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Foreword

The International Workshop “Supersymmetries and Quantum Symmetries 2005” (SQS’05)
was held at the Bogoliubov Laboratory of Theoretical Physics from 27 to 31 July 2005.
It continued a series of biennial SQS workshops initiated by Professor V. I. Ogievetsky
(1928 — 1996). The previous SQS event was held in July 2003 also in Dubna.

The program of SQS’05, like in the previous years, covered several “hot” directions
of modern theoretical physics. This time the basic subjects were string theory, quantum
and geometric aspects of supersymmetric theories, the theory of higher spins, super-
symmetric integrable models, quantum groups and noncommutative geometry, as well
as the Standard Model and its supersymmetric extensions. The sessions included both
the plenary talks presented by the world-recognized experts and shorter original reports
on quite fresh results. Special attention was paid to such extremely hot topics as the
theory of higher spins and its relationships with branes, fermions on superbranes with
fluxes, the string theory-inspired approach to the problem of dark matter, matrix mod-
els, as well as the supergravity-inspired two-dimensional cosmological models, conformal
field theories in higher dimension, string theory-motivated non-anticommutative defor-
mations of supersymmetric theories, twistor and harmonic methods in gauge theories
and strings, noncommutative geometry and noncommutative cousins of integrable and
quantum-mechanics systems. A separate session was reserved for new developments in
the quantum inverse scattering method and quantum groups.

Like the previous SQS workshop, SQS’05 featured the extraordinary activity of the
talented young researchers, both from the West and East. The workshop was a natural
continuation of the traditional Dubna Advanced Summer School on Modern Mathematical
Physics this time basically devoted to supersymmetry and string theory. Many senior
speakers and young participants of SQS’05 participated in this preceding event too.

The workshop was organized and financially supported by the Bogoliubov Laboratory
of Theoretical Physics, JINR (Dubna). We should like to acknowledge the support from
RFBR (grant 05-02-26060-r), as well as from the Heisenberg-Landau, Bogoliubov-Infeld
and Votruba-Blokhintsev Programs.

Evgeny A. Ivanov, Boris M. Zupnik,

Editors
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1 STRINGS, BRANES AND HIGHER SPINS

NonBPS-brane Decay as a Model for
Cosmological Dark Energy

I. Ya. Aref’eva

Steklov Mathematical Institute
Russian Academy of Sciences
Gubkin st. 8, Moscow, 119991, Russia

Abstract

There are many different phenomenological models describing the cosmological
dark energy and accelerating Universe by choosing adjustable functions. We con-
sider a scenario based on the fundamental superstring theory. In this scenario the
Universe is considered as a nonBPS 3-brane related with NSR string embedded in
the 10-dimensional space time. Its dynamics is derived from the NSR string field
theory, it has a tension and it is unstable due to a present of tachyon leaving in
GSO— sector. In flat case there is an exact compensation of the D3brane tension
and the vacuum energy of the tachyon field. We explain a small value of the present
day energy density (the cosmological constant) by a small deviation in a non-flat
case from this exact compensation in the flat case. Studying the evolution of the
string tachyon in the Friedmann metric we also advocate that the equation of state
parameter of tachyon field becomes less then —1.

1 Introduction

Two observational projects evaluated the distance versus redshift relation for high values
of the redshift with the supernova type la as standard candle arrived at the conclusion
that the Universe is presently accelerating[1, 2].

The observations suggest that the bulk of energy density in the Universe is gravitation-
ally repulsive and appears like an unknown form of energy (dark energy) with negative
pressure. It is believed that 2/3 of the total density of the universe is in a form of dark
energy.

Measurements of the cosmic microwave background [3] and the galaxy power spectrum
[4] also indicate the existence of the dark energy.

There exist many different phenomenological models of dark energy. It is convenient
to describe them by using the equation of state parameter w = p/p, where p is a pressure



and p is the energy density. The analysis of the current observation data shows that w
lies in the range
—1.61 <w < —0.78 (1.1)

at 95% confidence level [5, 3, 4]. According the last ref. in [2] with a more restricted
sample of 176 SN type Ia,
w = —1.027015.

The precise value of the parameter w is one of the most important task in observa-
tional cosmology today. Note that, in spite of the fact that the evaluation of w from the
observational data depends on the background model, on the sample of data and on the
way the analysis is performed, a possibility of w < —1 is not excluded. In [6] it has been
proposed a direct search strategy for w < —1.

From the theoretical point of view the specified domain of w (1.1) covers three essen-
tially different cases: w > —1, w = —1 and w < —1.

e The first case is achieved in cosmological models with a scalar matter field and
roughly speaking such types of models do not have theoretical problems except for
a question of an origin of this scalar field. This scalar field should be extra light and
hence it does not belong to the Standard Model set of fields.

e The second case is w = —1. This possibility is realized by means of the cosmological
constant. This is a simplest candidate for dark energy. It is acceptable from a general
point of view except for a problem of an order of the magnitude of the cosmological
constant. It should be 10'?° times less the natural theoretical prediction.

e The third case is w < —1. It is achieved in cosmological models with a scalar field
with a "wrong” kinetic term (phantom scalar field). In this case all natural energy
conditions are violated and there are problems of stability at classical and quantum
levels. Thus, phantom becomes a great challenge for the theory while its support
according to the supernovae data is strong.

Let us note in all tree cases there is a problem of a small value of the present day
energy density.

One of possible ways to get a zero energy provides a supersymmetry, and a small
deviation from zero energy could give a smooth supersymmetry breaking.

Here we propose to use another mechanism of compensation [7]. This compensation
mechanism is related with Sen’s conjectures. According to the Sen conjectures in the
perturbative string vacuum there are unstable branes and a tension of branes is equal to
the energy of non-perturbative tachyon vacuum (for review see [9],[10]).

We assume that this equilibrium of energies taking place in the flat space and is broken
in non-flat cases. A disbalance of the brane tension and the energy of non-perturbative
vacuum in a non-flat case can be found from a requirement of existence of a rolling solution
starting in the perturbation vacuum and ending in the non-perturbative vacuum. In this
talk we present results of numerical study of such solutions. In [8] has been consider a
stringy model admitted such a solution and the energy density in this model is of order
M?/g2?M?%,, where M? is a string mass scale, M, is a Plank mass scale and g, is an open
string coupling constant.



We also show that for nonlocal tachyon the condition w < —1 is realized without
problems with unstability.
2 Non-BPS tachyon in Friedmann space-time

We consider a non-BPS tachyon leaving on 3-brane and interacting with gravity with the
following action

M2
S = Tp / V—=9d*z R+ Siaen - (2.2)
where
4 CI2 v 1o 14
Stach = V _gd T _Egu au¢8V¢ + §¢ - Z(I) ’ (23)

o = exp(%[lg)gb, O, = ﬁ@uy/—gg’“’f)y, ¢> = const < 1. Here we assume that all

constants are absorbed into Mg. The action (2.3) generalizes the non-BPS tachyon action
obtained from low level truncated SFT to the case of a non-flat metric [11].
On space homogeneous configurations in the Friedmann metric

ds® = —dt* + a*(t)(dr* + r*(d6? + sin® 0d¢?)) (2.4)
the action (2.3) takes the form
1 2, 1
Sualdl = [ v=aat | 3020 + So0? - Jo'0)]. (25)

where ® = exp(3D)¢, D = —07 — 3H(t)0; and H(t) = a/a, @ = d,a. The Einstein
equations have the form

1
3H? = — 2.6
Tk (2.6)
1
2 . o
H*+2i/a = —Mg D (2.7)
with the energy and pressure densities are given by [11]
qulDQ L _ipzvo, 1oy
p= 5<€ 27 ) —5(6 27 d) +Z® + & + & (2.8)
2 . 1 1

b= %(6—5%)2 + 5(6—%%)2 — ¥ &t (2.9)

where )

1
& = —5/ dp(e%TDq)S)De_%TD(I) (2.10)
0
e 1D g3 —imD
(92 = —5 d7(8t62 P )6756 27O (211)
0

Equation of motion for the scalar field is

(D +1) e P0 =" (2.12)
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3 Rolling solution in flat space-time

Taking H = 0 in (2.12) we get the following equation in the flat space
(—q?0? +1) ' ® = 3°, (3.13)

This equation contains infinite number of time derivatives, and actually can be written
in the integral form. It has been shown numerically that for ¢? small enough there is a
solution that interpolates between non trivial vacua ®(£+o00) = +1 and ®(0) = 0 [12]. One
can get an approximation to this solution expanding the exponent in (3.13) in powers of
derivatives and keeping only the second derivatives,

(1= )02 +1) D(t) = B3(2). (3.14)

(92-1)2

&) + const. For

This equation describes a particle moving in the potential V' =
q*> < 1 the factor ¢®> — 1 flips the potential.

Equation (3.14) for ¢> < 1 has the kink solution ®;,,. Kink interpolates between two
vacua during infinitely long time and it is represented in Fig.1la by a thin line.

N\
s
i : 7 2 3 7
05 0.5
-0.75 1
1 a \_/ b

Figure 1: a) kink ®p;,,1.(¢) (thin line) and ®y(¢) (think line); b) ®(¢) for ¢*> = 0.96;

Equation (3.13) for ¢ = 0 (the p-adic string equation of motion for p = 3) also has a
interpolating solution [13, 14, 12]. We denote it ®((¢) and plot it in Fig. la by think line.
Note that the function ®y(¢) is monotonic. From Fig.la we see that ®y;,x and Py have
different profiles, but this difference is not too big for large times. There is an essential
difference at small time. ®y;,;. has the finite first derivative at ¢ = 0, meanwhile the first
derivative of ®(t) becomes infinite at ¢ = 0. Note, that the derivative of the initial scalar
field ¢ related with ¢ via ¢ = e~2P® is finite at ¢ = 0. Therefore, higher derivatives in
(3.13) change the profile of ®y;,i(t) only at small time and do not change the asymptotic
behavior at large time.

Note, that small ¢* also does not change too much a profile of a solution to (3.13)
interpolating between two vacua. This solution is plotted in Fig.1b. The profile of this
solution is not a monotonic function. It can be presented as ®(t) = Pg(t) + ¢(t), where
¢(t) describes oscillations around ®, with decreasing amplitude. These oscillations are
presented in Fig.1b.

4 Approximate solution of system of equations for
Non-BPS tachyon in Friedmann space-time

Motivated by the flat case we make in (2.12) an approximation
exp(82 + 3H(1)0,)P ~ (1482 +3H(t)d, ) ® (4.15)
11



and keep only terms linear on (1 + 97 +3H(t)9; ). It is evident that this equation can be
obtained from the action

2

;calar = / \% —gd4x < 4 gw/aﬂq)al/q) - V(CI))) . (416>

1
2
We see that for ¢*> < 1 we get the ghost sign in front of the kinetic terms. Assuming that
q? < 1 we take for simplicity in the following formula ¢ = 0 (such ¢* can be achieved just

by rescaling of time). The corresponding Einstein equations have the form (2.8), (2.9)
with

p = —%ciﬂ +V(®), (4.17)
p = —%dﬂ — V(D) (4.18)
and the equation for ® field read
O+ 3HD =V} (4.19)
The equation state parameter w
woP o 2P HV®) (4.20)
p 3P -V(D)

is always less then -1, since w can be represented also as

3H? +2H 2 H
S ey 4.21
3H? 3 H2 (4.21)

w =

and from the equation of motions follows

. 1 .
H= P2, (4.22)
2M2

i.e. H is positive.

5 Numerical solutions

Let us examine numerically solution of the system of equations (4.17) and (4.19) for the
potential

V(@) = (@ - 1)

2

(5.23)

There are two independent initial conditions for ®(0) and ®(0). If the initial position
®(0) is on the the top of the hill (for the flip potential, Fig.1.b), ®(0) = —1, and the
initial velocity is very small ®(0) ~ 0 (this corresponds to H(0) ~ 0) then after some
time ® reaches the largest position and goes back to the bottom, and then performs few
oscillations and stops at the bottom. The final value of H is 1/ 21/3. The evolutions of the
scalar field and log-derivative of the scale factor are represented in Fig.2.a and Fig.2.b.

12



5 10 15 20 0.2

-1
a 2 4 6 8 10 12 14 b

Figure 2: a) Plot of ® = ®(t) with ®(0) = —1 and ® ~ 0; b) plot of H = H(t)

The evolution of the state equation parameter w is plotted in Fig.3a,b. It starts from -1,
becomes a very big negative number when the field passes the bottom of the flip potential
Fig.3a and goes with small fluctuations to —1 at large times. Fig.3.b shows that these
fluctuations do not exceed —1.

To reach the top of the hill ® = 1 one has to increase the velocity, but since there is
a restriction on the initial velocity ®(0)% < 2V(0), (the initial energy should be positive),
one has to add a positive constant V to the potential to be able to increase the initial
velocity.

7 5 ) F7N\e 10 11712 I3 —ig 15
-2000 -1.05

-4000

- 6000

- 8000 -1.15
-10000 1.2

a b

Figure 3: Plot of w = w(t) for a) 0 <t < 8 and b) for 8 <t < 15

For large M, and a suitable Vj there is a solution that starts from the top of one hill
with a non-zero velocity and reach the top of other hill during an infinite time, Fig.4.
In this case during the initial stages of evolution the field is near the top of the hill,
® = —1 and the acceleration is small. At later times the field begins to evolve more
rapidly towards the local minimum of the flip potential and the equation state parameter
w becomes rather big. Finally, in very late time the field comes closed to the top of other
hill, ® =1

S =1—Ae ™, (5.24)

where A is an arbitrary constant, o = (—V]\?}?’%— 3% +8)/2 and a period of w ~ —1 begins.
p

This period is infinitely long because the flip potential has the maximum at & = 1.

6 Exact Solution for Stringy Phantom Model

In [8] we have considered the phantom model with the potential

V(g) = (1 - ¢?) +

=3 % (3 — ¢?)*. (6.25)

12m12,

and we have found that
o(t) = tanh(t — tg). (6.26)

13



0. 00185
0.5 0.0018

0. 00175

0. 00165

Figure 4: Plots of ¢(t), H(t) and w(t) for $(0) = —1,$(0) = 0.1, Vy = 0.02

is a solution of the corresponding Friedman equations. The Hubble parameter for this
case have the form

1 1 2 —Lan —lan 2
HZQ—mIZ)gb(l—ggb)— tanh(t) (1 St h(t)) (6.27)

2
2mp

and goes asymptotically to 1/ (3m12,) when ¢ tends to infinity. The scale factor also can be
written explicitly
e$?/(12m3)

a(¢) = ao(l — ¢2)L/6m3)

(6.28)

The corresponding plots are drawn in Fig. 5 (Here we assume m, = 1 ). We see that

25

-10 -5 5 10 10
-0.
-0. 5
-0/3 {077 E 5 s 25 5 7.5 10

Figure 5: H(t) (left) and a(t) (right), ap =1

behavior of H presented on Fig.4 for t > 2.5 and H(t), Fig.5, ¢t > 0 are very similar. More
examples on can find in [15]

14



7 Conclusion

We have studied the evolution of open GSO — NSR string tachyon in the Friedmann space-
time. The corresponding solution in the flat space-time is known as a rolling tachyon
and it describes the decay of the space filling D3 brane corresponding to the unstable
perturbative vacuum to the local stable vacuum. We have performed calculations under
the following approximations and assumptions:

e the level truncation and an approximation of a slow varying axillary field;
e a direct generalization of the tachyon nonlocal action to the Friedmann space-time;
e an effective local action approximation.

We have found that in the effective field theory approximation the equation of state
parameter w < —1, i.e. one has a phantom Universe, but there is no problem with
quantum instability. We have found that to reach the nonperturbative vacuum one has
to add to the action a brane tension that larger that is required by the Sen hypothesis.
This large brane tension can be interpreted as an effect of the closed string excitations.

Acknowledgements

I would like to thank L.V. Joukovskaya, A.S. Koshelev, S.Yu. Vernov for collaborations
and [.V. Volovich for useful discussions. This work is supported in part by RFBR grant
05-01-00758 and INTAS grant 03-51-6346.

References

[1] S.J. Perlmutter et al., 1999 Astroph. J. 517 565, Measurements of Omega and Lambda
from 42 High-Redshift Supernovae, astro-ph/9812133

[2] A. Riess et al., 1998 Astron. J. 116 1009, Observational Evidence from Supernovae
for an Accelerating Universe and a Cosmological Constant, astro-ph/9805201; A.
Riess et al., 2004 Astron. J. 607 665

[3] D. N. Spergel et al., 2003 Astroph. J. Suppl. 148 175, First Year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) Observations: Determination of Cosmological
Parameters, astro-ph/0302209

[4] M. Tegmark al., Astroph. J. 606 (2004) 702-740, The 3-d power spectrum of galazies
from the SDSS, astro-ph/0310723

[5] R.A.Knop et al., New constraints on wy,, wx, and w from an independent set of eleven
high - redshift supernovae observed with HST, astro-ph/0309368.

[6] M. Kaplinghat, S. Bridle, Testing for a Super-Acceleration Phase of the Universe,
Phys. Rev. D71 (2005) 123003; astro-ph/0312430.

15



[7]
8]

[9]

[10]
[11]

L. Aref’eva, as a Model for Cosmological Dark Energy, astro-ph/0410443

[.Aref’eva, A. S. Koshelev and S. Yu. Vernov, Ezactly Solvable SE'T Inspired Phantom
Model , astro-ph/0412619

K. Ohmori, A Review on Tachyon Condensation in Open String Field Theories, hep-
th/0102085;

[.Ya. Aref’eva, D.M. Belov, A.A. Giryavets, A.S. Koshelev, P.B. Medvedev, Noncom-
mutative Field Theories and (Super)String Field Theories, hep-th/0111208;

W.Taylor, Lectures on D-branes, tachyon condensation and string field theory, hep-
th/0301094.
A. Sen, Tachyon Dynamics in Open String Theory, hep-th/0410103.

I. Ya. Aref’eva, L. V. Joukovskaya and A. S. Koshelev, Time Evolution in Superstring
Field Theory on mon-BPS brane. Rolling Tachyon and Energy-Momentum Conser-
vation, hep-th/0301137.

Ya. Volovich, Numerical study of nonlinear equations with infinite number of deriva-
tives, J.Phys.A36:8685-8702,2003, math-ph/0301028

L. Brekke, P.G.O. Freund, M. Olson, E. Witten, Non-archimedian string dynamics,
Nucl.Phys. B302 (1988) 365.

N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and
rolling tachyons, hep-th/0207107; H.Yang, Stress tensors in p-adic string theory and
truncated OSFT, hep-th/0209197.

[.Ya. Aref’eva and L.V. Joukovskaya. Time lumps in nonlocal stringy models and
cosmological applications, JHEP 0510:087,2005, hep-th /0504200

16



The Dirac Operator on Branes with Fluxes
and Super—Potential (Generation

Eric Bergshoeff', Renata Kallosh??, Amir-Kian Kashani-Poor>*,
Dmitri Sorokin®® and Alessandro Tomasiello?

L Centre for Theoretical Physics, University of Groningen,

Nigenborgh 4, 9747 AG Groningen, The Netherlands

2 Department of Physics, Stanford University,

Stanford, CA 94505-4060, USA
3 Kyoto University, Yukawa Institute,
Kyoto, 606-8502 JAPAN
4+ SLAC, Stanford University, Stanford, CA
94305-4060, USA
> INFN Sezione di Padova & Dipartimento di Fisica “Galileo Galilei”,

Universita degli Studi di Padova, 35131, Padova, Italy
6 Departamento de Fisica Teorica, Facultad de Fisica,

Universidad de Valencia C/Dr. Moliner, 50,

46100 Burjassot (Valencia), Spain

Abstract
We review the derivation of the Dirac equations for the worldvolume fermions
on M—theory branes and the Type IIB D3-brane interacting with bulk supergravity
fluxes and analyze conditions under which brane instantons wrapping a compacti-
fying submanifold may generate a superpotential.

1 Introduction

Branes and fluxes of tensor gauge fields play an important role in compactifications of
string/M-theory that may lead to a realistic model of fundamental interactions and cos-
mology. In particular, they may generate a potential for scalar fields in the effective 4D
theory which may single out a proper physical vacuum. This is the so called moduli
stabilization problem.

The scalar potential can be generated basically by two mechanisms i) perturbatively,
by gauge field fluxes and ii) non-perturbatively, by gaugino condensation or by brane
instantons. In search for the realistic theory one should take into consideration all pos-
sible mechanisms. In this contribution we shall discuss the possibility of generating the
superpotential by non—perturbative brane instanton effects.

The study of non—perturbative corrections to the effective field theory due to brane
instantons was put forward in [1, 2, 3]. In particular, Witten showed that in M—theory
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compactified on a complex Calabi—Yau 4-fold Xg which preserves N = 2 supersymmetry
in an effective three-dimensional space-time M3, under certain conditions an N=2 super-
potential in M3 can be generated by instanton effects produced by Euclidean M5-branes
whose six—dimensional worldvolume wraps a holomorphic submanifold Dg (a complex di-
visor) of Xg. Via M—-theory/F—theory duality this is related to a type IIB string theory
compactified to four dimensions with N = 1 supersymmetry where an N=1 superpoten-
tial can be generated by instanton effects produced by D3-branes wrapping a complex
submanifold D, of the compact space Xg.

For the M5-brane wrapped on Dg to produce a non—zero contribution to the N =
2,D = 3 superpotential it should have at least two fermionic zero modes. To see
roughly how this happens, consider a coupling of fermions to scalar fields in an effec-
tive N = 2, D = 3 supergravity with matter which is determined by the structure of the
superpotential,

Lo 2P (0,0 0) = XD W () hyy ™ b — KO DUyDg W xXE -+, (1)

int

where K (p) is a Kahler potential, W (y) is (the leading term of) the superpotential of
chiral supermultiplets ¢, x* in the effective N = 2, D = 3 theory and v, are N =
2, D = 3 gravitini (m = 0,1,2). To determine whether W receives corrections due to
Mb5-brane wrapped over a 6-dimensional divisor Dy, we can consider e.g. the VEV of the
fermion bilinear y*x? in this instanton background. This is schematically given by the
expression

NP = / Dip Dy Dip e Tty AP / DDl e~ o (VIHCDHPO+TVO+-)
= /D@Dwae‘fb“”“x““xBe‘VDe"'fcﬁ /Dxpee—f(wewve%)’ (2)

where the second functional integral is taken over 5 transverse bosonic physical modes
z(§) and 16 fermionic physical modes 6(§) of the M5-brane.

is the M5-brane worldvolume action [4] (where we neglected the contribution of the
worldvolume chiral 2—form field) which describes the coupling of the M5-brane to the
D = 11 metric gpn, the gravitino field Wy, (M = 0,1,---,10) and the dual potential 6—
form Cy. Both x* and v, arise in the dimensional reduction of W ;. Ve and f C are the
effective 3d scalar field moduli associated, respectively, with the volume of the Dg manifold
and with the tensor field Cs. Finally, DD is a Dirac operator on the M5 brane worldvolume
and V0 is a vertex operator with V given by V =1, (1 +T'ys) (a=1,---,5,6).

Now, in perturbation theory, the first term that can contribute to the fermion bilinear
VEV is

(X*XF) =

/ 'Dgp ’DX ’Dw e*lbulkX.AXB erDgfisz /Dx Do (/ XA VA9>(/ XB VBH) eff 0D o 4.
Des D

6

If the Dirac operator [P on Dg has exactly two zero modes (this is the minimal number
of zero modes that arises when the M5—brane breaks half the supersymmetry), then this
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expression has the right number of 8 insertions for the D6 integration not to vanish. One
can thus argue that if the brane instanton breaks half of N = 2, D = 3 supersymmetry and
has only the two zero modes due to this breaking, then such an instanton can generate a
superpotential. If the Dirac operator has additional (accidental) zero modes the situation
becomes much more complicated. The above expression will then vanish, but higher
order fermionic terms such as 830, 0 etc., whose exact structure has not been derived
yet, could give rise to nonvanishing contributions. In such a situation one may at least try
to formulate some general requirements under which the superpotential can be generated.

In the case of M theory compactified down to N = 2, D = 3, in the absence of the
background and worldvolume fluxes, Witten argues that for an M5-brane generated su-
perpotential to be possible, the submanifold Dg should have certain topological properties,
namely Dg must have arithmetic genus xyp = 1, where

3

o= (1), (4)

n=0

and h,, is the dimension of the space of H%"(Dg). The index characterizes the anomaly
of the U(1) symmetry of the M5-brane action corresponding to rotations in the normal
bundle structure group of the brane. In the dimensional reduced theory, this U(1) symme-
try descends to an R-symmetry, the R-charge of the chiral superspace measure d?6 being
-1, the R-charge of the factor e~V26~*/Cs in the superpotential W given by xp. The
assumption that the complete theory is U(1) invariant hence requires that for yp # 1, W
vanishes.

Corresponding topological restrictions also hold for the D3 brane wrapped over the
divisor Dy in type IIB String Theory (see [2] for details).

Since, fluxes should certainly be involved into the compactification process, branes
will interact with them and then the question arises whether the interactions of M5, D3
and other branes with background and worldvolume fluxes may change the geometrical
conditions under which non—perturbative superpotentials are generated?

To answer this question, one should get an explicit form of the Dirac operator for
fermions on the branes coupled to fluxes and study its zero modes. To this end one
should know either the explicit form of the brane action in the quadratic approximation
in the worldvolume fermions #, or the brane fermion equations linear in 6. Quadratic
actions for fermions on branes coupled to a generic supergravity background with fluxes
were derived in [5] for the M2-brane, in [6] for a D3-brane, in [7] for the Dp—branes, and
in [8] for the M5-brane.

Using these results, the zero modes of the Dirac operators of brane fermions interacting
with fluxes have been analyzed in [9, 10] for M5-brane instantons in M—theory on Mjx X,
and in [11, 12, 13] for D3-brane instantons in type IIB String Theory on My x Xg. It
has been shown that in some cases in which without fluxes brane instantons could not
contribute to the superpotential, the interaction of brane fermions with fluxes can result in
non—perturbative corrections to the superpotential. In this contribution we shall consider
an example when this takes place. The back reaction of brane instanton corrections on
the compactification setup has been discussed in [14], and in a more general context in
[15].
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2 Dirac Lagrangian for D3 brane fermions in type
IIB supergravity

In the quadratic approximation for worldvolume fermions the Dirac Lagrangian on a D3
brane interacting with bosonic part of type IIB supergravity has the following form [7],

. %eq’\/—det 7O(1 — T ) [[°60, — SAO(E), (5)

where g,s is the induced worldvolume metric, © = (0',6?) are 10D Majorana-Weyl
spinors of the same chirality, I'y = 9o2™ (§)Efy(2)T 4 and ¥, = 9,2 V), are pullbacks
of 10D gamma-matrices and of the gravitino on the D3 brane worldvolume parametrized
by the coordinates £, and ® is the 10D dilaton.

6U,0 = 0,2 (W) = Da©, 6XO = o), (6)

stand for local supersymmetry transformations of the 10D gravitino and gaugino pulled
back on the D3 brane worldvolume, with the supersymmetry parameter being replaced by
the fields ©!(£). The appearance of these terms in the brane action reflects the well known
fact that fermionic fields on the branes are Volkov—Akulov goldstinos of spontaneously
broken bulk supersymmetries. For the explicit form of (6) see [12]. To simplify things, in
the Lagrangian (5) we have put to zero the worldvolume Dirac-Born—Infeld field strength
Fy=dA— By|,, =0.

In the absence of the DBI field the matrix (1 — I'p3) in (5), which is the D3 brane
kappa—symmetry projector, has the following form

1 - FD3 =1- %O—andeFabcd =1- 0'2757 (7)
where 02 is the Pauli matrix acting on the Type IIB index I and 4° stands for the antisym-
metrized product of four gamma-matrices along the D3 brane worldvolume (the indices

a,b, c,d are worldvolume tangent space indices). The kappa—symmetry transformations
of ©F are

6.0 = (1 —0*y")k(§), 6,0 =FR(E)(1+0°7). (8)

They allow one to eliminate half of ©f. A possible gauge choice, which because of the
form of (8) is consistent with any background, is to impose the condition

(1-0?y)0=0 = 6*=iy"0". (9)

Upon fixing the kappa—symmetry gauge (9) and making a Wick rotation we arrive at
the following Dirac Lagrangian on D3

1~ . 1 ~ . )
L7® = /+det g 0" (26T Vo + 2 G ™" — = Gipl* + % Vo iT)0t,  (10)

where ég = e Y H3+i(F3—CyHs) s, is the combination of the NS flux Hs = dB, and the
RR flux F3 = dCs, and 7 = Cg) 75 + ie~® is the type IIB axion-dilaton. V=d+w + A
is the worldvolume covariant derivative which contains a worldvolume spin connection w
and the normal bundle gauge connection A.
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From the form of (10) we conclude that, at least in the absence of the worldvolume
flux, the dynamical D3 brane fermions do not couple to the self-dual RR flux Fj, and
that the fermions couple only to those 3—form fluxes H3 and F3 which have all three legs
or only one leg in the directions orthogonal to the D3 brane worldvolume. These normal
directions are indicated by the indices ¢, 7,k = 1,2,---,6, while a,b = 1,2, 3,4 stand for
the tangent space directions along the brane.

Apart from the condition that the DBI field is zero and, hence, the worldvolume
pullback of By is the pure gauge, i.e. Hs|ps = 0, the Lagrangian (10) describes the
coupling of the D3 brane fermions to a generic type IIB supergravity bosonic background.
Since we are interested in brane instanton effects in type IIB String Theory compactified
on My x X4 with the D3-brane wrapped over a Dy C Xj, we should further specify the
setup:

e we assume that flux vacuum expectation values do not break Lorentz invariance of
M, space-time, thus the fluxes with all indices orthogonal to the D3-brane are zero
Gijr = 0, and G has only X indices, i.e. a,b C Dy and i = 1,2;

e the axion Cy(z) and the dilaton ®(x) are assumed to be constant;

e the compactification is assumed to preserve N = 1 supersymmetry in the effective
4D theory. This imposes certain restrictions on the flux G5 in X4 [16] to be specified
below.

With the above assumptions the Dirac equations which one gets from the Dirac Lagrangian
(10) have a rather simple form

TV + =Gopi )0 = 0. (11)

co| —

3 The analysis of the Dirac equations

To study the solutions of eq. (11) on the complex manifold Dy C Xg it is useful to switch
to complex notation. We replace the ‘real” indices a,b = 1,2, 3,4 of D, with the ‘complex’
index a = 1,2 and its conjugate @ = 1,2 and the index i = 1,2 of the directions of Xg
normal to D4 with z, Z. In this notation the Hermitian conjugate gamma matrices are

re, T = (I%,I%), (I%T7). (12)

We can now establish a one-to—one correspondence between the components of the spinor
and anti-holomorphic forms on Xg and on D, C Xg as follows. We define a Clifford
vacuum [{2) as a spinor ‘state’ annihilated by half of the gamma matrices (12)

Q) =0, Q) =0. (13)

Then the components of a generic spinor n = (n4,n-) on Xg are generated by acting on
the Clifford vacuum with the rising operators I'* and I'*:

N = 6]Q) + da 19Q) + ¢g 1| , (14)

N- = ¢:T7|Q) + 6oz TZ|Q) + ooy T70|2) (15)
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such that .
ne ==+ §(FZF2 — DTy =Ty (16)
are eigenstates of the generator of the U(1) rotations in the D4y normal bundle.

In the case under consideration, the eight fields ¢(&), ¢:(&), ¢a(§), ¢z5(&), Paz(§),
¢apz(&) on the D3 brane worldvolume Dy C Xg are components of (0,n)—forms (n =
0,1,2,3) in Xg. Instead of splitting the Xg spinor into the parts of the positive and
negative U(1) charge, we can split it into the two spinors of positive and negative Xg
chirality

n=(ng,mg), nE=+rREgE (17)
ne = Q) + ¢azT|Q) + i 1|Q) (18)
ng = ¢z7Q) + da Q) + ¢sap 1jzab|Q>' (19)

Then, the 10D positive chirality spinor of the D3 brane Dirac Lagrangian (10) on My x X,
can be represented as B
' =0cni & o (20)

where 6 and @ are, respectively chiral and anti-chiral (two-component) spinors on M.
Note that in the example of the compactification on X = K3 x T?%/Z, with the D3
brane wrapping K3, which we consider below, the covariantly constant spinor on K3 has
a definite (say positive) chirality. In this case the components ¢; and ¢z; of (14), (15),
(18) and (19) vanish, and the spinors (14), (15) of the positive and negative U(1) charge
coincide with the spinors (18) and (19) of positive and negative Xg chirality, respectively.
Let us now substitute (20) into the Dirac equations (11) and rewrite them as equations
for the (0,n)—forms ¢. For the flux compactification to preserve N = 1 supersymmetry,
the flux G5 = F3 — iH3 in Xg should be a primitive (2,1)-form [16]. This implies that
in (11) the non-—zero components of G5 are Gz and G, which in addition satisfy the
primitivity condition G,;g* = 0, where g% is a Kahler metric on D,. Taking this into
account we reduce the Dirac equations (11) to the following equations on the (0,2)—-forms

02 + 49" Vetpa =0, ¢V =0, Viady =0, Viady:=0,
Vatdz + 49"V opas — 2iGand® =0,  ¢Vidaz + 4iG 0™ =0, ¢ = g"¢" ¢ap, (21)

where we have skipped the M, part of the 10D spinor field (20).

The analysis of the equations (21) shows [12] that the (0,n)-forms ¢ are harmonic,
i.e. closed 0¢ = 0 and co—closed 0% ¢;.. = 0. Thus the problem of counting the zero
modes of the Dirac operator reduces to the counting of the dimension h( ) of the space
of the harmonic (0,n)-forms on Dy. To get this number we should specify Xg and its
submanifold Dy.

4 The example of the orientifold Xq = K3 x T*/Z,

Consider the type IIB string compactified on X = K3 x T?/Z,. Tt is of interest to note
that K3 is a Ricci—flat compact space with a self-dual Riemann tensor and so is regarded
as a gravitational instanton in the theory of quantum gravity. The D3 brane wraps K3
and is at a fixed point of the orientifold T7%/Z,. The fixed point is invariant under the
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reflection of the T coordinates z — —z, z — —Z2. The reflection acts on the 10D spinors
as O — T'**(020)!, therefore at the fixed point © must satisfy the orientifold projection

(1-0T**)0 =0 = 0* = il*0" . (22)

The orientifolding projection commutes with the kappa—symmetry condition (9), which
means that the both conditions are compatible and result in the additional constraint on
the independent spinor 6! (20) to be chiral on Xg. Then 7 defined in (19) is zero and 6*
is also chiral on M, '.

Let us analyze the number of the solutions of the equations (21). First, consider the
case of the zero flux, the effective 4D theory being N = 2 supersymmetric. On K3 there
are no non-trivial harmonic one-forms, h(,1) = 0, hence ¢z = ¢z: = 0. As we have
found, the combination of the orientifolding projection with k—symmetry gauge fixing
eliminates 1y (19). Hence, we must put to zero also ¢z and ¢g5;. Thus, if the flux is zero,
we are left with the harmonic zero—form ¢ and the two—form ¢.;. The dimension of the
corresponding spaces of these forms on K3 is hoo = ho2 = 1. Therefore the number of the
zero modes of the Dirac operator is 4 = 2(hg o+ ho2), where the factor 2 takes into account
the 2 components of the chiral spinor (20) on M,. Following our general arguments in
the Introduction (about at least two zero modes) one might assume that in this case
the superpotential can be generated. However, the index which characterizes the U(1)—
anomaly produced by the zero mode integration measure is given by xp3 = hoo+ho2 = 2.
Generically, we define the index yp3 = %(NJr — N_) as the difference between the number
of the D3 zero modes with the positive (14) and negative (15) U(1)—charge [12]. This
index is analogous and actually is related via F—theory uplifting to the M—theory index
(4) [2]. The index should be equal to one in order to generate a superpotential and,
therefore, we conclude that in this case the superpotential cannot be generated.

Let us now switch on the flux which breaks N = 2 supersymmetry in M, down to
N =1. In X¢ = K3 x T?/Z? [17] it has the form G5 = Q A dz, where ) is a harmonic
(2,0)~form on K3. Since on K3 hpo) = hg2 = 1, the anti-holomorphic form ¢z can
only be proportional to €2, i.e. ¢, = ;5. Taking into account that on K3 ¢z = 0, the
non-zero flux equation in (21) takes the form

4iGapz0™ = 4ic QAP =0 = ¢c=0 = ¢;=0. (23)

We are left with a single non—zero ¢, which implies that the Dirac operator has two zero
modes with the positive U(1) charge and the index xp3 = hoo = 1. We therefore conclude
that in this case , with fluxes, a superpotential can be generated.

!Note that the x—symmetry gauge fixing condition 2 = 0, which can also be written as (1—03) © = 0,
anti-commutes with (22) and hence is incompatible with orientifolding. To see this one should (before
imposing any gauge fixing condition) to analyze how 6! and 6%, which are subject to the orientifolding
projection (22), transform under kappa-symmetry (8) whose parameter is also subject to orientifolding.
If we do this we shall find that 66 = Pr!, 66 = Px?, where P = (1+~°T'*?) is the Xg chirality projector.
Because of this additional projector only half of the components of 8! or of #2 can be eliminated, but not
all of them. Another possibility of seeing this is just to note that by orientifolding ' and 42 are related
9 = iT'?202, so if we put 62 = 0, also 8" would be zero and we would not have any physical fermions on
the brane.
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5 Comment on anti—brane instantons

The discussion above concerned the corrections to the superpotential of the holomorphic
type

e Vps=i/ Calynh). Since the full effective Lagrangian is real there should also be anti-
holomorphic corrections of the type e~ Vpsti[Cs (b)), where Cy enters with the opposite
sign. The object which has the opposite Cy charge is the anti-D3 brane and as such
it also has the opposite sign in the kappa—-symmetry projector in comparison with that
of the D3-brane (7). The analysis of the zero modes of the anti-D3 brane Dirac oper-
ator can be carried out in the way discussed above. As a result one can find that the
anti-D3 brane wrapping K3 and interacting with the primitive flux G3 will have two
fermionic zero modes corresponding to the form ¢,z and to anti-chiral fermions § on My,
see (17)-(19). The U(1) charge of these modes is negative and the corresponding index is
Xp3 = —h(2) = —1 indicating that the anti-D3 brane can generate the complex conju-
gate part of the superpotential in accordance with (anti)instantons in Yang—Mills theories.
From the point of view of our conventions, the author of [13] studied non—perturbative
corrections due to anti-brane (anti)instantons.

6 Concluding remarks

We have demonstrated that the potential of scalar fields in effective N=1, D=4 theory ob-
tained by compactifications of string theory can receive non-perturbative corrections due
to brane instantons wrapping compact submanifolds and interacting with non-zero fluxes
of the compactification background. Other examples have been considered in [9]-[13].
Brane instanton corrections to the superpotential can stabilize scalar moduli and hence
should be taken into account when carrying out the analyses in search for phenomenolog-
ically relevant models of particle interactions and cosmology derived from string theory.

It would be interesting to look for more examples of brane instantons generating scalar
field potentials and to analyze whether also the worldvolume fluxes on D-branes and the
Mb5-brane can non-trivially contribute into the moduli stabilization and try to understand
(at least in some cases) an explicit structure of the pre-exponential factor of the instanton
corrections to the superpotential.
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Abstract

We show that the exisiting supergravity theories in ten dimensions can be ex-
tended with extra gauge fields whose rank is equal to the spacetime dimension.
These gauge fields have vanishing field strength but nevertheless play an important
role in the coupling of supergravity to spacetime filling branes.

We discuss the role of these gauge fields in the construction of string theories
with sixteen supercharges and mention their relation with a conjectured hyperbolic
symmetry underlying string theory and M theory. We conjecture the existence of a
solitonic supersymmetric and kappa-symmetric NS 9-brane in both Type ITA and
Type IIB string theory.

Introduction

The Type II supergravity theories in ten dimensions form a starting point from which all
lower dimensional maximal supergravities can be derived. The Type IIB [1] and ITA theory
2], with two supercharges of equal (opposite) chirality were both constructed around 1984.
The Type ITA theory follows by dimensional reduction from D = 11 supergravity. It was
extended in 1986 to include a massive parameter [3]. The IIB theory does not appear to
have a higher dimensional origin. The bosonic fields of the two theories are

IIA - Guvs @, By, Cay, Cpgy, (1)
IB:  guw, ¢, B, Cuo), Cr), Cu. (2)

The subscripts (n) indicate the rank of an antisymmetric tensor gauge field, or n-form
field. The IIB 4-form satisfies a self-duality relation, which prevents the construction of
a covariant action.

A natural extension in both theories is the addition of duals of the n-form fields.
In this way one can associate to every n-form field an 8 — n-form field (n > 0). The
n + 1-form curvatures are then related by a duality relation to the corresponding 9 — n-
form curvatures. These forms therefore do not introduce new degrees of freedom, but
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instead provide a alternative way to view the role of these propagating fields. This is
particularly profitable in the coupling of these fields to extended objects or branes. A
p-brane, with p spatial extensions, couples in a natural way to a p + 1-form field. The
dual forms are therefore useful in studying the properties of p-branes with p > 4 (for
p = 3 the brane couples to C(y, which is its own dual). The introduction of dual forms
for the RR potentials C(, has led to a completely “democratic” formulation of IIA and
IIB supergravity, where all RR forms appear simultaneously [4].

It is also possible to introduce n-form fields with rank n > 9. These do not carry
propagating degrees of freedom, and are therefore not dual to the physical supergravity
fields. Nevertheless, they also have interesting applications. In [5] the C) field in the
massive IIA theory played an essential role in understanding the 8-brane domain wall.
The dual of the curvature G0y plays the role of a cosmological constant.

Ten-form fields couple to space-time filling branes. These are related to truncations
of the IIB theory to N = 1 supersymmetric theories. A 9-brane charge is by itself
inconsistent. This can be resolved by adding opposite charge on an orientifold plane,
which triggers the truncation to a Type I string theory. The introduction of 10-form
fields in IIB supergravity and the corresponding truncation to N = 1 were considered in
[7]. There two 10-forms were obtained. One is an RR form C(yq), which will reappear in
our present work. The other, called B(jgy, has the wrong tension to be understood as the
S-dual of Cfy¢), so that these two fields could not arise from an SU(1,1) [8] (see Section
2) doublet. This problem will be resolved in this talk.

Supersymmetry, SU(1,1) and form-fields

Since 9- and 10-forms do not carry physical degrees of freedom their number is not a
priori limited. Of course they must be consistent with supersymmetry, and this turns out
to lead to restrictions. The purpose of our work [6] is precisely to establish how many of
these forms are possible in IIB supergravity, and to classify them in the correct SU(1,1)
representations. A similar investigation of ITA is presently under way [9], see below.

