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Zusammenfassung

Wir präsentieren in dieser Arbeit detaillierte Studien von Topquarkpaarproduktion mit

(tt̄H) und ohne assoziiertem Higgsboson (tt̄) in e
+

e
−

-Kollisionen. Diese Prozesse sind

von besonderem Interesse für das Topphysikprogramm künftiger Elektron-Positron-Be-

schleuniger. Insbesondere erlauben sie Präzisionsmessungen der Topquarkmasse und der

Yukawa-Kopplung. Wir zeigen hierzu Vorhersagen für off-shell tt̄- und tt̄H Produktion,

wobei nichtresonante und Interferenzeffekte bis zur nächstführenden Ordnung (NLO) in

perturbativer Quantenchromodynamik (QCD) berücksichtigt werden. Dies erlaubt eine

Topquarkphänomenologie im Kontinuum auf bislang unerreichtem Niveau. Wir zeigen,

dass off-shell Effekte und NLO QCD-Korrekturen für diese Prozesse im Allgemeinen nicht

faktorisieren. Insbesondere präsentieren wir die Abhängigkeit des Wirkungsquerschnitts von

der Yukawa-Kopplung, welche negative Korrekturen durch beträchtliche Interferenzterme

erhält. Ferner fügen wir eine Diskussion von pT-Resummation und der assoziierten

Unsicherheit hinzu, in Form der Kombination von NLO Vorhersagen mit dem Partonshower

mittels Powheg-Matching.

Zur Behandlung großer Coulombsingularitäten an der Schwelle arbeiten wir die nächst-

führende logarithmische (NLL) Schwellenresummation, abgeleitet in nichtrelativistischer

QCD (NRQCD), für tt̄ Produktion ein. Dies resultiert in einem Formfaktor, welchen wir

in einen vollrelativistischen Wirkungsquerschnitt einbetten, faktorisiert in einer erweit-

erten Doppelpolapproximation. Hierbei sind QCD-Korrekturen zum Topzerfall inbegriffen.

Wir kombinieren diese Rechnung mit den vollen QCD NLO Korrekturen für W
+

W
−

bb̄

Produktion, um eine Rechnung zu erhalten, welche nicht nur an der Schwelle gültig ist,

sondern nahtlos ins Kontinuum übergeht. Dies ermöglicht uns die erste Vorhersage für

exklusive W
+

W
−

bb̄ Produktion an einem Elektron-Positron-Beschleuniger zu machen,

welche ein konsistentes Matching zwischen der Top-Antitop-Schwelle und den Kontinuum-

sregionen vorweisen kann. Diese Rechnung ist nicht nur notwendig, um die intermediären

Energieregionen zu beschreiben, sondern erlaubt zudem auch erstmals Schwelleneffekte in

volldifferentiellen Verteilungen zu betrachten und enthält wichtige elektroschwache und

relativistische Korrekturen.

Alle Rechnungen sind im automatisierten NLO Monte Carlo Eventgenerator Whizard

implementiert. Daher geben wir ferner einen Überblick über die wesentlichen Aspekte des

Programms und die verschiedenen zusätzlichen Features, die wir implementiert haben.
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Abstract

In this thesis, we present detailed studies of top-pair production with (tt̄H) and without

association of a Higgs boson (tt̄) in e
+

e
−

collisions. These processes are of utmost

interest for the top physics program of future lepton colliders. They allow in particular a

precise measurement of the top quark mass and the Yukawa coupling. For this purpose,

we present predictions for off-shell tt̄ and tt̄H production including non-resonant and

interference contributions up to next-to-leading order (NLO) in perturbative quantum

chromodynamics (QCD). This allows for top-quark phenomenology in the continuum

at an unprecedented level of accuracy. We show that off-shell effects and NLO QCD

corrections for these processes do not factorize in general. In particular, we present the

Yukawa coupling dependence of the cross section, which receives negative corrections due

to sizable interference terms. We also add a discussion of pT resummation in the form of

combining the NLO prediction via Powheg matching with the parton shower and the

associated uncertainties.

To handle large Coulomb singularities at threshold, we include the next-to-leading log

(NLL) threshold resummation derived in nonrelativistic QCD (NRQCD) for tt̄ production.

This results in a form factor that we incorporate in a fully relativistic cross section, which

is factorized within an extended double-pole approximation. Fixed-order QCD corrections

are included, hereby, for the top decay. We combine this calculation with the full fixed-

order QCD results at NLO for W
+

W
−

bb̄ production to obtain a computation that is not

only valid at threshold but smoothly interpolates to the continuum. This allows us to

present the first prediction for exclusive W
+

W
−

bb̄ production at a lepton collider with

a consistent matching between the top-antitop threshold and continuum regions. This

computation is not only required to describe the intermediate energy region but also allows

to study threshold resummation effects in fully differential distributions and incorporates

important electroweak and relativistic corrections.

All computations are implemented within the automated NLO Monte Carlo event

generator Whizard. Thus, we review the important aspects of the program and various

new features that we have implemented.
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Chapter 1

Introduction

The first runs of the Large Hadron Collider (LHC) have been an incredible success story

for the Standard Model (SM) of particle physics. With the discovery of the Higgs boson [1,

2], all particles that are required for a consistent theory of electroweak (EW) symmetry

breaking have been observed. Countless distributions of numerous processes have been

studied and so far everything agrees very well with the SM, at least as long as sophisticated

theory predictions are used. This success comes with a major conundrum though: While

there is observational evidence of beyond the SM (BSM) physics in the form of dark

matter and energy from e.g. the measurement of the cosmic microwave background or

galaxy rotation curves, none of the numerous searches at the LHC and other high-energy

experiments have discovered any new particles. Furthermore, it was theoretically expected

that new particles have to be found at energies close to the Higgs mass, as a scalar field

otherwise receives large quantum corrections, which can only be removed with a severe

fine-tuning. This mechanism, also known as naturalness or hierarchy problem, has been

a guiding principle for decades. Confronted with the lack of new discoveries, nowadays

new ideas like relaxion models [3] aim to solve this problem with a time-dependent ansatz,

whereby the unnaturally low observed Higgs mass is just the result of the time evolution.

Independently of the potential interpretation of the results, first and foremost the main task

(aside from ongoing direct searches of new particles) is to measure and predict observables

to ever higher accuracy in order to look for deviations and inconsistencies of the SM. This

is the indirect path for discoveries, which was often a successful one in history, and also

results in more precise measurements of masses and couplings.

One of the key particles of interest, hereby, is the top quark. It is the heaviest particle of

the SM, and its detailed study offers great potential to probe the electroweak, flavor and

Higgs sector. The close connection between the Higgs boson and the top quark is most

apparent in the stability of the EW vacuum. It is mainly determined from the running of

the Higgs quartic coupling, which can become negative at high scales and is very sensitive

to the top mass as studied in detail in Ref. [4–9]. The upshot of these computations

is that the current world averages for the Higgs, top, W and Z masses place the EW

vacuum right at the border between stability and meta-stability. Meta-stability implies a

finite lifetime of the EW vacuum, which is, however, longer than the age of the universe.
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Chapter 1 Introduction

The near-criticality of the Higgs mass stimulated new ideas, where this point might be

an attractor point of a dynamical evolution [8]. While such concepts may provide new

insights, one firstly has to work out the exact situation within the SM. Especially, as

the current uncertainties still allow for a strictly stable solution within 1.3σ of the top

mass [9]. Decreasing the uncertainty on the top mass measurement is thus the single most

important parameter to conclusively compute the fate of the EW vacuum. As it has been

pointed out e.g. in Ref. [6], a future high-energy electron-positron collider would reduce

this uncertainty possibly by an order of magnitude. Furthermore, the precise measurement

of the top mass is an important input to global fits of the SM, which can reveal tensions

within the model when uncertainties are sufficiently decreased [10].

To understand why the top mass cannot be easily measured more precisely at the LHC,

we have to take a closer look: While the combination of Tevatron and LHC measurements

of the top-quark mass gives a promisingly precise result of mt = (173.34± 0.76) GeV [11],

care has to be taken on how to interpret this number. In Ref. [8], the authors assume

that this is in fact a measurement of the pole mass but due to inherent uncertainties

associated to it, an additional error of ±0.3 GeV is heuristically added. These uncertainties

arise in QCD because the pole mass resolves scales of order ΛQCD, which probe the non-

perturbative nature of QCD close to the Landau pole. Going back to the measurements,

we have to realize that all of the most precise top mass measurements determine the top

mass by using template fits sensitive to hadronic distributions and thus merely obtain

the parameter of the used Monte Carlo (MC) program, often called MC mass. This is

problematic, as effects like color reconnection [12] of the top decay products affect the

interpretation of the mass that is used in the fixed-order computation. That cannot only

lead to underestimated uncertainties but to a systematic shift of the central value. First

attempts to relate a MC and the pole mass using differential results have been presented

in Ref. [13], leading to a difference between the MC mass in Pythia8 [14] and the pole

mass of 900 MeV to 600 MeV using e
+

e
−

2-Jettiness for top-pair production at next-to-

and next-to-next-to-leading-logarithmic order. Prior to this, a calibration of a MC mass

to the pole mass using inclusive tt production has been performed [15]. Overall, we can

expect these issues to be far better understood at a lepton collider, where the initial state

needs no QCD modeling, neither in the form of the underlying event nor QCD initial-state

radiation. Also the color state is simpler, as top-pair production is at leading order a pure

EW production at lepton colliders, while it is a QCD process at hadron colliders.

The problems in the interpretation of direct top mass measurements call for more indirect

measurements of the top mass. Ideally, one never uses the pole mass in the first place,

which is by definition plagued by renormalon uncertainties [16]. Instead, a theoretically

well defined short-distance mass, like the MS mass, can be used as input parameter to

inclusive observables like the top-pair production cross section [17]. However, this yields

measurements with significantly larger errors of about 2.6 GeV [18]. Similarly, one can

use inclusive single-top production [19] to obtain the MS mass. While this is not quite as

sensitive as tt, it can help to find inconsistencies in parton distribution functions (PDFs)
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and in fact the differences of results obtained with different PDFs are by far larger than

all other uncertainties. In summary, a measurement of a short-distance mass at a hadron

collider at the O (100 MeV) level seems unrealistic.

To truly reach this level of precision, a future linear lepton collider, such as the proposed

International Linear Collider (ILC) [20, 21] or Compact Linear Collider (CLIC) [22] is

needed. With respect to top physics, the two most interesting processes to be studied

in lepton collisions are top-pair production with and without an associated Higgs boson.

Top-pair production allows to measure the top-quark mass at threshold in a short-distance

scheme, like the 1S [23] or PS scheme [24], with uncertainties at or below 100 MeV [25–29].

Associated tt̄H production, on the other hand, is our best handle to measure the top

Yukawa coupling with per cent level precision, see e.g. Ref. [30, 31]. Note that while it has

been suggested that the top Yukawa coupling can be measured at the tt threshold to the

per cent level as well [26], the computation [27] shows that the measurement using tt at

threshold would more likely be of O (20 %).

Aside from top physics, high-energy lepton colliders also give unique possibilities to

measure all Yukawa couplings with unprecedented precision, the Higgs self-couplings

and the total Higgs width with per cent accuracy [32]. Especially, polarized beams

allow to disentangle possible new physics contributions in EW form factors and to study

asymmetries in detail. Most of these measurements are at this level of precision not possible

at the LHC and thus both colliders complement each other nicely. Obviously, most of the

physical parameters can only be extracted with the quoted levels of precision when the

theoretical uncertainties are under control and match their experimental counterparts.

As we already remarked in the beginning of this chapter, the extent of the success

story of the LHC was only possible due to numerous higher-order computations for

various processes. In recent years, the theory community has progressed considerably

in automating precision computations. Advances reach from the automated and fast

generation of one-loop matrix elements [33–36] and the full computation of processes

at NLO in generic MC event generators [37–40], to NNLO computations for diboson

production [41–45] up to NNNLO computations for Higgs boson production [46], to name

a few. It is crucial to understand the effects of higher orders both on signal strengths as

well as on distributions, before some mild deviation in some distribution can be attributed

to BSM physics. For example, the top-quark forward-backward asymmetry measured by

D∅ [47] and CDF [48] at the Tevatron was a longstanding mystery as the NLO QCD+EW

prediction was systematically lower than the measurements. This has spurred various

explanations in new physics models. It is, however, brought nicely into accordance with

the SM by calculating the NNLO corrections [49].

Returning to top quark physics at lepton colliders, we have to remark that most theoret-

ical efforts have concentrated on on-shell computations. For relativistic computations of tt,

which are valid in the continuum energy region, the main ingredients have been obtained

to NNNLO in QCD inclusively [50] and the differential cross section can be computed

to NNLO [51, 52]. The NLO QCD effects on the irreducible final state W
+

W
−

bb̄ have

3
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been considered at NLO [53, 54] but a study of the full physical final state bb̄4f is

missing. For tt̄H, only QCD [55] and EW [56] NLO corrections have been computed

and W
+

W
−

bb̄H or even bb̄4f H have not been considered. However, for the precision

measurement of the top Yukawa coupling and studies of the forward-backward asymmetry,

it is mandatory to understand off-shell effects and their interplay with QCD corrections in

detail. Furthermore, it can be used to determine experimental efficiencies in measurements

when higher-order computations are used that do not account for off-shell effects. This

can only be achieved by computing the full final states, which we show in this thesis.

At the tt threshold, we have to stress that the naive counting of orders in terms of

the strong and electroweak couplings is not appropriate. Instead, bound state effects due

to soft Coulomb singularities are so important that gluon ladder diagrams have to be

resummed, usually in NRQCD, even at ”LO”. Furthermore, an expansion in terms of αs, v

and αem is performed, with the assumption that αs ∼ v ∼ √αem. As the strong corrections

can be considered under control by virtue of the NNNLO [57] and NNLL [58] results, the

relativistic and electroweak corrections have to be taken under closer investigation. Given

the threshold order counting, already taking one tree-level decay in the nonrelativistic

approximation into account is considered an NLO effect [59, 60] and the fixed-order QCD

correction to W
+

W
−

bb̄ an NNLO contribution [61, 62]. While there has been considerable

progress in obtaining those NNLO contributions [61, 63] within unstable-particle effective

field theory [64], one can obtain especially the background contributions also from the

full W
+

W
−

bb̄ at fixed NLO. This is possible if one is able to remove the double counting

of Coulomb singularities, as we present in this thesis. Finally, we emphasize that all of

the nonrelativistic computations are only valid close to threshold and are either given

for specific observables as the three-momentum distribution [23] or only known fully

inclusively. Both of these issues are solved in this thesis by matching the resummed with

the fixed-order computation consistently and implementing the result in an event generator.

Specifically, we incorporate the tt form factor with NLL threshold resummation, derived in

NRQCD, into a relativistic cross section that is factorized within an extended double-pole

approximation. Fixed-order QCD corrections are included, hereby, for the top decay.

This work is divided in three parts. In Part I, we review relevant aspects of NLO and

Powheg event generation. Furthermore, we present the automated implementation in the

MC event generator Whizard. We show in Part II predictions for tt̄ and tt̄H production

and decay at future lepton colliders including all non-resonant and interference contributions

for leptonic decays up to NLO in QCD. In Part III, we present the first prediction for

exclusive W
+

b W
−

b production at a lepton collider with a consistent matching between

the top-antitop threshold and continuum regions. Finally, we summarize our findings and

conclude with a short outlook on possible extensions of the presented results in Chapter 9.
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Chapter 2

NLO event generation

In this chapter, we will discuss various aspects of NLO calculations, at first in general and

then in the context of the Whizard event generator. We will concentrate in this work

solely on QCD corrections and thus often use NLO as a synonym to NLO QCD. We note,

though, that basically all ideas and approaches are applicable to electroweak corrections in

the same way. Also our implementations within Whizard are for the most part generic

enough to allow for a straightforward generalization to EW corrections (potentially even

in BSM models), which is ongoing work in the Whizard project.

We start with the underpinnings of NLO predictions in Section 2.1. This is followed by

a more detailed description of the Frixione, Kunszt, Signer (FKS) subtraction scheme in

Section 2.2. In Section 2.3, we give a brief description of the Whizard event generator and

the infrastructure changes we have implemented to use it for NLO computations. Then,

we discuss the possibility to separate the real contributions into singular and finite pieces

in Section 2.4 and show the simplicity of the matrix-element method at NLO when FKS

subtraction is used in Section 2.5. In Section 2.6, we address the issue of resonance-aware

subtraction and its implementation in Whizard.

2.1 NLO computations

It can be shown [65] that the transition amplitude of an incoming state to an outgoing

state is given at leading order by applying the Feynman rules of the given Lagrangian to

construct the sum of all possible tree-level amplitudes, M(0)
n . With this, the differential,

leading order (LO) cross section is given by

dσ
LO

= dΦn

∣∣∣M(0)
n

∣∣∣
2

(2.1)

We absorb, hereby, the flux factor for the incoming state, four-momentum conservation

as well as the integration over final-state momenta in the phase-space measure dΦn. It

becomes more interesting when we try to compute the one-loop correction for a given

process. The integration over the loop momenta can yield divergences, both for small, i.e.

infrared (IR), as well as large, i.e. ultraviolet (UV), momenta. The UV singularities can

7



Chapter 2 NLO event generation

be removed by renormalization, whereby the divergence is canceled by appropriate counter

terms to the bare Lagrangian [65]. This leaves us with IR singularities in the one-loop

expression for n particles. It turns out that these are canceled by the corresponding n+ 1

particle contributions, which also diverge when a massless particles becomes soft or two

massless particles become collinear. It has been shown by Kinoshita [66] as well as Lee

and Nauenberg [67] that these mass singularities cancel out in general as long as one

sums over degenerate states. This is commonly referred to as the KLN theorem and has

been realized in QED already by Bloch and Nordsieck [68]. Physically, it corresponds to

the fact that one cannot distinguish a final state from another one that is accompanied

with an infinitely soft gluon or photon. Diagrammatically, one can see that both virtual

e−

e+

t̄

g

t

Figure 2.1 Exemplary Feynman diagrams for real and virtual corrections to on-shell
top-pair production at a lepton collider

corrections, V = 2 Re
[
M(0)

n M(1)∗
n

]
, as well as real corrections, R =

∣∣∣M(0)
n+1

∣∣∣
2

, belong to

the same set of Feynman graphs that is cut by an arbitrarily drawn line [67] as depicted

in Fig. 2.1. Note that the guarantee of finite results of the KLN theorem only holds for IR

safe observables. IR safety means that the observable should not be sensitive to extremely

soft or collinear momenta. To ensure this for collinear momenta, usually a clustering

algorithm is employed, which recombines momenta that are close.

We can write down the differential NLO cross section, which also includes the leading-

order (Born) contribution B =
∣∣∣M(0)

n

∣∣∣
2

, as

dσ
NLO

= dΦnB + dΦn+1R + dΦnV . (2.2)

Note that this also requires a fixed order counting in B such that

B = O
(
α
n
, α

m
s

)
and {R, V } = O

(
α
n
, α

m+1
s

)
. (2.3)

for QCD corrections and analogously for QED corrections n is increased.

Eq. (2.2) works perfectly fine in analytic computations, where IR singularities show up

in dimensional regularization as explicit 1/ε, 1/ε
2
, . . . poles (after phase-space integration

of R), whereby ε is related to the space-time dimensions as D = 4− 2ε. But a numerical
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2.1 NLO computations

MC integration over physical momenta, which is necessary for complicated processes, can

only be done in four dimensions. Thus, we have to find a way to have finite results in

D = 4 dimensions, canceling the IR divergences for n and n+ 1 kinematics separately. The

most commonly used solution is the subtraction method, whereby we add and subtract a

subtraction term C [Φn+1]:

dσ
NLO

= dΦnB + dΦn+1

(
R
∣∣
ε=0
− P [Φn+1 → Φn]C

∣∣
ε=0

)
+ dΦn

(
V +

∫
dΦrad C

)∣∣∣∣
ε=0

.

(2.4)

Hereby, both R and C are finite in D = 4 for finite momenta, whereby in the soft/collinear

limit the arising divergence is canceled by the local counterterm PC. Note the subtlety

that is introduced by the projector P [Φn+1 → Φn]: While C can still be evaluated as a

function of the real phase-space Φn+1, the projector ensures that all counterterms are fixed

to n-body kinematics in the differential phase-space. Thus, the addition and subtraction

of C nicely cancels in all IR safe distributions. The explicit ε poles of V are canceled by

the term
∫

dΦradC. The integration of C over the radiation phase-space can be performed

analytically such that we have an object that is finite in D = 4 and only depends on the

n-body phase-space:

Ṽ [Φn] = V [Φn] +

∫
dΦrad C [Φn+1] ≡ V [Φn] + C̃ [Φn] (2.5)

C̃ are commonly called integrated subtraction terms.

2.1.1 Subtraction schemes

The definition of C is not unique and in fact different subtraction schemes are preferred

by different groups. The most frequently used subtraction schemes are Catani-Seymour

(CS) [69–71] and FKS [72–74] subtraction. In CS subtraction, a real phase-space point is

related to multiple Born phase-space points according to the different possible splittings.

Thus, it is an n + 1 → n mapping. On the other hand, in FKS subtraction, we start

with an underlying Born configuration and construct all possible real emissions: an

n→ n+ 1 mapping. As we show in this part, this yields some technical benefits for event

generation. The drawback of the FKS subtraction is that the phase-space generation

has to be coordinated with the subtraction. Specifically, it has to be expressed in the

same coordinates that are used in the subtraction such that not any generic phase-space

parametrization for dΦn+1 can be used, which is possible in CS.

Furthermore, the kind of splittings that are used are different. In CS, the dipole

factorization formula plays a central role, i.e.

C =
∑

dipoles

B ⊗ Vdipole . (2.6)
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Chapter 2 NLO event generation

It is in fact a generic feature of QCD (and QED) factorization that the real emission pattern

can be written as B times a universal factor that encodes the soft and collinear divergences.

The convolution, indicated by ⊗, has to respect the spin and color correlations of R, which

originate from interference terms between diagrams with emissions from different legs. In

case of CS subtraction, these universal functions use dipoles, which consist of an emitter

and a spectator. Thus, it is a 3→ 2 mapping. In the FKS subtraction, the phase-space is

known exactly and thus R can be separated into disjoint regions R =
∑
Rij, where by

construction in each region only one pair of particles, (i, j), can become collinear, w.r.t.

each other, or either of them soft. This simplifies the construction of the collinear limits

in C and allows to use 1 → 2 kinematics in combination with a boost of the recoiling

momenta.

Notable further subtraction schemes are Nagy-Soper [75] and antenna [76] subtraction,

which have, however, not yet been used in a general purpose NLO MC.

2.2 FKS subtraction

The automation of FKS subtraction within Whizard has been mentioned for the first

time in Ref. [77] and was discussed in Refs. [40, 78]. A far more detailed description of

all formulae required for the implementation can be found in Ref. [79]. We review in this

section the core ideas and set the necessary notation for the following.

As we noted in the previous section, the FKS subtraction relies on the separation into

disjoint singular regions, enumerated in the following by α. These regions are characterized

by the FKS tuples (i, j), indicating the final state particles that can induce divergences.

They form a set

PFKS =
{

(i, j) : i 6= j , R→∞ if Ei → 0 or Ej → 0 or ki ‖ kj
}
. (2.7)

With this set, one can construct the separation of R by applying appropriate phase-space

partitions Sα such that

Rα = SαR and
∑

α∈PFKS

Sα = 1 . (2.8)

The important point is that Rα diverges only when i and/or j become collinear/soft and

not in any other phase-space region. Thus, the other divergences, which are certainly

present, have to be suppressed in Rα. The concrete implementation is arbitrary but it has

been observed that smooth functions lead to improved numerical behavior compared to

Heaviside distributions, which leads to a reduced variance of the generated function and

easier integration grid adaption. Omitting symmetrization factors and special treatments
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2.2 FKS subtraction

for g → gg splittings, we can use the simple form

Sα ≡ Sij =
d
−1
ij∑

kl∈PFKS
d
−1
kl

, (2.9)

which obviously fulfills the unitary condition of Eq. (2.8). The standard expression for the

distance measure dij is

dij = 2(ki · kj)
EiEj

(Ei + Ej)
2 , (2.10)

which guarantees the conditions demanded in Eq. (2.7) and at the same time suppresses

other divergences in combination with Eq. (2.9). To construct the subtracted real correction

term with these ingredients, we first have to discuss the phase-space construction.

2.2.1 Radiation phase-space

As noted earlier, the dΦn+1 phase-space factorizes into the radiation phase-space and the

underlying Born configuration:

dΦn+1 = dΦn dΦrad = dΦn J (ξ, y, φ) dξ dy dφ . (2.11)

The Jacobian J enters due to the change of the radiation integration variables to the

three dimensionless, independent variables ξ, y and φ. ξ parametrizes the energy of the

radiated parton in the range of [0, ξmax] with ξmax ≤ 1 and

Erad =

√
s

2
ξ . (2.12)

Equation (2.12) is modified for the treatment of resonances, which is discussed in Section 2.6,

or in the case of decays, cf. Eq. (2.23). ξmax ensures, hereby, that the radiation uses at

most the available energy that leaves the emitter with enough energy to stay on-shell

(which is zero for massless emitters). With y ∈ [−1, 1], we denote the angular separation

of emitter and emitted parton. In case of massless emitters, it is simply cos θ but the

definition is more involved for massive emitters. Finally, φ ∈ [0, 2π] is the azimuthal angle

that rotates emitter and emitted parton of the real phase-space around the original flight

direction of the emitter in the Born phase-space. As there are of course multiple emitters,

we have to combine this construction with the FKS tuples.
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Chapter 2 NLO event generation

2.2.2 Subtraction terms

The non-subtracted real correction term can be written as

dΦn+1 R = dΦn

∑

α∈PFKS

dΦ
α
rad Rα . (2.13)

Now, one can handle the singular behavior for each α separately. For massless final-

state emissions, this is simply given by 1/ξ
2

and 1/(1− y) due to the possibly divergent

propagator of the combination of emitter and emitted parton. This allows to define an

IR-finite R̃α:

Rα =
1

ξ
2

1

1− y
(
ξ

2
(1− y)Rα

)
≡ 1

ξ
2

1

1− y R̃α . (2.14)

Dimensional regularization allows to extract the explicit poles in ε. It yields, using

Eq. (2.14),

dΦradRα = dΩ
2−2ε

dy (1− y)
−1−ε

dξ ξ
−1−2ε J (ε) R̃α(ξ, y) , (2.15)

where we have absorbed some ε dependent constants in J (ε) and dΩ
2−2ε

is the analog to

dφ in 4− 2ε dimensions. The divergent behavior occurs, hereby, at y = 1 and ξ = 0 for

collinear and soft singularities, respectively. This motivates the use of plus-distributions,

defined as
∫

dx
(
g(x)

)
+
f(x) =

∫
dx g(x)

(
f(x)− f(s)

)
, (2.16)

for a function g that diverges at s, which can be 0 for ξ and 1 for y. Note that Eq. (2.16)

is finite for all x. With the plus-distributions, we can regulate the divergences and expand

the terms of Eq. (2.15) as

1

(1− y)
1+ε = −2

−ε

ε
δ(1− y) +

(
1

1− y

)

+

− ε
(

log(1− y)

1− y

)

+

+O
(
ε

2
)

(2.17)

and

1

ξ
1+2ε = − 1

2ε
δ(ξ) +

(
1

ξ

)

+

− 2ε

(
log ξ

ξ

)

+

+O
(
ε

2
)
. (2.18)

These expressions allow to write the differential real contribution as a sum of a finite part

in four dimensions and three divergent parts:

dΦradRα = dφ dy dξ J (ξ, y, φ)

(
1

ξ

)

+

(
1

1− y

)

+

R̃α(ξ, y)

+ Icoll + Isoft + Isoft−coll +O (ε) (2.19a)
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2.2 FKS subtraction

Icoll = −2
−ε

dΩ
2−2ε

dξ

[
1

ε

(
1

ξ

)

+

− 2

(
log ξ

ξ

)

+

]
R̃α(ξ, 1) (2.19b)

Isoft = −1

2
dΩ

2−2ε
dy

[
1

ε

(
1

1− y

)

+

−
(

log(1− y)

1− y

)

+

]
R̃α(0, y) (2.19c)

Isoft−coll = dΩ
2−2ε

(
2
−ε

2ε
2

)
R̃α(0, y) (2.19d)

In Eqs. (2.19b) to (2.19d), the delta distributions of Eqs. (2.17) and (2.18) have been

evaluated. In the language of Section 2.1, Icoll, Isoft and Isoft−coll are the integrated

subtraction terms that will be added to the virtual component after analytic integration

over the remaining radiation phase-space. On the other hand, the differential subtraction

terms are already subtracted in the finite part of Eq. (2.19a). Explicitly, the finite part

reads

dφ dy dξ J (ξ, y, φ)
1

1− y
1

ξ

(
R̃α(ξ, y)− R̃α(0, y)− R̃α(ξ, 1) + R̃α(0, 1)

)
. (2.20)

The soft limit, R̃(0, y), can be straightforwardly derived and results in a simple expression

of a convolution of the Born with eikonal factors:

R̃α(0, y) = 4παs
∑

ij

ki · kj
(ki · k)(k · kj)

Bij , (2.21)

where Bij is the color-correlated Born matrix-element and k the momentum of the emitted

parton. Note that the sum over ij in Eq. (2.21) goes over all particles of the process, thus

accounting for any possible interference terms. For Part III, we will have to restrict this

summation to smaller subsets as we will neglect some of these interferences. Similarly,

one can obtain the collinear and soft-collinear terms for q → qg, g → qq and g → gg

splittings, which include spin-correlated instead of color-correlated Born matrix-elements.

These spin-correlated matrix-elements stem from gluon polarization vectors (of g → qq

and g → gg) that mix amplitudes with different Lorentz polarizations of the gluon in the

underlying matrix-element. Thus, they are only relevant if a gluon is present in the LO

process definition, which applies for none of the processes presented in this thesis.

To obtain the virtual subtraction terms, one has to integrate the eikonal factors of

Eq. (2.21), leading to the eikonal integrals Eij,ρ(mi,mj). Hereby, the finite contribution is

given for ρ = 0 as it corresponds to the coefficient of power of ε in the Laurent expansion.

Analogously, the collinear limits have to be integrated, leading to terms of the form QiB
and mi,mj are the masses of the involved particles. Note that the spatial integration

simplifies the spin-correlated matrix-elements to the simple Born matrix-element B in QiB.

Finally, there are of course also finite contributions of the one-loop amplitude, V
loop

fin , that

we will obtain from a One-Loop Provider (OLP) program. Thus, the virtual subtracted

13



Chapter 2 NLO event generation

component can be written as

Ṽ =
∑

kl

Ekl,0(mi,mj)Bkl +
∑

i

QiB + V
loop

fin . (2.22)

This completes our top-level review of the FKS subtraction and how we obtain events at

NLO.

2.3 The WHIZARD event generator at NLO

For numerous linear collider studies, the multi-purpose event generator Whizard [77,

80, 81] is the standard simulation tool, as it supports beamstrahlung, QED initial-state

radiation (ISR) and beam polarization out of the box and gives fast and reliable tree-level

predictions even for full ten particle final states. In general, it supports any combination

of lepton and hadron beams. While most event generators have focused their efforts

during the last decades on improving the QCD precision for SM processes at the LHC,

Whizard has traditionally targeted BSM physics and spearheaded many phenomenological

studies [82–87]. For an easier implementation of new models, automated FeynRules [88]

and Sarah [89] interfaces have been developed, cf. Ref. [90] and [91], respectively.

