then simply the average value of 

the operator evaluated for the coordinates of the random walk with M moves 
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Thus the total energy of the system is calculated as an average over a 

sufficiently long random walk. The contribution of the NN interactions to total 

energy are calculated for interparticle separations up to a cut off distance of L/2. 

Because the NN interaction is very short ranged, the pair distribution function heals 

quickly and a reasonable approximation to include the contributions of the pairs 
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farther apart is to assume that the density of particles is constant outside this 

interaction sphere.  

For each density and asymmetry parameter the total energy corresponding to 

the Hamiltonian of the system is calculated for various values of the parameters in 

the trial wave function. Then the variational parameters r0, a, and t are determined 

from these calculations so that the total energy is a minimum. Then a final Monte 

Carlo calculation of the system with the optimized parameter set is performed. 

As we have mentioned before, one must use fully occupied closed shells of 

plane waves for both neutrons and protons in order to preserve the isotropy of the 

system. Thus the number of neutrons or protons must be chosen from the set (2, 14, 

38, 54, 66, 114, ...). The isospin asymmetry parameter   is defined as 

n p

n p

N N

N N






, where nN  and 

pN  are the numbers of neutrons and protons in the 

cubic box under consideration. 

3. SKYRME-LANDAU PARAMETERIZATION  

OF EFFECTIVE INTERACTION 

3.1. SKYRME INTERACTION 

In this study we use the Skyrme type effective NN interaction [5, 16]: 
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where ,, ii xt  and 0W  are the parameters of the interaction and 


12P  is the spin-

exchange operator, iσ  is the Pauli spin operator, 2/)( 2112 


ik , and 

2/)( 2112 


ik . Here, the right and left arrows indicate that the momentum 

operators act on the right and on the left, respectively.  

The total energy E of the system is given by 

 E ∫H(r)d
3
(r), (18) 

where H(r) is the Skyrme energy-density functional corresponding to Eq. (17) 

which under the time-reversal invariance is given by [2, 5, 16, 17], 

 H0 = K+ H0+ H3+ Heff+ Hfin+ Hso+ Hsg+ Hcoul, (19) 
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Here, total densities are defined pn   , pn   , and 

pn JJJ  . Proton and neutron matter, kinetic energy and spin, densities are,  
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where ),( sq

i r  is the single-particle wave function with orbital, spin, isospin 

quantum numbers i, s, and q, respectively; and n
q
 is the occupation numbers pairing 

probability. 

The density functional Skyrme energy can be written for ASNM from Eqs. 

(17) and (19) as 
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The SKaan-U14 Skyrme parameter set is generated by fitting of the energy 

results per nucleon, which contains 140 energy values obtained from VMC 

simulations, to the Skyrme energy density functional. This set obtained is  

t0 = – 424.75 MeV·fm
3
, t1 = – 1333.36 MeV·fm

5
, t2 = – 232.82 MeV·fm

5
, 

t3 = 47807.61 MeV·fm
6
,  x0 = 0.96, x1 = 0, x2 = 0, x3 = – 0.51 and  =1.5. Saturation 

energy of symmetric nuclear matter obtained E0 = 15.80 MeV at 156.00   fm
–3

 

(kF  = 1.32 fm
-1

) by using these parameters. These values are in good agreement 

with our expectations from semi-empirical mass formulas of known nuclei. 

3.2. SYKRME-LANDAU PARAMETERIZATION 

The physics of ‘normal’ Fermi liquids at low temperatures is governed by 

the properties and interactions of quasiparticles, as emphasized by Landau in the 

early 1960’s. Since quasiparticles are well-defined only near the Fermi surface 

where they are long-lived, Landau’s theory is valid only for low-energy excitations 

about the interacting ground state [18]. 

The Migdal theory of nuclei based on the Landau theory of normal Fermi-

liquids [19]. The interaction between the quasiparticles is parametrized in terms of 

Landau Fermi-liquid parameters in Migdal’s theory of nuclei. Migdal has argued 

that the tensor part of the quasiparticle interaction is unimportant [20]. However, 

Backman et al. [21] indicates that this might not be the case. 

It is useful to consider the Skyrme interaction in nuclear matter within the 

framework of the Landau theory of normal Fermi liquids [9, 19, 20]. 