The starting point of our analysis is IIB supergravity without dual potentials. The
theory exhibits an explicit SU(1,1) symmetry, which acts on the two bosonic fields. The
scalars parametrize an SU(1,1)/U(1) coset. The scalars and fermions in the theory each
has a charge associated with the local U(1) symmetry, the gauge fields have zero charge.
Under SU(1,1) the fields Bz and C(y) form a doublet Af, (satisfying A%z) = (A%z))*,
while Cyy (also written as A(y) corresponds to a singlet. The scalars are conveniently

written as a matrix U: ) .
ViV

U= PO N ) . 3

( V2 i+2 3)

Here V4%, with charge 1 and with a = 1,2, form doublets of SU(1,1). They are
constrained by the relation
VeV VeV g =€, (4)

The supersymmetry transformations are, to terms bilinear in fermions:

de, " = ey, +iecY " Vue

Z’ 1% V. 1 vVpo 3 v
0t = Dye+ 4_80FW1...V47 e + %G P Vuvpo€c — @Guwﬁ Pec
(5AZV =V 5’}/“”/\ + Vf gc’yuy/\c + 4Ve EC'Y[;ﬂﬁu] + 4Z'V_E‘ E’y[ul/)y](j ,
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] i} 3
5A,u1/pcr - 67[uup¢a] - EC’Y[uupwa]C - _ea,BA[/,W(;A’fU} )

8
. { y
ON=1P, e — ﬂGwpy“ Pe |
oV =V2eéh |
V=V e . (5)
Here we have introduced
P, = —eoﬁVf@MVf,
Q. = —ieagVo, VP,
Gup = —€apViFE 5Vp ’
Frp = 3045,
F 50 Ay + e AT (6)
pvpoT [nvpor] T g €aB Rt por] -

Q). is the U(1) gauge field which is implicitly present in the covariatizations in (5). An im-
portant property of these transformations is that the commutator of two supersymmetry
transformations on the bosonic gauge fields closes on translations and gauge transforma-
tions.

The way to obtain extensions of the supergravity multiplet above is to use this property
of closure: we assume an initial form of the supersymmetry transformation of a proposed
field, including free parameters, and determine these parameters by requiring closure.
Since no new degrees of freedom can be introduced, closure will also require a relation
between the additional and original fields. For the 6-form and 8-form fields this leads to
a unique extension. For the 10-forms no relation with fields of the original IIB multiplet
exists, so that the number of 10-forms is not determined a priori.

We find that the following fields can be introduced in IIB supergravity:

6-forms There is a doublet of 6-forms Af;), with Ay = (Af,))*, satisfying the duality
relation :
(o] ? « by 2
F(7)u1---u7 = _gem---uwws ﬂeﬁvF(vg)M pv (7>

where

S =veyl yvevh. (8)
8-forms There is a triplet of 8-forms A‘()‘Sﬁ) , symmetric in «, 3, satisfying a reality condition
(A)" =A%, (Ag) =44, 9)
and a duality relation
Fo s = i€ s {VEVEP; = VOVIP, ) (10)

However, the three 8-forms are related to each other through a condition on the
field-strengths,

carepsVEVIFR = 0. (11)

This implies that in the 8-form sector there are only two degrees of freedom, the
‘duals’ of the dilaton ¢ and the axion C(gy. Note that the three potentials are not
related by a local condition. The existence of a triplet of 8-forms, and the relation
between these forms, was also discussed in [10, 11].

28



10-forms There are 10-forms in two SU(1, 1) representations: a doublet Aflgy, with the

afy

(10 symmetric in «, 3, vy, satisfying

usual reality condition, and a quadruplet A
(Alll)* — A222, (AHQ)* — A122 ) (12>

There are no conditions relating the 10-forms to other fields. However, the doublet
and the quadruplet differ in an important respect. The doublet does not transform
under n-form gauge transformations with n < 9, while the fields of the quadruplet
transform under all lower rank gauge transformations.

Truncation to N =1

We can truncate our results for N = 2 supergravity to find the N = 1 algebra [6]. Since
in D = 10 the N = 1 supergravity is unique, there is only one independent truncation, all
others being related by field redefinitions. In spite of this, since there are two inequivalent
N =1 string theories, it is instructive to truncate the N = 2 theory in two different ways
leading to the low energy limits of D = 10 heterotic and type I string theory. Hence we
perform the "heterotic” and the "type I” truncations [7].

The heterotic truncation can be derived from the IIB algebra by setting

€ = €c. (13)
This projects out the following fields from the IIB spectrum:
C0), C2): Clay, Cle): Cts), Besy, Claoys Eroys Ero)- (14)

Further, Bip) and D) turn out to be dependent fields of the form ewao) (where €10
is the volume form) for some z in the truncated theory. Therefore, the field contents of
the heterotic truncation of the D = 10, IIB supergravity is given by

¢, B(2), B, D), D(10)- (15)

The supersymmetry algebra which is realised on these fields can easily be obtained by
setting all truncated and dependent fields to zero in the IIB algebra as presented in [6].
The type I truncation can be derived from the IIB algebra by setting

€ = i€c. (16)
This projects out the following fields from the IIB spectrum:
C0), B2y, Cay; Bs), Cs)s B(s)s D(10ys B(aoys D10y (17)

Similarly to the heterotic case, we find that C( o) and &1y turn out to be dependent fields.
Therefore the field contents of the type I truncation is given by

¢, Cl2y, Cio), Dis), Eao)- (18)
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Coupling to branes

We now wish to investigate to which kind of branes the different n-form potentials couple.
In particular we would like to know the tension of the corrersponding branes. These
tensions can be determined from the supersymmetry rules as follows. To be concrete let
us consider the 8-form potentials, related by the condition (11). After gauge-fixing the
generic supersymmetry rule of the 3 different potentials is as follows (in string frame):

514(8) ~ f(T, f)EW(CL% + b’Yﬂ)‘) + T ) (19)

where a, b are constants, the dots stand for other terms and the scalars have been expressed
in terms of a complex scalar 7. The function f(7,7) can be expressed in terms of the
dilaton ¢ and axion C|g via the relation 7 = C(p) + ie~®. For our present purposes it is
sufficient to consider the axion-independent part of the tension, for the full result, see [9].

The 8-form potentials may occur as Wess-Zumino terms in a supersymmetric action
as follows:

/Cbrane ~ \e—ocqb, V=g + A(S) + T (2())

brane tension at C()=0
Before fixing kappa-symmetry the first, Nambu-Goto, term and the second, Wess-Zumino,
term are separately supersymmetric. After gauge-fixing kappa-symmetry the (linear)
supersymmetry variations of the two terms should cancel. At C) = 0 this is only
possible if the function f(7,7) is proportional to the brane tension e~®¢. To achieve
this one must consider particular combinations of the 8-form potentials. This enables
us to read off the brane tensions from the supersymmetry rules. This indeed works for
two of the three 8-form potentials, leading to the combinations C(g) and B(g) in Table

1. They couple to the D7-brane and the S-dual D7-brane (with exotic brane tension
g;?), respectively. However, for the third 8-form potential Dg) we find that the tension
vanishes for zero axion. Therefore, D) does not couple to an independent (solitonic)
7-brane. Nevertheless, the axion-dependent factor in front of the Nambu-Goto term plays
a role in deriving the tension formula of the other nonlinear doublet of 7-branes, see [9].
Note that, after a type I/heterotic truncation, D) can be identified as the dual of the
dilaton! and the other two potentials are truncated away. The constraint (11) vanishes
after truncation.

A similar analysis can be performed for the 10-form potentials. The result is summa-
rized in Table 2. Note that, like D), the 10-form potentials D19y and E(;0) cannot be
associated in this way with an independent supersymmetric 9-brane. For more details,
see [9].

Very extended symmetry groups

Collecting all n-form potentials of the IIB theory we find that they transform nonlinearly
under the bosonic gauge transformations in the following generic form:

1Since D(g) does not transform to a gravitino under supersymmetry, no supersymmetric 7-brane can
be associated with this dual dilaton.
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potential || associated brane | tension truncation
C(g) D7 gs_l -
Ds) — — type I/heterotic
Bs) D7 g:° —

Table 1: The triplet of 8-form potentials and the corresponding nonlinear doublet of 7-
branes. The last column indicates whether a potential survives a type I and/or heterotic
truncation.

potential || associated brane | tension | truncation
Clao) D9 95! type I
D10 — — heterotic
E0) — — type I
B0) exotic gt heterotic
D(10) solitonic 9.2 heterotic
Eno) exotic g3 type 1

Table 2: The quadruplet and doublet of 10-form potentials and the corresponding non-
linear and linear doublets of 9-branes. The last column indicates whether a potential
survives a type I or heterotic truncation.

SA=dA+ FAA, F=dA+ANF. (21)

Since the gauge transformation rules only contain gauge-invariant curvatures, the bosonic
gauge algebra is Abelian. Surprisingly, it turns out that the bosonic gauge transformations
can all be rewritten in terms of

A(Qn) = dA(Qn_l) . (22)

After an appropriate (field-dependent) redefinition of the gauge fields and the parameters,
all transformation rules become linear but the resulting bosonic gauge algebra is non-
Abelian. A similar analysis has been performed in [12]. Schematically, we thus obtain the
following non-trivial commutators (the numbers indicate the SU(1,1) representations of
the potentials/gauge transformations):

[2,2] =4, 2,4] =6,

2,6] =8, (23)

We thus see an interesting structure arising: all gauge fields can be obtained by ap-
plying a number of times the basic 2 gauge transformation. This number is the so-called
level of the gauge field. A similar structure arises in the IIA case where the basic building
blocks are the RR 1-form 1 and the NS 2-form 2:

[1,1] =0, [1,2] =3, [1,3]=0, 2,3] =5,
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A similar symmetry structure has been found both in the ITA [13] and in the IIB [14]
case.

The above is very reminiscent to recent work on a hyperbolic Ej;-symmetry that
might underly string and/or M-theory, see [6] for a list of references. In particular, in
[15], representations of the Ej; algebra are worked out for different embeddings of a
bosonic GL(10) subalgebra?. This leads to the Dynkin diagrams of Figure 1 [15]. In these
diagrams the horizontal line represents the GL(10) subalgebra whereas the empty dots
are related to our basic building blocks in the following way (the numbers 9,10,11 refer
to the numbers in the Figure):

A 101, 112 (25)
IIB : 9,10 < 2. (26)

It would be interesting to pursue this relationship further.

11 10
A
o—0 o o o o ¢
1 2 3 4 5 6 7 8 9
10
9
1B
o—0 o o o o ¢ ®

1 2 3 4 5 6 7 8 11

Figure 1: The Dynkin diagrams leading to IIA and IIB representations

Strings with 16 supercharges

It is well-known that the IIB ten-form potential C'(;py and the kappa-symmetric D9-brane it
couples to play an important role in the construction of the Type I SO(32) superstring. It
has been suggested that, similarly, the S-dual IIB ten-form potential B(;py and the S-dual
NS 9-brane play a role in the construction of the S-dual Heterotic SO(32) superstring
theory [17, 18]. However, the 9-brane the potential B(1p) couples to has an exotic gt
tension which does not seem to occur in string loop calculations. On the other hand,
there is a supersymmetric solitonic NS 9-brane. This is the one that couples to D).

2The relation between our result and the E;; predictions have been recently analysed in [16]
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At the same time, all we know is that the Type I and Heterotic SO(32) theories are S-
dual to each other but this does not necessarily imply that the S-dual D9-branes underly
the Heterotic SO(32) theory. Since solitonic objects, like the solitonic NS 5-brane, do
naturally occur in string theory, it is interesting to investigate the possibility that it is
the supersymmetric solitonic 9-brane that underlies the Heterotic SO(32) string theory.
Solitonic 9-branes have recently been mentioned in the context of open heterotic strings
[19]. It is an interesting challenge to write down a kappa-symmetric action for the solitonic
NS 9-brane. We conjecture that such an action exists. It remains to be seen what exactly
the corresponding Z, truncation and solitonic orientifold is.

In an upcoming paper [9] we will show that ITA supergravity allows two 10-form
potentials, only one of which couples to a supersymmetric solitonic NS 9-brane. Applying
T-duality we get a picture where for every string theory with 16 supercharges there is
a 9-form or 10-form potential and a corresponding 8-brane or 9-brane that underlies its
construction. The situation is summarized in the Table below. It will be interesting to
see whether this conjectured relation between string theories with 16 supercharges and
D-branes and solitonic NS 9-branes can be supported by further circumstantial evidence.

ITA/IIB string theory potential | tension
IIA | Type I' SO(16) x SO(16) |  Cy g5
A Heterotic By x g Bo) 95
1B Type 1 SO(32) Clo) 95"
1B Heterotic SO(32) Do) g5’

Table 3: Each of the 4 string theories with 16 supercharges correspond with a D-brane or
a solitonic NS 9-brane.

We finally note that no higher-form potentials can be added to D=11 supergravity. In
particular, none of the two 10-form potentials of the ITA theory can be uplifted to D=11
in a Lorentz-covariant way. The extended gauge algebra in the presence of a dual 6-form
potential is given by:

3,3] =6 3,6 =0. (27)

To obtain a higher-form potential with [3,6] # 0 and to relate it to an underlying F1;
algebra it seems that one needs to consider a dual version of the graviton, see e.g. the
tables in [15]. It is of interest to check whether the D=11 supersymmetry algebra can be
realized in the presence of such a dualized graviton field.
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Abstract

Open topological B-models describing D-branes on 2-cycles of local Calabi—Yau
geometries with conical singularities are reviewed. The paper expands in particular
on two aspects: the gauge fixing problem in the reduction to two dimensions and
the quantum matrix model solutions.

1 Introduction

Singular Calabi—Yau manifolds represent one of the most interesting developments in
string compactifications. For instance, the presence of a conifold point in a Calabi-Yau
opens new prospects: in conjunction with fluxes and branes it may allow for warped com-
pactifications, which in turn may create the conditions for moduli stabilization and for
large hierarchies of physical scales. On the other hand singular Calabi-Yau compactifica-
tions with conical singularities seem to realize favorable conditions for low energy theory
models with realistic cosmological features. A conifold singularity can be smoothed in
two different ways, by means of a 2-sphere (resolution) or a 3-sphere (deformation). This
leads, from a physical point of view, to a geometric transition that establishes a duality
relation between theories defined by the two nonsingular geometries (gauge—gravity or
open—closed string duality),[1, 2]. In summary, conifold singularities are at the crossroads
of many interesting recent developments in string theory. It is therefore important to
study theories defined on conifolds, i.e. on singular non compact Calabi-Yau threefolds,
as well-defined and (partially) calculable models to approximate more realistic situations.

In [3], building on previous literature, we started to elaborate on an idea that is re-
ceiving increasing attention: how data describing the geometry of a local Calabi—Yau
can be encoded, via a topological field theory, in a (multi-)matrix model and how they
can be efficiently calculated. The framework we considered was IIB string theory with
spacetime filling D5-branes wrapped around resolving two—dimensional cycles. This ge-
ometry defines a 4D gauge theory, [4, 5, 6]. On the other hand one can consider the open
topological B model describing strings on the conifold. The latter has been shown long
ago by Witten to be represented by a six-dimensional holomorphic Chern—Simons theory,
[8]. When reduced to a two-dimensional cycle this theory can be shown to reduce to a
matrix model. In particular, if one wishes to represent a wide class of deformations of the
complex structure satisfying the Calabi-Yau condition, one must resort to very general
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multi-matrix models, [7]. In [3] we concentrated on the topological string theory part of
the story, [9, 11, 10, 12], in particular on the formal aspects of the reduction from the
six-dimensional holomorphic Chern—Simons theory to a two—dimensional field theory and
on the analysis of the matrix model potentials originated from the Calabi-Yau complex
structure deformations. Finally we concentrated on the subclass of matrix models repre-
sented by two-matrix models with bilinear coupling. In this case the functional integral
can be explicitly calculated with the method of orthogonal polynomials. Using old re-
sults we showed how one can find explicit solutions by solving the quantum equations of
motion and utilizing the recursiveness granted by integrability. All the data turn out to
be encoded in a Riemann surface, which we called quantum Riemann surface in order to
distinguish it from the Riemann surface of the standard saddle point approach.

In this paper we would like to review and expand on some topics that were only
partially developed in [3]. In particular, in section 2, after a concise review of the reduction
to from CS theory to matrix models, we explain in detail the gauge fixing problem in
this process. Subsequently we return to the problem of solving two—matrix models with
bilinear couplings by means of the orthogonal polynomials method via the solution of the
quantum equation of motion. Our main purpose in section 3 is to clarify the similarities
and differences with other methods, in particular with the semiclassical saddle point
method. We discuss in particular the result of [3] that the quantum equations of motion
admit in general more vacua than the saddle point method. We interpret these additional
solutions as ‘quantum’ cycles that have no classical analog.

2 Reduction to the brane

In this section we summarize the reduction of the topological open string field theory (B
model) to a holomorphic 2-cycle in a local Calabi-Yau threefold [3]. Let us consider a
holomorphic C?—fibre bundle X — Y, where ¥ is a Riemann surface. The space X is
obtained as a deformation of the complex structure of the total space of a rank-2 vector
bundle V' on 3. Given an atlas {U,} on 3, the transition functions for X can be written

2) = flap(29)
Wy = Mg (2) [wfﬁﬁ‘l’fam (%)Mﬁ))] , hJ=12

where f(,g) are the transition functions on the base, M; ) the transition functions of the

(«
vector bundle V' and \I/{aﬁ) are the deformation terms, holomorphic on the intersections
(Ua NnU ﬁ) x C2.

The Calabi-Yau condition on the space X, i.e. the existence of a nowhere vanishing
holomorphic top-form € = dzAdw! Adw?, puts conditions on the vector bundle and on the
deformation terms. The determinant of the vector bundle has to be equal to the canonical
line bundle on X and for the transition functions this means det M,g) x f(’a g =1 For the
deformation terms we have det (1 + 0W¥) = 1, where (1 + 0V)! = §; + 9;¥*. The solution
of this condition can be given in terms of a set of potential functions X(.g), the geometric
potential, which generates the deformation via

eijwéaﬂ)dwgaﬁ) = eijwza)dwga) — dXp),
where we define the singular coordinates wfaﬁ) = wfa)
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The topological open B-model on X can be obtained from open string field theory
and reduces [8] to the holomorphic Chern-Simons (hCS) theory on X for a (0,1)-form
connection on a U(N) bundle E, where N is the number of space-filling B-branes. We
will restrict ourselves to the case in which E is trivial. The action of hCS is

S(A):l/c, z:mTr(lAAéA+1AAAAA) (2.1)
9s Jx 2 3
where A € TV (X). The dynamics of B-branes on a 2-cycle ¥ C X can be described by
reducing the open string field theory from the space X to the B-brane world-volume ..

To obtain the reduced action for the linear geometry (¥; = 0), first we split the
form A into horizontal and vertical components using a reference connection I' on the
vector bundle, then we impose the independence of the fields on the vertical directions
and finally we “integrate along the fiber” using a bilinear structure K on the bundle. If
the connection I' is the generalized Chern connection for the bilinear structure, then the
result is independent of the particular (I', K') chosen.

Let us define A; = A; — A,;F’Z%u_)j and A; = A;, where I' is a reference connection
and impose that the components (Az, A;) are independent on the coordinates along C2,
obtaining for the Lagrangian

1 _ __ _
L=3QAT {AngA; + A;F%A,;} dw' A dz A dw? (2.2)

where D is the covariant derivative w.r.t. the gauge structure.

Now let us consider a bilinear structure K in V, i.e. a local section K € T'(V @V), the
components K% being an invertible complex matrix at any point. The “integration along
the fiber” is realized contracting the hCS (3,3)-form Lagrangian by the two bi-vector fields

_ 1, geilpeik 00 _1.j_0_ 0
k= g6 KUK 55 50 and p = €7 505505

Lyea = ipniL = dzdz(det K)eI Ty [A;DZA; + AgF%AE} . (2.3)

Defining the field components ¢! = iy A € V, where Vi = K2 one gets

owJ
Loreq = édszTr [eijgpnggoJ + (det K)p™p"e¥ (ng&gKn; + ngKn,;F%ﬂ (2.4)

where K3; are the components of the inverse bilinear structure, that is Kj; K it = 5%. In
order to have a result which is independent of the trivialization, just set the reference
connection to be the generalized Chern connection of the bilinear structure K, that is
F’ij = K;0:K"™. The action for the reduced theory is given by

gS » 298 by

In the rational case ¥ ~ P! with non vanishing deformation terms V¥;, X is a defor-
mation of a vector bundle V' ~ Op:i(n) & Op:(—n — 2) for some n.

Let us start with the reduction in the Abelian U(1) case. In this case the cubic term in
the hCS Lagrangian is absent and the reduction is almost straightforward. In the singular
coordinates (¢!, p?) we obtain that

1 . )
‘CT'ed = §€Z‘jg01 ESOJdZdZ (25)
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in both charts of the standard atlas {Uy,Us} of P!. The potential term X gives the
deformation of the action due to the deformation of the complex structure. Passing to
the non singular coordinates (¢1, ¢2), one obtains

1 L » dz
S’red = 295 |:/]le dZdZGij¢ 8g¢] + % %X(Z, ¢):| (26)

where § is a contour integral along the equator. Therefore, the reduced theory gives a
b—c (0—y) system on the two hemispheres with a junction interaction along the equator.

The non—Abelian case is a bit more complicated than the Abelian one because of
the tensoring with the (trivial) gauge bundle. This promotes the vector bundle sections
to matrices and therefore it is not immediate how to unambiguously define the potential
function X in the general case. The easiest way to avoid matrix ordering prescriptions is to
restrict to the case in which X (z,w) does not depend, say, on w?. Defining B := w!'¥?+ X
one obtains W! = 0, ¥? = 9,1 B and the reduced action

S

S = Speq = 1 { / —Tr(¢*D;¢")dzdz + f TrB(z, gzsl)dz] (2.7)
]pl

2.1 Gauge fixing

In order to calculate its partition function, let us now discuss the gauge fixing of the theory.
The following discussion is a refinement of the derivation given in [4]. Our starting action
is (2.7) and we follow the standard BRST quantization.

The BRST invariance in the minimal sector is

sA; = —(Dc)z, s¢'=[c,d'], sc= %[c, q]

while we add a further non minimal one to implement the gauge fixing with
sc=b, sb=0.

The gauge fixed action is obtained by adding to S a gauge fixing term

1
Sgf =S +s¥Y, where ¥=— Treo, A
gs Jp1

which implements a holomorphic version of the Lorentz gauge. Actually we have

1
sV = — Tr [bazAg — azE(DC)g] .
gs Jp1

Our partition function is then the functional integral
Zp = / D [¢', Az, c,c,b] e 5

The calculation can proceed as follows. Let us first integrate along the gauge connection
A which enters linearly the gauge fixed action and find

T = /D W? ¢,E b] e—gis[— 1 Te¢?0:6" —0.c0zc+§ TrB(z,¢1)]5 {azb +[0.5, ] + [¢, ¢2]}
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Now we integrate along the field b. By solving the constraint we obtain

1
Zp= | D| — oo [ Jp1 Trg?0:9! —0:c0zc+ § TrB(z,0)] 1
B / (¢, ¢c,c] e ="y

where det’ is the relevant functional determinant with the exclusion of the zero modes.
Then we integrate along the (¢, ¢) ghosts and get

. 1 29 41 11 det’9,0;
Z — D 7 —g[— fpl Tr¢p=0z¢ +§TrB(z,¢ )]#
b= [Pl o

Finally, since the geometric potential B does not depend on ¢?, we can also integrate
along this variable and obtain

Z = [ D] H 500 Ve

The delta function constrains the field ¢* to span the 9;-zero modes and once it is solved
it produces a further (det'(?g)_l multiplicative term that cancel the other determinants.
Therefore, all in all we get

Zp = / dgte s 1§ TEBEON]
Kerd

Lastly we can expand ¢' = """ | X;& along the basis &(z) ~ 2* of Kerd; with N x N
matrix coefficients X;. Finally we find the multi-matrix integral

ZB :/HdXieglsw(XO"”’Xn) (28)
i=0

where we defined
W (Xo,..., X,) = j{TrB ZXZ (2.9)

This is the result of our gauge fixing procedure which covers the details needed to
complete the derivation given in [3] and confirms the conjecture in [7].

3 Solving two—matrix models.

The second part of this paper is devoted to solving some of the matrix models introduced
above, eq.(2.8), the two—matrix models with bilinear coupling. The main point we insist
on is that for these models there is the possibility to solve the quantum problem exactly.
To this purpose the method of orthogonal polynomials turns out to be particularly fit.
This method allows one to explicitly perform the path integration, so that one is left
with quantum equations of motion and the flow equations of an integrable linear systems.
Our approach for solving two—matrix models consists in solving the quantum equations of
motion and, then, using the recursiveness intrinsic to integrability (the flow equations),
in finding explicit expressions for the correlators.
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The model of two Hermitian N x N matrices M; and M, with bilinear coupling is
defined by the partition function

ZN(t, C) = /dMldMQGtTW, W = ‘/1 + ‘/2 + CM1M2 (31)

with potentials
Vo= tasM]  a=12 (3.2)

where p, are finite numbers. We denote by M,, ,,, the corresponding two-matrix model.
With reference to eq.(2.9), this model descends from the geometric potential B defined
by

1 w c
B(z, :—[V V(—)] . 3.3
() = - [Va@) + 75 (2)] + 5w (33)
We are interested in computing correlation functions (CF’s) of the operators 73, = tr M}
and oy, = trMy, Vk. For this reason we complete the above model by replacing (3.2)
with the more general potentials Vo, = > 02 to, M., o = 1,2, where t,, = t,, for r < p,.
The CF’s are defined by

an+m
Otry, ... Oty Ola,, ... Otys,

InZy(t,g) (3.4)

<Tp o Tp, 0 -.-0g, >=

where, in the RHS, all the t,, are set equal to t,,, for r < p, and the remaining ones are
set to zero.

By introducing monic orthogonal polynomials it is possible to explicitly perform (3.1)
and obtain

N—-1
Zn(t,c) = const N! H hi (3.5)
i=0
where h; are the normalization factors of the orthogonal polynomials.

The crucial ingredient to solve these models are the quantum equations of motion.
They are written as

Po(1) + V/(Q(1)) + cQ(2) = 0, cQ(1) + V3(Q(2)) + P°(2) =0, (3.6)

Q(1),Q(2), P°(1), P°(2) represent the multiplication by A;, A2 and the derivative by the
same parameters, respectively, in the basis of orthogonal polynomials. (1), Q(2) are
infinite Jacobi matrices:

Q) =1, + S i) 82) =1+ 3 @Fa s (87

where Iy =Y. E; ;41 and (E; j)g; = 6;x0;1, and my = py — 1, mg = p; — 1. Eqs.(3.6)
can be considered the quantum analog of the classical equations of motion.
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Once the quantum equations of motion have been solved, i.e. once we know (1) and
Q(2) explicitly, we use the reconstruction formula for the partition function

N-1

8;?“ InZn(t,c) = Z <Qr(oz)> . a=1,2 (3.8)

- i
=0

Since the correlators are nothing but derivatives of Zy with respect to ¢,,, and the
derivatives of the () matrices with respect to ¢, are known via the flow equations of the
Toda lattice hierarchy

0 0
Q1) =1[Q(1), Q%(a)-], Q(2) = [Q%(a)+, Q2)], (3.9)
atmk 8toa,k
we can explicitly compute all the correlators.
For instance
0? 0?
8t—%’11nZN(t,c):a1(N), manN(t,C):R(N) (310)

where R(i + 1) = hiy1/hi.

Let us turn now to two explicit examples. By solving the quantum equations of motion
we determine the ‘lattice fields’ a;(n),b;(n) and R(n). Once these are known we can
compute all the correlation functions starting from (3.8) by repeated use of the Toda lattice
hierarchy flows. In the sequel we will concentrate on solving the equations of motion,
since the calculus of correlators is of algorithmic nature and, therefore, not particularly
interesting; in any case, it has already been illustrated in a number of examples, [15, 14, 3].
The equations of motion are definitely more interesting, because some aspects of them
have not been stressed enough or ignored in the existing literature.

3.1 The cubic model

The full M35 model has been discussed at length in [15] and, in particular, in [3]. Here
we would like to consider its decoupling limit ¢ = 0 and single out the cubic potential
part, which amounts to considering the cubic one-matrix model Mj. In the genus 0 limit
this model is described by the discrete algebraic equations

t 2 (t5\? n
3 2 92 2
) I et ——— =90 3.11
%+@%+9(@)m’3@ (3:11)
1, 1t
_ 1o 1h 3.12
@ = T5% T g (3.12)

where, for simplicity and without loss of generality, we have set t; = 0. One can extract
from these equations ay and a; and calculate all the correlators with the algorithm de-
scribed above. Here we are not interested in this, but rather in analyzing eq.(3.11) and
its solutions.

In the large N limit we shift to z = § and, in order to make contact with section
4 of [16] for a comparison, we simplify a bit further our notation setting to = —% and
t3 = —Ng, where g is the cubic coupling constant there. Moreover we denote z = 3gay.

Then eq.(3.11) becomes
18¢%x + 2(1+ 2)(1+22) =0 (3.13)
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This can be solved exactly for z and gives the three solutions

1 1 @

=—= 3.14
SR Yo S (3.14)
1 1+iv3 1-i/3I

by L 1HiV3  1-iV3I(a) (3.15)

> " 4l(x) 12
oy = _1 1—14v3 N 1+ Z\/§]($) (3.16)

> " T4l(x) 12

where
1/3

I(w) = 3% (=3240% + V3/~1 + 349929727 (3.17)

From these we can extract three solutions for a¢ and, consequently, for a;. For small x
the three solutions can be expanded as follows

21 = —18¢%r — 972¢*2* — 93312¢°2% — 11022480¢°%2z* + O(z°) (3.18)

2 = —1—18¢%x + 972¢*x* — 93312¢°2* + 11022480¢°x* + O(2°)  (3.19)
1

B=—5 36g%x + 186624¢°2° + O(2?). (3.20)

The best way to analyze these solutions is to notice that they represent a plane curve
in the complex z, x plane. It is a genus 0 Riemann surface with punctures at x = 0 and
x = 0o, made of three sheets joined through cuts running from z = —1/ (\/510892) to
z = 1/(108v/3¢?). The solutions (3.18,3.19,3.20) correspond to the values z takes near
x = 0, away from the cuts. In order to pass from one solution to another we have to
cross the cuts. We call the Riemann surface so constructed the quantum Riemann surface
associated to the model. This Riemann surface picture is the clue to understanding the
solutions with multiple brane configurations, as was explained in [3].

Let us analyze the meaning of these three solutions. To this end it is useful to make
a comparison with [16]: we see that the first solution corresponds to the unique solution
found there, which corresponds to the minimum of the classical potential (see below).
In fact the correspondence with [16] can be made more precise: one can easily verify
that eqs.(46) there are nothing but eqs.(3.11,3.12), provided we make the identifications:
a+b=agand (b — a)? = 4a; and the rescalings ag — /Tag,a; — za; and g — g/\/z.
In [16] the interval (2a,2b) represents a cut in the eigenvalue A plane. In [16] we can
therefore introduce an auxiliary Riemann surface. The latter is not to be confused with
the quantum Riemann surface defined above, although the two are related.

Let us now discuss the correspondence between our three solutions and the classical
extrema of the potential. The classical potential for the continuous eigenvalue function
A(z) (which is A,/V/N in the large N limit), is V; = 2A* + gA3. It has extrema at
A =0and A = —1/3¢g. To find the classical limit in our quantum approach instead,
we rescale ty, k = 2,3 as: tp — ty/h, and take h — 0. This amounts to dropping the
last term in eq.(3.11). The extrema are three, z = 0, —1, —1/2, which corresponds to
ap = 0,—1/3g,—1/6g, not two as in the classical case. z = 0 corresponds to the minimum
of the potential, z = —1 corresponds to the maximum, while z = —1/2 to the flex. The
latter solution does not have a classical analog. This result is somewhat puzzling, but we
should remember that the saddle point method is semiclassical: one cannot exclude that
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the quantum problem admits solution without classical analog. This is precisely what
happens in the present case. One can phrase it also by saying that, in general, the large
N limit and the A — 0 limit do not commute.

The next question is: what is the meaning of the third solution, z = —1/27 Let us
recall what the other two solutions at z = 0 and z = —1 mean. On the basis of the
discussion in section 2, we know that they represent two Riemann spheres located at the
minimum and the maximum of the potential. They replace the continuous family of P*
which characterizes the conifold geometry before the deformation W is introduced. This
is the interpretation on the basis of classical geometry. What we learn now is that solving
the quantum problem we obtain a third solution, which we can interpret as a quantum
P!, located at the flex of the potential. This is a pure quantum geometry effect.

Before we end this section we would like to make a few remarks. First we notice that
the classical extrema are characterized by the fact that a; = 0, while the pure quantum
solution corresponds to a non-vanishing a;. Moreover, after setting a; = 0 we get for
ap an equation that coincides with the classical eigenvalue equation. From this simple
example we learn three important pieces of informations.

e The number of solutions of the quantum problem (i.e. the number of solutions
to eq.(3.13)) is in general larger than the number of the extrema of the classical
potential.

e The field ay can be regarded as the quantum version of the classical eigenvalue
function.

e The classical extrema are obtained by neglecting the n term in eq.(3.11) and setting
a; = 0.

These conclusion are valid in general, except for the fact that, the condition a; = 0 in
the last remark must be replaced by the fields aq, as, ..., b1, bs, ..., being set to zero in the
general case.

3.2 The Mj3 model

We study the model in the case t; = s; = 0 and limit ourselves to writing down the genus
0 quantum equations of motion:

3t3CCL(2) + QtQCa/O - 3683t3b0R + C2b() - 1282t3R =0
3830()(2) + 252Cb0 — 3653t3a0R — 12$3t2R + CL()C2 =0
nc + R62 - 1883t3R2 — 3683t3a0b0R — 1232t3a0R — 12t28360R — 482t2R = q321)

6 2 3
a = —3h R — “2R, ay = — 3 R?
C C

As in the previous subsection we see that we are indeed interested in finding all the
solutions that have an analytic expansion in = n/N around = = 0. In order to compute
all possible solutions of this type, that is the quantum vacua, we therefore drop the first
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term in the lhs of (3.21) and solve the resulting system. The third equation, in particular,
admits the solution R = 0.

R=0 (3.22)
3tzag + 2taag + cby = 0 (3.23)
3s3b7 + 2s2by + cag =0 (3.24)

which give rise to four (in general) distinct solutions. The alternative R # 0 leads to

0 syt ! 62t
26230 02 4 3(B2 0 4 8ty )ag + 108 sataagbo + 5472202 + 1625318 aoh?
2 S9 S9 52 S2
= 323(c2 — 1659t5) + ¢ — dsaty, (3.25)
S92
0 syt tss 2
Destaga 901852 gt Vay + 108 sytyaghy + 54725 g2 24 16253 a2bo
2 tg tg 2 2
!
- 3?3(02 — 1689t5) + ¢ — 4ssls, (3.26)
2

This leads to an algebraic equation of order 10 for ag, for instance. Therefore, generically,
we have 10 (possibly complex) solutions for ag, each of which gives rise to two different
values for by. Altogether we are going to find 24 different quantum vacua. Once again
it is interesting to compare these solutions with the classical ones. To this end in the
above equations we set ao = by = a1 = by = 0 as well as R = 0, from which we get
eqs.(3.23,3.24).

From the first we can get by = —%(Stgag + 2taq), whence we get either ag = 0 or the
cubic equation

278325%@3 + 3675253753@3 + (12831/% — 6c52t3)a0 + 0(02 — 482t2) =0

Therefore in general we have four classical extrema. In ref.[3] it is shown how to find an
explicit series expansion in x about each of these solutions.

Before we end this section it is interesting to discuss the geometric meaning of the
first three equations in (3.21). We can think of the third equation as a definition of the
complex x = n/N plane. The two remaining ones are quadratic equations in ay, by, R.
Introducing homogeneous coordinates they can be seen to represent two hypersurfaces in
P3. The intersection is a genus 1 Riemann surface.
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Abstract

We develop the BRST approach to Lagrangian formulation for massive bosonic
and massless fermionic higher spin fields on a flat space-time of arbitrary dimen-
sion. General procedure of gauge invariant Lagrangian construction describing the
dynamics of the fields with any spin is given. No off-shell constraints on the fields
(like tracelessness) and the gauge parameters are imposed. The procedure is based
on construction of new representations for the closed algebras generated by the
constraints defining irreducible representations of the Poincare group. We also con-
struct Lagrangians describing propagation of all massive bosonic fields and massless
fermionic fields simultaneously.

1 Introduction

Construction of higher spin field theory is one of the fundamental problems of high energy
theoretical physics. At present, there exist the various approaches to this problem (see
e.g. [1] for reviews). This paper is a brief review of recent development of BRST approach
to free higher spin field theory. It is based on two papers [2, 3] devoted to Lagrangian
construction of free fermionic massless higher spin fields and Lagrangian construction of
free bosonic massive higher spin fields respectively. The main motivation for using BRST
approach is to try to construct the theory of interacting higher spin fields analogously to
string field theory. The first natural step in constructing a higher spin interacting model
is formulation of the corresponding free theory.

The paper is organized as follows. In sections 2 and 3 we discuss operator algebras
generated by primary constraints which define irreducible representations of the Pioncare
group both in the massless fermionic and massive bosonic cases respectively. The sructure
of the algebras proved to be the same and the method of Lagrangian construction is
explained in section 4 on the base of a toy model. Then in sections 5 and 6 we applay
this method for Lagrangian construction both for massless fermionic and massive bosonic
fields respectively. Section 7 summarizes the obtained results.
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2 Massless fermionic theory. Algebra of the con-
straints

It is well known that the totally symmetrical tensor-spinor field ¥,,..,,, (the Dirac index
is suppressed), describing the irreducible spin s = n+ 1/2 representation must satisfy the
following constraints (see e.g. [4])

V0, P =0, ot

U 1 o

iz = 0. (1)

Here 4* are the Dirac matrices {v,,7} = 20w, N = (+,—, ..., —).

In order to describe all higher tensor-spinor fields together it is convenient to introduce
Fock space generated by creation and annihilation operators a:[, a, with vector Lorentz
index p=0,1,2,...,D — 1 satisfying the commutation relations

lan, @] =~ (2)

These operators act on states in the Fock space

B) = 3 By (@)a™ - a0) 3)

which describe all half-integer spins simultaneously if the following constraints are taken
into account

To|®) = 0, Th|®) =0, (4)

where
To=+"pu,  Th=17"ay (5)
with p, = —iz%. If constraints (4) are fulfilled for the general state (3) then constraints

(1) are fulfilled for each component ®,,,...,,.. () in (3) and hence the relations (4) describe all
free higher spin fermionic fields together. The constraints Tj, T} are primary constraints.
They generate all the constraints on the space of ket-vectors (3). Thus we get three more
constraints

L0|@> = 07 L1|(I)> = 07 L2|(D> = 0’ (6)
where

Lo = —p?, Ly = a'p,, Ly = %aua“. (7)

Our purpose is to construct Lagrangian for the massless fermionic higher spin fields

on the base of BRST approach, therefore we must construct Hermitian BRST operator.

In the case under consideration the constraints Ty, Lo are Hermitian, T," = Ty, L§ = Lo,

however the constraints Ty, Ly, Lo are not Hermitian. Therefore we extend the set of the
constraints adding three new operators

T = ~y*at L{ =a*tp,, L = %af{a*“ (8)
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to the initial constraints (5) and (7). As a result, the set of operators Ty, 11, T;, Lo, L1,
Ly, L, L3 is invariant under Hermitian conjugation. Taking hermitian conjugation of
(4) and (6) we see that the operators (8) together with Ty and L are constraints on the
space of ket-vectors

(PTy = (@[T} = (®[Lo = (P|L] = (®|L; = 0. (9)

Algebra of operators (5), (7), (8) is open in terms of commutators of these operators.
We will suggest the following procedure of consideration. We want to use the BRST
construction in the simplest (minimal) form coresponding to closed algebras. To get
such an algebra we add to the above set of operators, all operators generated by the
commutators of (5), (7), (8). Doing such a way we obtain one new operator

Gy = —a:a“ + %, (10)
which arises from the commutators
_%[TMTY] = [L27L;] = GO? (11)

and which is not a constraint neither in the space of ket-vectors nor in the space of
bra-vectors. The resulting operators algebra may be found in [2].

Let us summarize what we have at the moment. The structure of the operator algebra
in the fermionic case is as follows. First we have hermitian operators Ty, Lo, Go. Two
of them Ty and Ly are constraints both in the space of ket-vectors and in the space of
bra-vectors, another Gy is not a constrint neither in the space of ket-vectors nor in the
space of bra-vectors. Then we have pairs of mutually conjugated operators (17, T}"), (L1,
L), (Ly, LT). One representative from the pairs is constraint in the space of ket-vectors
another representative is a constraint on the space of bra-vectors. The problem is to find
BRST operator which reproduce equations of motion (1) up to gauge transformations.

Let us turn to the massive bosonic case.

3 Massive bosonic theory. Algebra of the constraints

It is well known that the totally symmetric tensor field ®,,,...,,, describing the irreducible
spin-s massive representation of the Poincare group must satisfy the following constraints

(see e.g. [4])
(D +m*)®,.., =0, P, .. =0,  prd, =0 (12)

Analogously to the fermionic case, in order to describe all higher integer spin fields
simultaneously we introduce Fock space generated by creation and annihilation operators
ay, a, satisfying the commutation relations (2) and define the operators

Ly = —p? +m?, Ly = a*p,, Lo = %a“a#, (13)

where p,, = —ia%. These operators act on states in the Fock space

) = 3@y (e)a e 0) (14)
s=0
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which describe all integer spin fields simultaneously if the following constraints on the
states take place

Lo|®) =0,  Li|®) =0,  Ly|®)=0. (15)

If constraints (15) are fulfilled for the general state (14) then constraints (12) are fulfilled
for each component ®,,, ..., (z) in (14) and hence the relations (15) describe all free massive
higher spin bosonic fields simultaneously.

Constraints (13) are all constraints in the space of ket-vectors (14). Again, as in the
fermionic case, in order to be possible to construct hermitian BRST operator we must
add to the constraints (13) their hermitian conjugated operators. Since L = Ly we add
two operators

LT =a*tp,, Ly = %a:ja*“ (16)

to the initial constraints (13). As a result, the set of operators Ly, Ly, Lo, Li, L3 is
invariant under Hermitian conjugation. Taking hermitian conjugation of (15) we see that
the operators (16) together with Ly are constraints in the space of bra-vectors

(®|Lo = (B|LF = (B|LF = 0. (17)

Algebra of the constraints (13), (16) is not closed and in order to construct BRST
operator we must include in the algebra all the operators generated by (13), (16). Thus
we have to include in the algebra two more hermitian operator

m? and Go=—afa"+Z. (18)
which are obtained from the commutators
[Ll7 Lii_] - LO - m27 [L27 L;r] = G07 (19>

and which are not not constraints neither in the space of ket-vectors nor in the space of
bra-vectors. The resulting operator algebra can be found in [3].

Let us summarize the structure of the operator algebra in the bosonic case. It is the
same as in the fermionic case. First we have hermitian operators Ty, Lo, m?, Gy. Two
of them Ty and Ly are constraints both in the space of ket-vectors and in the space of
bra-vectors, another m? and G are not constraints neither in the space of ket-vectors nor
in the space of bra-vectors. Then we have pairs of mutually conjugated operators (L,
L), (Ly, LT). One representative from the pairs is constraint in the space of ket-vectors
another representative is a constraint on the space of bra-vectors.

In order to understand better the method used for construction of BRST operator
leading to the proper equations of motion (1), (15) it is useful to consider a toy model.

4 A simlified model

Let us consider a model where the 'physical” states are defined by the equations

Lo|®) =0, L|®) =0, (20)
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with some operators Ly and L;. Let us also suppose that some scalar product (®;|®Ps)
is defined for the states |®) and let Ly be a Hermitian operator (Lg)™ = Lo and let L,
be non-Hermitian (L;)™ = LT with respect to this scalar product. In this section we
show how to construct Lagrangian which will reproduce (20) as equations of motion up
to gauge transformations.

In order to get the Lagrangian within BRST approach we should begin with the
Hermitian BRST operator. However, the standard prescription does not allow to construct
such a Hermitian operator on the base of operators Ly and L; if L, is non-Hermitian.
We assume to define the nilpotent Hermitian operator in the case under consideration as
follows.

