
Charged Pion Contribution to the Anomalous Magnetic
Moment of the Muon

Thesis by

Kevin Engel

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 16, 2013)



ii

c© 2013

Kevin Engel

All Rights Reserved



iii

Acknowledgements

In my time at Caltech, there have been many people to whom I owe a debt of gratitude. First,

I’d like to thank my advisor, Mark Wise, for his support, guidance, and the occasional donut and

t-shirt from his quantum mechanics class. His passion for physics is inspiring, and I appreciate both

the freedom he gave to pursue the physics I found interesting as well as the helpful suggestions and

ideas, including one which led to this thesis. I would also like to thank Michael Ramsey-Musolf who

collaborated with me on all of the work presented here. I enjoyed the semester I spent in Wisconsin

with his research group. After a meeting with Michael, I always left enthusiastic, confident and

ready to tackle the next obstacle.

I am also grateful to my family for their love and support. I would not be who I am without my

parents, George and Karen, and they deserve most of the credit for this thesis. As for my sisters,

Sarah and Laura, I promise I’ll only insist that you call me Dr. Engel once. Finally, I’d like to thank

the colleagues and friends who have made these six years of grad school so enjoyable. Long after the

details of the magnetic moment calculation presented here fade from my mind, the memories which

remain will be the ones we made together.



iv

Abstract

The model dependence inherent in hadronic calculations is one of the dominant sources of uncertainty

in the theoretical prediction of the anomalous magnetic moment of the muon. In this thesis, we focus

on the charged pion contribution and turn a critical eye on the models employed in the few previous

calculations of aπ
+π−

µ . Chiral perturbation theory (χPT) provides a check on these models at low

energies, and we therefore calculate the charged pion contribution to light-by-light (LBL) scattering

to O(p6). We show that the dominant corrections to the leading order (LO) result come from two low

energy constants which show up in the form factors for the γππ and γγππ vertices. Comparison with

the existing models reveal a potentially significant omission - none include the pion polarizability

corrections associated with the γγππ vertex. We next consider alternative models where the pion

polarizability is produced through exchange of the a1 axial vector meson. These have poor UV

behavior, however, making them unsuited for the aπ
+π−

µ calculation. We turn to a simpler form

factor modeling approach, generating two distinct models which reproduce the pion polarizability

corrections at low energies, have the correct QCD scaling at high energies, and generate finite

contributions to aπ
+π−

µ . With these two models, we calculate the charged pion contribution to the

anomalous magnetic moment of the muon, finding values larger than those previously reported:

aI
µ = −1.779(4)× 10−10 , aII

µ = −4.892(3)× 10−10.
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Chapter 1

Introduction

The anomalous magnetic moment of the muon provides an important test of the Standard Model.

As its current measured value approaches an accuracy of one part in 108, this precision measurement

challenges both experimentalists and theorists. On the theory side, diverse multi-loop contributions

from QED, electro-weak, and hadronic physics must all be considered. The current state of the

art calculation gives aSM
µ ≡ gµ−2

2 = 11659177(5) × 10−10[1] (see Ref [2] for a recent review). This

theoretical prediction represents a ∼ 4σ departure from the experimental value aexp
µ = 11659209(6)×

10−10[3] obtained by the E821 Collaboration[4, 5, 6]. To some, this discrepancy suggests new beyond

the Standard Model (BSM) physics. Ideas such as supersymmetry, extra dimensions, or additional

gauge bosons can naturally generate corrections of this size to aSM
µ [7, 8, 9]. To determine whether

these corrections are truly necessary, smaller experimental and theoretical errors are required. A next

generation experiment has been proposed at Fermilab which will reduce the experimental uncertainty

by a factor of four[10]. A similar reduction in the theoretical error would provide a strong probe of

BSM physics.

The dominant theoretical uncertainty comes from diagrams with hadronic contributions. These

first appear at O(α2) as hadronic vacuum polarization (HVP) diagrams which contain hadronic

loops modifying a virtual photon propagator. In this case, however, a complete understanding of

the hadronic physics is not required, as a dispersion relationship can be used to relate the amplitude

to experimental data on σ(e+e− → hadrons). The uncertainty in this contribution can then be

related to uncertainties in the e+e− annhilation data and the most recent analysis gives an error

δaHVP
µ ∼ 4 × 10−10[1]. Although less straightforward, similar calculations have been done using

hadronic τ decays; isospin symmetry relates this process to the e+e− one. Some tension exists

between these two methods - τ data currently predicts a larger aSM
µ that is only ∼ 1σ away from

aexp
µ [11]. Others argue that proper inclusion of isospin breaking corrections bring the τ data in line

with the e+e− data[12, 13]. These differences will need to be resolved before the HVP error can be

reduced.

A more intractable uncertainty occurs at O(α3) in light-by-light diagrams. This class of graphs
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qµ

p p + q

Figure 1.1: LBL contribution to g-2

is shown in Fig 1.1, where the gray blob represents any intermediate states which couple to four

photons. In particular, virtual hadrons contribute to these diagrams, and for this process, a theoret-

ical description of these particles is required. Uncertainties in the modeling of the hadrons generate

the bulk of the LBL error. Estimates of this error have some range, but generally δaHLBL
µ ∼

3× 10−10[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

The lightest hadronic states are the pions, and therefore one expects these to have the largest

impact on aHLBL
µ . An early calculation [25] found the values:

aπ
0

µ = 6.5× 10−10 , (1.1)

aπ
+π−

µ = −1.6× 10−10 . (1.2)

The π0 contribution, also known as pseudoscalar exchange, is clearly dominant, and therefore con-

siderable theoretical effort has been focused on reducing the uncertainty from these graphs. As a

result, the pseudoscalar exchange error is now comparable with errors from subdominant processes

such as charged pion loops which have received much less study from the theoretical community.

Any attempts to further reduce the theoretical error must now take these graphs into account.

In this thesis, we re-examine the charged pion loop contribution to aHLBL
µ , focusing, in particular,

on the models employed in previous calculations. At low energies, the pions are well described by

χPT, an effective field theory of hadronic degrees of freedom relevant to low energy QCD. As such,

it is model independent, relying instead on experimentally determined low energy constants, which,

in principle, may one day be directly calculated from QCD. In many cases, however, χPT cannot

be used to make a direct theoretical prediction. For example, a χPT analysis of the pseudoscalar

exchange contribution to aµ reveals a divergence which must be cancelled by a magnetic moment

counterterm, the finite part of which can only be determined by an experimental measurement of

aµ. Consequently, hadronic modeling appears unavoidable in predictions of aHLBL
µ . Nonetheless,

χPT can still be used to constrain these models, as they should agree in the low energy regime. We

begin with a quick review of this theory.
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1.1 Chiral Perturbation Theory

χPT is an effective field theory of the low energy QCD bound states with mass scale Λχ = 4πf ∼ 1

GeV. The organizing principle of χPT is chiral symmetry, an approximate global symmetry of QCD

which is spontaneously broken from SU(Nf )L×SU(Nf )R → SU(Nf )V at low energies. The lightest

hadrons are the pions, the pseudo-Nambu-Goldstone bosons of this transition. In 2 flavor χPT, pion

interactions are described by the Lagrangian:

L2 =
f2

4
〈DµUD

µU†〉+
f2

4
〈χU† + Uχ†〉 . (1.3)

We follow the conventions in Ref. [26] where U(x) = exp(iτaπa(x)/f) is a matrix valued field

which transforms as U(x)→ L(x)U(x)R†(x) under the left and right handed chiral transformations.

Ignoring the heavy EW gauge bosons, the covariant derivative is DµU = ∂µU + ieAµ [Q,U ] , where

Q = diag(2/3,-1/3). The mass matrix χ is given by χ = 2B0diag(mu,md). Electroweak and quark

mass terms break chiral symmetry in QCD, therefore these terms are needed to enforce the same

pattern of symmetry breaking in χPT. Expanded in terms of the three pion fields, this Lagrangian

contains standard kinetic terms, mass terms with m2
0 = (mu +md)B0, and an infinite tower of pion

interactions suppressed by powers of f . Note that all interactions in L2 are proportional to either

the pion mass m2
0 or momentum p2 (ignoring photons), hence this is known as the O(p2) Lagrangian.

L2 consists of all the mass dimension two operators that respect chiral symmetry and parity.

