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In this work we discuss different features of the collective dynamics in neu-
tron rich nuclei which can contribute to constrain the dependence with density of the
symmetry energy below saturation. As two components systems, they manifest both
isoscalar and isovector modes whose stability is changing with density in a different
manner. Within a Fermi liquid theory it is predicted that the isovector modes remain
stable at densities under saturation while the isoscalar modes become unstable below a
certain value of density. In connection to the former modes the electric dipole response
of exotic nuclei shows the emergence of a low energy component when the number of
neutrons in excess increases, which is associated to the dynamics of the low density
neutron skin against a more stable core. Within schematic models which generalize the
Brown-Bolsterli approach as well as in mean-field descriptions based on the Landau-
Vlasov equation, we analyze the role of the symmetry energy on the energy centroid
position and on the sum rules for this mode. Then, by considering the same parameteri-
zations with density of the symmetry energy we investigate the isospin dynamics in the
conditions when the growth of the unstable isoscalar fluctuations determine the nuclear
fragmentation at Fermi energies.
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1. INTRODUCTION

The symmetry energy term,
Esym

A
, appearing in the nuclear Equation of State

(EOS) in connection with the effects associated with the difference between the num-
ber of neutrons N and of protons Z is determined both by the Pauli correlations and
by the properties of the nuclear interactions [1]. In the expression of the energy per

nucleon
E

A
(ρ,I)

E

A
(ρ,I) =

E

A
(ρ)+

Esym

A
(ρ)I2 (1)
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it factorizes the square of the isospin degree of freedom I =
N −Z

A
(here ρ=

A

V
is

the nuclear density and A =N +Z is the mass number). For example, in a nuclear
Energy Density Functional (EDF) approach derived from Skyrme-like interactions,
the symmetry energy can decompose as follows:

Esym

A
(ρ)≡ ϵsym =

EF (ρ)

3
+

C(ρ)

2

ρ

ρ0
= b(kin)sym + b(pot)sym (2)

with EF being the Fermi energy and C(ρ) a function depending on the selected
effective interaction. Several phenomena, such as the development of the neutron
skin, the isovector collective response, the heavy ion dynamics and the isospin com-
position of the final products, as well as some essential processes in nuclear as-
trophysics depend on the behavior with density of this quantity [2, 3]. Within the
EDF approach we proposed three parameterizations which give similar values of the
symmetry energy Esym/A at saturation density ρ0 = 0.16fm−3 but present quite
different slopes around this point. For asystiff EOS, the coefficient C(ρ) in (2)

is constant, C(ρ) = 32MeV and
Esym

A
(ρ0) = 28.3MeV . The slope parameter

L = 3ρ0
dEsym/A

dρ
|ρ=ρ0 takes the value L = 72MeV . For the asysoft case we have

C(ρ)

ρ0
= (482−1638ρ)MeV fm3 which leads to a value L= 14.4MeV . Finally, for

the asysuperstiff EOS,
C(ρ)

ρ0
=

32

ρ0

2ρ

(ρ+ρ0)
, the symmetry term has a faster varia-

tion around saturation density with a slope L = 96.6MeV . The corresponding nu-
clear mean-fields Uq,(q = n,p), derived in this approach contain an isoscalar part
expressed in terms of the nucleons density ρ = ρn+ ρp as well as an isovector part
that depend on isovector density ρi = ρn−ρp and is determined by C(ρ)

Uq(r) =A
ρ

ρ0
+B(

ρ

ρ0
)α+1+C(ρ)

ρn−ρp
ρ0

τq+
1

2

∂C

∂ρ

(ρn−ρp)
2

ρ0
. (3)

Here ρn(r) (ρp(r)) is the neutron (proton) local density and τn(τp) = +1(−1). The
coefficient A,B and the exponent α are selected in order to reproduce the features of
nuclear matter at saturation.