Let us consider the algebra generated by the operators Ly, Ly, L] and let this algebra
takes the form

[Lo, Li] = [Lo, L] = 0, (21)
Ly, L] = Lo+ C, C = const # 0. (22)

It is known (see e.g. [5]) that in the case C' = 0 if we construct Hermitian BRST
operators as if all the operators Ly, L1, L] were the first class constraints then this BRST
operator will reproduce the proper equations of motion (20) up to gauge transformations.

Now let us consider the case C' # 0. In this case the central charge C' plays the role
analogous to m? and Gy in the algebras of the two previous sections. If we construct
BRST operator as if the operators Ly, Ly, L, C are the first class constraints we get a
solution |®) = 0 [3] what contradicts to (20). This happens because we treat the operator
C as a constraint.

But the case C' = 0 may serve as a hint about solution to our problem. Namely, we
construct new representation of the algebra (21), (22) with operator Cye, = 0 in this
representation.

Thus the solution is as follows. We enlarge the representation space of the operator
algebra (21), (22) by introducing the additional (new) creation and annihilation operators
and construct a new representation of the algebra bringing into it an arbitrary parameter
h. The basic idea is to construct such a representation where the new operator C,,.,, has
the form C,., = C'+ h. Since parameter h is arbitrary and C' is a central charge, we can

choose h = —C' and the operator C,,.,, will be zero in the new representation. After this
we proceed as if operators Lonew, Linew, Lfnew are the first class constraints.

For example, we can construct new representation of the operator algebra (21), (22)
as follows

LOnew = LO; Cnew =C+ h, (23)
Llnew = Ll + hba Lii_new = Lii_ + b+‘ (24>

Here we have introduced the new bosonic creation and annihilation operators b+, b with
the standard commutation relations [b, b*] = 1.

In principle, we could set h = —C and get C,., = 0, but there is one more equiva-
lent scheme. Namley we still consider C),.,, as nonzero operator including the arbitrary
parameter h, but demand for state vectors and gauge parameters to be independent on
ghost ¢ as before. It can be shown [3] that these conditions reproduce that A should be
equal to —C.
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Now if we introduce the BRST construction taking the operators in new representation
as if they were the first class constarints

Qh = UOLU + nCCnew + n;rLlnew + nlLTnew - 77fr7h (PO + PC)? QIQ’L =0. (25)

we shall get [3] that equation @Q,|¥) = 0, where

Z Z D)2 (P (07| Py oy ) - (26)

reproduces (20) up to gauge transformations.

Let us pay attention that operators Li,e, and L ., are not mutually conjugate in the
new representation if we use the usual rules for Hermitian conjugation of the additional
creation and annihilation operators (b)* = b*, (b*)* = b. To consider the operators

Linew, LT, as conjugate to each other we change a definition of scalar product for the

state vectors (26) (V1 |Ws)new = (V1| Kp|¥s), with
ZWJW” [n) = (67)"(0). (27)
n=0 ’

Now the new operators Linew, L., are mutually conjugate and the operator @, is Her-

mitian relatively the new scalar product (4) since the following relations take place

Finally we note that the proper equations of motion may be derived using the following
Lagrangian

L= [dm(uircag-c (29)

where subscripts —C' means that we substitute —C' instead of h. Here the integral is
taken over Grassmann odd variable 7.

5 Lagrangians for massless fermionic fields

5.1 New representation

Let us first construct new representation for the operator algebra. Ones find

L;_new — %CL'LLCL’M + b+7 L2new - 2 ” +,u + (b+b + d+d + h)b (30)
Tihew = Y, +2b7d 4 d°, Tinew = 7"at —2(b"0 + h)d — d*b, (31)
Gonew = —afa" + 2 + 2070+ d*d + h, (32)

with the other operators being unchanged. Here b', b are bosonic creation and annihi-
lation operators and d*, d are fermionic ones with the standard commutation relations
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[b,07] =1, {d,d"} = 1. Then we introduce the scalar product in the Fock space so that
(P1]P2) new = (91| K|P2), with operator K

e}

K = Z%(M)(n\C(n,h)—2dﬂn><n!d0(n+1,h)), In) = (b7)"0), (33)
Clm k) = h(h+1)(h+2)...(h+n—1),  CO.h) =1 (34)

Now we construct BRST operator as if all the operators were the first class constraints

Q = qlv+ QTTlnew + CthtLew + noLo + 771+L1 + ThLT + 77;[/271610 + TIQL;_new
+ 106G onew + 10 @1 — M )po — i(Naqr +n2q7 )Py +i(nag’ + 05 q)pr
+ (a§ — nim)Po + qrgi — n3m2)Pa + (neni + 13 m — 204 ) Pa
+ (mne +nin2 = 2000 PT + 2(nens — ¢ P2+ 2(mene — ¢1)P3. (35)

Let us notice that the BRST operator (35) is selfconjugate in the following sense QYK =
K@, with operator K (33).
5.2 Lagrangians for the free fermionic fields of single spin

It can be shown [2] that from equation Q|¥) = 0 using gauge transformations we can
remove dependence of the fields and the gauge parameters on the ghost fields 79, Po, qo,
po and obtain equations of motion for field with given spin s =n + 1/2

1 - .
AQx|X0)n + §{To,nfm}!xé>n =0, Tolxo)n + AQx|Xg)n = 0. (36)

Here |x}), and |x}), are states with ghost numbers 0 and —1 respectively and subscript
n indicates that the corresponding field obeying the condition

TX)n = (0 + (D —4)/2)[X)n, (37)
with
T = Go+20Tb+dtd —iqp! +iq pr +nf P —mP] + 20 Py — 20P5. (38)

Next Ty = Ty — 2¢ P1 — 2. P, {A, B} = AB + BA and Q, is the part of Q (35) which
independent of ng, Pa, 1o, Po, qo, po With substitution h — —7 [2].
These field equations (36) can be deduced from the following Lagrangian

3 1 3
L, = n<X8|KﬂT0|X8>n + 2 n<X(1)|K7r{TO>77T771}|X(1)>n
+ 0 OO AQ X0 + 0 (X0 Kr AQx|X0)n, (39)

where the standard scalar product for the creation and annihilation operators is assumed
and the operator K is the operator K (33) where the following substitution is done
h — —m [2].

The equations of motion (36) and the Lagrangian (39) are invariant under the gauge
transformations

1, - .
O1X0)n = AQx[Ag)n + 5 {To, 1 m}HAg)n, 0lxo)n = TolAG)n + AQx|Ag)n,  (40)
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which are reducible
_ . 1 - ;
5D, = AQLATI + {To, i mHATIY, A0, =AY, (41)
SIADL) = Ty AGHDOY 1 AQ, Ay ADG) = [Aghns  (42)

with finite number of reducibility stages i, = n — 1 for spin s = n + 1/2. It can be
shown [2] that the Lagrangian (39) can be transformed to the Fang-Fronsdal Lagrangian
[6] in four dimensions after eliminating the auxiliary fields.

5.3 Lagrangian for all half-integer spin fields

Now we turn to construction of Lagrangian describing propagation of all half-integer spin
fields simultaneously. It can be show [2] that it looks like

. 1 .
L = (xgleTolxgH§<xé\Kw{To,m+m}\xé>
+ (X0 K= AQxIx0) + (X0l K AQx|X0), (43)

where |x() and |xg) are states with ghost numbers 0 and —1 respectively. Then we have
the following gauge transformations for the fields

1 - .
8]x0) = AQx|AJ) + §{To,nfm}|/\é>, 8lxo) = TolAQ) + AQx|Ag).  (44)
which are also reducible
; i l - i
SIADR) = AQ|AFIE) + §{To,771+771}|/\( 5, AR = |AD), (45)
SIADE) = To| ATHDE) + AQL|AT), [AQS) = |Ag). (46)

Since the fields |x§) and |y4) contain infinite number of spins and since the order of
reducibility grows with the spin value, then the order of reducibility of the gauge symmetry
will be infinite.

6 Lagrangians for massive bosonic fields

6.1 New representation for the algebra

To construct new representation, we introduce two pairs of additional bosonic annihilation
and creation operators by, b, by, b with the standard commutation relations [ by, bf] =
[by,b5] = 1 and construct new representation as follows

Miew =0, Gonew = —aja" + 2 + b by + 5 +2b5bo + b, (47)

new w
L;—new = aﬂpu + mb—f? Lln@w = a+”pu + mb17 (48>
Lo = %a“au — %bfz + b7, Lopew = %cﬁ“au — %b% + (b3 by + h)by, (49)

with the other operators being unchanged. Then we change the definition of scalar product
of vectors in the new representation (®|Py) e, = (P1|K|Py), with operator K in the form

e ) = (5)7[0). (50)
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with C'(n,h) given in (34). )
Next we introduce the operator () as if all the operators were the first class constarints

Q = noLo+nm Linew + ML 0w + 15 Lonew + M2L3 0 + 16Gonew — 11 mPo — 13 1P
+ (nemi” + 13 m)P1 + (mne + nin2) PT + 2neng Pa + 20216 P3 (51)

One can show that the operator (51) satisfy the relation QtK = KQ, which means
that this operator is Hermitian relatively the new scalar product with operator K (50).

6.2 Lagrangians for the massive bosonic field with given spin

It can be shown [3] that we can construct Lagrangian for the field with given spin as

Lo = [ o (0lEaQel (52)
Here field |x), subject to the condition
olxm = (n+(D=06)/2)[x)n. (53)
with operator ¢ being
o = Go+bib +205bs + 5 Pr — mPT + 203 Pa — 20oP3 . (54)

Next @, is the part of operator @) (51) independent of the ghost fields ng, Pg with
the substitution h — —o. Analogouly, operator K, is operator (50) where substitution
h — —o be done.

The gauge symmetry induced by nilpotency of the operator @), will be reducible with
the first stage of reducibility

OxX)n = QolA)n gh(|A)n)
5|A>n :QU|Q>H7 gh(|Q>n)

1, (55)
2. (56)

6.3 Unified description of all massive integer spin fields

It is evident, the fields with different spins s = n may have different masses which we
denote m,,. First of all we introduce the state vectors with definite spin and mass as
follows

‘X7m>n,mn = ‘X)n 6m,mn7 (57)

with |x), being defined in (53) and m in (57) is now a new variable of the states | x, m)n.m, -
Second, we introduce the mass operator M acting on the variable m so that the states
|X, M)n.m, are eigenvectors of the operator M with the eigenvalues m,,

M|X>m>n,mn = mn|X>m>n,mn = m|x, m>n,mn- (58)

Construction of the Lagrangian decribing unified dynamics of fields with all spins is
realized in terms of a single state |x) containing the fields of all spins (57)

X) = Z|X7m>n,mn' (59)
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This Lagrangian describing a propagation of all integer spin fields with different masses
simultaneously looks like [3]

c = / dno (X1 Ko Qont]). (60)

Let us turn to the gauge transformations. Analogously to (57) we introduce the gauge
parameters for the fields with given spin and mass

|A:m>n,mn = |A>n5m,mnv |Qam>nmn = | Orm,mn (61)

and analogously to (59) we denote

[A) =D A ), Q) =D 12 mhnm, (62)
n=0 n=0

Summing up (55), (56) over all n we find gauge transformation for the field |y) (59) and
transformation for the gauge parameter |A)

5|X> = Q0M|A>7 5|A> = QGM‘Q> (63)

7 Summary

We have developed the BRST approach to derivation of gauge invariant Lagrangians both
for massless fermionic and massive bosonic higher spin fields. We investigated the (su-
per)algebras generated by the constraints which are necessary to define these irreducible
representations of the Poincare group and found that the algebras have an identical struc-
ture. In particular, the algebras contain operators which are not constraints neither in
the space of bra-vectors nor in the space of ket-vectors. For the operators which are not
constraints to be made harmless this method includes construction of a new representa-
tion of the algebra, after which the BRST operator can be obtained as if all the operators
were the first class constraints.
The main obtained results are

e The Lagrangians for free arbitrary spin fields are constructed in terms of com-
pletely symmetric tensor(-spinor) fields (see eq. (39) for massless fermionic fields
and eq. (52) for massive bosonic fields) in concise form. No off-shell constraints
(including tracelessness) on the fields and the gauge parameters are used. All the
equations which define an irreducible representation of the Poincare group (includ-
ing tracelessness of the fields) are consequences of the Lagrangian equations of the
motion and the gauge fixing.

e The models under consideration are reducible gauge theories. In the bosonic case
the models have the first order of reducibility and in the fermionic case the order of
reducibility grows with the value of spin.

e Lagrangian describing propagation of all massless fermionic fields simultaneously is
constructed (43). Lagrangian describing propagation of all bosonic massive fields
(with different massess) simultaneously is constructed (60).
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There are several possibilities for extending our results. This approach can be applied
to Lagrangian construction of fermionic massive fields and to Lagrangian construction of
higher spin fields (both massive and massless) with mixed symmetry of Lorentz indeces
(see [7] for corresponding bosonic massless case).
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Abstract

We propose the relativistic point particle models invariant under the bosonic
counterpart of SUSY. The particles move along the world lines in four dimensional
Minkowski space extended by N commuting Weyl spinors. The models provide after
first quantization the non—Grassmann counterpart of chiral superfields, satisfying
Klein—Gordon equation. Free higher spin fields obtained by expansions of such
chiral superfields satisfy the N = 2 Bargman—Wigner equations in massive case and
Fierz—Pauli equations in massless case.

1. Introduction. Higher spin fields (see e.g. [1]-[3]) were investigated recently mainly
due to their relations to string theory. For the description of higher spin fields the usual
space—time is often extended by additional coordinates, e.g. commuting tensorial coor-
dinates and/or commuting spinorial variables [1]-[6] having twistorial origin [7]. Higher
spin fields do appear as component fields in expansions of fields with respect to addi-
tional coordinate variables. It appears that the system of all higher spin fields possesses
symmetry which is an extension of standard Poincare or conformal symmetries. In four
dimensional space—time the system of massless higher spin fields has Sp(8) symmetry or
its supersymmetric extensions OSp(N|[8) (N = 1,2) (see e.g. [8]).

In this report which is based on our paper [9] we propose new particle models invariant
under bosonic counterpart of SUSY. The quantization of these particles produce infinite
number of higher spin fields with all spins (helicities in massless case). The particle model
with a trace of ‘bosonic’ SUSY has been considered in [10] for description of the relativistic
particle with fixed spin (helicity). The realizations of ‘even’ superalgebra was used also
in [11] for the description of spectrum of the critical open N = 2 string in 242 dimensions.

The plan of our report is the following. In Sect. 2 we define the model describing the
particle trajectory in the Minkowski space extended by N Weyl commuting spinors. We

*On leave of absence from Ukrainian Engineering—Pedagogical Academy, Kharkov, Ukraine
TSupported by KBN grant 1P03B01828
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determine the complete set of constraints and classify them. In Sect. 3 and 4 using Gupta—
Bleuler method we perform the quantization of the models. The wave function describing
first—quantized theory satisfies the Klein—Gordon equation and the bosonic counterpart of
chirality condition. In expansion of wave function with respect to commuting spinors the
component fields describe (anti)self-dual field strenghts and in massless case satisfy the
Fierz-Pauli equations. It appears that in the case of bosonic counterpart of N =2 SUSY
one can obtain also the linear Bargmann—Wigner equations for D = 4 higher spin fields.
In last section we shall summarize obtained results and present some unsolved questions
related with our framework.

2. Action with bosonic SUSY and the constraints. We describe the
classical mechanics of higher spin particles by the following action

S = /dTﬁ, E == —i(w#w“ + €2m2> - im(aij/.\f‘kaj - C_Lijj\dj)\?) . (1)

2e

The action (1) describes propagation of the particle in Minkowski space extended by
commuting complex Weyl spinors coordinates A*(7), A& = (A\%). We shall consider N = 2
case (i = 1,2) and N = 1 case (no internal subindices). The constant matrix a;; is
symmetric, a;; = aj; if a;; = —aj; the last terms in (1) are total derivatives because
A Ny = +(a;;A?Aa;). The variable e in Lagrangian (1) describes the einbein. Constant
m is the mass of the particle.

The w—form can be written in general case as follows

. . -3
w#::jﬂ-—iﬁU(A?aZBAf-A;aggAi) (2)

1 0

where constant matrix x;; = k;; can be choose in the form x;; = ( 0k ) with real k

by linear redefinitions of spinors A% in N = 2 internal space.
The action (1) is invariant under the following spinorial bosonic transformation

dat = iy (Nfot 8] —efot X)), 0Nt =g, 0N =g (3)

where € is a constant commuting Weyl spinors. Conserved Noether spinorial charges
corresponding to the transformations (3) are

Rui = Toi — mijpa[;;)\f — iMaijNaj Rei = T + Z'Hz'jkfpﬂa + 1M Na (4)
where p,,, Tai, Ta; are the canonical momenta. Using the canonical Poisson brackets
{a*, p} =0, {AT i} = 55(5@' ] {5‘?7 7_T,8'j} = 5g(sij (5)
we obtain the PB algebra
{Rai, Ry} = —2ikyp,s,  {Rai, R} = 2imajeas,  {Rai, R} = —2images; (6)

which is classical (Poisson bracket) realization of bosonic counterpart of N = 2 super-
symmetry algebra with central charges Z;; = ma;j, Z;; = ma,;. Since the spinor variables
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are commuting and the Poisson brackets in (6) are even, the quantum realization of the
algebra (6) is constructed in terms of the commutators

[Raia RBJ] = QHijpaIB' s [Roﬂ', jo] = —Qmai]faﬁ, [Ro‘ﬂ', RBJ] = Qm&ijedﬁ- (7)
in contrast to the algebra of anticommutators in standard N = 2 supersymmetry.
The model (1) has the following nontrivial constraints (we omit the constraint which

implies pure gauge character of the einbein e)
T=p*-m*=~0, (8)

Da = Tos + iﬁijpaﬁ;\f + imaij/\aj ~ 0, Dd = Tai — iliij/\?pﬁd - imdijj\dj ~ 0. (9)

Nonvanishing Poisson brackets of the constraints (8)—(9) are
{Daia Dﬁj} = ZiKijpaﬁ'a {Daia Dﬁ]} = —2ima,~jeaﬁ, {Ddia Dﬁj} = Zim&ijedﬂ- . (10)

The constraint (8) 7' ~ 0 is a first class constraint. For classifying of the spinor
constraints (9) we look for the determinant of the matrix

C — ( {QaiaDﬁj} {Pah?ﬁj} ) _ ( _zimaijGCﬁ 2i’€ijpaﬁ > ) (11)
{DaiaDﬁj} {DdiaDI@j} _QZ/fijpﬁd QZmaijEdB

If matrix (a;;) is diagonal it follows for NV = 1,2 that in massive case detC is always
nonzero, therefore all the constraints (9) are of second class.

In case of antidiagonal matrix (a;;) the matrix (11) has vanishing determinant when
k = —|ap)®> < 0. Only in such a case the first class constraints are present in the
model (1).! Thus in massive case if we wish to have spinorial first class constraints we
should consider N > 2 bosonic supersymmetry.

If N = 2 we shall consider a simple choice kK = —a;3 = —1. In such a case the formu-
lation (1) has an attractive interpretation if we pass to the commuting four-component
Dirac spinor ¢, = ( /E\Oél ), P = ()% = (A, Aa1), where a = 1,2, 3,4 is Dirac index.

2
The Lagrangian (1) takes the simple form
L=~ (@ + e*m?) —im(yp — ), (12)
= iy — Py) (13)

In massless case (m = 0) the matrix (11) has vanishing determinant and even if N =1
the half of the spinorial constraints are first class.

3. Gupta—Bleuler quantization of the model with N = 1 bosonic
SUSY. We shall perform the quantization using Gupta-Bleuler technique what implies
the split of the second class constraints into complex—conjugated pairs, with holomorphic
and antiholomorphic parts forming separately the subalgebras of first class constraints.

'We note that in case of usual N = 2 massive superparticle [12] when spinor variables are Grassman-
nian and the matrix (a;;) is skew-symmetric, the first class constraints are present if £ = |a12|? > 0.
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In massive N =1 case the algebra (10) of the constraints (9) does not satisfy the
Gupta—Bleuler requirements. However, the redefined constraints

Da = Da + %paﬁ'DB, IZ_)O'C = Dd + %Dﬂpgd (14)

have the following algebra (we take a;; = 1 without the loss of generality and we obtain

b=14++2)
(Do, Ds} = ZeasT, {Ds. Dy} =—2e,,T, {Da, Dy} =—8bip,;— %?paﬁ-:r (15)

i. e. are suitable for application of Gupta—Bleuler quantization method. The wave func-
tion which satisfies the Klein-Gordon constraint (8) and spinorial wave equations (Da¥ =
0 (chiral case) or D,V = 0 (antichiral case)) provide the bosonic (non—Grassmann) coun-
terpart of D = 4 N = 1 chiral superfield. It is possible to introduce new spinorial
variables N, N4 7/ 7. via canonical transformation (see details in [9]) in which new
constraints (14) have the form

D, =7, — dbipsN° =0,  Ds =74 +4biN"psa ~ 0. (16)

Solving chirality condition we obtain that the expansion of the wave function with re-
spect to new spinorial variables contains infinite number space-time fields 9, ..., () =
Y(as--an)(®). They satisfy the Klein-Gordon equation (0 = d,0")

O+ m)ayoa, () =0  (n=1,2,...). (17)

In antichiral case do appear in the expansion of the wave function the infinite number of
fields (4, ..a,)(x) with dotted Weyl indices.

In massless N = 1 case the spinorial constraints

Do =7 +ipy\’ =0,  Dy=7s—irNpss =0 (18)

are the mixture of first and second class constraints. The spinorial bosonic first class
constraints are obtained from (18) by the multiplication with Pag

Fé=p¥Dy~0, F*=Dyp'~0. (19)
Unfortunately these constraints are reducible since
paBFB%() FPpgs =~ 0. (20)

Irreducible separation of first and second class constraints is obtained by the projection
of spinorial constraints (18) on spinors A* and \3p®®. The constraints

G=)\"D, =0, G =Dg)\* =0 (21)
are second class whereas the constraints
F=M\p*D, =0, F = Dyp®Ay ~ 0 (22)

are first class.
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Because the spinors A* and A\zp®® are independent the pair of constraints G ~ 0 and
F =~ 0 is equivalent to the constraints D, & 0. Similarly the constraints G ~ 0 and F' ~ 0
are equivalent to the constraints D4 ~ 0. Thus we have two sets of the wave equations:

‘bosonic chiral’ case )
TV =0, Fv =0, D,V =0 (23)

or ‘bosonic antichiral” one
TV =0, FU =0, D,V =0. (24)
In the representation
Pp = —10,, To = —10q , o = —10g (25)
the equations in chiral case
OU =0, DgV¥=(—i0s— N0ps) V=0, —iXg0¥ D, U = —\,0°°0, U = 0

give only the dependence of the wave function on left—chiral variables

z; = (2 = 2 +ida# A, A%). (26)
We obtain the expansion
Uz, ) =D A" X"y 0 (1) (27)
n=0

The component fields are completely symmetric in spinor indices, ¢q,. .0, = @(a;...a,) and
satisfy Fierz—Pauli equations for component fields

0% Gsaycn = 0. (28)

Scalar component field satisfies only the d’Alembert equation [J¢ = 0. The fields
®ay...an (x) in the expansion of the wave function (27) are self-dual field strenghts of mass-
less particles with helicities n/2. In antichiral case we obtain analogously anti-self-dual
field strenghts of massless particles.

4. Quantum states describing particles with N = 2 bosonic SUSY.

The constraints (8)—(9) at Kk = —ay2 = —1, written in Dirac notation, are the following
T=p"-m*=~0, D* = 7+’ (p—m),* = 0, Dy = 7a—i(p—m) "y = 0. (29)
Here 7 and 7, are the conjugate momenta for ¢, and 1%; its Poisson brackets are

{%a ﬂ-b} = 52 {1/_}&7 ﬁb} - 5? (30>

where we use notation p = y*p,,.
From nonvanishing Poisson brackets of the constraints

{Daa Db} = _22(]3 - m)ab (31)
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we obtain directly that half of the spinorial constraints (29) are first class constraints.
The projectors Py = ﬁ(m + p) define respectively the first class constraints

F*=Dp+m)®,  F,=(p+m) D (32)
and the second class
G*=D'(p—m)",  Ga=(p—m)"Dy. (33)
But due to the reducibility conditions
F'p—m)*~0  (h—m)"F,~0 (34)

if T = p?> —m? ~ 0 the eight constraints (F¢, F,,) has only four (real) independent
constraints. Analogously, the constraints (G?, G,) contain also four (real) independent
constraints.

In a way depending on the choice of second class constraints imposed on the wave
function, we obtain (see details in [9]) that the wave function satisfies or the ‘bosonic
chiral’ equations

TU=0, D,U=0, FoU=0 (35)

or the ‘bosonic antichiral’ ones
TV =0, D*V =0, F,U=0. (36)
In ‘bosonic chiral’ case the wave equations

0

0 A .
0 +m?)¥ =0 —i[— — (i0 L) =0 ——(i0 —m)," ¥ =0 (37
( +m ) ? Z[8¢a (Z +m) ¢b] ) Zawb (7’ m)b ( )
have the general solution
U(w, ) = PN "y, 60 (2) (38)
n=0

where the component fields ¢* %" (x) are completely symmetric with respect to all Dirac
indices, ¢® % (z) = ¢(@9)(z), and satisfy the Dirac equations

(10 = m)ay 6" () = 0. (39)

From (39) follows the Klein-Gordon equation (37). Finally we have obtained the Barg-
mann—Wigner fields describing massive particles of spins n/2.

5. Conclusions. We have considered the models of the relativistic point particles
propagating on fourdimensional Minkowski space extended by commuting Weyl spinors.
The models are invariant under bosonic (non-Grassmann) counterpart of SUSY. The
main results are the following:

e Higher spin fields emerge as the result of first quantization of the proposed models.

e In massless case one obtained infinite set of field strenghts with all helicities satis-
fying linear Fierz—Pauli equations.
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o [f we quantize the massive particle with N = 1 bosonic counterpart of SUSY we ob-
tain the massive free fields with any spin which satisfy only Klein—Gordon equation.
We stress however that the first order equations of motions are missing.

e For massive particle with NV = 2 bosonic counterpart of SUSY we get after quanti-
zation the wave function described by Bargmann—-Wigner equations.

Let us note that some questions still should be answered. For instance, we do not un-
derstand the relation of our formalism with the unfolded formulation of higher spin fields
by Vasiliev (see e.g. [1]) and link with the formulation using tensorial coordinates (see
e.g. [5]). Also in our approach appears nonstandard relation between spin and statistics:
both integer and half-integer spin fields have the same bosonic statistic. Here one should
add that the analogous situation with statistics appears also in higher spin fields theory
formulated on twistor spaces [7], [13], [14].
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Abstract

We elucidate some relations between Harmonic Superspace and Pure Spinor
String Theory. The example of massless hypermultiplet for N=2 D=4 is considered
and the action is derived from a String Field Theory action.

1 Introduction

Harmonic superspace is a very useful tool for study supersymmetric models with extended
supersymmetry. See [1] for a complete review of the subject and two useful accounts of the
subject can be found in [2]. Projective harmonic superspace has been introduced in [3] and
the application to the AdS/CFEFT correspondence is studied in [4]. Recent developments
of N =4 harmonic superspace for SYM can be found in [5].

On string theory side, an important revolution was started with the construction of
Pure Spinor String Theory by N. Berkovits in [6]. This new formalism is based on sigma
model for the superspace coordinates with the additional of some bosonic fields (in the
following denoted by A*). The latter are to be understood as ghost fields and they are
needed in order to implement the BRST symmetry of the theory. They are constrained
to satisty a quadratic equation /\O‘vglﬂ)\ﬁ = 0 which is known as Pure Spinor Constraint.

It has been noticed in [7] that by a suitable ansatz, the pure spinor constraint is solved
and the solution parametrize the same cosets of the harmonic coordinates of the harmonic
superspace. Therefore, using the idea of adding new ghost fields pursued in [8], we derived
the N=3 harmonic superspace action and the equations of motion in [7].

In [7], we consider only the case of N=3 SYM, but the same technique can be applied
to the D=4, N=2 hypermultiplet. In the present note, under a suggestion of E. Sokatchev
and E. Ivanov, we wrote the complete derivation of the action for N=3 (sec. 3) and we
describe the case on the hypermultiplet (sec. 4). This last part is original and it has been
presented at the conference SQS’5 in Dubna in 2005. In sec. 2, we briefly review the
coordinates of harmonic superspaces derived from string theory.

65



2 N=4,3,2 harmonic superspace from pure spinors

The notations are taken from [7] to which we refer for a complete discussion.
We substitute the decomposition \* = (A%, A\¥) (where a,& = 1,2 and [ = 1,...4)
into the pure spinor constraints Ay™\ = 0 obtaining the six plus four equations

1 . . .
Teaph + g X e N =0, AP =0, (1)
To solve these constraints we adopt the ansatz \¢ = A%u$, A% = %% | where a =
1,2. The new variables u¢ and %/ are complex and commuting. They carry GL(2,C)
and SU(4) indices. The spinors A%, \% are also complex and commuting, and carry a
representation of SL(2,C) and GL(2,C). This decomposition is left invariant by the
gauge transformations

uf — M, AT =AM

. o U MO AT S MM, (2)
where M and M are independent G L(2, C) matrices. The factorization plus the gauge in-
variance (2) yields 16 complex parameters. To reduce to the usual 11 independent complex

parameters of pure spinors, we further impose the following two covariant constraints
u v =0, Aeape® N + Xi‘edﬁeab/_\f =0. (3)

The first constraint in (3) and the gauge transformations in (2) reduce the 16 complex
components of u¢ and v to 8 real parameters. This is the same number as the number

of independent parameters of the coset U(2[{>(<4[}(2) = S(U?Z?i%@)) used in [2] (see also [5]

and [4]). The restriction of U(2) x U(2) to the subgroup S(U(2) x U(2)) is due to second
constraint of (3). The latter is preserved by the transformations M and M only after the
identification detM = detM.

Let us turn to N=3 harmonic superspace. If we decompose the A’s and the A*’s into
N=3 vectors and N=3 scalars we have A} = (A\%,®) and \¥ = (A% ¢%). In that basis,
the pure spinor constraints in (2.1) become

Aeap\? +eijkxdkedﬁ¢jﬁ' =0, Aleast)” +eiijdjed5V'k =0, AAY 4t =0. (4)

The reduction to the N=3 case is obtained by setting ¥® = 1% = 0. Inserting this ansatz
into the first two equations of (4), we obtain

Aeaph =0, Ae A =0, (5)

which is equivalent to requiring that all determinants of order 2 of the matrices A and
A% vanish. This means that the pure spinors can be factorized into A\§ = A\%u; , A4 = \4¢?
and the equations (4) are solved by 9% = ¢ =0, u;0° = 0.

So for the N=3 case no constraint is needed for A* and A*. Notice that the two
complex vectors u; and #' are defined up to a gauge transformation

u; — pu; , XY — pie v — o?', X — g\ (6)

where p, o € C. The two real parameters |p| and |o| are used to impose the normalizations
w;t* = 1 and v;0° = 1. If one also gauges away the overall phases of u; and ¥, the space
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of harmonic coordinates u; and ¥° is parameterized by six real parameters. This coincides
with the number of free parameters of the coset SU(3)/U(1) x U(1). Indeed, we can

. 100 (0-1) (=11 _ (10
construct 3 x 3 matrices (ul,u2,u?) = (W, u" W) as follows u! = u*? =
—11 i (01 > ; .
ui, Ul = uf ) = AT uz( ) = v; where @i = (u;)* and v; = (v")*. Fixing

the phases of u! and u?, the u! form SU(3) matrices which are coset representatives

of % The U(1) x U(1) transformations generate the phases arg(p) and arg(o).
The notation uga’b) indicates the U(1) x U(1) charges of the harmonic variables and they

satisfy the hermiticity property u§“’b) = u(=>7%_ We denote by u} the inverse harmonics
vl =6,7, ulu) =67, detu=eFuluu} = 1.

Finally, we consider a further reduction to N=2. We decompose the N=3 pure spinors
A¢ and A¥ into a vector of N=2 and a singlet, \* = (A%, \§) and A% = (A%, \%3) where

T =1,2. We set \§ and \§ to zero. The pure spinor equations (5) reduce then to
%eaﬁ)\gezj =0, j\djedgj\BKeJK =0, AN =0, (7)

The first two equations imply that A\§ and A% are factorized into A = X\*uz and A7 =
X457 where uzor = 0. The vector #7 is proportional to e7u ;. Hence without loss of
generality one may write

A=Az, A =X . (8)

With this parametrization of the N=2 case there are neither constraints on the \’s nor
on the u’s.
The vector uz yields the usual parametrization of N=2 harmonic superspace [1].

Namely, one introduces the SU(2) matrix (uj,u;) where uj = uz and u; = (u)*
with u}; = ezcu™. The coset SU(2)/U(1) is obtained by dividing by the subgroup U(1)

which generates the phases uff — eﬂau%. In fact, the decompositions are defined up to

a rescaling of \* A% and of uz given by us — puz, for p # 0. This yields the compact
space CP!.

3 N=3 Harmonic SYM from String Field Theory

The field equation for D = 4, N = 3 SYM-theory in ordinary (not harmonic) superspace
are given by [10]

{(Vi,Vi} =easW7,  {Va, Vit =e€sWis.  {VL. Vit =0V,;. (9)

The coordinates for this N=3 superspace, (z™,6%,0%), are obtained by imposing the
constraint 09 = 6% = 0. Since §’s transform into A\’s under BRST transformations we
also impose for consistency \§ = A% = 0.

Using the decomposition of the N=3 spinors A\¢ and A% given above, and contracting
the harmonic variables with the operators dg representing the covariant derivatives yields
to the BRST charge

Qo = \dL + Xedya

where d), = u;d!, = u}ld’, = ugl’o)dg_and dsg, = V'dy; = ubdy; = uw'®Vd,;. The operator dl,
corresponds to & D!, and dzs to 7' Dg; in [1].
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Due to the constraints on the u’s, the operators d’ and dsg satisfy the commutation
relations

{diwdb} =0, {diuJS,@} =0, {Cng,Cz&g'} =0. (10)

Hence Qg (where G stands for Grassmann) is nilpotent for any A* and A%,

The BRST operator () implements naturally the G-analyticity on the space of super-
fields ®(x, 0,0, \, \,u). A superfield with ghost number zero is given by ®(x, 6, 0, u) and G-
analyticity means Q¢® = 0 which implies D}® = D34® = 0 (since {d}, ®(x,0,0,\, \,u)}
= DL®(z,0,0,\, \,u) and similarly for dss). Such a superfield is called a G-analytic su-
perfield. A generic superfield ®(x, 6,0, \, A, u) with ghost number one can be parametrized
in terms of two u-dependent spinorial superfields A, A4 as @M (2,0,0, A\, X\, u) = \*A, +
M4, and {Qg, MV} = 0 implies the following constraints on these superfields

DiAsg+ DsAa =0,  DsgAy+ DygAs =0,  DyAs+ DygAa=0.  (11)

Assuming that A, and A4 factorize in the same way as D! = u; D! and D34 = ©° Dy, the
equations (11) reproduce (9). Gauge transformations are generated by a ghost-number
zero scalar superfield Q). To lowest order in @) they read 6@ = {Qg, 2} which

yields 64, = D, and 64, = D). The Qg-cohomology in the space of superfields with
ghost number 1 is empty.
To determine on which harmonic variables superfields depend, we construct a second

BRST operator g which is constructed from the SU(3) generators
d* = ufd,p — updyy = ufpy — uipi . (12)

where p! can be represented by 9/0u? and similarly for p?. These generators split into
three raising operators dj = d®~Y d? = d-1? di = d3Y| three lowering operators
d? =d=2Y d3 = dH=2) d3 = d=1V and two Cartan generators d} and d2. The raising
operators operators commute with Q¢ and form an algebra, in particular [d>~1, d(=12)] =
dD . This suggests to construct a new nilpotent BRST operator Qg

Qu =& dy + & dy + & d — B3€165 (13)

where we introduced new pairs of anticommuting (anti)ghosts (£3,83), (€2, 33), (&3, 32)
with canonical anticommutation relations. Since Qg and (g anticommute their sum Q.
is obviously nilpotent. The harmonic weights of the superfields follow from requiring that
®M) has zero harmonic weight, just like the BRST charge Q. Note that ®() depends
only upon the variables z, 6,0, A\, \’s and «’s and not upon the conjugated momenta as a
consequence of quantum mechanical rules. This forbids ghost-number one combinations

of the form B&E, BEA, . . ..
The equations of motion for N=3 SYM follow from the BRST-cohomology equations

1
{Quor, @0} + 5 {01, 0} = 0. (14)

To reduce this equation to the field equations of harmonic superspace, we use the fact that
Q¢ has no cohomology. We decomposed ® into &g+ ®y. This implies that equation (16)

is solved by a pure gauge superfield @g ) = i <QGeiA) where A is a ghost-number zero

superfield known in the literature as the bridge. In the harmonic superspace framework,

68



one usually employs the bridge superfield A(x,6,0,u) to bring the spinorial covariant
derivatives to the ‘pure gauge’ form. Here the bridge is seen as a solution of (14). By
making a finite gauge transformation which sets @8) = 0, the gauge transformed CIDS) is
given by

@Y + Qe =G VIV + GV y gV, (15)

And inserting this ansatz in (14) one finds the SYM equations of motion of N=3 harmonic
superspace [1]. Those equations can be derived by the action

Sv-a= [ du(0P Q) + S0l » 8 « o) (16
where x denotes conventional matrix multiplication. The measure du has to be deter-
mined. This can be done by observing that [Qq, Sn=3] = 0, [Q¢,dun] = 0 where dugy
is the invariant measure in the space of the zero modes of z#, 0% 0% u! and & ¢2 €35,
In addition, Sy—3 has zero ghost number, while duy has ghost number three. Since we
know that duy € H3(Qp). This implies that duy = d&3d&idésdy’ where the measure
dp' = dp'(z*,02,0% ul) has to be fixed by the G-analyticity [Qg,du’] = 0.

In order to obtain the action from the string field theory action, we have to integrate
over the ghost fields &, 2, &5, Since they are anticommuting, the integration is a Berezin
integral. This means that we have several contributions: one contribution is coming by
taking two ghost fields from the expansion of CIDS) as in (15) and one from the BRST
charge in the first term Sy_3. There is a contribution from the fourth term in (13) acting
on one of the two @ﬁ}) and by extracting one ghost from the other @2). Finally, there is
a contribution from the interaction term. After this operation the resulting action is the

same as given in [1].

4 N=2 Harmonic Hypermultiplet from String The-
ory

Let us know consider the case on N=2 harmonic superspace. We recall that the equations
of motion for the N=2 hypermultiplet in d=4 are

Doz =0, Dazpg) =0. (17)

These constraints reduce the number of independent components and the resulting su-
perfield describes an on-shell hypermultiplet. To prove this, one has to act with the
superderivatives on the equations (17) and contracting the N=2 indices. As shown in [1]
this system is studied more easily using the harmonic superspace. Here we show that the
action for the hypermultiplet has a simple interpretation from string theory. Therefore,
we first define the BRST charge, then the vertex operator and finally the action.

The BRST implementing the Grassmann analitycity is now given by

Qa = A Doz + M u'ers DY (18)

and it is nilpotent because we have solved the pure spinor constraint in sec. 2. However,
in order to reproduce the on-shell hypermultiplet, we have to impose a new constraint.
We recall that on the SU(2)/U(1) space we can define the following differential operators

D= UIEIjaﬁJ y D = ﬂIerﬁuJ 5 DO = uzﬁuJ - ﬂjaﬂj (19)



which satisfy the Lie algebra [D, D] = Dy, [D, Do) = D and [D, Dy] = —D. The second
BRST operator is defined by picking only the positive root of the Lie algebra D. This
operator commutes with ()¢ and the new BRST operator is obtained by introducing a
new anticommuting ghost field ¢ and by constructing the nilpotent charge

Qu=cD. (20)

The vertex operator is now identified with ghost number zero superfield. It needs an
harmonic charge +1 (see [1] for a complete analysis of the cohomology of Q). Since the

cohomology of Q)¢ is empty, we can consider only vertex operator <I>(H0) which are invariant
under ()g. Since there is only one anticommuting ghost field ¢ we can write the string
field theory action as follows

Sv-a= [ du(8 Qe + Vi@, o)), 1)

where the measure can be decomposed as dy = dy/dc where dy’ is BRST invariant and it
coincides with the harmonic superspace measure. The integral over c is Berezin integral
and by integrating over it, the action (21) reproduces the action for the hypermultiplet

given [1]. The field CD%) is the dual to CDS) since there is only one ghost ¢, namely
(I)(l) _ C(I)(O)
H = ¢®y -
P.A.G. thanks E. Sokatchev, S. Ferrara and P. van Nieuwenhuizen for useful discussions
and comments.
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Talk delivered by F. Toppan

Abstract

This talk is based on the paper appeared in JHEP 0505 (2005) 060 [1], where a
classification of the constrained complex generalized supersymmetries is presented.
The generalized superparticle models (i.e., whose target superspaces are general-
ized supersymmetries) are formulated in arbitrary space-times. The consistency
conditions for the constrained generalized complex superparticles are derived.

1 Introduction

The elusive nature of the M-theory forces us to understand the role of the bosonic tensorial
central charges appearing in the M-algebra and going beyond the Haag-Lopuszanski-
Sohnius scheme [2]. This is particularly true if we want to understand the dynamics of the
non-minkowskian twelve-dimensional F-theory [3], based on the F-algebra presentation of
the M-algebra, see e.g. [4], admitting only higher-rank bosonic tensors and no translations
at all.

From this point of view, in order to understand this generalized dynamical setting, it
is quite convenient to investigate at first the simplest classes of models that can be based
on generalized supersymmetries. The generalized superparticles models fit nicely into
this framework. It is worth recalling that the first theory of this kind was introduced by
Rudychev-Sezgin [5] as a generalization of the Brink-Schwarz superparticle [6], in terms
of a generalized supersymmetric target with extra, tensorial, bosonic coordinates. The [5]
model was based on real spinors. Later, Bandos-Lukierski [7] analyzed a corresponding
model for complex spinors. They surprisingly proved, see also [8], that the dynamical
content of the four-dimensional superparticle model with six extra rank-two bosonic co-
ordinates, describes a tower of higher helicity massless particles, making the physical
implications of these theories, orginally regarded as toy-models, particularly deep.

In this talk we discuss several aspects of this class of models. We point out that
they can be derived in a unified framework, dimensionally reduced models being obtained
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from the associated oxidized (read, maximal) form of the generalized supersymmetries.
Inequivalent models are specified in terms of the different admissible choices for the spino-
rial metric. Complex generalized supesymmetries can, finally, be consistently constrained.
In various cases, these admissible algebraic constraints lead to admissible constraints on
the Equations Of Motion of their associated complex generalized superparticles.

2 Constrained complex generalized supersymmetries

A complex generalized supersymmetry algebra is expressed in terms of complex spinors
Q. and their complex conjugate Q*,. The most general (with a saturated r.h.s.) algebra
is in this case given by

{Qaa Qb} = Pab s {Q*aa Q*b} = P*di;7 (21)

together with

{Qu @} = Ry, (2.2)

where the matrix P, (P*,; is its conjugate and does not contain new degrees of freedom)
is symmetric, while R ; is hermitian.

The maximal number of allowed components in the r.h.s. is given, for complex fun-
damental spinors with n complex components, by n(n + 1) (real) bosonic components
entering the symmetric n X n complex matrix P, plus n? (real) bosonic components
entering the hermitian n x n complex matrix R ;.

The saturated r.h.s. are given by the most general combination of rank-%k antisymmet-
ric tensors which are either symmetric in the a < b exchange (they are constructed with
the help of the charge conjugation matrix C') or hermitian (these tensors are constructed
with the matrix A used to define barred spinors).