As an effective field theory χPT allows for higher mass dimension operators suppressed by powers

of Λχ. The O(p4) Lagrangian, first written down by Gasser and Leutwyler [27], is parameterized by

ten low energy constants (LECs):

L4 = α1〈DµUD
µU†〉2 + α2〈DµUDνU

†〉〈DµUDνU†〉+ α3〈DµUD
µU†DνUD

νU†〉

+ α4〈DµUD
µU†〉〈χU† + Uχ†〉+ α5〈DµUD

µU†(χU† + Uχ†)〉+ α6〈χU† + Uχ†〉2

+ α7〈χ†U − Uχ†〉2 + α8〈χU†χU† + Uχ†Uχ†〉+ ieFµνα9〈QDµUDνU† +QDµU†DνU〉

+ e2FµνFµνα10〈QUQU†〉 . (1.4)

The LECs are responsible for renormalizing the theory and their finite values must be obtained

experimentally. They are typically defined using a modified MS scheme:

αri = αi −
γi

32π2

[
2

d− 4
− log(4π) + γ − 1

]
. (1.5)

For the LECs which will later be of interest: γ4 = 1/8 , γ5 = 1/4 , γ6 = 3/32 , γ8 = 0 , γ9 =

1/6 , γ10 = −1/6 .
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1.2 Previous aπ
+π−
µ calculations

χPT serves as the framework for hadronic light-by-light calculations, the first of which was published

in 1985 by Kinoshita et al[25]. They considered only the lightest hadrons, the pions, which affect

the muon magnetic moment through pseudoscalar π0 exchange as well as a π+π− charged pion loop.

Unlike the π0 exchange, the charged pion loop contribution is finite at lowest order in χPT. The

O(p2) Lagrangian of Eq (1.3) gives rise to the graphs of Fig 4.3, which Kinoshita et al. evaluated

numerically to find:

aLO
µ = −4.8(3)× 10−10 . (1.6)

This leading order χPT calculation is rather naive in that it treats the pions as structureless and

elementary. However, a more complete χPT calculation which includes higher order corrections will

no longer be predictive, since, as demonstrated by the divergent π0 contribution to aµ, a magnetic

moment counterterm first appears in χPT with mass dependence mµ/f
2. Alternatively, one can

introduce models which match onto χPT at low energies, but possess better UV behavior, thereby

eliminating the need for counterterms. Kinoshita attempted this by using vector meson dominance

(VMD) form factors which modify the couplings of photons to pions. For each photon line in Fig

4.3, Kinoshita et al. inserted the form factor:

V (k) =
(

1− k2

k2−M2
V

)
, (1.7)

where k is the photon momenta and MV = mρ ∼ 770 MeV is the mass of the ρ meson. These result

in a supression of the magnetic moment contribution:

aVMD
µ = −1.6(2)× 10−10 . (1.8)

From this, the authors concluded that the charged pion contribution was subdominant to the pion

exchange contribution, which, having been made finite by the VMD prescription, they had also

calculated:

aπ
0

µ = 6.5(6)× 10−10 . (1.9)

Consequently, subsequent calculations of aHLBL
µ have mainly focused on the pseudoscalar exchange.

The charged pion contribution appears only in a few papers since that time. In 1996, Kinoshita

et al. reexamined their calculation[16], presenting the same results with greater accuracy:

aLO
µ = −4.46(2)× 10−10 , (1.10)

aVMD
µ = −1.67(2)× 10−10 . (1.11)
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They also introduced a refinement of the simple VMD model by using the hidden local symmetry

(HLS) Lagrangian [28], which explicitly includes the ρ meson as a dynamical degree of freedom. In

this model, ρ exchange gives the same VMD γππ form factor as in Eq (1.7), but the γγππ form factor

is altered; instead of (1− k21
k21−M2

V
)(1− k22

k22−M2
V

), the HLS γγππ form factor is (1− k21
k21−M2

V
− k22

k22−M2
V

).

This change led to an even smaller result:

aHLS
µ = −.44(2)× 10−10 . (1.12)

Around the same time, a different analysis was published by Bijnens et al. using the extended

Nambu-Jona-Lasinio (ENJL) model[15]. Form factors are once again introduced to improve the

leading order charged pion loop contribution; these modify the LBL amplitude as follows:

Πµνσρ = Vµα(k1)Vνβ(k2)Vσγ(k3)Vρδ(k4)Παβγδ
LO , (1.13)

where

Vµν(k) =
gµνM

2
V (k2)− kµkν

M2
V (k2)− k2

. (1.14)

Due to the gauge invariance of ΠLO, the kµkν terms can be dropped from Vµν(k), giving:

Πµνσρ =
MV (k2

1)

M2
V (k2

1)− k2
1

MV (k2
2)

M2
V (k2

2)− k2
2

MV (k2
3)

M2
V (k2

3)− k2
3

MV (k2
4)

M2
V (k2

4)− k2
4

ΠLO
µνσρ . (1.15)

For fixed MV which is not a function of momentum, this is equivalent to the full VMD prescription

described in Eq (1.7), and Bijnens et al. calculate an aµ which agrees with Eq (1.11). Incorporating

the momentum dependence of MV , the authors report a slightly different value:

aENJL
µ = −1.9(1.3)× 10−10 . (1.16)

The error quoted here includes an attempt to estimate model uncertainties.

The results discussed above highlight the importance of higher energy corrections in the aπ
+π−

µ

calculation. For each model, the use of VMD-style form factors strongly supresses the LO result.

This is somewhat unexpected, as an evaluation of Eq (1.7) at an energy scale near the muon mass

suggests corrections of only a few percent. Given this surprising sensitivity of the aπ
+π−

µ calculation

to higher energy scales, the reliability of the models which govern the high energy behavior becomes

crucial. In this work, we point out the flaws in the current models and seek to improve them; the

necessary steps are outlined in the next section.
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1.3 Outline

A primary concern in model-based calculations is how well the models capture the relevant physics.

We investigate this question in Chapter 2, where we have calculated the charged pion contribution to

the LBL scattering amplitude to next-to-leading (NLO) in χPT. Unlike the LBL magnetic moment

contribution, this process is finite at this order, and the NLO corrections can be directly compared

with model based predictions. The effects of the NLO contributions are easiest to analyze in the

ultra-low energy limit k2 � m2
π. At this energy scale, we find that the current models reproduce an

NLO correction associated with the pion charge radius, but miss a correction of similar magnitude

associated with the pion polarizability. Given the large impact of the VMD form factors on aLO
µ , we

conclude that proper modeling of the polarizability physics may have a significant impact on aπ
+π−

µ .

In Chapter 3, we review a resonance model that includes both ρ and a1 mesons. Exchange

of these mesons gives rise to the desired pion charge radius and polarizability corrections at low

energies. However, we show that a1 exchange in this and similar models has poor UV behavior,

leading to a divergent aπ+π−
µ . Instead, we consider a simpler set of models in which the a1 has been

integrated out, appearing only through form factors. We discuss the modeling constraints and give

two distinct realizations. This simple form factor approach satisfies all known constraints from both

χPT and QCD and gives a finite contribution to aπ
+π−

µ .

Armed with our improved models, we proceed to the magnetic moment calculation. The details

of this complicated calculation are discussed in Chapters 4 and 5, and our results are given in

Chapter 6. We find that for both of our models, the contributions from a1 exchange tend to cancel

the ρ contributions, resulting in a larger (more negative) aπ
+π−

µ . As before, the calculation is quite

sensitive to higher order corrections currently unconstrained by χPT. Different combinations of ρ

and a1 models (which all agree at low energies) lead to estimates of aπ
+π−

µ which vary by as much

as 5 × 10−10. This variation is large compared to the currently reported error δaHLBL
µ . This leads

to our main conclusion presented in Chapter 7: the charged pion contribution to aµ may be larger

than previously thought, and consequently the uncertainty δaHLBL
µ should be increased.
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Chapter 2

LBL scattering in χPT

At low energy scales, hadronic contributions to LBL scattering can be estimated using χPT. In

the usual power counting expansion, the leading order diagrams occur at O(p4) and consist of

a single loop of charged pions. These graphs are shown in Fig 2.1. In this energy regime, the

π0 pseudoscalar exchange graph of Fig 2.2 is subdominant, appearing at O(p6). We ignore the

pseudoscalar contribution in what follows, focusing, instead, on the other O(p6) contributions which

correct the leading order charged pion result. These diagrams are more varied, including both 2-

loop graphs and 1-loop graphs with an insertion of an O(p4) counterterm. Nonetheless, we have

found that these higher order contributions can (mostly) be organized into propagator and vertex

corrections, which, when inserted into the original 1-loop graphs, give the NLO contribution to

the LBL amplitude. We present our results for the propagator and vertex corrections below, using

dimensional regularization for the loop integrals. Because these results are to be placed into 1-loop

graphs, we maintain an explicit d throughout.