In this work we present results concerning the effects of the density depen-
dence of symmetry energy below saturation derived in transport approaches based
on Landau-Vlasov equation [4] and in schematic models [5]. We focus both on the
properties of the isovector-like modes, which remain stable even for dilute systems
was well as on those of isoscalar-like modes which below a certain value of den-
sity become unstable [6]. Indeed, let us observe that (3) represents one of the main
ingredients in the Landau-Vlasov equations for one-body distributions functions of
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3 Collective dynamics and fragmentation in nuclear systems 729

protons and neutrons:

∂fp
∂t

+
p

m
·∇rfp−∇rUp ·∇pfp = I(fp,fn) , (4)

∂fn
∂t

+
p

m
·∇rfn−∇rUn ·∇pfn = I(fp,fn) . (5)

When the collision integral I(fp,fn) is neglected (4) and (5) reduce to two coupled
Vlasov equations representing the semiclassical limit of Time Dependent Hartree
Fock (TDHF) approximation and which in the linear regime can be related to the Ran-
dom Phase Approximation (RPA). Similarly, within the Brown-Bolsterli schematic
model [7, 8], the interaction Aij = V̄ph′hp′ = Vph′,hp′ − Vph′,p′h = ⟨ph′|V̂ |hp′⟩ −
⟨ph′|V̂ |p′h⟩ is approximated (neglecting the exchange term) by a separable particle-
hole interaction Aij = λDphD

∗
p′h′ = λQiQ

∗
j whose coupling constant depends on the

potential symmetry energy term b(pot)sym at normal density, λ(ρ0) =
6b

(pot)
sym (ρ0)

A⟨r2⟩
[9]. In

these expressions i define an specific particle-hole ph pair, Dph refers to the corres-
ponding matrix elements of the dipole operator while ⟨r2⟩ is the mean square radius
of the nucleus. With this value for λ and accounting for the sum-rules satisfied by
the matrix elements |Qi|2 [10], the energy centroid and the EWSR exhausted by the
GDR were successfully reproduced by the RPA treatment.

In the next section we explore the emergence of Pygmy Dipole Resonance in
neutron rich nuclei within the models mentioned above and look at the role of the
symmetry energy on the position of the energy centroid of this mode as well on
the associated Energy Weighted Sum Rule (EWSR). Then, by employing the same
parameterizations with density of the symmetry energy we explore the fragmenta-
tion dynamics in connection with isospin dynamics within the Stochastic Mean Field
(SMF) model [11].

2. PYGMY DIPOLE RESONANCE: FROM SCHEMATIC MODELS TO TRANSPORT
APPROACHES

Finite nuclei and particularly neutron-rich systems exhibit a well defined den-
sity profile with several neutrons located in a region at lower density forming the
neutron skin. Since the symmetry energy decreases with density in a schematic
Brown-Bolsterli approach one expects for the nucleons located in the surface region
to be associated a separable interaction with a value of the coupling constant smaller
than λ(ρ0). Similar arguments can be found in phenomenological models [12] when
three coupled fluids (i.e., protons, blocked neutrons and excess neutrons) were pro-
posed to define the normal modes in a hydrodynamical description. Therefore in
the schematic approach we relax the condition of a unique coupling constant for all
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particle-hole pairs. Such more general separable interactions were considered also
in a microscopic model aiming to include the coupling between normal and thresh-
old states [13] or to study the GDR in fissioning nuclei [14]. We assume that for a
subsystem of particle-hole pairs, namely i, j ≤ ic, the interaction is Aij = λ1QiQ

∗
j ,

with λ1 = λ(ρ0) corresponding to the potential symmetry energy at saturation den-
sity, while for the other subsystem, namely i, j > ic, the interaction is characterized
by a weaker strength Aij = λ3QiQ

∗
j , with λ3 = λ(ρe) associated with the symmetry

energy value at a much lower density ρe << ρ0. If i ≤ ic, j > ic or i > ic, j ≤ ic,
i.e., for the coupling between the two subsystems, we consider Aij = λ2QiQ

∗
j with

λ2 = λ(ρi) corresponding to a potential symmetry energy at an intermediate density
ρ0 >ρi >ρe and consequently λ1 >λ2 >λ3 > 0. The RPA equations for the forward
and backward amplitudes X(n)