The following division-algebra compatible constraints can be imposed on both P and
R. We obtain the table, whose entries specify the total number of bosonic components
(in the real counting), while the columns represent the restrictions on R and the rows the
restrictions on P (an imaginary condition on P is equivalent to the reality condition and
therefore is not reported)

P\R 1) Full | 2) Real | 3) Imag.| 4) Abs.
a) Full| 2n*4+n [3(n*+n)|3Bn°+n)| n’+n (2.3)
b) Real | 3(3n” +n) | n’+n n? >(n® +n) '
c) Abs. n? s(n®+n) | 2(n* —n) 0

Some comments are in order. The above list of constraints is not necessarily implemented
for any given supersymmetric dynamical system. One should check, e.g., that the above
restrictions are indeed compatible with the equations of motion. On a purely algebraic
basis, however, they are admissible restrictions which require a careful investigation.

One can notice that certain numbers appear twice as entries in the above table. This
is related with the fact that the same constrained superalgebra can admit a different, but
equivalent, presentation. We refer to these equivalent presentations as “dual formulations”
of the constrained supersymmetries. It is worth stressing that in application to dynamical
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systems, which need more data than just superalgebraic data, one should explicitly verify
whether the above related constraints indeed lead to equivalent theories.
The inequivalent constrained generalized supersymmetries can be listed as follows

I (al) 2n? +n, k=3, =1
II (a2) 3(n*+n), k=3, 1=0
17 | (a3&0b1) 1(3n%+n), k=2, 1—=1
IV [ (ad&b2) n®+n, k=2, 1=0 (2.4)
V| (03&cl) n?, k=1, 1=1
VI | (b4&e2) i(n’+n), k=1, =0
VII (c3) s(n*—n), k=0, I=1

The integral numbers k,! have the following meaning. For the given constrained
supersymmetry the bosonic r.h.s. can be presented in the following form

Z = kX+1Y, k=0,1,2,3, 1=0,1, (2.5)

where X and Y denote the bosonic sectors associated with the VI and respectively VII
constrained supersymmetry.

In association with the maximal Clifford algebras in D-dimensional spacetimes (with
no dependence on their signature), the X and Y bosonic sectors are given by the following
set of rank-k antisymmetric tensors

X Y
D=3 M, M,
D=5 Mo My + M,
D=7 My + M; M, + M,y (2.6)
D=9 | My+ M; + My My + M,
D =11 | M, + My + M;s My + Mz + M,
D =13 | My + M3+ Mg | My + My + My + Ms

Formula (2.5) specifies the admissible class of division-algebra related, constrained
bosonic sectors.

3 Superparticles with tensorial central charges

The most general action S involving real spinors is constructed in terms of the real su-
perspace coordinates X%, ©% conjugated to the superalgebra generators Z,, and Q, [5]
(X is symmetric in the a < b exchange). We have

S = %/dﬂfr (Z-T1—e(2)?], (3.7)
where

n* = dx* —elde?, (3.8)
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while e?® denotes the Lagrange multipliers whose (anti)symmetry property is the same as
the one of the charge conjugation matrix C%, i.e.

el'=ce  for COT=c¢C. (3.9)
By construction
()% = ZuCZa, (3.10)

namely the charge conjugation matrix is used as a metric to raise and lower spinorial
indices.
The massless constraint

(Z2)ap = 0 (3.11)

is obtained from the variation §e® of the Lagrange multipliers.

A symmetric charge conjugation matrix (¢ = 1) allows us [5] to construct a massive
model by simply performing a shift Z — Z 4+ mC' in the action (3.7).

In order to introduce the action for the superparticle with complex spinors we mimick,
as much as possible, the real formulation. The bosonic matrix Z,, is now replaced by the
pair of matrices Py, and R, (respectively symmetric and hermitian) entering (2.1) and
(2.2). They can be accommodated in a symmetric matrix P (PT = P) as follows

P — (775 ;}) (3.12)

The supercoordinates conjugated to P, R, Qo and Q*, are given by X, Y“i’, e°
and ©*¢,

It is convenient to use the notation

dX — ©do dY — OdO*
Ir = ( dY* — ©°d0  dX* — 0°de* ) (3.13)
We will also need the matrix
P> = PCP, (3.14)

whose indices are raised by the metric C. There are three possible choices for C, given by

)
c - (g g) (3.15)

in this case C is (anti)symmetric in accordance with the sign of ¢;

i)
c - (52* ’5‘) (3.16)

where ¢ is an arbitrary sign (§ = £1); in this case the (anti)symmetry property of C is
specified by the sign of d¢;
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iii)

c A

the (anti)symmetry property of C is specified by the sign of €. It should be noticed that
in this last case an (anti)symmetric matrix P? ( P2 = PCP) is only possible, for both
non-vanishing P, R entering P, if the condition

e =9 (3.18)

is matched.

The (anti)-symmetry property of P? coincides with the (anti)-symmetry property of
C.

The Lagrange multipliers enter a matrix

E = (; ;Z) (3.19)

In general, for any U (for our purposes U = P?) s.t.

U v
U - ( v U ) (3.20)
with UT = AU, V1 = uV (therefore UT = A\U), the reality of the term ¢r(EU) requires
g = Auf,
ho= e (3.21)

A reality (imaginary) condition imposed on either U or V implies a reality (imaginary)
condition for the lagrange multipliers e and f respectively.

We are now in the position to write the action S for the superparticle with bosonic
tensorial central charges and complex spinors as

S = %/dm [PII - E(P)?]. (3.22)

As in the real case, a massive model can be introduced in correspondence of a symmetric
C through the shift P — P + mC in the action (3.22).

4 Constrained complex superparticles with tensorial
central charges

In the previous Section we formulate the complex generalized superparticle model. It is
clear at this point that we can investigate whether its equations of motion are compatible
with the constraints on complex generalized supersymmetries discussed in Section 2. This
investigation should be performed for each one of the three available choices for the
spinorial metric C. As a necessary condition for the consistency of the theory, the number
of lagrange multipliers constraints should not exceed the number of bosonic degrees of
freedom entering P and R.

76



The complete list of results, which we cannot report here for lack of space, has been
furnished in [1]. Here we limit ourselves to mention that the constraints // and 1] of
(2.4) are never compatible with the equations of motion of the (constrained) generalized
complex superparticles. The remaining constraints, on the other hand, can be imposed
for suitable values of the €, §, & signs entering the construction of the model, as discussed
in Section 3. For “generic” values of the space-time we obtain the following table which
reports the set of consistent constraints for the allowed choices of the metric C

1 yes yes | yes

IV (a4) | yes yes | no

IV (b2) | yes yes | yes* (e =1)

V(b3) | yes yes | yes* (e =1) (4.23)
V(cl) | yes yes | no

VI(4) | yes* (e = —1) | yes | no

VI(c2) | yes* (e = —1) | yes | no

VII yes* (e = —1) | yes | no

The “x” denotes which choices are consistent only for a specific value of e.

The above result is the starting point for investigating the consequences of the con-
strained generalized supersymmetries in a dynamical setting. The importance of (one
class of) constrained generalized supersymmetries was noticed in [9]. It was proven that
they are required in order to perform the functional quantization of any model constructed
with the minkowskian M-algebra.
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Abstract

In the framework of the pure spinor approach of superstring theories, we describe
the Y-formalism and use it to compute the picture raised b-field. At the end we
discuss briefly the new, non-minimal formalism of Berkovits and the related non-
minimal b-field.

The new superstring formulation of Berkovits [1]-[5], based on pure spinors, has solved
the old problem of quantization of superstrings with manifest super-Poincaré invariance.
It can be considered at present as a complete and consistent formulation of superstring
theories, alternative to the NSR and GS ones that shares the advantages of these two
formulations without suffering from their disadvantages.

To be specific, let us consider the heterotic string. The pure spinor approach is based
on the BRST charge

Q- fdz(wa), (1)

and the action .
[ / P2(50X0X, + ol — wadN) + Siqi (2)

where the ghost A* is a pure spinor satisfying an equation
(%)) = 0. (3)

Moreover, I1* = 0X* + ... and d, = p, + ... are the supersymmetrized momenta of the
superspace coordinates ZM = (X™ 0*) and w, is the momentum of A*. Due to the pure
spinor constraint, the action [ is invariant under the local w-symmetry

dwa = €4(F*N)q. (4)
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Finally, St is the action for the heterotic fermions. (For type II superstrings, Si.s is

the (free) action of the left-handed pairs (pa,0%) and (©a, A*), and one must add to @
the left-handed BRST charge Q = ¢ A\*d,.)

Taking into account the pure spinor constraint, the action I describes a critical string
with vanishing central charge and the BRST charge () is nilpotent. Moreover it has been
proved [2]-[3] that the cohomology of @ reproduces the correct physical spectrum. The
recipe to compute tree amplitudes [4] and higher-loop amplitudes [5] was proposed and
all the checks done untill now give support to the full consistency of this formulation.

The statement that the pure spinor approach provides a super-Poincaré covariant
quantization of superstring theories is correct but deserves a warning. The non-standard
pure spinor constraint, which is assumed to hold in a strong sense ! and implies that only
11 of the 16 components of A are independent, gives rise to the following problems:

i) The w — A OPE cannot be a standard free OPE since w,(y)(AI'*A)(z) # 0.

ii) The w-symmetry requires to be gauge fixed but the gauge fixing cannot be done in
a covariant way. The only gauge invariant fields involving w are the ghost current J,
the Lorentz current N% and the stress-energy tensor T* for the (w, \) system. At
the classical level they are respectively J = (w)) , N* = 2 (wI'®)) and T“* = (wdN).
Notice that all of them have ghost number zero.

iii) In the pure spinor approach, the antighost b (ghost number —1), needed to compute
higher-loop amplitudes, is a compound field which cannot be written in a Lorentz
invariant way. Indeed w is the only field with negative ghost number but it can arise
only in gauge invariant compound fields with zero (or positive) ghost number.

From i), ii) and iii) a violation of (target space) Lorentz symmetry, at intermediate steps,
seems to be unavoidable. Indeed in [1],[4] the pure spinor constraint is resolved, thereby
breaking SO(10) to U(5), and a U(5) formalism is used to compute the OPE’s between
gauge invariant quantities. Here we would like to describe a different but related ap-
proach, the so called Y-formalism, that proved to be useful to compute OPE’s and to deal
with the b-field [9],[11].

Let us define the non-covariant spinor

Va
Yo=—
[0} (UA) ’
where v, is a constant pure spinor, so that
(YN =1

(and (YT'*Y) =0 ). Then consider the projector

K, "= %(FQ)\)Q(YF,I)*B. (5)

IFor different strategies, see Refs. [6], [7], [8].
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that projects a 5-D subspace of the 16-D spinorial space (since TrK = 5). One has
(A[“N) = 0 <= \*K, 7 =0,
(so that A has 11 independent components and 5 components of w are pure gauge) and
(1-K), ?(T*\)z =0.
Using this formalism, the correct w — A OPE is

(11— K(2)a ”

w Blz) = >,
V() = ()

(Indeed with this equation, we obtain the OPE w(y)(AI'*A)(z) = 0.)

Using these rules (as well as free field OPE’s for X™ and (p,#)) one can compute all
OPE’s for composite fields and in particular for the covariant and gauge invariant fields
involving w (when they are suitably defined). Indeed, if Y,, enters into the game, 0Y, has
the same ghost number and conformal weight as w, and as a result in the definitions of
J, N and T“* terms like (9Y,\), (OYT®)), 9(YT%N) etc. can arise. The coefficients
of these Y-dependent terms are fixed by requiring that the algebra of OPE ’s closes, i.e.,
that these spurious terms do not arise in the r.h.s. of OPE ’s. With the choice

N = %[(wrabx) + %(8}/1““"/\) —20(YT“"))], (7)
J = (w\) — ;(am), (8)
T = (WON) + S0(VON), ()

one recovers [11] the correct OPE’s with the right levels (=3 for N, —4 for J) and ghost
anomaly 8, as first given by Berkovits in the U(5)-formalism. Notice that all the Y-
dependent terms in N, J and T are BRST exact. In conclusion, J, N and T*,
defined in eqs.(7)-(9) are primary and Lorentz covariant fields, and their OPE’s are the
right ones with correct central charges, levels and ghost-number anomaly.

Now let us come back to the b-field. b is a field with ghost number —1 and weight 2
which is essential to compute higher-loop amplitudes. It satisfies the important condition

{Q. 0} =T, (10)

where T' is the stress-energy tensor. In the pure spinor approach the recipe to compute
higher loops [5] is based on three ingredients:

i) A Lorentz invariant measure factor for pure spinor ghosts.

ii) BRST closed, picture changing operators (PCO) to absorb the zero modes of the
bosonic ghosts, that is, Yo for the 11 zero modes of A and Zg, Z; for the 11g zero
modes of w at genus g.
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iii) 3¢g — 3 insertions of the b-field folded into Beltrami parameters u(z, 2), i.e., b[u] =
[ d?2b(2)pu(z) at genus g > 1 (1 at genus 1 and 0 at tree level).

At a schematic level, the recipe for computing N-point amplitudes, at genus g (g > 2)(for
tipe II closed superstrings), is

39—3 10g g 11 N
A= / a3 < | T] ol [ Zs,(z) [ [ Zo(en) [ ] Yo )P ] ] / d?2,U (2) >,
i=1 Jj=1 h=1 r=1 s=1
where 7 are Teichmuller parameters, f U are integrated vertex operators and < >

denotes the path integral measure (that we shall not discuss here). For g = 1, one inte-
grated vertex is replaced by one unintegrated vertex V and there is only one b-insertion.
At g = 0, three integrated vertices are replaced by unintegrated ones.

In standard string theories, b is the antighost of diffeomorphism. In pure spinor
approach, in the absence of diff. ghosts, b is a compound field, which, as already noted,
cannot be written as a Lorentz scalar. Using the Y-formalism, an expression for b that
satisfies the fundamental condition (10), is [4]

- %(YH“Fad) - (@00) = Y.GO (11)

where @ is the non-covariant but gauge-invariant ghost

Go = (1= K), Pws, (12)

«

and
o 1 . a a . 1 ab « 1 « 1 2 no

G - 5 . H (Fad) . ZNab(F 39) ZJ@Q Za 6 y (13)
the last term in the r.h.s. of (13) coming from normal ordering. Whereas G* is Lorentz
covariant, b, due to its dependence on Y, is not Lorentz invariant. However, it turns out
that the Lorentz variation of b is BRST exact. In an attempt to understand the origin of
the pure spinor approach [9] the b-field (11) has been interpreted as the twisted current of
the second w.s. susy charge of an N=2 superembedding approach, the first twisted charge
being the BRST charge of the pure spinor approach. Even if this analysis was done only
at a classical level (and only for the heterotic string), it is suggestive of an N=2 topological
origin of the pure spinor approach. The singularity of b at (vA) = 0 due to its dependence
on Y, is problematic in presence of the picture changing operators Yo = C,0%5(Cs\°)
that cancel the zero modes of A, C, being a constant spinor. Therefore this b-field does
not seem suitable to compute higher loops.

Since covariant and w-invariant fields with ghost number —1, needed to get a b-field,
do not exist, the idea of Berkovits [5] was to combine T with a picture raising operator
Zp with ghost number +1 and use as insertion, a picture raised, compound field bg such
that

{Q,bp} =TZp. (14)
Then, this bp makes it possible to define a bilocal field bg(y, z) [5] such that
{Q.05(y, 2)} = T(y)Zp(2). (15)
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Then 3g — 3 b[u| insertions (1 at g = 1), together with 3g — 3 picture-raising operators
Zp (1 at g = 1), are replaced by 3g — 3 (1 at g = 1) insertions of the newly-introduced
bp(y, z) folded into Beltrami parameters.

To explain this recipe we need more details about the picture raising operators Z =
(Zg, Z) that absorb the zero modes of w included in N® and J :

1
Ty = é(Arabd)Baba(chBcd),

Zy = (X\%,)o(J),
where B, is an antisymmetric constant tensor. Then in general
Z = N2Z,,
and

{Q,Z} =0.
It follows (by explicit computation or from general arguments plus pure spinor constraint)
that:
{Q7 Za} - )\BZBOM
{Q Zsa} = X Zypa,
{Q, Zypa} = X Zsypo + ON Vi,

where Zga, Zga, Zsypa and Y g are I's-traceless, i.e., they vanish when saturated with
(Dy, as) ¥+ between two adjacent indices. Their expressions can be found in [5] or [11].
Moreover 0Zp and 0Z; are BRST exact.

As shown by Berkovits [5], starting from G there exist fields H*?, K%V L% (and

5287 defined modulo T'j-traceless terms (that is modulo fields h"*"*#+)-*" which vanish
if saturated with I'® ), such that

Q041
{Q,G*} = \°T, 16
{Q,H*} = \G° + ...,
{Q, K}y = \*HM + ..,

(Q, LOPPY = NP

17
18

)
)
)
19)

(
(
(
(

where the dots denote I'1-traceless terms. Moreover, since we have A*L?7%¢ = 0 + ..., an
equation
LA = \eghr

is obtained. Then the picture raised b-field that satisfies eq.(14) is
— (@) | ()
bp=0b1+by+0bs+by +by, (20)

where
by =G’Zs,  by=H"Zs, by=—-K"Z,p,.

bfla) — _Laﬁ’yézaﬂryd, bflb) — _Saﬁ'ya)\é’x‘daﬁ,‘/
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The expression of bg is quite complicated and Berkovits in [5] presented only the
expressions of G* and H*?. The technical device of using the non-covariant Y, as an
intermediate step helps us to obtain the full expression of bg with a reasonable effort [10],
[11]. In order to compute HY’ K7 S and L% one makes the ansatz such that
these fields can be constructed using only the building blocks

Aa; (Fab)\)au (Faaj)a7 (Fad)a7

(as well as I1* in H*%); then one writes their most general expressions in terms of these
blocks and imposes the condition that in the superfields H and K any dependence on Y, (
which is implicit in @) should be absent; then one requires that these superfields satisfy
the recursive equations (17) - (19). Consequently, we have found

HP = —f—ﬁ(rad)a(rad)ﬁ - %Aana(ra@)ﬂ + %[H“(FbFak)“(Fb@)ﬁ — (e B)]+..., (21)

K9 = SN (05 (L) + 5 (@A (Cad) + (0 o )
sl (TN (Cad) — ()] . (22)
S8y = —3—12(@)%5(@@)7 — %(@F“)O‘(FabA)ﬁ(F%)V + ..., (23)
and
LB = \ghd (24)

where again the dots denote I';-traceless terms.

All these expressions are invariant under w-symmetry (since @ is invariant). Moreover
H and K are Lorentz covariant (being independent of Y, ) and therefore they depend on
w only through J and N%. Indeed, modulo I';-traceless terms, the previous expressions
of H and K can be rewritten as

1 1 1 1
HO = () (Nl — 2 TL,) + = (T ) (A7) + 2ANTI] + < (T, ) 0T, (25)

which coincides with the result of Berkovits and

1 1
K% = — —(T,)*(Cyd) "N — — (T ype)*(0*d) N
25 La) ™ (Ted) Tog (Lase) ™ (Id)

1 3 1 1
— (L) |(Tyd)*N® 4 =(Td)*J | + —=(Cape)’(T*d)*N* — T (T0d)*. (2
25 (0a) | (Cud) "N + S(07%)° T | + (D) (D) N — T2 (I°0d)".  (26)

Again the last terms in the r.h.s. of eqs.(25) and (26) come from normal ordering.

L7 and S*P7 have a residual dependence on Y. However, when S5 is saturated
with OA“Y 346 to get bflb), this dependence on Y drops out so that

1 1 1
U = ~Bud(BuN TN + LION™ — N9 = 5 NON"). (21)

Furthermore, it turns out that all the Y-dependent terms of L* (linear and quadratic
in Y) are I';-traceless and therefore vanish when saturated with Z,3,5 so that also bfla)
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does not depend on Y.

It is interesting to notice the relation between the non-covariant b-field b, given in (11)
and the picture raised b-field bg. Since

{Q? bZ} =T7Z= {Qa bB}7
the quantity bZ — bp is closed. In [10], it has been shown that this quantity is also BRST

exact:
bp(z) =b(2)Z(2) +{Q, X(2)}, (28)

so that bg and bZ are cohomologically equivalent. Then, we also have

by, 2) = b(y)Z(2) + {Q, X (y, 2)}.

This result is mterestmg since it can be used to show that the insertion of
= [uly bB (y,z) does not depend on the point z of the insertion. Indeed, since
8Z( ) is BRST exact, let say, 0Z(z) = {Q, R(z)} and {Q,b(y)} = T'(y) one has

OWl(z) = [ ) TWIRG) + (@) 29

and, modulo an exact term, the r.h.s. is the total derivative w.r.t. a Teichmuller param-
eter 7 and vanishes after integration over 7.

Let us conclude this report by describing briefly a very interesting, new proposal
of Berkovits [12], the non-minimal pure spinor formalism, that in addition leads to the
construction of a covariant b-field. The main idea behind this work was to add to the
fields involved in the pure spinor formalism a BRST quartet of fields Ao, @%, 74, s* such
that their BRST variations are 6\, = 7q, 05® = @®, 60* = 0, 6r, = 0. A, is a bosonic
pure spinor with ghost number —1, r, is a fermionic field that satisfies the constraint
(AI'*r) = 0 and @® and s* are the conjugate momenta of A\, and 7, respectively. The
action is obtained by adding to the action I in eq.(2), I given by the BRST variation of
the ”Gauge fermion” F = — [(s0\) so that

3 1 _ _ _ _
Ly,=1+1= /dQZ(iaX“(?Xa + Pa 00 — wa, X 4 s90rq — W 0ONy) + Siest- (30)

This action is invariant under gauge symmetries involving @ and s, similar to the w-
symmetry so that, due to the constraints and these symmetries, each of the fields of the
quartet has 11 components. The new BRST charge is

Qnm = /dz()\ada + wry), (31)

and the new (non-covariant) b-field corresponding to eq.(11) is
b=Y,G% + 5%O\,. (32)

Of course the quartet does not contribute to the central charge and has trivial cohomology
w.r.t. the (new) BRST charge. Now let us define

b = b+ [Qum, W1, (33)
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where

A5 rfag) As o] As (50
W = YamH + Ya (5\)\)27’7[(7 — Ya (5\)\>3TVT5L v , (34)

and HP KleAl 1187 are the fields defined in egs.(21)-(26), antisymmetrized, e.g.,
HAl = H*% — HP etc. Then

NaGe  NargHED  Xorgr, KON X parrs L0877

brm = 57030 + (A (W2 (AN)? GA

(35)

which is the new non-minimal, covariant b-field defined in eq.(3.11) of [12].

As shown in [12], this non-minimal formalism is nothing but a critical topological
string, so topological methods can be applied to compute multiloop amplitudes where a
suitable regularization factor replaces the picture-changing operators to deal with zero
modes. The regulator proposed in [12] allows us to compute loop amplitudes up to g = 2.
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Abstract

Extending the exterior algebra on superspace to non(anti)commutative super-
space, we formulate a non(anti)commutative version of the super ADHM construc-
tion which gives deformed instantons in N’ = 1/2 super Yang-Mills theory with
U(n) gauge group.

1 Introduction

It has been found that supersymmetric gauge theory defined on a kind of deformed su-
perspace, called non(anti)commutative superspace, arises in superstring theory as a low
energy effective theory on D-branes with constant graviphoton field strength [1]-[3]. In
non(anti)commutative space, anticommutators of Grassmann coordinates become non-
vanishing. Such a deformation of (Euclidean) four dimensional A’ = 1 super Yang-Mills
(SYM) theory has been formulated by Seiberg [2], which is sometimes called N = 1/2
SYM theory.

It was argued by Imaanpur [4] that that the anti-self-dual (ASD) instanton equa-
tions should be modified in the N' = 1/2 SYM theory with self-dual (SD) non(anti)-
commutativity. Solutions to those equations (deformed ASD instantons) have been stud-
ied by many authors [4]-[6]. It is well known that in the ordinary theory the instanton
configurations of the gauge field can be obtained by the ADHM construction [7]. The
authors of ref. [6] have studied string amplitudes in the presence of D(—1)-D3 branes
with the background R-R field strength and derived constraint equations for the string
modes ending on D(—1)-branes, which are the ADHM constraints for the deformed ASD
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instantons. We show that we can obtain these constraints in the purely field theoretic con-
text, formulating a non(anti)commutative version of a superfield extension of the ADHM
construction initiated by Semikhatov and Volovich [8]. We follow the notation and con-
ventions in refs. [9, 10].

2 N =1/2 SYM theory

We will briefly describe the non(anti)commutative deformation of A/ = 1 superspace and
N =1/2 SYM theory formulated in [2].

The non(anti)commutative deformation of A = 1 superspace is given by introducing
non(anti)commutativity of the product of ' = 1 superfields. This deformation is realized
by the following star product:

fro=fep(P)g, P=-30.00; 21)

where f and g are N' = 1 superfields and @, is the (chiral) supersymmetry genera-
tor. C? is the non-anticommutativity parameter and is symmetric: C*? = C#*. The
above star product gives the following relations among the chiral coordinates (y*, 6, 0%):
{62,0°}, = CP, [y*,-], = 0, [#%,-}. = 0. Turning on such a deformation, the original
action formulated in the N' = 1 superfield formalism is deformed by the star product.
The deformed N/ =1 SYM theory has N = 1/2 supersymmetry, so that they are called
N =1/2 SYM theory.
The action of A" = 1/2 SYM theory is given by

1 _ — — .
S = m—W/d4x </ POt % W, + /d29trWa * Wa) (2.2)
where 1 1
Wa =~ DaD* (¥ Dael) . Wa = DDy (e} # Dsel"), (2.3)

— .
and e} =3 % Vx...x V. Here V = VT with V' the vector superfields and 7 the
hermitian generators which are normalized as tr[T°7T°] = N§*°. We may redefine the
component fields of V' in the WZ gauge such that the component gauge transformation
becomes canonical (the same as the undeformed case). In [2], such a field redefinition is
found and then the component action becomes

S @tr / ' {—iv“”vw — NG DA + %DQ — SO0 3A+ é|0|2(5\5\)2 (24)
where C* = C*%(c#),"eg, and |C]? = C*C,,.

From the component action, we can see that the equations for SD instantons are
unchanged compared to the undeformed case. Therefore, the SD instanton solutions are
not affected by the deformation. On the other hand, the equations for ASD instantons
should be modified. The action can be rewritten as [4]

1 1 ) —_\2 - 1 1
S = Wtr/d% |:—§ <UE]3 -+ %Cul,)\)\) — M&“Du)\ + §D2 + ZUNV{JMI ) (25)
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where v* = %5’“””%0. From this expression, we can see that configurations which
satisfies the equations of motion and is connected to the ASD instantons when turning
off the deformation are the solutions to the following deformed ASD instanton equations
[4]:

0+ 50w =0, A=0, Dyo'A=0, D=0. (2.6)

3 Differential forms in the deformed superspace

We will take a geometrical approach to formulate the deformed super ADHM construction
by generalizing the exterior algebra: we extend the star product between superfields to
the one including differential forms in superspace. The principle of our construction of the
deformed exterior algebra is that the operators (), appearing in the star product are iden-
tified with the generators of supertranslation. Thus, the star product of differential forms
is defined according to the representations of supersymmetry they belong to. Since the
one-form bases e? are supertranslation invariant, the action of Q, on e is naturally de-
fined as Q,(e?) = 0. Then for a 1-form w = e4w,, it holds that Q,(w) = (—)AeAQq(wa).
Using this action of ), we define the deformed wedge product of a p-form w, and a g-form
Wy as

* 1
Wy N\ wy = wp A exp (—5@200‘5@2) Wy (3.1)

where Q (Cj) acts on w, (w,) from the right (left) and the normal wedge product is
taken for the resulting (transformed) differential forms. Note that w@, = ()l Qq(w).
Hereafter we will suppress the wedge symbols. In the e“-basis, the product of the p- and
g-form is simply given by the star product of the coefficients:

(_)(|A1I+~~+\Aq|)(IBl|+~~~+|Bq\)€A1 coereB .

Wy * Wg = . qu (prp...A1 * quq...B1>a (32>

The exterior derivative d is defined as a map from a p-form to a p + 1-form by using the
basis e:

p
_ A A, B Appr|++|Ap] A A A
dw, = e -+ eeP Dpwya,  a, +§ :(_1)| 1] [AplpAr Lo deAr e PWpA, . Ay (3.3)
r—1

where de? is the same as the undeformed one.

We see that the deformed exterior algebra defined above is consistent with the N’ = 1/2
SYM theory described in the previous section, in the sense that the curvature 2-from
superfield will correctly reproduce the field strength superfield W,, and Wy, in (2.3) (after
imposing appropriate constraints as in the undeformed case [11]) based on the deformed
exterior algebra. Given a connection 1-form superfield ¢, the curvature superfields Fap
are obtained as the coefficient functions of the two-form superfield F' constructed in a
standard way: F' = d¢ + ¢ * ¢. Therefore, we find the curvature superfields Fap as

Fap = Dadp — (=) WEIDpoa — [pa, b5} + Tapoe, (3.4)

where T45% is the torsion defined by de® = %eAeBTB 4% whose non-vanishing elements
are T st =Ty I = QiJZ 5 The proper constraints for the curvature superfields to give the

N =1/2 SYM theory turn out to be
Fag=0, Fuy=0, F,;=0, (3.5)
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where the curvature superfields are given by (3.4) (see [11] for the undeformed case). We
refer these constraints as the Yang-Mills constraints. These constraints are solved in a
parallel way to the undeformed case and the invariant action with respect to super- and
gauge symmetry can be constructed which coincides with the action S given in (2.2).
Therefore, imposing the Yang-Mills constraints (3.5), the NV = 1/2 SYM theory can be
correctly reproduced in a geometrical way based on the deformed exterior algebra.

4 Review of the N =1 super ADHM construction

Before describing the deformed version, we briefly review the N’ = 1 super ADHM con-
struction which was initiated by Semikhatov and Volovich [8]. Here we follow ref. [9].

The U(n) (or SU(n)) k instanton configurations can be given by the ADHM construc-
tion [7]. Define A, (x) such as

Aa(z) = aq + waah® (4.6)

where a, and b% are constant k x (n + 2k) matrices and x,4 = iz,0%,. We assume

that A, has maximal rank everywhere except for a finite set of points. Its hermitian
conjugate AT® = (A, is given by Afe(z) = af® + b}}xﬁo‘. Then the gauge field v, is
given by v, = —2iv'd,v, where v is the set of the normalized zero modes of A,: A,v =0,
vlv = 1,,. For later use we define f as the inverse matrix of the quantity f~! = %AQATO‘.

In the superfield formalism, the ASD super instanton equations are equivalent to the
following super ASD condition [8]:

F,

w

0=0, *F,=—F,. (4.7)

Note that the latter equation follows from the former as long as the two-form F' satisfies
the Bianchi identities and the (undeformed) Yang-Mills constraints. The super ADHM
construction gives the solutions to (4.7) [9]. Define a superfield extension of A, (x):

~

Ay =As(y) + 0. M, (4.8)

where A, (y) is the zero dimensional Dirac operator in the ordinary ADHM construction
with replacing ## by the chiral coordinate y* = x#+ifloc"f and M is a k x (n-+2k) fermionic
matrix which includes the fermionic moduli. We suppose that A, has a maximal rank
almost everywhere as in the ordinary ADHM construction. Its f-conjugate [9] Ate g
found to be At = Ate(y) £ 9° M. As A, has n zero modes we collect them in a matrix
superfield O, 2r)x[n) and require that © satisfies the normalization condition: Aa@ = 0,
oo = 1. (Its t-conjugate * satisfies prAte = 0.) Then the connection one-form superfield
¢ is given by

¢ = —itdo. (4.9)

where d is exterior derivative of superspace. The connection ¢ defines the curvature
F =d¢ + ¢p = 0*dAYK,PdA g0, (4.10)

where K~1,% = A A and K,” is defined such that K1,/ K 3" = K,2K~'57 = 671,
The curvature superfield F},, becomes ASD if K satisfies ALAP x (55 and thus

K0 =60f" (4.11)
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where f 1= A At ig a kx k matrix superfield. There exists f because we have assumed
that A, has maxnnal rank. The above condition (4.11) leads to both the bosonic and
fermionic ADHM constraints. When eq. (4.11) holds, i.e., the parameters in A, are
satisfying both bosonic and fermionic ADHM constraints, we can check that the above F'
satisfies the Yang-Mills constraints and the super ASD condition.

To ensure the WZ gauge of the superﬁelds obtained by the super ADHM construction,
we impose on the zero mode ¥ of A, the conditions Dyd = 0 and ot aggv = 0. Then v
is determined as 0 = v + 67(Al fMuv) + 0(3M' fMuv), and the connection ¢, in (4.9)
correctly gives the super instanton configuration in the WZ gauge: Its lowest component
is the instanton gauge field and the #-component is the fermion zero mode.

5 Deformed super ADHM construction

The deformed super ASD condition turns out to be of the same form as the super ASD
condition (4.7) but the product replaced with the star product (2.1):

F.e =0, %F,, =-F

ns

(5.12)

where the curvature superfields Fap are given by eq.(3.4). We can prove the equivalence
of the condition (5.12) and the deformed equations (2.6).

One would expect that solutions to eq. (5.12) can be constructed by the super ADHM
construction, replacing each product with the star product (2.1). For the deformed super
ASD instantons, ¢, in the WZ gauge becomes ¢, = —% [Uu + i@cr,}\} (y). This leads us

to adopt A, in our super ADHM construction with the same form as before:
Ay = Ao(y) + M. (5.13)

Then, according to the i-conjugation rules, we have Afe = A (y) + 0°M*. We collect
the n zero modes of A into a matrix form dp,42kxn) and require it to be normalized

with respect to the star product A, x4 =0, at*a = 1,. Define k x k matrices K*a
(a, 8 = 1,2) as the “inverse” matrices of K. 1a5 A, % AP such that K* 1% Ko

K.o” ¥ K157 = 071;. Then we have a relation @ @} = 1,40, — Al % K,/ % Ay,
With the use of the zero modes @ of A,, the connection ¢ is given by ¢ = —at * da,

and the curvature two-form becomes
F:d¢+¢*gb:ai*dAia*K*aﬁ*dAﬁ*ﬂ (5.14)

which reads Fyg = —ﬂi*D[AAia* K*aﬁ*DB} Aﬁ*ﬂ, especially F),, = ﬁi*bléﬁaf(mﬁal,mg
b 4. Thus F,, becomes ASD (see eq. (5.12)) if K, commutes with the sigma matrices
ou

Ay x A = K71 P oc 67, (5.15)
Then we immediately find that Faﬁ' = Faﬁ- = 0 and Fj,4, = 0, because Aa is a chiral
superfield. We can also check that F,3 = 0 with the use of the constraint (5.15), the
relations DA, = ea3(M + 4040°) and DgAt® = §5(M*F + 46296), and the fact that
F,p3 is symmetric with respect to o and (3. Therefore, we have shown that the above

described super ADHM construction gives curvature superfields that satisfy the Yang-
Mills constraints (3.5) and the ASD conditions (5.12) if the condition (5.15) is imposed.
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Since we can write A, * A¥? = A A — Lo OV MM, the requirement (5.15) leads
to the following deformed bosonic ADHM constraint A, A — %EMCWMMi o 07 and
the fermionic ADHM constraint A, M* + MA?*, = 0. These constraints agree with those
in [6] obtained by considering string amplitudes. We can rewrite the deformed bosonic
ADHM constraints in another form as follows. Let us denote

3 p i = i
(Al) _ (‘][k]x[n] Z21k+BQ[k]X[k] lek‘f'Bl[k]X[k}) (516)
Ay kxn]  —211k — Bixw 221k + Bopxp] /-

where 21 = 9y, 220 = Yoy and [ = wy, J} = wy, B = a’21, By, = a’zé. Then the bosonic
ADHM constraints reads

IT* — J4J + [By, By*] + By, Bof] — C2MM* =0, (5.17)
1
1J + [By, By] — 5011/\4/\41 = 0. (5.18)

We can give an expression in terms of the ADHM data A, and M, of the general
solution in the WZ gauge obtained by our construction, and have shown in [10] that it
gives the known U(2) one instanton solution. In summary, we have correctly deformed the
super ADHM construction to give solutions to the deformed ASD instantons in N = 1/2
SYM theory. We see that deformation terms emerge in the bosonic ADHM constraints (see
also [6]), which are comparable with the U(1) terms due to space-space noncommutativity
[12]. Our formulation reveals the geometrical meaning of those deformation terms as
non(anti)commutativity of superspace. However, it needs a further study to clarify how
those terms can be interpreted in the hyper-Kéhler quotient construction [13].
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Abstract
We study a structure of holomorphic quantum contributions to the effective
action for N' = noncommutatlve Wess-Zumino model. Using the symbol operator

techniques we prebent the one-loop chiral effective potential in a form of integral
over proper time of the appropriate heat kernel. We obtain the exact integral
representation of the one-loop effective potential. Also we study the derivative
expansion of the effective potential.

The deformation of superspace and construction the Moyal superstar product based
on nontrivial (super)Poisson manifolds has been attracted much attention. It was a
significant work of Seiberg and Witten [1] where they studied a star product in a certain
class of quantum field theories on noncommutative (NC) Minkowski space-times, where
(bosonic) directions become noncommutative. This result generated a modern activity in
studying quantum field theories in NC space.

It should be noted that there are possible several different types of coordinate de-
formations [2]. Recently it was shown that the low-limit of superstring theory in the
self-dual graviphoton background field F*” leads to a four-dimensional supersymmetric
field theory formulated in the deformed N = 1 superspace [3] with fermionic coordinate
satisfying the relation

{0%,0°} = 202 FF = P (1)
The other commutation relations are determined by the consistency of the algebra. In
particular, the ordinary space-time coordinates z™ can not commute. In contrast to
the space-time coordinates, the chiral coordinates y™ = 2™ + i#*c™%0% can be taken
commuting. Note that because the anticommutation relation of § remains undeformed,
6 is not the complex conjugate of 6, that is possible only in the Euclidean space. The
product of functions of # on the chiral superspace is Weyl ordered by using the star-
product, which is the fermionic version of the Moyal product:

9 9
= o _—_
7(6) % 9(6) = 1(0) exp ( Yo aeﬁ) 9(0) &)
The supercharges are defined as follows @, = ¢ &‘Za . Q= Z(W — 7,9"‘8 9-) . The

star-product (2) is invariant under the action of supercharges Q,. However, because Qg
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depends explicitly on 6, it is clear that the star-product is not invariant under Q. Such a
1

deformation saves the N' = ;5 supersymmetry and has interesting properties in the field
theory viewpoint. Replacing all ordinary products with the above x-product, one can
proceed studying a supersymmetric field theory in this non(anti)commuting superspace
taking into account that this deformed supersymmetry algebra admits well-defined rep-
resentations. Namely, one can define chiral and vector superfields much similarly to the
ordinary N’ = 1 supersymmetry [3].

It is very interesting to study how the deformation (1) modifies the quantum dynamics
of supersymmetric field theories, paying particular attention to consequences of nonlocal-
ity in the superspace caused by Eq.(2). Though new kinds of (anti)chiral superfields in
N = % supersymmetric theory violate the holomorphy, the anti-holomorphy still remains.
For deformed WZ-model, this leads to the non-renormalization theorem of the anti-chiral
superpotential and vanishing of the vacuum energy. Moreover, one can show that such
deformed theories preserve Lorentz symmetry and have finite number of divergent struc-
tures in their effective actions and hence, they are in fact renormalizable. This is primarily
because although the theory contains operators of dimension five and higher, they are not
accompanied by their hermitian conjugates which would be required to generate divergent
diagrams.

In this work we develop a general approach to constructing the one-loop effective
potential in N = % WZ model. The approach is based on use of the symbol operator
techniques and heat kernel method and allows to carry out a straightforward calculation
of one-loop finite quantum corrections. As a result we find an exact form of one-loop
effective potential for the considered model in terms of a proper-time integral. Also we
construct a new scheme for approximate evaluation of the effective potential and give a
complete solution of the problem settled up in [4].

On the N = % noncommutative superspace the WZ model is given by the standard
classical action where the point products of superfields are replaced with the star product

(2):

S:/d8z<I>*CI>+/dﬁz(%CI)*CI)Jr%cl)*@*cl))Jr/dﬁz(%@*(bJr

Px P D). (3)

SRS

The (anti)chiral superfields ®, ® are defined by the ordinary relation Dy®(y,6,0) = 0,
D,®(y,0,0) = 0. As it has been demonstrated in Ref. [3], the x-product of the chiral
superfields is again a chiral superfield; likewise, the x-product of the antichiral superfields
is again an antichiral superfield.

The model is formulated in Euclidean space where the fields ®, ® are considered as
independent. Using the property [® x ® = [® - ®, performing the expansion of the
star-product (2) and turning down total superspace derivatives, the cubic interaction
terms reduce to the usual WZ interactions complemented by the terms violating N' = 1
supersymmetry to N = % supersymmetry.

+ [ &2 (52(Q®)? + 5;2(Q°))

where h = —9|det C|. Last term containing the coupling A is added to provide a multi-
plicative renormalization of the model (see e.g. [4]). As a result we see that the action (3)
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is rewritten in terms of standard N = 1 superspace, i.e. without star-product. Hence, one
can consider the deformed WZ model as ordinary WZ model, where superfield multipli-
cation is standard, with a new addition to the F-term. Thus we treat the theory as some
special model formulated in terms of NV = 1 superspace and this circumstance allows us
to use all the standard tools and techniques of superspace quantum field theory.
The one-loop correction to the effective action is formally written in the form

Loy = %ln Det(lfl ), where H is the differential operator acting on superfields being the
second variational derivatives over quantum (super)fields of the classical action. In order
to find this operator in the framework of the loop expansion one have to split all fields of
the model on quantum and background parts. We use the standard quantum-background
splitting ® — ® 4+, & — ® + ¢ , where ® and ¢ stand for background and quantum
fields respectively. The quadratic over quantum (super)fields part of the classical action

is written in the form Spy = L [ d®2 (@, ) H (g) , where we denote

. 2792 — L =E\ 2 1
i=(amp "HT) amgen@ee @,

Further we use the convenient denotations m + g® = p, m + g® = ji and consider the
constant space-time background ® = Const, ® = Const which is sufficient for calculation
of the chiral effective potential (e.g. see a discussion in Refs. [3]).

After a number of simplifications the one-loop contribution to the effective potential
can be finally presented in the following form

D?2D?

Loy = %Tr ( In(0 — pji — [LA)) . (6)
We pay attention on appearance of the chiral projector in this relation showing that the
effective action is given by an integral over a chiral subspace. Further calculations will be
fulfilled using the symbol-operator techniques [5] which we shortly describe.

The main idea is based on the supersymmetric generalization of the well known trace
formula for the operator A = a(g, p): Tr(A = [du(y)A(y) , where g, p are the operators
of coordinate and momentum, v = (q, p) are the coordinates on the phase-space, du(7) is
a measure on the phase-space, A(7) is a symbol of the operator A and integration goes
over the full phase-space. The symbol of the operator A is function on phase space.