+ +

Figure 2.1: LO charged pion contribution to LBL.

Figure 2.2: Pseudoscalar exchange contribution to LBL.



8

2.1 Counterterm and 1-loop corrections

2.1.1 Propagator

The charged pion propagator receives corrections at O(p4) from both counterterms and pion loops

as shown below.

= +

π±, π0

Figure 2.3: O(p4) corrections to the charged pion propagator.

The self energy is found to be:

Π(k2) =ik2

[(
m2

0

f2

)
(16α4 + 8α5)− 2

3f2
Γ(1)

(
1
m2

0

)1−d/2
]

−im2
0

[(
m2

0

f2

)
(32α6 + 16α8)− 1

6f2
Γ(1)

(
1
m2

0

)1−d/2
]
, (2.1)

where we have defined

Γ(n) ≡ 1

(4π)d/2
µ4−dΓ(n− d/2) . (2.2)

From this, the physical pion mass can be derived:

m2
π = m2

0

(
1 +

(
m2

0

f2

) [
32αr6 + 16αr8 − 16αr4 − 8αr5 − log(µ2/m2

0)/(32π2)
])

. (2.3)

For the purposes of this calculation, we choose to absorb part of the mass counterterm into m0,

setting the tree level mass equal to the physical pion mass. This way, the LO 1-loop graphs will

depend on mπ, not m0, and therefore do not contribute to NLO. This choice alters the propagator

correction, which we write as:

Π(k2) = ic1(k2 −m2
π)− ic2m2

π . (2.4)

c1 =
(
m2
π

f2

)
(16α4 + 8α5)− 2

3f2
Γ(1)

(
1
m2
π

)1−d/2
, (2.5)

c2 =
(
m2
π

f2

)
(32α6 + 16α8 − 16α4 − 8α5) +

1

2f2
Γ(1)

(
1
m2
π

)1−d/2

−
(
m2
π

f2

) [
32αr6 + 16αr8 − 16αr4 − 8αr5 − log(µ2/m2

π)/(32π2)
]
. (2.6)

The coefficient c2 is proportional to d− 4 and will not appear in the final result.
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2.1.2 γππ vertex

The γπ+π− coupling which appears in the O(p2) Lagrangian receives corrections from O(p4) coun-

terterms as well as pion loops. These graphs are shown in Fig 2.4; we have chosen to represent this

result as:

p1 p2

kµ

= ie(pν1 + pν2)Vµν(k) . (2.7)

In this notation, the full 1PI vertex is given by adding the O(p2) vertex, gµν , to V µν . At

O(p4) , V µν is found to be:

V µν(k) =− 1

2f2
Jµν(k)− 2α9

f2
kµkν

+ gµν
[(

m2
π

f2

)
(16α4 + 8α5)− 5

3f2
Γ(1)

(
1
m2

0

)1−d/2
+

2α9

f2
k2

]
, (2.8)

where Jµν(k) is the first of four Feynman integrals needed for this paper. It can be found in the

appendix.

= + +

Figure 2.4: O(p4) corrections to the γππ vertex

For on shell pions, the kµkν terms can be ignored. We have checked that the remaining terms

reproduce the standard result for the pion form factor[26]:

Gπ(k2) ≡ 1 + r2
πk

2/6 +O(k4) , (2.9)

r2
π =

12αr9
f2

+
1

16π2f2

[
log(µ2/m2

π)− 1
]
, (2.10)

where rπ is the charge radius of the pion. The α4 and α5 dependence of V µν disappears due to

the wavefunction renormalization required for on shell pions. We see that the photon coupling to

the charged pion is controlled by α9. Experimental values of this form factor, measured at different

values of k2, allow for a determination of rπ, and therefore αr9. The most recent determination of

the charge radius was done by Bijnens et al, who found αr9(mρ) = 7.0± .2×10−3 for two flavor χPT

at O(p4)[29].
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2.1.3 γγππ vertex

This vertex appears at tree level with value 2ie2gµν , but also receives corrections from the diagrams

in Fig 2.5. We have chosen to parameterize the result as:

p1 p2

k
µ
1 kν2

= ie2
[
V µν1 (k1, k2) + (p2

1 + p2
2 − 2m2

π)V µν2 (k1, k2)
]

(2.11)

where

V µν1 (k1, k2) =
(k1 + k2)2

f2
(Iµν(k1, k2) + gµνK(k1, k2))− 1

f2
(Jµν(k1) + Jµν(k2))

− 16

3f2
gµνΓ(1)

(
1
m2

0

)1−d/2
+ 2gµν

(
m2
π

f2

)
(16α4 + 8α5)

+
8(α9 + α10)

f2
(k1k2g

µν − kν1kµ2 ) +
4α9

f2
(gµν(k2

1 + k2
2)− kµ1 kν1 − kµ2 kν2 ) , (2.12)

V µν2 (k1, k2) =− 1

3f2
(Iµν(k1, k2) + gµνK(k1, k2)) . (2.13)

Two new Feynman integrals appear in this result - Iµν and K; they can be found in the appendix.

= + +

π±, π0

+ + + +

Figure 2.5: O(p4) corrections to the γγππ vertex

Although the fully virtual result is required for our calculation, some insight can be gained by

taking the d→ 4 limit with on-shell pions and expanding about small photon momenta:

〈π+(p2)|Aµ(k1)Aν(k2)|π+(p1)〉1PI =2ie2
[
gµν +

r2
π

6
(gµν(k2

1 + k2
2)− kµ1 kν1 − kµ2 kν2 )

+
4(αr9 + αr10)

f2
(k1k2g

µν − kν1kµ2 ) +O(k4)
]
. (2.14)

We see that the higher momentum corrections are governed by r2
π from the one photon vertex, and

a new combination of LECs - αr9 + αr10, associated with the pion polarizability. Pion polarizability

measurements are difficult, however, and the best experimental constraint on this quantity comes

from radiative pion decay[30]:

αr9 + αr10 = 1.32± .14× 10−3 . (2.15)

αr10 can also be determined separately using data from semileptonic τ decays[31]. Converting from

three to two flavor χPT, we find αr10(mρ) = −(5.19± .06×10−3). When combined with the value for

αr9 suggested by the charge radius, we find reasonable convergence with the result from radiative pion
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decay. Some discrepancy still exists when comparing these values to the experimentally measured

pion polarizability. The latest results disagree by a factor of 2[32].

2.1.4 Ward identity

We have presented the O(p4) corrections to the pion propagator, γππ, and γγππ vertices. A useful

cross-check on this calculation is provided by the full Ward identity, keeping all particles off-shell.

Using a path integral technique[33], we derive the usual relationship:

∂µ〈0|Tjµ(x1)Aν(x2)π−(x3)π+(x4)|0〉 = (2.16)

e [δ(x1 − x4)− δ(x1 − x3)] 〈0|TAν(x2)π−(x3)π+(x4)|0〉 .

In connected diagrams, an external photon Aµ(x1) results in the factor i
∫
d4z∆µα(x1 − z)jα(z) .

By inverting this relationship, Eq (2.16) can be used to relate the γγππ vertex to the γππ one. We

convert to momentum space (using the labeling of Eq (2.11)), resulting in the Ward identity:

kµ1Mµν(k1, k2, p1, p2) = e [Mν(k2, p1 + k1, p2)−Mν(k2, p1, p2 − k1)] . (2.17)

Note that the amplitudes here are the full ones, not just the 1PI part. External photon legs are

amputated in the conversion between jµ and Aµ, but pion ones are not. These amplitudes are given

in the appendix, written in terms of the functions discussed in this section. We have verified, after

a lengthy calculation, that Eq (2.17) is indeed satisfied.

2.2 LBL amplitude

At leading order, we need only consider the three diagrams in Fig 2.1. The full LBL amplitude is

given by permuting the photon momenta and indices, taking into consideration the symmetries of

each graph:

Πµνσρ
LO (k1, k2, k3, k4) = ie4

[
1
4H

µνσρ(k1, k2, k3, k4) + gµνIσρ(k3, k4) + 1
2g
µνgσρK(k3, k4)

]
+ perms .

(2.18)

In the d → 4 limit, Hµνσρ , Iσρ , and K are all divergent, but when the 24 permuations are taken

into account, the divergences cancel, leaving Πµνσρ
LO finite. A 4-photon counterterm does not appear

in χPT until O(p8), therefore, both LO and NLO results must be finite.

The NLO diagrams are shown in Fig 2.6, utilizing the vertex and propagator corrections discussed

in Section 2.1. As mentioned earlier, this method of organizing the various corrections is not quite

perfect, and some overcounting takes place when the full permutations are considered. The three
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2-loop graphs i-k of Fig 2.6 are double counted in graphs g-h and their value must be subtracted to

arrive at the final answer.