With these, already a multitude of BSM models is supported but this will be extended

to basically any Lagrangian-based BSM theory with the full support of the universal

FeynRules output (UFO) format [92], which is currently completed.

First attempts of implementing NLO QED effects in Whizard have concentrated on

fixed order as well as resummed soft photons for chargino production at the ILC [93, 94].

We note, though, that these results have never been merged in the official Whizard release,

among other reasons as they were based on Whizard 1, which was not as modular and

extensible as Whizard 2.2. The real emission contributions of the NLO QCD corrections

to the pp → bb̄bb̄ [95, 96] process have been computed with Whizard. However, the

(CS) subtraction was custom-tailored for this process and not easily extensible to generic

processes. But with the advances in NLO automation and the emphasis on precision

computations, generic corrections are becoming feasible and mandatory. Especially, the

tremendous advances in the automation of the computation of one-loop amplitudes is a

key component in this endeavor. Publicly available OLPs such as Helac-1Loop [97, 98],

OpenLoops [34], GoSam [33], Recola [35, 36] or MadLoop [99] can compute arbitrary

virtual matrix-elements in the SM. In practice though, these programs are limited by

computing power and have strongly varying performance due to the different employed

algorithms and strategies concerning the numerical stability. Some additional details on the

idea behind OpenLoops, Recola and Helac-1Loop will be given in Section 4.3. With

these OLPs, complete NLO QCD support has so far been achieved within the frameworks

of Helac-NLO [98], Madgraph5 aMC@NLO [38], Sherpa [37] and Herwig7 [39],

while generic EW support is actively pursued by multiple groups [100–104]. Whizard
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2.3 The WHIZARD event generator at NLO

presently supports a very broad class of processes at NLO QCD. However, before full QCD

support is claimed, the full and thorough validation against numerous existing results

still has to be finished. As noted in the beginning of this chapter, at the same time EW

support is currently being developed.

The Whizard program has three well separated sub-packages: O’Mega [80], Vamp [105]

and Circe [106]. O’Mega computes multi-leg tree-level matrix-elements as helicity am-

plitudes in a recursive way that avoids Feynman diagrams. Vamp is used for Monte-Carlo

integration and grid sampling. Color information is treated in O’Mega using the color-flow

formalism [107]. It combines the multi-channel approach [108] with the classic Vegas

algorithm [109] to automatically integrate cross sections with non-factorizable singularities.

The Circe package can be used to create and evaluate lepton beam spectra and is also

interfaced to GuineaPig [110, 111], which can closely model the beam spectrum from

the machine setup of a linear collider design. We have devised an alternative mode for

O’Mega, which is discussed in Section 2.3.3 together with Whizard’s parallelization

options.

The generic NLO framework in Whizard builds upon the FKS subtraction scheme,

as discussed in Section 2.2. FKS subtraction allows for the application of Whizard’s

optimized multi-channel phase-space generation for the underlying Born kinematics, from

which real kinematics are generated. It is also very well suited to the employed matching

procedure, as described below. Whizard can use OpenLoops, GoSam as well as

Recola as one-loop matrix-element providers as well as for the computation of color- and

spin-correlated Born matrix-elements. At tree-level, they can also be used as alternatives

to O’Mega. For the tt threshold specific matrix elements of Part III, we use a similar

plugin mechanism as for the OLPs to allow the use of squared amplitudes and interference

terms instead of complex matrix-elements in Whizard.

To obtain automated NLO corrections, we firstly use Whizard’s abilities to find

automatically all possible decay processes. Combined with the information which splittings

are allowed (q → qg, g → qq and g → gg), we can thus construct all contributing real

processes. From this, the FKS tuples are constructed to compute subtracted real and

virtual corrections.

2.3.1 Event generation

Whizard can be used for event generation on parton level as well as for the subsequent

shower and hadronization. For this purpose, it has its own analytical [112], a kT-ordered

parton shower, and a built-in interface to Pythia6. Hereby, the results of Pythia6 are

reinterpreted by Whizard, which allows to use Whizard’s event analysis or write events

out to any of the numerous supported file formats like HepMC [113], LCIO [114, 115]

(the event data model for linear collider detector studies that is particularly suited for

particle-flow algorithms), StdHEP or various ASCII file formats. We have modernized the

interfaces to the parton showers and the interplay with matching and merging algorithms,
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taking advantage of the object-oriented structure of Whizard 2.2. The effect of matching

procedures has been abstracted, apart from technicalities, to two hooks: before shower

and after shower. In both calls the matching algorithm receives the particle set and can

modify it or return a veto. The new infrastructure allows to add new shower interfaces

and/or matching and merging algorithms more easily.

At NLO, Whizard can produce weighted fixed-order events. Especially the output

to HepMC allows for flexible phenomenological fixed order studies in combination with

Rivet’s [116] generic event analysis capabilities. By virtue of Linux FIFOs, which are

special files that act as a pipe, one can even setup Whizard and Rivet such that

histograms are directly created without having to write events to (slow) disks. This is

necessary for very high multiplicities at high precision, as the disk space and time to read

those events becomes prohibitive. In the NLO event samples, we associate Born kinematics

with a weight of B + Ṽ −∑αCα. Together with this Born event, we generate for each

singular region α, a real-emission event with weight Rα. Note, though, that R requires a

lot more statistics due to the more complex final state and Ṽ is more expensive to evaluate

per phase-space point due to the loop integrals. Thus, it is possible to split up weighted

NLO simulations into separate integrations and event generations. Hereby, the real events

will contain also Born kinematics to accommodate the subtraction terms. We discuss

another possibility to generate n-particle events with NLO information in Section 2.5. The

matching of NLO predictions to parton showers is described in Section 3.3.

2.3.2 NLO widths

Apart from scattering processes, Whizard is also able to integrate decay widths for

1→ N processes at LO and NLO. Due to the flexible Sindarin syntax, the computed

decay width can be directly used to set the model parameters. In the other NLO MC

event generators such a rich feature is not straightforwardly accessible but has to be

realized with external scripts. As we show in Part II, a consistent computation of the

width of unstable particles according to all parameters, even the renormalization scale,

and corresponding to the same level of off-shellness as the scattering process is necessary

for a precision description.

The final-state phase space of the decays is built in the usual fashion, whereas the

initial-state phase space is adapted for decays. This phase-space is somewhat special, as

the momentum of the decaying particle R has to be fixed to pR = (mR,0). Thus, the

standard algorithm to generate initial-state radiation [79], which we omitted in Section 2.2

as this thesis is focused on lepton colliders, cannot be directly applied. Instead, we first

generate the gluon as in the standard approach with the identification
√
s = mR

pn+1 = mR ξ

(
1,

√
1− y2

sinφ,

√
1− y2

cosφ, y

)
. (2.23)

Hereby, ξ is sampled within 0 < ξ < ξmax such that the remainder momentum, prem =
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2.3 The WHIZARD event generator at NLO

pR − pn+1, which represents the remaining momenta of the decay and recoils in the rest

frame decay of the resonance back-to-back against the gluon, still has enough energy to

generate all final-state particles of the decay on-shell. We then recursively use 1 → 2

kinematics and the associated rest- to lab-frame boosts [117] to generate the final-state

momenta of the decay products. Thus, after the first iteration the momentum of the first

decay product is fixed and we are left with a new remainder momentum (in case, it is a

1→ N decay with N > 2). The recursion finalizes when there are only two decay products

left, which then form the final 1→ 2 decay to fix their momenta.

2.3.3 OVM and parallelization

O’Mega, the automated tree-level matrix element generator, normally writes out For-

tran90 source code that is compiled and linked to Whizard at runtime. For very complex

processes with O (GBs) of source code, this compilation can fail and/or take several hours.

Thus, we have implemented a virtual machine, the Omega virtual machine (OVM), which

does not require recompilation and has a runtime that is very competitive with compiled

code, as described in Ref. [118, 119]. Runtimes for the OVM compared to compiled code

from O’Mega is shown exemplary for n gluon amplitudes in the left plot of Fig. 2.2.
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Figure 2.2 CPU times normalized for each process to the compiled source code using
gfortran -O3. Dashed (solid) lines represent the OVM (compiled source code). The
right plot shows speedup and efficiency for a fixed number of phase-space points: dashed
and dotted lines indicate a parallel evaluation of multiple phase-space points (PS) and
the parallel evaluation of the amplitude itself (A). The solid lines represent Amdahl’s law
for a fixed value of the parallelizable part p. See Ref. [118, 119] for details.

For parallelization, there are multiple options, whereby it depends on the process,

which one is the most efficient: The sum over helicities in O’Mega and some aspects

of phase-space generation can be parallelized with OpenMP, which is fairly efficient for

large numbers of helicities and given there is enough memory to compute the matrix

element of the process multiple times in parallel. For very complicated processes, the
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Chapter 2 NLO event generation

computation of a single helicity can instead be parallelized within the OVM with OpenMP

instead [118, 119]. In the right plot of Fig. 2.2, we show the speedup and efficiency to

compute a fixed number of phase-space points for n gluon processes, either computing each

helicity in parallel (A) or computing each phase-space point in parallel (PS). Finally, the

message passing interface (MPI) parallelization of the Vamp integration has been recently

reimplemented with modern MPI features, which allows to access far larger speed-ups with

multiple nodes that do not have to share memory. For event generation and scans over

parameters like
√
s, we have implemented such an MPI parallelization externally with the

Python code Whizard-Wizard. This scales perfectly as no communication is required

but cannot speed up the integration of a single parameter point.

2.4 Separation of finite and singular real

contributions

Real contributions should not all be treated equally. While we have centered our discussion

in this part so far on the singular aspects of R, there are also finite contributions, which

are not described by the soft/collinear factorization. This is e.g. the case for diagrams

that involve the splitting of gluons into massive top quarks, because the invariant mass of

the gluon propagator is then bound from below by 2mt . In this case, no mass singularity

occurs and the contribution is finite. Applying the subtraction to such terms, which

might dominate in certain phase-space regions, can actually hamper the convergence of

the integration. Also, in anticipation of the Powheg matching in Section 3.3, we note

that a resummation of such terms can lead to unwanted, artificial effects. Thus, it is well

motivated to introduce a general separation of R into a finite, Rfin, and a singular piece,

Rsing,

R = Rfin +Rsing . (2.24)

Hereby, subtraction terms are only added to Rsing, while the finite part is integrated

separately like an ordinary n+ 1 LO calculation. In fact, Whizard automatically adds a

separate integration component for the finite part alongside the usual components for the

NLO computation. Such a separation has been first introduced in the FKS and Powheg

framework in Refs. [120, 121]. It can be easily achieved with a multiplicative approach

and has some similarity with slicing methods
1
,

R
α
sing = R

α
F (Φ

α
n+1) and Rfin = R(1− F (Φn+1)) (2.25)

1Phase-space slicing methods can also be used to obtain NLO or NNLO cross sections. They can, however,
not be automated as easily and have artificial dependencies on the slicing parameters, rendering them
not the preferred solutions.
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2.5 Matrix-element method at NLO

We have devised a fairly generic ansatz for this suppression factor

F (Φn+1) =





1 if ∃ (i, j) ∈ PFKS with
√

(pi + pj)
2
< h+mi +mj

0 else
. (2.26)

Thus, a phase-space point is singular (F = 1), if any of the potentially divergent FKS

tuples form an invariant mass that is smaller than the hardness scale h, which parametrizes

the separation, and the sum of the individual masses. Note that this catches both soft

and collinear divergences. This becomes obvious in the massless case, where Eq. (2.26)

simplifies to

F (Φn+1) =





1 if ∃ (i, j) ∈ PFKS with 2EiEj(1− cos θij) < h
2

0 else
. (2.27)

The step function in Eq. (2.26) could of course be generalized to a smooth function for

potentially better convergence. However, the sharp separation of the real phase-space has

the benefit of making the unambiguous separation of resolved and unresolved emissions,

which we can use in the next section.

In Whizard, we have verified that this splitting reproduces the full cross section, i.e.

that
∫
R =

∫
Rsing +

∫
Rfin. This is not fully trivial as for Rsing the FKS phase-space is

used while Rfin is handled with a standard LO phase-space, as we already indicated in

Eq. (2.25) by omitting α in the finite part. Different definitions of F (Φn+1) can easily

be implemented as we have based it on an abstract class with clearly defined interfaces,

similar to the shower and matching algorithms, mentioned in Section 2.3.1.

2.5 Matrix-element method at NLO

The matrix-element method (MEM) [122, 123] is a powerful experimental technique to

extract the maximal amount of information out of measured events. It is thus a tool

especially suited for processes where only a handful of events can be measured due to

low cross sections. It allowed, e.g., to perform top mass measurements with a precision

of ∼ 5 GeV at the Tevatron [124, 125] using less than 100 events. The basic idea is to

use an experimentally measured event and compute the likelihood of this event with

a matrix element. Of course, for this to be useful, the effects of the detector, parton

shower and hadronization have to be unfolded, which are encoded in transfer functions,

W ({p}jets
measured , {p}

jets
partonic). The transfer functions are usually obtained from MC data

send through a detector simulation or at least smeared with a Gaussian. In theoretical

studies, these are often ignored by replacing them with a delta distribution. With this

simplification, the likelihood of a model parameter Ω for a set of n-parton events {pn}i is
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Chapter 2 NLO event generation

given at LO by

LLO
(Ω) =

∏

i

1

σ
LO

(Ω)

dσ
LO

(Ω)

d {pn}i
. (2.28)

The theory parameter can then be extracted by maximizing this likelihood or the corre-

sponding log-likelihood. Note that this requires an integration over all invisible particles

that participate in σ
LO

, which quickly increases the computational cost of the method. At

the energies of the LHC, one further has to deal with large amounts of QCD ISR, which

leads to additional correction factors [126].

Going to NLO, several subtleties occur. Firstly, the observed n jet event might contain

unresolved additional radiation from the n+ 1 contributions, which is of course important

to guarantee the cancellation of IR divergences. Thus, an appropriate mapping has to

be in place and one has to integrate over all unresolved real contributions that lead to

the same n jet event. Secondly, at NLO it cannot be guaranteed that the differential

cross section is positive in all phase-space regions and for all renormalization scale choices.

Assuming a sensible scale choice, the remaining negative differential distributions have to

be considered as areas where fixed-order perturbation theory is not applicable and the

method cannot be used.

There has been quite some activity around the topic of how one can construct the

MEM with NLO accuracy based on CS subtraction [127–131]. In CS subtraction, it is

not straightforward to construct one n-particle event, as we alluded in Section 2.1.1,

because it is a Φn+1 → NΦn mapping with N > 1. The considered solutions range from

the construction of a special forward branching phase space generator [132] to 3 → 2

clusterings [130]. The impact of using the MEM@NLO compared to LO is undeniably

relevant, as shown for example in Ref. [130], where the use of a NLO likelihood indeed

reproduces the input top mass in e
+

e
− → tt while the LO likelihood yields an offset of

∼ 4 GeV. In the FKS subtraction and its application to Powheg matching, cf. Section 3.3,

however, the main ingredients for the MEM@NLO are already present, as also noted in

Ref. [127]. Here, we write the NLO cross section starting from the underlying Born

configuration dΦn,

dσ
NLO

= dΦnB̄ with B̄ = B + Ṽ +
∑

α

dΦ
rad

(
1

ξ

)

+

(
1

1− y

)

+

R̃α , (2.29)

using the definitions of Eqs. (2.19a) and (2.22). With Section 2.4 in mind, we should

actually use Rsing in Eq. (2.29). The exact separation is related to the definition of

unresolved radiation in the experiment. In fact, we could use at the same time Rfin for

resolved n+ 1 particle events. However, for these areas we would basically only have LO

accuracy, as it is purely described by the real LO matrix-elements but might help with
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2.6 Resonance-aware FKS subtraction

statistics. For unresolved emissions, we can write down the MEM@NLO trivially as

LNLO
(Ω) =

∏

i

1

σ
NLO

(Ω)

dσ
NLO

(Ω)

d {pn}i
. (2.30)

where it is understood that in Eq. (2.29) the integration over the emission phase-space is

performed. For resolved emissions, we would simply replace B̄ in Eq. (2.30) with Rfin and

take the product over all n+ 1 particle events. Finally, we note that if one is able to define

an n-particle probability at NLO, one can also generate unweighted NLO events, which

is a welcome byproduct. In Whizard, we have implemented the possibility to generate

unweighted NLO events according to Eq. (2.29), whereby we perform the integration over

the radiation phase-space with a MC sampling. To use it in an experimental analysis, a

new interface has to be devised, where unfolded n (and possibly n+ 1) particle events are

given to Whizard and the probabilities are returned.

2.6 Resonance-aware FKS subtraction

The standard approach to compute automated NLO corrections can be very inefficient

if partons originate from the decay of a narrow resonance. For example, in Part II we

study processes like W
+

W
−

bb̄ production, where this issue arises from H → bb and

t → Wb. As discussed for the first time in Ref. [133], the problem is due to the fact

that the momentum of the resonant particle can be different in the Born phase-space and

the corresponding real phase-spaces
2
. This is problematic for the subtraction, as it can

invalidate the soft/collinear factorization, cf. e.g. Eq. (2.21), due to the wildly different

values of the resonant propagators.

To understand this in more depth, consider the H → bb̄ splitting with the very narrow

Higgs resonance ΓH = O(1 MeV). This occurs as a Higgsstrahlung background process to

e
+

e
− →W

+
W
−

bb̄ and its decays. Thus, the squared matrix-element of the total process

contains a term with the contribution of the squared Higgs propagator,

D
B
H =

[
(p

2
bb −m2

H)
2

+m
2
HΓ

2
H

]−1

, (2.31)

where p
2
bb denotes the invariant mass of the bb̄-pair in the Born phase space. The Higgs

propagator in the corresponding real squared matrix-element has the form

D
R
H =

[
(p

2
bbg −m2

H)
2

+m
2
HΓ

2
H

]−1

. (2.32)

Hereby, the Higgs virtuality is made up by the invariant mass of the bb̄-system and the

additional gluon, p
2
bbg. We can parametrize the change of the Higgs virtuality from the

2This mismatch also occurs in CS subtraction, where the real phase-space is mapped to multiple Born
phase-spaces.
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Born to the real value by ∆

p
2
bbg = p

2
bb + ∆

2
. (2.33)

Furthermore, we can define the Born off-shellness δ = p
2
bb −m2

H and check the ratio of the

propagators

D :=
D

B

D
R

= 1 +
∆

4
+ 2∆

2
δ

δ
2

+m
2
HΓ

2
H

δ→0
= 1 +

∆
4

m
2
HΓ

2
H

. (2.34)

For the real amplitude and its soft and collinear approximation in the subtraction terms

to match, it is required that D ≈ 1 in the soft as well as the collinear limit. At the

resonance, δ → 0, we see that this condition is fulfilled if ∆
4 � m

2
HΓ

2
H . We immediately

see that this poses a problem in the collinear limit, as ∆
4

can become large if a hard-

collinear gluon is emitted. However, also in the soft limit a significant mismatch can

occur if the denominator m
2
HΓ

2
H is sufficiently small. This is definitely the case for the

Higgs, with m
2
HΓ

2
H = (0.720 GeV)

4
, while for the top quark the problem is less severe

with m
2
tΓ

2
t = (15.4 GeV)

4
. Note that, as mentioned in Chapter 1, at lepton colliders,

top-pair production is a pure electroweak process while it is a strong production at hadron

colliders. This also implies that H → bb̄ is not included in the off-shell description at

hadron colliders. In general, we can expect that the handling of electroweak resonances

has to be more precise at lepton colliders due to the initial state. In Ref. [133], a

modification of the FKS subtraction procedure was presented, which addresses the problem

of narrow resonances, and implemented for single-top production in the Powheg-Box.

We implement this approach for generic processes in Whizard. This makes Whizard the

first fully automated, publicly available NLO MC with a dedicated resonance treatment.

In the resonance-aware FKS approach, one does not only partition the phase-space in

distinct singular regions but also in distinct regions with a well-defined resonance structure.

In each of these regions, the real phase-space is constructed such that the invariant mass

of the particles, which originate from the same resonance, is kept fixed. This is in contrast

to the default approach, where the momentum of the emitted parton is shared across

all Born momenta. Here, the radiation only affects the decay products of the resonance

and the remaining final states maintain their Born momenta. Thus, the deviation ∆ in

Eq. (2.34) is exactly zero for this resonance by construction, and hence D = 1. Hereby,

we make use of modified FKS mappings, which are evaluated in the rest frame of the

corresponding resonance. This leads to the problem that the sum over all singular regions

does not reproduce the full real matrix-element anymore. As shown in Ref. [133], this can

be solved by introducing an additional component, the soft mismatch, which we discuss in

Section 2.6.1.

In the resonance-aware FKS approach, the standard FKS projectors Sα, cf. Eq. (2.9),

are extended by resonance projectors Pfr . These have a similar purpose as Sα in the sense

that Pfr → 1 if δ → 0, whereby δ belongs to a resonance of the resonance history fr. On

the other hand, Pfr → 0 when another resonance goes on-shell that is not contained in the

resonance history. Resonance histories can contain multiple, potentially nested, resonances,
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2.6 Resonance-aware FKS subtraction

which form the set Nd(fr). Motivated by the narrow-width limit of a resonant process, Pfr
can be computed with a product of Breit-Wigner factors of a given resonance structure

3

Pfr =
∏

i∈Nd(fr)

m
2
i

(p
2
i −m2

i )
2

+m
2
iΓ

2
i

. (2.35)

Hereby, pi is the momentum of the resonance in the underlying Born phase-space. The

normalization that takes care of other regions is then analogous to Eq. (2.9):

Sα =
Pfr(α)d

−1
(α)

∑
f
′
r∈T (α)Pf ′r

(∑
α
′PFKS(f

′
r) d
−1

(α
′
)
) , (2.36)

where we used that we can always identify a resonance history for each singular region

fr(α). T (α) is the set of resonance histories compatible with the flavor structure of α.

The d terms have to be evaluated in the resonance rest-frame. Note the order of the

summation: we sum for each resonance history over all compatible FKS tuples and then

sum over all resonance histories. Thus, a singular region in the traditional sense can be

evaluated multiple times and even have distinct d values due to different frames. Overall,

the number of resonance-aware singular regions increases and can be at most the number

of resonance histories times the number of standard singular regions. Usually, it is less

than this as not all singular regions are compatible with all resonance histories as they

might refer to a pair of particles not contained in the resonance history.

In Whizard, resonance information is computed for every process, already at leading

order, by using information about the vertices and masses of a physics model. This

information is used by the multi-channel integrator Vamp, where all relevant resonance

structures are sampled for an efficient MC integration. We use exactly these resonance

structures to set up the resonance-aware FKS subtraction. Thus, in principle, each of

Whizard’s integration channels could be identified with the resonance histories, also using

the internal mappings used in the construction of the Born phase-space. However, we

decided to introduce resonance histories using the projectors of Ref. [133] independently

of the Monte Carlo integration channels. This ensures that the result does not depend

on unphysical weights, which only have to improve integration performance. In the

event output, we only construct an entry for a real emission for each distinct phase-

space structure, which is given by emitter and the decaying particles. For each of these,

we sum over all singular regions, which are compatible with the phase-space structure.

This ensures that we only create the minimal number of events necessary, keeping event

generation efficient. Moreover, the soft mismatch is not a separate entry but included in

3Another possibility are factorized matrix elements, which have the benefits of correctly accounting for
the relative weights of the resonance histories due to coupling constants and other effects. However, in
this case, one has to take care to only evaluate them on-shell as they are otherwise gauge-dependent,
c.f. the discussion of gauge dependency in Section 6.3. Thus, either a generic on-shell projection has to
be in place or one fulfills it approximately with a cutoff on the off-shellness.
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Chapter 2 NLO event generation

the subtraction weight.

Employing the resonance-aware FKS subtraction scheme for off-shell top-pair production

and decay in leptonic collisions, which we study in Part II, is not straightforward. This is

due to at least two issues. Firstly, there are production-like configurations, which cannot

be associated to any of the standard FKS regions. In these, the gluon is emitted from the

production process, i.e. from one of the top quarks before their decay. Thus, we would

like to produce the gluon momentum such that both top resonances remain on their Born

value. For this, we could introduce additional resonance histories, similar to the ones

used at hadron colliders, where such configurations are produced naturally by the QCD

ISR. As weight for the projectors, one could use the double resonance configuration with

the associated Breit-Wigner factor. It remains unclear, though, how to construct the

gluon momentum without changing the initial state as one can do at hadron-colliders.

Another potential issue is the soft limit when multiple resonances are present. While we

can construct D = 1 for one resonance, we cannot ensure this for multiple resonances.

Thus, there are ∆
4
/m

2
Γ

2
terms in the soft limit remaining. As we said earlier, in the SM

this is mainly problematic for Higgs contributions as all other resonances are regulated

by O (GeV) widths. However, at lepton colliders Higgs contributions as electroweak

resonances are due to the higher electroweak couplings more likely to be present than

at hadron colliders. Thus, a solution for the soft problem of multiple resonances should

be constructed. We emphasize that in the collinear limit, no such problem exists as the

collinear configuration has to, by construction, belong to the same resonance and cannot

belong to a different resonance.

Finally, we want to note that the resonance-aware FKS subtraction scheme allows to

include a definite resonance history assignment in the event output. This enables the

parton shower to maintain the invariant mass of the resonance decay products fixed to the

generated value. Without this information, one cannot perform a consistent matching of

fixed-order NLO predictions with parton-shower generators for processes with intermediate

resonances [133, 134]. This information is already important at LO and significantly

changes the number of particles created by the parton shower and hadronization. In fact,

the assignment of resonances at LO is currently being implemented in Whizard and uses

basically the same infrastructure that we created for the resonance-aware FKS subtraction.

2.6.1 Soft mismatch

The use of the resonance-aware FKS mappings generates a global soft mismatch compared

to the traditional FKS subtraction. It has its origin in the different, local meaning of the

soft limit for different resonances. To repair this, one can introduce the soft mismatch

component, given by [133]

R
mism
α =

∫
dΦB

∫ ∞

0

dξ

∫ 1

−1

dy

∫ 2π

0

dφ
sξ

(4π)
3

{
R

soft
α

(
exp

[
−2k · kres

k
2
res

]
− exp [−ξ]

)

24



2.6 Resonance-aware FKS subtraction

− 32παsCF

sξ
2 B

(
exp

[
− k̄em · kres

k
2
res

k
0

k̄
0
em

]
− exp [−ξ]

)
(1− cos θ)

−1

}
, (2.37)

which is evaluated for each individual singular region α. Correspondingly, R
soft
α is the

soft limit of the real matrix-element in this region. k and kres are the momenta of the

radiated gluon and the intermediate resonance, respectively, and k̄em is the momentum

of the emitter in the Born phase space. Note that, in contrast to the traditional FKS

subtraction, where ξ = 2k
0
/
√
s ≤ 1, a generalized ξ ∈ [0,∞) is used, which originates

from using integral identities. Therefore, the soft mismatch has to be evaluated with its

own phase space and must be treated as a separate integration component in Whizard.

This integration is automatically performed and included as an additional contribution

next to Born, real and virtual components when the resonance-aware FKS subtraction is

activated.

2.6.2 Validation and efficiency

We have checked our implementation of resonance-aware FKS subtraction using the

production of two massive quarks in association with two muons as a benchmark process,

i.e. e
+

e
− → bb̄ µ

+
µ
−

. This process has only one radiative resonance topology with two

different resonance histories, Z → bb̄ and H → bb̄. Thus, it is a combination of Z pair

production and the Higgsstrahlung process ZH. We have set mb = 4.2 GeV to focus on

soft divergences. To avoid cuts, we set for the purpose of this validation the muon mass

(artificially) to mµ = 20 GeV, which regulates small photon virtualities.

This process, as many others with intermediate narrow resonances, does not converge

well with the standard FKS subtraction. Thus, we fix the Higgs width to the fictitious

value ΓH = 1000 GeV. This allows a converging integration with both approaches and a

reliable validation. In Tab. 2.1, we show results for σreal, denoting the full real-subtracted

Table 2.1 Real-subtracted integration component, σreal, and, in the case of resonance-
aware subtraction, soft mismatch, σmism, as well as the number of calls ncalls used in the
integration for ΓH = 1000 GeV and mµ = 20 GeV. For the resonance-aware subtraction,
we show ncalls for the integration of the real and the soft mismatch component.

σreal[fb] σmism[fb] ncalls

standard −1.9049± 0.99% n/a 5× 100 000
resonances −0.9151± 0.52% −0.9793± 0.94% 5× 20 000 + 5× 20 000

matrix-element, and σmism, the result of the integration of the soft mismatch component.

Adding the real and soft-mismatch components for the resonance-aware FKS subtraction,

the difference between both approaches is five per mil, which is well within the integration
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error. We note the significantly higher number of integration calls required in the standard

approach to reach roughly the same accuracy as in the resonance-aware subtraction scheme.

Obviously, we can make this efficiency difference orders of magnitude larger by testing

with a smaller width.
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Figure 2.3 Left, scatter plot of the ratio of the real matrix-element over the soft approxi-
mation of the process e+e− → µ−µ+bb̄ for the standard and the resonance-aware FKS
subtraction. Each approach has been sampled with 1000 points at 500 GeV. In contrast
to the validation described in the text, here the physical Higgs width have been used.
Right, total cross section at LO and NLO using resonance-aware FKS subtraction.

For Fig. 2.3, we use the physical Higgs width. On the left, we show a scatter plot

of the real matrix-element over the soft approximation for both the standard and the

resonance-aware FKS subtraction. The effect of constructing D = 1 can be clearly seen

in the perfect agreement of the real matrix-element and its soft approximation in the

resonance-aware approach. Note that although we are sampling fairly soft momenta,

Eg < 0.05 GeV, the convergence to one is very slow in the standard FKS subtraction. A

further effect that can be seen is that the ratio is systematically more often below one.

This is because the Born events are generated preferably on the resonance. Thus, the

radiation and the associated mismatch will put the Real events slightly off the maximal

value of the Breit-Wigner, leading to Rα < R
soft
α on average. For illustration, we also show

a scan of the total cross section on the right of Fig. 2.3. There are two distinct peaks at

mZ and mZ + 2mb , as well as two less pronounced enhancements at mZ +mH and 2mZ .

NLO QCD corrections are in the range of +5% for
√
s > 2mZ and approximately −4% for

mZ + 2mb <
√
s < 2mZ . Below

√
s = mZ , the K-factor (NLO/LO) is significantly smaller

than 1.
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Chapter 3

Parton showers, matching and

merging

Fixed-order computations can give very reliable predictions in many phase-space regions

with full control over the perturbative order. Despite this, they have some shortcomings.

First of all, starting from the fully differential NLO result, fixed-order results are always

IR divergent in soft and/or collinear regions of phase space. This is also reflected in the

fact that they cannot be treated as physical events as they only contain a handful of

partons instead of tens or hundreds of hadrons. This is foremost a practical problem as

experimental analyses and detector simulations need realistic events as input to compare

with data in fiducial phase-space regions. On the other hand, these divergences, although

they cancel in sufficiently inclusive observables, should be resummed in a well-defined

scheme to yield finite results in all regions of phase-space. While the latter problem can

also be solved with analytic resummation [135], specifically crafted for the process, the

only practical solution to the former are general-purpose MC event generators [136].