i ,Y
(n)
i become

ϵiX
(n)
i +λ1Qi

∑
j≤ic

(Q∗
jX

(n)
j +QjY

(n)
j )+λ2Qi

∑
j>ic

(Q∗
jX

(n)
j +QjY

(n)
j ) = EnX

(n)
i

ϵiY
(n)
i +λ1Q

∗
i

∑
j≤ic

(Q∗
jX

(n)
j +QjY

(n)
j )+λ2Q

∗
i

∑
j>ic

(Q∗
jX

(n)
j +QjY

(n)
j ) =−EnY

(n)
i

if i≤ ic,

ϵiX
(n)
i +λ2Qi

∑
j≤ic

(Q∗
jX

(n)
j +QjY

(n)
j )+λ3Qi

∑
j>ic

(Q∗
jX

(n)
j +QjY

(n)
j ) = EnX

(n)
i

ϵiY
(n)
i +λ2Q

∗
i

∑
j≤ic

(Q∗
jX

(n)
j +QjY

(n)
j )+λ3Q

∗
i

∑
j>ic

(Q∗
jX

(n)
j +QjY

(n)
j ) =−EnY

(n)
i

if i > ic.

From these equations, with α=
∑
i≤ic

|Qi|2, β=
∑
i>ic

|Qi|2, in the degenerate case ϵi= ϵ

are obtained the following collective RPA energies:

E
(1)2
n,RPA = ϵ2+2ϵ(E

(1)
n,TDA− ϵ) = ϵ(2E

(1)
n,TDA− ϵ), (6)

E
(2)2
n,RPA = ϵ2+2ϵ(E

(2)
n,TDA− ϵ) = ϵ(2E

(2)
n,TDA− ϵ), (7)

where E
(1)
n,TDA and E

(2)
n,TDA are the corresponding energies in the TDA approxima-

tion

E
(1)
n,TDA = ϵ+

(λ1α+λ3β)

2

(
1+

√
1− 4(λ1λ3−λ2

2)αβ

(λ1α+λ3β)2

)
(8)

E
(2)
n,TDA = ϵ+

(λ1α+λ3β)

2

(
1−

√
1− 4(λ1λ3−λ2

2)αβ

(λ1α+λ3β)2

)
. (9)

From the EWSR for the unperturbed system is obtained that m1 = ℏω0(α+
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Fig. 1 – (Color on-line) The GDR and PDR
energy centroids as a function of the ratio λ2/λ1.
The black thick lines refer to the TDA while the
red lines to RPA calculations. (a) For 68Ni the
solid lines correspond to Ne =6; the dashed lines
correspond to Ne = 12. (b) For 132Sn the solid
lines correspond to Ne = 12; the dashed lines
correspond to Ne = 32.
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Fig. 2 – (Color on-line) The mass dependence
of the PDR energy centroid as a function of
mass predicted by the transport model (blue cir-
cles and red diamonds). The three lines of
fit corresponds to the mass parameterizations
40A−1/3,41A−1/3 and 42A−1/3. The maroon
squares represent experimental data points, see
[18].

β) =
ℏ2

2m

NZ

A
. The specific values for α and β are connected to the number of

protons (Zc) and neutrons (Nc) which belong to core, (Ac =Nc+Zc) and the number
of neutrons in excess, i.e. nucleons at lower density (Ne), respectively. Then results

ℏω0α =
ℏ2

2m

NcZ

Ac
and ℏω0β =

ℏ2

2m

NeZ
2

AAc
[15, 16]. Since in the presence of the

dipolar field the charges of protons and neutrons are N/A and −Z/A, respectively.

The coupling constant will become λ1 =
A2

NZ

10b
(pot)
sym (ρ0)

AR2
, where the nuclear radius

is R = 1.2A1/3. We adopt for λ3 a value λ3 = 0.2λ1 corresponding to the lower
density associated with the neutron skin region. Then λ2 is varied from λ3 i.e. a
weak coupling between the two subsystems to λ1 i.e. a strong coupling between the
two subsystems. We selected for the study the systems 68Ni and 132Sn. For these
conditions in Fig. 1 (a),(b) we report the position of the energy centroids of the two
collective states both in TDA (black thick lines) and RPA (red lines) calculations.
For 68Ni the number of neutrons in excess is Ne = 12 (dashed lines) and Ne = 6
(solid lines) respectively. The PDR energy centroid does not change much when we
modify the value of Ne. The experimental value is Eexp