(a) (b)

+

(c) (d)

(e)

+

(f) (g) (h)

(i) (j) (k)

Figure 2.6: NLO charged pion contribution to LBL. Use of the form factors leads to a double
counting of the 2-loop graphs i-k. These graphs must be subtracted from graphs a-h to find the
NLO LBL amplitude.

The amplitude for the first eight diagrams is given below:

a)− ie4c1H
µνσρ(k1, k2, k3, k4) ,

b)− ie4c1g
µνIσρ(k3, k4) ,

c)− 2ie4c1g
µνIσρ(k3, k4) ,

d)− ie4c1g
µνgσρK(k3, k4) ,

e) ie4V σα(k3)Hµν
α
ρ(k1, k2, k3, k4) ,

f) 2ie4gµνV σα(k3)Iα
ρ(k3, k4) ,

g) 1
2 ie

4gσρ
[
V µν1 (k1, k2)K(k3, k4)− 2V µν2 (k1, k2)Γ(1)

(
1
m2
π

)1−d/2 ]
,

h) 1
2 ie

4 [V µν1 (k1, k2)Iσρ(k3, k4)− V µν2 (k1, k2) (Jσρ(k3) + Jσρ(k4))] .

We have neglected contributions to graphs a-d proportional to c2 which go to zero in the limit d→ 4.

Some simplification can be achieved by absorbing a factor of c1g
µν into the vertex form factors:

Ṽ µν(k) = V µν − c1gµν , (2.19)

Ṽ1
µν

(k1, k2) = V µν1 (k1, k2)− 2c1g
µν . (2.20)
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By using these modified form factors in graphs e-h, we also reproduce graphs a-d. Note that the

modified form factors no longer depend on α4 and α5. They are the form factors appropriate for

renormalized pions.

Amplitudes for graphs i-k are given below. Graphs i and j contain structures which disappear

under permutation; we present the simplified expressions that result from a judicious combination

of photon permutations:

i)
ie4

12f2
[3(k1 + k2)2Iµν(k1, k2)Iσρ(k3, k4) + Iµν(k1, k2) (Jσρ(k3) + Jσρ(k4))

+ (Jµν(k1) + Jµν(k2)) Iσρ(k3, k4)] ,

j)
ie4

6f2

[
3(k1 + k2)2K(k1, k2)Iσρ(k3, k4) +K(k1, k2) (Jσρ(k3) + Jσρ(k4)) + 2Iσρ(k3, k4)Γ(1)

(
1
m2
π

)1−d/2 ]
,

k)
ie4

6f2
gµνgσρ

[
2(k1 + k2)2K(k1, k2)K(k3, k4) + (K(k1, k2) +K(k3, k4))Γ(1)

(
1
m2
π

)1−d/2 ]
.

Putting all these contributions together, the NLO LBL amplitude is:

Πµνσρ
NLO (k1, k2, k3, k4) = ie4

{
Ṽ σα(k3) [Hµν

α
ρ(k1, k2, k3, k4) + 2gµνIα

ρ(k3, k4)]

+
[1

2
Ṽ1
µν

(k1, k2)− (k1 + k2)2

4f2
(Iµν(k1, k2) + gµνK(k1, k2))

][
Iσρ(k3, k4) + gσρK(k3, k4)

]}
+ perms . (2.21)

2.3 LBL effective Lagrangian

For low energy processes with k2 � m2
π, the LBL result in the previous section can be expanded as

a power series in the photon momenta. The integrals become simple polynomials in the Feynman

parameters and are easily evaluated. We match the result onto an effective Lagrangian as coefficients

of 4-photon operators. Note that the momentum expansion here is not the same as the χPT one

where k2 ∼ m2
π � (4πf)2. At lowest order in the momentum expansion, there are only two mass

dimension eight operators:

32O(8)
1 = (FµνFµν)2 ,

8O(8)
2 = FαβF

βγFγδF
δα .

The LO and NLO contributions to the coefficients of these two operators appear in Table 2.1, with

the common factor e4/(4π)2m4
π removed. Only one NLO correction appears at this order, as these

are usually associated with additional powers of momenta. The full impact of the NLO corrections

can be seen by going to the next order in the momentum expansion. As we show in the appendix,

there are naively 24 distinct operators which can be formed by combining two derivatives and four
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field strengths. However, 7 of these can be eliminated through integration by parts, and another

10 are related by exchanging external derivatives with field strength derivatives. This leaves a

non-unique but complete basis of seven d = 10 operators which we have chosen as:

16O(10)
1 = ∂ρFµν∂

ρFµνFαβF
αβ ,

8 O(10)
2 = ∂ρFµνF

µν∂ρFαβF
αβ ,

2 O(10)
3 = ∂ρFαβ∂

ρF βγFγδF
δα ,

4 O(10)
4 = ∂ρFαβF

βγ∂ρFγδF
δα ,

4 O(10)
5 = ∂µFµνF

αν∂αFβγF
βγ ,

4 O(10)
6 = FµνF

αν∂µFβγ∂αF
βγ ,

2 O(10)
7 = Fµν∂

µFαβ∂
νF βγFγα .

The coefficients of these operators are given in Table 2.2.

Table 2.1: Coefficients of lowest dimension (d = 8) operators contributing to the LBL amplitude,
scaled by (4π)2m4

π/e
4. Second and third columns give LO and NLO contributions in χPT, while

the final column indicates the LO corrections from current VMD-style models.

Operator LO NLO VMD

O(8)
1 1/9

m2
π

f2
16
3 (αr9 + αr10) 0

O(8)
2 1/45 0 0

Table 2.2: Coefficients of d = 10 operators O(10)
n contributing to the LBL amplitude, scaled by

(4π)2m6
π/e

4. First column denotes operator index n. Second and third columns give LO and NLO
contributions in χPT, while final column indicates the LO corrections from current VMD-style
models . Identifying r2

π = 6/M2
V (see text) implies agreement between the two-loop χPT and VMD

predictions for the charge radius contribution.

n LO NLO VMD

1 1
45

1
3

{
1
9 (mπrπ)2 + 4

5 (mπf )2(αr9 + αr10)
}

2
9
m2
π

M2
V

2 2
45

1
9

{
1
3 (mπrπ)2 + 1

2
m2
π

Λ2
χ

+ 44
5 (mπf )2(αr9 + αr10)

}
2
9
m2
π

M2
V

3 2
315

1
135 (mπrπ)2 2

45
m2
π

M2
V

4 1
189

1
135 (mπrπ)2 2

45
m2
π

M2
V

5 1
135

4
45 (mπf )2(αr9 + αr10) 0

6 1
315 0 0

7 1
945 0 0
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Our low energy expansion yields several interesting results. First, we find that the bulk of the

LBL corrections can be organized into either pion charge radius corrections ∼ r2
π or pion polariz-

ability corrections ∼ αr9 + αr10. These are associated with corrections to the γππ and γγππ vertices

respectively. To this order, at least, it seems that correct modeling of the photon-pion interactions

gives the dominant higher order corrections to the LBL amplitude. Second, we find that the LO

LBL amplitude is numerically supressed, making the NLO corrections more significant. Because the

4-photon operators have been defined with appropriate symmetry factors, one naively expects O(1)

coefficients from LO and m2
π/Λ

2
χ · O(1) coefficients from the chirally supressed NLO. Taking O(8)

1

as an example, we find an NLO contribution, which, upon plugging in the experimental value for

αr9 + αr10, evaluates to 1.1 ×m2
π/Λ

2
χ, in agreement with our expectation. The LO contribution, on

the other hand, is numerically supressed by a factor of 1/9. Rather than the ∼ m2
π

Λ2
χ
∼ 1% correc-

tions suggested by χPT power counting, for O(8)
1 , the NLO results modify the LO by 15%. The

remaining coefficients tell a similar story, with NLO corrections due to the pion charge radius and/or

pion polarizability resulting in O(10− 20%) modifications of the LO coefficients. The two types of

corrections occur in Tables 2.1 and 2.2 in roughly comparable size; the charge radius correction is

largest for O(10)
1 (∼ 30%), while the strongest effects of the polarizability appear in O(8)

1 (∼ 15%).

Our low energy results suggest that NLO corrections to LBL can be significant and arise mainly

from corrections to the γππ and γγππ vertices.