We apply the symbol operator techniques to calculation of traces for the operators
depending on N = 1 superspace coordinates z™ = (2™, #%, §%) and corresponding deriva-
tives. The phase superspace is parameterized by 2™ py where py = (D, Vo, Va)-
According to the symbol-operator techniques if the operator A consists from a func-
tion of the set of basic operators 4, i.e. A = A(%), then its symbol can be defined
as A(y) = A(Y") x 1 where " are the special representation for the basic operators
4 = (p,q¢). In turn, the special representation can be calculated from the phase-space
coordinates v of the basic operators with the help of a star-operator U by the rule

= U=t~y U. The appropriate operator U for N' = 1 superspace field theories is found

n [5] and for the case under consideration, has the form U = e~?PefP0e=0De=i00 here
0" = 82 0% = W and the derivatives D, D,d, act on the left while the operators
a?zn 30 0, act on the right. The corresponding special representation operator are as fol-

lows D =g , D =1y —0%aa , Q" = i(Ya + paal®) . These operators obey the initial
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algebra but act on functions of phase superspace coordinates. For the background field one
can get the representation ®"(y,0) = ®(y+id,, 0+0,) = ®+0%(D,P)—0*(D?*®)+0O(9,) ,
here the derivatives 0 = % act through on the right. The terms including the y-derivatives
of ® can be omitted because we use the approximation of background fields slowly varying
in space-time.

Using the (-function representation for Eq. (6) we obtain proper-time integral rep-
resentation of the logarithm. It is convenient also to introduce a dimension parameter
L? to make proper-time dimensionless. With the mentioned notations the (-function

representation became

d < dT _ T
Fpyy==1{-—— — T [ d2 D*K (= 7
(1) < dS) S:[)/O F(S) / z (LQ) ) ( )
where the heat kernel in the above equation is defined as
1 d4p 1 L2 3 2
K(T)== [ ot — | — ) pe T InT) .
" 2/<2w)4—p2(u>“e " )

In the last expression we introduce a denotation
2
WT) = e~ T(MQh + 9®n(y,0)) » 1 9)

In general, exact calculation of the heat kernel is impossible. The model under consid-
eration is quite remarkable since it provides the exact evaluation of the heat kernel. The
reason is the fact that for this model the heat kernel calculation is reduced to finding an
evolution operator for a harmonical oscillator with the Grassmannian coordinate ¢ and
momentum 0/0%. In order to calculate (8), according to the symbol-operator techniques,
we have to disentangle derivatives in the exponent of the heat kernel. To do that we
transfer all derivatives 0, on the right and act on unit. It means that after such a trans-
formation all terms with derivatives must be omitted and a final contribution is resulted
only from recommutations of the differential operators to the last right position. The rest
part is the symbol of the heat kernel.

_ The expression in the exponent (9) can be simplified by introducing a new denotation

Op = O — %, QZ = (¢ + /lipf) then we can extract 1- and 9y-independent part

(D)2

WT) = e T T  J(T) x 1, K(T) = TMAU+ToD ) (10)

Straightforward calculations shows that Qg and 9 can be considered as the Grassmann

coordinates and momenta. Let’s introduce operators: e; = Q%, ey = 52, e3 = Qgéa —1.
It is easy to see that these operators satisfy the commutation relations for the generators
of su(2) algebra: [ej,es] = e3, [es,e1] = 2e1, [es,ea] = —2e5 . Hence, the exponent in
k(T) (10) is nothing but a group element of SU(2): k(T) = eTMe1+T9kex Since our goal is
to find a symbol of the heat kernel, we should move all derivatives in the exponent (10) to
right hand side and act on unit what is equivalent to drop them. The generators containing
the derivatives in the group element k(7' are e, e3. It is most convenient to rewrite the
group element k(7') in the Gaussian form k(T) = eTMer+TFez — oA(T)e1oB(T)esoC(T)e2  The
solution for functions A(T"), B(T'), C(T) can be founded

A= \/gtanh(T\/]\/[F) ,B=—Incosh(TVFM) ,C = \/gtanh(T\/FM) . (11)
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That gives us an exact expression for the symbol (9)

2 2

MT) x 1= Q? (A(T) +(1- Jf)?%(pcp)?) exp (—B(T) +O(1) 5 (Do)’ ) . (12)

where (D®)? = 1D*®D,®. Now using (10, 12) in (7, 8) we obtain the exact expression
for the one-loop chiral potential (see details in Ref. [6])

o0 dT 1 L2\ ° -
dﬁ = =2 —T(m+g®) . k T 13
/ / 4m(ﬂ)ue . 1)

= IM _ Tg® tanh(TVFM/2)
k(T) = \/;Slnh(T\/ FM) (1 97 ~Tgd ( TV 2 1>> . (14)

The expressions (13, 14) determine the final exact solution for the one-loop chiral effective
potential in N = % WZ model. The various approximate results can be obtained using
the various expansions of (14). Also we point out that the integral (13) is divergent at
the low limit. To get a finite effective potential we should, as usual, to subtract in the
integrand of (14) a first term in expansion of the integrand in 7.

The exact result for the one-loop chiral effective potential is presented by the expres-
sions (13, 14) in the form of an integral over proper time 7" which can not be written
in an explicit form in terms of elementary or known special functions. To obtain the
various approximate results we have to construct the expansions of the heat kernel and
calculate the integral over proper time in an explicit form. In the paper [6] we present
an independent procedure for the heat kernel expansion which allows to obtain the chiral
effective potential in a form of a power expansion of spinor derivatives of ®.

Let’s present the exponent (9) as a sum h(T) = eTH0HV) 1 =5 b, (T)x1, ho=
o Hy=-MQ32, V =—gPs(y,0), where the general term of the sum is given by
the T-ordered iterated integral

Loy =

where

T tn t
T)x 1= / dt, / dtp_i ... / thl eIt Hoy oltn—ta-0)Hoy, - yre(ta=ti)Hoy ghiHo
0 0 0

(15)
(see details in Ref. [7]). The integral (15) for every fixed n can be calculated [6] and it
induces the expansion for the one-loop effective action: I'qy = > 7 R, , where every
expansion term has the following structure
4, 12 nk M ok
Rn:/ddeZCkn m)®" (D) =a(y,6) (16)

here Cy.,(M, 1, m) are some functions. In particular to get the divergences it is enough
to consider only terms coming from Ry:

RV = /d4xd29 (?) (m? + 2gQ*® )(%4—};@2@) ln(TZ—g) ; (17)
and R;: _
e = [ oL + 290 0) G + QD0 (S (18)
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In the above expressions we used relations (m + gA)? = m? + 2¢gG and G = Q?®. The
sum of Ry and R gives the result which is completely consistent with all earlier results
on one-loop divergences in the model under consideration obtained by the other methods
8].

Let’s find the explicit calculations of several finite contributions to effective potential
with higher orders of external Grassmannian momenta. It should be especially noted
that calculations of the finite contributions R,, to the chiral effective potential is closely
related with so called Mellin-Barnes representation of hypergeometrical functions of sev-
eral variables. It should be noted that all terms R,, for n > 1 in (16) are finite. We will
consecutively consider several first finite contributions to the chiral effective potential. In
this section we find an explicit expression for Ry term. After a number of transformation
we calculated this contribution in the form

Ry = fd4xd20M [0 (y,0) 2 F1(1,1; 3, L D) P (y, 0) =

19
fd4xd29 M - 2 ((I)Q M(I)DQ(I)) 7 ( )

47r)2
where we use the explicit expression for o F1(1, 1; g, z) = i;%—‘f) In the bosonic sector this
2
contribution has a simple form R} = 4(3—”)2 [diz Em? (2AF + J2F?) | M =hF + 1 .
The expression for R3 contribution will have a followmg form

Ry = 6(4@2 [ d*ed20 (252

3 (20)
x (300 + 1202 D% + L (1) SD°BDD + L s (1) (D)) .

In the bosonic sector this result gives RS = % [diaMmZ (32 g LM Ap2y L (My2ps)

During the calculation for higher R, contrlbutlons we will obtain the expressions
containing the hypergeometric function of several variables, which for n > 2 are called
generalized Lauricella hypergeometric functions. In principal, all R,, can be calculated [6].
Moreover we can sum up all part from R,, terms without derivatives. Really let’s take into
account only & = 0 term in the representation (16) for all R,, i.e. we sum contributions
from all R,, which have no Grassmannian derivatives. The sum can be calculated [6], that

gives

1 - 1 ) ) d
re) = Sarp /d4xd29m(m + 792 (hQ*0 + 3) (—g— +(1+ g—)l (1+ %)) . (21)
The expression (21) is the chiral effective potential in approximation when all terms
containing the D?® can be neglected, however all terms without these derivatives are
exactly summed up. The corrections to this approximation obligatory contain the terms
with Grassmann derivatives of the background field. This result can be used to finding the
effective potential in the bosonic component sector and obtaining the classical potential.
Finally we can say that the general approach for finding the one-loop effective potential
nN=: noncommutatwe Wess-Zumino model was founded. Using the symbol-operator
technlques we obtained a general expression for the effective potential in terms of a su-
perfield heat kernel. The exact form of the effective potential including the complete
dependence on ® and D?*® in term of a single proper time integral was obtained. To
clarify the structure of the effective potential in more details we calculate divergent con-
tributions to the one-loop effective potential as well as a few first finite contributions.
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The expansion of the effective potential has an enough simple structure and allows to
organize resummation of the above series and to get a series in derivatives D*® with the
coefficients depending on ®. We have demonstrated how to obtain the first term in this
new expansion containing no derivatives but including all powers of ®.
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Abstract

We consider the generic nonanticommutative model of chiral-antichiral super-
fields on N = % superspace. The model is formulated in terms of an arbitrary
Kahlerian potential, chiral and antichiral superpotentials and can include the nonan-
ticommutative supersymmetric sigma-model as a partial case. We study a compo-
nent structure of the model and derive the component Lagrangian in an explicit
form with all auxiliary fields contributions. We show that the infinite series in the
classical action for generic nonanticommutative model of chiral-antichiral superfields
in D = 4 dimensions can be resumed in a compact expression which can be written
as a deformation of standard Zumino’s lagrangian and chiral superpotential. Prob-
lem of eliminating the auxiliary fields in the generic model is discussed and the first
perturbative correction to the effective scalar potential is obtained.

Supersymmetric field theories on deformed superspaces with nonanticommuting coor-
dinates possess the interesting properties in classical and quantum domains. Remarkable
class of such theories based on special deformation of N = 1 supersymmetry was proposed
by Seiberg [1]. Seiberg’s type of superspace deformation introduces the nonanticommuta-
tivity both even and odd coordinates but preserves anticommutativity in the chiral sector.
As a result, the corresponding deformed superspace breaks the supersymmetry in the an-
tichiral sector and therefore it is called N' = % superspace. Formulation of analogous
deformation in N' =2, D = 4 superspace was given in [2]. Studying of various aspects of
N = % supersymmetric theories has been carried out in a number of recent papers (see
e.g. [3], [4], [5], [6] for D = 4 models and [7], [8] for D = 2 models).

To interpret the N' = % supersymmetric theories as conventional field models and to
clarify their dynamics it is necessary to rewrite such superfield theories in the component
form. Finding the component structure of the nonanticommutative theories is a highly
nontrivial technical problem because of the very complicated superspace structure and
therefore it demands a special study. Component form of actions for nonanticommu-
tative theories in addition to standard terms always will contain the terms dependent on
the superspace deformation parameter. Since a half of supersymmetries is broken down
a symmetry between chiral and antichiral superspace coordinates is absent and some

component fields can enter in the action in very cumbersome combinations.
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In the papers [1], the component structure of D =4, N = % supersymmetric models
Yang-Mills theory and the Wess-Zumino was studied. For this case it was shown that the
deformed theory is renormalizable [4], [5] in spite of the presence of higher dimensional
terms in the Lagrangian.

In this paper we study the D = 4 generic chiral superfield model in N = % superspace
and derive its component structure. Explicit expressions for the Kahlerian, chiral and an-
tichiral superpotentials are not fixed. We show that the component action is represented
as an infinite series in nonanticommutativity parameter with coefficients depending on the
derivatives of above potentials. Despite this fact, it is possible to write down the action
in a closed form via smoothing integrals of the Kahlerian K and chiral W superpotential
around the bosonic component of the chiral superfield ® on a scale dependent on the
deformation parameter and the auxiliary field v/det CF. This effect is in an agreement
with an observations of Ref. [8] for D = 2. For N = 2 sigma model nonanticommutativity
induces simple deformations of the Zumino Lagrangian along with the holomorphic su-
perpotential. This phenomena is interpreted as a fuzziness in the target space controlled
by the vacuum expectation value of the auxiliary field.

We begin with consideration of the N = % deformed superspace. According to Seiberg,
the coordinates of this superspace are defined such a way that Grassmannian coordinates
are not complex conjugate to one another ((6%)* # §%) and the anticommuting coordinates
0 form a Clifford algebra

{éa’ éﬁ} = ) (1)
where C*? = CP* is a symmetrical constant matrix. The other commutation relations are
determined by the consistency of the algebra: [2™, 0] = iC’aﬁJg“déd, [z™, 2"] = 0 C™™,
{6%,0°} = 0, where C™" = C“Peg,0™n7.

Because of the deformation (1) functions of § must be ordered. The simplest possible
ordering is the Weyl type. Reordering is implementing by a noncommutative x-product
which is defined as follows

WS A
bxU = C"RQiy— o (1 — C*Q.Qp + X@Q@ﬂ) v (2)

where A = —3C*?Cls. The star-product (2) is invariant under the action of @, but
is not invariant under action of ). Described deformation preserves the half of N' = 1
supersymmetry and has interesting properties in the field theory viewpoint. Replacing all
ordinary products with the above x-product, one can proceed studying a supersymmetric
field theory in this nonanticommuting superspace taking into account that this deformed
supersymmetry algebra admits well-defined chiral and antichiral representations deter-
mined by the standard relations D, ® = 0, D,® = 0. As it has been demonstrated in Ref.
[1], the *-product (2) of the chiral superfields is again a chiral superfield; likewise, the
*-product of the antichiral superfields is again an antichiral superfield. This observation
allows to extend well-studied anticommutative theories on nonanticommutative versions
by simple replacement the point product with the star product.
The action of the generic chiral superfield model on N' = 1/2 superspace is

S, [, D] = / d'zd'0 K(®,®), + / d*xd*O W (®), + / d*xd*O W (), , (3)

where K(®,®), W (®), W(®) are the arbitrary Kihlerian potential, chiral and antichiral
superpotentials respectively and the superfield multiplication is defined in terms of the
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star-product (2). Since the star-product (2) always begins with the point product, it is
easy to understand that the action (3) can be written as a sum of the action for the
general chiral superfield model on undeformed N = 1 superspace and some contributions
higher dimensions resulting from deformation of the superspace. Further we will write
the action (3) in component fields and study its structure.

We consider the chiral superpotential component form and write it as a Taylor series:

/ d4xd29W(<I>)*_i% / 2 d?0 W () 7 (@)
n=0

here W,, are the expansion coefficients taken at the point ¢ and the superfield f is defines
as f = ®(y,0) — d(y) = 0k — 0°F and f* = fx fx---* f. Our first aim is calculation of
—

n

this star-product.
Consideration of several first orders and further induction leads to the following ex-
pression

f2m — —QmQQKQ()\F2)m_1 + ()\F2)m , f2m+1 ()\F2)mf( >+ QmHZ()\mFQm—l) ] (5)

*

Collecting from (5) terms with 6%, which will survive after integration over chiral coordi-
nates we obtain the component form of the chiral superpotential

/dGzW( - /d%Z( Winl6) I OFY 4
@

The antichiral superpotential expansion around the scalar field ¢ is defined as a series

/ d*ad?0 W, (P an / dAad?0 Wi() f1 (7)

here f = B(7,0)~ d(y) = 0574 (y) — P F (y) — 8 (0uadly))B +i0° 0% ()0 + 0200 (y)
Taking into account further integration over chiral coordinates d?0 we will consider only
components proportional to §2. For example f2|g = —2&? +2@9°‘( aagf))/{ +020% D0+
CP0%pDss¢ . The last term is equal to zero due to a property 0 gbag S a(agb@a o=
0 and can be dropped. Therefore deformation doesn’t affect on antlchlral sector fxf = f-f
in accordance with Ref. [1]. All other orders is equal to zero, because each f contains
6 and f2 ~ 62 ie. f* =0, n > 2. Finally write a component form for the antichiral
superpotential

Waria(6)- NF). %)

/ LadG VW, = / d'z (Wi(3)F + Wa(d)R) | (8)

where the expansion coefficients Wi, W5 were defined in (7). As one can see the great
difference between forms of chiral and antichiral superpotentials appears. Obviously the
action doesn’t have Hermiticity properties.

The most nontrivial calculation is related to the Kahler potential decomposition. We
will suppose that its expansion is fully symmetrical in powers of f and f, i.e.

[e.e]

- 0 ~ o\ =
K((I)aq))* = Z_Oi ( aq) f8_<1>>* K((qu))“b:@ d=¢ > (9)
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Such kind of ordering leads to the following expansion

K@), =Y Ko fl+> Kafl + ) Kulf!+f7] . (10)

where [f™ x f"] is a fully symmetrized star-product including all possible permutations.
It is obviously that unmixed products like f}* for any n will not give contribution to the
Kihler potential because they do not contain factor 2 we need for further integration
over [ d?d. Unmixed star products fI' for n = 3 and higher will vanish and hence, do not
contribute to the action. Thus, we should study the star product [f™ x f™] of arbitrary
integer m with n = 1, 2. Direct calculation gives us factors at the coefficients Ki,,:

f* ffn|92§2 = 27),/{2()\F2)n_1p + (AFQ)nDQ_ﬁ ; (11)
]E* f£2n+1) ’020_2 — )\nFQn—HF — iKY adkd)\n};&n + 277,/4,2)\”F2n_1|j¢3 ]

Next, we compute factors at the coefficients K3, by the same way

JEm % [Rlo2ge = 267RP2n(AF?)" 1 4+ AP 2000546
S % Ploege = —(AF?) 2055 (8aa®) + 2R A FP 1 4+ 2nk2 AP F27 1 99400,66
(12)
Using above expressions we write the full Lagrangian in component form for the N' =
nonanticommutative generic chiral superfield model (3) as a infinite series expansion i
the parameter deformation

1
2
n

L, = K(CI), (I))*|92§2 + W(CI))*|92 + W((i))*bz = 1F + _QR2 (13)

o0 o0

)\nFQn

)\nFQn ) B ,
2 Gy Wenah” + Wania F) + F 3 5rmsy (Kiansns® + Kignsn F)
n=0 ' n=0 ’
= A\ 2=l on > )\nF2n
003 " (g1 K + e ) + 30 5y Ky (8005

n=0
n—1

+Lorag0 gz_ﬁi NI 22 4 Ko F ) + Z N 2
5 i o 2(2n K n Tor L 2@+l
9 2 (2n)! 22n D)5 2(2n) 2 2n+1)! 2(2n+1)

1

(n 1 1)1 2+ ((AF 2)”@%"‘(3&5)%)} :

—I—Z { Ksny (2nk’RZ(AF?)") +
where all coefficients are calculated at the point ¢. The Lagrangian (13) can be written

as a sum L, = L+ AL(N) , here £ is the component Lagrangian for the generic chiral
superfield model in N = 1 superspace with the action (see e.g. Ref. [9])

S[®, d] = / d*zd 0 K (®, ®) + / d*xd®0 W (®) + / d*zd*0 W (®) . (14)

In particular, being expanded around the bosonic fields ¢, ¢, the component form for the
Lagrangian (14) is written as

1_ . — . . - _
L= —géaao‘gbﬁadgb + 190 ke — K131k K 0aa® + gF' F (15)
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+Kyik*F + Ki3R2F + Wi F + WiF + Wak? + Wak? + Kosk?

where we introduced the Kihlerian metrics g = Ki1(¢, ¢) = 0°K(¢, ¢)/0pd¢. Such a
form can be directly obtained from (13) as a coefficient at n = 0.

The obtained representation for the action (13) is complicated and inaccessible even
in the classical domain. Now we show that the infinite series (13) can be resummed in a
compact expression similar to the standard Zumino’s Lagrangian [10] with the deformed
Kahler potential and the chiral superpotential plus a finite number of higher dimensional
terms with field-dependent couplings. In the analogy with the trick used in the papers
[8] we introduce "fuzzy fields” controlled by the auxiliary fields ¢ 4+ 74/AF on interval
—-1<7<1L:

1
WO, F) = %/_1 AW (6 +78), €= VAF

1

. W 5= L
1d7’K(gb+T§,¢), K9(9, F,9) 2/

1

KO (6, F. §) = % / AT K (64766

1

K0 Fd) = [ drg Ko+ 7.8) (16)

Then (13) can be rewritten in a compact form:

L,= WiF + Wyi? + FW + kWY + (FF + ir®037:)K)
+r2FKY + R2FKY + 0ok + VRO + Lo gd.aeks Y (17)
ik (090)RakC\Y + VAR L0°G0,a 0K + K2R

It is quite remarkable that the deformation encoded by new geometric quantities which
look like the "metric” ICQ, ”connection” ICS%) and the ”curvature” lCé%) in the smearing
target space. But there is no any certainty that this quantities are really consistent among
themselves and correspond to some geometrical structure of the target space manifold. It
is easy to see that we can rewrite (17) in the canonical form with a proper kinetic term for
the scalars 8O‘é“¢8adgz_ﬁlq(%) but, due to the extra dependence of K (¢, F, ¢) of the auxiliary
field F', there will be new terms containing one derivative of the auxiliary field 0%*F. At
the limit A — 0 this terms will vanish. This is the great difference between (15) and (17).

Now consider generic nonanticommuting supersymmetric sigma-model (i.e. the model
without superpotential W but with arbitrary Kahlerian potential K). It was shown in Ref.
[7] that for D = 2, N/ = 2 nonanticommuting sigma-model the component action infinite
series can be resummed to a very simple and clear form. Let’s consider such possibility
for D =4, N = % nonanticommuting sigma-model. In the linear approximation on A
the Lagrangian (13) after introducing a new metric § = g + %F 2Ks37 can be rewritten as
follows

1

. _ A A _ .
L* = —§8aa¢0ad¢(g + §F2K31 -+ 5FH2K41> + (FF + i/iaagl_id)g + iﬁa(ag¢>ﬁdgi (18)

_ g - 5 A . - 1 . _
+Fr* g1 + FR* g1 + K2R g1 + EFKQ -0 (0aa0K31) + ZF2 - 0 (Oaa 0 Ko1) -

The equation of motion for field F' following from this Lagrangian is F'g + x2§; = 0 and
at that time two last terms ~ x* that vanish. This allows to note that the expression
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(g + %F2K31 + %F%QKH) become equal §. Thus we see that Lagrangian (18) in the first
order on A is one to one correspond to the Zumino Lagrangian with the metric g. We
point out that such a consideration is true only W = 0 and for a singlet fermionic field.
In accordance to Ref. [7] one can verify that the action given by Eq. (13) at W = 0 and
W = 0 in all orders on A can be rewritten in the form Eq. (18).

Next we discuss elimination of the auxiliary fields F, F' from the component Lagrangian
(13) keep in mind the task investigate the structure of classical vacua. The Lagrangian (13)
is linear in F' but strongly nonlinear in F'. Therefore it is difficult to expect that we obtain
the exact solution on F' and F but we can perturbatively find several first corrections to
the scalar potential and to the scalar - fermion interaction terms. In particular, the scalar
potential is the most important object for studying the possible vacua of the theory and
a symmetry breaking mechanism. Let’s consider only space-time independent vacuum
expectation values for the scalar and fermionic physical fields. We suppose that F' =
Fo+Fi+---, F=F+F +---, where Fy and F, are the solutions for auxiliary fields
equations of motion in undeformed model and F, ~ \*, F, ~ A are the corrections.
Substituting this expansion into the Lagrangian (13) and keeping only linear in A terms
without derivatives we obtain first corrections to the auxiliary fields. This gives us, in
addition to the ordinary potential U, a linearly dependent on A correction

_ _ _ A
AUl(A) == g(FlFO + FlFO) —|— Fl(Wl —|— Klﬁl_iz) —|— F1<Wj —|— KQjK)Q) —|— EFOQK4§/€2R)2 (19)

+%F02F0(K41/<a2 + FoKa1) + %F&(WmQ + FyWs) + %FS’KgQRQ :
As a result, we finally obtain that the potential U is given by a series of additional terms
dependent on \. Considering the expressions (15, 19) one can see that the full potential as
a function of the scalar fields and fermionic condensate (k?) can be as positive as negative
defined depending on concrete forms of the Kéhlerian and chiral superpotentials. It means
that at nonvanishing A the potential possesses a possibility to get a minimum, though
the initial potential (15) has none minimum. Therefore one can expect some kind of
symmetry breaking in the model under consideration.

To summarize, we have considered the supersymmetric generic chiral superfield model

on N = ! nonanticommutative superspace. This model is given in terms of arbitrary

Kéhlerianontential, chiral and antichiral superpotentials. We have developed a general
procedure for deriving the component structure of the model and obtained the component
action in the explicit form as a infinite series in the nonanticommutativity parameter. This
series is summed up into compact expression using the specific integral representations.
It was shown that the additional ”deformed” part of the action allows a perturbative
translation invariant solution for the auxiliary fields equations of motion. Leading cor-
rections to nondeformed potential are calculated. The results obtained can be applied to
studying a wide class of various N' = % chiral superfield models including supersymmetric
sigma-models and models with different chiral and antichiral superpotentials.
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Abstract

The formulae for twist quantization of go are given, corresponding to the maximal
Jordanian r—matrix described by the solution of classical YB equation with support
in the 8-dimensional Borel subalgebra of go. We present the chain of twists consists
of the four factors describing the four steps of quantization: Jordanian twist, the two
twist factors extending Jordanian twist and the deformed Jordanian or in second
variant additional Abelian twist. The explicit formulae for twisted coproducts and
the choice of proper nonlinear basis are given in [1].

1 Introduction

In this paper we shall consider the basic nonstandard quantum deformations of complex
exceptional Lie algebra g,. There are four complex semisimple Lie algebras of rank 2,
given by Ay ~ sl(3), Dy >~ 0(4) = 0(3) & 0(3), By ~ Cy ~ 0o(5) ~ sp(4) and go, with 8, 6,
10 and 14 generators respectively. The 8-dimensional carrier of classical r-matrices which
describe our deformations is equal to the Borel subalgebra b (g2) of g.

We shall consider in Sect. 2 the Lie algebra go in Cartan-Weyl basis (see e.g. [2]). We
present firstly, the important class of triangular r-matrices for go, satisfying the classical
Yang-Baxter equation (CYBE). It appears that the two-parameter families of such 7-
matrices have as its carrier algebra the whole 8-dimensional Borel subalgebra b, (g2) C go.
In Sect. 3 we shall recall the general formulae which describe the twist quantization
method [3]-[8], and we shall introduce the general twisting function, describing the twist

*Supported by KBN grant1PO3B0O1828
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quantization procedure for g with the 8-dimensional carrier space for its r-matrix. The
explicit formulae for coproducts and the choice of the suitable nonlinear basis of twisted
g2 algebra are given in [1].

The motivation for our work is mainly to present a new mathematical result - inter-
esting class of quantum deformations for an important Lie algebra. On the other side
it should be stressed that g algebra recently has attracted attention of physicists in the
domain of elementary particle physics and fundamental interactions theory. In particular
we recall that:

i) In eleven-dimensional M-theory there were proposed the internal manifolds with g,
holonomy as a base for the grand unification describing extension of the standard model
in particle physics (see e.g. [10]-[13]).

ii) There are four Hurwitz algebras (real numbers R, complex numbers C, quaternions
H and octonions O); G5 acts on seven imaginary octonionic units and describes the au-
tomorphism group of the octonion algebra. All applications of exceptional and octonions
groups to the description of symmetries in elementary particle physics (see e.g. [14]) is
strongly linked therefore with the appearance of G5 symmetry.

2 Cartan-Weyl Basis of ¢ and Jordanian Type Clas-
sical r-Matrices

2.1 Cartan-Weyl basis of ¢

In order to describe Cartan—Weyl basis of g9 let us introduce the Dynkin diagram for its
simple roots IT = {ay, ay }:

Fig. 1. Dynkin diagram of the Lie algebra g-.
The corresponding standard A = (a;)(4,j = 1,2) and symmetric A*™ = (a;/™
matrices are given by

A:(2_3 _21) Asym:(_g _g’) (2.1)

)z‘,j Cartan

The Lie algebra g, is generated by the six Chevalley elements e, , e_, , b, (i =1,2)
with the defining relations (see e.g. [2])
[ ;) aj] = 0,
[ a; 76:|:a3] = iaijm €+a;
[ aZ J] = 5ij hai ’ (22)
[e:tCMl? [e:tal ? e:tag]] = O )
[[[[eﬂ:al ) e:tag]’ e:tag] e:tag] e:tag] = O °
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The positive ¥, (g2) (and total X(g2) = X, (g2) U (=24(g2))) root systems of g, is
presented in terms of an orthonormalized basis {¢,, €,} of a 2-dimensional Euclidian space
as follows

V3 .1 V3 3
Y. (g2) = {\/gel, €3, ~5 €1 £ 56, 5 € £ 562} (2.3)

V3 3

where the simple roots are given by a; = 7€ — 56 and o, = €,.

For construction of the composite root vectors e, (v # +ay, *a,), we fix the following
normal ordering of the positive root system X (g2) (see [2])

a0 F Q200 + 30y, aq + 20, 0 + 30y, Ay, (2.4)

which corresponds to ”clockwise” ordering for positive roots in Fig. 2 if we start from the
root oy to the root a,. For convenience we introduce the short notations

ek.yl = 6ka1+la2 y th = kh’al + lha2 (25)

for k,1 =0,41,.... According to the ordering (2.4) we set the composite roots generators
with suitably chosen numerical coefficients as follows

€11 = [61 0, €0, 1] ) €_1,-1 = [6 1,05 €0, —1]

€12 = [61 1, €o, 1] ) €_1,—2 = %[60 -1,€-1 —1] (2 6)
_ _3 :

€13 = [61 25 €0, 1l €-1,-3 = 1[60 -1,€6- 1—2]

€23 = [6’1 3, €1 0] ) €93 = %[6 1,0, €~ 1—3]

The complete set of relations for Cartan-Weyl basis of go can be calculated from (2.2)
and (2.6).

2.2 Jordanian type classical r-matrices for g

Let us consider in the Lie algebra go the maximal root generator ess = €24,43q,.- The
extended Jordanian matrix of maximal order is provided by formula:

r932() =& (hagNeas+er1 Nera+ersANerp) . (2.7)

In order to obtain the generalizations of the r-matrix (2.7) one can use the theorem by
Belavin and Drinfeld which states that the sum of two r-matrices r{, ry is again a classical
r-matrix [15] if r, has a carrier L € g5 (r, € L ® L) which cocommutes with r (i.e. it is
a kernel of the bialgebra cobracket).

The maximal subalgebra in g, which is kernel of the Lie bialgebra cobracket determined
by the r-matrix (2.7) has the following linear basis

L= (ho,€01,€0,-1,€23) - (2.8)

ie. [re32(€),l®14+1®1] =0 (l € L). From the generators of the subalgebra L one can
construct the following five classical r-matrices:

a) hO,l N €0,1, b) hO,l A €23, C) €0,1 VAN €23, d) h071 AN €0,—1, e) €0,—1 VAN €23.

The r-matrices which we shall consider below are obtained as the linear combination
of (2.7) and the r-matrices a) and b). One can show that the results of addition of the
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r-matrix (2.7) and the r-matrices c¢)—e) can be obtained from the previous two cases by
suitable automorphisms of the algebra gs.
It follows that we can consider two r-matrices as basic ones, or more explicitly:

rn = « hO,l A\ €0,1 -+ é (h2,3 A €23 + €1,1 VAN €1,2 + €13 A 61,0) , (29)
Ty = ﬁhoJ A €23 + 6 (hg,g VAN €23 + €11 N €1,2 + €13 N 61,0) , (2.10)

where &, «, 3 are arbitrary.

One can raise the question whether the classical r-matrices (2.9,b) can be extended
to carrier space containing also the generators belonging to b_. Unfortunately such an
extension, which can not be eliminated by the inner automorphism of go, is not possible
from purely algebraic reason. One can show that there does not exist an even dimensional
subalgebra of go, with dimension ten (two extra generators from b_), which extends the
full Borel subalgebra b, . In fact, the consideration of classical r-matrices with the carrier
in both Borel subalgebras of g, which however are not simultaneously the classical r-
matrices for sl(3) subalgebra is an interesting problem to study, going beyond the scope
of the present paper.

Below we shall consider the quantization of g, in the four steps, corresponding to the
quantization of the following sequence of r-matrices:

i) Jordanian twist quantization

Ty :£h2,3/\e2’3. (211)
ii) Two extended Jordanian twist quantizations

re; = &(hagNeas+ernNera), (2.12)
rep; = E(hagNeag+er1NeratersAerp). (2.13)

The r-matrix rg; describes the extended Jordanian twist quantization of the si(3)
subalgebra.

iii) Full twist quantization with additional twist factors describing deformed Jordanian
twist (classical r-matrix (2.9)) and the Abelian twist (classical r-matrix (2.10)).

It should be observed that the parameters «, and £ occurring in the classical r-
matrices (2.9,b) can be rescaled by inner automorphisms of g, algebra as well as by the
overall scaling of the r-matrices. In particular performing the two-parameter rescaling by
Cartan generators (we use the notation (ad® a)A® B = [a, A] ® B+ A® [a, B]).

explad®(cihy o + caho1)|r1 = 2y (2.14)

(2.15)
explad®(cihy o + c2ho)]ra = (2.16)
— e(-3etyea) Bho1 Neps+ e%“TE/EJ (2.17)

we see that while the parameter o remains unchanged, the parameters 4 and £ can be
rescaled e.g. to unity. In order to modify the parameter a we can employ the overall
scaling of the r-matrix. We see therefore, that similarly like in the case of Jordanian
deformation of sl(2) or k-deformation of Poincaré algebra, the deformations with different
values of the parameters a, # and £ are mathematically equivalent (provided a # 0,3 #
0,¢ # 0) but distinguishable if applied to physical models.
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3 Twist Quantization Method and the (General Twist
Functions for g

3.1 Quantum deformations by twisting coproducts of universal
enveloping algebras
Consider the universal enveloping algebra U(g) of a Lie algebra g as a Hopf algebra with

the comultiplication A generated by the primitive coproduct in g. The parametric
invertible solution F(§) = > fl-(l) ® fi@) € U(g) ® U(g) of the twist equations [4]

F12(A @ 1)(F)
(e®id)(F) =

= Fas(1® AOY(F), (3.1)
([d@e)(F) =111, (3.2)
defines the deformed (twisted) Hopf algebra Uz(g) with the unchanged multiplication,

unit and counit (as in U(g)), the twisted comultiplication and antipode defined by the
relations

Ap(u) = FAOwW)F', weU(g), (3.3)

Sr(u) = v SO (y : U—Zf(l)s(o)
The twisted algebra Uz (g) is triangular, with the universal R-matrix
Rp=FaF ', (3.6)

which belongs to some extension of U(g) ® U(g). When F is a smooth function of £ and
lim¢ 0 F = 1 ® 1 then in the neighborhood of the origin the R-matrix can be presented
as

Rr=1®1+&rr+o0(f), (3.7)

where 7z is the skewsymmetric classical r-matrix corresponding to the twist . Let us
write explicitly the r-matrix as follows:

rr = aij [z A [j . (38)

Then we obtain 3
F=1®1+&a"; @1+ 0O(¢), (3.9)
where oV = 1(a" — a’").
By a nonlinear change of basis in U(g) one can modify the twisted coproducts and
locate part of the deformation in the algebraic sector.

3.2 Twist deformations for U(g,) Hopf algebra

Our aim is to construct explicitly such a sequence of the twist deformations Uz(gs) of the
algebra U/(gs) that will lead to the largest possible carrier subalgebra for the corresponding
classical r-matrices. The final element of the corresponding twists will be the full chain of
extended twists whose carrier coincides with the Borel subalgebra of gs. The peculiarity
of the chain twist deformation is that the deformed algebra can be twisted step by step
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by the consecutive twisting factors with their specific properties. One of the important
aims will be also the construction of proper nonlinear basis in U(gy). Indeed, on each
step we shall construct the nonlinear basis in which the costructure of the Hopf algebra
Uz(g2) becomes more transparent.

In Sect. IT we have presented the sequence of classical r-matrices for U(gs) (see (2.11),
(2.12,b) and (2.9,b)). The quantization of these classical r-matrices is performed as fol-
lows.

a) Firstly we introduce the standard Jordanian twist quantizing the classical r-matrix
(2.11), corresponding to the long root 2a; + 3ay in go. We have the following twisting
element [16]

Fj = eh2s®o2s — HO (3.10)
where
H =hy3=2h19+3ho1, o=1In(l+ey3). (3.11)
b) There are four types of the extension twisting factors that can be applied to U;(gz)
[3]:
Fp, = emoaad (312)
Fp = easdenet? (3.13)
Fu, = eno®aoet (3.14)
Fp = e—ero@erse 17 (3.15)

They can be composed to provide the following four types of the two-element extensions
of (3.10)

_1, 1,
e1,3®e10e 27 jer1®e12e 2

Fe., = e e : (3.16)
1 1

F _ e1,3Qe1,0e” 27 —e1 2®er1e” 27 (3 17)

E,_ = € (& s .

1 1
_ —e1,0Qe1,3e” 279 e1 1®eq 2e” 27

Fp, = e oo ecreen , (3.18)
_1 _1

Fp = e cwo®ase 2 omeraerie 27 (3.19)

One can note that exponential factors in the twists (3.16) commute with each other,
and do not describe themselves the solutions of twist equations (3.1,3.2) with primitive
coproduct A, The four twists (3.16) lead to the equivalent Hopf algebras however their
coalgebra relations differ considerably. The most elegant result is obtained when the
extension is chosen as follows

1 1
— _ _ ,—e12Qe11e 27 Je13®e10e 27
Fp=Fp,=Fp Fp =c¢ e , (3.20)

with the extended twist

1, 1,
fEJ — 6—61,2®61,16 2 661,3®€1,06 2 6H®U. (321)

It should be added that the products of twists F g, F; describe the twist quantization of
sl(3) subalgebra.
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c¢) The additional Abelian twist factor (h = 3h )
Fy=e"o, (3.22)

that produces a kind of a "rotation” in the root space of go, can enlarge the extended
twist (3.21):

1 1
_ —50 —50
fAEJ — €h®oe e1,2®e1,1€ ef1.3®9e1,0e 6H®U. (323)

In such a way we obtain the quantization of the classical r-matrix (2.10).
d) We can construct the chain of twists (see e.g. [5, 6]) for g, by additionally deforming
the twisted Ugs(g2) by the second link of the chain, which is the Jordanian factor:

Fp=e® (3.24)
with X
w=1In (1 + €o,1 + 5 (6172)2) . (325)

This gives the quantization with the largest carrier

Frpy = eh®w€—81,2®€1,167%0 661,3®61,067%0 eH®o (326)

The twist function (3.26) describes the quantization of the classical r-matrix (2.9).
The twist (3.23) can also form the chain with F;» = ¢"®<". But the Abelian twist factors
F 4 and this new Jordanian factor are related by the formula F ;»F 4 = F ;. This means
that for any “rotated” extended twist F 4p; we get the unique chain (3.26).

The explicit calculations of the twisted coproducts (formulae (3.3-b)) for the twists
(3.23) and (3.26) are given in [1]. One obtains very complicated coproduct formulae. In
order to simplify them we introduced nonlinear basis, with deformed classical Lie algebra
g2 relations. The general scheme how to introduce nonlinear basis for twisted simple Lie
algebras has been presented in [9]. The calculations were quite involved and, in order to
simplify them, there were introduced some new formulae for the similarity transformations
of tensor products (see Sect. III D in [1]).

4 Final Remarks

The aim of this note is to present the general quantization scheme and to announce the
calculations, provided in [1], of explicit formulae describing maximal twist quantization
of go Lie algebra. Due to the relation sl(3) C go these formulae extend the most general
ones for twisted sl(3) algebra (see [8]). The Lie algebra generators described by the roots
(2.3) belong to 14—dimensional adjoint representation {14} of g» which decomposes under
sl(3) (or su(3)) as follows

{14} = {18} + {3} + {3} (4.1)

In particular, the coset space % describes the sphere S% with torsion. As one of possible

applications of our paper could be the new quantum deformation of such six-dimensional
sphere.
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Abstract

We study a non-anticommutative chiral non-singlet deformation of the N'=(1,1)
abelian gauge multiplet in Euclidean harmonic superspace. We present a closed form
of the gauge transformations and the unbroken N'=(1,0) supersymmetry transfor-
mations preserving the Wess-Zumino gauge, as well as the bosonic sector of the
N=(1,0) invariant action. This contribution is a summary of our main results in
hep-th/0510013.

Extensions of gauge theories to non-commutative and non-(anti)commutative super-
spaces are currently of remarkable interest within the high energy physics community,
mainly due to their relevance to subjects like string theory (see for example [2, 3] and
references therein). Here we focus in a subclass of non-(anti)commutative Euclidean su-
persymmetric field theories called @Q-deformed, realized via a Weyl-Moyal product with a
bilinear nilpotent Poisson operator, which is constructed in terms of the supercharges,

i

— aB—=k
P:_QacikBQ,@‘ (1)
The Moyal product of two superfields is then defined by
A% B=Ae"B. (2)

The deformation parameters C’iajﬁ form a constant tensor which is symmetric under the

simultaneous permutation of the Latin and Greek indices, Cgﬁ = Cﬁa. Generically, it
breaks the full automorphism symmetry Spin(4)x O(1,1)x SU(2) = SU(2)f,x SU(2)R x
O(1,1)x SU(2) of the N = (1, 1) superalgebra —O(1,1) and SU(2) being the R-symmetry
groups— down to SU(2)R. An important feature of Q-deformations is the nilpotent
nature of the Poisson operator (P° = 0) which makes the Moyal product polynomial,
ensuring local actions. In virtue of the commutation properties of P with respect to the
spinor covriant derivatives,

[D;,P]=0, [D;,P]=0, [D* P]=0, (3)
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the product (2) breaks NV = (1,1) supersymmetry down to A/ = (1,0) while preserving
both chirality and Grassmann harmonic analyticity of the involved superfields, as well as
the harmonic conditions! D¥*A4 = 0. Operator (1) can be split as follows,

P=-1Q.% Gy~ Q.Y T (4)
The first term is Spin(4) xSU(2)-preserving while the second term involves a SU(2) 1 x
SU(2) constant tensor which is symmetric under the independent permutations of Latin
and Greek indices, C’gﬁ = C’ga = C’;’;ﬁ . For the generic choice, it fully breaks Euclidean
symmetry, SU(2)7, and R-symmetry SU(2). Q-deformations induced only by the first
term are called singlet or Q)S-deformations, whereas those associated with the second
term, non-singlet or QNS-deformations. In this contribution we report important results
on dynamical aspects of QNS-deformations of the N = (1,1) U(1) vector multiplet in
harmonic superspace. The talk is based on paper [1], where detailed calculations are
performed and a complete list of references is given.

Gauge transformations The residual gauge transformations of the component fields
of the Abelian N' = (1,1) vector multiplet in the WZ gauge can be found from the
Q-deformed superfield transformation [§]

SAVilh, = DTFA 4 [l Al (5)

with V\}LVJ“Z being the analytic harmonic U(1) superfield gauge connection and A the ana-
lytic residual gauge parameter satisfying D A = D}IA = 0. In the left-chiral basis, where
9 = 9% — 4i07*6T* [9), V\}LVJFZ has the following #-expansion
VV+V+Z = (67)%¢ + 67 [207>AS + 4(07)2 W~ — 2i(0T)2070% ]
() [¢ +40HT +3(07)2 D —1(0707)0° Aaq + 00 Fuy ()
—(0%)2(7 )20 + 4i (9+)29*aaadﬁrd] .