PDR = 9.55 MeV [17], while
in our calculations for Ne = 6, it varies from EPDR = 10.2 MeV to 9.3 MeV, when
λ2 increases. In the case of 132Sn we chose Ne = 32 (dashed lines) and Ne = 12
(solid lines). For Ne = 12 the position of the PDR energy centroid changes from
EPDR = 8.5 MeV to 7.5 MeV as λ2 is varied between the same limits. In Fig. 2
we report the mass dependence of EPDR as predicted by the model based on Vlasov
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732 V. Baran et al. 6

Table 1

The ratios λ2/λ1, λ3/λ1 corresponding to the realistic physical conditions for the three asy-EOS, the

predicted values of PDR, EPDR and GDR, EGDR, energy centroids (in MeV), the fraction fPDR

exhausted by the PDR in each case. fVPDR refers to the values obtained from Vlasov calculations.

asy-EoS λ2/λ1 λ3/λ1 EPDR EGDR fPDR(%) fV
PDR(%)

asysoft 0.57 0.23 7.98 15.30 1.3 2.4
asystiff 0.31 0.11 8.05 15.20 3.3 4.2
asysupstiff 0.15 0.02 8.05 15.17 5.0 4.4

equations [18]. From a direct comparison is concluded that for the two systems the
agreement between the two models is very good.

Therefore we extend the comparison and analyze the role of the symmetry
energy. Few additional assumptions concerning the connection between the values
of λi in the schematic model and the density behavior of the symmetry energy are
considered. We employ the three mentioned parameterizations of the potential sym-
metry energy and determine for each of them the ratio of the coupling constant at
a given density ρ to the coupling constant at the saturation density, λ(ρ)/λ(ρ0).
We focus the analysis on 132Sn and approximate the radial proton and neutron
density distributions by trapezoidal shapes [19]. The proton mean-square radius
is well reproduced and obtain a neutron skin thickness ∆Rnp = 0.3fm when we
adopt for the central densities the values provided by the Vlasov calculations [16],
ρn = 0.0825fm−3,ρp = 0.0575fm−3 [5]. We consider the number of neutrons in
excess as being determined by the neutron density distribution beyond r = 6.5 fm,
where the tail of the protons distribution is approaching the end part. In this way we
obtain a value of Ne around 13.5 neutrons. We also assume that the average density
of these particles will define ρe, obtaining ρe = 0.0186fm−3. For the three asy-EOS
the ratio λ3/λ1 = λ(ρe)/λ(ρ0) ratio is shown in Table 1. We assume that the pro-
perties of the region where the total density changes from ρ0 to zero determine the
coupling between the core and the excess neutrons. The average density of this region
will correspond to ρi. The obtained value is ρi = 0.05fm−3. For the three asy-EOS
the calculated ratio λ2/λ1 = λ(ρi)/λ(ρ0) is reported in Table 1. With these values of
the parameters the PDR energy is found around 8 MeV in all cases. The EWSR frac-
tion fPDR exhausted by PDR is strongly influenced by the density dependence of the
symmetry energy below saturation. When we pass from the asysoft to the superasys-
tiff its values are 1.3%, 3.3% and 5.0%. Moreover this trend is consistent with the
predictions of the transport model, see Table 1, where again a similar increase of the
EWSR fraction with the slope parameter L can be noticed. Taking into account the
approximations present in each model the overall agreement is quite good, providing
a clear evidence of the relation between the behavior of the symmetry energy at lower
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t=10fm/c 

t=180fm/c 

t=60fm/c t=100fm/c 

t=220fm/c t=280fm/c 

Fig. 3 – (color on-line) The time evolution of a fragmentation event following the collision 124Sn+68Ni
at 45A·MeV and impact parameter b= 3fm.

densities and the PDR response.

3. ISOSPIN DYNAMICS IN NECK FRAGMENTATION

In this section we adopt a transport model based on Landau-Vlasov equations,
the Stochastic Mean Field, which includes a method to account for the effects of
fluctuations through a projection in real space [11]. The approach is appropriate to
explore unstable regimes of nuclear matter as in the case of spinodal decomposition.
This represents one of the kinetic mechanisms which leads to nuclear fragmenta-
tion in collisions at intermediate energies through exponential amplification of the
initial density fluctuations. The possible correlations between the kinematic proper-
ties of the Intermediate Mass Fragments (IMF’s) and their isospin content which add
new constrains on the behavior with density of symmetry energy stimulated more
exclusive experiments [20–24] as well as theoretical investigations [25–28]. Here
we present features of the neck fragmentation mechanism for the CHIMERA system
124Sn+68Ni and of the dynamics of isospin degree of freedom for this reaction.