The Landau parameters can be obtained by functional differentiation of the 

energy density. In symmetric nuclear matter, the l = 0 and l = 1 parameters are 

given by the following expressions [22]: 
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Using the SKaan-U14 Skyrme parameter set, E/A = 15.80 and kF = 1.32fm
-1

 

we find a new Landau parameter set for nuclear matter. The new set obtained is 

0F = –0.103, 
'F0 = 0.355, 1F  = –0.726, 

'

1F = 0.154, 0G = 0.067, 
'

0G = –0.144, 1G = 

= 0.154 and 
'

1G = 0.154. The obtained new Landau parameters from SKaan-U14 

are given in Table 1 together with those obtained from the other Skyrme 

interactions [1]. 
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Table 1 

Landau parameters for different Skyrme parameter sets 

 SI SII SIII SGI SGII BLV1 SL1 SKaan-U14 

0F   0.558 –0.058  0.30 –0.246 –0.225  0.423 –0.393 –0.103 

1F  –0.266 –1.261 –0.711 –1.184 –0.645 –0.608 –1.335 –0.726 

'F0  
 1.213  0.695  0.868  0.436  0.726  0.944  0.435  0.355 

'

1F  
 0.43  0.477  0.490  0.174  0.520  0.546 –0.603  0.154 

0G  –2.268 –0.769 –1.576  0.069  0.011 –1.913 –0.211  0.067 

1G   0.430  0.477  0.490  1.052  0.611  0.546  1.109  0.154 

'

0G  
–0.527 –0.037 –0.354  0.498  0.503 –0.484  0.240 –0.144 

'

1G  
 0.430  0.477  0.490  0.367  0.431  0.546  0.336  0.154 

SI, SII and SIII are from refs. [5, 16], BLV1 is from ref. [23], SL1 is from ref. [1] and SKaan-U14 is 

from [6]. 

Some of the Landau parameters are directly related to physical quantities [1]: 

1F  is related to the effective mass m
*
 by  

 1

*

3

1
1 F

m

m
 , (39) 

0F  is related to the incompressibility K in the nuclear matter by 
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and 
'F0  is related to the asymmetry energy As 
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Using the obtained new Landau parameters from SKaan-U14 in Eq. (39), 

(40) and (41) we found the effective mass m
*
= 0.75 m, the incompressibility 

K = 259 MeV and the asymmetry energy As = 21.75 MeV. These values are given 

comparatively along with the values obtained from other Landau parameterizations 

which from other Skyrme parameterizations in Table 2. 



592 K. Manisa 11   

 

Table 2 

Comparison of the calculations of values of effective mass m*/m, incompressibility 
K  and 

asymmetry energy As of nuclear matter for Landau parameters from obtained SKaan-U14 and the 

other Skyrme interactions 

Skyrme m*/m 
K (MeV) As (MeV) )( 1fmkF

 E/A (MeV) 

SI 0.91 370 29.38 1.32 –16.00 

SII 0.58 342 34.10 1.30 –16.00 

SIII 0.76 356 28.16 1.29 –15.87 

SGI 0.61 269 28.5 1.32 –15.89 

SGII 0.79 215 26.8 1.33 –15.59 

BLV1 0.80 378 30.00 1.30 –16.00 

SL1 0.55 230 30.20 1.30 –15.75 

SKaan-U14 0.75 259 21.75 1.32 –15.80 

It can be seen from Table 2 this effective mass value is very close to the 

results obtained from Skyrme parameterization SIII in the literature. We can see 

clearly that our incompressibility value is quite close to the values in the literature. 

Because, the incompressibility, appears in some sophisticated mass formulas, 

however it cannot be precisely determined from these formulas and quoted values 

in the literature have a wide range from 240 to 300 MeV with error estimates of   

50 MeV [24]. For the new Landau parameters we have obtained the symmetry 

energy of nuclear matter as 21.75, this value is somewhat different then the 

experimentally quoted value of 30 4 but considering the error bars in the quoted 

experimental values it might be acceptable [25]. 

4. CONCLUSION 

Many calculations have been performed using different methods to describe 

bulk properties of nuclear matter. The Skyrme potential and other 

phenomenological potential models are very convenient and useful in the 

calculations of bulk properties of nuclear matter. However, before using such 

potentials the reliability of the potential model should be established. We have 

observed that the results of VMC simulations of the nuclear matter obtained in our 

previous studies [6, 24, 26–29] reasonably agree with the experimental and 

theoretical studies. In this study, the results obtained from Monte Carlo simulation 

are used to determine a new Landau parameter set. The results obtained with the 

new Landau parameter set for nuclear matter are compared with other selected 

Landau parameter sets found in the literature, and it was observed that the results 

obtained in this study agree reasonably well with the results found in the literature. 
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