2.4 LBL and g − 2

The NLO results in the previous section allow for a low energy comparison between χPT and the

models which have been used to calculate aπ
+π−

µ . In the low energy regime, the ENJL, full VMD,

and HLS models all produce γππ and γγππ form factors which are identical to O(k2). Applying

these to the LO LBL graphs give corrections which are shown in the last column of Tables 2.1 and

2.2 and should be compared with the NLO χPT predictions. Identifying M2
V with 6/r2

π, we see that

these VMD-style models fail to capture all of the relevant physics, reproducing LBL corrections due

to the charge radius, but not the pion polarizability. Given the comparable magnitudes of these

two corrections in the previous section, one suspects that a model which includes polarizability

corrections may deviate substantially from the VMD predictions. Of course, these low energy results

(k2 � m2
π) cover only a small portion of the enrgy range important to the magnetic moment

calculation and therefore may not be indicative of their impact on aπ
+π−

µ . Indeed, the three VMD-

style models agree at these low energies, but, as discussed in Section 1.2, give rather different

values for aπ
+π−

µ . While it is unclear what effect the inclusion of polarizability will have on aπ
+π−

µ ,

the VMD results certainly demonstrate that NLO contributions to the magnetic moment are far

from negligible. A proper estimation of aπ
+π−

µ should model all NLO effects, including the pion
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polarizability.

Previous aπ
+π−

µ calculations have all used VMD-style models where the γππ and γγππ form

factors are the result of vector meson exchange. These models fit within the more general framework

of resonance saturation, where the finite parts of the χPT counterterms are saturated by the exchange

of low-lying resonances[34]. In this framework, the charge pion radius is associated with exchange

of the ρ vector meson. Existing models include this using a γππ form factor such as (1 − k2

k2−M2
V

).

At low energies, this must match the form factor calculated using χPT, giving the relationship

M2
V = 6/r2

π. Measurements of the pion charge radius are in good agreement with the identification

of MV as the ρ mass. Pion polarizability corrections, on the other hand, are induced by exchanges

of the a1 axial-vector meson. In this case, low energy matching gives M2
A = f2

4(α9+α10) . Despite

being the same order in chiral power counting, no aπ
+π−

µ calculation has included these effects.

Although the a1 is more massive than the ρ, the large aπ
+π−

µ corrections induced by including the

ρ exchanges lead us to suspect that the a1 contributions will be non-negligible. A more complete

estimation of aπ
+π−

µ should incorporate both ρ and a1 exchanges. The remainder of this thesis is

devoted to that task. In the next chapter, we survey existing a1 models. Finding them inadequate

for the magnetic moment calculation, we then create two simple models of a1 exchange which result

in finite contributions to aπ
+π−

µ .
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Chapter 3

a1 modeling

3.1 AT model

In hadronic physics, the idea of form factors dominated by exchange of resonances is an old one.

After the advent of χPT in 1984 by Gasser and Leutwyler[27] it was quickly realized that a limited

number of low-lying resonances could explain the O(p4) LECs [34]. In particular the LECs α9 and

α10 can be associated with the ρ vector meson and the a1 axial vector meson. These resonances can

be incorporated into χPT in a number of ways; two of the most popular models are the generalized

hidden local symmetry (GHLS) model [35] and the antisymmetric tensor (AT) model [34]. Despite

the very different realizations of the resonances, Ecker et al. showed that their effects on the pion

couplings were identical[36]. We focus here on the simpler AT model which, unlike GHLS, requires

no χPT counterterms.

3.1.1 Formulation

In this model, the vector resonances are described by antisymmetric tensors which transform non-

linearly under the chiral symmetry:

Rµν → hRµνh
† . (3.1)

Here h is defined by the transformation of the goldstone fields:

u(π)→ gLu(π)h† ≡ hu(π)g†R , (3.2)

where u(π)2 = U(π) = exp(iπiτ i/f). A covariant derivative can be defined for fields which transform

as in Eq (3.1):

∇µR = ∂µR+ [Γµ, R] , (3.3)
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with connection Γµ defined in terms of u(π) and the external gauge fields associated with the chiral

symmetries:

Γµ = 1
2

[
u†(∂µ + ilµ)u+ u(∂µ + irµ)u†

]
. (3.4)

To describe massive vector particles, the kinetic term must include only three degrees of freedom.

For antisymmetric tensors, this gives rise to two possible Lagrangians - the AT model employs the

one where the R0i are the propagating degrees of freedom:

Lkin(Rµν) = − 1
2 〈∇µRµα∇νRνα〉+ 1

4M
2
R〈RµνRµν〉 . (3.5)

With this choice of kinetic terms, the most general Lagrangian to O(p2) in chiral power counting

and linear in the vector resonance Vµν and axial vector resonance Aµν is given by:

LAT = Lkin(Vµν) + Lkin(Aµν) + FV
2
√

2
〈Vµνfµν+ 〉 − i GV2

√
2
〈Vµν [uµ, uν ]〉 − FA

2
√

2
〈Aµνfµν− 〉 , (3.6)

where:

fµν± = u†FµνL u± uFµνR u† , (3.7)

uµ = iu†DµUu = iu†(∂µU + ilµU − iUrµ)u . (3.8)

For the g − 2 calculation, our interest is in the resonance interactions with pions and photons.

For the two flavor case, with:

Vµν =

 1√
2
ρ0
µν ρ+

µν

ρ−µν
1√
2
ρ0
µν

 , Aµν =

 1√
2
a0
µν a+

µν

a−µν
1√
2
a0
µν

 , (3.9)

the relevant interactions can be extracted from Eq (3.6):

L =− 1
2∂

µρ0
µα∂νρ

0να + 1
4M

2
V ρ

0
µνρ

0µν −Dµa+
µαDνa

−να + 1
2M

2
Aa

+
µνa
−µν+

FV e
2 Fµνρ0

µν(1− π+π−

f2 )− iGV
f2 ρ

0µν
(
Dµπ

+Dνπ
− −Dνπ

+Dµπ
−)− iFAe

2f Fµν(a−µνπ
+ − a+

µνπ
−) .

(3.10)

The various parameters in this model are constrained experimentally and theoretically; some of

these restrictions are discussed in more detail in Sec 3.2.1. For now, we follow Ref [36] and set

FV =
√

2f , GV = f/
√

2 , FA = f , MA =
√

2MV .
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3.1.2 AT form factors and g − 2

The Lagrangian above contains ρ0 and a±1 mesons which couple both to the photon and the charged

pions. These interactions modify the elementary photon-pion couplings found in the O(p2) χPT

Lagrangian. The γππ vertex, given at LO in χPT as V µ = ie(pµ1 + pµ2 ) becomes:

V µAT = ie(p1ν + p2ν)

[
gµν − gµνk2 − kµkν

k2 −M2
V

]
. (3.11)

The γγππ vertex, with LO amplitude V µν = 2ie2gµν , receives corrections from both ρ and a1

exchanges:

V µνAT = 2ie2

[
gµν −

(
gµνk2

1 − kµ1 kν1
k2

1 −M2
V

+
gµνk2

2 − kµ2 kν2
k2

2 −M2
V

)
+

1

M2
A

(k1k2g
µν − kµ2 kν1 )−

1

2M2
A(P 2

1 −M2
A)

(k1k2P
µ
1 P

ν
1 − P1k2P

µ
1 k

ν
1 − P1k1k

µ
2P

ν
1 + gµνP1k1P1k2)−

1

2M2
A(P 2

2 −M2
A)

(k1k2P
µ
2 P

ν
2 − P2k2P

µ
2 k

ν
1 − P2k1k

µ
2P

ν
2 + gµνP2k1P2k2)

]
, (3.12)

where P1 = p1 + k1 and P2 = p1 + k2.

In the AT model, ρ exchanges affect the LO g − 2 calculation only through the form factors

given above. From an effective field theory viewpoint, these two form factors can be viewed as

higher momentum modifications of the γππ and γγππ vertices; gauge invariance then allows for a

simplified structure. Terms proportional to kµ arise from ∂µA
µ terms in the Lagrangian. In the

Lorenz gauge, these structures vanish and can safely be ignored. For a more general gauge, as we

show in the appendix, proper choice of gauge fixing term can eliminate these structures at the cost

of adding additional interactions higher order in α. Therefore, to lowest order in α, independent

of the choice of gauge, the kµ terms in the form factors can be ignored. For the ρ exchanges, this

results in simple, multiplicative form factors that modify the LO vertices:

V µAT, ρ → ie(pµ1 + pµ2 )
(

1− k2

k2−M2
V

)
, (3.13)

V µνAT, ρ → 2ie2gµν
(

1− k21
k21−M2

V
− k22

k22−M2
V

)
. (3.14)

These are identical to the form factors used by Kinoshita et al. in their calcuation of aHLS
µ .