The superparameter Ay = ia + 2070%%0,,a —i(07)%(0*)?0a (being a an arbitrary func-
tion of zy) found for the undeformed and singlet cases, breaks the WZ gauge in the
non-singlet case, due to the appearance of an unwanted dependence on the harmonic
variables uf in the expresions for the gauge variations. It is clear that is imperative
to choose a gauge parameter A that preserves the WZ gauge, that is, for non-singlet
deformations, some correction terms AA must be added to Ay, where

AN =010 95 a By % + (07)20,5a APG=0 4 (9%)2(6+)2 DaP ™!
+ (0207 | v0,5a B, + 00,0 G | + (07)%(07)? 0uca 0 6 By

+O50; (07)20a By " +10507(0%)% 055a ¢ %Blaﬁ : (7)

The coefficients in (7) are some undetermined functions of harmonics, the field ¢ and
deformation parameters, calculated by requiring

Ot 0A =0, O0Top =0, (0t1)20V, =0, (0T1)*6D "~ =0. (8)

!Giving up chirality and analiticity, it is also possible to use spinor covariant derivatives to construct
a nilpotent Poisson operator. We recommend ref.[5] for a deeper treatment of the subject.
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: ++
The correction term to 50VWZ

Vi, = DYTAA + [ AA),, (9)
and the full WZ preserving gauge transformations are given by 5V++ VJ“Jr V++

Unfortunately, it is very difficult to find closed solutions of these equatlons %or general
deformation parameters, though their perturbative solutions always exist as series ex-
pansion. For the general choice of CA’fj , the gauge and susy transformations and the
corresponding action are known only to few first orders in the parameters of deformation
[6]. Nevertheless, exact solutions can be found for the product structure

Cgﬁ - bijcaﬁ )

which correspons to the maximally symmetric non-singlet deformations. The full set of
non trivial QNS-deformed gauge transformations laws for the N' = (1, 1) vector multiplet
in WZ gauge are then

6 Ape = XcothXOpsa, 0¢=2Vc2b? (L=2LhX) A0dg, qa,
6D = 2ib;;c®*P0pa dga, OV, =2V c2b? [2 (coth X — &) — X| U040,

X = 26 /biib;; 5. (11)

Detailed calculations of these transformations laws are carried out in [1]. Having the
explicit QNS-deformed gauge transformations, one can deduce a minimal Seiberg-Witten-
like map which puts these transformations into the standard undeformed form

(10)

where

. ~. 1 .~ ~ — o~
Ul =Wl + 2V c2b? {2 (cothX - Y) - X} UAne,  Dij = Dij + 2ib;;c*’ 0na0 AS

- X cothX) . (12)

- - 1
Apg = Apa X coth X, ¢:¢—|—A2\/02b2XcothX( X

For the fields with tilde we obtain the standard transformations
§Age = Onga, 06=0, 6DV =0, §UF=0

The gauge field strength F,z = Qiﬁ(adAg) which is non-covariant with respect to the
deformed transformations is redefined under the transformation A,s — Ags as

Fap = FapX coth X +4iV0? 2 A 3,056 (CothX - where  Fop = 2i0(0aA5).

sinh? X ) ’
Unbroken susy transformations Unbroken supersymmetry is realized on V\X/JFZ as

OV = (€70sa + €°0-0) i, — DA — |13l A (13)

where the star bracket, like in the previous consideration, is defined via the non-singlet
Poisson structure with the deformation matrix C;]ﬂ = bYc,5 and A, is the compensating
gauge parameter which is necessary for preserving WZ gauge. As in the QNS-deformed
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gauge transformations case, variations obtained using the original A, for undeformed and
singlet cases (see[8]), violate the WZ gauge due to an unbalanced apperance of harmonic
and Grassmann variables [1], so one is led to properly modify A.. Thus we define

A=A+ F, (14)

We denote by SV\J?FVJFZ the lowest-order non-singlet part of the transformations coming from
the star commutator in (13) using A., and rewrite (13) in the following way

++ ++ ++ ++
OViy = OV, — DYE, - [VWZ,FG} (15)

with o . .
2(e” ¢ + (9 [ i(e701)0, 0% — 2¢, A + 4(6_9+)\IJ_0‘} +

G [ ")+ 2ie 07 P95 Ags — 2(e=07)(07)*0 (16)
i€ 010D U + 2(e0+)D ——].

The additional compensating gauge parameter intended for restoring the W7 gauge with
the minimal set of terms needed to eliminate the improper harmonic and Grassmann
dependence amounts to the following form

Fe= 0% fo 407 [77%+ 2107 0790°% f + 0T b ~% + (07)2 g~94]
+ (6)? [g“ —(07)20°0f; +100nag * + 19+a¢9—ﬁ8%” + 9+°‘fa (17)
Fi(07)207 900" P + (072 X(*4)] '
Requiring the elimination of terms with unbalanced Grassmann variables and
g =0, (9)2605 =0, 9 T 04. =0, (911)200, =0, (971D~ =0, (18)

we can explicitly find components of F. and restore the correct N' = (1, 0) supersymmetry
transformations preserving WZ gauge. The full set of these transformations together with
the full supersymmetric action will be given? in [10]. Here we show the simplest subalgebra

0,
These variations form an algebra which is closed modulo a gauge transformation with the
composite parameter a. = —2i(e-n)¢:

cb

5Am = 8¢e’5\1ﬂ bijCap + 268 Wps X coth X,

o cosh X sinh X ¢*%b — icosh® X e%e¥ | €;500a0 - (19)

[0,8,] 0 =0, [06,0,]T% =0, [6,0,] Aaa = —2i(e - 1) (X coth X) Daa .

Bosonic action Now we present the bosonic sector of the NV = (1,0) gauge invariant
action in components. The QNS-deformed action for the NV = (1,1) U(1) gauge theory
in harmonic superspace [9], in the form most appropriate for our purposes, is written in
the same way as in the QS-deformed case [§]

1 1
S:Z/d4de49duW*W: Z—l/d4$d49duW2. (20)

2In fact, it is of no actual necessity to explicitly know these transformations, since our procedure of
deriving the action is manifestly A" = (1,0) supersymmetric by construction [1].
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Here W is the covariant superfield strength

1 - _ . _
W = _Z(D+)2V__ = A(xp,0%,07) + H;FT_O‘(xL, o, 07) + (9+)27'__(xL, 07,07, (21)

and V=~ is the non-analytic harmonic connection related to VV+V+Z by the harmonic flatness
condition
- —— ++ —| _
DV - D VWZ+[VWZ,V L_o. (22)
The whole effect of the considered deformation in the above action comes from the struc-
ture of W due to the presence of the star commutator in the equation (22) defining V=~

As a consequence of the latter, (21) satisfies the condition

WZ-

It is not hard to prove that the only contribution to the entire action is the superfield A
n (21) (see [8]). Thus, the invariant action is reduced to

D++W+[v++ W} —0. (23)

S = }1 / dzd*0du A* . (24)

Once again we refer to [1] for details of the calculations leading to the relevant components
of A. Finally the bosonic limit of the action, after performing the minimal SW map (12),
is

(25)

1 cosh2 X

Sbos:/d4l’|: —%é‘:@ (b2 2)3/2tanthaa¢aaa¢D¢+
L eosh? X + 30(c- PGPS 4 150 D)(c - )]

This action is invariant under the standard abelian gauge transformations. Turning off
the deformation parameters we are left with the usual bosonic sector of the undeformed
action. Performing the further field redefinition

g 1 tanh X 1 ~ -
4 = D’Lj+ bzy : :—|: + 6223/28 2t hX],
COSh2 X ¢( ) X (10 COShQX ¢ ( c ) ( (b) an
the bosonic action can be transformed into a simple form
1 -1 1
Shos = / d*z cosh? X [—§¢D¢ + Zd”dw — 1—6F°‘ﬁFa } (26)

From this expression it is obvious that we cannot disentangle the interaction between the
gauge field and ¢ by any field redefinition. This is similar to the singlet case [8, 7], where
a scalar factor (1 4 41¢)? appears instead of cosh? X . Note that the bosonic action (26)
involves only squares ¢ and b?, so it preserves space-time Spin(4)= SU(2)1,xSU(2)R
symmetry and SU(2) R-symmetry as in the singlet case. This property is similar to
what happens in the deformed Euclidean N = (1/2,1/2) Wess-Zumino model where the
deformation parameter C*? also appears squared [3]. However, we know that the fermionic
completion of (26) will explicitly include both ¢ and b [10], so these two symmetries
are broken in the total action. This feature also compares with the breaking of Lorentz
symmetry in the deformed A" = (1/2,1/2) gauge theory action, due to fermionic terms [3].
Though the string interpretation of the QS-deformation is known [8], the possible stringy
origin of the non-singlet case —e.g. as some special N = 4 superstring background— is
still unclear.
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Abstract

A deformation of the algebra of diffeomorphisms is constructed for canonically
deformed spaces with constant 6. The algebra remains the same, while the comul-
tiplication rule (Leibniz rule) changes. Based on this deformed algebra a covariant
tensor calculus is derived and the concepts like metric, covariant derivatives, cur-
vature and torsion are introduced. This enables one to construct a deformation
of the commutative Einstein-Hilbert action which is invariant under the deformed
diffeomorphisms.

1 Introduction

The talk given by the author is based on the common work with Paolo Aschieri, Christian
Blohmann, Frank Meyer, Peter Schupp and Julius Wess [1].

The concept of symmetry is very important in physics. Classically, symmetries are
described by Lie groups or Lie algebras and the physical space is the representation
space of the symmetry algebra. Therefore, the question arises if one can introduce the
noncommutative (deformed)! spaces as representation spaces of some symmetry algebras.
It turns out that this is possible in the framework of Hopf algebras and quantum groups
2].

Here we analyse one special example of noncommutative spaces, the 6-deformed space.
It was generally believed until recently that this space has no quantum group symmetry
acting on it. However, in [3], [4] the quantum group symmetry (given in terms of the
0-deformed Poincaré Hopf algebra) was constructed. Going one step further, one can
analyse the -deformed diffeomorphism symmetry [1], [5]. Then the #-deformed Poincaré
Hopf algebra is a sub(Hopf)algebra of this larger symmetry algebra.

The #-deformed space is defined by

[z 3 2¥] = 0", (1)

where 0" = —@"" is real antisymmetric constant. The star product (x-product) is the
deformation of the of the usual pointwise multiplication and it encodes the information

”Noncommutative” and “deformed” will be used as synonyms from now on, whereas “classical”,
“undeformed” and “usual” will be synonyms for “commutative”.
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about the noncommutativity (deformation). In the case of f-deformed space, the -
product is given by the Moyal-Weyl *-product [7]

fxgle) = 35" f(a)oy)| 2)
- Zl (%) g (apl . ﬁpnf(:r;)> (agl . .&,ng(:v)>
= fg+ %Hpa(apf)(&,g) — éeplalepm(8p16p2f)(8018,,29) +.... (3)

The derivatives consistent with the algebra (1) are given by the %-derivatives 0}
0% = Oh, (4)

where J, are the usual partial derivatives. In the following we will mainly write 0y, only
when we want to stress something we write explicitly d}. Because of (4) this makes
no difference to our results. The Leibniz rule for the derivatives (4) is the classical
(undeformed) one

Rx(frg)=(Rxf)xg+ [ (03xg) ()

2 Deformed diffeomorphisms

In this section we introduce the deformed diffeomorphism symmetry.
We define the transformation law of a noncommutative scalar field ¢(z)?* to be

Oep(x) = ¢'(x) — ¢(x) = —§"9uo(x) = —(X¢ * 6(x)), (6)

where £#(z) is an arbitrary function of coordinates. The higher order differential operator
X{ is constructed perturbatively from the above requirement using the x-product (3)

X=X+ X+
(XEx) = (X% o)+ (X * o)+ ...
= (X:"0) + 507 (@, X:")(050) + (XZ'6) +.
= £"(0u9)-

This leads to the solution up to first order in the deformation parameter 6
* Z a
X;=¢8"0, - §9p (0,£")050,. (7)

It is not difficult to generalise this to all orders

xt=%" (g)"lem . gpnon (am y .apngﬂ) sy ... 0y, 0, ®)

n

2In the following we will usually omit explicitly writing « dependence of the field.
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To see if this transformations close in the algebra, one calculates
5yt = be( — X7 % ) = (X; < (XE % qb)).
Form here it follows
0g0n — Opde = Ol ), (9)

the deformed transformations (6) close in the undeformed algebra. However, this result
was expected since what has been done so far is just rewriting the classical transformation
law of a scalar field in a rather complicated way (so no reason to call it “deformed”). But
now we remember that under the classical diffeomorphisms the pointwise product of two
scalar fields transforms as a scalar field. This we generalise by demanding that the -
product of two scalar fields is a scalar field again

Og(P1 % P2) = —(Xe * (01 % 92)). (10)

The right-hand side of (10), written more explicitly using (6), reads

Ge(1 % 62) = & (901  62)) = ~€" ((0u1) 02 + 61 * (9,02))
7 —(§"(0u01)) * d2 — b1 % (€"(0u92)),

since the x-product is noncommutative. Commuting £ through the x-product gives ad-
ditional terms

Oc(1 * P2) = (0ch1) * P2 + 1 * (O¢ha) — %HPU <(5(8p§)¢1)60¢2 + (8p¢1)(5(a[,5)¢2)>, (11)

with 8g,6)01 = —(9,6")0,¢1. We see that the transformations (6) have a deformed Leibniz
rule® and this justifies calling them “deformed” transformations.

In order to construct the full Hopf algebra of deformed diffeomorphisms one has to
check if the Leibniz rule (11) leads to a good coproduct (coassociative, consistent with
the algebra (9),...). All this can be done to all orders in 6 [1]. For completeness we cite

here the full #-deformed Hopf algebra of diffeomorphisms
g0y — Opde = Ofen);
Ade = e 307080 (6@ 1 416 6 b0
— @1 +10 0 — 20" (G0 ® 0 + 0y @ 8o + - (12)
8((55) = 0, S((Sg) = —55.

Once again, we mention that the algebra sector of this Hopf algebra remains undeformed,
while the comultiplication changes.

3For the classical transformations we have

o2 (1(2)62(2)) = (3£61(2))b2(0) + 61 (&) (3 02() ).
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In analogy with (6), the transformation laws of a covariant vector field and a con-
travariant vector field are given by

0V = =ENV,) = (9,8 Va = =(XE* V) = (X, ey * V) (13)
= =€ (W) + 507 (0,6) * (Bo0AV,)
(0,6 % Vi + %epo(apaugk) c (DVA) + -,
SV = —(XFx VH) + (X, e * V), (14)

where in the second and the third line X7 and X (*Bu gr) are expanded. This can be gener-
alised to the transformation law of an arbitrary tensor.

Using the deformed coproduct (12) one can show that the x-product of two arbitrary
tensors transforms like a tensor of the appropriate rank again. Also, having covariant and
contravariant vectors and tensors one can construct invariants. For example,

1
(Vi V) = (BeVi) % VP + Vi (V%) = 207 (00,0 Vi) (05 V*) + (0,V3) B0, 0V*) )

= =& (V, % V) = —(XE x (V% V1)), (15)

3 Curvature and torsion

Having constructed the deformed diffeomorphism symmetry, we proceed as in the com-
mutative case, by observing that the partial derivative of a vector field transforms as

5§(auv;/) = (au5£VV) (16)
= —(X{* (0V) = (X(oen) * (O0V0)) — (X 00y * (0 V) = (X(5,0,60) * VA)-

Here we have used

0.X0) =Y (;)"%em .. gpaon (apl .. .apnaugk)am OOy = X gDy (17)

n

and similarly 0,Xg,er) = Xg,0,¢0). Because of the last term in (16) this is not the
transformation law of a tensor. To repair this we introduce the covariant derivative

DV, = (9,V,) — T, x V,, (18)

where I',, is the noncommutative connection. From the demand that (18) transforms as
a tensor of rank two

0¢(DpVi) = =(XEx (D)) = (X(g,e0) * (DAVL) = (X0 % (DuVA)) - (19)
one calculates the transformation law of the connection I'},
0Ly, = —(Xg*T7,) = (X{y,0 % T%) = (Xipe0 * Do) + (X{gyem) ¥ D) — 940,67 (20)

Note that, after expanding all the x-products and X* operators, this transformation law
reduces to the classical one.
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In analogy with (18) one defines the covariant derivative of a contravariant vector and
of an arbitrary tensor

D,V = (0,V") + F}VMX * Ve (21)
DATS 4y = (ONT) = D5 T2, = oo = T3+ IO
+I5L + Tﬁf’f.p“f +.. I % T:ll.'.‘.‘::;*la. (22)

The x-commutator of two covariant derivatives applied on a vector field gives the
curvature tensor and torsion

[DH * D, * V, = Ry, * Vs + Tlf‘y * D,V (23)
with
Ry’ = (0,1%,) = (0,10,) + T 05 =T 5T, (24)
T;‘V = F‘ju — Fzy. (25)
From (24) it follows
R/u/po - _Ru,upg (26)

like in the commutative case, but

def

Rp,upa = R,u,ypa * Gaa 7é RMVO’p) (27>
R,uzzpo # Rpa,uu- (28)

This is a consequence of having the x-product in (24).
In (27) we have introduced the noncommutative metric tensor G,,. By definition, it
is a symmetric tensor of rank two

SEG,U»V = —(X¢{ * G) = (X(g,e0) * Gov) = (X(,e0) * Glup) (29)

with the condition that it reduces to the classical metric tensor in the 6 — 0 limit,

G " G- (30)
However, these conditions do not determine G, uniquely and in the following we present
a few different solutions.

Looking at the transformation law of G, we see that the choice G, = g, that is the
noncommutative metric equals the classical metric, is consistent with (29). The condition
(30) is automatically fulfilled and we obtain the #-independent metric tensor. However,
this metric tensor becomes #-dependent after solving the equations of motion coming from
the deformed Einstein-Hilbert action.

One can also choose to start from a #-dependent metric tensor. Then one expands it
in orders of the deformation parameter 6

G = g + Gy + .-, (31)

where G}W is the first order correction which one calculates again by solving the equations
of motion.
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On the other hand, we remember that the classical metric tensor can be expressed in
terms of the vierbein e/

G = nabeuaeyb7 (32>

where 7, is the flat Minkowski metric and a and b are local Lorentz indices. This we
generalise to the noncommutative metric tensor

1
G = 5 ( E+xE}+E, Eub) e (33)

where E,* is the noncommutative vierbein. In order to fulfil (29), £, has to transform
as a vector field (13) and the coproduct (12) has to be used. Because of (30) in the limit
6 — 0 it has to reduce to the classical vierbein

a __ a al
Ef=el+E+. ... (34)

Note that one can also start with the classical vierbein (it is consistent with both (29)
and (30)) and after solving the equations of motion obtain that it becomes #-dependent.

Starting with the noncommutative metric tensor G, one can introduce two inverses.
The inverse with respect to the pointwise multiplication (classical inverse) we denote by

G

G - G = 6", (35)
and the inverse with respect to the x-multiplication with G***
G *x G =60, (36)

Expanding G*?* in the deformation parameter # and inserting the expansion in (36) gives
the x-inverse in terms of the classical inverse

GM™* = G* + %epa(apG'ua)(aaGaﬁ)Gﬁy
_ QG“V . GMa * Gaﬁ * Gﬂl/ (37)

This result is valid up to first order in 6. The exact result will of course depend on the
choice of G,,,. From (36), using the comultiplication (12), it follows that G*** transforms
like a tensor of rank two

(5£GNV* — _(Xg % Guu*) + (X?(‘?pf#) * sz/*) + (X(*aﬂgu) * G#P*). (38)
Note that, although G, is a symmetric tensor, its x-inverse is not symmetric
GH* £ GVP, (39)

The Ricci tensor is defined as
R, = R.°. (40)

Contracting the first and the fourth index gives the same result because of (26). Unlike in
the classical case, here it is also possible to contract the third and the fourth index since
the curvature tensor is not antisymmetric with respect to these two indices. However, the
commutative limit of this result* will not give the commutative Ricci tensor, so we do not

“In the deformed case from (27) we have R, = O(f) and in the limit § — 0, R, — 0.
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consider this possibility. From this analysis it follows that we can define the Ricci tensor
uniquely. One should also note that it is not symmetric

RNV 7é RV/L‘ (41>

However, there are more possible definitions of the scalar curvature. Some of them are

R = G"* % R,,, (42)

R = R, ~G"*, (43)
1

R = 2(G"* % Ry + Rupox ). (44)

We choose (42) to be our working definition, but one should keep in mind that there are
other possibilities.

Finally, from (25) we see that if the connection is symmetric, the torsion vanishes. In
the following we analyse only the torsion-free case, that is

Iy, =1, (45)

In order to relate the connection with the metric tensor in the commutative case one
imposes the metricity condition. We generalise this construction to the #-deformed case.
Namely, we demand that the covariant derivative of the metric tensor vanishes

DaGg»Y = (aaGgy) — Fgﬁ * GP’Y — Fgﬂ{ * Ggp =0. (46)

Then the unique result for the connection follows
ag 1 oO*
25 = 5 ((0:G5y) + (05Gr) = (0,Gan) ) + GO (47)

To obtain this result we have used that the metric tensor and connection are symmetric.
In analogy with the commutative case, we call the connection (47) Christoffel symbol.
Using the transformation properties of G, and G**, (29) and (38) respectively, and the
coproduct (12), from (47) the transformation law (20) of the Christoffel symbol follows.

Using the result (47) one expresses the curvature tensor, Ricci tensor and scalar cur-
vature in terms of the metric tensor and its x-inverse.

4 Deformed Einstein-Hilbert action

Our aim is to construct an action invariant under the deformed diffeomorphisms which
in the zeroth order limit reduces to the classical Einstein-Hilbert action. To do this, we
first need an integral with the cyclic property,

[ttt confi) = [ate (s fin faeox fioa) (48)

Fortunately, the #-deformed space is simple enough and the usual commutative integral
has this property.
We also need a x-density E* that transforms like

SeE" = —(X¢ % B*) — (X[, o) ), (49)
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such that
Se(E* % R) = —0), <X§*M X (E**R)). (50)

Then the action
Sz/d%E**R (51)

is invariant under the deformed diffeomorphisms

5§</d4x E**R> ~0. (52)

The problem with this so far undetermined x-density is that the transformation law
(49) does not give enough conditions to fix E* uniquely. Adding the requirement of the
proper commutative limit does not help, so we have to make a choice once again. We
remember that the classical Einstein-Hilbert action can be written as

S = / d*z eR, (53)

where e = dete," is the determinant of the classical vierbein and R® is the classical
scalar curvature. In the previous section we have already introduced the noncommutative
vierbein and we have to generalise the concept of a determinant. This is not too difficult,
we define the x-determinant as

1
B =det, B, = Eg“l“'““galnmEu‘l“ * ook B (54)
where e#1-#4 is the totally antisymmetric tensor of rank 4. By using the comultiplication
(12) one checks that (54) has the right transformation property (49) and (34) ensures the
good commutative limit.

Finally, the deformed Einstein-Hilbert action we define as

S = /d4x (E** R+ c.c.),
= /d4x (E*« R+ Rx E%). (55)

In order to have a real action we added the complex conjugated part also. The action
(55) can be varied with respect to E " to give the equations of motion. Of course, this
fixes our choice of the noncommutative metric tensor to (33) and all the quantities like
R, R, ... have to be expressed in terms of E *.

5 Expansion in the deformation parameter

In this section we expand some of the results from the previous sections up to first order
in the deformation parameter § and in terms of the classical fields, vierbein e, metric
g and the inverse metric g"° . We start with the basic object, the vierbein. It is given

by
a __ a al
Ef=e/+E" +..., (56)

a

®Since one can express g, and g"” in terms of e

the results.

what we obtain might not be the final form for
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where £,*" is linear in 7. Note that this differs from the approach that was taken in [1].
There the vierbein is taken to be the classical object, keeping in mind that after solving
the equations of motion it becomes #-dependent. Here we start from the beginning with
the f-dependent object. Using (56) and (54) one calculates E*

1
*  H1p2p3 4 a1l a2, ag , a4
BT =e+t 3'6 6“1‘12“3“4E#1 Crs Cus Cpa - (57>

From (33) and (36) it follows

Gw/ = g/“’ + nab<E,ualeVb + euaEubl)? (58)
* 174 Z loa o 14
GHvx = gt — 59;} g" (5pgag)(8agﬁ )

—Nabg" (B ey + ea“Eﬁbl)gﬁ”. (59)

For the Christoffel symbol from (47) we obtain
)
sz - Fgf} + Zepa(apaugw + 050097 — 0p0+9)(0597%)

i o wor . a a wao
_ZFSZ <6p (8Pg7w)(adg ) - 2Znab(E'y 1ewb + e'y Ewb1>g )

I, (aM(Eyalej’ +e B
_}_aV(E‘ua leﬁ/b + eHaE’ybl) o aW(E‘ua lel/b + ep,aEub 1)>97a
def 0 al
=T, +T5 (60)
We see that already this result is long and not very readable. Therefore, we just give the
implicit result for the curvature tensor

i
Ryo” = Ryo + (0,70) = (0u0703) + 507 (0,002 (0,13,)) — (9,132) (9.13))

uvo

HL0aTs, + Toals, = Thals = Thals,. (61)
One can continue like this and calculate R, and R in terms of the classical fields and
corrections. This results can be inserted into the equation of motion obtained by varying
the action (55). Solving that equation one finds the corrections to the classical vierbein
and sees how the noncommutativity influences the classical solutions. However, we are
not going to do these calculations here, they will be the subject of future research.

6 Conclusions

We have seen how the deformed diffeomorphism symmetry can be constructed®. The
method used is a rather general one and can be applied to other deformed spaces as well.
As the final result we presented the deformed Einstein-Hilbert action. In the next step the
equations of motion should be calculated and solved to see how does the noncommutativity
effect the classical solutions.

6For another approach to this problem see [5].

130



References

1]

P. Aschieri, C. Blohmann, M. Dimitrijevi¢, F. Meyer, P. Schupp and J. Wess, A
Gravity Theory on Noncommutative Spaces, Class. Quant. Grav. 22, 3511 (2005)
[hep-th/0504183].

A. Klimyk and K. Schmtidgen, Quantum Groups and Their Representations, Springer
(1997).

R. Oeckl, Untwisting Noncommutative R? and the Equivalence of Quantum Field
Theories, Nucl. Phys. B581, 559 (2000) [hep-th/0003018]; M. Chaichian, P. P. Kul-
ish, K. Nishijima and A. Tureanu On a Lorentz-Invariant Interpretation of Non-
commutative Space-Time and Its Implications on Noncommutative QFT, Phys. Lett.
B604, 98 (2004) [hep-th/0408069]; F. Koch and E. Tsouchnika, Construction of
0-Poincaré algebras and their invariants on My, Nucl. Phys. B717, 387 (2005) [hep-
th/0409012].

J. Wess, Deformed Coordinate Spaces; Derivatives, Lecture given at BW2003 Work-
shop Mathematical, Theoretical and Phenomenological Challenges Beyond Standard
Model 29 August - 02 September, 2003 Vrnjacka Banja, Serbia, hep-th/0408080.

P. Aschieri, M. Dimitrijevi¢, F. Meyer and J. Wess, Noncommutative Geometry and
Gravity, hep-th/0510059.

C. S. Chu and P. M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B
550, 151 (1999); J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on
noncommutative spaces, Eur. Phys. J. C16, 161 (2000); V. Schomerus, D-branes and
deformation quantization, JHEP 9906, 030 (1999).

H. Weyl, Quantenmechenik und Gruppentheorie, Z. Phys. 46, 1 (1927); J. E. Moyal,
Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45, 99 (1949).

131



Representations of A-type Hecke algebras

A. P. Isaev'* O. Ogievetsky*!

U Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research,

Dubna, Moscow region 141980, Russia
isaevap@theor. jinr.ru

2 Center of Theoretical Physicst Luminy, 13288 Marseille, France
and P. N. Lebedev Physical Institute,
Theoretical Department, Leninsky pr. 53,

117924 Moscow, Russia
oleg@cpt.univ-mrs.fr

Abstract

We review some facts about the representation theory of the Hecke algebra.
We adapt for the Hecke algebra case the approach of [1] which was developed for
the representation theory of symmetric groups. We justify an explicit construction
of the idempotents in the Hecke algebra in terms of Jucys-Murphy elements. Oc-
neanu’s traces for these idempotents (which can be interpreted as g-dimensions of
corresponding irreducible representations of quantum linear groups) are presented.

1 Introduction

Main statements of the representation theory of Hecke algebras are known mostly due to
the works by V.Jones, 1.V.Cherednik, G.Murphy, R.Dipper and G.James, H. Wenzl, a.o.
(see, e.g., [2] — [5]). In this report the approach of [1], developed for the representation
theory of symmetric groups, is generalized to the case of the A-type Hecke algebras.
Certain propositions below are given without proofs due to lack of space and, also, because
the corresponding statements for Hecke algebras are proved like those for symmetric
groups.

The importance of the theory of the A-type Hecke algebra H,,; is that H,,; is the
centralizer of the action of general linear quantum groups U,(gl(N)) in the tensor powers
VEM of the vector representation V' of U,(gl(N)). We have shown recently [6] that an
arbitrary representation of the Hecke algebra H,; defines an integrable model on a chain
with M sites. This fact demonstrates the importance of the representation theory of the
Hecke algebra in the theory of integrable models also.

*Supported by the grants INTAS 03-51-3350 and RFBR 05-01-01086-a

fSupported by the ANR project GIMP No. ANR-05-BLAN-0029-01

tUnité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix—Marseille I, Aix-Marseille
IT et du Sud Toulon — Var; laboratoire affilié & la FRUMAM (FR 2291)
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2 A-Type Hecke algebras and Jucys - Murphy ele-
ments

A braid group Bjsy1 is generated by Artin elements o; (i = 1,... M) subject to relations:
0;0i4+10; =04410;0441, 0;05 = 0;0; for |Z—j| >1. (21)

An A-Type Hecke algebra Hy;11(q) (see e.g. [2] and Refs. therein) is a quotient of the
group algebra of the braid group B, by an additional relation

ol —1=(q—qHo;, (i=1,...,.M). (2.2)

Here ¢ € C\{0} is a parameter. The group algebra of B4 (2.1) has an infinite dimension
while its quotient Hp,4 is finite dimensional. It can be shown (see e.g. [5]) that Hpsq is
spanned linearly by (M + 1)! elements, e.g., those which appear in the expansion of the
special operator

E1—>M-|—1 == f1—>M+1 f1—>M te f1—>2 f1—>1 )

where f;_., are 1-shuffies defined inductively by f11 =1, fipn+1 = 1+ f1, 0,. Below we
assume that ¢ # exp(2mwin/m), n,m € Z (q is ”generic”); for these values of ¢, there exists
an isomorphism between the algebra Hjs,1(q) and the group algebra of the symmetric
group Sys11 (the case ¢ = £1 is exceptional, in this case Hy, .1 = group algebra of Sy 1).

An essential information about a finite dimensional semisimple algebra A is contained
in the structure of its regular bimodule which decomposes into direct sums: A = °_, A-
eo , A=@)_,eq-Aofleft and right submodules (ideals), respectively (left- and right-
Peirce decompositions). Here the elements e, € A (o = 1,..., s) are mutually orthogonal
idempotents: e, es = 043 €4, resolving the identity operator: 1 = 22:1 eq. There are
two important decompositions of the identity operator and correspondingly two sets of
the idempotents in A:

(1) Primitive idempotents. An idempotent e, is primitive if it can not be further resolved
into a sum of nontrivial mutually orthogonal idempotents.

(2) Primitive central idempotents. An idempotent e’ﬁ is primitive central if it is primitive
in the class of central idempotents.

For the A-type Hecke algebra Hjy11(q) a set of elements {y;} (i = 1,...,M + 1) is
defined inductively: y; = 1, y;21 = o;y;0;. These elements are called Jucys - Murphy
elements and can be written (using the Hecke condition (2.2) and the braid relation (2.1))
in the form

71—

Yi =0i—1-. .0'20'%0'2. .01 = (q — q_1>z Ok ...0,_90,_10;_9...0+ 1. (23)
k=1

Sometimes it is more convenient to use elements (y;—1)/(¢g—¢~!) which, due to (2.3), have
a nontrivial classical limit (¢ — 1). The elements y; pairwise commute. The following
statement explains the importance of the set {y;}.
Proposition 1. The set of Jucys - Murphy elements {y;} (i =1,..., M +1) generates a
mazimal commutative subalgebra Yyri1 wn Hpyyq.

We construct primitive orthogonal idempotents e, € Hj;11 as functions of the elements

yi € Yary1; they are common eigenidempotents of y;: yeq = €qy; = aga)ea (i=1,..., M+

133



1). We denote (as in [1], for symmetric groups) by Spec(yi, . . ., yar+1) the set {A(eq)} (Vo)
of strings of eigenvalues: A(e,) = (aga), . ,ag\z)ﬂ). In view of the following inclusions of
the subalgebras Y; and H;(q):

Hi(q) C Hiy1(q)
U U
Y, C Yig

one can describe the idempotents € H;,; by considering the branching of the idempotents
of H; in H; 1. It can be shown that the multiplicity of this branching is equal to one and
y; are semi-simple for generic q.

We need important intertwining operators [8] (presented in another form in [3])

Uni1=0p0Yn — Ynon (1 <n < M). (2.4)
Elements U; satisfy relations! U, U,,+1 U,, = U,y U, U, 41 and
Un+1yn - yn+1Un+17 Un+1yn+1 - ynUn+17 [Un+17 yk] =0 (k 7é n,n + ]-)7 (25)

U3+1 = (qyn - q_l yn-i—l) (q Ynt+1 — q_l yn) . (26)

The operators U, "permute” elements y,, and y,+1 (see (2.5)) which supports a state-
ment that the center Z,; 1 of the Hecke algebra Hj;q is generated by symmetric func-
tions in {y;} (i = 2,...,M + 1) (to prove this fact it is enough to check relations:
[Oks Yn + Yns1] = 0 = [0k, Ynlnsa] for all k < n +1).

Proposition 2. One has

Spec(y;) C {¢*#} Vji=1,2,..., M +1, (2.7)

where Z; denotes the set of integers {1 —j,...,—2,—-1,0,1,2,...,j —1}.
Proof. We prove (2.7) by induction. Obviously, Spec(y;) satisfies (2.7). Assume that
the spectrum of y;_; satisfies (2.7) for some j > 2. Consider a characteristic equation for

yj—1 (7 > 2):
Flyia) =51 - ™) =0 (4} € Spec(y; 1)) .

(67

Using properties (2.5)-(2.6) of operators U, we deduce

0="U;f(yi-)U; = f(y;))U2; = fly;)(@*yj—1 — y;) (¥ — ¢ *y-1) - (2.8)

which means that Spec(y;) C (Spec(y;-1) U ¢ - Spec(y;_1)). .
3 Generalization of the approach of [1] to the Hecke

algebra case

Consider a subalgebra HZ(Z) in Hyyq with generators y;, y;+1 and o; (for fixed i < M). We
investigate representations of HZ(Z) with diagonalizable y; and y;,;. Let e be a common

!The definition (2.4) of intertwining elements is not unique. One can multiply U, 1 by a function
fWnsYnt1): Unt1 = Uns1 f(Yn, Yn+1). Then egs. (2.5)-(2.6) are valid if f(yn,Ynt1)f(Ynt1,yn) = 1.
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eigenidempotent of y;, y;11: yie = a;e, yir1e = a;1e. Then the left action of ]:IS) closes
on elements v; = e and vy = 0;e and is given by matrices:

(0 1 (a —(g—qgYHain (aim (@—q Ha .
Uz—(l q_ql)ayz_(o Uit y Yit1 = 0 a; )
(3.1)

a; # a;+1 otherwise y;, y;+1 are not diagonalizable. The matrices y;, y;+1 (3.1) can be
simultaneously diagonalized by a similarity transformation y — V ~'yV, where

1 (9=~ Y aits 1 — (=g Haits
V = a;—Qiq1 , V= a;—Qiq1 .
0 1 0 1

As a result we obtain

(g=g~ Y ait1 1 — (g=¢~"2a;ai41

- O ai—ais (ai—ai+1)2 [ a 0 [ G4 0
0; = ) (a—q~V)as y Yi = (O ai—i—l) » Yir1 = < 0 a : (32)

A —Qi41

When a;11 = ¢*%a;, the 2-dimensional representation (3.2) reduces to a 1-dimensional
representation with o; - e = £¢*! e, respectively. We summarize the above results as (cf.
Proposition 4.1 [1]):

Proposition 3. Let A = (a1,...,a;, 041, ...,ap41) € Spec(yr, ..., Ymi1) be a possible
spectrum of the set (yy, . .., Yar+1) which corresponds to a primitive idempotent en € Hyy .
Then a; = ¢*™, where m; € Z; (see Prop. 2) and (a) a; # a;q1 for i < M; (b) if
aiv1 = q72a; then o; - epn = £qtten; (¢) if a1 # ¢ 2a; then

N = (a1, .., Giv1, G4, .. Qpr41) € SpeC(Yr, - ., Ynit1) (3.3)

and the left action of the elements o;,y;,y;r1 in the linear span of vy = ex and vy =

o;ep + %61\ is given by (3.2).
Proposition 4. Consider the string A = (a1, ..., a,) of numbers a; = ¢*™, where m; € Z;

(see Prop. 2). Then A = (a1, as,...,a,) € Spec(y1, Yz, .- ., Yn) iff A satisfies the following
conditions (z € Z)

(1) a; = 1 )
(2) a; =q¢* = {PFY, PE N ay, . a0 #FOD Vi>1, 2 #0; (3.4)
3) ai=a;=q¢* (i<j)= {P", PV} C {ai, .. a5}

Proof. The condition (1) is the identity y; = 1. Conditions (2),(3) can be proven by

induction (see the proof of analogous Theorem 5.1 in [1]). To prove the condition (3) we
need the fact that the combinations (...,a;_1,a;, ai11,...) = (...,a,¢"%a,a,...) cannot
appear in A: the braid relation ¢;0,410; = 0,410;0,41 is incompatible with the values
o; = ¢, 0;11 = F¢T (see the condition (b) of Proposition 3). o

Consider a Young diagram with M + 1 nodes. We place the numbers 1,..., M + 1
into the nodes of the diagram in such a way that these numbers are arranged along rows
and columns in ascending order in right and down directions. Such diagram is called a
standard Young tableau [v]j41. The standard Young tableau [v/]y41 defines an ascending
set of standard tableaux: [v]; C [v]s C ... C [V]m+1. In addition we associate a number
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¢*™=™ (the ”content”) to each node of the standard Young tableau, where (n,m) are
coordinates of the node. Example:

Jn
T 2 1 6
1 q> q* q°
3 5 3
a? | 1 q?
7
m q* (35)

In general, for the tableau [v|y;11, the i-th node [v];\[v];—1 with coordinates (n, m) looks

like: |'q2n—m | Thus, to each standard Young tableau [v], one can associate a string

nfm).

ay,...,ay) with a; = ¢q .g., a standar oung tableau (3.9) corresponds to a

ith A E dard Y bl 3.5 d
string (1,¢%,¢72,¢* 1,¢% ¢~*, ¢%). This string satisfies conditions of Prop. 3 and therefore
(1,¢%,¢7%,¢*1,4¢% ¢, ¢*) € Spec(yi, - .., ys). This relation between contents of [v], and
elements of Spec(y, . ..,y,) can be formulated as (cf. Prop. 5.3 [1]):

Proposition 5. There is a bijection between the set T'(n) of the standard Young tableaux
with n nodes and the set Spec(yi, ..., Yn)-

4 Coloured Young graph and explicit construction of
idempotents ¢,

The above results can be visualized in a different form, in terms of a Young graph. By
definition, a Young graph is a graph whose vertices are Young diagrams and edges indicate
inclusions of diagrams. We put the eigenvalues a; (colours) of the Jucys-Murphy elements
y; on the edges in such a way that the string (aq, as, . .., a,) along the path from the top ()
of the Young graph to the diagram A with n nodes gives the content string of the tableau
of shape A. For example, the coloured Young graph for Hy is:

0

1 =W

-2

AN -
VNS

The path {0 N QP i S° oo } corresponds to the tableau [v]4 :=1 124 | with
' 1
content string (1,¢% ¢ 2,1): the shape of the tableau is given by the shape of the last
vertex of the path while the labels of nodes of the tableau shows in which sequence the
points e appear in the vertices along the path. The edge indices of the path are eigenvalues
of the Jucys-Murphy elements: (1,¢% ¢ 2,1) € Spec(y1,¥y2,y3,ys) corresponding to the
values of y; on the primitive idempotent e ([v]s). Thus, we associate a standard Young
tableau with n nodes (related to a string in Spec(y, ..., yn) and, correspondingly, to the
primitive orthogonal idempotent of H,,) with a path which starts from the vertex () and

goes down to the vertex with Young diagram with n nodes (the path with n edges in the

lH o000
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coloured Young graph). Denote by X (n) the set of all such paths and by Str(n) the set of
the strings A = (ay,...,a,) of numbers a; = ¢*™ satisfying conditions (3.4). We collect
the above construction in the following statement.

Proposition 6. There is a bijection between the set T'(n) of the standard Young tableaux
with n nodes, the set Spec(yi, ..., yn),the set Str(n) and the set X (n) of the paths of length
n in the Young graph: T(n) < Spec(y1, ..., yn) <> Str(n) < X (n).

The dimension of the irreducible representation of H,(q) (corresponding to the Young
diagram A with n nodes) is equal to the number of standard tableaux [v], of shape A or,
as we saw, to the number of paths which lead to this Young diagram from the top vertex
(. This number is given by a Frobenius formula dy = n!(hy! ... h!) ™ ], (ki —h;), where
k is the number of rows in A and h; are hook lengths of the nodes in the first column of
A (see, e.g., [7]).

Since the coloured Young graph for H,;,; contains the whole information about the
spectrum of y;, we can deduce the expressions (in terms of the elements yy) of all orthog-
onal primitive idempotents for the Hecke algebra using the inductive procedure proposed
in [7]. This special set of primitive orthogonal idempotents has also been described in [4].