The generation of realistic events is divided into two steps: Firstly, during the parton

shower, the resummation in soft and collinear regions is performed in a MC fashion, thus

producing exclusive multi-parton events. We emphasize that this step can be handled

completely perturbatively and improved with higher-order computations. Secondly, during

the hadronization, a phenomenological model of hadron formation from partons at low

scales is applied, which cannot be derived from first principles. This stage usually also

includes hadron decays like π → γγ , which can be modeled classically by using the

measured branching ratios. We will focus on the first step throughout this part and

assume that the second step is performed externally. We note though that both stages

contain parameters, which are not mutually independent and have to be determined

with a tune to measured data. Thus any improvement of the parton shower has to be

accompanied by a new tune of the full machinery. MC event generators have a long history

of successfully describing data at hadron and lepton colliders [135]. The most commonly

used implementations are Pythia [14], Herwig [39] and Sherpa [37].

We start this chapter by reviewing the parton-shower algorithm in Section 3.1. The

traditional method of using LO matrix elements to generate events that are fed into a
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parton shower (PS) program is nowadays often called LO+PS. We will discuss in Section 3.2

several ideas to improve this approach. The matching of PS and NLO is accordingly called

NLO+PS, one of the methods being Powheg, which we discuss in Section 3.3.

3.1 Parton showers

We review the parton shower mechanism in this section. This can be also found in the

literature, e.g. in Section 41 in Ref. [137] as well as Refs. [136, 138]. A more formal proof

of Sudakov exponentiation can be found e.g. in Ref. [139].

3.1.1 Sudakov form factors

As we have already established in Chapter 2, matrix-elements factorize in the soft and

collinear regions of phase-space due to divergent propagators. From this behavior, the

differential splitting probability P(t) at each scale t can be derived. We indicate with

P a generic, unregularized splitting probability that can have different explicit forms.

The only important property is the divergence for small scales, i.e. P(t)→∞ for t→ 0.

Accordingly, there can be different scale definitions but they have to be chosen such that

it makes sense to define an ordering in them. A possible choice is t = logQ
2
/Λ

2
QCD, where

Q
2

is the virtuality. There are, though, multiple definitions of the scale variable t possible,

whereby relative pT, angles or virtuality are the most commonly used ones. The differential

splitting functions are closely related to the Sudakov form factors [140], ∆
(
t
)
, which form

a central part of the parton shower formulation. They can be defined as the probability

that no emission occurs between a high scale tmax and a low scale t. From this, we can

infer that the probability for at least one branching Pbranch at a scale t is given by the

differential splitting probability times the probability that the parton did not branch

already earlier. Thus,

dPbranch

dt
= P(t)∆(t) . (3.1)

On the other hand, we have Pbranch = 1−∆ (either there is at least one branching or not),

which results in the basic equation

d∆

dt
= −P(t)∆ (3.2)

Note the similarity of Eq. (3.2) with the differential equation that governs the radiative

decay. Integrating Eq. (3.2) between a high scale t1 and a low scale t2 gives the Sudakov

form factor

∆(t1, t2) = exp

{
−
∫ t1

t2

dt P(t)

}
. (3.3)
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Figure 3.1 Sudakov form factor in tt production as a function of pT as implemented in
Whizard.

As we indicated earlier, we also use the shorthand notation ∆(t) = ∆(tmax, t). In Fig. 3.1,

we show an exemplary representation of a Sudakov form factor as function of pT, as it is

implemented in Whizard, evaluated for tt production. As P diverges for small pT, the

probability that no emission occurs goes to zero. In the obtained distributions, this leads

to a suppression of very low pT emissions and yields finite results for all pT.

3.1.2 Parton shower mechanism

Let us now assume that we can actually integrate P analytically, P̃, and invert this

function, P̃−1
. Then, we can generate a random number x and solve ∆(t) = x for t to

obtain the scale of the first splitting:

t = P̃−1
(
P̃(tmax) + log x

)
. (3.4)

Note that in case that we do not have a closed analytic form for the inverse primitive

function P̃−1
, we can also numerically search for the solution of

P̃(t) = P̃(tmax) + log x , (3.5)

by varying t. In case t is lower than the set cut-off parameter tcut, the emission will be

ignored as those emissions are defined as unresolvable. Otherwise (t > tcut), we need an
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Chapter 3 Parton showers, matching and merging

additional random number to sample the energy splitting z between the two new partons

according to P(t, z), which we have ignored so far
1
. A common choice to describe the

z splittings are the well-known Altarelli-Parisi or DGLAP [141–143] splitting functions.

We continue the evolution by resetting tmax = t and search for the next splitting scale as

before. Given that we start this algorithm with a LO distribution, as defined in Eq. (2.1),

we obtain with Eq. (3.1)

dσ
shower

= dσ
LO

(
∆(tcut) + dtP(t) ∆(t)

(
∆(t, tcut)

+ dt
′P(t

′
) ∆(t, t

′
)
(

∆(t
′
, tmax) + . . .

)))
. (3.6)

Hereby, the first term still has the Born kinematics as no emission did occur above the

resolution threshold. In the second term, exactly one branching occurred at t but nothing

further down to tcut. This term approximates the real emission as it occurs in a NLO

computation but at the same time includes the leading logarithm (LL) resummation by

virtue of the Sudakov form factor. For clarification, we expand the second branching in

the third term using ∆(tmax, tcut) = ∆(tmax, t)∆(t, t
′
)∆(t

′
, tcut) to obtain

dσ
LO

dtP(t) dt
′P(t

′
) ∆(tcut) . (3.7)

Again, this is the exclusive probability for exactly two branchings. Further branchings

are indicated by the ellipsis. It should be clear that the recursive parton-shower evolution

yields a nested product of (nothing + something(nothing + ...)) that integrates to one by

construction. This property holds no matter at which step one stops the recursion.

3.1.3 Sudakov veto algorithm

Realistic Sudakov form factors can be computed most easily numerically with the Sudakov

veto algorithm [138, 144]. The problem is that primitive functions P̃ or their inverse P̃−1

are often not available. To circumvent this problem, we can find a simple overestimator

for P , which we call P̂ , that is larger than P for all t. Thus, the splitting probability for

emissions is increased. We use this nicer function to construct the corresponding Sudakov

form factor ∆̂(t), which is for all t an underestimate of the true Sudakov form factor ∆(t).

The scale t that we generate with the algorithm of the last subsection is then only accepted

with the probability P/P̂. In case it is rejected, we restart the evolution with tmax = t.

As we have underestimated the probability that there is no emission above t, we do not

have to consider this region again. Visually, we can see from Fig. 3.1 that a sampling of

1In the Powheg implementation, which we discuss in Section 3.3, we actually generate at first pT, which
is the scale, and then the energy of the emitted parton ξ. This fixes the angular separation y due to
the definition of pT(ξ, y).
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an underestimation of ∆ will suggest systematically larger scale values for an emission,

which are however partly vetoed in the second step. It can be shown with an inductive

proof [138, 144] that this indeed not only modifies the differential splitting probability but

also the Sudakov exponent. The Sudakov veto method is incredibly useful as it allows to

include any additional detail in the splitting function as well as the Sudakov exponent.

3.1.4 Multiple emission probabilities

So far, we have assumed that there is exactly one splitting probability for each event. This

is of course not true as a gluon can e.g. split either in gluons or in quarks, there can be

different partons that compete for the highest emission scale or one can combine EW and

QCD showers. However, this fully factorizes, because

∆(t1, t2) = exp

{
−
∫ t1

t2

dt
∑

i

Pi(t)
}

=
∏

i

∆i(t1, t2) . (3.8)

Thus, one can generate the first emission according to the sum of splitting probabilities

dPbranch(t) =
∑

i

Pi(t)∆(t) dt (3.9)

and randomly select one of the splittings according to Pi/
∑

j Pj . Then, the emission is of

type i with the probability

dP
i
branch(t) = Pi(t)∆(t) dt . (3.10)

A bit more convenient is the so-called highest bid method, cf. also Appendix B in

Ref. [145]. Hereby, we generate a ti for each possible splitting separately, i.e. according to

dP
i
branch

′
(ti) = Pi(ti)∆i(ti) dti . (3.11)

Of these scales, we pick the largest one, ti. The probability that a certain ti is indeed

the largest one is given by the product of probabilities, which describe all other splittings

giving a tj that is smaller. These probabilities in turn are given by the Sudakov form

factors such that we have

dP
i
branch

′
(ti)

∏

j 6=i

∆j(ti) = dP
i
branch(ti) , (3.12)

which is of course Eq. (3.10) for ti = t.
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3.2 Improving the parton shower

Equation (3.6) presents different possibilities for improvements. As we have seen in

Section 3.1.3, it is possible to maintain this unitary construction, i.e. the cross section is

not changed by the parton shower, while correcting the parton shower with further details.

Thus, we can replace the universal splitting function P with process-dependent matrix-

elements accounting for various interference effects as well as finite contributions. This is

especially important in hard regions of phase-space, where the soft approximation breaks

down. By construction, the form of Eq. (3.6) will not be changed by this and the ratio of

matrix-elements are resummed in a well-defined way. This approach has been coined by

Giele, Kosower, Skands (GKS) as the unitary matching method [146]. It was used already

in Ref. [147] to correct the first emission of the Pythia parton shower (actually this part

was still called JetSet at the time [148]) with a LO matrix-element. Specifically, in the

unitary approach, we introduce an additional veto step with the acceptance probability

|Mn+1|2
∑

i

∣∣∣M(i)
n

∣∣∣
2

Pi
, (3.13)

whereby i runs over all possible ways the final state could have been produced by the

shower. However, the generalization to multiple emissions was not feasible at the time

as fast automated matrix-element generators were not yet available. Furthermore, it

requires on-shell partons at each shower step, which is not necessarily fulfilled by all

parton-showers. Systematic combining of multiple LO matrix-elements with the parton

shower was achieved by the schemes of M. L. Mangano (MLM) [149] and Catani, Krauss,

Kuhn, Webber (CKKW) [150]. This is nowadays usually referred to as merging to separate

it from the problem of matching a higher order computation of a fixed multiplicity with a

parton shower. In the latter case, the focus is on the removal of the double-counting of

radiation in both the parton shower and the fixed-order computation while in the former

it is on increasing the parton-shower precision. As an aside, we note that there has been

also progress in describing the splitting itself at NLO in the Dire showers in Pythia and

Sherpa though the numerical impact was found to be marginal [151].

3.2.1 Merging

Both the MLM and the CKKW merging belong to the class of slicing merging schemes:

The radiation phase-space is sliced up into a matrix element and a parton shower domain

according to some jet resolution parameter. The matrix-element region is then decorated

with Sudakov factors, either by trial showers or by applying analytic Sudakov factors

according to clustered scales. The MLM scheme has been implemented in Whizard and

involves various veto steps, as illustrated in Appendix B.1, to ensure that the parton shower

does not produce jets above the merging scale. The main benefit of the MLM scheme is
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3.2 Improving the parton shower

that it does not require any modification of the shower program. The drawback is that the

MLM merging misses intermediate Sudakov factors, e.g. from one to two additional jets

described by matrix elements, as no reclustering is performed [152]. Furthermore, it does

not converge when the merging scale is set too low, necessitating a tuning of the merging

scale just to obtain smooth results [152]. Despite this, it is still in active use, especially

in Madgraph, and can successfully describe data, where this effect is not important, as

seen e.g. in Ref. [153]. But also for CKKW it requires a careful choice of all ingredients to

show that the dependency on the arbitrary merging scale, separating both domains, can

be removed through NLL precision [150]. Especially, the clustering has to be an exact

inverse of the shower, employing the same scale definition. This realization led to the

formulation of the CKKW-L class of merging, where the shower itself is used to generate

the Sudakov form factors [152, 154]. Note that it is, compared to the unitary approach,

not at all obvious that this merging machinery does not change the inclusive cross section.

In fact, the original proposals have been shown to break unitary but can be corrected by

subtracting the unitarity violating terms, as shown for Pythia8 (dubbed UMEPS) [155]

and Herwig [156, 157]. Such a subtraction can produce events with negative weights.

This lowers the statistical quality of the events, as positive and negative weight events

first cancel each other and only after this one can get finite contributions in histograms.

As these events have to be passed through extremely time consuming detector simulations,

this is in general undesirable. Thus, we consider the current so-called state of the art of

merging schemes inferior to the unitary GKS merging method, which guarantees unitarity

while maintaining unit event weights and resumming the matrix-elements to all orders

in a well-defined way. First infrastructure for the GKS merging in Whizard has been

created but the full implementation was not accomplished as we have focused on the

completion of the other topics presented in this thesis. We note though that the Powheg

matching that we present in Section 3.3 can be considered as the NLO correction of the

first emission within GKS merging. NLO merging, i.e. combining different jet multiplicities

each described to NLO accuracy, is also possible in the unitary approach [158]. Due to

the simple construction, it actually allows to reason about the correctness of the scheme

far more easily compared to the NLO merging schemes that are currently in practice [157,

159, 160]. Next, we discuss the two popular matching solutions.

3.2.2 Matching

Opposed to merging, matching schemes have been invented not to increase the accuracy

of the shower but to allow combining differential NLO cross sections with parton showers

in the first place. The rigorous matching of NLO computations with parton showers has

been pioneered with MC@NLO [161]. It relies on subtracting the expansion of the parton

shower from the cross section to remove the double counting. As such this expansion has

to be computed for each parton shower and adapted to each change to the parton shower.

Furthermore, the event generation proceeds in two classes of events, resulting in negative
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weight events in all regions of phase space. P. Nason proposed a similar method that avoids

the inherent problem of MC@NLO of producing negative weight events, in the sense that

negative weighted events can only occur in regions where perturbation theory fails [162].

Following the first implementation [163], the algorithm has been worked out in detail

[145] and dubbed the Powheg method (Positive Weight Hardest Emission Generator).

Contrary to the subtractive approach of MC@NLO, Powheg is a unitary method that

uses the Sudakov veto method that we introduced in Section 3.1.3. The hardest, i.e.

highest relative pT, emission is hereby not generated by the attached parton shower but by

the algorithm itself. Thus, the NLO accuracy of the sample can be maintained, irrespective

of the used shower. This requires, though, that the shower respects the hardest emission,

which is easily satisfied with a veto of higher pT on subsequent emissions. In case the

ordering variable of the shower is not pT, soft radiation before the hardest emission has to

be added as well in terms of a truncated shower.

Following the detailed description of Powheg in Ref. [145], the semi-automated

NLO+PS event generator called Powheg-Box [164] has been developed. In this frame-

work, a multitude of LHC processes has been made publicly available, which pushed

the use of NLO predictions in experimental studies significantly. The drawback of the

Powheg-Box is that it only automates parts of the algorithm meaning that adding a

new process requires considerable theoretical effort (about half a PhD thesis per process)

from the construction of the phase space to the implementation of the matrix elements.

Thus, only a handful of processes also account for new physics contributions. Compared

to this, an automatic event generation with flexible control over all aspects is preferable.

In both Sherpa [165] as well as Herwig [166], variants of the Powheg method have

been implemented. In the next section, we sketch the implementation of the Powheg

matching in Whizard. We will keep this description brief as the corresponding proofs

and more detailed information can be found in Ref. [145, 162].

3.3 POWHEG matching

3.3.1 POWHEG algorithm

To generate events according to the Powheg method, we at first have to define the total

cross section. As we noted in Section 3.2, the idea is to not change the fixed-order cross

section but to only modify differential distributions. Thus, we can start with the expression

that we already used in Eq. (2.29) for the MEM@NLO:

B̄ [Φn] = B [Φn] + Ṽ [Φn] +

∫
dΦrad R̃ [Φn,Φrad] (3.14)

We use this function for the initial integration in Vamp and to generate n-particle events

correct to NLO, just as in Section 2.5. As before, the integral over the radiation phase-
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space dΦrad is evaluated numerically with a MC sampling. With this seed kinematic, we

generate the hardest emission by using the real emission matrix elements. Hereby, we

resum this emission to LL in pT with a simple Sudakov exponentiation, cf. Section 3.1.1,

∆(pT) = exp

{
−
∫

dΦrad P(Φrad) θ
(
k

2
T(Φrad)− p2

T

)}
, (3.15)

whereby the splitting probability is given by the process-dependent splitting function

P = R(Φrad)/B. Note that in Eq. (3.15), we have implied that the integration over

dΦrad goes over the full phase-space such that ∆(pT) is the probability that no emission

occurs between p
max
T and pT. kT(Φrad) is the relative kT of a given configuration Φrad. We

can expect that the shower evolution of the hardest emission is improved by using the

process-dependent P , as opposed to universal splitting functions, which are only valid in

the very soft/collinear regions and do not include interference effects. A classic example

for such interference effects are color dipoles, whereby the emission in between the colored

legs is enhanced while it is suppressed outside as it forms a color singlet. Although, it is

possible to construct 2 → 3 antenna showers, cf. Vincia [146, 167, 168], the full color

information of the n-particle process can only be obtained from matrix elements. We

are resumming with Eq. (3.15) the full real corrections to all orders, which can lead to

undesired effects, as we discuss in Section 3.3.2. This can easily be refined, though.

By using the shower algorithm, outlined in Section 3.1.2, and stopping after the first

emission, we obtain the following distribution:

dσ = B̄ dΦn

(
∆
(
p

min
T

)
+ dΦrad∆

(
kT(Φrad)

)R(Φrad)

B

)
. (3.16)

So there is a finite, albeit small, probability ∆
(
p

min
T

)
for no radiation down to p

min
T , which

is usually chosen at O (1 GeV). In most cases though, there will be an emission at the

scale kT(Φrad) and the generated event is given by the phase-space point ΦnΦrad. Again,

we stress that the expression in parentheses in Eq. (3.16) integrates to one due to the

unitary construction. This ensures that the inclusive NLO cross section B̄ is conserved,

implying that the Powheg matching only changes the spectrum. Especially, it damps

the divergent emission of soft and collinear radiation of the pure NLO prediction (induced

by dΦradR/B) as it is multiplied with the no-emission Sudakov form factor ∆
(
kT(dΦrad)

)
.

This, in turn, goes to zero in these regions of phase-space, lim ∆(kT → 0) = 0, yielding

finite, resummed predictions for the full n+ 1 phase-space.

At this point, we want to emphasize the excellent interplay between FKS subtraction

and Powheg event generation. While we have written Eq. (3.15) in a general way, it is

not straightforward to use it with CS subtraction, as there is no unique Born phase-space

point, as we noted in Sections 2.1 and 2.5. Thus, one has to introduce e.g. an additional

projection, similar to FKS itself [169]. On the other hand, there are multiple possible

(real) singular regions α when one starts off with one Born configuration in FKS. Each
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of them has a different emission probability Rα/B with R =
∑

αRα. Thus, the overall

Sudakov form factor will be a product of the ∆α of the different regions. These different

real contributions, however, can be easily combined: The region with the largest pT is

kept, as described in Section 3.1.4, to distribute events according to Eq. (3.16).

While it is in principle possible to use the real matrix elements directly for the sampling

of the Sudakov exponent, it is computationally very expensive. There are two ways to

circumvent this problem: Firstly, one can use the universal properties of the splitting

function, i.e. the known soft and collinear divergence structure, to construct an overes-

timator U weighted with a constant factor N . This computationally efficient splitting

function NU can be used to generate possible emissions as an overestimator. These are

accepted in an additional veto step according to the probability (R/B)/(NU), which

removes NU from the final result. A problem arises, hereby, similar to ordinary LO event

generation, when N is chosen too low and excess events occur, i.e. when (R/B) > NU .

As long as this occurs only in a very small number of events (below 1 %), this can be

usually neglected but otherwise a new generation with a larger N is necessary. A different

approach is the fully automated, numerical evaluation of the exponent in Eq. (3.15) as

it is done in ExSample [170], whereby the Sudakov algorithm itself is modified. In our

implementation, we decided to use a hybrid version, where N is a grid that depends on

the radiation variables multiplied with the general U functions, similar to the approach in

the Powheg-Box. Before the first Powheg event generation, this grid is filled with the

maximal values of (R/B)/U by sampling the radiation phase-space randomly. The exact

binning and number of points for sampling can be adjusted to the process complexity. To

further reduce the probability of the aforementioned excess events, one can multiply these

maxima with a safety factor. More details on all veto steps that we perform can be found

in Appendix B.2. A dedicated performance and validation comparison with ExSample

featuring multiple processes would be an interesting future project.

3.3.2 POWHEG damping

While the preservation of the inclusive NLO cross section is very pleasing, there are also

negative aspects in combination with the Sudakov form factor. As we noted earlier, we

trust the parton-shower description in the soft and collinear phase-space regions, while

the matrix elements are accurate in the hard areas. Comparing the differential NLO

description with the Powheg matched one, as e.g. in the gluon energy in the left plot

of Fig. 3.2, we see the expected suppression in the soft regions. Due to unitary, however,

this relates to an enhancement for large gluon energies. Although this is arguably only

a higher-order effect, it is preferable to recover the fixed-order predictions in the hard

regions of phase-space. Thus, we aim to restrict the effect of the Sudakov suppression to

the area where pT is small.

To solve this, we can use the division of real radiation into a hard and a soft part as

introduced in Section 2.4. Hereby, we use only the singular part, Rsing, for the cross section
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B̄ and the Sudakov ∆. The finite part, Rfin, is treated separately with an ordinary LO

phase-space integration. Thus, Eq. (3.16) is replaced by

dσ = B̄sing dΦn

(
∆sing

(
p

min
T

)
+ dΦrad∆sing

(
kT(Φrad)

)Rsing(Φrad)

B

)
+Rfin dΦn+1 . (3.17)

We emphasize that this separation into finite and singular pieces does not affect the unitary

construction, i.e. the inclusive NLO cross section is reproduced as in standard Powheg

σ ≡
∫

dσ =

∫ (
B̄sing dΦn +Rfin dΦn+1

)

=

∫
B̄ dΦn ≡ σ

NLO
, (3.18)

where we have used that the bracket in Eq. (3.17) integrates to unity. By only using the

singular part of the real radiation in the Powheg part, we are effectively introducing a

Heaviside theta distribution that restricts real radiation to the area where pT is small, just

as desired.

The associated freedom in the division between hard and soft part has to be regarded as

a theoretical uncertainty. This is actually a feature as we have seen that multiple matching

schemes can be devised that fulfill NLO+LL accuracy and thus we should not treat one

scheme as the definite answer. However, similar to scale variations, one should only

consider a sensible range of variations. If one goes to extreme variations, one encounters

the following problems: When we remove the singular parts, nothing is left to resum and

the finite part diverges. Vice versa, when we remove all of the finite parts, we are back to

the problem of affecting the hard spectrum with the Powheg matching, which we intend

to solve with the separation of soft and hard part.

Finally, we note that the separation of R solves also the problem of Born zeroes. These

are regions of phase-space that get finite contributions from Rfin but are zero in B. This

leads to an artificially divergent R/B and was in fact the original motivation behind the

so-called Powheg damping of R in the Powheg-Box [120, 121]. However, as the idea is

more general and can also be applied at fixed order, we preferred to introduce it already

in Section 2.4.

3.3.3 Application for tt and ttH production at a future lepton

collider

The impact of Powheg matching on event shapes at a lepton collider like e
+
e
− → hadrons

has first been discussed in Ref. [171], where a significant improvement in the description of

the measured data from LEP has been found in almost all observables, compared to LO

with a matrix element correction. In Ref. [172], this work has been extended to consider

on-shell top-pair production with semi-leptonic decays at the ILC. We will revisit in this

section both tt as well as tth production at a lepton collider. The results of this section
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have been partly presented in Refs. [173, 174].

In the following, jets are possible combinations of all occurring quarks, including the top

quark, and gluons, clustered with FastJet [175]. We use the generalized anti-kT algorithm

(ee genkt with p = −1), which employs energies and spherical coordinates instead of

transverse momentum and rapidities as distance measure. The jet parameters are R = 1.0

and Ej,min = 1 GeV. The shown events in this section have been simulated only up to the

first emission, leaving out the normally following simulation chain, in order to focus only on

the Powheg implementation. We have, however, verified that NLO+PS in combination

with Pythia8 gives reasonable results, with O (10 %) differences compared to LO+PS.

The top mass is set to mt = 172 GeV. We chose µr = mt as renormalization scale. The

coupling constants are α
−1

= 132.160 with no running and αS(MZ) = 0.118 with a NLL

running with 5 active flavors. LO and Powheg events are unweighted during generation,

i.e. they are accepted according to their current weight compared to the maximal weight.

The histograms are generated with Rivet [116], using 500 k LO and Powheg each, as

well as 1500 k NLO events.

Whizard+Omega+Gosam

LO

NLO

POWHEG

0 5 10 15 20

10 1

10 2

10 3

e+e− → tt̄

Eg[GeV]

d
σ

d
E
[f
b
/
G
eV

]

Whizard+Omega+Gosam

LO

NLO

POWHEG

190 200 210 220 230 240 250 260 270

10−3

10−2

10−1

1

10 1

10 2

e+e− → tt̄

Ej1 [GeV]

d
σ

d
E
[f
b
/
G
eV

]

Figure 3.2 Energy distributions of the emitted gluon and of the hardest jet for e+e− → tt
at
√
s = 500 GeV.

In Fig. 3.2, we show on-shell tt̄ production at a lepton collider with
√
s = 500 GeV.

Polarization and beamstrahlung effects are neglected. The soft gluon divergence can be

seen in the NLO event samples either directly in the (unphysical) energy distribution of

the gluon or indirectly in the distribution of the hardest jet, which peaks around the Born

value due to mostly soft gluons. By applying the Sudakov form factor, the Powheg events

have the expected suppression of this divergence. Due to the unitary construction, this

leads to an increase of the differential cross section in the remaining part of the spectrum,

as we discussed earlier.

Next, we examine the impact of the separation of real contributions into finite and

singular parts that we introduced in Section 3.3.2. For this, we show in Fig. 3.3 not only

the NLO and Powheg description but also results for varying the real separation scale h

from 1 GeV to 100 GeV. As expected, h = 100 GeV corresponds in this process to almost

no Rfin contributions and thus basically the same prediction as standard Powheg. Only
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Figure 3.3 Gluon energy distribution up to 20 and 140 GeV for e+e− → tt at
√
s =

500 GeV.

for very high energies above E
g ∼ 100 GeV, we see significant deviations. On the other

hand, h = 1 GeV behaves very similar as NLO. In this case, Rsing is reduced to the bare

minimum while most of R is treated as a finite contribution without resummation. Only

for very small gluon energies, we see the suppression of the IR divergence. Note that in

a region where Rsing vanishes, the Sudakov form factor is unity (no Powheg emission

occurs), and Eq. (3.17) corresponds to the differential NLO cross section. The other h

values then smoothly interpolate between these extremes. For this process, we can see

that h and E
g

are very simply correlated, i.e. Rsing = R and Rfin = 0 when E
g . h and

vice versa. In Fig. 3.4, we depict the energy and transverse momentum distribution of the
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Figure 3.4 Energy and transverse momentum distribution for jets containing the top quark
for e+e− → tt at

√
s = 500 GeV.

jet that contains the top quark. The top energy is very sensitive to the radiation pattern
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as the Born prediction is simply peaked at E
t

= 250 GeV. Thus, we see similar results

as in Fig. 3.3. On the other hand, the transverse momentum is already smeared down

to zero at Born level, thus the difference between NLO and Powheg are only ranging

from −40 % to +20 %. Again, the damping results interpolate between these limits. For

the physics prediction, we think that a reasonable description would be obtained with

h ∼ 20 GeV as it is decently placed between the extremes of 1 GeV and 100 GeV. Again,

as we discussed in Section 3.3.2, the reason for chosing an intermediate value is that

neither of the extremes have the desirable properties of a NLO+LL prediction. For the

theory uncertainty, this scale should be at least varied by a factor of two although a more

conservative choice would be a factor of four, as all of these choices are formally valid at

NLO+LL. A general rule of thumb for choosing h would be p
min
T � h� p

max
T .
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Figure 3.5 The energy distribution of the hardest jet and the angular distribution of the
Higgs boson for e+e− → tt̄H at

√
s = 1000 GeV.

Finally, we treat e
+
e
− → tt̄H with the same setup as above but at

√
s = 1000 GeV.

Fig. 3.5 shows distributions of two observables: In the energy distribution of the hardest

jet, we can see again the effect of Sudakov suppression at the high energy peak. For

comparison, we also show the effect of scale variation, which, as expected, does not cover

the difference between NLO and Powheg. On the other hand, we observe that in inclusive

quantities like the angular distribution of the Higgs boson, the Powheg matching has no

significant effect. This is, of course, only a cross check that inclusive quantities remain

correct to NLO. We find that although the total K-factor at this value of
√
s is close to 1,

distributions of observables that are sensitive to QCD radiation can change drastically.
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Chapter 4

Motivation and phenomenology

4.1 Introduction

As we motivated in Chapter 1, top-pair production with and without an associated Higgs

boson is of utmost interest to measure physical quantities like the top mass in a short

distance scheme or the top Yukawa coupling. To achieve high theoretical precision, the top

quark needs, however, a careful treatment. Due to the relatively large top width, resulting

from the decay into a bottom quark and a W boson, top quarks decay before they can form

bound states. The produced W boson decays further via hadronic or leptonic channels,

whereas the bottom quark hadronizes and can be identified as a tagged jet. Especially in

the clean lepton collider environment, the charge of the b-jet can be reconstructed with

reasonably high efficiency [176]. A consistent treatment of the associated finite width

effects is both a conceptionally as well as a computationally nontrivial problem. Within the

so-called narrow-width approximation (NWA), top quarks are produced on-shell and decay

subsequently according to their (potentially spin correlated) branching ratios. Higher-

order QCD predictions for on-shell top-pair production are well-known, the current best

predictions being NNNLO [50] at the inclusive and NNLO at the fully differential level,

using either a phase-space slicing [51] or antenna subtraction [52]. First NLO electroweak

corrections have been obtained in Ref. [177]. For top-pair production in association with

a Higgs boson, there are comprehensive studies of NLO QCD corrections available in

Ref. [55]. First inclusive combined electroweak and QCD corrections have been computed

in Ref. [56], followed by an in-depth study in Ref. [178].

While computationally simple, the NWA has the obvious drawback that various non-

resonant background processes are not included. For off-shell tt̄ or tt̄H production, however,

especially single-top resonances contribute significantly and can hardly be distinguished

experimentally from double-resonant contributions [179]. Furthermore, off-shell effects

can only be treated approximatively via a Breit-Wigner parametrization, as in Ref. [180].

Non-resonant contributions and finite width effects can be consistently taken into account

employing the complex-mass scheme [181], which guarantees gauge invariance at NLO.

The trade-off for this is the increased computational complexity. Such a calculation for

the process e
+

e
− →W

+
W
−

bb̄ at NLO QCD has first been presented in Ref. [53]. It has
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recently been reevaluated in Ref. [54], with the aim of extracting the top-quark width via

ratios of single- to double-resonant signal regions.

In this part, we study top-pair and Higgs associated top-pair production and decay includ-

ing non-resonant contributions, off-shell effects and interferences at NLO. The simulation is

done with Whizard, as introduced in Section 2.3. In this framework, we compare the on-

shell processes e
+

e
− → tt̄ and e

+
e
− → tt̄H with the off-shell processes e

+
e
− →W

+
W
−

bb̄

and e
+

e
− →W

+
W
−

bb̄H. At the differential level, the full processes including leptonic

decays are considered, i.e. e
+

e
− → µ

+
νµe

−
ν̄ebb̄ and e

+
e
− → µ

+
νµe

−
ν̄ebb̄H. To our knowl-

edge, NLO studies of e
+

e
− →W

+
W
−

bb̄H or the complete off-shell processes e
+

e
− → bb̄4f

or e
+

e
− → bb̄4f H have not been performed prior to our work. In contrast, at hadron

colliders off-shell top-pair production at NLO QCD has been studied in Refs. [182–187], and

first NLO electroweak results have been presented in Ref. [188]. Furthermore, employing

the resonance-aware method of Ref. [133], the process pp → bb̄4f has been matched

consistently to parton showers, as presented recently in Ref. [134]. For hadron colliders,

corresponding NLO QCD corrections to top-quark pair production in association with a

Higgs boson [189] or a jet [190, 191] including leptonic decays have also been studied.