The a1 contributions to the magnetic moment, on the other hand, have not been previously

calculated. These are more complicated, for, in addition to the effect on the γγππ form factor,

gauge invariance requires that we also include diagrams like the ones in Fig 3.1(b). Furthermore,

from Eq (3.12), we see that a1 exchange in the AT model has poor UV behavior as compared to ρ
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(a) a1 exchange contribution to the
γγππ form factor and g − 2.

(b) Non form factor a1 exchange graphs which must accompany dia-
grams like (a) in order to preserve gauge invariance.

Figure 3.1: Some a1 (doubled line) contributions to the magnetic moment in the AT theory.

exchange. This is due to the bad UV behavior of the massive meson propagator. The specific form

of the γρ vertex leads to convergent ρ exchanges, but no such cancellations occur for the a1. In the

g − 2 calculation this invariably leads to divergent contributions from various subgraphs. We see

no reason for the divergences to cancel in the sum, and expect a counterterm will be required for

a finite aAT
µ . This position is supported by Ref [37] wherein the pion mass splitting was calculated

using the AT model. In order to achieve a finite result, the authors were forced to include additional

form factors which suppressed the a1 contribution at high energies.

In other resonance models, such as GHLS, where the mesons are included as the usual 4-vectors,

Lorentz invariance limits the form of the a1 exchange interaction, and the finite parts of the α9 and

α10 χPT counterterms must be explicitly added to the theory [36]. These counterterms contribute

to the two photon form factor:

V µνCT = 2ie2

M2
A

(gµνk1k2 − kµ2 kν1 ) , (3.15)

and, unless a1 exchange exactly cancels these terms for large k1,k2, the resulting aµ calculation

will diverge. Existing models can likely be altered with higher momentum terms to ensure this

cancellation; however, we found it simpler to create our own models. In the next few sections

we discuss modeling constraints and present two minimal models of a1 exchange with improved

UV behavior. When combined with the appropriate ρ exchanges these models satisfy all known

constraints from χPT and QCD.

3.2 a1 form factors

The resonance models discussed in the previous section include the ρ and a1 mesons as full propa-

gating degrees of freedom. For the g−2 calculation, however, this level of complexity is unnecessary

as these particles appear mainly as modifications to the γππ and γγππ vertices. In this work, we

adopt an effective field theory viewpoint in which the resonances have been integrated out, leaving

behind form factors which modify the photon-pion interactions. Despite the considerable modeling
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freedom inherent in this approach, our form factors are constrained at both low and high energies;

for the two models discussed below, these restrictions give rise to a relatively model independent

result.

3.2.1 Constraints

At low energies, the form factors are constrained by the experimentally measured O(p4) χPT coun-

terterms. For the γππ vertex, a 1-loop calculation, in the simplifying limit of photon momenta

k2 � m2
π, gives:

V µχPT ∼ ie(p1ν + p2ν)
[
gµν +

r2π
6 (gµνk2 − kµkν)

]
. (3.16)

Similarly, for the γγππ vertex with incoming photon momenta kµ1 and kν2 , one finds:

V µνχPT ∼ 2ie2
[
gµν +

r2π
6 (gµνk2

1 − kµ1 kν1 + gµνk2
2 − kµ2 kν2 )+

4(αr9+αr10)
f2 (k1k2g

µν − kµ2 kν1 )
]
. (3.17)

In the framework of resonance saturation, the pion charge radius can be written in terms of the ρ

mass: r2
π = 6/M2

V , and the pion polarizability can be written in terms of the a1 mass: 4(αr9 +αr10) =

f2/M2
A. With this choice of parameterization, the Weinberg sum rules[38] imply that MA =

√
2MV ,

in reasonable agreement with the experimentally measured values.

At high energies, the amplitudes are constrained by QCD [39, 40]. For large photon momenta

k = k1 = −k2 = q → ∞, a parton-level analysis suggests that both form factors should fall off as

1/q2. As pointed out in Ref [40], the γγππ vertex in the HLS model does not satisfy this constraint,

as it fails to vanish at large q2. However, the full VMD prescription used in the ENJL model is no

better, falling off too quickly as 1/q4. In addition to correcting the low energy behavior of these

models, adding an a1 contribution can also fix the asymptotic behavior at high energies.

One other possible check on the form factors is given by the electromagnetic pion mass shift.

Because they couple to photons, the self energy of the charged pions differs from that of the π0, and

this difference is clearly affected by any additional physics which modify the photon-pion couplings.

Using the AT model along with some additional form factors, the authors of Ref [37] found reasonable

agreement with the experimentally measured value. The two form factors play a large role in this

calculation, and therefore the mass shift provides a useful independent cross-check of any models

used in the g − 2 calculation.

Finally, though not strictly necessary, a predictive g − 2 calculation requires an a1 contribution

that is well behaved at high energies. Although the AT model satisfies both the χPT and QCD

constraints, it fails this one. This is most readily apparent in the LBL diagram shown in Fig 3.2.

Two a1 exchanges lead to a non-convergent loop integral, and, as these are formally distinct from
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Figure 3.2: Divergent LBL diagram in the AT theory for two a1 exchanges

the one a1 exchange graphs, no cancellation is possible. Even the one a1 insertion graphs are likely

divergent, as evidenced by the need for additional form factor supression in the AT mass shift

calculation[37]. Using our form factor approach, we find it is relatively simple to create models of a1

exchange with improved UV behavior, which also satisfy both the low and high energy constraints.

3.2.2 Model I

Any attempt to include the effects of a1 exchange must match onto the pion polarizability term in

Eq (3.15) at low energies. At the Lagrangian level, this is generated by the interaction:

L = − e2

2M2
A
FµνF

µνπ+π− . (3.18)

Left unmodified, this term has poor UV behavior and will lead to a divergent aπ
+π−

µ . When viewed,

however, as the first of many high energy corrections induced by integrating out the a1 meson, a

way forward is suggested. Just as the pion charge radius is often identified as the first term in the

expansion of a ρ meson propagator, for our first a1 model, we make the same assumption with the

pion polarizability term and complete M2
A into a full propagator:

La1 = −e
2

4
Fµνπ

+

(
1

D2 +M2
A

)(
Fµνπ−

)
+ h.c. (3.19)

The Feynman rule for the γγππ vertex is modified from Eq (3.15) to:

V µνa1 = −ie2(k1k2g
µν − kµ2 kν1 )

[
1

(p1+k1)2−M2
A

+ 1
(p1+k2)2−M2

A

]
. (3.20)

The two agree at low energies, but V µνa1 has the improved UV behavior necessary for the magnetic

moment calculation. Note, however, that gauge invariance requires the use of D2 rather than ∂2

in Eq (3.19), and this naturally gives rise to vertices involving additional photons. We derive the

Feynman rules for these interactions in the appendix. From the resulting denominator structure,

the additional interactions have a direct correspondence with the graphs in Fig 3.1(b). Accordingly,

we have found it simplest to express the Feynman rules of this theory in terms of the fictional a1
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exchange diagrams of Fig 3.3.

. . .

k
µ
1 kν2

: −e2(k1k2g
µν − k

µ
2 k

ν
1 )

: i
k2−M2

Ak

: ie(p
µ
1 + p

µ
2 )

kµ

p1 p2

: 2ie2gµν
k
µ
1 kν2

Figure 3.3: Feynman rules for a1 exchange in Model I. The ellipsis in the first figure stands for any
insertions of the subsequent diagrams.

In the limit of large photon momenta, the a1 contribution to the γγππ form factor approaches

a constant; the QCD constraint then suggests it should be combined with the AT (or HLS) ρ

prescription from Eq (3.14) which has a similar behavior. Indeed, with these ingredients, the full

γγππ form factor is given by:

V µν = 2ie2
[
gµν

(
1− k21

k21−M2
V
− k22

k22−M2
V

)
− 1

2 (k1k2g
µν − kµ2 kν1 )

(
1

(p1+k1)2−M2
A

+ 1
(p1+k2)2−M2

A

) ]
,

(3.21)

which, ignoring unphysical polarizations, does have the correct 1/q2 asymptotic behavior.