In Fig. 3 we depict the time evolution following the collision at 45A·MeV
beam energy and impact parameter b = 3fm. Already at this centrality zone the
coexistence of different fragment production mechanisms manifests. After an expan-
sion stage first IMF’s are growing in the low density region. Then, on longer time
scales, after 180fm/c in this example, the dynamically induced fission of PLF-like

RJP 60(Nos. 5-6), 727–737 (2015) (c) 2015 - v.1.3a*2015.6.29



734 V. Baran et al. 8

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

v
z

y
ie

ld
 

asy−stiff

asy−soft

exp. data

Fig. 4 – (color on-line) Parallel velocity distribu-
tion (in cm/ns) of the IMF’s withZ = 4 produced
in ternary events. The black triangles refer to ex-
perimental data points. In order to perform the
comparison the theoretical predictions were nor-
malized to data at vz = 0.0 cm/ns.
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Fig. 5 – Parallel velocity distribution of the IMF’s
with charge Z = 5 produced in ternary events).
The black triangles refer to experimental data
points. In order to perform the comparison the
theoretical predictions were normalized to data at
vz = 0.0 cm/ns.

system can also takes place. The model is able to reproduce nicely several kinematic
properties observed experimentally. In Fig. 4 and Fig. 5 we present a comparison
with data of parallel velocity distribution for IMF’s with Z = 4 and Z = 5.
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Fig. 6 – The IMF charge distribution for the ternary events of the reaction 124Sn+64Ni at 45AMeV.
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9 Collective dynamics and fragmentation in nuclear systems 735

The charge distribution of IMF’s produced in the ternary fragmentation events is rep-
resented in Fig. 6 for asy-stiff and asy-soft EOS. We cannot distinguish differences
between the two asy-EOS. One reason is that for semicentral to semiperipheral col-
lisions the fragment formation and growth is mainly determined by the competition
between the isoscalar-like bulk instabilities and surface instabilities. However the
isospin content of the primary IMF’s is quite different for the two asy-EOS as is
shown in Fig. 7 and Fig. 8 where the average value of N/Z was plotted as a function
the fragments charges. Moreover, we also observed, following a more detailed analy-

2 3 4 5 6 7 8 9 10 11 12
1.2

1.3

1.4

1.5

1.6

Z

<
N
/Z
>

Fig. 7 – (Color on-line) The IMF’s average value
of N/Z as a function of charge Z. The asystiff
EOS.
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1.3

1.4

1.5

1.6

Z

<
N
/Z
>

Fig. 8 – (Color on-line) The IMF’s average value
of N/Z as a function of charge Z. The asysoft
EOS.

sis, that the isospin content distribution as a function of various kinematic quantities
including transverse velocity and deviation from Viola systematics are sensitive to
the fragmentation mechanism and the production time scale. These results will be
reported soon once the analysis will be completed for all asyEOS [29].

4. CONCLUSIONS

In this work we have studied several observables which are influenced by the
symmetry energy behavior below saturation density. In order to account for the den-
sity dependence of the symmetry energy within the Brown-Bolsterli models based
on separable interactions, the condition of a unique coupling constant for all particle-
hole interactions was relaxed. The coupling constants for the isovector dipole res-
ponse are related to the potential part of the symmetry energy and the obtained model
is appropriate to describe situations when part of the nucleons are located in a region
at lower density, as is the neutron skin. In this case we find that the coherent super-
position of particle-hole states generate two collective states sharing all the EWSR.
For realistic values of the parameters, we reproduce simultaneously the basic ex-
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perimental features of GDR and PDR. The results concerning the role of the low
density behavior of symmetry energy on the EWSR exhausted by PDR are consistent
with the predictions based on self-consistent transport models when in the isovector
sector of EOS are considered the same effective interactions. Precise experimental
determinations of the properties of the low energy dipole response can add important
constraints on the behavior of the symmetry energy well below saturation. At Fermi
energies we shown that the specific correlations between kinematic observables and
isospin content of the IMF’s are also influenced by the dependence with density of
the symmetry energy and more exclusive fragmentation experiments will provide
essential information about this quantity below saturation.
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