While at hadron colliders top-pairs originate from QCD production, at lepton colliders

they are produced via electroweak interactions. This implies that a fixed-order computation

of the off-shell processes at a lepton collider comprises a considerably larger set of irreducible

electroweak background processes. Such processes involve narrow resonances, like e.g.

H → bb̄. In NLO computations, resonances with very small widths can severely hamper

the quality of the infrared (IR) subtraction and consequently influence the convergence

and quality of the integration. In order to have these resonance effects under control, we

have implemented in Whizard an automated version of the resonance-aware scheme of

Ref. [133], as described in Section 2.6. This is also a prerequisite for a future consistent

matching of off-shell processes with parton showers.

The further organization of this part is as follows. In Section 4.2, the phenomenology

of tt̄ and tt̄H is briefly reviewed. In Section 4.3, we describe how we obtain the matrix

elements for the processes of interest. The employed input parameters, scale choices and

phase-space cuts as well as an overview of the performed validations can be found in

Section 4.4. The main phenomenological results are in Sections 5.1 and 5.2. Hereby,

we focus in Section 5.1 on results at the inclusive level, while we present in Section 5.2

the corresponding differential predictions. We discuss scale variations for the NLO QCD

corrections, show results for polarized lepton beams and discuss the influence of the NLO

QCD corrections on the extraction of the top Yukawa coupling. At the end, we present our

conclusions in Section 5.3. We note that these results have been published in the research

article [192].
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4.2 Phenomenology of off-shell tt̄ and tt̄H

production

4.2.1 Phenomenology of off-shell tt̄ production

We want to investigate NLO QCD perturbative corrections in top-quark pair production at

lepton colliders modeling off-shell and interference effects at increasing levels of precision.

To this end, we will consider the following 2→ 2, 2→ 4 and 2→ 6 processes,

e
+

e
− → tt̄ , (4.1)

e
+

e
− →W

+
W
−

bb̄ , (4.2)

e
+

e
− → µ

+
νµe

−
ν̄ebb̄ , (4.3)

whereby we treat the bottom quarks as massive. Top quarks almost exclusively decay

via t → bW, such that the process in Eq. (4.2) can be understood as the top-quark pair

production process of Eq. (4.1) including top-quark decays. Beyond the NWA, the process

in Eq. (4.2), however, receives not only double-resonant (signal) top-quark contributions.

Also single-resonant and non-resonant (background) diagrams enter, including their in-

terference. Example diagrams for all three production mechanisms are shown in Fig. 4.1.

The sub-dominant single-top diagrams always occur via a fermion line between the two
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Figure 4.1 The double-resonant signal diagram (top left) besides example non-resonant
(top right) and s- and t-channel single-top diagrams (bottom left and right, respectively)
of the process e+e− →W+W−bb̄.

external bottom quarks. Thanks to the finite bottom mass even non-resonant contributions

from diagrams with a γ → bb̄ splitting, like the one in the top right of Fig. 4.1, can be

integrated over the whole phase space without the necessity of cuts.

At the NLO QCD level, the calculation of the process in Eq. (4.2) includes corrections

to top-quark pair production and decays together with non-factorizable corrections, which

are formally of the order of O
(
αSΓt/mt

)
. Diagrammatically such non-factorizable contri-

butions can interconnect production and decay stage. Furthermore, different decays can be
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Figure 4.2 Possible topologies of the full process. The blue line indicates a potentially soft
photon that gives rise to a leading-order singularity.
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Figure 4.3 Contributions to the process e+e− → µ+νµe−ν̄ebb̄ involving a Z or H resonance,
treated with the resonance-aware FKS subtraction.

connected, as for example depicted in Fig. 4.6 (left). At the same time, NLO interference

effects with single-resonant and non-resonant contributions and also spin correlations in

the top decay are consistently taken into account.

In order to make contact with experimental signatures and to further increase theoretical

precision, the process in Eq. (4.3) introduces also leptonic decays of the W-bosons including

respective off-shell effects. Due to the purely EW nature of the leptonic W-boson decays,

from a perturbative QCD point of view these additional decays do not increase the

computational complexity compared to the process with on-shell W-bosons, i.e. the one

of Eq. (4.2). However, besides the more involved phase-space integration, the number of

contributing diagrams increases substantially due to additional single- and non-resonant

contributions, as illustrated in Fig. 4.2. Note that the decays with initial-state lepton

flavor introduce diagrams like the one on the right of Fig. 4.2. These show a singularity

and cannot be integrated over the whole phase space without cuts. Here, we focus on the

different lepton flavor case but an analysis for the very similar same flavor case can easily

be performed with Whizard. An interesting further research topic are semi-leptonic and

hadronic decays, where the non-factorizable backgrounds at NLO QCD are even more

important.

Finally, we want to remark that the off-shell processes of Eqs. (4.2) and (4.3) contain

diagrams with Z/H → bb̄ splittings, as for example depicted in Fig. 4.3. Due to the

small intermediate widths, the integration of such contributions benefits strongly from the

extended resonance-aware FKS subtraction, described in Section 2.6. For the technical

reasons discussed there in detail, we only apply the resonance-aware FKS subtraction

for the intermediate Z/H resonances, but not for the top resonances. Employing the

implementation of the resonance-aware subtraction scheme with these resonance histories,
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Figure 4.4 Contributing diagrams to tt̄H production: associated production of a Higgs
boson and a top quark pair and Higgsstrahlung with an off-shell Z∗ → tt̄ line.
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Figure 4.5 Two representative non-resonant diagrams contributing to W+W−bb̄H pro-
duction via a quartic ZZHH-coupling as well as a ZZH- and a triple H-coupling.

we observe a decent convergence of the numerical integration at the inclusive and differential

level. Numerically, at LO the contribution from H → bb̄ splittings is at the level of 1-2%

of the total off-shell tt̄ cross section and is clearly visible in finely binned mbb̄ distributions.

Obviously, neglecting the bottom mass would remove these contributions.

4.2.2 Phenomenology of off-shell tt̄H production

Similar to top-quark pair production, we consider the following related 2 → 3, 2 → 5

and 2 → 7 processes for the associated production of a Higgs boson together with a

top-quark pair with increasing level of precision with respect to off-shell, non-resonant and

interference effects,

e
+

e
− → tt̄H , (4.4)

e
+

e
− →W

+
W
−

bb̄H , (4.5)

e
+

e
− → µ

+
νµe

−
ν̄ebb̄H , (4.6)

where again all b-quarks are treated as massive.

The diagrams involved in these processes are very similar to those of the corresponding

tt̄ production processes, apart from the additional Higgs boson that couples to all massive

internal or external particles (t, b,W,Z,H). Already at the level of the on-shell processes

of Eq. (4.4) this results into two competing contributions, as depicted in Fig. 4.4. The

diagram on the left of Fig. 4.4 is proportional to the top Yukawa coupling yt and will

be denoted as tt̄H signal contribution. The diagram on the right can be considered as

irreducible Higgsstrahlung background in the ZH channel with an off-shell Z
∗ → tt̄ line.

Furthermore, at the level of the off-shell processes of Eqs. (4.5) and (4.6) new contribu-
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tions arise from quartic EW as well as triple H couplings as illustrated in Fig. 4.5. In such

contributions, as before, the tiny width of the Higgs boson requires a resonance-aware

subtraction scheme to yield a converging integration at NLO over the whole phase space.

We note that in our calculation on the one hand, we treat the Higgs boson as on-shell

external particle, while at the same time, we introduce a finite physical Higgs width in

order to regulate intermediate propagators. We accept this slight inconsistency in order

to be able to provide results independent of a specific Higgs decay channel. In fact, the

dominant Higgs decay mode would require in a fully unfactorized approach the calculation

of e
+
e
− →W

+
W
−

bb̄bb̄, which is in reach employing the developed automated tools but

beyond the scope of this work. The numerical effect of the resulting inconsistency is very

small with contributions from H → bb̄ for off-shell tt̄ as well as tt̄H production being at

the per cent level.

4.3 Matrix elements from OpenLoops

All necessary Born and one-loop amplitudes together with the color and helicity correlators

required within the FKS subtraction are provided by the publicly available OpenLoops

program [34, 193]. It generates tree-level and one-loop scattering amplitudes by means of

a hybrid tree-loop recursion that generates cut-open loops as functions of the circulating

loop momentum [34]. Similar to Recola [35, 36] and Helac-1Loop [97, 98], also

OpenLoops is based on the idea [194] that one-loop diagrams can be related to tree-level

diagrams with an auxiliary gluon. These can in turn be computed very efficiently using

recursive algorithms [80, 195–197]. It has been shown [194] that this approach scales only

exponentially, which is much better than the factorial growth of Feynman diagrams, and is

completely process-independent. Combined with the CutTools [198] OPP reduction [199]

library and the OneLOop library [200] or with the Collier [201] tensor integral reduction

library based on Refs. [202–204], the employed recursion permits to achieve very high

CPU performance and a high degree of numerical stability. In this study, we exclusively

relied on Collier. OpenLoops uses a stability system to rescue the small number of

potentially unstable phase space points with a re-evaluation at quadruple precision.

Within OpenLoops, ultraviolet (UV) and infrared (IR) divergences are dimensionally

regularized and take the form of poles in (4−D). However, all ingredients of the numerical

recursion are handled in four space-time dimensions. The missing (4−D)-dimensional

contributions (known as R2 rational terms) are universal and can be restored from process-

independent effective counterterms [205–212]. The idea, hereby, is that the R2 part can be

computed by relating one-particle irreducible amplitudes with up to four external legs with

tree-level like Feynman Rules. In OpenLoops as well as Whizard, the strong coupling

constant is renormalized in the MS scheme. Unstable particles with a finite width are by

default treated with an automated implementation of the complex-mass scheme [181].

The OpenLoops amplitude library includes all relevant matrix elements, including
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Table 4.1 Overview of loop matrix elements at NLO QCD for the studied processes. Shown
are the number of one-loop diagrams, the maximal number of loop propagators and the
number of helicity structures (assuming charged leptons to be massless).

e
+

e
− → nloop diags Max. prop. nhel

tt̄ 2 3 16

W
+

W
−

bb̄ 157 5 144

bb̄ν̄ee
−
νµµ

+
830 5 16

tt̄H 17 4 16

bW
+

b̄W
−

H 1548 6 144

bb̄ν̄ee
−
νµµ

+
H 7436 6 16

color- and helicity-correlations and real radiation as well as loop-squared amplitudes, for

more than a hundred LHC processes. Many libraries for lepton collisions can easily be

taken from this LHC library, as any crossing of external particles is automatically done

when a library is loaded. For example, we can use the one-loop library ppll (originally

intended for the Drell-Yan process) to compute the process e
+

e
− → jj. For many other

processes, especially those without massless quarks in the final state, dedicated lepton

collider libraries have been added to the public OpenLoops amplitude repository.

The Whizard+OpenLoops interface is based on the Binoth Les Houches Accord

(BLHA) standard [213] as an extension of Ref. [214]. Moreover, we extended this standard

to allow the MC to request polarized amplitudes. To this end, the process registry can

contain dedicated entries for each polarization configuration of initial state particles. This

implements an automated NLO setup to study effects of beam polarization, which is an

important feature at future linear colliders like the ILC. We note, however, that currently

the full spin density matrix cannot be obtained from OpenLoops as polarizations for

final state particles are not supported.
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Figure 4.6 Example pentagon diagrams contributing to the W+W−bb̄ final-state process
containing one or two (leftmost diagram) top resonances and an hexagon diagram
contributing for W+W−bb̄H production.

Tab. 4.1 lists information about the computational complexity with respect to the

one-loop amplitudes of the processes studied in this part. Note that the total number

of diagrams is not decisive for the computational effort in the OpenLoops recursion
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formalism. Instead, the crucial point is the maximal number of n-point functions involved.

For the bb(W → `ν)(W → `ν) processes, the most complex integrals stem from pentagon

diagrams, for which examples are depicted in Fig. 4.6. We also show a hexagon diagram

contributing to the associated Higgs production process. The calculation of the off-shell

processes including leptonic decays are less involved in terms of computational complexity

compared to the corresponding processes with on-shell W-bosons. This is mainly due to

the reduced number of contributing helicity structures and despite the increased number

of diagrams. This decrease is due to the unique helicity combination of the final state

containing massless (anti-) neutrinos.

4.4 Setup and validation

4.4.1 Input parameters, scale choice and phase-space cuts

The following masses enter the calculation as input parameters [215],

mZ = 91.1876 GeV , mW = 80.385 GeV , (4.7)

mb = 4.2 GeV , mt = 173.2 GeV , (4.8)

mH = 125 GeV . (4.9)

The electron, the muon as well as the first two quark generations are considered massless.

The electroweak couplings are derived from the gauge-boson masses and the Fermi constant,

Gµ = 1.166 378 7× 10
−5
/GeV

2
, in the Gµ-scheme. The CKM matrix is assumed to be

trivial, which is for the most relevant element of our computation (Vtb) consistent with

the measured value (1.021 ± 0.032 [215]). Using the precisely measured value of Gµ

absorbs the most important electroweak corrections to the top decay. As we are only

at the LO electroweak level, it is advisable to use a scheme where the corrections to

the top decay are small, which is the case for the Gµ-scheme [216]. Of course, this

choice is not fully capturing the production dynamics, where a running αem

[√
s
]

might

be more appropriate [177, 217]. Note, however, that the numerical difference between

αem

[
Gµ

]
= 1/132.233 and αem

[
2M

1S
t

]
= 1/125.924 (5 %) is not as large as to the Thomson

limit αem

[
0
]

= 1/137.036 (9 %). Either way, one can simply reweight our predictions with

(αem

[
2M

1S
t

]
/αem

[
Gµ

]
)
2
, which increases them by about 10 %, to obtain mixed scales. For

the strong coupling constant, we use αs(mZ) = 0.1185 and a two-loop running including

nf = 5 active flavors.

With this setup, the gauge boson and top widths are computed directly with Whizard

at LO and NLO, using massive b-quarks. In the NLO decay, we use either the mass of the

decaying particle as renormalization scale or the same scale as in the scattering process, as

discussed below. The obtained LO and NLO gauge boson widths, using µR = mZ/W , are

Γ
LO
Z = 2.4409 GeV, Γ

NLO
Z = 2.5060 GeV, (4.10)
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Γ
LO
W = 2.0454 GeV, Γ

NLO
W = 2.0978 GeV. (4.11)

In our calculation, we use ΓZ and ΓW at NLO throughout, i.e. also for off-shell cross

sections at LO. This ensures that the effective W and Z leptonic branching ratios that

result from e
+
e
− → bb̄4f (H) matrix elements are always NLO accurate. In contrast, in

order to guarantee that t → Wb branching ratios remain consistently equal to one at LO

and NLO, off-shell matrix elements and the top-decay width need to be evaluated at the

same perturbative order. For the top width, we employ two distinct sets of values: one

for the on-shell decay t →W
+

b and one for the off-shell decay t → f f̄ b, as also detailed

in Ref. [184]. The value used for the off-shell top decay includes decays into three lepton

generations and two quark generations, again with the trivial CKM matrix. It also involves

the W width, for which we use the previously computed NLO value. The numerical values

are

Γ
LO
t→Wb = 1.4986 GeV, Γ

NLO
t→Wb = 1.3681 GeV, (4.12)

Γ
LO
t→f f̄ b = 1.4757 GeV, Γ

NLO
t→f f̄ b = 1.3475 GeV. (4.13)

The Higgs width is set to ΓH = 4.143 MeV.

In the determination of the off-shell top width and in all calculations presented in

this part, intermediate massive particles are treated in the complex-mass scheme [181].

This leads to a gauge-invariant treatment of finite width effects as well as perturbative

unitarity [218]. The complex-mass scheme can be considered a complex extension of

on-shell renormalization. Thus, the input mass parameters of Eq. (4.9) are pole masses

and not short-distance masses as in Section 6.3.3. On the technical side, it necessitates

complex-valued renormalized masses

µ
2
i = M

2
i − iΓiMi for i = W,Z, t,H , (4.14)

that imply for consistency a complex-valued weak mixing angle

s
2
W = 1− c

2
W = 1− µ

2
W

µ
2
Z

. (4.15)

For the electromagnetic coupling in the Gµ scheme, we set

αe =

√
2

π
Gµ

∣∣∣µ2
Ws

2
w

∣∣∣ , (4.16)

which gives α
−1
e = 132.16916.

For the on- and off-shell tt̄ and tt̄H processes that we consider in this part, the
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renormalization scale µR is set to

µR = ξRµ0, with µ0 =

{
mt for tt̄ processes

mt +mH for tt̄H processes
(4.17)

and
1

2
≤ ξR ≤ 2 . (4.18)

At lepton colliders pure QCD corrections do not involve radiation off the initial-state,

and thus the hard scattering process happens at fixed energy, at least after unfolding

EW ISR and beamstrahlung effects. Therefore, as the results presented in the following

sections indicate, a very good perturbative description is possible with an appropriate fixed

scale. Still, different dynamical scale choices, as commonly used at hadron colliders, might

be appropriate for the description of specific differential observables. Our default scale

choice corresponds to ξR = 1 and theoretical uncertainties are probed by scale variations.

However, scale uncertainties are obviously no complete assessment of the theoretical errors,

but they are our best handle on perturbative QCD uncertainties. Particularly at LO the

considered processes are independent of αs, rendering corresponding uncertainty estimates

meaningless.

Thanks to the finite bottom quark mass all on- and off-shell tt̄ and tt̄H processes

considered in this part can in principle be integrated over the whole phase space. However,

for processes with final state electrons or positrons, a singularity emerges for small photon

energy transfers, as depicted on the right-hand side of Fig. 4.2. To avoid this, we apply a

mild phase-space cut for these processes

√(
k

in

e
± − kout

e
±

)2

> 20 GeV. (4.19)

For the definition of jets, we employ the generalized kT algorithm (ee genkt in Fast-

Jet) [175, 219] with R = 0.4 and p = −1. This jet definition is particularily suited for

lepton collisions as it uses energies and angles instead of transverse momentum and ∆R.

The negative power, p = −1, makes this an anti -kT-type algorithm with the associated

benefits [219]. A minimal jet energy of 1 GeV is required. We tag b/b̄-jets according to

their partonic content and denote them as jb and jb̄ . Similarly, in the on-shell processes

e
+

e
− → tt̄ and e

+
e
− → tt̄H, we identify the top quark with the jet containing a top quark.

In the discussion of differential cross sections in Section 5.2, we always require at least two

b-tagged jets during the analysis.
1

1Since we do not impose any kinematic restriction on b-jets, requiring two b-jets amounts to a lower
bound for their cos θij separation.
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4.4.2 Validation

To validate the new automated subtraction within Whizard, we have performed various

cross checks. All of the following checks have been performed at the per mil level,

i.e. differences are all at the few per mil level and within two standard deviations of the

MC integration. The NLO top-quark width computed by Whizard has been cross-checked

both with the value used in Ref. [184] and the analytical formulae [220–222]. Total cross

sections for simple 2→ 2 processes, like e
+
e
− → qq̄ and e

+
e
− → tt̄, have been validated

against analytical calculations. For e
+

e
− →W

+
W
−

bb̄, we have performed an in-depth

cross check with various other results and generators. The total cross section of Ref. [54],

therein computed with Madgraph5 aMC@NLO [38], has been reproduced. Moreover,

we find excellent agreement between Whizard, Sherpa [37] and Munich
2

for the

parameter set given in Section 4.4.1. This is especially encouraging as both Sherpa and

Munich use CS subtraction [69, 70], while Madgraph5 aMC@NLO and Whizard

use FKS subtraction [72]. The resonance-aware NLO calculation was validated internally,

comparing the result with a computation based on the traditional FKS subtraction (see

also Section 2.6.2). To this end, we used large widths in order to avoid problems in the

traditional FKS approach.

2Munich is the abbreviation of “MUlti-chaNnel Integrator at Swiss (CH) precision”, an automated
parton level NLO generator by S. Kallweit. In preparation.
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Numerical predictions

5.1 Numerical predictions for inclusive cross sections

5.1.1 Integrated cross sections and scale variation

We start our discussion of the numerical results with an investigation of the NLO QCD

corrections to inclusive top-quark pair production. Hereby, we show the cross sections, σ,

depending on the center-of-mass energy,
√
s, of the leptonic collisions. In the left plot of

Fig. 5.1, we show inclusive LO and NLO cross sections for the on-shell process e
+

e
− → tt̄

and the off-shell process e
+

e
− → W

+
W
−

bb̄ together with the corresponding K-factor

ratios, defined as

K = σ
NLO

/σ
LO
. (5.1)

Right above the production threshold
√
s = 2mt , both LO and NLO cross sections are

strongly enhanced, and in the limit
√
s → 2mt the NLO corrections to the on-shell

process e
+

e
− → tt̄ diverge due to nonrelativistic threshold corrections. These manifest

themselves as large logarithmic contributions to the virtual one-loop matrix element. On

the other hand, in the off-shell process e
+

e
− → W

+
W
−

bb̄ the Coulomb singularity is

regularized by the finite top-quark width, and the NLO corrections remain finite. However,

threshold corrections introduce a distinct peak in the NLO corrections at
√
s = 2mt with a

maximum K-factor of about 2.5. Below threshold the cross section drops sharply, but QCD

corrections remain significant. Far above threshold, the NLO corrections are rather small

for both the on-shell and the off-shell processes. For e
+

e
− → tt̄, the corrections remain

positive for all
√
s. In fact, for large center-of-mass energies, the effect of the top-quark

mass becomes negligible and the corrections approach the universal massless quark-pair

production correction factor at lepton colliders: αs/π. In contrast, the NLO corrections to

e
+

e
− →W

+
W
−

bb̄ decrease significantly faster for large center-of-mass energies, are at the

per cent level for
√
s = 1500 GeV, and come close to zero at

√
s = 3000 GeV. This is due

to the non-resonant irreducible background and interference contributions that grow with

energy relative to the tt signal contribution, which receives purely positive corrections.

Our results suggest that at
√
s = 800 GeV, positive corrections to the signal process and
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Figure 5.1 Total cross section for on-shell and off-shell tt̄ production as a function of
√
s

and µR. In the lower panels of the left plot, we show the K-factor for tt̄ and W+W−bb̄
in green and red, respectively, as well as the ratio of off-shell to on-shell results for LO
and NLO in blue and red.

negative corrections to the background are of the same order of magnitude and partially

cancel each other. This leads to very small NLO QCD corrections. However, at this level

the currently unknown and possibly large NLO EW corrections to e
+

e
− → W

+
W
−

bb̄

have to be included as well for reliable predictions. Comparing off-shell to on-shell cross

sections, we see that they are roughly equal at threshold, but at
√
s = 800 GeV the off-shell

prediction is about 20% larger.

In the right panel of Fig. 5.1 we show the variation of the e
+

e
− → tt̄ and e

+
e
− →

W
+

W
−

bb̄ NLO predictions with respect to the renormalization scale µR for
√
s = 800 GeV

in the interval µR = [1/8, 8] ·mt . Within the error band [mt/2, 2mt ] predictions for tt̄

and W
+

W
−

bb̄ with fixed top-quark width, Γt = Γt(µR = mt), vary at the level of a few

per cent, however with an opposite slope. To understand this behavior, we show the scale

variation of the off-shell process additionally with a scale-dependent width, Γt(µR). With

such a consistent setting of the width according to the input parameters, including µR,

scale variations in the off-shell process are very similar to the on-shell one. We note that

the scale dependence in the top width is in principle a higher-order effect, such that both

approaches are viable to estimate missing higher order effects by means of scale variations.

However, in order to properly recover the narrow width limit, the parameter settings for

the width in the propagator and the decay part of the matrix element have to match,

including the scale setting.

Inclusive cross sections for Higgs associated top-pair production are shown in the left

panel of Fig. 5.2. The absolute maximum of the cross sections is located at around
√
s =

800 GeV, i.e. far above the production threshold at 2mt+mH ≈ 471 GeV, where σincl.(
√
s =
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Figure 5.2 Total cross section of on-shell and off-shell tt̄H production subject to
√
s and

µR. Extra panels as in Fig. 5.1.

800 GeV) ≈ 2.4 fb. Again, NLO QCD corrections are sizable due to nonrelativistic

Coulomb enhancements close to the production threshold. For the off-shell process

e
+

e
− → W

+
W
−

bb̄H the corrections reach +100 % and remain large but finite below

threshold, while for the on-shell process they diverge close to threshold. Around the

maximum of the cross sections, NLO corrections vanish for both, the on-shell and the

off-shell process. Above this maximum, the NLO corrections turn negative, yielding

corrections at
√
s = 3000 GeV of up to −15 % for the on-shell process e

+
e
− → tt̄H and up

to −20 % for the off-shell process e
+

e
− → W

+
W
−

bb̄H. Again one should also consider

how the off-shell cross sections behave relative to their on-shell counterparts. While at LO

the e
+

e
− →W

+
W
−

bb̄H cross section decreases considerably slower with energy compared

to the on-shell process e
+

e
− → tt̄H, at NLO the corrections to the off-shell process are

more sizable and negative with respect to the on-shell case, yielding comparable inclusive

cross sections for the on-shell and off-shell process. Still, at 3000 GeV the off-shell inclusive

cross section is about 20 % smaller than the on-shell one.

In the right panel of Fig. 5.2, we display renormalization scale variations at
√
s = 800 GeV

for Higgs associated top-pair production. For this center-of-mass energy scale variation

uncertainties in e
+

e
− → tt̄H are negligible (induced by vanishing NLO QCD corrections),

while in e
+

e
− → W

+
W
−

bb̄H with the standard choice Γt = Γt(µR = mt) they amount

to several per cent in the considered variation band. Similar to the tt̄ case, we also show

scale variations taking consistently into account the scale dependence in the top-quark

width. With this, the behavior of the off-shell process is very similar to the on-shell one.

Finally, we list inclusive cross sections for tt̄ and tt̄H (both on- and off-shell) processes,

respectively, for several representative center-of-mass energies in Tables 5.1 and 5.2. Listed

uncertainties are results of scale variations with a factor of two, where we employ the fixed
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Table 5.1 LO and NLO inclusive cross sections and K-factors for e+e− → tt̄ and e+e− →
W+W−bb̄ for various center-of-mass energies. Uncertainties at NLO are due to scale
variation.

e
+

e
− → tt̄ e

+
e
− →W

+
W
−

bb̄√
s[GeV] σ

LO
[fb] σ

NLO
[fb] K-factor σ

LO
[fb] σ

NLO
[fb] K-factor

500 548.4 627.4
+1.4%
−0.9% 1.14 600.7 675.1

+0.4%
−0.8% 1.12

800 253.1 270.9
+0.8%
−0.4% 1.07 310.2 320.7

+1.1%
−0.7% 1.03

1000 166.4 175.9
+0.7%
−0.3% 1.06 217.2 221.6

+1.1%
−1.0% 1.02

1400 86.62 90.66
+0.6%
−0.2% 1.05 126.4 127.9

+0.7%
−1.5% 1.01

3000 19.14 19.87
+0.5%
−0.2% 1.04 37.89 37.63

+0.4%
−0.9% 0.993

Table 5.2 LO and NLO inclusive cross sections and K-factors for e+e− → tt̄H and
e+e− →W+W−bb̄H for various center-of-mass energies. Uncertainties at NLO are due
to scale variation.

e
+

e
− → tt̄H e

+
e
− →W

+
W
−

bb̄H√
s[GeV] σ

LO
[fb] σ

NLO
[fb] K-factor σ

LO
[fb] σ

NLO
[fb] K-factor

500 0.26 0.42
+3.6%
−3.1% 1.60 0.27 0.44

+2.6%
−2.4% 1.63

800 2.36 2.34
+0.1%
−0.1% 0.99 2.50 2.40

+2.1%
−1.9% 0.96

1000 2.02 1.91
+0.5%
−0.5% 0.95 2.21 2.00

+2.5%
−2.5% 0.90

1400 1.33 1.21
+0.9%
−1.0% 0.90 1.53 1.32

+2.6%
−3.0% 0.86

3000 0.41 0.35
+1.4%
−1.8% 0.84 0.55 0.44

+2.9%
−4.3% 0.79
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top-width, Γt = Γt(µR = mt). In Section 5.2, we will continue our discussion of NLO

corrections to top-pair and Higgs associated top-pair production at the differential level.

There, we will focus on
√
s = 800 GeV, to maximize cross sections for tt̄H production,

which should offer the best condition for a precise determination of the top Yukawa

coupling, as discussed in the following section. While we consider this as a viable running

scenario for a precision measurement, one should keep in mind that for other energies the

NLO QCD corrections will be larger in general, at least at the inclusive level.

5.1.2 Determination of the top Yukawa coupling

A precise measurement of Higgs associated top-pair production allows for the direct

determination of the top-quark Yukawa coupling yt at the per cent level [30, 31]. With

this, many new physics models can be tested, as significant deviations from the Standard

Model value y
SM
t =

√
2mt/v are predicted, e.g. in generic two Higgs-doublet models, the

MSSM or composite Higgs as well as Little Higgs models. A per cent level measurement

of yt is feasible at future high-energy lepton colliders, as the ttH and W
+

W
−

bb̄H cross

sections are very sensitive to yt . The sensitivity of the tt̄H processes (on- and off-shell) on

yt is commonly expressed in terms of [31, 223]

∆yt

yt

= κ
∆σ

σ
. (5.2)

In this way, the relative accuracy on the measured cross section can be directly translated

to a relative accuracy on the top Yukawa coupling. Since the yt-dependence of the cross

section is approximately quadratic, κ is close to 0.5. More precisely, parameterizing

deviations of the top-Yukawa coupling from its SM value as yt = ξt · ySM
t , we can write

the total cross section as σ(ξt) = ξ
2
t · S + ξt · I +B. Hereby, S and B denote tt̄H signal

1

and background contributions, respectively, while I stands for interference terms. The

yt-sensitivity of tt̄H cross sections can be determined with a linear fit of σ(yt), which

corresponds to

κ = lim
ξt→1

σ(ξt)

[
dσ(ξt)

dξt

]−1

=
S + I +B

2S + I
=

1

2
+
I/2 +B

2S + I
. (5.3)

Note that whereas B and S are strictly positive, we can make no statement about the

sign of I. A reasonable assumption is that the signal is larger than half the interference,

i.e. |I| < 2 |S|. Thus, Eq. (5.3) shows that κ < 0.5 can only be realized via sufficiently large

and negative interference contributions, I < −2B. From the above reasoning, we see that

κ quantifies the contamination from the Higgsstrahlung subprocess in e
+

e
− → tt̄H, and,

for off-shell processes, of any additional background subprocess, including contributions

1More precisely, the S term corresponds to squared e+e− → tt̄H amplitudes, excluding Higgsstrahlung
contributions.
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Figure 5.3 The e+e− → tt̄H and e+e− →W+W−bb̄H LO and NLO cross sections as a
function of the top Yukawa coupling modifier ξt = yt/y

SM
t , as well as a linear fit used to

determine the coefficient κ as described in the text.

proportional to the HWW coupling.