Turning to the pion mass shift calculation, we find that the improved UV behavior of our a1

exchange model gives rise to a finite result, with no need for additional form factors. Including both

ρ and a1 exchanges, the Compton amplitude for our model is given by:

Tµν(p, q) =
(
−2 + 4q2

q2−M2
V
− q2

q2+2pq−M2
A+m2

π
− q2

q2−2pq−M2
A+m2

π

)
Dµν

1 (3.22)

− 4
M2
Vm

2
π

(q2−M2
V )2

(
1

q2+2pq + 1
q2−2pq

)
Dµν

2 ,
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where we follow the conventions of [37], with:

Dµν
1 = −gµν + qµqν

q2 , (3.23)

Dµν
2 = 1

p2

(
pµ − pq

q2 q
µ
)(

pν − pq
q2 q

ν
)
. (3.24)

Note that this result was obtained by reinstating the kµ terms in the form factors that were removed

in Section 3.1.2. Unlike g − 2, the mass shift calculation is not leading order in e, and these terms

can not be removed without consequence. Using Eq (3.22) with MA =
√

2MV , we calculate the

mass shift:

δm2 =
ie2

2

∫
d4q

(2π)4

gµνT
µν(p, q)

q2
, (3.25)

=
e2M2

V

32π2

{
12 log(2)− 2

m2
π

M2
V

+ log
(
M2
V

m2
π

)
− 1−2m2

π/M
2
V −8m4

π/M
4
V√

1−4m2
π/M

2
V

log

(
M2
V (1+
√

1−4m2
π/M

2
V )−2m2

π

2m2
π

)}
.

(3.26)

For vector meson mass MV = mρ = 775.49 MeV, this evaluates to:

∆mπ = mπ± −mπ0 = 5.12 MeV , (3.27)

which agrees reasonably well with the experimental value:

∆mπ, exp = 4.5936± .0005 MeV . (3.28)

3.2.3 Model II

Although the propagator form factor model described above is well motivated and satisfies all the

constraints, it is certainly not unique. We introduce a second model here in an attempt to outline

the degree of model dependence in our final result. Because the first model employs the partial VMD

form factors suggested by the AT and HLS Lagrangians, we are motivated in our second model to

instead use the full VMD form factors preferred by Bijnens et al. For this model of ρ exchange, the

γππ vertex of Eq (3.13) remains unchanged, but the γγππ vertex is altered:

V µνVMD = 2ie2
[
gµν − gµνk21−k

µ
1 k

ν
1

k21−M2
V
− gµνk22−k

µ
2 k

ν
2

k22−M2
V

+
gµνk21k

2
2−k

µ
1 k

ν
1k

2
2−k

µ
2 k

ν
2k

2
1+k1k2k

µ
1 k

ν
2

(k21−M2
V )(k22−M2

V )

]
. (3.29)

To match onto the asymptotic behavior predicted by QCD, this implies that the a1 contribution to

the form factor must fall off as 1/q2. One simple way to achieve this result is to apply the VMD
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form factors to the pion polarizability vertex:

L = − e2

2M2
A

(
1− ∂2

∂2+M2
V

)
Fµν

(
1− ∂2

∂2+M2
V

)
Fµνπ+π− . (3.30)

Combined with the ρ exchanges, this leads to a γγππ form factor,

V µν = 2ie2
(

1− k21
k21−M2

V

)(
1− k22

k22−M2
V

) [
gµν + 1

M2
A

(k1k2g
µν − kµ2 kν1 )

]
, (3.31)

which satisfies both the low and high energy constraints.

However, this model is not as well behaved as the previous one. Much like the AT model, two

insertions of this a1 vertex result in a divergent LBL diagram. For the g − 2 calculation, we ignore

these graphs as higher order contributions (in χPT power counting) and instead focus on the one

insertion graphs which are finite. As for the pion mass shift, the Compton amplitude for this model

is given by:

Tµν(p, q) =
2q2M4

V /M
2
A−2M4

V

(q2−M2
V )2

Dµν
1 − 4

M2
Vm

2
π

(q2−M2
V )2

(
1

q2+2pq + 1
q2−2pq

)
Dµν

2 . (3.32)

The first term leads to a logarithmic divergence in the mass shift integral of Eq (3.25). In retrospect,

this is not surprising, and indeed should be a generic consequence for models satisfying the asymp-

totic 1/q2 form factor behavior. For the first model, a fortuitous cancellation occurs in the integral

between m2
π/q

4 and (pq)2/q6 terms to give a convergent result. Despite these shortcomings, our

VMD model does satisfy the known constraints, and, at one insertion, provides a finite correction

to the g − 2 calculation. Armed now with two different models of a1 exchange, we turn, at last, to

their effect on the magnetic moment of the muon. This complicated calculation is discussed in the

next section.
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Chapter 4

g − 2 calculation

The charged pion contribution to aµ is a three loop process and is therefore simplest to evaluate

numerically. We begin by reviewing a general method for turning momentum space integrals into

bounded integrals appropriate for numeric evaluation. Next, we discuss some aspects of this partic-

ular calculation which allow for a reduction in both the number of graphs necessary to consider and

the size and complexity of the resultant integrand. We present the LO graphs and give a detailed

description of our process for one of them. Finally, we turn to the a1 corrections, giving the necessary

graphs for Models I and II, and discussing the slight alterations to our methods that are required to

evaluate these contributions.

4.1 Parametric formulation of Feynman integrals

For numeric evaluations of multi-loop Feynman diagrams, the parametric formulation is a useful

tool. In this method, integrals over loop momenta are done simultaneously, leaving behind functions

of Feynman parameters which can be integrated numerically. This process is described in detail in

Ref [41]; we present a brief summary here.

Consider an arbitrary Feynman diagram with n propagators, m loop momenta lµi , and some

number of external momenta kµj . If each propagator is assigned a Feynman parameter, then the full

amplitude can be written as:

∫∫∫
d4l1

(2π)4

d4l2
(2π)4

. . .

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)Num(lµi , k
µ
j )Γ(n)

(
n∑
i=1

xi(p
2
i −m2

i )

)−n
. (4.1)

Here pi, the momenta flowing through the ith propagator, is obviously a linear combination of the

loop and external momenta. Factors from vertices and the like have been grouped together into the

single function Num(lµi , k
µ
j ).

To begin with, we consider the special case where the numerator does not depend on the loop

momenta lµi . We focus on the denominator, dropping Lorentz indices for convenience and rewriting
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Figure 4.1: 3-loop diagram with different choices of loop momenta

it to illustrate the loop momenta dependence:

(liUij(x)lj + 2liAij(x)kj − f(k,m, x)) . (4.2)

Here Uij(x) is a symmetric m ×m matrix which depends on the choice of loops. As an example,

Fig 4.1 shows the same diagram with two different routings of the three loop momenta. Using the

parameterization from Fig 4.1(a), the two loop momenta coupling matrices are:

U (b) =


x1 + x4 + x6 −x4 0

−x4 x2 + x4 + x5 + x7 + x8 −x5

0 −x5 x3 + x5 + x9

 , (4.3)

U (c) =


x1 + x4 + x6 −x4 x1 + x6

−x4 x2 + x3 + x4 + x7 + x8 + x9 x2 + x3 + x7 + x8 + x9

x1 + x6 x2 + x3 + x7 + x8 + x9 x1 + x2 + x3 + x6 + x7 + x8 + x9

 .

(4.4)

Aij(x) couples the loop momenta to the external momenta and clearly depends on how the

external momenta are routed through the diagram. f(k,m, x) is a function composed of invariants

of the external momenta and the various particle masses.

In this form, the integral over the loop momenta is relatively straightforward. We first remove

the linear term with the redefinition l = l̃ − U−1Ak, which results in the denominator:

(
l̃U(x)l̃ − V (k,m, x)

)
, (4.5)

where we have defined

V (k,m, x) = (A(x)k)iU
−1
ij (x)(A(x)k)j + f(k,m, x) . (4.6)

As a symmetric matrix, U can be diagonalized by an orthogonal transformation which we implement
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through l̂ = T (x)l̃. The resultant loop integrals are quite simple:

∼
∫∫∫

d4 l̂1
(2π)4

d4 l̂2
(2π)4

. . .

(
m∑
i=1

ci l̂
2
i − V

)−n
Γ(n) , (4.7)

where ci are the eigenvalues of U . Using dimensional regularization, the loop integrals evaluate to:

im(−1)n(
m∏
i

ci

)d/2
(4π)md/2

Γ(n−md/2)

(
1

V

)n−md/2
. (4.8)

Rewriting
m∏
i

ci as detU , we find that the full amplitude is given as:

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)Num(kµj )
im(−1)n

(4π)md/2
Γ(n−md/2)

1

(detU(x))d/2

(
1

V (k,m, x)

)n−md/2
.