Let A be a Young diagram with n = ny rows: Ay > XAy > ... > A, and [A] =)0\

be the number of its nodes. Consider the case when Ay = ... = A\, = Aq) > A\ 41 =
)\n1+2 =...= )\nQ = )\(2) >0 > )\nk*nk—1+1 =...= )\|)\| = )\(nk):
A 1
L
A = ng—ny nly)\m
ng,)\@)
- n37)‘(3)

”k‘”k—lz]nk’)\(k) (4.1)

Here (n;, A)) are coordinates of the nodes corresponding to the corners of the diagram
A. Consider any standard Young tableau [v] of shape (4.1). Let e([v]y) € Hpy be a
primitive idempotent corresponding to the tableau [/])5. Taking into account the branch-
ing rule implied by the coloured Young graph for H)y4; we conclude that the following

identity holds
k+1

e([v]n) H (?J|A\+1 - QQ(/\(”_nT_l)) =0,
r=1
where A(41) = no = 0. Thus, for a new tableau [Vj]‘ Al+1 Which is obtained by adding to
the tableau [v]}y of shape (4.1) a new node with coordinates (n;_; +1, A\(;) +1) we obtain
the following primitive idempotent (after a normalization)

k+1 Yo — q2()‘(r)_nr71)
6([Vj]|A|+1) = 6([V]|A|> H ((]2(<>\(7>n31) _ q2()\(r)nr>1)) = e([”]m) Hj : (42>

r=1

r#i

Using this formula and ”initial data” e () = 1, one can deduce step by step explicit
expressions for all primitive orthogonal idempotents for Hecke algebras.
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5 g-dimensions for Young diagrams

Consider a linear map T7gummi1y: Hmi1(q) — Hpm(q) from the Hecke algebra H,,.1(q) to
its subalgebra H,,(q) such that (VX,Y € H,,(q), Z € Hpni1(q))
TTd(m—i—l) (X) = ZdX, TTd(m+1) (X ZY) XT?“d m4+1) ( )
Tramn (05 XoF) = Tramy(X), Tramsn(om) =1,
Tragm) Tram+1)(0mZ) = Traem)Traom1)(Zom)

(5.1)

. . 1—g—2d .
where z; is a constant which we fix as z; = q_({l_l for later convenience. Then one can

(m+1)

define an Ocneanu’s trace 7Tr
TranyTraz) - TTagmer)-

. Hpi1(q) — C as a sequence of maps 7r(m+h =

Proposition 7. Ocneanu’s traces of idempotents e([v]y), e([V']jn) corresponding to
tableaux [V])5, [V]|n of the same shape X coincide. Thus,

qdim(A) := Tr("\De([l/]w) = Tr(|’\‘)e([y']‘)\|)

depends on the diagram X\ only.
Using (5.1) we deduce an identity (see Appendix)

Y T ):u—nﬂd) T Oorw

14+ (q—q¢ HTr (
( Mraaaen {1 YA+ T L=7) 5 (= rye)(L = q7?Tys)

where 7 is a parameter. To calculate ”qdim” for the diagram (4.1) we need to find the
value of the element (5.2) on the idempotent e([v]y), where [V] ,  is any Young tableau of
shape (4.1). We take the "row-standard” tableau [v] , corresponding to the eigenvalues
of y, arranged along the rows from left to right and from top to bottom:

=1 1=0 y13=q, ..., p-1 = Ny, = PN,
Yne1 = q_z’ Y+ = 17 ey Y = q2()\2_2)7

The result is (ng = n,ng := 0)

—q Y _=2d k1 2(A—ny)
q q /‘LJ o 1—7g¢ 1—7¢g @7
d(|%|+1) (Z P 1— 7 ) = e([V]\M) (1 — g2 H 1 — T 1 -1, (5‘3)

J=1

where we have inserted into the lL.h.s. the spectral decomposition of the idempotent

e([]) (see (4.2)):

Ay —nsi—
e([v],) = e([v],, ZH _Z Py, = P 2000 = Py,

The operator P; projects yjx41 on its eigenvalue p; := ¢ 22 ~mi-1) which appeared in the
denominator of the r.h.s. of (5.3). Comparing both sides of eq. (5.3) we deduce

k
. (1—p;7) (1 —7q% 1 — 712G =n)
I, Taga+1) <P> = e([ ]|)\|) lim ]_1) H

—1/u; (@ —q 1—7qg2n - 1 —7u,
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Hn,me)\ [hn,m]q
Hn,me/\(j> [hn,m]q ’

where h,, ,, are hook lengths of nodes (n,m) of the diagrams A or A¥) (AU is a diagram
obtained by adding to the diagram A a new node with coordinates (n;_1 + 1, Aj) + 1)).
Applying the Ocneanu’s trace 7r(N) to eq. (5.4) we find a recurrent relation:

Hn,me)\[hnvm]q
! Hn,me)\j [hn,m]q 7

= e([) - g g0, (5.4)

qdim(AY) = qdim(A) ¢~ [Aj) — nj1 + d]

which is solved by
[d+m —n],

[Fon.mlq

Up to a normalization factor this formula has firstly been obtained in [5].

For R-matrix representations of Hys41(g) (about R-matrix representations of the Hecke
algebra see Refs. [9], [10]) which corresponds to the quantum supergroup GL,(N|M), the
parameter d equals N — M. This justifies our choice of the parametrization of z; in the
first eq. of (5.1).

Proposition 7 can be generalized. Let T be a quantum matrix satisfying

adim(A) = ¢~ ]

n,meA

ng T1 T2 — ﬁ€12 T1 TQ (55)

in the notations of [10], where Ry, = p(0y) is the R-matrix representation of the Hecke
algebra.

Proposition 8. The quantum traces (for the definition of the quantum trace see e.g.
[10], [11], [12]) of the matrices [T} - --Tix p(e([V]1n))] and [Ty -- - Tix ple([V']x))]

XA(T) = Trra—py (Ti- - Tix ple([Vin) = Trra—pp (Ta-- Ty ple(V]n))

corresponding to tableaux [v]|y and [V'] ) of the same shape A, coincide. Thus, x\(T)
depends only on the diagram .

Consider the GL,(N) quantum group (5.5) with a standard GL,(/N) Drinfeld-Jimbo
R-matrix Ry, [10]. It is known [9], [10] that the standard GL,(N) matrix Ry, defines the
representation of the Hecke algebra. We note that the GL,(N) quantum matrix 7" can be
realized by arbitrary numerical diagonal (N x N) matrix X. Then y,(X) is a numerical
function of the deformation parameter ¢ and the entries of X. In the classical limit ¢ — 1
the operator p(e([v])y)) tends to the Young projector and the function x»(X) coincides
with a character of the element X (X € GL(N)) in the representation corresponding to
the diagram .

6 Appendix

Taking into account the definition of the generators y,, we have equations

1 _1 _1 1 AYm 1
— o =0 + 6.1
= yrd) C—o) T =g =) (6.1)
1 o1 At 1
—— 0y =0, + , 6.2
= ymsd) C—um) =) C=ymrd) (62)
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where X := ¢ — ¢ '. Egs. (6.1), (6.2) and the definition of the map (5.1) give a recurrent
relation
(t = ¢*Ym)(t = 4"*Ym)
(t - ym)2
where the parameter z, is introduced in (5.1) and

1
Zm = TT‘d(m) ((t —y >) .
Eq. (6.3) is simplified by the substitution Z,, = Z,, — [1 — Azg] /(\t) and we have

(t = Cym)(t — 4 2Ym) 5 -~

@iy—y”;)? 1= Az | (6.3)

Zm+1 - Zm +

Lmi1 = Lo -
(t — ym)? o
This equation can be easily solved and finally we obtain the expression
1 A Zd ) i (t - yk)Z 1
Il = — | 1+ — — 1=z,
a=n (e | E o e R A

which is equivalent to (5.2) for t = 1/7.
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Abstract

We propose a computational method allowing us to find the entire set of toric
matrices associated to a modular invariant and to recover the corresponding Oc-
neanu graph, using as input data the modular splitting equation, the algebra of
characters and the modular invariant.

Introduction and general aspects

The original ADFE classification of modular invariant partition functions of affine SU(2)
conformal field theories [2] has become the starting point of a rich development in the
field of mathematical physics. The original identification was mostly justified by the fact
that exponents of the corresponding ADE Lie algebra were in correspondence with the
diagonal entries of the modular invariant partition function, but the diagram itself was not
an ingredient of the model. Later the occurrence of ADFE diagrams in the classification of
affine SU(2) models changes when V.B. Pasquier stated [12] that the diagrams actually
participate in the construction of the symmetry algebra of the field theory.

About ten years ago, the occurrence of ADF diagrams in the affine SU(2) classification
was understood in a rather different way. The observation (already present in [12]) was
that the vector space spanned by the vertices of the diagram A, possesses an associative
and commutative algebra structure encoded by the diagram. this “graph algebra” is the
truncation at certain level of the Weyl alcoves of g5, and is isomorphic to the fusion algebra
of irreps of .

The algebra of quantum symmetries: Associated to every ADE Dynkin diagram
G there exist a special kind of weak Hopf algebra (or quantum groupoid) BG which is
finite dimensional and semi-simple for its two associative structures [9]. Existence of
a coproduct on the underlying vector space (and on its dual) allows us to define two
-usually distinct- algebras of characters living on the same vector space. The first one,
called the fusion algebra, and denoted A(G), is identified with the graph algebra of A,
in the sense of Pasquier [12]. The second algebra of characters is called the algebra
of quantum symmetries denoted by Oc(G); it is an associative — but not necessarily
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commutative — algebra with two generators. This algebra comes with a particular basis,
and the multiplication of its basis elements by the two generators is encoded by the so
called Ocneanu graph which is also denoted by Oc(G). The quantum groupoid BG has
several interesting properties, for instance, Oc(G) is a bimodule on the graph algebra
A(G), the double action of A(G) on BG Az p =3, (Way)r. y is encoded by the set of “toric
matrices” W,,. Toric matrices have positive and integer entries and establish the relation
with CFT: in effect the toric matrix corresponding to x = y = 0 is modular invariant, and
when contracted with the characters of an affine algebra, gives the partition function of
the corresponding CFT, Z = >i; Xi(Woo)ijX;. The others matrices have been interpreted
[13] as giving CFT with twisted boundary conditions and defect lines labelled by x, y.

A. Ocneanu showed ([10][11]) that this construction can be generalized for highther
Coxeter-Systems, in particular he showed the resulting graphs giving the classification
of affine SU(3) and SU(4) theories and suggested that the construction (the quantum
grupoid structure) was straightforward generalizable for higher levels. However the ex-
plicit construction of the quantum grupoid BG is a very complicate problem, and except
for SU(2) and to some extent SU(3), the Coxeter-Dynkin system itself is not a priory
known. Whereas the modular invariants are provided by the algorithms of T. Gannon [6],
this allows to explore up to rather high levels the toric structures associated to it.

The objective of our work (see [4] and [8]) is to propose a computational method
allowing to find the entire set of toric matrices associated to a modular invariant and
to recover the corresponding Ocneanu graph, using as input data the modular splitting
equation, the algebra of character or fusion algebra and the modular invariant itself. In
most of the cases this information is enough to explicitly construct the algebra of quantum
symmetries associated to the modular invariant.

Modular Splitting

Let A\, u,v,... and z,y, z,... denote the vertices of A(G) and Oc(G) respectively, asso-
ciativity in these two algebras imposes conditions which result in a constraint equation
called the double fusion equation, this equation can be written in terms of double annular
matrices [13] [3] or in terms of toric matrices W, [15]

Z (N/\)XA”(Nu)u’u”(ny)N’u” = Z(Wﬂz)ku(Wzo)A’u’ (1)

)\N'LL// z

Take z and y equal to zero, the L.h.s. of (1) involves only known quantities, namely,
the modular matrix M = Wy and the fusion coefficients Ny , of the A(G) algebra . For
each pair (\,p) € {1,2,...dy = dimA(G)} the Lh.s. of (1) is a known d4 X d4 matrix
Ky, = (N A M- N MT ) containing only positive and integer entries, and the r.h.s. involves
the set of toric matrices W.o and Wy, to be determined.

K/\;L = Z (WOz))\,uWZO (2)

2€0¢(Q)

This is the so called modular splitting (MS) equation, its solution gives the set of
toric matrices associated to M, and the method used to compute the matrices in the r.h.s
of (2) is called Modular Splitting (MS) algorithm.
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Non degenerate case

Consider the case in which all the matrices W.q are different, then the toric matrices
form a basis of the vectorial space K spanned by the matrices K, the dimension of K
is equal to the number of points in the Ocneanu graph do = Tr(M - MT) [1]. In order
to solve equation (2) we use the following relation [14] giving the norm of a matrix K,
(K =20, | (Woz)au 2. Because coefficients (Wo. )\ are positive integers, the number
of terms in the expansion (2) can be deduced from its norm as follows:

e If (Ny M -Nyp=1=1"=K,, = W.,m0- Then Ky, is a toric matrix.

o If (N/\ M - NN))\*M* =92 =12 + 12 — K)‘N = WZ(,\H)O + WzE/\H)O'

o If (N/\ - M - NM)X*M* =3=124124+12 = K)\M = WZ(,\H)O + szw)o + Wz”(xmo-

Consider the pairs (X, 1) s.t. (Nx - Woo - NT) xeur) = L then W, = K, is a toric matrix
for each z,,. We call N > z,, the set of already known toric matrices.

Next consider the list of pairs (A, ) s.t. (Nx-Woo N#T)(AW*) = 2. In this case the cor-
responding matrix K, is the sum of two toric matrices, and there are three possibilities:
Either K, is the sum of two already known toric matrices, or it is the sum of an already
known toric matrix and a new one, or it is equal to twice a new toric matrix. In any case
it is enough to calculate the set of differences K, —W. o with z € N, and impose that all
the components of such differences should be positive integers to recuperate a new toric
matrix. The resulting matrices are added to N.

The next step is to consider the list of pairs (A, p) s.t. (Nx - Woo - NY)
and to generalize the previous discussion.

The process stops, ultimately, since the dimension of K is finite.

o) = 3,4,5, etc.

X %k >k

Once the set of toric matrices has been computed, they are introduced in the double
fusion equation in order to obtain the generalized M S equation:

N)\ : WxO : N,;F = Z (Wx,z))\“ WZ,O (3)

z

This new equation involves toric matrices on the L.h.s. and twisted toric matrices Wy,
on the r.h.s., for each € Oc¢(G) equation (3) is the expansion of the set of matrices
Kf,u = N, Wy - NMT in the basis of K. In the present case the vectors giving the
expansion of a matrix K73 ., are know, and only the coefficients remain to be determined.
The solution is then straightforward, but depending on the size and the number of the
matrices it can be a heavy computational task, more details about this computation can
be found in [4] and [8]. Fixing (A, ) = {(1,0),(0,1)} the solution of equation (3) gives
the pair of matrices (Vig)zy = (Way)i0 and (Vo1)ay = (Way)o1

The Ocneanu graph and the algebra of quantum symmetries. Denoting by 0
and 1 the identity and the fundamental vertices of of the graph A(G), the matrices V; g
and V, are respectively the left and right chiral adjacency matrices of the left and right
chiral parts of the Ocneanu graph [9],[14],[3].
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The Ocneanu graph is the Cayley graph of the algebra of quantum symmetries, this
algebra comes with two algebraic generators called chiral generators and denoted by 1
and 1r. The two adjacency matices Vjp and Vj; are associated to these generators, and
encodes the multiplication of the vertices of Oc(G) by 11 and 1g respectively. We denote
this two matrices as Oy, = V(19 and Oy, = V|o,1), and multiplication of a vertex by the
chiral generators is given by:

v1=3 (O1)eyy 1'=% (O1)syy (4)

In all known Ocneanu graphs, this contains all the graphs associated to the SU(2),
SU(3) and SU(4) systems, each chiral part of Oc(G) is composed of a direct sum of a
chiral graph sub algebra and one or several modules over this sub algebra. The two chiral
sub algebras, denoted by Gr and Gy, are generated by the chiral generators 1z and 1y,
and have the same Coxeter number as A(G).

The multiplication between vertices of Oc(G) reads -y = > _(O,),,» # and is encoded
by a set of matrices, called Ocneanu matrices, containing positive and integer coefficients.
The compatibility of this product with the associativity forces the matrices O, to form a
representation of the quantum symmetries algebra

Oy -0y =Y (04),:0: (5)

z

For some cases (for example: A,,, Fs, Es and Dy, of the SU(2) family, or A,,, A%, Ds, &
) a dp X do representation of Oc(G) can be constructed from equations (4) by substituting
the vertices x by their corresponding matrix O,. In these cases the matrices have the
form of polynomials O, = Pol, (14, xd,, O1, Ov) of the identity matrix and the two chiral
generators. In other more complicated examples (Da,—1,& and & of SU(3) ) a direct,
and more complex, solution of equation (5) has to be implemented in order to recover the
structure of the algebra of quantum symmetries.

Degenerate case:

In general, the dimension of K can be strictly smaller that the number dp of vertices
of the Ocneanu graph, this happens when the same toric matrix is associated to more
than one vertex of Oc(G). This is for example the case for the graph D, which has
rank equal to 5 but where dp = 8. In this case toric matrices do not form a basis
of K, and the dimension of the vector space is given by the rank of the matrix with
entries Ky (vpwy = (Na- M - Ny,),, . This dimension gives the number of different toric
matrices to be recuperated from the MS equation , the dimension of Oc(G) dp provides
information about the multiplicity of the toric matrices.

In this degenerate case the analysis of the decomposition of each vector Ky, is slightly
more complicate. Actually for matrices Ky, s.t. Ko=) = 2 the decomposition of the
K, can contain one or more repeated matrices and the corresponding toric matrices with
multiplicities have to be separated by hand.

Once the set of toric matrices has been determined, the set of twisted toric matrices
can be recovered using the same method described for the non degenerate case. The only
remark concerns the solution of equation (3) which comes with undetermined coefficients
corresponding to the different possibilities for identifying the repeated toric matrices with
the vertices of Oc(G). The solution to this problem is provided by the structure of the
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Oc(@G) itself: from all the possible choices obtained after solving equation (3), in general
only one defines well defined graph-modules on the two chiral sub algebras Gg and Gy.

Some explicit cases

First of all, the SU(2) cases have all been recovered using the modular splitting method,
even if this examples do not add any new information about the ADFE classification, they
help to develop the method and gives useful information about the bialgebra BG. The
results for these cases can be found in [15] and references therein, and the detailed solution
of the case Eg in [4].

For SU(3) the results for the (already known) cases A, and the exceptional & have
also been recovered. The solution of the case & of the SU(3) system is a new result,
although the graph Oc(&y) was presented by A. Ocneanu in [11] the set of toric matrices
has never been presented, as well as the structure of the algebra of Quatum Symmetries.
There are 48 different toric matrices with multiplicities s.t. Oc(&) has dimension 72.
The algebra of quantum symmetries is composed of three copies of the graph & and
three copies of the orbifold £ /3 denoted by My. The structure is as follows Oc¢(Ey) =
Ey@eg®eg® Mg D Mg ® My. The first one is a graph sub algebra corresponding to the
graph &g, the others are graph module on both Oc(&) and the sub graph Ey. The details
of this problem as well as the solution of the orbifold case appears in [§].

Another development which this approach allows is the exploration of the structure for
non ADFE cases. For instance the analysis of the quantum symmetries of the F case has
been realized in [4], using as starting point a partition function Zg, obtained as restriction
of the Fg modular invariant, which has the interesting characteristic of being invariant not
under the action of the modular invariant group, but of the congruence sub group FéQ).
With this problem one actually recover a graph of type F} as sub graph of the candidate
for the graph of quantum symmetries associated to the partition function. Nevertheles
incongruence with the structure of BG has been founded, suggesting that a new kind of
structure should be explored.

Conclusions

We propose a method allowing to compute candidates for the quantum symmetry algebra
associated to modular invariants of affine SU(NN) models. The objectives are two: first,
to complete the already known researche, which often uses the list of graphs presented
by A. Ocneanu, by proposing a method for generating these graphs and to establish the
identification with the corresponding partition function. Second, to obtain, by means
of the study of examples, information which will be useful for the formal study of the
quantum grupoid structure associated to a given modular invariant. This last is an
algebraic formalism which is far from being completely understood, and that participates
as the basis of many physical models and theories. The immediate next step consist of
solving some higher level examples (SU(4) for instance), and to construct the quantum
groupoids of some examples like Fg or another non A, SU(2) example. Another more
ambitious objective consist in learning to explicitly compute the bialgebra BG for higher
level problems, and to develop useful applications to physical theories like String Theories
and Brane Theories.
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Abstract

We study deformed supersymmetry in N' = 2 supersymmetric U(N) gauge the-
ory in non(anti)commutative N’ = 1 superspace. Using the component formalism,
we construct deformed N/ = (1,1/2) supersymmetry explicitly. We also discuss
central extension of the deformed supersymmetry.

1 Introduction

Supersymmetric field theories in non(anti)commutative superspace [1, 2| has been at-
tracted much interests from the viewpoint of effective field theories on D-branes in the
graviphoton background [3, 4, 5]. Superstrings in this background provide some inter-
esting low-energy physics in N/ = 2 supersymmetric field theories [6] and their N' = 1
deformations [7]. It would be important to study A/ = 2 supersymmetric gauge theories
in non(anti)commutative superspace in order to understand graviphoton effects in the
low-energy effective theories from the microscopic point of view.

It is convenient to use N' = 2 extended non(anti)commutative superspace for study-
ing non(anti)commutative gauge theories where supersymmetry is manifestly realized
8, 9, 10, 11, 12, 13, 14]. In particular, N' = 2 supersymmetric U(1) gauge theory in
non(anti)commutative N' = 2 harmonic superspace has been studied [11, 15, 16]. The
authors discussed the deformed Lagrangian up to the first order in the deformation pa-
rameter C' of the superspace and examined their deformed symmetries. It is, however,
difficult to calculate higher order C-corrections and extend the U(1) gauge group to U(V).

There exist two cases such that the deformed Lagrangian of N' = 2 supersymmetric
U(N) gauge theory becomes simple. One is the case of the singlet deformation where the
deformation parameter belongs to the singlet representation of the R-symmetry group
SU(2) [9, 10, 17, 13, 14]. The other is the case that one introduces only deformation into
N = 1 subsuperspace of N’ = 2 superspace. In a recent paper [16], it is shown that the
O(C) Lagrangian of the U(1) theory defined in non(anti)commutative N' = 2 harmonic
superspace leads to the theory in the non(anti)commutative N = 1 superspace [2] by
the reduction of deformation parameters and some field redefinitions. It is also shown

148



that the theory has N/ = (1,1/2) supersymmetry consistent with the Poisson structure
of the theory. Here N/ = (1,1/2) means that there are two chiral and one antichiral
supercharges, as in [10].

In this article we study deformed supersymmetry in N/ = 2 supersymmetric U(N)
gauge theory in no(anti)commutative N' = 1 superspace. Using component formalism,
we construct deformed N = (1,1/2) supersymmetry explicitly. We also discuss central
extension of the deformed supersymmetry. This article is based on the papers[24].

2 Non(anti)commutative N = 2 supersymmetric
U(N) gauge theory

We begin with reviewing the N' = 2 supersymmetric U(N) gauge theory in the deformed
N = 1 superspace [18]. Let (z™,6%,0%) (m =0,...,3, a,& = 1,2) be supercoordinates
of N' =1 superspace and 0™, and ™% Dirac matrices. We will study Euclidean space-
time so that chiral and antichiral fermions transform independently under the Lorentz

: _ 0 c m o o 0 N =mada
transformations. Q, = 35z — 10,40°0,, and Q% = —5; T 10,6™**0,, are supercharges.
D, = % +i00%0%0,, and D4 = —5% —10,0™**0,, are the supercovariant derivatives.
o™ = 1(0™e" — o"g™), and ™" = 1(c™0™ — 6"o™) are the Lorentz generators. Here

we will follow the conventions of Wess and Bagger [19].
The non(anti)commutativity in A/ = 1 superspace is introduced by the *-product:

_ _ 1 _
o0, = .00 o (-3 0,08, ) at.0.0). )
Using this x-product, the anticommutation relations for 6 become
{6%,6°} = C*’ (2)

while the chiral coordinates y™ = 2™ + i#o™f and @ are still commuting and anticom-
muting coordinates, respectively.

N = 2 supersymmetric U(N) gauge theory in this deformed supespace can be con-
structed by vector superfields V, chiral superfields ® and an anti-chiral superfields ®,
where ® and ® belong to the adjoint representation of U(N). We introduce the basis
(a=1,---,N?) of Lie algebra of U(N), normalized as tr(t%t*) = kd**. The Lagrangian is

1 o 1 TTT o T
L= E/dQGdQQtr(q)*eV*CI)*e_V) T o (/dQ@W“*Wﬁ/dQ@Wa*W“) (3)

where g denotes the coupling constant. W, = —}LDZe_VDaeV and W, = %DQe_VDdeV
are the chiral and antichiral field strengths. Note that multiplication of superfields are
defined by the *-product.

This Lagrangian is invariant under the gauge transformations ® — e My Dxe & —
e xdxe and eV — e xeV xe. To write down the Lagrangian in terms of component
fields, it is convenient to take the Wess-Zumino(WZ) gauge as in the commutative case.
Since the x-product deforms the gauge transformation, it is necessary to redefine the
component fields such that these transform canonically under the gauge transformation|2,
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18]. For N =2 U(N) theory, these superfields in the WZ gauge are

O(y,0) = Aly)+V20(y) + 00F (y),
B(5.0) = A(5)+ VEI(G) + 80 (410, fun A = 16 o, o A1) ) 1)
V(g 6,0) = —00"Bu,(y) + 00BN (y) — i006° (Aa a0 ((01), UM}) )
+%9990(D —10"v,)(y). (4)

Here g™ = 2™ — ifo™0 are the antichiral coordinates and C™" = C*¢;. (6™"),”. Since
o™ is self-dual, C™" is also self-dual. Substituting (4) into the Lagrangian (3), we
obtain the deformed Lagrangian written in terms of component fields. In this expression,
however, normalizations of two fermions ¢ and A are different. In order to see symmetries
between two fermions manifestly, it is useful to rescale V to 2gV and C*° to %C’O‘ﬁ. Then
the Lagrangian takes the form £ = £y + £;. Here L is the undeformed Lagrangian with
the topological term:

1 /1 1 _ 1 -
Lo = —t (——Fm”an _LE™E g™ D, A+ — D2
0 k r 1 1 IAO + 5

where F,, = Omvn — OnUnm + 19U, U], Fon = %emnqupq and Dy A = O\ +ig[vm, A| ete.
We have also introduced an auxiliary field D defined by D = D + g[A, A] in order to see
undeformed N = 2 supersymmetry in a symmetric way. £; is the C-dependent part of
the Lagrangian:

_ l _3 mn N 1 2/31\2
Ly = ktr( 20 anM+8|C| (AN)
+%Cm"an{[1, F}y— gCaﬁ{DmA, (0™ N)a}t0s — %ycﬂ,xm, F]) . (6)

Here |C]? = C™C,,,.

3 Deformed N = (1,1/2) supersymmetry

For C' = 0, the action is invariant under N’ = 2 supersymmetry transformations, where
only N' = 1 supersymmetry generated by @, and Q% are manifestly realized in N' = 1
superspace. Other N' = 1 supersymmetry would be realized manifestly when we use
N = 2 extended superspace. In particular N' = 2 harmonic superspace [20] provides very
efficient tools to study off-shell N = 2 supersymmetric field theories. The most general
non(anti)commutative deformations are studied by using extended superspace.

In [11, 15, 16], the component formalism of N' = 2 supersymmetric U(1) gauge theory
has been studied. In particular, for generic deformation, N' = (1,0) deformed super-
symmetry has been constructed up to the first order of the deformation parameters.
When the deformation parameters are reduced such that only N/ = 1 subspace becomes
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non(anti)commutative, the deformed supersymmetry is enhanced to N' = (1,1/2) super-
symmetry. This is because supersymmetries other than Q¢ is consistent with the Poisson
structure of the deformed superspace [10]. In this reduced case, it is shown that the O(C)
Lagrangian defined in the N/ = 2 harmonic superspace is equal to that of the deformed
N = 1 superspace by the field redefinitions.

We now study deformed supersymmetry in the U(N) gauge theory. The undeformed
superfield action is invariant under A" = 1 supersymmetry generated by £Q + £Q. Since
this transformation does not preserve the WZ gauge, we need to do gauge transformation
to retain the WZ gauge. Then the (undeformed) supersymmetry transformations ¢ and
559 of the component fields in the WZ gauge are

5gvm = o,

OGN = QD —ig¢[A, Al + 0™ EFpy, 6PN =0,

0D = —Eo™Dy+ V2g[E0, A],

SA = V2ey, o8 =V2AF, §)F =0,

SPA = 0, 00 =2ig"ED, A, 6LF = iv260™ Dy — 2gi€[A, N, (7)
6gvm = G,

GeA = 0, 8gh=—ifD +igl[A, Al + 6™ Fom,

02D = "D\ + V2g[A, €Y,

SPA = 0, O =V2i0"ED, A, 0PF = V266" D) + 2gi€ [\, AJ,

SPA = V20, 6% =V2AF, SF=0. (8)

The remaining N' = 1 supersymmetry denoted by 52 and 59-7 can be obtained from (7) by
using the R-symmetry: € -1, A— —t¢, @ —\, D——D, F—F.

Now we will construct the deformed N = (1,1/2) supersymmetry which keeps the
U(N) Lagrangian £ invariant up to the total derivatives. The term £; is not invariant
under the undeformed supersymmetry transformations 52, 52 and 5%. Since the deformed

term £; is a polynomial in C, we denote £§") (n > 1) by its n-th order term in C. The
deformed supersymmetry transformations can be expanded in the form § = §° + &' 4 - - -.
Here 0" is the n-th order term in C'. 9" is determined recursively by solving the conditions
SLy+0°LY =0 and 62L0 + 6L +6°£5) = 0 and so on.

The deformed transformation d¢, which was calculated in [18], takes the form 0, =
52 + 551 and is given by

5§Um = Z'EO'mj\,

Oeha = i€aD —igEa|A, Al 4 (6™€), (an + %CmnM> , 0eA=0,

6D = —Ea™Dy A+ V2gl€y, Al

0eA = V2P, e = VAF, 6F =0,

beA = 0,

S0 = V2i6™EDy A,

0eF = iV260™Dyth — 2gi[A, €N + C™ D, { A, o, M} (9)
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Note that the transformation of ® is undeformed. The deformed transformation 9,, which
relate the gauge field v,, to chiral fermion 1, can be calculated in a similar way. But as in
the analysis of U(1) case, it is necessary to calculate up to the order O(C?). The result is

. n 2 A \
b = —inous = 20 {4, 0}
S A = V2 F
_gcaﬂm {D,fl} f ——C(a"™" ) { Fyns A} — \/_gcaﬁ n5 4[4, Al}
Mg det C (D3N, A} + 2MX°‘¥) 7

(5,75\ = V/2ig"nD,, A
3 _ V2, = 3
0D = —no" Dutp — V29[nA, A] = ==iC* 0Dy { A, (0™ N)a} |
—igCng { A, [A,4al]}
oA = V2 + iC*Pny {wa,z‘_l} )
0% = D +ign*[A, Al — e’ (0" n) g Foun — iCns { ON) — {A, F}},
5,F = iv2no™ D\ + 2gi[A, ],
oA = 0,
577@50‘4 = Caﬁnﬁagla {IZL DmA} )
V2i

5, F = V290 {A 1A No]} + Y det C[3{4, {no" X, DnA}}
+2D,, AAnc™\ + 2770'm>\ADmA +2{A,{no" DA, A} }} (10)

Here we have used the formula det C' = |C|?/4. Note that there is an ambiguity to
determine the 4, transformation as noticed in the U(1) case [16]. In fact, for arbitrary
functions f1(A) and fo(A) of A, the transformation

O\ = 0" fiF 4 Ffn®,

04 F = i(no"Dud) i+ ifa(no" Dud) +ivV2g[A, 0] fo + V2ifolA e (11)
leaves the action invariant. In formulas (10), we have chosen f; and f; such that we
recover the U(1) result. This ambiguity would be fixed if we use non(anti)commutative
N = 2 harmonic superspace.

The deformed transformation d; is found to be
5N = V2 (0™7) gD A +iCP {aN Y5}, dph = V20 F,
04D = 710" Dut) — V2g[A 7],

6;F = V2ing™ D\ — 2gilinh, Al + C°? (6™ 7)o D {15, A}
NG

—— detC {3{\, A\} + DAAF + AGAF — 20AF A + 20 (PA) A%} . (12)
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Note that if we set N = 1, the cubic terms in A and the commutators vanish. We then
recover the U(1) results obtained in [16].

4 Deformed Central Charge

We now compute the Noether currents associated with deformed N = (1,0) supersym-
metry transformations o¢ and d,. Let X" be the total derivative term obtained from the
variation of the Lagrangian associated with the transformation d:

0cL = 0, X{".
Then the supercurrent N7 is defined by
oL
CNTY = ————0cpa — X" 13
g la 3(5m90,4) £PA I3 ( )

where ¢4 are component fields in the WZ gauge. The other supercurrent NJ* associated
with the transformation ¢, is defined in a similar way. From the transformations (9), we
get

1 5 _ _ L
eV = [ i(FT o Feo, )+ VAD,AG 0™ + g€ A, A

H(EN)C™AN — (Ea, O™ { A, F}}. (14)
The supercurrent N3 is given by

. ) ) ) o
N = Etr{i(Fm’" + F™™no, b + V2D, Anc"a"™\ — gno™ (A, A

V2
2

+iCP {/_1, Dn/_l} Na(c"a™) s + iggcm”nan)\ {fl, A, A]}

Co8 {4 B AL a(03))s — C"" o) (A = {4, F})

—i\/?i det o™X ({4,700} = {4, {4, F}}) }, (15)

which contains O(C?) corrections. For C' = 0, we recover the undeformed supercurrents
[21, 22]. The supercharge @, is defined by

Qin = / d*x N (z).

We now examine the anticommutation relations for supercharges ;.. We will use the
equal-time anticommutation relations for fermions

{ﬁfa(x)ﬂ/;a(y)} = 50@53@ —Y), {)\a($), S\a(y)} = 50@53(55 —y). (16)

From (14), (15) and (16), we find that {Q1a, Q15} and {Q1a, Qus} are undeformed:
{Qia, Qs} = 0, (17)
(Qros Qus} = 2Bicws / P pie(Fiu + Fu) DA (18)
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The r.h.s. of (18) comes from the 1st and 2nd terms in (14) and (15) and we have
eliminated auxiliary fields by using the equations of motion. Eq. (18) is nothing but the
central charge obtained by Witten and Olive [21].

The C-deformation arises in the anticommutation relation {Qaq, @25}, which is given
by

{Q20, Qo) = 4C.5 / d3x%tr[(Fog+ﬁog)DeA2 . (19)

The r.h.s. of (19) is obtained from the anticommutation relation among the 1st, 2nd,
4th and 7th terms in the current (15). Eq. (19) gives still the topological charge but
its dependence on the vacuum expectation value of the Higgs fields is different from the
undeformed topological charge (18).

5 Conclusions and Discussion

In this paper we have discussed the deformed N = (1,1/2) supersymmetry in N' = 2
supersymmetric U(N) gauge theory in the non(anti)commutative N' = 1 superspace. We
have found the N' = (1,0) supersymmetry algebra admits non-trivial central extension
which depend on the deformation parameter C.

It is an interesting problem to find monopole and dyon solutions and study how the
BPS structure is modified by the non(anti)commutativity. It is also interesting to study
nonperturbative effects of this non(anti)commutativity in the strong coupling region of
the theory[23, 24].

Acknowledgments: K.I. would like to thank the organizers of the workshop for the
kind hospitality during the workshop.
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Abstract

We investigate the non(anti)commutative superspace in terms of Drinfel’d twisted
Hopf algebra. We find that a twisted super Poincaré algebra causes some valuable
non(anti)commutativity in superspace. It is realized in twisted Lorentz and twisted
supersymmetric way clearly by construction.

1 Introduction

Field theory in noncommutative space-time is old subject and becomes common in theo-
retical physics. In particular, noncommutative field theory draws recently our attention
in relation to superstring theory. In superstring theory with some configuration of back-
ground fields, coordinates z* on D3-brane become noncommutative[l];

[zh, 2] = 1O, (1)

It was pointed out that non-anticommutativity of fermionic coordinate 6% in N' = 1
four-dimensional superspace can also arise[2, 3],

{ea’ ‘96} = Caﬁv (2>

though that is formulated only in Euclidean space. Here ©* and C®? are constant pa-
rameters with antisymmetric and symmetric indices respectively. These from superstring
theory indicate that the true description of our world may be non(anti)commutative field
theory in four-dimensional (super)space, in some energy region.

Apart from higher theory, noncommutative theory is defined and investigated practi-
cally in the language of effective quantum field theory. However if we treat a noncommu-
tative theory within quantum field theory, inevitably noncommutative parameters, often
dimensionful, are introduced into the theory. To make matters worse, it commonly causes
symmetry breaking. For example, it is well known that a noncommutative relation (1)
breaks Lorentz symmetry.
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Recently an idea to improve the situation is suggested [4, 5]. Chaichian et. al claimed
that a original symmetry of a theory is broken by introducing noncommutativity indeed,
but the deformed symmetry can remain. Our work [6] is essentially an extension to a
supersymmetric case of their work.

2 Twisted Super Poincaré Algebra

The strategy of [4, 5] is to realize the noncommutative space (1) as the representation of
a deformed Poincaré algebra.

Instead of Poincaré algebra we start with super Poincaré algebra, then deform it after
the fashion of [4] to obtain the non(anti)commutative superspace.

Universal enveloping super Poincaré algebra U(SP) can become a Hopf algebra over
IC, where K is the base field or ring of the Hopf algebra, by defining certain maps. The
definitions of the maps for X € SP and a unit element 1 of Hopf algebra are as follows:

product : m(X®Y)= XY,

unit : i(k) = k1,
coproduct AX)=X®1+1X, A1)=1®1,
counit : €(X) =0, €1) =1, (3)

antipode : y(X)=-X, y(1) =1, forX, Y eSPkekK

These definitions are extended to whole U(SP) recursively.
Because of fermionic generators in super Poincaré algebra, we should slightly change
the multiplication rule of the Hopf algebra into Z, graded one, such that:

(A® B)(C ® D) = (-1)PI°(AC @ BD). (4)

Here |A| stands for the fermion number of A.

A Hopf algebra is deformed to another Hopf algebra by the twist operation systemat-
ically. We choose a twist element F which is a invertible biproduct element in the Hopf
algebra. A Hopf algebra is deformed by the twist element and such twisted Hopf algebra
is redefined only by changing the coproduct and antipode in such a way that:

A(H) = FAH)F,
WwH) = Uy(H)U™  U=Fuy(Fo). (5)

We use Sweedler’s notation:

F=Y AR = Foy® Fo. (6)

Twist element F must satisfy two conditions. First is the twist equation,
Fr2(Do @ id)F = Faz(id ® Ag)F, (7)
which provides coassociativity of the twisted Hopf. Second is the counit condition
(e®id)F=1=(id®e¢€)F. (8)
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Note that the twist operation do not deform the algebra structure and other maps.
In concert with the twisting, product of the representation on which the Hopf algebra
acts is modified for compatibility:

ma®b) =ab — m(F la®b)=axb. 9)

The twist equation (7) guarantees the associativity of this star product.

A proper twist element is easily constructed from the elements of the Abelian subalge-
bra. In super Poincaré algebra, an Abelian subalgebra is made up of translation generator
P* and supercharge Q® or P* and anti-supercharge Q®. You cannot choose both Q® and
Q% because they do not (anti)commute.

P-P twist element

FPP = exp (%@”’”PN ® Py> : (10)

which is the same as [4] provides the noncommutative relation (1) in the coordinate
representation;

[Ty, T = Tp*T, — T, kT, = m(}"_l(xu @z, — T, @)

= 10,
Next we consider Q-Q) twist for the non-anticommutativity of superspace.

FO9 = exp (—%C”ﬁQa ® Qg) (11)

This element satisfy the condition (7),(8) and gives following commutators.

{6~,0°}, = O,

— Bl v G0
[z, 2"], = C%og,05:676°,
[zH,0%], = iCaﬁagﬁQ_A’.

This results are in accord with N’ = 1/2 SUSY noncommutative deformation by Seiberg
3]

A noncommutativity between xz* and 6 is considered too. P-(Q) twist

FPQ — exp %A““(Pu@@@a —Qu®P,) (12)
gives
v o a v _B_ va it B
[29, 2], = Mol ;67 — A Uaﬂ.@,
[z, 0], = i\,
{6,6°}, = o. (13)

Where A\H“ is a Grassmann constant?.
We can use more general twist element;

F =exp %@‘“’PM ® P, + %W(Pﬂ ® Qo — Qa® Py,) — 506“5@@ ®Qs|. (14

'In this case, we have to regard K as not the complex field but the Grassmann ring
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The results are:

nov Ye Y712 aB K vV Oy ) po v 7ﬁ. _\va _mu 7,3.
[zt 2¥], = " +C O-CY"YO;B(SQ 0° + Nal 507 — X007,
@ 6°], = N4 iC gk,

{6°,6°Y, = C°P.

It is not straightforward to apply the method to extended SUSY, because in general
anti-commutator {Q? Qg } is non-zero central charge. Insteadly we try to do that in some
peculiar way. We introduce central charge coordinate 2! and consider the noncommuta-
tivity in it. The twist element is

o (lmtigia gy g O 5
o (2 02’), 2= (15)

and gives
[Z[,ZJ]* :iE[J. (16)
This is meaningful only in the region A/ > 3. Some other works in extended SUSY case
are [7].
Although we omit the explanation here, we would emphasize that all realizations of
non(anti)commutative superspace above are consistent with twisted algebra, and so as to
preserve twisted super Poincaré symmetry. For more details, please see [6].

3 Summary and Discussion

We have constructed the twisted super Poincaré algebra with proper twist elements and
obtain corresponding commutator relations between coordinates in super space. These
non(anti)commutativity is realized to maintain the twisted super Poincaré symmetry. It
is interesting to know what type of noncommutativity we can get from twisted Hopf. At
this moment we have investigated twisted superconformal algebra and found out the twist
element constructed from conformal supercharge and superconformal generators gives a
exotic noncommutative superspace[8].
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Abstract

The role of quantum universal enveloping algebras of symmetries in construct-
ing a noncommutative geometry of space-time and corresponding field theory is
discussed. It is shown that in the framework of the twist theory of quantum groups,
the noncommutative space-time defined by coordinates with Heisenberg commu-
tation relations is Poincaré invariant, as well as the corresponding field theory.
Noncommutative parameters of global transformations are introduced.

One of attempts to study the structure of spacetime at Planck scale is related with a
possible noncommutative nature of spacetime, hence, with a noncommutative geometry
(see [1] and references therein). In this paper we would like to draw attention to interrela-
tions between noncommutative quantum field theories and quantum groups [2]. Recently,
an active research takes place in noncommutative field theory related to noncommuta-
tive geometry (see the reviews [3, 4] and references therein). One source of examples of
noncommutative geometry is the theory of quantum groups [5, 6]. The reason for this is
that the latter are, loosely speaking, deformations of Lie groups, which provide numerous
geometric structures. There are corresponding structures in quantum groups (QG), where
the commutative algebra of functions F'(G) on a Lie group G is deformed into an appro-
priate noncommutative algebra F,(G), which is defined e.g. by generators and relations
[7]. Homogeneous spaces are also subject to deformation, for example SL(2) — SL,(2) or
SU(2) — SU,(2) and two-dimensional plane (z,y) — “quantum plane” (z,y),, or Podlez
g-sphere (z,y, z) — (z,y, 2),. It has been observed by several authors (see e.g. [8, 9, 10, 2])
that the twist theory of quantum groups provides a very useful tool for constructing non-
commutative geometry of space-time, including vector bundles, measure, and equations
of motion and their solutions.

The most important space of relativistic theory is four-dimensional Minkowski space-
time M, with coordinates z*, and with the Poincaré algebra acting on z*. To construct
NC field theory, the commutative algebra of functions C'(M) on M is deformed to a
noncommutative (NC) algebra Cy(M). This algebra is generated by NC coordinates x*,
and probably the simplest relations among the z# are

[, 3"] = 213" — 3@k = i, (1)

with a constant antisymmetric matrix 6 (see [3, 4]).

*This research was supported in part by the RFBR grant 05-01-00922
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There are many possible commutation relations (CR) for z* z¥ with the right hand
side linear or quadratic in z* (see [11, 12]). However, those written above follow from a
special limit of string theory [13] and have attracted substantial interest.

To construct a field theory on noncommutative space-time with CR (1) for the coor-
dinates, one has to substitute the commutative algebra of fields (functions on M) by the
noncommutative algebra Cy. In the case of the CR (1) there is a Weyl-Moyal correspon-
dence between these algebras through the Fourier transform. It maps a smooth function
p(x) € C(M) to an element of the algebra Cy,

A 1 47 ~ A
o(0) = v [ AR explikd), &)

with ¢(k) being the Fourier transform of the function ¢(z),

o(k) = /dd‘xgo(x)e_““.

Then the noncommutative product in the algebra Cjy is

o by dky
o(@)g(d) = / ! 24go<k1>g<k2>e’“ek

i ®)
= [ ol ik — ke e
where the notation 0(k,p) = %Hﬂ”kup,, is introduced for the antisymmetric quadratic

form.