In Tab. 5.3, we list the values of κ corresponding to the LO and NLO fits shown

in Fig. 5.3. As expected, all listed κ-values are close to 0.5. For e
+

e
− → tt̄H at LO,

Table 5.3 The parameter κ as defined in Eq. (5.3) for e+e− → tt̄H and e+e− →W+W−bb̄H
at LO and NLO for

√
s = 800 GeV.

e
+

e
− → κ

LO
κ

NLO
κ

NLO
/κ

LO

tt̄H 0.514 0.485 0.943

W
+

W
−

bb̄H 0.520 0.497 0.956

the Higgsstrahlung contribution induces a value of κ > 0.5. For the off-shell process

e
+

e
− →W

+
W
−

bb̄H we observe a slightly larger value compared to the on-shell process,

originating from additional irreducible backgrounds. The NLO QCD corrections to κ turn

out to be significant. They decrease κ by 5.7 % and 4.4 % compared to LO for the on- and

off-shell case, respectively. This can be understood from a different behavior of the signal

and background contributions with respect to QCD corrections. From Tab. 5.3 we can

infer that at NLO interference terms are indeed negative for the on-shell tt̄H process.

The sensitivity formula, Eq. (5.3), can be used to assess the impact of perturbative

corrections on the extraction of yt . This is roughly half as large as the corrections reported

in Fig. 5.2. As already observed at the cross section level, the shifts in the extracted yt

value that result from the inclusion of NLO corrections and off-shell contributions have

comparable size and opposite sign. The magnitude of the individual effects amounts to a

60



5.1 Numerical predictions for inclusive cross sections

few per cent at 800 GeV and grows up to about 10% at full CLIC energy. These results are

now being used for the determination of the potential of the CLIC experiment to measure

the top Yukawa coupling [224].

5.1.3 Polarization effects

Table 5.4 LO and NLO inclusive cross sections for e+e− → tt̄ with possible ILC beam
polarization settings at

√
s = 800 GeV and 1500 GeV.

√
s = 800 GeV

√
s = 1500 GeV

P (e
−

) P (e
+

) σ
LO

[fb] σ
NLO

[fb] K-factor σ
LO

[fb] σ
NLO

[fb] K-factor

0% 0% 253.7 272.8 1.075 75.8 79.4 1.049

−80% 0% 176.5 190.0 1.077 98.3 103.1 1.049

80% 0% 176.5 190.0 1.077 53.2 55.9 1.049

−80% 30% 420.8 452.2 1.074 124.9 131.0 1.048

−80% 60% 510.7 548.7 1.074 151.6 158.9 1.048

80% −30% 208.4 224.5 1.077 63.0 66.1 1.049

80% −60% 240.3 258.9 1.077 72.7 76.3 1.049

Table 5.5 LO and NLO inclusive cross sections for e+e− → tt̄H with possible ILC beam
polarization settings at

√
s = 800 GeV and 1500 GeV.

√
s = 800 GeV

√
s = 1500 GeV

P (e
−

) P (e
+

) σ
LO

[fb] σ
NLO

[fb] K-factor σ
LO

[fb] σ
NLO

[fb] K-factor

0% 0% 2.358 2.337 0.991 1.210 1.064 0.879

−80% 0% 1.583 1.571 0.992 1.576 1.381 0.876

80% 0% 1.584 1.571 0.992 0.843 0.746 0.885

−80% 30% 3.988 3.950 0.990 2.003 1.757 0.877

−80% 60% 4.840 4.795 0.991 2.429 2.128 0.876

80% −30% 1.860 1.846 0.992 0.996 0.879 0.883

80% −60% 2.134 2.120 0.993 1.148 1.018 0.886

We complete our study of inclusive cross sections of top-pair and Higgs associated top-pair

production with an investigation of possible beam polarization effects on these processes.

Beam polarization is a powerful tool at linear colliders to disentangle contributing couplings
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and to reduce backgrounds [225, 226] or improve the measurement of the top Yukawa

coupling [31]. In Tables 5.4 and 5.5, inclusive LO and NLO cross sections are listed with

different polarization settings as suggested by the favored ILC running scenarios [227].

We show this for two different collider energies and both on-shell processes: e
+

e
− → tt̄

and e
+

e
− → tt̄H. While the cross sections vary strongly with the beam polarization, the

K-factors are unaffected. These results confirm the expectation that NLO QCD corrections

fully factorize with respect to the beam polarization due to the uncolored initial state. On

the other hand, one can view the constant K-factors in Tables 5.4 and 5.5 as validation of

the polarization dependent Whizard-OpenLoops-interface via BLHA extension. The

factorization also holds when top-quark decays are considered and we refrain from showing

polarized cross sections for off-shell processes.

5.2 Numerical predictions for differential

distributions

Leptonic tt̄ and tt̄H production and decay are fairly similar in various distributions.

Therefore, a sound understanding of tt̄ production and decay in the continuum, where a

large amount of data can easily be accumulated, is very useful for precision measurements

of the top Yukawa coupling in the e
+

e
− → tt̄H process. In this section, we discuss

differential predictions for e
+

e
− → tt̄ and e

+
e
− → tt̄H at

√
s = 800 GeV including NLO

QCD corrections and off-shell effects in the decays. We also present predictions for the

forward-backward asymmetry in e
+

e
− → tt̄.

5.2.1 Off-shell top-pair production

We start our analysis of differential distributions for top-pair production and decay with

the top-quark transverse momentum distribution in Fig. 5.4. We show it for the on-shell

process e
+

e
− → tt̄ and the corresponding off-shell process e

+
e
− → µ

+
νµe

−
ν̄ebb̄ including

leptonic decays. For the latter, the top quark is reconstructed from its leptonic decay

products at MC truth level, i.e. p
T,W

+
jb

= p
T,`

+
νjb

. Obviously, the two distributions are

very differently normalized, as the on-shell process does not include the leptonic branching

ratio. Apart from this, the LO and NLO shapes are very similar below the Jacobian peak

located at around 350 GeV. The main effect, hereby, is a kinematic shift induced by real

gluon radiation, which leads to an decrease of the peak and an increase for the lower pT

tail. Specifically, this yields corrections at the level of −20 % at the peak and around

+20 % below the peak.

For the on-shell process, the phase-space above the Jacobian peak is kinematically not

allowed at LO and gets only sparsely populated at NLO. In contrast, for the off-shell

process this kinematic regime is allowed already at LO but at NLO the mentioned shift

reduces the number of possible configurations. The observed sizable corrections in the
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Figure 5.4 Differential distributions in the transverse momentum of the top quark in
e+e− → tt̄ (left) and the reconstructed top quark in e+e− → µ+νµe−ν̄ebb̄ (right). Shown
are LO (blue) and NLO (red) predictions together with the corresponding K-factors and
NLO scale uncertainties.

transverse momentum of the intermediate top quarks also translate into relevant corrections

in the directly observable transverse momentum of the final state leptons, as shown in

appendix C.1 (Fig. C.1). Namely, we find corrections of about −30 % to +15 % and −20 %

to +10 % for the hardest and second hardest lepton, respectively, with an increase for low

and a decrease for high pT. In a realistic setup, where experimental selection cuts have to

be applied on the leptons, such effects become also relevant for fiducial cross sections in

precision top physics.

Experimentally, p
T,W

+
jb

is not directly measurable in the considered leptonic decay mode:

the top quark cannot be exactly reconstructed due to the two invisibly escaping neutrinos.

As a proxy however, we can construct and measure the transverse momentum of the b-jet–

lepton system, p
T,`

+
jb

. We show the corresponding predictions for e
+

e
− → µ

+
νµe

−
ν̄ebb̄

in Fig. 5.5 (left). Here, we also observe a tilt of the NLO shape with respect to the LO

one, yielding corrections up to 20 % for small p
T,`

+
jb

and up to −40 % for large p
T,`

+
jb

. In

contrast, the transverse momentum distribution of the jb–jb̄ system, as shown on the right

of Fig. 5.5, only receives mild QCD corrections at the level of 10 %.

One of the observables of prime interest is the kinematic mass of the top resonance. In

Fig. 5.6, we show on the left the reconstructed invariant top-quark mass, m
W

+
jb

= m
`
+
νjb

,

where the `
+
νjb system is fully reconstructed. At LO and close to the peak, this distribution

corresponds to the Breit-Wigner that arises due to the propagator. Off-shell effects and

non-resonant contributions become visible a couple of GeV away from the pole and tend to

increase the background. At NLO, we observe a drastic shape distortion compared to LO,

in particular below the resonance peak. These NLO shape distortions are very sensitive to

the parameters of the employed jet algorithm. They can be attributed to QCD radiation
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Figure 5.5 Transverse momentum distribution of the bottom-jet–lepton system (left),
p

T,`
+

jb
, and of the jb–jb̄ system (right), pT,bb̄ , in e+e− → µ+νµe−ν̄ebb̄. Curves and

bands as in Fig. 5.4.
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Figure 5.6 Reconstructed top invariant mass (left) and invariant mass of the b-jet–`+

system in e+e− → µ+νµe−ν̄ebb̄. Curves and bands as in Fig. 5.4.
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that escapes the b-jet. It thus forms either a separate light jet or is recombined with

the other b-jet. The reconstructed invariant top-quark mass is thus significantly shifted

towards lower values. Similar shape distortions have also been observed in Ref. [54] as

well as at the LHC [228, 229].

Again, the perfectly reconstructed top-quark mass is not directly measurable due to

the missing neutrinos. However, we can resort to the invariant mass of the b-jet and the

associated charged lepton. In fact, this distribution can be used to measure the top-quark

mass via [230–232]

m
2
t = m

2
W +

2〈m2
`jb
〉

1− 〈cos θ`jb 〉
, (5.4)

where 〈m2
`jb
〉 and 〈cos θ`jb 〉 are the mean values of the corresponding invariant mass and

angular distributions. Predictions for the m
`
+

jb
invariant mass distribution are shown on

the right of Fig. 5.6. The position of the kinematic edge at around m
`
+

jb
≈ 150 GeV is

unaffected by NLO QCD corrections. However, we observe significant shape effects below

the edge with corrections varying between −10 % and +30 %.

5.2.2 Forward-backward asymmetries

The top quark forward-backward asymmetry AFB is defined as

AFB =
σ(cos θt > 0)− σ(cos θt < 0)

σ(cos θt > 0) + σ(cos θt < 0)
, (5.5)

where θt is the angle between the positron beam axis and the outgoing top-quark. This

asymmetry can be measured with a precision below 2% [225, 226]. The SM LO prediction for

AFB is non-zero due to interference contributions between s-channel Z- and γ
∗
-exchange in

the dominant production process [233, 234]. Various new physics models can substantially

alter the SM prediction (for an overview cf. [235]) and thus, a precise determination of

AFB serves as a stringent probe for new physics.
2

In Fig. 5.7, we show the distribution of the angle of the (reconstructed) top quark with

respect to the beam axis for on-shell top-pair production and the corresponding off-shell

process e
+

e
− → µ

+
νµe

−
ν̄ebb̄. The prediction of a non-zero forward-backward asymmetry

at lepton colliders is apparent in Fig. 5.7. The shape of this distribution is hardly affected

by radiative corrections, which yield an almost constant K-factor of about 1.05. This is

very promising for precision measurements of AFB in the continuum. For cos θ
W

+
jb
. 0.75,

the angular distribution of the reconstructed top quark in e
+

e
− → µ

+
νµe

−
ν̄ebb̄ is very

similar to the on-shell prediction. However, for cos θ
W

+
jb
& 0.75, there is an enhancement

of events, which could stem from the single-top background. This has a significant effect

2As noted in Chapter 1, such an asymmetry can also be defined and measured at hadron colliders,
where the dominant top-production channels are of QCD type, such that within the SM the LO
forward-backward asymmetry is zero.

65



Chapter 5 Numerical predictions

Whizard+OpenLoops

LO

NLO

10 2

e+e− → tt̄,
√
s = 800GeV

d
σ

d
c
o
s
θ
[f
b
/
G
eV

]

-1 -0.5 0 0.5 1
0.8

0.85
0.9

0.95
1.0

1.05
1.1

1.15

cos θt

K
-F
a
ct
o
r

Whizard+OpenLoops

LO

NLO

1

e+e− → µ+νµe
−ν̄ebb̄, Njets ≥ 2,

√
s = 800GeV

d
σ

d
c
o
s
θ
[f
b
]

-1 -0.5 0 0.5 1
0.8

0.85
0.9

0.95
1.0

1.05
1.1

1.15

cos θW+jb

K
-F
a
ct
o
r

Figure 5.7 Differential distributions in the azimuthal angle of the top quark in e+e− → tt̄
(left) and e+e− → µ+νµe−ν̄ebb̄ (right). Curves and bands as in Fig. 5.4.

Table 5.6 Forward-backward asymmetries of the top quark, AFB, and the anti-top quark,
ĀFB.

e
+

e
− → A

LO
FB A

NLO
FB A

NLO
FB /A

LO
FB

AFB

tt̄ -0.535 -0.539 1.013

W
+

W
−

bb̄ -0.428 -0.426 0.995

µ
+
e
−
νµ ν̄ebb̄ -0.415 -0.409 0.986

µ
+
e
−
νµ ν̄ebb̄, without neutrinos -0.402 -0.387 0.964

ĀFB

tt̄ 0.535 0.539 1.013

W
+

W
−

bb̄ 0.428 0.426 0.995

µ
+
e
−
νµ ν̄ebb̄ 0.415 0.409 0.986

µ
+
e
−
νµ ν̄ebb̄, without neutrinos 0.377 0.350 0.928
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Figure 5.8 The energy of the Higgs boson, EH , and the invariant mass of the top-quark

pair, mtt̄ , in e+e− → tt̄H. Curves and bands as in Fig. 5.4.

on the reconstructed top forward-backward asymmetry, which is reduced by about 20 %,

see the e
+

e
− → µ

+
νµe

−
ν̄ebb̄ and e

+
e
− →W

+
W
−

bb̄ predictions in Tab. 5.6.

In Tab. 5.6, we list LO and NLO predictions for the forward-backward asymmetry

AFB (and the corresponding asymmetry for the anti-top quark), considering different

treatments of the top-quark off-shellness. In e
+

e
− → µ

+
νµe

−
ν̄ebb̄, either the top-quark is

reconstructed at MC truth level or the information of the neutrino momenta is dropped.

NLO QCD corrections to AFB are at a few per cent, which is small compared to the

changes associated with increasing the final-state multiplicity and taking into account

all off-shell and non-resonant effects. Note that if the neutrino momenta are omitted,

the relation AFB = −ĀFB is not fulfilled any more, both at LO and NLO. This can also

observed directly in the angular distribution of `jb-pairs, see Fig. C.2 in appendix C.1,

where there is a slightly more pronounced dip at the lower edge of cos θ
`
−
jb̄

than at the

one of cos θ
`
+
jb

.

5.2.3 Off-shell Higgs associated top-pair production

We start our analysis of differential Higgs associated top-pair production by considering

in Fig. 5.8 the energy of the Higgs boson, EH , and the invariant mass of the tt̄ system,

mtt̄ , in the on-shell process e
+

e
− → tt̄H. The energy of the Higgs boson is the key

observable to identify tt̄ threshold effects, and it is of great phenomenological relevance

for realistic experimental analyses including Higgs boson decays. From the point of view

of tt̄ dynamics, the Higgs acts as a colorless recoiler, reducing the effective center-of-mass

energy for the tt̄ system.
3

For mtt̄ → 2mt = 346.4 GeV the top-quark pairs are more and

3This is not strictly true for bb decays of the Higgs, where the colored final states can exchange gluons.
However, these effects are strongly suppressed due to the extremely small Higgs width of 4.143 MeV.
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Figure 5.9 The energy of the Higgs boson, EH , and the invariant mass of the reconstructed

top-quark pair, m
W

+
W
−

jb jb̄
, in e+e− → µ+νµe−ν̄ebb̄H. Curves and bands as in Fig. 5.4.

more nonrelativistic, yielding large logarithmic enhancements in the loop matrix elements.

The energy of the Higgs boson and the top-pair invariant mass are at LO directly related

by

EH =
1

2
√
s

(
s+m

2
H −m2

tt̄

)
. (5.6)

Thus, small tt̄ invariant masses correspond to large Higgs energies. And indeed, for large

Higgs energies and small mtt̄, in Fig. 5.8 we observe sizable positive NLO QCD corrections

up to +35% and +50% for the EH and mtt̄ distributions, respectively. Such large NLO

QCD corrections should be resummed for a precise theoretical prediction.

For the on-shell process e
+

e
− → tt̄H, the lower kinematic bound of the EH distribution

is given by E
min
H = mH = 125 GeV and its upper bound by E

max
H = 335 GeV, which follows

from m
min
tt̄ = 2mt . Noteworthy, for small Higgs boson energies we observe an apparent

mismatch of the NLO QCD corrections with respect to large top-pair masses. While for

small Higgs boson energies the K-factor flattens out to an almost constant value of about

0.95, the K-factor for the top-pair invariant mass distribution monotonically decreases to

a minimum value of about 0.60. This can be resolved by realizing that the Higgs boson

energy distribution is a fully inclusive observable that is completely independent of the

clustering applied to final state QCD radiation. On the other hand, the mtt̄ distribution

does not include hard gluon radiation off the tt̄ system, while soft and collinear gluons are

recombined with the top quarks. The resulting systematic shift in the mtt̄ distribution

towards lower values results in the observed differences compared to the EH distribution.

The corresponding distributions for the off-shell process e
+

e
− → µ

+
νµe

−
ν̄ebb̄H are

shown in Fig. 5.9. Again, we observe a strong enhancement for large Higgs boson energies

and small reconstructed top-pair masses, together with a strong suppression for large

reconstructed top-pair masses. In contrast to the on-shell process, already at LO kinematic
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Figure 5.10 Transverse momentum distributions of the reconstructed top quark (left) and
of the bottom-jet–lepton system (right), p

T,`
+

jb
, in e+e− → µ+νµe−ν̄ebb̄H. Curves and

bands as in Fig. 5.4.

boundaries are washed out due to off-shell and non-resonant contributions. In particular,

the EH distributions range to energies above 335 GeV, with sizable NLO corrections. The

m
W

+
W
−

jb jb̄
distribution at LO falls off quickly below m

W
+
W
−

jb jb̄
= 2mt , while at NLO

it extends to very small values. As already discussed in the context of Fig. 5.6, this

phase-space region is populated at NLO due to kinematic shifts of the reconstructed

masses originating from the recombination of radiation from different stages of production

and decay.

In Fig. 5.10, we show the transverse momentum distribution of the reconstructed

top quark and the directly observable bottom-jet–lepton system in the off-shell process

e
+

e
− → µ

+
νµe

−
ν̄ebb̄H. Comparing these distributions with the corresponding ones for

top-pair production, shown in Fig. 5.4 and Fig. 5.5, we observe distinct shape differences.

In this case, there is no Jacobian peak, which is related to 2→ 2-kinematics. Instead, we

observe in the p
T,W

+
jb

distribution a plateau between about 100 GeV and 250 GeV. At

larger transverse momentum, the distribution drops sharply to its kinematical bound at

around 325 GeV. NLO QCD corrections shift both the p
T,W

+
jb

and the p
T,`

+
jb

distribution

towards smaller values inducing shape effects up to −50 % at large p
T,W

+
jb

and up to

−60 % at large p
T,`

+
jb

.

Finally, in Fig. 5.11 we turn to the reconstructed kinematic top mass, m
W

+
jb

, and

its directly observable counterpart, m
`
+

jb
. We observe similar NLO shape distortions as

already discussed in the case of top-pair production, shown in Fig. 5.6. For m
W

+
jb
< mt ,

i.e. below the top resonance, we observe a strong NLO enhancement that translates to

20 % shape corrections in the case of the m
`
+

jb
distribution. As already noted before, the

size of these corrections strongly depends on the details of the employed jet clustering. In
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Figure 5.11 Reconstructed top invariant mass (left) and invariant mass distribution of the
b-jet–`+ system (right) in e+e− → µ+νµe−ν̄ebb̄H. Curves and bands as in Fig. 5.4.

Fig. C.3, we also show the distribution of the transverse momentum of the Higgs, pT,H ,

which is, however, closely related to the energy, EH , and shows the same physics.

5.3 Summary

In this part, we have presented the first major physics application of the Whizard

NLO framework based on a process-independent interface between Whizard and the

amplitude generator OpenLoops. We have performed a precision study for a future high-

energy lepton collider considering for the first time at NLO QCD the processes e
+

e
− →

µ
+
νµe

−
ν̄ebb̄ and e

+
e
− → µ

+
νµe

−
ν̄ebb̄H, i.e. off-shell top-pair and Higgs associated top-

pair production. Finite-width effects for intermediate top quarks and W bosons, single-top

and non-resonant contributions as well as their interferences together with spin correlations

have been taken into account consistently at NLO.

We have presented a study of inclusive cross sections as a function of the center-of-mass

energy considering different approximations for the top off-shellness and an in-depth study

at the differential level for
√
s = 800 GeV. Off-shell effects play an important role even

for the inclusive cross sections as the narrow-width approximation does not suffice to

describe interference effects and background diagrams at energies far above threshold.

NLO QCD corrections also influence the dependence of the cross section on the top

Yukawa coupling for the tt̄H processes, which has direct consequences for the achievable

accuracy in measuring this coupling. In particular, we have shown that the NLO QCD

corrections induce negative interference terms yielding a deviation from the quadratic

Yukawa coupling dependence of the cross section (κ
NLO

< 0.5), both in the on-shell

treatment of tt̄H production and the corresponding off-shell process. In order to describe

beam polarization, the BLHA for the interface between Whizard and OpenLoops was
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generalized. As expected, we found that beam polarization has no effect on the relative

size of NLO QCD corrections. It is, however, important to incorporate polarization effects

in the NLO framework of Whizard, as well as EW ISR and beamstrahlung, in order to

allow for realistic MC simulations at a lepton collider.

In addition to these inclusive studies, NLO QCD effects on differential observables have

been investigated. Our results show that NLO effects yield corrections at the O (20 %) level

for most observables. Even larger corrections occur due to nonrelativistic top-threshold

effects and below the top invariant mass peak. To obtain reliable predictions in the

threshold region, a resummed calculation is required that is matched to the continuum

computation. This will be the focus of the next part. Higgs observables are mostly

unaffected by off-shell contributions and details of the pole mass, but can be influenced

significantly by NLO QCD threshold corrections. Such observables can thus be used even

at high-energies to perform precision measurements of short-distance top masses with the

benefit of large data sets. Studying the top-quark forward-backward asymmetry, we found

the effect of off-shell contributions dominating over NLO QCD corrections. This has to be

stressed as the use of the on-shell NNLO computation for predicting AFB and estimating

the theory error thus systematically underestimates the physically more important off-shell

effects, which have been presented in this part and which do not factorize with the QCD

corrections.
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Chapter 6

Motivation and setup of the

computation

6.1 Introduction

As we have seen in the last chapter, QCD corrections can become large when heavy

color-pairs are produced with little velocity. Reliable theory predictions in the threshold

region crucially require the resummation of Coulomb singular (αs/v)
n

terms to all orders in

perturbation theory. Here and throughout this part v denotes the nonrelativistic velocity of

the top quarks. In the threshold region, we have v ∼ αs ∼ 0.1. Thus, each of the Coulomb

terms (αs/v)
n

is of order one. This indicates that bound-state effects become important

despite the fact that the top quarks decay before they can form a would-be toponium state.

Note that this behavior is a result of the value of the top mass, m, and the top width,

Γ. The resummation of the threshold enhanced terms is performed within the effective

theory of nonrelativistic QCD (NRQCD) [236, 237], wherein hard gluon momenta of the

hard scale m are integrated out. Then, a Schrödinger-type equation for the propagation of

the top-antitop system has to be solved to obtain the corresponding Green’s function. As

we already mentioned in Chapter 1, the Coulomb resummation is so important that any

fixed-order cross section at threshold has to include it for a reliable prediction, including

additional corrections to the stated order.

The first predictions for top pair production at threshold given a large top width have

already been computed in Ref. [238]. This has been followed by more detailed studies [239–

241]. Inclusive NNLO calculations at threshold have been compared in Ref. [242]. The

total production cross section is now known to NNNLO in the NRQCD expansion [57].

This has been achieved in a modified version of NRQCD, namely the potential NRQCD

(pNRQCD) [243, 244], where one integrates out the soft modes of order mv. Besides

the Coulomb singularities, large logarithms of the velocity (αs ln v)
n

become sizable close

to threshold. The systematic resummation of large logarithms is possible via (velocity)

renormalization group (RG) equations in the velocity NRQCD (vNRQCD) [245–249]

framework. Regarding RG improved predictions of tt threshold production, the result of

Ref. [250] is currently state of the art and is NNLL accurate for all practical purposes.
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Schematically, we can write the normalized total cross section (R-Ratio) as

R =
σtt̄
σ
µ

+
µ
−

= v
∑

k

(
αs
v

)k∑

i

(αs ln v)
i×

{
1 (LL); αs, v (NLL); α

2
s, αsv, v

2
(NNLL); . . .

}
. (6.1)

The first factor of v emerges from the nonrelativistic phase space integration. In the

respective fixed-order counting the sum over (αs ln v)
i

is replaced by 1 as the logarithms

in the velocity are not explicitely treated.

Above threshold, fixed-order full QCD corrections to the vector and axial-vector current

contributions to (on-shell) tt production have been computed inclusively to NNNLO [50,

251] and differentially to NNLO [51, 52], as discussed earlier. For the off-shell process

(with W
+

W
−

bb̄ as final state) that is also defined below threshold, we have shown the

NLO QCD results in the last part. As explained above, pure QCD fixed-order results

without Coulomb resummation are, however, only reliable in the relativistic continuum

sufficiently away from the tt threshold. Thus, the current state of the art presents despite

its sophistication some deficiencies. First of all, there is no quantitative analysis at

which energy one is far enough away from threshold to justify using the pure fixed-order

continuum result. Vice versa, it is not known how far one can trust a threshold computation

moving away from the nonrelativistic limit. Thus, one has to first construct a matched

computation for e
+

e
− → W

+
W
−

bb̄ that combines the resummed with the fixed-order

computation and is valid for all
√
s. This is especially important for the proposed 380 GeV

stage of CLIC, where one could probe the threshold region due to radiation off the initial

state. The convolution of theory threshold predictions with initial-state radiation and

realistic beam spectra have been already studied in Ref. [25, 28]. Note, though, that these

results are only reliable in case they are using the theory predictions solely in a small

∼ 10 GeV window around threshold, where the assumption that v ∼ αs holds. Given the

spectrum of bremsstrahlung, it is questionable that this is possible without a matched

prediction.

The next issue concerns the exclusiveness. While the tt measurement can be fairly

inclusive, the physical final states are still the leptonic, semi-leptonic and hadronic decay

products. Therefore, any inclusive measurement will suffer from systematic uncertainties

that result from the attempt to extrapolate the measured cross section in the fiducial

phase space to the full phase space. These systematic uncertainties can only be reduced by

providing improved theoretical predictions for the W
+

W
−

bb̄ final state. Off-shell effects

at threshold have often been neglected or only computed approximately as they represent

a subleading effect. Once electroweak corrections are included, the natural power counting

near threshold is v ∼ αs ∼
√
αem. Non-resonant electroweak corrections to W

+
W
−

bb̄ ,

i.e. where at least one of the top propagators is far off-shell or absent start to contribute

at NLO [59, 60]. The O (αs) correction to this is thus a NNLO correction [61, 62, 252,
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253]. We emphasize again that this counting is only sensible in the region of a couple of

GeV around threshold where indeed v ∼ αs. To improve the description of the top decay

beyond the naive E → E + iΓt rule [238], one should take into account all aspects of the

relativistic top decays, including the sizable QCD NLO corrections.

In this part, we address the issues mentioned above by providing a matched computation

for e
+

e
− → W

+
W
−

bb̄ correct to NLO in fixed-order QCD and NLL in vNRQCD. For

this, we have to devise a master formula that matches the nonrelativistic computation

in the threshold region with its relativistic counterpart in the continuum. Hereby, we

maintain all irreducible backgrounds of W
+

W
−

bb̄ also in the threshold region. We

put additional emphasis on constructing a fully gauge-invariant result. To improve the

description of the decay of the top pairs that are produced in vNRQCD, we apply an

extended double-pole approximation that is also defined below the kinematical threshold.

This allows us to compute the fixed-order QCD corrections to the decay as well. For a fully

matched computation that is valid everywhere, we have to switch off unphysical terms in

the resummed computation that result from the assumption that v is small. Usually, it

suffices to only remove the double counting of fixed-order and resummed computation to

achieve a reasonable matching, see e.g. Refs. [254, 255]. However, in the case of the top

threshold at a lepton collider the nonrelativistic resummation is less of a refinement but

more a completely different computation. For the threshold production of on-shell tops, the

differential cross section in the top three momentum is available at NNLO [23]. This result

is based on the numerical code Toppik. We also use this code in order to implement the

Coulomb resummation in Whizard. First results of threshold resummation in Whizard

have been presented in Ref. [58], which was, however, still based on a construction using

signal diagrams.

The computation presented in this part obviously does not have the highest precision

currently available for the fully inclusive tt result. For realistic final states and especially

in the intermediate region between threshold and continuum, however, it represents the

state of the art. In the nonrelativistic power counting, it contains various terms of NNLO

and higher. Furthermore, it would be straightforward to augment our computation with a

K-factor, K
NNLL

= σ
NNLL

/σ
NLL

, to increase the precision for inclusive observables.

We note that the authors of Ref. [256] have also embedded a numerical solution of the

Bethe-Salpeter equation into a relativistic tree-level computation by weighting the cross

section with a QCD correction factor while focusing on the CP properties in ttH. In

Ref. [257], threshold effects have been incorporated in a MC simulation of kinematical

distributions of top quarks at hadron colliders by multiplying signal diagrams with

nonrelativistic Green functions. At hadron colliders, recently the on-shell process ttH has

been computed to NNLL, using soft-collinear effective theory (SCET) differentially [254]

and with the direct QCD Mellin-space approach inclusively [255], and was matched to the

NLO results similarly to our approach, i.e. the matched result is obtained by summing

resummed and fixed-order results and subtracting the first order expansion of the resummed

computation.
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This part is structured as follows. In Section 6.2, we give an introduction into NRQCD

as an effective field theory of QCD and summarize some basic results that are used in

the following. The embedding of these results within the relativistic setting in Whizard

is discussed in Section 6.3. In Section 7.1, we verify that this implementation works

as expected by comparing to known results. Using this, we can discuss the necessary

ingredients for the matching in Section 7.2 and study inclusive and differential results in

Section 8.1 and Section 8.2, respectively.

6.2 Threshold resummation

6.2.1 vNRQCD

The effective Lagrangian of vNRQCD [245–249] contains heavy quark bilinear, soft,

ultrasoft and potential terms. The leading bilinear terms in the quark field ψp are

L(x) =
∑

p

ψ
†
p(x)

(
i∂

0 − p
2

2m
+
p

4

8m
3

)
ψp(x) , (6.2)

whereby a similar equation holds for the anti-quark field χp and we abbreviate here and

in the following

p ≡ pt , p ≡ |p| , and p0 ≡ Et −m . (6.3)

The leading order potential includes the well-known Coulomb term

Lpot = −
∑

p,p
′

Vc
(p− p′)2 ψ

†
p
′ ψp χ

†
−p′

χ−p with Vc = −4πCFαs(mν) . (6.4)

Vc is hereby the Coulomb Wilson coefficient for a color singlet heavy quark pair and

ν is the vNRQCD velocity renormalization scale. The crucial feature of vNRQCD is

that one is able to choose the MS subtraction scale for loop integrations over soft and

potential momenta as µS separately from the integrations over ultrasoft momenta as µU.

These two scales are inherently correlated through the quark equations of motion as they

correspond to momentum (mv) and kinetic energy (mv
2
), respectively. Eqs. (6.2) and (6.4)

already yield the LL nonrelativistic top pair dynamics. The production and annihilation

of top-antitop pairs is described by additional currents that connect to the electroweak

production. The effect of the top decay can be incorporated in the effective Lagrangian by

adding the bilinear operators [249]

L =
∑

p

ψ
†
p

i

2
Γtψp +

∑

p

χ
†
p

i

2
Γtχp , (6.5)
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which yields the shift of the energy by iΓt. In this effective description, Γt is an input

variable and can be set to the width computed in the SM with as many corrections as

possible. In our computation, we describe the top decay fully differentially as discussed in

Section 6.3, such that the width has to be set consistently with this description. We will

use the same value of the top width in all parts of the computation.

6.2.2 Cross sections with the optical theorem

To validate the threshold resummation implemented in Whizard, we need inclusive results

with the same accuracy. To this end, we use the computation that has been described in

Ref. [59]. It relies on the use of the optical theorem, i.e. taking the imaginary part of the

e
+

e
− → e

+
e
−

forward scattering amplitude. This can be written as

σtot(e
+

e
− → γ

∗
/Z
∗ → tt) =

4πα
2

3s
(fvRv + faRa) , (6.6)

where the fv and fa prefactors account for tree-level γ and Z exchange [249]. The vector

and axial-vector R-ratios can be computed separately via

R
v/a

=
4π

s
Im

[
−i

∫
d

4
x e

iqx
〈

0
∣∣∣Tjv/aµ (x)j

v/aµ
(0)
∣∣∣0
〉]

, (6.7)

with q = (
√
s,0) and j

v/a
µ the vector/axial-vector current that produces a quark-antiquark

pair. In the effective theory these currents are replaced by their nonrelativistic counter-

parts [249]

R
v

=
4π

s
Im
[
c

2
1A1 + 2c1c2A2

]
and R

a
=

4π

s
Im
[
c

2
3A3

]
. (6.8)

The correlators A1, A2, and A3 can be determined by the zero-distance coordinate space

Green functions G̃. They are solutions of the time-independent Schrödinger equation [23]

[
k

2

m
− k

4

4m
3 −

(
p

2
0

m
− p

4
0

4m
3

)]
G̃(k,k

′
; q

2
) +

∫
d

3
p
′

(2π)
3 Ṽ (k,p

′
)G̃(p

′
,k
′
; q

2
) =

(2π)
3
δ

(3)
(k − k′) . (6.9)

Ṽ contains hereby all contributing potential terms. Toppik [23] is a numerical code that

solves this Schrödinger equation for the Coulomb potential and it has been interfaced to

Whizard. As it is computationally quite expensive, we call it beforehand in a given range

of center of mass energies
√
ŝ and save the results in a grid that is furthermore differential

in p and p0.
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6.2.3 Kinematics and masses

The effective velocity of the produced top quark is [249]

v =

√√
s− 2mt + iΓt

mt

(6.10)

with the pole mass mt and the top width Γt as function of mt. As noted above, including the

top width Γ in Eq. (6.10) includes the leading order effect of the top decay in NRQCD [238].

The pole mass, though, is no reliable input parameter as we have motivated in Chapter 1.

Thus, we implement in this work the 1S top quark mass definition [23], which is defined as

half of the mass of the fictitious stable
3
S1 toponium ground state that is visible in the

lineshape. The pole mass can then be computed as a function of the 1S top quark mass

scheme. The relation can be written at (N)LL as [249]

mt

[
M

1S
t

]
= M

1S
t

(
1 + ∆M(

√
s, αs)

)
, where ∆MLL =

(CFαS)
2

8
and (6.11a)

∆MNLL = ∆MLL +
(CFαS)

3

8πCF

{
β0 ·

(
1 + log

hfν∗
CFαS

)
+
A1

2

}
. (6.11b)

Hereby, we have used [258, 259]

β0 =
11CA − 2NF

3
, A1 =

31

9
CA −

20

9
TR ·NF , (6.12)

with the usual constants CA = 3, NF = 5, and TR = 1/2.

6.2.4 Scales and uncertainties

There are three scales that are relevant in vNRQCD: the hard scale µH, the soft scale µS,

and the ultrasoft scale µU. In Ref. [250], a detailed study of uncertainties at (N)NLL has

shown that they should be varied with only two parameters h and f . This correlates the

three scales as

µH = hm , µS = (hm)(fν∗) , and µU = (hm)(fν∗)
2
. (6.13)

Hereby, fν∗ ≡ ν is the subtraction velocity and ν∗ corresponds to
∣∣v
∣∣ of Eq. (6.10), using

M
1S
t as mass and adding a small constant,

ν∗
[√
s
]

= 0.05 +

∣∣∣∣∣∣

√√
s− 2M

1S
t + iΓt(M

1S
t )

M
1S
t

∣∣∣∣∣∣
. (6.14)

To obtain the strong coupling at the soft scale, αS = αs
[
µS = hM

1S
t fν∗

]
, we run from

αH = αs
[
hM

1S
t

]
with a two- or one-loop running at NLL and LL, respectively. Finally, we
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6.2 Threshold resummation

obtain the coupling at the ultra-soft scale αU = αs
[
µU = hM

1S
t (fν∗)

2]
by running from

αH with a one-loop running to µU.

The resummation of logarithms of v is crucial to control large normalization uncertain-

ties that arise from fixed-order nonrelativistic computations, only considering Coulomb

potential insertions. The two-loop matching coefficients of NRQCD and QCD have been

computed in Ref. [260]. For our computation, we only need the hard S/P-wave 1-loop

matching coefficients. For the NLL running of quark currents, we use the Wilson coefficient

c1, cf. Eq. (62) in Ref. [261]. The current coefficient is then multiplied with the result

from Toppik.

6.2.5 Basic analytic results

LL form factor

As noted before, the dominating terms at threshold are gluon ladders connecting the top

pairs. This can be obtained in NRQCD on LL by iterating the Coulomb potential of

Eq. (6.4) to obtain the LL S-wave form factor [59]

FLL = 1 + imv ρΓ(ε) Γ(1 + ε) Γ(1− ρ)
z2 − z1

pΓ(1 + ε− ρ)
(6.15)

with

ρ =
CF αS

2 v
and z1,2 = 2F1

(
ε, 1 + ε, 1 + ε− ρ;

mv ∓ i (p∓ |p0|)
2mv

)
,

where ε is a small positive parameter, 2F1(a, b, c; z) the ordinary hypergeometric function

and Γ the Euler gamma function. Note that the form factor is normalized such that F = 1

corresponds to the tree-level result when plugged in the appropriate production matrix

element.

Expansion of the form factor

For the matching of the resummed with the fixed-order computation, we require the O (αs)

expansion of the former. At LL, it is given by

F
exp
LL [αs] = 1 + αs

(
iCFm log mv+p

mv−p

2p

)
. (6.16)

Going to NLL, we obtain an additional hard correction factor

F
exp
NLL [αs] = F

exp
LL [αs] + αs

(
−2CF

π

)
. (6.17)
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6.3 Implementation in Whizard

We implement and study different variants of embedding the form factor of the last

section in the relativistic computation. Let us first remark that we can in principle modify

the vector tγµt̄ and axial-vector tγµγ5t̄ couplings to the A and Z fields directly in the

tree-level matrix element. This is a straightforward modification and we refer to this as

the signal diagram method. However, this modification breaks gauge invariance already

on the Lagrangian level. The SM Lagrangian containing the covariant derivative ψ̄i /Dψ,

which generates the tγµt̄ and tγµγ5t̄ interactions, is invariant under local gauge variations

Ψt → e
−iQgθ(x)

Ψt. This is no longer the case when we change the covariant derivative

to take into account the form factor that we obtain from NRQCD for tγµt̄ and tγµγ5t̄.

Furthermore, it seems unrealistic to obtain NLO QCD corrections for this ansatz, as it

would require attaching gluons to all colored particles of the amplitude. This especially

includes final-final interactions necessitating the evaluation of loop integrals over the form

factor. The form factor, however, depends on the momentum and is only available in a

simple analytic form at LL.

It is thus preferable to multiply the form factor with a gauge invariant quantity using a

factorized ansatz:

M =
〈
e

+
e
− ∣∣ TNRQCD

∣∣tt̄
〉

︸ ︷︷ ︸
≡Mprod

〈
tt̄
∣∣ T
∣∣W+

W
−

bb̄
〉
, (6.18)

where the form factor only enters the production matrix element Mprod and NLO QCD

corrections to the decay can be computed separately. We note that Ref. [256] uses a

similar ansatz to study CP violation in top pair production in association with a Higgs

boson at threshold. We discuss the exact form of Eq. (6.18) in Section 6.3.2, after a

more general discussion of the possible violations of gauge invariance in the treatment of

unstable particles in Section 6.3.1.

6.3.1 Possible violations of gauge invariance

Unstable particles like the top quark are notoriously problematic from a perturbative point

of view. The Breit-Wigner distribution of the invariant mass is a result of resumming

self-energy corrections to the propagator. Such a Dyson resummation mixes perturbative

orders. As gauge invariance can only be guaranteed order by order, the associated Ward,

Slavnov-Taylor and Nielsen identities can be violated. While these violations are associated

with a higher order, they can be made arbitrarily large by applying an extreme gauge

transformation [262]. This can be avoided by using the fact that the complex pole p
2

= µ
2
,

where µ
2

= m
2−imΓ, of the propagator of an unstable particle is actually a gauge-invariant

quantity [263, 264]. This fact is the basis of two approaches that we will use in this work:

the complex-mass scheme and the pole approximation (PA). For calculations that involve

complete matrix elements, i.e. not the factorized parts, intermediate unstable particles
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are treated in the complex-mass scheme [181, 265]. The idea behind the complex-mass

scheme is to add and subtract the width in the bare Lagrangian. While one of the terms is

absorbed in the complex renormalized mass definition, the other one is part of the complex

counterterm. Thus, no resummation is necessary to obtain the width. This leads to a

gauge invariant treatment of finite width effects, as Ward or Slavnov-Taylor identities

are exactly respected, while maintaining perturbative unitarity [218]. The PA will be

discussed in Section 6.3.2.

Aside from problems associated with the width, one must also not treat signal diagrams

differently than background diagrams, as they are in general no gauge-invariant objects

separately. This is also noted in Ref. [257] but the authors still use this separation with

an ad-hoc factor intended to cancel gauge-dependent effects. In fact, the smallest gauge-

invariant subset that contains the signal diagrams in W
+

W
−

bb̄ consists of all diagrams.

In the language of Ref. [266], such a subset is called a grove and can be systematically

constructed. Modifications of the signal diagrams like the attachment of a form factor will,

therefore, spoil gauge invariance as we have already noted at the Lagrangian level at the

start of this section.

6.3.2 Factorization in the DPA

Different approaches to treating unstable particles close to and above threshold have been

compared in Ref. [267] for WW production. Above threshold, the differences between the

approaches in unitary gauge have been found to be at the per cent level. Of these, we will

refer in the following to the narrow-width approximation (NWA), the signal diagram (SD),

and the PA. The NWA, see e.g. Ref. [268] and the references therein, performs the zero

width limit of the signal diagram and results in the simple formula σ = σprod · BR, where

BR is the corresponding branching ratio. The approximation is gauge-invariant, allows

for factorizable corrections but incorporates no off-shell behavior and defines no cross

section below threshold. Hereby, the latter property is inherited from the production

cross section σprod. The SD, on the other hand, can be evaluated off-shell and is finite

below threshold. But it is neither gauge-invariant, as discussed in Section 6.3.1, nor is

it suitable for radiative corrections. In fact, we have encountered negative cross sections

when computing QCD corrections to the signal diagram far from threshold.

The pole scheme [262, 269] was one of the first schemes to enable gauge-invariant

computations for kinematics where unstable particles can go on-shell. Hereby, a Laurent

expansion of the full scattering amplitude is performed and then expanded order by order

instead of only resumming one-loop truncated self-energy corrections. In the PA [270], one

drops the nonresonant contributions to decrease the computational complexity. Thus, the

denominator of the propagator of the SD, which contains the dominant off-shell effects, is

kept but the gauge-dependent parts in the numerator are removed. This is achieved by

ensuring that the momenta that enter the matrix elements are on-shell projected. The

gauge-invariant property follows directly from the proof of the pole scheme as it is a
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Laurent expansion about the point p
2

= µ
2

and we need the residue at this point. In fully

differential MCs, this requires on-shell projections, which cannot be uniquely defined and

thus introduce an ambiguity in the results of O (Γ/m) [271]. In contrast, in an analytic

calculation, one simply evaluates matrix elements with m
2

instead of p
2

but has no events

available.

γ/Z

t̄

t

e−

e+

b̄

W−

W+

b

Figure 6.1 Factorized computation in the DPA. Double lines indicate t propagators and a
dashed line through them a factorized computation with on-shell projection

In our case, we have to deal with two top-quark resonances and thus have to use a

DPA [272, 273]. For illustration, we show the factorized computation diagrammatically in

Fig. 6.1. The factorized matrix element in this approximation can be written as

Mfact =
∑

ht,ht̄

1

(p
2
t − µ2

t )

1

(p
2
t̄ − µ2

t )︸ ︷︷ ︸
≡Ptt̄

Mht,ht̄
prod [{p̂}]Mht

dec,t[{p̂}]Mht̄
dec,t̄[{p̂}] , (6.19)

where ht, ht̄ are the polarizations of the top quark resonances and µ
2
t = m

2
t − imtΓt is the

complex top mass squared. {p̂} denotes a set of momenta that have been projected on-shell

such that p̂t
2

= m
2
t , while {p} are the corresponding off-shell momenta with p

2
t 6= m

2

in general. Besides the propagators of Mfact, the off-shell momenta are used in the full

matrix elements and event output. The details of the projection procedure are discussed

in Section 6.3.2. We note that if pt and pt̄ are already on-shell beforehand, one can use

∑

ht

∣∣uht(pt)
〉 〈
uht(pt)

∣∣ = /pt +mt ,
∑

ht̄

∣∣vht̄(pt̄)
〉 〈
vht̄(pt̄)

∣∣ = /pt̄ −mt (6.20)

and Eq. (6.19) becomes equal to the signal diagram. In fact, we have used this property

to verify that the factorized computation has been correctly implemented. For each

external helicity, we found perfect agreement up to the numerical precision for the complex

amplitudes for an on-shell phase-space point. However, the relativistic 4-body phase space

probes also all possible off-shell regions where Eq. (6.20) does not hold. Therefore, we

expect a computation with signal diagrams to be at best approximately equal to Mfact.

A nice aspect of the PA is that factorizable and nonfactorizable corrections are separately
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gauge-invariant. The factorizable corrections to the production and decay matrix elements

are usually the dominant contributions and the only ones that we will address in this work.

In Ref. [274], the nonfactorizable corrections have been given analytically for any number

of unstable particles at the one-loop level for electroweak corrections.

Equation (6.19) is our preferred setup to describe tt production within W
+

W
−

bb̄

and will also be referred to as factorized, on-shell evaluated. Off-shell evaluated would

correspond to replacing {p̂} with {p} and is only used as a test in Section 6.3.4. To

include the nonrelativistic S- and P-wave form factor in this description, we only have to

multiply it with the corresponding production matrix element. In the formalism of the

DPA, it can be seen as a factorizable, gauge-invariant correction to the production. At the

same time, we can also compute hard NLO QCD corrections to the decay, as described in

Section 6.3.5.

Helicity correlations

Concerning helicity correlations, Eq. (6.19) can be considered as complete as possible.

This implies that there are also quantum correlations in the density matrix that do not

fit the classical picture of top production with a certain spin. In other words, when we

square the matrix element, we have

|Mfact|2 =


∑

ht,ht̄

Ptt̄Mht,ht̄
prodMht

dec,tMht̄
dec,t̄




∑

h
′
t,h
′
t̄

Ptt̄Mh
′
t,h
′
t̄

prodMh
′
t

dec,tMh
′
t̄

dec,t̄



∗

, (6.21)

where ht 6= h
′
t in general. These off-diagonal correlations are expected to be strongly

suppressed at threshold. Also on the practical level, we note that they are currently not

available in OpenLoops, which we use to obtain the virtual corrections for the top decay.

Thus, we define the following helicity approximation (HA), which still covers the important

diagonal correlations (ht = h
′
t), also known as classical spin correlations, but neglects all

off-diagonal entries (ht 6= h
′
t):

∣∣∣MHA
fact

∣∣∣
2

=
∑

ht,ht̄

|Ptt̄|2
(
Mht,ht̄

prodMht
dec,tMht̄

dec,t̄

)(
Mht,ht̄

prodMht
dec,tMht̄

dec,t̄

)∗

=
∑

ht,ht̄

|Ptt̄|2
∣∣∣Mht,ht̄

prod

∣∣∣
2 ∣∣∣Mht

dec,t

∣∣∣
2 ∣∣∣Mht̄

dec,t̄

∣∣∣
2

. (6.22)

We want to approximate even further for comparisons with analytic results, obtained

with the optical theorem as described in Section 6.2.2. In the analytic approach, off-shell

effects are only introduced through the spin-averaged width. To be able to compare with

this, we apply an uncorrelated average to the decays and we call this the extra-helicity
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approximation (EHA):

∣∣∣MEHA
fact

∣∣∣
2

=
∑

ht,ht̄

|Ptt̄|2
∣∣∣Mht,ht̄

prod

∣∣∣
2


1

2

∑

h
′
t

∣∣∣Mh
′
t

dec,t

∣∣∣
2




1

2

∑

h
′
t̄

∣∣∣Mh
′
t̄

dec,t̄

∣∣∣
2


 (6.23)

In all the above equations, we have of course implied that these are still to be summed

over the external helicities of e
+

e
− →W

+
W
−

bb̄.

On-shell projection

A generic algorithm and formulae to obtain on-shell projected momenta for any number of

resonances can be found in Ref. [274]. In our case, the expressions simplify to

p̂t =
(√s

2
,

√
s− 4m

2
t

2
et

)
and p̂t̄ =

(
p̂

0
t ,−p̂t

)
, (6.24)

where et = pt/
∣∣pt
∣∣ is the unit vector of the top in the collision system. Again, we signify

on-shell projected momenta with a hat and they fulfill by definition the on-shell condition

p̂
2

= m
2
. Note that if we demand on-shell momenta

p̂
2
t = m

2
t (6.25a)

p̂
2
t̄ = m

2
t (6.25b)

as well as overall momentum conservation,

Êt + Êt̄ =
√
s , |p̂t| = |p̂t̄| , (6.26)

we obtain

Ê
2
t − p̂2

t = m
2
t , (6.27a)

(
√
s− Êt)2 − p̂2

t = m
2
t . (6.27b)

From Eq. (6.27) immediately follows that Êt =
√
s/2 and thus

∣∣pt
∣∣ =

√
s− 4m

2
t/2. Thus,

the only freedom in Eq. (6.24) is the direction of the three momentum as the rest is fixed by

momentum conservation and the on-shell conditions. By using et, we guarantee that we do

not change the final state when they are already on-shell and maintain spatial correlations,

which are important for the forward-backward asymmetry for example. Furthermore, it is

important for interference terms of the factorized with the full amplitude to maintain all

directions.

The projection, Eq. (6.24), is not applicable over the whole kinematical range at face

value. Below threshold,
√
s < 2mt, it will yield complex momenta. Thus, it is usually

only defined for
√
s > 2mt. The resummed computation, however, reaches its peak at
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√
s = 2M

1S
t < 2mt. Therefore, we define the extended DPA as follows: For

√
s > 2mt,

the extended DPA is identical to the normal DPA. For
√
s ≤ 2mt, we project to a set of

momenta that correspond to
√
s = 2mt + ε. ε is hereby a very small number that is only

introduced to avoid numerical instabilities in the matrix elements, that occur for v = 0.

The direction et is maintained in the same way as above threshold. This extended DPA is

an analytic continuation of the normal DPA, transitions smoothly into the normal DPA

at threshold and, crucially, gives finite results below threshold in a gauge-invariant way by

construction.

Having p̂t and p̂t̄ at hand, we also have to project the decay products. At the Born

level, this is a simple 1→ 2 decay with the well-known solution [117, 274]

|p̂W | = |p̂b| =

√
λ(m

2
t ,m

2
W ,m

2
b)

2mt

,

EW =
m

2
t +m

2
W −m2

b

2mt

and Eb =
m

2
t −m2

W +m
2
b

2mt

, (6.28)

in the frame where p̂t = (mt,0). Again we have the freedom concerning the angles and we

choose analogously p̂W =
∣∣p̂W

∣∣eW , where eW is the original direction of the W
+

in the

top rest frame. Note that this also ensures that the flight direction of the b is conserved.

These momenta can then be boosted back to the collision frame. The same procedure

is applied to the anti-top decay products. The NLO case, involving the 1→ 3 decay, is

discussed in Section 6.3.5.

6.3.3 Input parameters

The Z, W, Higgs, electron, muon as well as all quark but the top masses are as in

Section 4.4.1. For the top quark, we use M
1S
t = 172 GeV as input. Thus, the pole mass

mt depends on
√
s. With Eq. (6.11) and the other parameters in this section, we obtain

at threshold mt
LL[

2M
1S
t

]
= 172.802 GeV and mt

NLL[
2M

1S
t

]
= 173.124 GeV. The CKM

matrix is still trivial and we stick to the Gµ-scheme for the electroweak coupling. For the

strong coupling constant, we use αs(mZ) = 0.118 [275] and a three-loop running to the

hard scale αH = αs
[
µH = M

1S
t

]
(including nf = 5 active flavors). From this point, the

running to the soft and ultra-soft scales proceeds as explained in Section 6.2.4.

With this setup, the top width is computed directly at LO and NLO. In the NLO

computation, we use the same renormalization scale as in the full process, including

scale variations. By evaluating matrix elements and the top-decay width at the same

perturbative order, we guarantee that t → Wb branching ratios remain consistently

equal to one at LO and NLO, as demonstrated in Part II. Note that the top width also

depends on
√
s as it is a function of mt and is automatically recomputed by Whizard

when
√
s changes. At threshold, we obtain as numerical values Γ

LO
t

[
2M

1S
t

]
= 1.4866 GeV

and Γ
NLO
t

[
2M

1S
t

]
= 1.3692 GeV. The Higgs, W and Z width is set to ΓH = 4.143 MeV,
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ΓW = 2.049 GeV, ΓZ = 2.443 GeV, respectively.

As noted in Section 6.3.1, we will use the complex-mass scheme for complete matrix

elements. This necessitates complex-valued renormalized masses and weak mixing angles

as in Section 4.4.1. We will, however, refrain from using the complex-valued objects to

define αem but use the real definition:

αem

[
Gµ

]
=

√
2

π
m

2
W sin θ

2
W Gµ . (6.29)

This allows us to use one consistent definition in all parts of the calculation. It is

just a different convention that does not violate the gauge-invariant properties of the

complex-mass scheme.

6.3.4 Validation of factorization approaches

All results shown in this subsection are obtained with a tree-level form factor of unity and

a LO decay as well as mt = M
1S
t , if not noted otherwise.

High-energy behavior
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Comparison of tt̄ descriptions, high
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Figure 6.2 Behavior of different factorization approaches, described in more detail in the
text, for high energies. The dashed gray line indicates 2M1S

t .

The high-energy behavior of cross sections can serve as a test for gauge-invariance. As
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known famously from WW production, the cross section only falls off with
√
s in the high

energy regime if it contains no gauge-dependent terms, which could affect perturbative

unitarity. In Fig. 6.2, we show the different factorization approaches that have been

implemented in Whizard. The full W
+

W
−

bb̄ LO cross section serves as reference in this

case, as it is gauge-invariant and valid below threshold. One can see that while it agrees

with the tt cross section around threshold up to ∼ 10 %, tt falls off faster and constitutes

only 50 % of the full cross section at 2 TeV. At these energies, tt is not describing the

physical final state W
+

W
−

bb̄ anymore, which gets sizable contributions from single-top

and nonresonant processes. We furthermore see that using the signal diagram (instead

of the sum over all diagrams) leads to an unphysical rise of the cross section at high

energies. The same holds for the factorized matrix element, Eq. (6.19), evaluated with

off-shell momenta. The difference between the two descriptions is related to the fact that

Eq. (6.20) only holds on-shell. The reason for the rise can only be the gauge dependence

that is introduced in these descriptions as discussed in Section 6.3.1. Finally, we have

two descriptions that closely follow tt for high energies: the factorized computation with

on-shell momenta in the decay and off-shell momenta in the production matrix element

as well as the one with on-shell momenta in both. The similar results indicate that the

gauge-breaking terms indeed arise from the off-shell evaluation of the decay.

While it is usually known that, in principle, signal diagrams are not gauge-invariant, it

is often expected that the gauge dependence is small. E.g. signal diagrams have been used

in Ref. [179] to estimate the energy dependence of the fraction of double-top contributions

in W
+

W
−

bb̄ up to 3 TeV. Considering that the signal diagram squared surpasses the full

cross section at 5 TeV to start its arbitrary rise, one can expect that any conclusions drawn

from signal diagrams at TeV energies are largely gauge-dependent and thus unphysical.

tt̄ descriptions around threshold

The considerations in the last paragraph were instructive to understand which descriptions

break unitarity but phenomenologically the behavior around threshold is more important.

Therefore, we show in Fig. 6.3 the same results in a 100 GeV window around threshold.

Obviously, tt is only non-zero above 2mt. The other approaches all significantly deviate

from W
+

W
−

bb̄ below threshold, while agreeing above threshold within 4 %. This is

partly expected, as W
+

W
−

bb̄ contains background diagrams that have nothing to do

with top production, yielding a larger cross section below threshold. But again, we can see

that the off-shell evaluation of the decay is the biggest effect. Whereas signal diagram and

off-shell evaluated factorized matrix elements fall off quickly below 60 %, the factorized

descriptions with the on-shell decay are fairly under control. Below threshold, it also

makes a difference if we project the production matrix element or not. This is easily

understandable: as we defined the projection below threshold such that one projects back

to momenta at threshold in Section 6.3.2, applying the projection below threshold increases

the
√
s that goes into the production matrix element. On the other hand, above threshold
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Figure 6.3 Behavior of different factorization approaches around threshold. Lines as in
Fig. 6.2.

both approaches lead to the same
√
s in the production matrix element. A strict DPA

requires to project both production and decay matrix elements and as this also follows

more closely the full cross section, we will use this as default.

Helicity correlations

In Fig. 6.4, we show the mutual effects of on-shell projection of the production, boost

of momenta going into the decay and correlated (HA) or averaged (EHA) sum over top

helicities. Using the projection for the production, leads for all other four options to

minimal variations below 0.5 % in the relevant energy range. Not boosting the decay

momenta to the center of mass energy, but using them in the rest frame, is only equivalent

when the decay is spin-averaged. Otherwise, one connects helicities that have been defined

in different reference frames. Therefore, we can expect the orange solid and blue dashed

line to be equal and the green solid line to be different and wrong, which is confirmed by

the results, although the differences are very small. For interference terms of the factorized

with the full matrix element, this does not have to be the case as discussed in Section 6.3.4.

Interestingly, not using the projection in the production leads to larger differences between

the boosted correlated and the other approaches. In this case, it seems more important to

maintain spin correlations in the correct way, even above threshold.
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Interference terms
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Figure 6.5 Integrated interference terms: signal diagram with full LO is indicated by a
solid curve, factorized using boosted momenta by dashed and factorized using momenta
in the decay rest frame with error bars and a + as indicator. Note that the errors are
basically invisible and one can see only the indicator symbol. The ratio plot is ill-defined
at the two zero crossings but is still shown to assess the quantitative difference, especially
below threshold.

In the left plot of Fig. 6.5, we show different interference terms, IF = 2<[Mfact ·M∗
full],

with a form factor of F = 1 in the factorized computation. We will use terms like this

to extend the factorized (N)LL computation with full LO information, where possible.

Thus, it is crucial that the relative phase of the two amplitudes matches exactly. For

comparison, we also show the interference term of the signal diagram with the full LO as a

rough reference point. In this case, evaluating the decay with momenta in the rest frame

fails completely. It seems to result in a
√
s-dependent nontrivial relative phase. To show

that it is indeed not numeric noise, we show the vanishing error bars of the integrations

for the factorized rest frame results. On the other hand, the boost of the decay momenta

to the collision system yields comparable results to the signal-full LO integration. The

differences are within similar bounds as observed in Fig. 6.3.

It is also instructive to see how this affects the matched results, i.e. when the factorized

matrix element is evaluated with FLL − 1 in the interference term. We show this in the

right plot of Fig. 6.5. Again, the factorized rest frame fails to reproduce the correct results,

while the factorized boosted and signal diagrams yield fairly similar results. The ratio is,

of course, not reliable at the two zero-crossings. Below threshold, we observe that the

signal diagram significantly undershoots the factorized computation. The overall shape

of both curves is qualitatively the same as expected from the analytic properties of the

real part of Eq. (6.15). In the following, we will always use the momenta boosted to the

collision system to maintain the correct relative phase.
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P and CP behavior

As the HA allows talking about spins as physical objects in the classical picture, we use this

opportunity to discuss how the cross section is distributed across different helicities. This

furthermore serves to validate our approximation. For further simplification, we disable at

first the contribution of the Z and only use the photon diagram for top-pair production.

The interference between Z and photon is well-known and the major cause of the forward-

backward asymmetry in top-pair production at lepton colliders, cf. Section 5.2.2. Disabling

the Z allows us to concentrate on other parity symmetry violations first.
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Figure 6.6 In the left plot, we show the distribution of the cross section over the different top
helicity combinations (colored) as well as the sum (black) for tt (dotted and dashdotted)
and W+W−bb̄ (solid and dashed). The ratios have been formed separately for tt and
W+W−bb̄ by dividing by the respective cross section. As usual the dashed, vertical line
shows 2M1S

t . In the right plot, the absolute difference of mixed top helicities are shown
for W+W−bb̄ . Note that the errors are asymmetric and growing above threshold in the
absolute difference due to the constant relative error and the growing cross section.

In the left plot of Fig. 6.6, we show the distribution of the cross section over the different

helicity configurations as well as the sum over all helicities for W
+

W
−

bb̄ and tt. Above

360 GeV, W
+

W
−

bb̄ and tt cross sections are fairly similar. Especially the respective

ratios of mixed top helicities σ(+,−)/σ(−,+) and identical top helicities σ(+,+)/σ(−,−)

are practically identical. For tt, the ratios stay close to one for all energies. As the tt

cross section is given by the square of the production matrix |Mprod|2, we can identify

that |Mprod|2(−,−) = |Mprod|2(+,+) as well as |Mprod|2(+,−) = |Mprod|2(−,+). This

is, of course, to be expected as the electromagnetic production of fermion pairs conserve

parity (P).

For the top decay, however, only the combination of charge conjugation and parity (CP)
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is a symmetry, due to the left-handed coupling. This implies for the DPA in HA that

∣∣∣MHA
fact

∣∣∣
2 (

+,+
)

= |Ptt̄|2
∣∣M+,+

prod

∣∣2 ∣∣M+
dec,t

∣∣2 ∣∣M+
dec,t̄

∣∣2 (6.30a)

CP−−→ |Ptt̄|2
∣∣M−,−

prod

∣∣2 ∣∣M−
dec,t̄

∣∣2 ∣∣M−
dec,t

∣∣2 =
∣∣∣MHA

fact

∣∣∣
2 (
−,−

)
(6.30b)

Note that t and t̄ have been swapped due to the C conjugation in Eq. (6.30b), but due to

the symmetric helicities this has no effect. For the mixed helicities, this is not the case. In

fact, ∣∣∣MHA
fact

∣∣∣
2 (

+,−
) CP−−→

∣∣∣MHA
fact

∣∣∣
2 (

+,−
)
6=
∣∣∣MHA

fact

∣∣∣
2 (
−,+

)
. (6.31)

So from CP properties, we cannot infer the correct behavior of the ratio of mixed helicities

for W
+

W
−

bb̄ . It is thus interesting to see that for high energies the ratio still goes to

unity and P becomes a good symmetry again. In the right plot of Fig. 6.6, we also show

the absolute difference between the mixed helicities for W
+

W
−

bb̄ , which is remarkably

symmetric around threshold. One could work out the exact analytic behavior of the P

violating terms in the cross section, but this is beyond the scope of this validation.