Interpreting the convolution of @(k;) and g(k2) with the weight function
exp(—i0(ki, k2)) as the Fourier transform of a new product (s-product) of the elements
o(x), g(x) € C(M) one gets

p(z) * g(z) = / (ikr; (gk"; o(k1)g (k’é—kl)Z%(—iQ(lﬁ,k;))”eikém. (4)

It is not difficult to check that this x-product on C'(M) is still associative, albeit non-
commutative. The exponential function exp(ikZ) generates symmetrized *-products of
2%, which coincide with the usual products of commutative x¥. Let us point out that the
“sx-product” is a general notion of deformation quantization (see the review [14]).

It follows that a field theory on the NC space-time can be constructed using fields
o(x) € C(M), but with multiplication given by the s-product. To fix an action one needs
a linear functional on Cp, and it is represented as an integral on C'(M) of the usual form,

e.g.

n

St = [ del5 @) + (o) + 5 (ola))). 5)

The integral of the x-product of several functions is invariant only under the cyclic per-
mutations, similarly to the trace of operators:

For this reason [ dz fi(z)* fa(z) = [ dxfi(x)- f2(z), and NC field theory and ordinary field
theory conincide on the free ﬁeld level (the action with quadratic terms only). However,
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the interaction term being written as the x-product of the fields, describes a nonlocal
interaction, e.g. for the @3-theory

/dx /H(dk“ 5 )exp —i Y Ok, k) Zk

b<c

- /H dx, o(x1)p(z2)p(xs) exp(2i(xg — x3)6’_1(x2 —x3)),

provided that the matrix € is invertible (or one has to restrict the arguments to those 7
for which 6% has an inverse).

Quantization of the scalar field theory with the action S[g] by path integral methods
yields the standard perturbation theory, but the interaction vertices include an extra

oscillating factor,
Viks, .. ks Zk: T st
b<c

This factor has only cyclic symmetry (due to the delta-function) and results in different
contributions as compared to local QFT, and even in a different structure of the Feynman
diagrams (planar versus non-planar graphs). The diagrammatic analysis of unitarity
yields a condition on ##*: #% = 0. Thus the time coordinate commutes with the space
coordinates, and one can apply the Hamiltonian formalism for the action (5).

Reformulating NC space-time field theory as a usual one (5) with a nonlocal interac-
tion, it is possible to apply standard techniques to quantize it. An obvious drawback is
the appearence of the set of constants 8*” breaking the Lorentz invariance: x* — A" ¥,
o — AR A goB = grv # 0", To cure this problem we propose to use a quantum group
technique.

In this discussion we need such objects from the theory of quantum groups as a Hopf
algebra H, its H-module algebra A, H-modules and A-modules V, W (linear spaces for
‘H- and A-representations). At the same time these objects have a physical interpreta-
tion: ‘H is the symmetry algebra of the system under consideration, A is the algebra of
observables, and their representation space is the space of states of the system. There are
also additional structures, such as a x-operation (real form), a scalar product etc., which
will be introduced later.

The symmetry of the relativistic field theory is described by the universal enveloping
algebra U(P) of the Poincaré Lie algebra P with generators P, of translations and M,
of rotations:

[P, P,] =0,
[Myw, Mag] = —i(uaMup — NusMoa — MvaMyup + M), (6)
(M, Pol = —i(Mua Ly — Malp)-

The essential part of the Hopf algebra structures H(m, A, v, €) (see [5, 6] for details) is
given by the associative product (with the commutation relations (6) for U(P) in our case)
and by a coproduct map A : ' H — H ® H defining an action of the Hopf algebra H in the
tensor product of two (or more) of its representations. The action of the generators Y € P
in a tensor product V®@W is given by the symmetric map (coproduct) A(Y) = Y®1+1QY,
or

AVYv@w)=Yv)@w+v® (Yw), (7)
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where the hat means the action of a Hopf algebra element in the corresponding represen-
tation space. There are two other maps in the definition of the Hopf algebra: the counit
¢ : H — C (a one-dimensional representation of H) and the antipode 7 : H — H, which is
an algebra antihomomorphism. These maps are subject to quite a few axioms, of course
[5, 6]. On the generators of U(P) the antipode and counit are: y(Y) = =Y, e(Y) =
0,e(1) =1.

There is a useful transformation (twist) of the structure maps of a Hopf algebra,
which is an equivalence relation among Hopf algebras, preserving their category of rep-
resentations. This transformation ‘H — H; is realized by an invertible twist element
F=>,/i® fie H®H [15]. It does not change the multiplication in H, but transforms
the coproduct according to

A(h) — Ay(h) = FAR)F', heH.

This similarity transformation preserves the coassociativity of the twisted coproduct if F
satisfies the following twist equation (two-cocycle condition) in H ® H ® H [15]

Fro(A®id)F = Fos(id®@ A)F,  (e®id)F =1®1, (8)

where Fp3 means Y, 1 ® fi ® fi € H®, and (A ®id)F := >, A(f) ® fi € H®3. The
twist does not change the counit homomorphism, but similarity-transforms the antipode:

YY) = (Y) =uy(Y)u™', where u= Z fi-n(f3) e H. 9)

Usually the twist element is not symmetric under the permuation of tensor factors: F #
For = Y, [+ @ fi. Hence, the twisted coproduct Ay(h) := Y ha) ® h) is also non-
symmetric

Ay(h) # AP(h) = hy & ha

However, for the quantum group case these coproducts are related by a similarity trans-
formation with the R-matrix:

RA =APR, R=> RIOR, e HOMH.

In our case, starting with the symmetric coproduct (7) the R-matrix is given by R =
ForF -1

There are well-known statements from the theory of quantum groups which will be
used in our discussion of a particular case of noncommutative space-time. Having an
action of H on an associative algebra A with consistency of the coproduct of H and
multiplication of A (a Leibniz rule),

h(a-b) = (haa) - (hab),
the multiplication in A has to be changed after twisting H — H;. The new product in
Ay is . .
a*b:Z(fla)'(be)a a,b € Ay, (10)

where a notation was introduced for F~! := " fi ® fi, and the action (representation)
of elements from H on elements from 4, is the same as before twisting.
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The product ¢(z) * ¢(x%) of quantum fields with independent arguments belongs to
the tensor product of two copies of the algebra Cy(M). After twisting of H the elements
of different copies of A ® A will not commute:

(a1 @ 1)(1 ®az) = (a1 ® ag), but
(1 & ag)((ll X 1) = (7%2(11) & (7%1@2> 7£ ((11 &® CLQ), Val, as € ./4 (11)

(Recall that the hat indicates the action of Hopf algebra elements on the relevant repre-
sentation spaces.)

It is important that real forms survive a twist. Recall that a s-operation (real form) on
a Hopf algebra ‘H means an antilinear involutive algebra anti-automorphism and coalgebra
automorphism. Due to the uniqueness of the antipode, the identity v* = xy~! is always
valid, and one can re-define the real form as v?"x for any integer number n. We can
also consider homomorphic and anti-cohomomorphic antilinear operations of the kind
5 — 72n+1*'

To ensure consistency between real forms and the action of H on some H-module
algebra A with anti-involution @ — @, one has to require (ha) = v(h*)a, for h € ‘H and
a € A. So by the real form of a quantum algebra we will mean a homomorphic and
anti-cohomomorphic antilinear involution £ = v o .

Twisting a Hopf algebra H — 'H; the same x-operation is defined on H; if the twist
F satisfies the condition

Fr= fiefi=F'=> foh (12)
For the involution £ the analogous natural requirement is [§]
E®&F =7(F) 3:-7:21:Zf2®f1, (13)

where 7 is the permutation of the factors in H ® H.

Suppose now that A possesses a measure i, i.e. a linear functional positive on elements
of the form a - a (like the function algebra on a locally compact topological space does).
The same measure is valid for A;, for these H-module algebras A and A; coincide as
linear spaces [8]. Indeed, we find a * @ = fia - foa = fia - (£(f2)a). If identity (13) is
fulfilled, the relation f; ®&(f2) = £(f2) ® f1 holds as well and, consequently, f; @ £(fy) can
be represented by a sum > ¢; ® ¢;. Further, we have a xa = ) ¢;a - @;a, and therefore
p(axa) > 0. In case that (12) is true, one can extend the Hopf algebra by adding the
square root of the element u that was introduced in (9). It is straightforward that the
composition of the coboundary twist with the element A(u™2)(u2 ® uz) and successive
twist with the element (uv™2 @ u~2)FL(u2 ® uz) obeys (13). This double transformation
is carried out by means of the 2-cocycle A(u_%)}" *1(u% ® u%), and the required property
(13) readily follows from (12) and the identity (u ® u)7(y ® v)(F ') = FA(u) fulfilled
for any solution to the twist equation [15] (the element u is exactly the same as the
one taking part in the definition of the twisted antipode (9)). So we can apply all the
previous considerations to this composite twist, which differs from initial one by an inner
automorphism only.

Let’s deform the Poincaré algebra U(P) as a Hopf algebra by a simple twist element
depending only on the generators of translations P, (an abelian subalgebra of P) [2]:

F = exp (%GWP# ® P,,) (14)
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with a constant matrix 6*” (we take it to be real and antisymmetric). As an associative
algebra U;(P) is not changed (we have the same commutation relations of generators
M,,,, P,) nor is the coproduct of P, : Ay(P,) = A(P,). However, the coproduct of M,

iz
is changed:

At(Mm/) = Ad (eXp (%eaﬁpa ® Pﬁ)) A(M/u/)

= A(M/w) - Eeaﬂ ((naupu - nauPM) & pﬁ + Pa ® (nﬂupu - ﬁﬂuPu)) .

(15)

It was already mentioned that the coproduct defines an action of the Hopf algebra on
the product of elements from A, and the product of A is also changed accordingly, to
be consistent with A,;. The algebra C(M) is generated by the z* and after twisting
C(M) — C(M) the new product is

e a’ = 3 (Fa) (for”)

00 i/2)k Vs v
— Yoo W2n /5223 [1,_, 04" (O, - .. 0 2*) (D ... Oy 2") (16)
= zhz” + 0"
i’ + 5
Hence,
[x#, 2], = ot x x¥ — 2V x at =i, (17)

and this yields C;(M) = Cy. One can check that with the deformed coproduct (15) these
CR are invariant under the action of M, [2].

The action of momentum generators P, on clanical and quantum fields ¢(z) is sup-
posed to be the same 5

Pupla) = im—o(x).

However, in classical theory fields are given by different smooth functions as elements of
C(M) with Fourier expension (2) and the generators are realized as partial derivatives
P, = i0/0z". In quantum theory ¢(z) and P, are fixed operators as elements of the

algebra of observables A. The action of P, on ¢(z) is defined by the commutator

P, p(z) = [P, (2],

and having in mind the expension of ¢(x) in terms of the creation and annihilation
operators a(k), a'(p), one gets

[P a(k)] = —hya(k).

Using the twist element F = eXp(%HPM ® P,), we have to change product of observables
according to the general rule

axb = mo (e 2" PP (4 @ b)
1 =i\
—mo (25(7) [ ¢+ adp,, ®adP,,j>(a®b). (18)
n= 7j=1
Hence, the twisted products of the creation and annihilation operators are
a(k)xa(p) = a(k)a(p)e "*P (19)
a(k) * a' (p) = a(k)a' (p)e?’ ™. (20)
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Being expressed in terms of the deformed *-product, the commutation relations are

a(k)xa(p) = a(p) * a(k)e 2"V
a(k) * al (p) — 2" Pal (p) x a(k) = 6(k — p), (21)

where 0(k,p) = —0(p,k) = 50" k.p,. The relations (21) reproduce a scalar Zamolod-
chikov—Faddeev algebra (cf [16]).

The parameters A" (w), a* of the global Poincaré transformations generate the algebra
of functions F(G) on the Poincaré group G. This commutative algebra F(G) ~ (U(P))*
is dual to U(P), and after twisting U (P) the product of the dual Hopf algebra (U(P))* is
changed.

An important object connecting a pair of dual Hopf algebras is the canonical element
(a bicharacter) [6]

T:Zek@wk, er € H*, e € H,

where ¢, and e™ are dual linear bases of H* and H. Here we have
T = exp(ia"P,) exp(iw" M,,).

In the case of the twist (14) the generators w*” or A* (w) are the same (commutative),
but the a* become noncommutative (see [9, 17]),

[a*, a"] = 0" — iA* N0, (22)

This can be obtained from the RTT-relations [7] using the matrix representation of U(P)
and the R-matrix, or from the general recipe (10) using the U(P)-bimodule structure of
(U(P))*. Due to the commutativity of A(w), if there are representations V' with A* = o* |
then the a* are commutative in such V.

The transformation of the coordinates x* is given by the coaction 6 : Cy — Fy(G)®@Cy,

=0t =N, @ +ad' ®1. (23)

The transformed generators satisfy the same relations, [##,%”] = i6"”. Hence one can
conclude that the noncommutative space-time (1) is invariant under the twisted Poincaré
algebra Uy (P).

Tensoring two copies of the NC space-time algebra, Cy ® Cy with generators zf =
' ® 1 and 25 = 1 ® 2, one gets their commutation relations according to (11) with
R-matrix R = exp (—i6"" P, ® P,) [18]:

wiay —abel =t @ — (1) (2" ®1)

g K
124 Z N2 1%
="' Q®x _Z%r[leu”J((")Vl...aykm“)@(@m...6ukx) (24)
k=0 j=
="z — ¥ Q@ ¥ — iV = 6.

This property results in an extra factor in the Fourier transform of the vacuum expectation
value (p(x1) * p(x2) * - -+ * p(x,)) of quantum fields [9].

Similar arguments can be applied in the case of (extended) supersymmetry and of the
Poincaré superalgebra sP with additional supercharges (odd generators) @, Qﬁ- to get
a noncommutative superspace as in [19]. The Poincaré Lie superalgebra commutation
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relations (the commutators below are Zj-graded, i.e. if both elements are odd it is the
anticommutator) are

[P/w Qa] =0, [M;W’ Cga] = i(@ﬂ/)of?ﬁ?
[Qom Qﬁ] =0, [le? Qﬁ] = i(aul/)/@'a@dv
[Qd7 Qﬁ] =0, [Qa, Qﬁ] = QUZBPM'

The generators P,,Q, define an abelian (supercommutative) subalgebra, and abelian
twists depending on odd generatorscan be constructed as in the non-graded case, e.g.
F = exp(C*Q, ® Qp) with symmetric matrix C*® = CP*. The exponent reproduces
a Poisson tensor defining superbrackets (see e.g. [20]), and can be used to construct
noncommutative superspace preserving super-Poincaré covariance [21, 22].

The algebraic sector of the twisted Hopf superalgebra U, (sP) is not changed, as well as
the coproduct of the abelian subalgebra of (super)translations with the generators P,, Q.
However, the coproducts of M, and QB are changed:

Ay(M,,) =FA(M,)F!
= A(My,) = i{C*(0,)7, + C(04)0}Qy ® Qg

At(@"y) = A(Q*f) + 20&6‘7% (Qﬁ ® P =P, ® Qﬂ) :

The standard realization of the supercharges Q. = 9/90% — ic" . 0%0/0z" and Q 3, ylelds
noncommutative generators of Minkowski superspace sMj,

0°,0%) = —2C°7, [a#,6°) = 2iC00l.07,  [o",0"] = 2000k 0% 000,

It is important to point out that generators (parameters) of the deformed Poincaré super-
group dual to M,,, P,, Q. will not be supercommutative. However, their commutation
relations will be different from those of sM,.

Representing the canonical element 7 of the twisted Poincaré superalgebra U, (sP)
and its dual quantum Poincaré supergroup in the form

T = exp(A\“Qa + \*Qs) exp(ia” P,) exp(iw™ M, ),
one gets e.g. from the RTT-relation that
X% A] = =207 4 2(5 (W) (S () 5C7°,

where (S(w)) are the Lorentz transformation matrices acting on the chiral spinor indices.
The commutation relations of the NC superspace sM; are invariant with respect to the
twisted Poincaré superalgebra U;(sP).
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Abstract

The Landau problem in the noncommutative plane is discussed in the context of
realizations of the two-fold centrally extended planar Galilei group and the anyon
theory.

In 241 dimensions, Galilei group admits a two-fold central extension [1, 2] character-
ized by the algebra with the nonzero Poisson bracket relations

{]Ci,Pj} = m(sija {’Cialcj} = —K€4, (1)
{Ki,H} =Py, {T,Pi} =¢€;P; {T, K} = €K, (2)

where m and k are the central charges. The algebra has the two Casimir elements
1
Ci =mJ + kH — €,;K;P;, Co =mH — 577,27 (3)

which correspond to the (multiplied by the mass m) internal angular momentum (spin)
and energy.

There are two possibilities to realize this algebra as a symmetry of a free particle on a
plane: the minimal realization and the extended one [cf. the two formulations for a free
relativistic anyon [3]]. Requiring that the particle coordinate X; forms a Galilei covariant
object with respect to the action of the generators J, P; and K;, treating the Galilei
generators as integrals of motion and identifying the P; as the canonical momentum p;,
and, finally, putting the spin and internal energy to be equal to zero (C; = C; = 0), we
arrive at the following realization of the generators:

1 L
Pi = pi, Ki =mX; — tp; + mbe;;p;, J =€ Xip; + 59 %, H= %PQ, (4)
0 = /m?. As a result, the X; has a usual free particle evolution, X, = %pi. The price we
pay for such a minimal realization of the exotic Galilei algebra is the non-commutativity

of the coordinate components
{Xi, X} = Oeiy, (5)
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and the non-canonical form of the associated symplectic structure
1
Og = dpi VAN dXz + 5962Jdp2 A dpj. (6)

One can define another sort of the coordinate [4, 5],
Y; = Xz + Qeijpj. (7)

It has the same bracket with p;,

{Kapj} = 52']'7 (8)
and, hence, the same evolution law as the coordinate X;. In terms of the Y; and X, the
symplectic structure and angular momentum are diagonal,

1

(dY; AdY; — dX; A dX;), 7_29(

1

og = %Eij X 2)
On the other hand, in terms of the Y; and p; the boost generator is represented in the
usual form K; = mY; — tp;. However, the Y;, unlike the X, is not covariant with respect
to the Galilei boosts, {K;,Y;} = td;; — mbe;;. As we shall see below, the importance of
the coordinate (7) reveals under coupling the system to the external electric and magnetic
fields.

Due to the noncommutative nature of the both X; and Y;, there is no coordinate

representation associated with them. But since

{Y;7}/;} = _eeij’ { i ]} =0, (9)

one can define the third sort of the coordinate,
1

It has commuting components and reduces the symplectic structure and angular momen-
tum to a canonical form,

oo = dp; N dAX;, J = € Xip;j.

Like the Y;, the coordinate X; is not covariant with respect to the Galilean boosts,
{Ki, X;} = téi; — 1m9€” The importance of this third coordinate is that at the quan-
tum level it provides us with the Schrodinger representation, X, (X)) = XU (X), p =
—i0;¥(X). In this representation in accordance with Egs. (10), (7) the actlon of the
covariant coordinate operator is reduced to the star multiplication [6]:

X, 0(X) = (Ag- - %eeijaj) U(X) = X« W(X).

We conclude that in the minimal realization of the exotic Galilei group the coordinate
of the free particle cannot be commutative and covariant simultaneously, cf. the case
of the anyons [3]. There exist at least three sorts of the coordinate, each of which has
definite advantages and disadvantages.

172



Duval and Horvathy showed [2] that within the minimal realization, the coupling of
the particle to the arbitrary external electric and magnetic fields can be achieved via a
simple generalization of the free symplectic structure and Hamiltonian for

1 1 1
Oem = dpzAdXz+§‘9€Z]dpl/\dpj+§€B<X)€l]Xm/\dX]7 Hem = 2_ﬁ2+6V<X)a (11)
m

where V(X)) is a scalar potential associated with the electric field E; = —9;V(X). The
Poisson brackets corresponding to the o, are

0 1 eB
—— €ij, —— 0y, ivDjr = T €ijs 12
1—GQBEJ 1—edB " {r pj} 1—6036] (12)

and the equations of motion for X; and p; take the form similar to the 8 = 0 case but
with the mass m changed for the effective mass m* = m(1 — e B). The essential property
of the coordinate Y; defined by Eq. (7) is that it has the same brackets (8), (9) in the
presence of any magnetic field B(X) [4].

It is obvious that in the case of the critical value of the magnetic field B = B, = (ef) ™!,
for which symplectic form (11) degenerates while brackets (12) blow up and the effective
mass m* disappears, has to be treated separately [2, 4]. In [4] it was shown that in this
case the system realizes a Hall-like motion, which is described by the coordinate Y;. On
the other hand, it is clear that in a generic case of the inhomogeneous magnetic field
there is a problem with realization of the operators satisfying the quantum analogs of the
Poisson bracket relations (12).

The simultaneous commutativity and covariance of the coordinate can be incorporated
into the theory via the extended realization of the exotic Galilei group [7, 4]. This is
achieved by supplying the phase space with the two additional canonically conjugate
translation-invariant variables v; associated with an infinite-component Majorana-type
representation of the exotic planar Galilei group, being analogous to the Dirac @ matrices.
The symplectic structure is given here by

{Xi, X} = {Xipj} =

1
o =dp; Ndx; + §/£e,~jdv,- A dvj, (13)
and the rotation and the boost generators are realized in the form
1
._7 = Eijxipj + 5:‘4,1}7;2, ’Cz = mx; — tpz -+ Hﬁijﬂj, (14)

while as before, the translation generator is identified with p;. Require that the first
Casimir element from (3) takes zero value. Then, with taking into account (14), we fix

the form of the Hamiltonian,

1
H=pv— 5ma?, (15)

and find the equations of motion generated by it,

ii=v, pi=0, o =uwei(v;—mp;), (16)

where w = m/k. Like in the case of the Dirac equation, Hamiltonian (15) is linear in

momenta, the velocities are noncommuting, {v;,v;} = —r7'¢;;, and in the evolution of

the covariant coordinate z;, {x;, z;} = 0, there appears a Zitterbewegung-like term:

1
l’l(t) = XZ(O) + Epzt — wilqu'(t),
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where p
Xi = i + —e;V;, 17
z €V (17)

V; =V — milpia (18)

and V;(t) = (coswt -6;;+sinwt -€;;)V;(0). The quantities V; form a planar vector invariant
with respect to the space translations and boosts, {IC;, V;} =0, {p;,V;} = 0, and can be
associated with the internal rotation.

The quantity (17) has the same transformation properties under the action of P;, K;
and J as the coordinate z;. Unlike the a;, it is Zitterbewegung-free, X; = m~'p;, and has
the non-commuting components, {X;, X;} = f¢;; [cf. the properties of the covariant coor-
dinate X; within the minimal realization]|. The X; is analogous to the Foldy-Wouthuysen
coordinate for the Dirac particle. The combination X; = X; — %Qeijpj (with X; given
by (17)) is also Zitterbewegung-free, it has commuting components, but is not covariant
under the action of the Galilei boosts [cf. the properties of the coordinate (10)]. It is
analogous to the Newton-Wigner coordinate for the Dirac particle [§].

It is interesting to note that the dynamical picture of the extended formulation turns
out to be exactly the same as that for the usual planar particle (0 = 0) subjected to the
external homogeneous magnetic and electric fields [5].

The Hamiltonian and the rotation generator are represented equivalently in the form

1 1 -

H=—p%— U (19)

1 1 -
j = ngsz] + 5052 + §I{V2,

while the boost generator takes the same form as in (4) with X; given by Eq. (17). We have
not fixed yet the second Casimir element, which is reduced here to the integral of motion
associated with the Zitterbewegung (circular motion), Co = m2V?. Such a Hamiltonian
system corresponds to a special non-relativistic limit applied to the model of relativistic
particle with torsion [9] associated with the (241)-dimensional analog of the Majorana
equation and underlying the theory of relativistic anyons [8]. Like the relativistic analog,
the present system is described by the higher-derivative Lagrangian
1 .9 .o
L= SMd; + O 22, (20)

which was analysed by Lukierski, Stichel and Zakrzewski [10] (ignoring its relation to
the relativistic higher-derivative model [9]). In accordance with the Ostrogradski theory
of higher-derivative systems, at the Hamiltonian level the velocity components z; are
identified as independent phase space variables v;.

From the structure of the Hamiltonian (19) and equivalent form of the symplectic
structure (13),

1

it is clear that the system (20) describes not a free particle in the noncommutative plane
but a sort of rotator with degrees of freedom of the ghost nature since they contribute
a negative kinetic term into the Hamiltonian. In order to reduce this system to a free
exotic particle of Duval and Horvathy [2] (which corresponds to a minimal realization of
the two-fold centrally extended Galilei group), it is sufficient to fix the second Casimir
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element by introducing the second class constraints V; = 0, ¢ = 1,2 [4]. From the point
of view of such a reduction, the coordinate (17) is the extension of the initial coordinate
x; commuting with the second class constraints [5].

There is also another possibility to reduce the system (20), preserving the linear in the
momentum Hamiltonian structure (15) similar to that of the Dirac equation. Instead of
the two second class constraints, the physical subspace of the system can be singled out
by imposing a complex polarization condition given by one first class complex constraint

V. =0, (22)

V_ = V) —iV;. Then at the quantum level a state of the system can be decomposed into
the series in the Fock space states associated with the velocity variables vy = 07 4 0o,
W) = >0 o Yelk)w, where 0_|0), = 0. As a result, the quantum system will be described
by the pair of the infinite-component wave equations [7]

k’+ P+

1Ophr + ¢k+1 (23)

(k+1)

p-the + VY1 = (24)

where £ = 0,1,..., and py = p; +1ps. Eq. (23) is the Schrodinger equation corresponding
to the classical Hamiltonian (15), while Eq. (24) is the quantum analog of the classical
constraint (22), whose role is to separate effectively only one independent physical field
degree of freedom. The set (23), (24) has the sense of the infinite-component wave equa-
tions of the Dirac-Majorana-Levy-Leblond type for the exotic particle, associated with the
two-fold central extension of the planar Galilei group. It was obtained in [7] by applying a
special Jackiw-Nair non-relativistic limit [11] to the spinor set of the equations proposed
earlier in [12] for the description of relativistic anyons.

Having in mind the discussed nature of the coordinates which appear in the minimal
realization of the exotic Galilei group, it is clear that the coupling prescription (11) in
the case of the Dirac theory would correspond to the minimal coupling in terms of the
Foldy-Wouhtuysen coordinates. Since the extended formulation of a free exotic particle
results in the free wave equations (23), (24) realized in terms of the commuting covariant
coordinates z;, it is natural to expect that the coupling of the system to external electric
and magnetic fields proceeding from the extended formulation would be more close in
nature to the usual minimal coupling prescription of the Dirac theory.

The coupling of the exotic particle to external electric and magnetic fields in the
extended formulation can be realized as follows [4]. Modify the complex polarization
condition (22) via the minimal coupling prescription, p; — P, = p; — eA;(x), €,;0,A; = B.
Then the generalization of the Hamiltonian (15) can be fixed from the requirement of its
(weak) commutativity with the changed polarization condition. The essential feature of
such a coupling scheme is that the two real constraints

1
A = — Epi =0, {Ai, A} = =71 (1 = Beyy, (25)

B = B(x) = edB(z), corresponding to one complex polarization condition, change their
nature from the second class into the first class constraints at the critical value of the
magnetic field, B = B.. As a result, at B = B,, the constraints (25) eliminate not
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one but two degrees of freedom, leaving only one degree described effectively by the
noncommutative coordinate Y; [4]. In a generic case, the classical Hamiltonian weakly
commuting with constraints (25) and reducing to the Hamiltonian (15) in the free case,
has the form H = Hp 4+ U, with
1 1,
HB = m(PZ — ﬁvi)vi — Emvi, (26)
and U being an arbitrary function of X;, or Y;.

In the case of homogeneous magnetic field different from the critical one and for zero
electric field (U = 0), the obtained system describes the Landau problem in the non-
commutative plane. It is necessary to distinguish the cases of subcritical and overcritical
magnetic fields. Assume that ef > 0. Then the physical states for B < B, are separated
by the quantum polarization condition

A_|W) = 0. (27)

The solutions of Eq. (27) describe the physical states of the form

) = 5o (0mP0. ) (10116)), 29

where |0),, ©_|0), = 0, is the vacuum state of the Fock space generated by the velocity
operators, and [¢) is a velocity-independent state associated with other degrees of freedom.

The action of the Hamiltonian operator corresponding to (26) is reduced on the states
(28) to

— P.P_. 29
S L+ (29)

Hp| W) pye = exp (%emP_m) (0 i1)) . H= o
For B < 0, the spectrum of the system is characterized by the energy values En =
e|B|[N/m*, N = 0,1,..., and by the angular momentum values j = N, N — 1,.... For
0<B<B, Exy=e¢B[(N+1)/m*, N=0,1,...,and j = —N,—N +1,... [4]. The
structure of the physical states is essentially different for B < 0 and 0 < B < B.: in
the former case, the finite number of the velocity Fock space states |n),, n = 0,..., N,
contribute to a physical state, while in the latter case all the infinite tower of the velocity
Fock states (n = 0,1,...) contributes to it. It is essential, however, that in the both
cases the common eigenstates of the energy and angular momentum are normalisable. In
the critical case, due to the first class nature of the constraints (25), equation(27) should
be supplemented with the quantum condition A+|\If> = 0. The solutions of these two
equations are given by the wave functions proposed by Laughlin to describe the ground
states in the fractional quantum Hall effect [13], and coincide with the solutions of the
equation (27) taken in the limit B — B., for the details see ref. [4].

In the case of overcritical magnetic field B > B, the solutions of the quantum equation
(27) are not normalisable [4]. The reason of this is rooted in a simple observation. In
accordance with Eq. (25), the brackets between constraints A;, i = 1,2, for B > B,
have an opposite sign in comparison with the subcritical case B < B.. It means that the
operator A being an annihilation-like operator for B < B., transforms into the creation-
like operator having no nontrivial kernel for B > B.. Therefore, in the overcritical case,
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the physical states have to be separated by the quantum condition A+|\P> = ( instead of
the condition (27). This change has to be accompanied by the change of the direction of
time, t — —t [4, 14].

It was observed in [4] that in a generic case of inhomogeneous magnetic field the
quantum analog of the classical Hamiltonian (26) commuting with the quantum condition
(27) has a nonlocal nature. On the other hand, one notes that there exists a class of the
quantum systems with coordinate-dependent mass related to some quasi-exactly solvable
systems [15]. This, probably, indicates that for inhomogeneous magnetic field of a special
form the problem of non-locality of the quantum Hamiltonian can be solved using some
ideas related to quasi-exact solvability and supersymmetry [16].

Since the exotic particle system in the noncommutative plane is related via a special
non-relativistic limit to the relativistic anyon, this means that the phenomenon similar to
the existence of the critical magnetic field should also exist if one couples the latter system
to the external electromagnetic field. The problem of non-locality should also reveal itself
there for electromagnetic field of a generic form.
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N =1/2 Supersymmetric Non-Linear
Sigma-Models from Non-anticommutative
Superspace

Shin Sasak:

1 Construction of component Lagrangians

In this talk, we showed that the component structure of four-dimensional ' = 1/2 non-
anticommutative (NAC) deformed supersymmetric non-linear sigma models (NLSMs) and
their applications. The non-anticommutativity of the four-dimensional N = (%, %) su-
perspace, {0%,0°} = C°° originates from the non-trivial background supergravity field
(anti self-dual graviphoton) F,s [1]. The non-anticommutative deformed gauge model
(N = 1/2 super Yang-Mills) and Wess-Zumino model have been intensively investigated
in the literature.

Recently, we found the compact form of the superpotential deformation caused by
the non-anticommutativity [2]. In [2], for four-dimensional single chiral model, the non-
anticommutativity can be re-interpreted as the splitting effect on the target space of the

superpotential;

/d%) Wi(®) = o [W(A+cF) (A~ cF)] -
W2 [OW(A+cF) OW(A— cF) X
4cF A B A ‘ (1)

Where, ®(y) = A(y) + iv/204(y) + 6>°F(y) is a chiral superfield and ¢ = v/~ det C is
the deformation parameter. This result was extended to the multi-chiral case and to the
Kihler potential K (®,®) in the context of two-dimensional non-linear sigma model [3].
On the other hand, the structure of component Lagrangian for N' = 1/2 NAC de-
formed four-dimensional sigma-models were evaluated as the infinite power series of the
deformation parameter c [7, 8]. Soon after the work [2], the compact form of the deformed
Lagrangian for full-symmetric and other symmetric ordered case were found [7, 8]. For
example, full-symmetrization of chiral and anti-chiral superfield ordering result is

L = /d49 (AL FLT) + /d29 WA, F) + /d2§ W)
_= c T i i =
—DAJIC,E —§|:|Ak¢l¢y’c JijE ‘H:lAJ]C/ ,j 5 (2)
where, 7,7,---=1,2,---, N and

1
W(Ai,Fi) = %/dT W(Ai+7'cFi),

-1
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- 1 [t . R
K(AL Fi &) = §/d7 K(A' + 7cFi, A7),
1
- 1 [t 4 -
KAl Fi Ay = 5/dT TE (Al 4 TeF, A,
-1
A 1 ! o . R
1" AL i AJ - = -~ ) i A
K"(A', FiATY = 2/_1d7 - (TK(A —|—7'CF,A)>. (3)

The subscript ,ij - - - means the differentiation with respect to A;, 14_13. For the multi-chiral
superfields case, the non-anticommutativity of the fermionic coordinates is re-interpreted
as the “fuzziness” of the non-linear sigma model target space. The fuzziness is controlled
by the auxiliary fields F*.

Another possible way of the non-anticommutative deformation of the Kahler potential
is to interpret it as some kind of the effective chiral superpotential - which we call chiral
reduced model [4]. In [4], we first performed the anti-chiral integration | d?6 in the kinetic
part,

Sk = /d4xd29d29_ K@) = /d4yd29d2§ K(®',3)

J/

~
chiral base

0=0
_ ! /d4 0 ( 0K .Eﬁﬁ%ﬂﬁﬁ@%)
o Tk
= -3 /d4 20 {a o De® ‘Da@ - (D@“cp“) } (4)
Be careful that all superfields appearing in this form, i.e.
O*K (P, D) O’K(®, A)
0% 08" lo—o OAQAT
OK(®, D) _ OK(®,A)
85; 9=0 N 0AT 7
D, = VUL = 2i0°(0" a0 A
D3 . DY = 20 4V (9amzz@> O, A — 420, A" A, (5)

are all chiral. This is identity (up to total derivative) in this stage. Next, let us introduce
the non-anticommutativity, that is, replace all the products with star and symmetrize
the ordering. We would like to note that because we adapted non-supersymmetric -
deformation in this model, i.e. the star product contains only supercharge (), superco-
variant derivative is intact under the non-anticommutativity and can pass through the
star product.

After treating the integrated Kéhler potential as some kind of the effective chiral
superpotential and calculating the Grassmann integration explicitly, we see the result is

. __ __ __ 1 o
Echiral reduced — FzY;i +amApamAq’C7ﬁq +|:|Aplc7f) _i(wzwj)yvij
_@'(Waml/_’p)amz@}cnﬁq —Z'(W'am ml/_’p)lcuip, (6)
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where
_ _ _ 1 - __ __ __ _
Y(A,A F,F)=FPK,; —§(¢pz/1q)lC,pq +c0™ AP0, AT g +cOAPK ;5 . (7)

The symmetrization play a role of neglecting the bare contributions of non-anticommuta-
tive parameter C*?. Because the Grassmann even superfield contribution C’O‘ﬂ%% sym
always cancel out. So, this deformation doesn’t introduce Lorentz symmetry violating
terms!.

We would like to stress that the chiral-reduced result [4], full-symmetric ordering
8], chiral-antichiral ordering [7] and also the quotient construction [6] all give different
component structures. Which implies that there exists some ambiguity to construct the
component Lagrangian of the deformed non-linear sigma models. The relations among
various non-anticommutative deformation of 4D non-linear sigma models are summarized

in fig.[1].

full symmetric ordering

> (A.D. Azorkina, A. T. Banin,
[.L.Buchbinder, N. G. Pletnev (2005))

NAC deformation

[ Kahler + superpotential |

chiral reduction

E |effective chiral superpotential| E chrial-antichiral symmetric
: : : i |ordering
(anti-commutative sector) .| (T A-Ryttov, F.Sannino (2005))
vNAC deformation quotient construction of
deformed chiral reduced model %ﬁ%aaﬁfﬁ;ﬂ:ﬂi;;g%gdgig§ls
(HKKS (2005) )

Figure 1: Various possibility of the non-anticommutative deformed 4D NLSMs

Note that in any case, it is highly non-trivial to solve the equation of motion for the
auxiliary fields because in general, it becomes non-linear equation.

2 Kahler invariance

The commutative supersymmetric non-linear sigma model has Kéahler invariance, 7.e. the
action (and also the metric g;; = 04104 K) is invariant under the transformation

K(A,A) — K(A,A) + f(A) + f(A). (8)

What is the corresponding invariance in the case of non-anticommutative theory? The
naive counterpart is the star deformed version of the equation (8)

K (0, @) — K.(®,0) + fu(®) + fu(®). (9)

'Relating this fact, we would like to note about the previous work [6] in which they constructed non-
anticommutative deformed C'P™ sigma model by the quotient construction. The component result of [6]
contains a Lorentz violating term Lo = 29,59.4C*° (am”)ﬁwggzjg(amAb)(anAd).
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The invariance under the transformation (9) can be checked easily at the stage of superfield
Lagrangian

5L = [d*0d%0 f.(9) + /d29d29‘ F.(@). (10)

The first term is exactly zero because the star product (in the Q-deformation) doesn’t
break the chirality, so f,(®) is always chiral superfield and gives zero after # integration.
The second term is essentially undeformed anti-chiral superpotential, therefore it is anti-
chiral superfield and gives zero contribution after 6 integration. So, the NAC deformed
action is star Kahler invariant obviously.

On the other hand, we can interpret the non-anticommutative theory as the deformed
(anti)commutative theory after evaluating the nilpotent star product. It is important to
study the original Kéhler invariance, namely, under the transformation (8). In [5], we
showed the Kahler invariance is preserved in the chiral reduced model. Here, let us check
the invariance of the single chiral (N = 1) full symmetric ordering result. First, Kéhler
potential with mixed derivatives with respect to A, A is always Kahler invariant?. It is
easily found that the terms that have the structure K, 54.. (A+cF, A)— K, 54.. (A—cF, A)
is always invariant. The only nontrivial part is the scalar kinetic term which gives

o4

°1 %

_ _ 1 - _rt _
(K,A(A—FCF,A)—FK,A (A—CF,A)) +§8mA8mA/ dr K, 5 (A+ TcF, A)
-1
o 1 - v
= OA- f/(A) + 50,40" A / dr f"(A)
-1

=0A- f/(A) + 0,,A0™A - f"(A) = (total derivative). (11)

Then, full-symmetric ordering result also preserves Kahler invariance. It is easy task to
check the Kahler invariance of the chiral-antichiral ordering Lagrangian and multi-chiral
case.

3 Application

Next, we focus on the specific model, especially, the N' = 1/2 non-anticommutative
deformed C'P' model. First, we are going to study the on-shell structure of this model.
For the chiral-reduced, full-symmetric, chiral-antichiral symmetric models, the deformed
equation of motion for the auxiliary field becomes the same structure;
1 _ _
2— [K,A(A—i-CF,A) — K, 3 (A—CF,A)]
c

1 —_ _ _
_40_F¢2 [KaAA (A + CFa A) - K?A,A (A - CFv A)} + W?A = 0. (12)

For simplicity, we here drop the superpotential part. In the CP! case K(A,A) = aln(1+
Kk 2AA), - a and k are some constants - we see the equation (12) reduces to the form

F? — (Ac)2(k* + AA)’F — (Ac) 2% (k* + AA) = 0. (13)

2Be careful that we have to consider Kahler transformation before solving the equation of motion for
the auxiliary field.
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Thanks to the nilpotent property of 12, we can simplify the solutions to the equation
(13). The result is

Ay?
Fy Py (undeformed phase),
1 Ay? 24+ AA
F, = L4 M (deformed phase). (14)

2k2+ AA (Ac)?

Consistency with the commutative limit ¢ — 0 requires only the undeformed solution
Ey (Deformgd phase solution becomes singular). In this case, after putting the solution
F = Fy(A, A,¢,v) back into the deformed Lagrangian, we can say that this undeformed
solution gives undeformed (¢ = 0) Lagrangian on-shell 3, i.e.

e = Lo (15)

def d
eformed| . -

In this case, the half of supersymmetry that was broken by the non-anticommutativity is
recovered. This is the special situation for the C'P! model.

Next task is to find the deformed structure of this target space geometry. To find
the deformed structure, we first want to calculate the deformed metric on this target
space. The structure of the metric is different corresponding to which ordering or chiral
reduced model we choose. The explicit calculation shows the metric is controlled by
the given superpotential W (®) in each case. To see this fact, let us concentrate on the
superpotential contribution to the auxiliary field. For simplicity, put the fermion to be
zero. Then the equation of motion for the auxiliary field in the case of the C' P is

A+ cF A—cF 2K%c—
- — = W,1=0. 16
1+ k2(A+cF)A 1+ k2A-cF)A - o A (16)

Solution to this equation is

ak? + 1/ (ar)? — [2cAT, 5 (k2 + AA)]”
oy (on)? — [2eAT 5 (52 1 AA))" .
2¢2A2W 4

This apparently depends on the given superpotential W (®) through the NAC parameter
c. The explicit calculation allows us to see that this dependence is succeeded to the
metric. This fact is the special property for the non-anticommutative deformed theory
and it is interesting to investigate the deformed geometry of the target space of N’ = 1/2
non-linear sigma models.
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Abstract

Lorentz invariant supersymmetric deformations of superspaces based on the
Moyal star product parametrized by a Majorana spinor A\, are proposed. The con-
structed invariant Moyal brackets are found to be in a one to one correspondence
with the well known field dependent Lorentz noninvariant (anti)commutators of su-
percoordinates. The correspondence is fixed by the map: Bl < i), 0, Cup <

mn
AaXy, W — P, A? which is valid up to the second order corrections in the defor-
mation parameter h, where ¢, = —%(H’ym/\) is a composite Grassmannian vector.

1 Introduction

Studying noncommutative geometry attracts a great interest [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Much attention has been paid to the role of the
constant background fields of supergravity - B,,,, the graviphoton Cy, and the gravitino
P¢ - as the souce of the superspace deformations [11], [16], [17], [18], [19], [20]. The
presence of the background in the (anti)commutators of the (super)coordinate operators
has raised the problem of the Lorentz symmetry breaking introduced by the deformations.
The proposal to overcome this problem by the transition to a twisted Hopf algebra inter-
pretation was recently advanced [21] and its supersymmetric generalization was developed
in [22],[23], [24]. Another way was observed in [25], where the Hamiltonian structure of
a twistor-like model [26] of super p-brane embedded in N = 1 superspace extended by
tensor central charge coordinates was studied. The Lorentz covariant and supersymmetric
non(anti)commutative Dirac bracket relations among the brane (super)coordinates with
the r.h.s. parametrized by auxiliary spinor variables were derived there. It attracts to
think on a hidden spinor structure possibly associated with the Penrose twistor picture
[27, 28, 29, 30, 31] behind the non(anti)commutativity . With this purpose we start
here with a spinor extension of the N = 1 D = 4 superspace (x,,,0,) by one commuting
Majorana spinor A\, and construct Lorentz invariant supersymmetric Poisson and Moyal
brackets generating non(anti)commutative relations of the (super)coordinates. The r.h.s
of the brackets of x,, 