Finally, we also show the effect of including the Z in Fig. 6.7. As expected, identical

helicities in tt and W
+

W
−

bb̄ still give identical results, while the dominant contributions

come from mixed helicities. For massless quark production, mixed helicities are the only

contributing configurations due to the spin 1 intermediate gauge-bosons. Thus, identical

contributions only occur due to the spin flip associated with the mass. We can also see

that the ratios are the same as without the Z in the sense that for identical helicities

they stay at unity and for mixed helicities the results for W
+

W
−

bb̄ approach tt above

360 GeV and go to ∼ 1.45 below threshold. The major difference is of course that already

tt shows a P violation in the mixed helicities that grows with energy. Overall, we see

that the Z contributions enhance mostly the (+,−) configuration while the others stay

comparatively constant.

6.3.5 NLO QCD corrections with WHIZARD

Considered fixed-order corrections

As motivated in Section 6.3.2, we will include the form factor in the production matrix

element of the DPA. The decay matrix elements, however, do not obtain nonrelativistic

corrections, so we can compute the relativistic NLO corrections to them. This will allow

us to use the NLO width in the corresponding parts of the matched computation and have

NLO correctness in observables that are sensitive to the decay kinematics. Furthermore,

we will need the full W
+

W
−

bb̄ fixed-order results at LO and NLO. We will now introduce

a convenient notation for these computations that will be useful for the discussion of the

matching in Section 7.2.

For W
+

W
−

bb̄ at LO, we just square the sum of the tree-level contributions, including
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Figure 6.7 We show the distribution of the cross section over the different top helicity
combinations (colored) as well as the sum (black) for tt (dotted and dashdotted) and
W+W−bb̄ (solid and dashed). The ratios have been formed separately for tt and
W+W−bb̄ by dividing by the respective cross section. As usual the dashed, vertical line
shows 2M1S

t .
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the interferences with all background processes,

σLO =

∣∣∣∣∣∣∣∣∣ e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

. (6.32)

For the NLO contributions, αs stands for all possible one-loop diagrams for this final state

and order and
(
a

b
)
≡ 2<

[
a · b∗

]
:
1

σNLO = σLO +




e−

e+

b̄

W−

W+

b



e−

e+

b̄

W−

W+

b

αs


+

∣∣∣∣∣∣∣∣∣ e−

e+

b̄

W−

W+

b

g
∣∣∣∣∣∣∣∣∣

2

. (6.33)

Hereby, all cancellations between real and virtual corrections are guaranteed by the KLN

theorem and the cross section corresponds to a standard NLO calculation.

In the factorized case, we have at LO

σ
fact
LO =

∣∣∣∣∣∣∣∣∣ e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

. (6.34)

As before double lines indicate t propagators and a dashed line through them a factorized

computation with on-shell projection. The NLO corrections to the decay can thus be

written as

σ
fact
NLO = σ

fact
LO +

∣∣∣∣∣∣∣∣∣ e−

e+

b̄

W−

W+

b

g
∣∣∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣∣∣ e−

e+

b̄

W−

g

W+

b
∣∣∣∣∣∣∣∣∣

2

+







e−
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W+

b

αs

+

e−

e+

b̄

W−

W+

b

αs







e−

e+

b̄

W−

W+

b

 . (6.35)

1Of course, σNLO does not directly contain σLO as we would use different parameters, especially for the
width. But at this level we only care about the relevant diagrams.
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Hereby, we have omitted final-state interferences between the legs in the real diagrams like




e−

e+

b̄

W−

W+

b

g



e−

e+

b̄

W−

g

W+

b

 . (6.36)

The IR divergences of these diagrams only cancel when we would also consider virtual

corrections that connect final-state bs. But these would require an integration over the

form factor, which is unfeasible as described for the SD at the very beginning of this

section, and are also not part of the factorizable corrections. Thus, we neglect these

(basically NNLO) corrections.

Modifications to standard FKS for factorized NLO

In the following, we review the three main modifications to the FKS subtraction needed to

cope with factorized NLO computations. We focus on top production but the statements

also hold for general processes. We also emphasize that this approach, i.e. application

of the DPA to Born, Real, and Virtual contributions, is particularly useful to compute

NLO corrections to the decay only. In case, one is interested in simultaneous corrections

to production and decay, one encounters further ambiguities in the real part. This is due

to the different invariant mass of the resonance in case the radiation, carrying momentum,

occurs in production or the decays. Thus, if one is only interested in fixed-order corrections,

hybrid schemes have been devised, where the DPA is only applied to the virtual part [276].

In our situation, however, we have to embed the resummed form factor in the production,

as described in Eq. (6.18), which already contains the Coulomb singularity. We can thus

safely ignore issues related to real corrections to the production.

On-shell generation of the real phase-space Like the tree-level matrix element,

the real matrix element has to be evaluated using on-shell momenta. To generate this

phase-space, we use the same mappings as in resonance-aware FKS. As we described in

Section 2.6, the real emission is generated in such a way that the invariant mass of the

respective resonance is kept at its Born value, which removes mismatches between the

real matrix element and its soft approximation. Thus, starting from an already on-shell

projected Born momentum configuration, obtained as in Section 6.3.2, we apply this

mapping to obtain an also on-shell projected real phase-space point. Note that, to ensure

correct subtraction of soft divergences, also the real-emission FKS variables ξ and y need to

be computed in the on-shell projected Born system. We stress that the on-shell momenta

only enter the matrix elements and their subtraction terms but not the phase-space

Jacobian. For the latter as well as event generation, the (physical) off-shell phase-space is

used, which is generated alongside the on-shell case.
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Decay subtraction The divergences in the factorized calculation all originate from the

t→ bWg matrix element. It consists of two Feynman diagrams. One in which the gluon

is emitted from the top quark and another one in which it is emitted from the bottom.

Divergences can only occur in emissions from particles with on-shell momenta and zero

width. Therefore, in the full W
+

W
−

bb̄ matrix element, emissions from internal top

quarks do not yield divergences, as they are regularized by the width. However, in the

factorized approach, the gluon emission from the top quark is a singular contribution,

which needs to be subtracted. We call this additional singular region a pseudo-ISR region.

This way, each singular pair index (b, g) and (b̄, g) is associated with a pseudo-ISR tuple

(b, g)
∗

and (b̄, g)
∗
, in which the gluon radiation occurs not from the bottom, but from the

top quark. This means that in the corresponding singular region, the FKS phase-space

contribution

dij = 2
(
pi · pj

) EiEj(
Ei + Ej

)2

is evaluated with pi → ptop = pb + pW .

Omission of interference terms In the real matrix element, we omit interference

terms between gluon emissions from different legs. In consequence, we must remove

these interference contributions from the color-correlated Born matrix element. The same

reasoning applies to the virtual part and its subtraction. The considered loop matrix

elements do not include diagrams with gluon exchange between quarks on different legs

since these contributions have already been resummed and are included in the form

factor. Therefore, also in the soft part of the virtual subtraction terms, we leave out

summands which correspond to gluon exchange between different legs. The absence of

these interference terms allows to split up the FKS regions into two disjoint subsets of

singular pairs, as depicted in Tab. 6.1.

Table 6.1 Singular regions in standard FKS for the full process e+e− →W+W−bb̄ and in
modified FKS for the factorized process, split up into interference-free subsets and using
pseudo-ISR regions.

αr emitter singular pairs

1 5 {(5, 7), (6, 7)}
2 6 {(5, 7), (6, 7)}

αr emitter pseudo-ISR singular pairs

1 5 no
{

(5, 7), (5, 7)
∗}

2 5 yes
{

(5, 7), (5, 7)
∗}

3 6 no
{

(6, 7), (6, 7)
∗}

4 6 yes
{

(6, 7), (6, 7)
∗}
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Validation and Matching

7.1 Validation of the threshold resummation within

Whizard

In order to validate the implementation in Whizard, we will compare the numeric MC

integrations with analytic results obtained with the method described in Section 6.2.2. To

remove nonphysical contributions from the analytic results, we should compare results for

W
+

W
−

bb̄ with a ∆mt
cut on the invariant mass of the reconstructed top momenta, i.e.

∣∣∣∣
√

(p
W

+ + pb)
2 −M1S

t

∣∣∣∣ ≤ ∆mt
and

∣∣∣∣
√

(p
W
− + pb̄)

2 −M1S
t

∣∣∣∣ ≤ ∆mt
. (7.1)

We stress that although this cut depends on M
1S
t , the invariant mass distributions will be

centered around mt. While Eq. (7.1) is exact in Whizard, in the analytic calculation, cf.

Ref. [250], we implement a cut on the nonrelativistic invariant masses,

t1,2 = 2mt

(
E1,2 −

p
2

2mt

)
, (7.2)

by requiring that [59]

∣∣t1,2
∣∣ ≤ 2M

1S
t ∆mt

− 3

4
∆

2
mt

+O
(
v

2
)
. (7.3)

The kinematic constraint t1 + t2 < 2mt(E1 +E2) is understood. Here, E1,2 are the kinetic

energies of top and anti-top quark, respectively, and p is the three momentum of the tops.

The different implementations of the cut is one source of disagreement between the Monte

Carlo and the analytic results. In the threshold region, the difference should, however, be

of higher order. To simplify the comparisons, we activate only S-wave contributions (the

P-Wave only contributes beyond NLL to the inclusive cross section) and use the EHA in

Whizard in the following.
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Figure 7.1 Comparison of analytic results with the implementation in Whizard with the
factorized and the signal-diagram approach for

√
s = 350 GeV using a LL or NLL form

factor. For better orientation, we indicate the ±5 % range in the ratio with horizontal
gray lines.
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Figure 7.2 Comparison of analytic results with the implementation in Whizard with the
factorized and the signal-diagram approach for

√
s = 330 GeV using a LL or NLL form

factor.

In Fig. 7.1, we show ∆mt
scans for a fixed energy above threshold of

√
s = 350 GeV

using a LL and NLL form factor. As expected, the ratio of Whizard and the analytic

results are nearly independent of the used form factor. At this energy, all approaches

yield nearly the same results for all values of ∆mt
. Only the signal diagram is a bit too

low but is, anyhow, only shown for comparison. We note further that already here the

analytic results fall off stronger for very small ∆mt
. As they have been obtained by using
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7.1 Validation of the threshold resummation within Whizard

an expansion in (mv
2
)/∆mt

, deviations for small ∆mt
, comparable with mv

2
, are expected.

In Fig. 7.2, we go significantly below threshold, where the imaginary part of v grows

further. At this energy, the analytic computation is unstable already at ∼ 15 GeV and

even rises for lower values of ∆mt
. Also the MC integration of Whizard has problems

to find double-resonant configurations within a 5 GeV window at this energy. At high

values of ∆mt
, we encounter another problem of the analytic results, i.e. that they do not

stabilize as soon as the physical phase-space has been covered. This is related to the second

expansion in ∆mt
/mt that is performed. Whizard on the other hand, becomes stable

around 80 GeV as the physical phase-space does not allow for larger invariant masses at

this energy. The signal-diagram is, as expected from Section 6.3.4, completely unreliable

at this energy. Again, the ratios are independent of the used form factor.

7.1.2
√
s scans

In Fig. 7.3, we show
√
s scans for a fixed value of ∆mt

. According to the findings of the

last section, we choose a moderate, ∆mt
= 30 GeV, and a loose cut, ∆mt

= 100 GeV, for

this. An example of a tight cut, ∆mt
= 15 GeV, is shown in Appendix D.2. As explained

above, the analytic computation is only reliable for moderate cuts. To also check the

implemented scale variations, we have produced bands according to a scale variation of

(
h, f

)
=
(

2, 1
)
,

(
h, f

)
=
(

2,
1

2

)
,

(
h, f

)
=
(1

2
, 2
)
,

(
h, f

)
=
(1

2
, 1
)
. (7.4)

These capture approximately the possible area of scale uncertainties shown in Fig. 2 of

Ref. [250]. Additionally to the LL and NLL, we also show the αs expanded form factor,

defined in Eq. (6.17), evaluated with αH. Yet again, the shown ratios depend on the used

form factor only very mildly. Some differences are, in principle, possible, as the form

factor has a phase-space dependence on p and p0. For ∆mt
= 30 GeV, we observe perfect

agreement between the analytic computation and Whizard with the factorized approach

within a window around threshold of at least 10 GeV. For ∆mt
= 100 GeV, this range is

reduced due to nonphysical additional contributions below threshold in the analytic results.

Notably, the behavior above threshold is not strongly affected but the ratio of analytic

over Whizard falls off with approximately the same slope for both cut values. This is

likely due to uncontrolled large v contributions that are not contained in the analytic

results but occur in the full relativistic computation. This is not too concerning as neither

of these results are to be trusted for these large values of
√
s but have to be treated

within the matched approach, which is introduced in Section 7.2. In addition to the shown

validation plots, we have confirmed for fixed phase-space points that the independent

implementations of the expanded, LL and NLL form factor agree up to numerical precision.

Overall, we can confirm that the NLL form factor is correctly and consistently embedded
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Figure 7.3 Comparison of analytic results with the implementation in Whizard with the
factorized and the signal-diagram approach for ∆mt

= 30 GeV and ∆mt
= 100 GeV using

an expanded, LL or NLL form factor. The bands correspond to the envelope of the scale
variations mentioned in the text.
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in Whizard. The differences to the analytic calculation are understood and we can rely

on the implementation in Whizard with the factorized approach as it is more stable for

small and large ∆mt
values and yields fully differential results.

7.2 Matching

In this section, we combine the (N)LL cross sections σNRQCD with a (N)LO decay with the

full, fixed-order (N)LO results σFO for W
+

W
−

bb̄ including all irreducible background

processes and interferences. We maintain hereby as many interference terms as possible

and keep terms of higher order in the nonrelativistic power counting.

Before we get into the details of the calculation, let us first remind that the resummed

form factor is computed based on the assumption that v ∼ αs. In a matched computation,

which is valid to arbitrarily high
√
s, this assumption is, of course, no longer valid.

Therefore, we need to introduce a switch-off function, which vanishes where we do not

trust the resummed computation anymore and goes to one in the threshold region. The

implementation that we are using is discussed in Section 7.2.2. We multiply this switch-off

function with the couplings that enter the resummed computation.

Furthermore, we have to subtract the αs expansion of the form factor to avoid double

counting of the first order. The explicit form of the expanded form factor is shown in

Section 6.2.5. With these ingredients, we can write down schematically a master formula

σmatched = σFO [αF] + σ
full
NRQCD [fs αH, fs αS, fs αU]

− σexpanded
NRQCD [fs αF] , (7.5)

with αs evaluated at the hard (µH), firm (µF), soft (µS) and ultra-soft scales (µU)

αH = αs

[
µH = hM

1S
t

]
, αF = αs

[
µF = hM

1S
t

√
ν∗

]
,

αS = αs

[
µS = hM

1S
t fν∗

]
, αU = αs

[
µU = hM

1S
t (fν∗)

2
]
. (7.6)

We subtract hereby the leading αs correction, which contains the dominating Coulomb

singularity, with the firm scale αF that is also used in σFO. We are introducing the firm

scale here for the first time. It is the geometric mean between the soft and the hard scale

and is constructed as an effective scale to reduce the difference between σ
full
NRQCD and σFO.

From the fixed-order point of view, αF is a reasonable choice with a safe IR behavior.
1

We

discuss the phenomenological impact on choosing αF over αH in Section 8.1.1. Returning

to the matching, we choose to remove the first order at the firm scale, to maintain the

scales in σ
full
NRQCD at threshold. The switch-off function fs guarantees that we obtain only

σFO in the continuum. The exact contributions in σFO, σ
full
NRQCD and σ

expanded
NRQCD depend on

1There are known to exist IR-unsafe scales that evaluate significantly differently for Born and Real
kinematics yielding ill-defined results.
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the order and are discussed in detail in the next subsection.

7.2.1 Contributions in the matched cross section

It is not directly obvious which terms and interferences we have to take into account. Of

course, we have to set it up in such a way that the cancellation of IR divergences between

real and virtual QCD corrections works. Furthermore, we aim to include the dominating

interference terms. We discuss all contributions in a diagrammatic way, omitting phase-

space factors and ignoring parameters as it was introduced in Section 6.3.5. All shown

contributions consist of gauge-invariant contributions only, cf. Section 6.3.1.

Although phenomenologically irrelevant, it is instructive to discuss how we would

perform a matching of LO and LL. As already mentioned in Section 6.3.2, the LL cross

section is obtained by multiplying the production matrix elements in Eq. (6.19) with the

nonrelativistic form factor F . To extend this approach, we define F̃ ≡ F − 1. Thus, F̃

contains everything of the form factor but the tree-level contribution, i.e. all terms of F̃

are O (αs) and higher. With this, we can expand the absolute square

σLL =

∣∣∣∣∣∣∣∣∣
(1 + F̃LL)

e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣
1

e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

+


F̃LL

e−

e+

b̄

W−

W+

b



e−

e+

b̄

W−

W+

b

1




+

∣∣∣∣∣∣∣∣∣
F̃LL

e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

. (7.7)

Again, the 1 corresponds to tree-level tt production. So, we can straightforwardly include

the full LO by replacing the 1 term by σLO. As σLO does not contain αs terms, no

double-counting occurs and the expansion that we subtract, σ
expanded
NRQCD of Eq. (7.5), is just

the 1 term and is realized in the interference term of Eq. (7.7). Now considering the

interference term, we want to improve the matched cross section by also including the

interferences between the resummed and the full matrix element. We expect this to be

the most important electroweak correction at threshold because it multiplies the large

form factor on one side with all double-top, single-top and background diagrams on the

other. As the DPA guarantees that the factorization works on the level of the complex
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amplitude, this is actually possible. Therefore, the full matched LO+LL reads

σ
LOdecay
LO+LL = σLO +


F̃LL

e−

e+

b̄

W−

W+

b



e−

e+

b̄

W−

W+

b



+

∣∣∣∣∣∣∣∣∣
F̃LL

e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

. (7.8)

It is understood that the scales and switch-off functions are applied as noted in Eq. (7.5).

As all top decays are at the LO level, we obviously use the LO width for σLO+LL.

As an intermediate step, we will now consider to include the full NLO cross section,

σNLO, while still using a factorized LO decay. To simplify the discussion, we also use from

now on a NLL form factor everywhere, although it would be possible to merely use a LL

one at some points. As σNLO contains terms of O (αs), σ
expanded
NRQCD now has to use the αs

expansion of the form factor, given in Eq. (6.17). Note that the tilde still only denotes the

subtraction of the 1, F̃NLL ≡ FNLL − 1. Thus, FNLL − F exp
NLL 6= F̃NLL and we obtain

σ
LOdecay
NLO+NLL = σNLO +


(FNLL − F exp

NLL)

e−

e+

b̄

W−

W+

b



e−

e+

b̄

W−

W+

b



+

∣∣∣∣∣∣∣∣∣
F̃NLL

e−

e+

b̄

W−

W+

b
∣∣∣∣∣∣∣∣∣

2

. (7.9)

Diagrammatically, Eq. (7.9) is very clear and the only difference to Eq. (7.8) is the αs
correction. Concerning the top width, however, we are now in a dilemma. From the

point of view of the factorized computation, we are still using a LO decay, so a LO width

is appropriate for both the
∣∣F̃
∣∣2 term as well as the interference term. On the other

hand, when we consider F
exp
NLL as the dominating term in σNLO, due to the large Coulomb

singularity, we would require a NLO width to match the term in the virtual part of σNLO.

This problem is an artifact of trying to match two computations that treat the top decay

differently. We can solve it by incorporating the factorized NLO decay, introduced in

Section 6.3.5.

The interference term can by construction not receive real and virtual corrections. When

we try to add gluons to the left and the right hand side of the interference term, we see

that the IR structure of those diagrams is quite different. Thus, we only have to compute
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corrections to
∣∣F̃
∣∣2 to arrive at our final matching formula

σNLO+NLL = σNLO +


(FNLL − F exp

NLL)
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b̄
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b
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+
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e−

e+

b̄

W−

g

W+

b
∣∣∣∣∣∣∣∣∣

2

. (7.10)

Hereby, the last two lines can be seen as part of the NNLO corrections to W
+

W
−

bb̄ at

threshold.

7.2.2 Switch-off function

As noted before, we need a well-defined way to switch off the resummation where we do

not trust the results anymore and use the full fixed-order NLO instead. The minimal

requirements for the switch-off function fs(v1S) are

fs

(
v1S

(√
s = 2M

1S
t

))
= 1 and fs(1) = 0 , (7.11)

where the 1S-velocity, v1S, is obtained by replacing mt in Eq. (6.10) by M
1S
t and Γt

[
mt

]

by Γt

[
M

1S
t

]

v1S =

√√
s− 2M

1S
t + iΓt

[
M

1S
t

]

M
1S
t

(7.12)

This is motivated by the fact that we want to ensure that the 1S peak is not affected by

fs. Thus, we center the switch-off around the 1S mass and not around the pole mass. To

simplify the notation, we will in the following refer to v1S as v when it is clear that it is in

the context of fs. As v is complex by definition but the power counting that motivates

Eq. (7.11) is only meaningful for a real parameter, we can use the imaginary part, real part
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or absolute value of v. All of these are shown in Fig. 7.4. We see that real and imaginary
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√
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Figure 7.4 Absolute value as well as real and imaginary part of the velocity v. The
switch-off function, fs, is shown as a function of each of these. In addition to the vertical
line at 2M1S

t , we signify the two used matching parameters v1 and v2 with horizontal
lines.

part of v are roughly mirrored at 2M
1S
t with a slight asymmetry due to the +iΓt in the

radicand of Eq. (7.12). To switch off the resummation for large values of
√
s, it would be

sufficient to only use the real part of v. However, also a couple of GeV below threshold,

the resummed calculation contains unphysical contributions [250] and we prefer to use

fixed-order results there. This is mostly important in terms of relative deviations as the

cross section is very small below threshold. Thus, we take
∣∣v
∣∣ as measure of how close we

are to threshold. Note that due to the width that enters the definition of the velocity,∣∣v
∣∣ =

√
Γt/M

1S
t ∼ 0.1 at 2M

1S
t is the minimal value and v never vanishes. This, of course,

enables the reliable perturbative computation in the first place as the width acts as an

effective IR cutoff.

The explicit form of fs is not too important as it is only a tool to remove unphysical

contributions. There are, however, two properties one should avoid when devising fs.

Firstly, it should be not only continuous but also continuously differentiable like any

physical cross section. This property disqualifies the most simple solution of a linear
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switch-off between start v1 and end v2:

fs(v) =





1 v < v1

1− v−v1

v2−v1
v1 ≤ v ≤ v2

0 v > v2

. (7.13)

Secondly, when using polynomials of high order that at first switch off slowly but transition

quickly, one risks to introduce an unphysical wiggle in the cross section. After experimenting

with different types of switch-off functions, cf. Appendix D.1, we decided to use a simple

polynom of the lowest order that satisfies continuity and continuous differentiability at

both v1 and v2:

fs(v) =





1 v < v1

1− 3
(
v−v1

v2−v1

)2

− 2
(
v−v1

v2−v1

)3

v1 ≤ v ≤ v2

0 v > v2

. (7.14)

Equation (7.14) is a cubic Hermite interpolation that is in the context of interpolation

also known as smoothstep. For illustration, we show in Fig. 7.4 the switch-off function as

a function of the absolute value as well as real and imaginary part. The used matching

parameters, v1 = 0.1 and v2 = 0.3, are included as horizontal lines and their intersection

with v identify start and end point of the matching. Judging from Fig. 7.4, v1 = 0.1 in

fact seems to be an advisable lower limit for v1 as going lower would in turn not guarantee

that f = 1 at 2M
1S
t and thus artificially reduce the threshold peak. On the other hand,

it is harder to devise a strict rule for an upper limit of v2. We think that one could go

further than the shown v2 = 0.3, which leads to a fairly quick switch-off, up to 0.4. Going

further seems questionable, though, as this is already more than two times αs
[
mZ

]
.

Let us finally remark that it would in principle also be possible to multiply the switch-

off function with the cross sections instead of the couplings. For the first order, both

approaches would be equivalent. For the subsequent higher orders, contained in the form

factor, this is no longer the case. Here, multiplying the couplings should lead to a smoother,

more sensible switch-off compared to the more ad hoc solution of turning off the cross

section.

7.2.3 Theoretical uncertainties

For scale variations, we will vary over the hard scale with the multiplier h as well as

over the soft and ultra-soft scales with the multiplier f as discussed in Section 6.2.4. In

particular, we sample the corners of the space of scale variations, as discussed already in
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Section 7.1.2, defining the set

HF =

{(
h, f

)
=
(

2, 1
)
,

(
h, f

)
=
(

2,
1

2

)
,

(
h, f

)
=
(1

2
, 2
)
,

(
h, f

)
=
(1

2
, 1
)}

. (7.15)

Furthermore, we have to vary over the matching scales. As noted above, we will vary v1

and v2 within [0.1, 0.4] and also vary the difference between v1 and v2 therein. Considering

the reliability on the obtained variation bands, we have to consider that it has been shown

in Ref. [250] that the traditional NLL scale variation band does not envelop the NNLL

prediction. While we include additional electroweak and relativistic corrections, we have to

assume that this also applies to our computation. A possible more conservative estimate

of the theoretical uncertainties would be to symmetrize the NLL scale uncertainties, which

are highly asymmetric with respect to the central value, cf. Fig. 7.3. This can be realized

by computing

σmax = max

[
max
i∈HF

σi , σ0 + (σ0 − min
i∈HF

σi)

]
(7.16a)

σmin = min

[
min
i∈HF

σi , σ0 − (max
i∈HF

σi − σ0)

]
(7.16b)

for each
√
s point where σ0 ≡ σ(h = 1, f = 1) is the cross section at central value. The

obtained bands are then symmetric in the sense that σmax − σ0 = σ0 − σmin for all
√
s,

as follows directly from Eq. (7.16). Note that we perform this procedure for each of the

matching parameters. To obtain a final uncertainty band of matched NLO+NLL, we take

the envelope of all of these bands. This will be shown in the next chapter.
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Numerical predictions

8.1 Inclusive results

8.1.1 Fixed-order results

In Fig. 8.1, we show NLO predictions for W
+

W
−

bb̄ and tt as a function of
√
s and the

renormalization scale µR. For the off-shell production, we show the effect of replacing the
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Figure 8.1 Total cross sections for on-shell and off-shell tt production as a function of√
s and µR. In the lower panels of the

√
s scan around the threshold region, we show

the scale variations of each computation as well as the ratio of tt over W+W−bb̄ . For
W+W−bb̄, we show the impact of replacing the pole mass by the 1S mass (mt = M1S

t )
and using M1S

t or M1S
t
√
ν∗ as renormalization scale. The details of the scale variations

are explained in the text.

pole mass mt by the 1S mass M
1S
t and of different scales. As expected, computing the

pole mass with Eq. (6.11) leads to a shift of the full NLO cross section. The form of the

scale variations, however, does not change significantly. This is especially noteworthy, as

we have varied both h and f (which modifies ∆M as shown in Eq. (6.11)), according to
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Eq. (7.15), to obtain the mt

[
M

1S
t

]
band. Hereby, h modifies the renormalization scale

that enters fixed-order matrix elements as well. For the other bands, only the h variation

is performed and f is ignored. The f variation is only a minor effect for the full NLO, as

one can see in the similarity of the scale variations in Fig. 8.1.

We have already discussed in Section 7.2 that we prefer to match the fixed-order result

with the firm scale, which is more sensitive to the threshold dynamics. Thus, we also show

results for µ0 = µF ≡ M
1S
t
√
ν∗. The corresponding results are very similar to the ones

with the hard scale but yield a slightly bigger scale variation band that is more sensitive

to the threshold. The central value is also mildly increased. To assess the impact of the

off-shell description at the inclusive level at NLO, we also show predictions for tt. We

find that it systematically lies 3 % to 4 % below W
+

W
−

bb̄ , starting from ∼ 355 GeV.

Concerning the high-energy behavior, we refer to Part II, where the deviations are even

larger. Below 350 GeV, i.e. approaching the threshold, where off-shell effects play a major

role, tt deviates strongly from W
+

W
−

bb̄ . In the right plot of Fig. 8.1, we show the

scale variations in a wider range for fixed
√
s = 350 GeV. In this case, we omitted the

f variations and just vary µR via h. The qualitative scale behavior is the same for all

descriptions. Note that for this it is important that the width is computed with the same

renormalization scale as it is used in the full computation, as also described in Part II.

Overall, the variations are slightly asymmetric with stronger deviations for lower µR.

8.1.2 Matched results

In Fig. 8.2, we show matched results employing the NLL form factor in combination with a

NLO decay and full NLO contributions to W
+

W
−

bb̄ as described in Eq. (7.10). We study

four different matching parameter choices by varying v1 ∈ {0.1, 0.15} and v2 ∈ {0.3, 0.4}.
The difference between the different matching parameters is nonnegligible, especially in the

cross-over region of ∼ 348 GeV and below the peak, where the scale variations of each of

the matched descriptions is small. This makes it very clear that it is not enough to pick only

one suitable set of matching parameters as the scale variations do not suffice to cover other

equally viable matching choices in the transition region. We observe, however, that the

matching fulfills quantitatively what we demanded qualitatively a priori: In the threshold

region (the ∼ 5 GeV around
√
s = 2M

1S
t ) and in the continuum region (& 375 GeV and

. 330 GeV) we recover the resummed and the fixed-order result, respectively. Note that

our best prediction in the threshold region is not the NLL one, which is only shown

for comparison, but the enhanced version of Eq. (7.10) without a switch-off function,

which includes single-top as well as background contributions in terms both with and

without the form factor. Phenomenologically, we observe that in the threshold region the

matched descriptions are slightly larger than the NLL prediction, which is a correction

that coincides in size and direction roughly with the NNLL results [250]. The asymmetric

NLL scale variations, cf. Fig. 7.3, are also present in the matched results. This can be

seen in more detail in Fig. 8.3: In the left plot, we show the individual behavior of the
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Figure 8.2 Inclusive cross section according to the matching description employing the NLL
form factor in combination with a NLO decay and full NLO contributions to W+W−bb̄
as described in Eq. (7.10). We show four different matching parameters with the cyan,
orange, purple and green bands, the matched cross section without switch-off function as
black dotted line, the NLL as red dashdotted line as well as the pure fixed-order NLO
result for W+W−bb̄ as blue band. The bands correspond to h and f variations as
described in Section 7.2.3.
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Figure 8.3 Inclusive cross section according to different scale choices for either no switch-off
function (left) and v1 = 0.15, v2 = 0.30 (right). In addition to the lines that can be
identified with the legend, we show an envelope in dark gray as well as the symmetrized
envelope in light gray, which was introduced in Section 7.2.3.

different h, f scale choices without an active switch-off. Note the nontrivial interplay going

from continuum to threshold to continuum again. The largest σi is given for different
√
s

by either (h, f) = (2, 1/2), (h, f) = (2, 1) or even (h, f) = (1/2, 2). For other energies,

(h, f) = (1/2, 2) can also be the smallest σi although the characteristic dip at threshold is

given by (h, f) = (1/2, 1). For a more conservative theory error estimate, we also show the

symmetrized envelope that has been computed with the procedure outlined in Section 7.2.3

in light gray. In the right plot of Fig. 8.3, we can study the already mentioned cross-over

effect when the switch-off function is active. It is a result of the opposite scale behavior

of the NLL in the threshold region and the more simple NLO in the continuum. The

NLO scale variations are as one would naively expect and as we have already shown in

Fig. 8.1. For smaller renormalization scales (controlled by h), αs increases and thus the

cross section increases. The opposite is true for larger scales. The f variation is only a

minor modification on top of this as it only indirectly changes the result by changing mt.

The NLL, however, has a more or less opposite behavior and this creates a very small scale

variation in the cross-over region. Note that the symmetrization of the envelope barely

affects the continuum region and also does not remove the cross-over. The cross-over

becomes, however, irrelevant as soon as one includes a variation over multiple switch-

off parameters. This is shown in Fig. 8.4. The full combination of scale variations and

matching variations is our best and most conservative prediction for W
+

W
−

bb̄ production

at threshold and continuum. It shows no more cross-over regions as they occur at different√
s for different matching parameters. By also performing the symmetrization, we believe

to have a reliable estimate of the theory uncertainty in the sense that the next order result
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Figure 8.4 Inclusive cross section according to the matching description by combining the
symmetrized scale variation envelopes of different variation parameters. Other lines and
band as in Fig. 8.2.

is likely included in our bands. Of course, this does not include the fixed-order NLO EW

corrections, which have to be considered on top of this.
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8.2 Differential results

For the analysis of the generated events, we use a custom Rivet [116] analysis. Partons

are clustered with the generalized kT algorithm (ee genkt in FastJet) [175, 219] with

R = 0.4 and p = −1. A minimal jet energy of 1 GeV is required. We assume a perfect

b-tagging efficiency including the charge. Thus a b-jet (b-jet), jb (jb̄), is a jet containing a

b (b) quark. We always require at least two jets during the analysis. For distributions of

observables that are identical for t ↔ t, b ↔ b and W
+ ↔W

−
, we only show t, b and W

+
,

respectively. If not stated otherwise, the results are obtained at
√
s = 2M

1S
t = 344 GeV.

Keep in mind that this is slightly below the kinematical threshold
√
s = 2mt, thus the

preferred kinematical situation is one with one on-shell and one off-shell top propagator.

8.2.1 Top observables

We start the discussion of differential distributions with the classic top observables, which

can already be defined for the on-shell e
+

e
− → tt process. In Fig. 8.5, we show the top

and anti-top polar angle as well as the top energy, invariant mass, three-momentum and

transverse momentum. The polar angle distribution is fairly flat already at NLO. This is

expected, as the forward-backward asymmetry for top-pair production at lepton colliders

is minimal at threshold [233]. Note that σmatched/σNLO shows a slight slope opposite to

the polar angle distribution and thus flattens the distribution even further. The energy

of the reconstructed top quark peaks strongly around mt, corresponding to on-shell tops

with no velocity. The matched description enhances this peak by a factor of ∼ 14, while

contributing very little to the off-shell configurations. The invariant top mass shows a very

similar behavior. As we are including all irreducible backgrounds to W
+

W
−

bb̄ to NLO

in QCD, there are still contributions for ∆M > 30 GeV at the per cent level from σNLO in

σmatched. At this point, we remind the reader that the σmatched − σNLO part is, apart from

interference terms, only containing double-top propagators according to Eq. (7.10). Thus,

it corresponds approximately to a pure Breit-Wigner distribution, which falls off quicker

than σNLO, especially for larger m
W

+
jb as seen in Fig. 8.5. Finally, the three-momentum,

∣∣p
∣∣W+

jb , distribution is a key figure in understanding the dynamics at threshold. As

expected, low three-momenta are preferred both at NLO and in the matched descriptions.

We observe a strong enhancement of low momenta due to the threshold resummation,

leading to an enhancement of over ∼ 17 below 20 GeV that flattens to below 2 above

70 GeV. The projection to the transverse plane results in a very similar distribution in

p
W

+
jb

T . As noted earlier, we omit the histograms for E, m,
∣∣p
∣∣ and pT for W

−
jb̄ , as they

are nearly identical to their top counterparts.

In Fig. 8.6, we show a more finely binned distribution of the top invariant mass.

Unsurprisingly, it peaks in the bins 172 GeV to 174 GeV, which correspond to the pole

mass mt = 173.124 GeV. It is interesting to see, though, that σmatched/σNLO is maximal

slightly below the peak in the 170 GeV to 171 GeV bin. This is related to the dominant
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Figure 8.5 Top and anti-top polar angle as well as the top energy, invariant mass, three-
momentum and transverse momentum distributions. The blue line describes the fixed-
order σNLO cross section, while the red line contains all contributions of σmatched according
to Eq. (7.10). The bands correspond to the scale variations, described in Eq. (7.15), i.e.
they have not been symmetrized as proposed in Section 7.2.3. In the lower panel, we
show the ratio of σmatched/σNLO.
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Figure 8.6 Invariant mass distribution of reconstructed top quarks close to the mass peak.
Lines, bands and panels as in Fig. 8.5.
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kinematic configuration that is realized with two top-quark propagators slightly below

threshold, i.e. one is on-shell and the other one is slightly off-shell due to the insufficient

energy.

8.2.2 Top decay products

NLO

matched

10−1

1

10 1

10 2

10 3

e+e− → W+bW−b̄, Njets ≥ 2,
√
s = 344GeV

d
σ

d
∆
R
[f
b
]

0 1 2 3 4 5

2
4
6
8

10
12
14
16
18
20

∆RW+jb

σ
/
σ
N
L
O

NLO

matched

10 1

10 2

10 3

e+e− → W+bW−b̄, Njets ≥ 2,
√
s = 344GeV

d
σ

d
∆
φ
[f
b
/
G
eV

]

0 0.5 1 1.5 2 2.5 3

2
4
6
8

10
12
14
16
18
20

∆φW+jb

σ
/
σ
N
L
O

Figure 8.7 Distributions of rapidity and azimuthal angle differences between b-jets and
W+ bosons. Lines, bands and panels as in Fig. 8.5.

In Fig. 8.7, we show the rapidity and azimuthal angle differences between b-jets and

W
+

bosons. These tell us a lot about the kinematics of the top decay and the underlying

background. In the rapidity difference, we observe already in the NLO results a peak

around ∆R
W

+
jb = 3. This is quite different from the situation at high energies, like

800 GeV, where a rather low R separation of ∼ 1 is favored. Obviously, this is related to

the boost of the top decay products. At threshold, the tops have preferably low three

momenta
∣∣p
∣∣W+

jb , cf. the bottom left plot in Fig. 8.5. Thus, the back-to-back decay

is nearly unboosted and W
+

and jb move in opposite directions in the lab frame. On

the other hand, at high energies W
+

and jb will be boosted in the same direction and

thus move preferably in a cone around the original top momentum, leading to a smaller

average ∆R. Going to the matched results, we see that they lead to an almost constant

enhancement of the ∆R ≥ 3 regime, while barely enhancing the NLO results for ∆R ≤ 2.

Thus, we can expect the events for ∆R ≤ 2 to be dominantly irreducible backgrounds

of W
+

W
−

bb̄ . Finally, we note that in the azimuthal angle difference the same physics

is reflected. Here, we can see a preferred angle separation of ∆Φ = π, as expected at

threshold. For comparison, at 800 GeV a value of ∼ π/4 is favored. Also in this case, the

matched results enhance the pure top-decay topology. Compared to the R separation,

there is no jump in σmatched/σNLO, though, but a continuous increase going to larger angles.
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Figure 8.8 Energy distributions of b-jets and (b-jet,b-jet) pairs. Lines, bands and panels
as in Fig. 8.5.

While it is fairly obvious that rapidity and azimuthal angle difference between W
+

and

b-jet will carry information about the top decay, it is interesting to see whether even

single final state distributions of b-jet or W
+

carry similar information. In Fig. 8.8, we

can clearly confirm this in the b-jet energy distribution. It peaks around 70 GeV with

a major threshold enhancement of ∼ 14. In fact, the peak position of b-jets has been

proposed as a possibility to measure mt [277–279], which has been realized by CMS using

8 TeV data [280]. We note that the peak position is consistent with the rest frame energy

E
∗
b =

m
2
t −m2

W

2mt

= 67.900 GeV (8.1)

as it has been shown for unpolarized top decays, massless b-quarks and arbitrary boosts in

Ref. [277]. In our case, this is of course especially expected as nearly no boost of the top

decay is present. The intriguing aspect of this analysis is that no correct reconstruction of

b-jets with W
+

have to be performed and even the charge of the b-jets is irrelevant. Going

to pairs of b and b-jets in the right plot of Fig. 8.8, we observe that the peak in E
j
b around

70 GeV is translated to a peak in E
jb jb around 140 GeV. We stress that these results have

to be interpreted with caution as we have neglected final-final state interferences between

b and b, which could affect precisely this observable.

In Fig. 8.9, we show the transverse momentum of b-jets and W
+

bosons. As we know

that the b-jet energy peaks around 70 GeV, we can expect p
jb
T to have its maximum slightly

below this value due to small bottom mass mb = 4.2 GeV. As a result of momentum

conservation, p
W

+

T has to follow a similar distribution. This is exactly what we observe in

Fig. 8.9. Compared to the b-jet energy, the peak is not as pronounced and more smeared

to smaller values, which can still correspond to the peak jet energy due to the projection
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Figure 8.9 Transverse momentum distributions of b-jets and W+ bosons. Lines, bands
and panels as in Fig. 8.5.

to the transverse plane. Accordingly, σmatched/σNLO is large, a factor of 6–13, from 0 GeV

to 70 GeV and quickly goes to 1 above 90 GeV, where the contributions largely stem from

the W
+

W
−

bb̄ background.

Finally, we show in Fig. 8.10 the energy of W
+

bosons. Also in this distribution, we

can identify the footprint of the top decay in the peak and large threshold enhancement

in the 100 GeV to 106 GeV bin. Compared to Fig. 8.8 though, we observe even for large

W
+

boson energies still sizable threshold enhancements of a factor of ∼ 2. Thus, the top

quark contributions are not as localized as in the E
jb case.

In summary, we have seen in this chapter that the matched NLO+NLL works excel-

lently thanks to our comprehensive ansatz. The devised method for conservative theory

uncertainties with symmetrized bands at threshold is easily implemented and very likely to

envelope the next orders. The obtained differential results at threshold look promising to

guide semi-inclusive future measurements as we could identify regions of phase space that

are fully dominated by backgrounds. In the publication, which is in preparation, we will

give further focus on the physics applications by studying M
1S
t variations. Furthermore, we

will include ISR and beamstrahlung effects and discuss how this changes the classification

of what can be considered pure continuum or threshold. This is especially important for

the planned 380 GeV stage of CLIC.
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Figure 8.10 Energy distribution of W+ bosons. Lines, bands and panels as in Fig. 8.5.
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Chapter 9

Conclusions and outlook

In this work, we have studied the two most interesting processes for top physics in lepton

collisions: top-pair production in association with and without a Higgs boson. These

allow for a precise determination of top-quark properties, which in turn is a powerful

opportunity to find possible hints of new physics and has far reaching consequences for

our understanding of the universe. To study these processes, we have introduced the

multi-purpose event generator Whizard for NLO computations in Part I. Hereby, we have

focused on the specific aspects that are not seen in most NLO MC generators such as the

generic implementation of the resonance-aware FKS subtraction, the possiblity to generate

unweighted events at NLO or the separation of finite and singular contributions. Especially

the resonance-aware FKS subtraction was key, hereby, to obtain reliable predictions for

off-shell top-pair production at a lepton collider due to the irreducible background of

H → bb contributions, which is not present at hadron colliders at LO EW. To account

for the resummation of soft and collinear emissions, we have presented an independent

implementation of the Powheg matching scheme that builds on the automation of QCD

NLO corrections in Whizard. The key feature of the Powheg matching, namely the

suppression of the fixed-order differential cross section for small relative pT, has been

reproduced. We have discussed, in particular, how the distributions can be smoothly

interpolated between an almost NLO and a pure Powheg prediction, when the separation

scale of soft and finite real contributions is varied appropriately. As both results are within

the NLO+LL approximation, we have to consider this an additional uncertainty that

should be varied for physics predictions. Furthermore, we have shown for the first time

the impact of the Powheg matching on distributions for e
+

e
− → ttH.

In Part II, we have advanced the state of the art for off-shell tt and ttH production by

including all off-shell effects for the leptonic decay mode (µ
+
νµe

−
ν̄ebb̄ and µ

+
νµe

−
ν̄ebb̄H)

at NLO QCD. Especially for the precision measurement of the top Yukawa coupling, we

have shown that off-shell effects and NLO corrections have to be considered simultaneously

to fully capture the negative interference effects as well as the positive background

contributions. One can see that these effects do not factorize if one tries to estimate

the dependency of the cross section on the Yukawa coupling by multiplying the on-shell

K-factor with the LO W
+

W
−

bb̄H cross section. This leads to a shift of 1.3 % compared
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to the irreducible result while the correction itself is only 1.2 %. Similar findings show that

also the forward-backward asymmetry can only be reliably described if off-shell effects

and QCD corrections are taken into account simultaneously. In this case, off-shell effects

even dominate over QCD corrections, rendering the W
+

W
−

bb̄ at NLO computation more

relevant for the measurement than tt at NNLO. Thus, it is indispensable to use off-shell

predictions for precision predictions. A more detailed summary of Part II can be found

in Section 5.3. In addition to its phenomenological relevance, the presented calculations

demonstrate the flexibility of Whizard for NLO QCD computations at lepton colliders and

the smooth interplay with one-loop providers. All distributions can be reproduced easily

with these publicly available tools and finely adjusted to the experimental requirements.

In Part III, we have shown that one can systematically combine results obtained at

threshold in NRQCD and in the continuum at fixed order in QCD. The core ingredients

are the removal of double counting with an appropriate master formula, the switch-

off of unphysical threshold contributions in the continuum and the embedding of the

NRQCD results in a gauge-invariant, relativistic factorization formula. To the best of

our knowledge, this is the first time such a computation has been performed as usually a

simple master formula is sufficient for matching fixed-order with resummed results. We

have put particular emphasis on a completely gauge-invariant construction and have shown

the sizable difference to approaches that rely on signal diagrams, which has been used in

the literature for similar processes. The obtained matched results are valid for all energies

and allow to study at which fixed
√
s one can rely exclusively on either the threshold or

continuum computation. Furthermore, we have composed reliable theory uncertainties,

even in the intermediate regions, by symmetrizing the asymmetric NLL scale uncertainties

and creating an envelope over all matching variations.

Based on our results in Section 8.1, we can establish that the proposed 380 GeV stage of

CLIC is sufficiently away from threshold to justify using a pure continuum computation. Of

course, this requires an event selection with
√
ŝ ≈ √s. In case this results in a measurement

that is limited by statistics, one can use our matched computation, which is valid for

all
√
ŝ. In fact, this measurement should be performed either way as the contributions

for lower
√
ŝ will be enhanced similar to the radiative return to the Z peak. A detailed

study of the expected cross sections considering ISR and beamstrahlung will follow in the

publication that corresponds to Part III. Furthermore, we will study therein the potential

for top measurements using our NLO+NLL computation by considering the impact of

variations of M
1S
t on the predictions.

Furthermore, we emphasize that the matched computation has shown intriguing differ-

ential results. The NRQCD contributions embedded in the double-pole approximation

strongly enhance top-pair production kinematics, while backgrounds are fully described

by W
+

W
−

bb̄ at NLO QCD. This can be also seen in the top decay products, where the

phase-space in some variables can be neatly separated into signal and background. The

very clean tt signature will be the optimal environment to completely understand the

most fundamental MC vs short-distance mass issues. Given enough progress in this aspect,
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certain differential distributions could be used to perform competitive mass measurements.

We conclude this work by identifying the core areas for future improvements of our studies

and further directions. While we have shown the off-shell NLO QCD effects for leptonic

decays, also semileptonic and hadronic decays should be studied in more detail. This will

be computationally more challenging due to the increase of combinatorial possibilities

in e.g. cbbcbbH and of singular regions for the FKS subtractions. Hypothetically, one

could even consider to treat the finite Higgs-width contributions (the 8 fermion final state).

However, as the Higgs width is orders of magnitude smaller, the corrections will likely

be negligible, i.e. far below the per cent level. For a more realistic event simulation, one

should apply for all decay channels the Powheg matching, as presented in Section 3.3,

and add the parton shower and hadronization stages. This will allow also to increase the

precision for differential observables to the NLO+LL level. While this is straightforward

for the fixed-order prediction, it still has to be shown that this can be also applied to

the matched computation of Section 7.2. From the fixed-order perspective, there are no

obvious obstacles as both the threshold and the Powheg matching avoid double counting.

The simultaneous correctness to NLL at threshold and LL in pT should be discussed in

more detail, though. Furthermore, also NLO EW corrections and their interplay with

the QCD corrections have to be considered in the future as they are well known to play

an important role for the considered on-shell processes and are likely to be even more

relevant for the full off-shell processes. Note that EW corrections do not factorize with

the polarizations in contrast to the QCD corrections.

Concerning the next order in QCD, we are mildly optimistic that Whizard could be

extended to handle NNLO computations. From the technical point of view, this is not very

different from the current setup, especially if an FKS scheme like Stripper [281] is used,

where the double-real phase-space is described by the Born phase-space times radiation

functions. On top of the Born, real and virtual components, one would allocate additional

double-virtual, double-real and real-virtual components. All matrix elements but the

double-virtual ones can already be obtained from the interfaced OLPs. This would be one

of the major missing pieces to realize a full NNLL+NNLO matching for W
+

W
−

bb̄ . It will

require, though, substantial improvements in the automation of two-loop computations to

handle the massive number of diagrams. Likely, this is only acchievable if a mapping to a

tree structure, which can be handled recursively, is found, similar to the one-loop idea [194].

These problems might be tackled in time given that there is still considerable time until

first lepton-beam collisions, even in best case scenarios. In case the theory community

advances quickly or the next high-energy lepton collider is delayed even further, this might

be accomplished in time.

Finally, we would like to highlight an interesting follow-up project to our work that would

combine Parts II and III even further: ttH with threshold resummation. As we have seen

in Section 5.2, there are always tt threshold contributions in ttH for large Higgs energies.

In Refs. [282, 283], it has been shown how to use Toppik for the threshold resummation of

on-shell ttH up to NLL, which would form the basic ingredient. Technically, the threshold
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resummation for W
+

W
−

bb̄H can be setup the same way as for W
+

W
−

bb̄, treating the

H as a colorless recoiler, resulting in a lower effective
√
ŝ for the top-pair system. Next to

adding the technical infrastructure for this computation, one should study hereby how

the tt threshold can be accessed in ttH at 500 GeV. This would be very interesting as

the 500 GeV run is at the same time useful to measure both tt̄H itself, because it is close

enough to threshold, as well as to conduct Higgs physics and search for BSM signatures.

Thus, it is planned [227] to collect most of the integrated luminosity at 500 GeV in any

of the possible running scenarios of the intial phase of the ILC. Note that in a very

clean decay channel like γγ , the energy distribution of the Higgs could be used for a

measurement of a short-distance mass as it would be an almost inclusive measurement of

the tt system. This might allow for a measurement of a short-distance mass at 500 GeV

that is competitive to the threshold scan and thus to improve our understanding of the

EW vacuum.
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Appendix A

Conventions and Notation

We use natural units where ~ = c = 1. Furthermore, we use the metric corresponding

to flat space time with the one true signature g
µν

= diag(+1,−1,−1,−1), such that

p
µ

= (E(p),p), p
2

= m
2

and E(p) =

√
m

2
+ p

2
. Three-vector valued objects are either

notated bold-faced, like a, or indexed by Latin indices, a
i
. The indices of four vectors in

Minkowskian space-time are denoted by Greek indices or simply omitted, p
µ → p. The

indices of a four vector go from 0 to 3 with the time as first component and the space

components ordered as (ax, ay, az). This especially implies that four vectors with negative

norm are called space-like, zero norm light-like and positive norm time-like. The Feynman

slash is defined by /p = pµγ
µ
, whereby here and everywhere else a sum over repeated indices

is implied. The sum is, however, made explicit where it improves clarity.
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Appendix B

Supplements to Part I

B.1 Algorithm for MLM merging

There is no formal proof for the correctness of the MLM merging. We summarize in

Fig. B.1 the algorithm as it is usually implemented. The maximal (Qmax), merging scale

(QMS) and cut-off (Qcut) scales can be in principle defined for any hardness measure like

virtuality or by the clustering algorithm like kT.
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Compute σ(i) for i = 0, 1, . . . N additional partons and a precut Qcut < QMS

Cluster the partons using the kT algorithm to {MEjets}

Accept

NMEjets = Nmax
MEjets?

Cluster partons into {PSjets} with minimum jet-jet separation QMS

Match {PSjets} with {MEjets} one by one

Feed the partons into the shower with tmax = Qmax as starting scale

Increase clustering scale QMS such that NPSjets = NMEjets

NPSjets < NMEjets?

Veto

Use the clustering scales at each node as input for αs reweighting

Chose a multiplicity according to σ(i)
∑
j σ

(j) and generate an event

Jets do not match

Yes

Yes

No

No

Figure B.1 Schematic representation of the MLM merging scheme.
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B.2 Details on Sudakov veto algorithm in Powheg
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Figure B.2 N(ξ, y) for αr = 1 in tt production at a lepton collider. Note that N is
finite for all ξ, y as the leading divergence is captured by U(ξ, y). N(ξ, y) describes the
non-universal behavior of the process.

We rely heavily on the Sudakov veto algorithm, introduced in Section 3.1.3, to shape

the differential splitting probabilities. Specifically, we use as overestimator

U(ξ, y, α
rad
s )Nmax , (B.1)

whereby ξ and y are related to the FKS variables for energy and angular separation of the

emitted parton (to the emitter) normalized to the [0, 1] interval. The form of the upper

bounding function U(ξ, y, αs) depends on the type of emitter but for massless final-state

radiation it is simply

U(ξ, y, αs) =
αs(k

2
T(ξ, y))

ξ(1− y)
. (B.2)

All implemented upper bounding functions and their integrals can be found in Ref. [79].

α
rad
s is the simplest expression for αs, which overestimates or equals the α

true
s that is set

by the user,

α
rad
s (p

2
T) =

1

b0 log p
2
T

Λ
2
gen

, (B.3)
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with Λgen being computed before event generation by setting α
rad
s = α

true
s

∣∣
pT=pT,min

. As

mentioned in Section 3.3.1, we use a normalization grid N(ξ, y), which is also sampled in

a warmup stage with

N(ξ, y) = N({ξ̃, ỹ}) for ξ, y ∈ {ξ̃, ỹ} and N({ξ̃, ỹ}) = max
∀ξ,y∈{ξ̃,ỹ}

R(ξ, y)J (ξ, y)

BU(ξ, y, α
true
s )

(B.4)

whereby J is the Jacobian from the radiation phase space to the dimensionless FKS

variables ξ and y and the binning of the ξ, y unit square into {ξ̃, ỹ} elements can be

adjusted to the process complexity. We show an example of N(ξ, y) in Fig. B.2. To

transform Eq. (B.1) into

R(ξ, y)J (ξ, y)

B
, (B.5)

we apply the following veto procedure. At each step, we generate a random number xi and

check if it less than a veto probability Pi. This multiplies Pi with the generated distribution

and by virtue of the Sudakov veto algorithm, cf. Section 3.1.3, even exponentiates and

thus modifies the differential splitting probabilities directly. The veto probabilities and

the transformation of Eq. (B.1) are as follows

P1 =
α

true
s

α
rad
s

Eq. (B.1)⇒ U(ξ, y, α
true
s )Nmax (B.6a)

P2 =
N(ξ, y)

Nmax

⇒ U(ξ, y, α
true
s )N(ξ, y) (B.6b)

P3 =
R(ξ, y)J (ξ, y)

BU(ξ, y, α
true
s )N(ξ, y)

⇒ Eq. (B.5) . (B.6c)

Hereby, Eq. (B.6b) is not strictly necessary but reduces the number of evaluations of the

real matrix element, as shown in Tab. B.1. In this example, the number of matrix-element

evaluations is greatly lowered by about 76 %.

Table B.1 Summary of Powheg veto procedure for αr = 1 in e+e− → tt for 10 000 events.
We note that in this run 549 excess events occured in the last step, corresponding to
0.7 %. The ξmax veto is an additional special step for massive upper bounding functions
that ensures that the kinematic bound ξ ≤ ξmax is fulfilled.

Ncalls Nvetoed Nvetoed/Ncalls

αs 386 215 13 066 3 %
ξmax 373 149 44 589 12 %

N(ξ, y) 328 560 250 579 76 %
R(ξ, y)/B 77 981 70 563 90 %
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Supplements to Part II

C.1 Further predictions for e+e− → µ+νµe−ν̄ebb̄
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Figure C.1 Transverse momentum distributions of the hardest and second hardest lepton
in e+e− → µ+νµe−ν̄ebb̄. Curves and bands as in Fig. 5.4.
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Figure C.2 Differential distributions of the azimuthal angle of `+jb (left) and `−jb̄ (right)

for e+e− → µ+νµe−ν̄ebb̄. Curves and bands as in Fig. 5.4.

C.2 Further predictions for e+e− → µ+νµe−ν̄ebb̄H
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Figure C.3 Transverse momentum distributions of the Higgs boson in e+e− → tt̄H (left)
and in e+e− → µ+νµe−ν̄ebb̄H (right). Curves and bands as in Fig. 5.4.
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Supplements to Part III

D.1 Alternative switch-off functions
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√
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Figure D.1 Various switch-off functions as explained in the text in a wide switch-off window
between v1 = 0.1 and v2 = 0.4.

For reference, we show alternatives to the smoothstep switch-off function that is used in

Part III. Specifically, we depict in Fig. D.1 a smoothstep, quadratic, linear and a Fermi

function. Overall, we have observed that higher curvature functions lead to artificial bumps

or wiggles in the matched cross section. This is suppressed best with the linear switch-off

but this is not a smoothly differentially function and hence would produce unphysical

edges at v1 and v2. The quadratic switch-off function is actually not a simple function
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between v1 and v2 but consists of two quadratic functions:

fs(v) =





1 v < v1

1− 2 (v−v1)
2

(v2−v1)
2 v1 < v < v1+v2

2

2 (v−v2)
2

(v2−v1)
2

v1+v2

2
< v < v2

0 v > v2

. (D.1)

This quadratic function follows smoothstep fairly closely but is always further away from

the linear behavior. The Fermi-Dirac distribution has been generated with a mean of

(v1 + v2)/2 and a width of (v2 − v1)/20. Note that while one can get a behavior closer

to the linear function around the mean with a larger width, this leads to fs not being

approximately 1 and 0 at v1 and v2, respectively. Thus, the smoothstep function appears

as the best alternative, while most other parametrizations give results within the matching

variation.
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Figure D.2 Comparison of analytic results with the implementation in Whizard with the
factorized and the signal-diagram approach for ∆mt

= 15 GeV using an expanded, LL or
NLL form factor. The bands and lines as in Fig. 7.3.
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user manual. In Comput. Phys. Commun., 184: (2013), pp. 2803–2819. arXiv:

1003.0694 [hep-ph].

[117] E. Byckling and K. Kajantie. Particle Kinematics. Jyväskylä, Finland: John
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[147] M. Bengtsson and T. Sjöstrand. Coherent Parton Showers Versus Matrix

Elements: Implications of PETRA - PEP Data. In Phys. Lett., B185: (1987),

p. 435.
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[240] M. Jezabek, J. H. Kühn, and T. Teubner. Momentum distributions in t anti-t

production and decay near threshold. In Z. Phys., C56: (1992), pp. 653–660.

[241] Y. Sumino, K. Fujii, K. Hagiwara, H. Murayama, and C. K. Ng. Top quark

pair production near threshold. In Phys. Rev., D47: (1993), pp. 56–81.

[242] A. H. Hoang et al. Top - anti-top pair production close to threshold: Synopsis of

recent NNLO results. In Eur. Phys. J.direct , C3: (2000), pp. 1–22. arXiv: 0001286

[hep-ph].

[243] A. Pineda and J. Soto. Effective field theory for ultrasoft momenta in NRQCD

and NRQED. In Nucl. Phys. Proc. Suppl., 64: (1998), pp. 428–432. arXiv: hep-

ph/9707481 [hep-ph].

[244] N. Brambilla, A. Pineda, J. Soto, and A. Vairo. Potential NRQCD: An

Effective theory for heavy quarkonium. In Nucl. Phys., B566: (2000), p. 275. arXiv:

hep-ph/9907240 [hep-ph].

[245] M. E. Luke, A. V. Manohar, and I. Z. Rothstein. Renormalization group

scaling in nonrelativistic QCD. In Phys. Rev., D61: (2000), p. 074025. arXiv:

hep-ph/9910209 [hep-ph].

[246] A. V. Manohar and I. W. Stewart. Renormalization group analysis of the

QCD quark potential to order v
2
. In Phys. Rev., D62: (2000), p. 014033. arXiv:

hep-ph/9912226 [hep-ph].

[247] A. V. Manohar and I. W. Stewart. The QCD heavy quark potential to order

v
2
: One loop matching conditions. In Phys. Rev., D62: (2000), p. 074015. arXiv:

hep-ph/0003032 [hep-ph].

[248] A. V. Manohar and I. W. Stewart. Running of the heavy quark production

current and 1 / v potential in QCD. In Phys. Rev., D63: (2001), p. 054004. arXiv:

hep-ph/0003107 [hep-ph].

[249] A. H. Hoang, A. V. Manohar, I. W. Stewart, and T. Teubner. The

Threshold t-tbar cross-section at NNLL order. In Phys. Rev., D65: (2002), p. 014014.

arXiv: hep-ph/0107144 [hep-ph].

157

http://arxiv.org/abs/hep-ph/9407339
http://arxiv.org/abs/hep-ph/9407339
http://arxiv.org/abs/0001286
http://arxiv.org/abs/0001286
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9907240
http://arxiv.org/abs/hep-ph/9910209
http://arxiv.org/abs/hep-ph/9912226
http://arxiv.org/abs/hep-ph/0003032
http://arxiv.org/abs/hep-ph/0003107
http://arxiv.org/abs/hep-ph/0107144


Bibliography

[250] A. H. Hoang and M. Stahlhofen. The Top-Antitop Threshold at the ILC:

NNLL QCD Uncertainties. In JHEP , 05: (2014), p. 121. arXiv: 1309.6323

[hep-ph].

[251] A. H. Hoang, V. Mateu, and S. Mohammad Zebarjad. Heavy Quark Vacuum

Polarization Function at O(α
2
s) and O(α

3
s). In Nucl. Phys., B813: (2009), pp. 349–

369. arXiv: 0807.4173 [hep-ph].

[252] A. A. Penin and J. H. Piclum. Threshold production of unstable top. In JHEP ,

01: (2012), p. 034. arXiv: 1110.1970 [hep-ph].
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[259] Y. Schröder. The Static potential in QCD to two loops. In Phys. Lett., B447:

(1999), pp. 321–326. arXiv: hep-ph/9812205 [hep-ph].

[260] B. A. Kniehl, A. Onishchenko, J. H. Piclum, and M. Steinhauser. Two-

loop matching coefficients for heavy quark currents. In Phys. Lett., B638: (2006),

pp. 209–213. arXiv: hep-ph/0604072 [hep-ph].
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