(4.9)

This formalism can be easily extended to include numerators which do depend on the loop

momenta. For each li, we introduce a source momentum and mass by modifying the existing

propagator:
1

l21 −m2
→ 1

l21 + 2q1l1 −m2
1

. (4.10)

Now, an lµ1 in the numerator can be achieved through a derivative with respect to the source

momenta:
lµ1

l21 −m2
= Dµ

1

1

l21 + 2q1l1 −m2
1

∣∣∣∣∣
q1=0
m1=m

, (4.11)

where

Dµ
i ≡ −

1

2

∫ m2
i ∂

∂qiµ
dm2

i . (4.12)

With the substitution Num(lµi , k
µ
j ) → Num(Dµ

i , k
µ
j ), the numerator is made independent of the

loop momenta and the previous analysis can be repeated, but now with an expanded Aij(x) which

includes couplings to the source momenta. The full amplitude is then given by:

1∫∫∫
0

dx1dx2 . . .δ(1−Σxi)
im(−1)n

(4π)md/2
Γ(n−md/2)

1

(detU(x))d/2
Num(Dµ

i , k
µ
j )

(
1

V (k,m, x, qi,mi)

)n−md/2 ∣∣∣∣∣
qi→0
mi→m

, (4.13)

where we set qi → 0 and return mi to the original mass m after all the derivatives with respect to

the source momenta have been taken. The end result is a function of external momenta invariants,
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particle masses, and Feynman parameters whose bounded integral can be evaluated numerically.

4.2 Symmetries and simplifications for LBL g− 2 calculation

We use the general formalism described in the previous section to calculate three loop charged

pion contributions to the muon magnetic moment. For this particular calculation, however, we can

employ some additional tricks to help simplify the result.

As shown in Fig 1.1, the relevant diagrams arise by attaching three photon lines from the LBL

subdiagrams to a muon line. We find it convenient to isolate the LBL part and write the amplitude

as:

Mµ =

∫∫
d4k2

(2π)4

d4k3

(2π)4
MLνσρ(p, q, k2, k3)Πµνσρ(q, k2, k3,−q − k2 − k3) . (4.14)

This generates an O(α3) correction to the muon vertex function which is paramaterized as:

Γµ(q) = γµF1(q2) +
iσµνqν
2mµ

F2(q2) . (4.15)

For this calculation, we concern ourselves only with contributions to F2, since the anomalous mag-

netic moment is given by aµ ≡ (gµ− 2)/2 = F2(0). Therefore, any terms in Eq (4.14) which are not

linear in q can be safely ignored.

We have purposefully separated out the LBL subdiagram to take advantage of its q dependence.

The Ward-Takahashi identity for LBL is quite simple: qαΠανσρ = 0, as it relates the four photon am-

plitude to the three photon one, which must vanish according to Furry’s Theorem. By differentiating

with respect to qµ, we find:

Πµνσρ = −qα
∂Πανσρ

∂qµ
. (4.16)

This enormously simplifies the magnetic moment calculation, since the linear q dependence of the

LBL subdiagram allows us to set q → 0 everywhere else:

Mµ ∼
∫∫

d4k2

(2π)4

d4k3

(2π)4
MLνσρ(p, k2, k3)(−qα)

∂Πανσρ(q, k2, k3,−q − k2 − k3)

∂qµ

∣∣∣∣∣
q=0

. (4.17)

The incoming muon momentum p is now the only external momenta which appears in the denom-

inator, and, if routed along the muon line, it enters the same way, regardless of the individual

subdiagrams which make up LBL. As we will demonstrate shortly, this allows us to use the same

denominator (and therefore the same parametric functions U and V ) for every contributing diagram.

Incidentally, this prescription has the additional advantage of rendering individual LBL diagrams

finite. In its initial form, the LBL diagrams are divergent, cancelling only in the aggregate sum.

However, if Eq (4.16) is used before integrating over the loop momenta, each diagram is individually
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(a) (b)

Figure 4.2: Mirror image LBL diagrams

convergent. In this way, we can avoid the extra processing which would have been required to

numerically evaluate divergent diagrams[42].

Some simplification can also be achieved in the numerator structure. For an individual diagram,

the only structures left at the end will be proportional to pµ/q,γµ/q,/qγµ, and qµ. The first one vanishes

when sandwiched between u(p + q) and u(p) and can be neglected. The remaining three are not

independent and can be related by anti-commuting gamma matrices:

/qγ
µ = −γµ/q + 2qµ . (4.18)

This leaves two distinct structures whose coefficients will have to be calculated for each diagram.

However, gauge invariance requires the overall sum of the diagrams to be proportional to:

iσµν

2mµ
qν = − 1

4mµ

(
γµ/q + /qγ

µ
)

= − 1

2mµ

(
γµ/q − qµ

)
. (4.19)

Rather than duplicate effort, we cut the size of the calculation in half by finding only the coefficient

of γµ/q. Throughout the calculation, we cull from the numerator all terms proportional to pµ or

qµ (in addition to occuring in the intial amplitude, these terms can arise as gamma matrices are

contracted or when loop momenta are replaced by factors of p).

Two other symmetries are useful for this project, reducing the number of diagrams which need

to be considered. Charge conjugation symmetry implies that LBL subdiagrams which differ only in

the directionality of the pion loop have the same value. The second symmetry is not as obvious,

but as we show below, it relates the magnetic moment contributions from LBL diagrams which are

mirror images.

Consider the two LBL diagrams in Fig 4.2 with photon momenta qµ flowing into the pion loop

from above and kν2 , −qρ − kρ2 − kρ3 , kσ3 from left to right respectively flowing in from below. If we

denote the amplitude of graph (a) as Πµνσρ
a (q, k2, k3), then clearly the amplitude of graph (b) can

be found by exchanging kν2 and kσ3 :

Πµνσρ
b (q, k2, k3) = Πµσνρ

a (q, k3, k2) . (4.20)



31

The total contribution of the two graphs to the muon vertex function is given by:

Mµ ∼
∫∫

d4k2

(2π)4

d4k3

(2π)4
MLνσρ(p, k2, k3)(−qα)

(
∂Πανσρ

a (q, k2, k3)

∂qµ
+
∂Πασνρ

a (q, k3, k2)

∂qµ

) ∣∣∣∣∣
q=0

,

(4.21)

or equivalently:

Mµ ∼
∫∫

d4k2

(2π)4

d4k3

(2π)4
(MLνσρ(p, k2, k3) + MLσνρ(p, k3, k2)) (−qα)

∂Πανσρ
a (q, k2, k3)

∂qµ

∣∣∣∣∣
q=0

. (4.22)

Using the Feynman gauge, the muon line part is given by:

MLνσρ(p, k2, k3) =
e3γσ(/p+ /k3 +mµ)γρ(/p− /k2 +mµ)γν

((p+ k3)2 −m2
µ)((p− k2)2 −m2

µ)k2
2k

2
3(k2 + k3)2

(4.23)

=
{
γσγαγργβγν(pα + k3α)(pβ − k2β)+

γσγαγργνmµ(pα + k3α)+

γσγργαγνmµ(pα − k2α)+

γσγργνm2
µ

} e3

((p+ k3)2 −m2
µ)((p− k2)2 −m2

µ)k2
2k

2
3(k2 + k3)2

.

For the sake of comparison, we also write out MLσνρ(p, k3, k2), suggestively relabeling the dummy

indices so that the order of the gamma matrices is flipped:

MLσνρ(p, k3, k2) =
{
γνγβγργαγσ(pα − k3α)(pβ + k2β)+

γνγργαγσmµ(pα − k3α)+

γνγαγργσmµ(pα + k2α)+

γνγργσm2
µ

} e3

((p− k3)2 −m2
µ)((p+ k2)2 −m2

µ)k2
2k

2
3(k2 + k3)2

. (4.24)

In our g−2 calculation, loop momenta in the numerator can do one of two things: contract with one

another to form metrics, or pull out factors of external momentum p from the parametric function

V . Note, however, that the pk2 and pk3 couplings differ by a minus sign in the denominator of the

two muon lines. If, in the first case, one of these loop momenta pulls down a factor of pα, then in

the second one it will pull down a factor of −pα. We will now show that this implies that the two

muon lines give the same contribution to aµ.

In order for the three γ part of MLνσρ to contribute to the coefficient of γµ/q, one of the γ must

be contracted into p, e.g. ∼ /pγµ/q. Note that the position of /p is not terribly significant for this

calculation. Because we can drop pµ terms and pq is O(q2), any /p can be moved to the right, and,
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Figure 4.3: LO charged pion contributions to the muon magnetic moment

using /pu(p) = mµu(p), turned into a factor of mµ. If /p occurs between γµ and /q, then only one

anti-commutation takes place and a minus sign must be appended.

The corresponding part of the second muon line MLσνρ has the same numerator and will therefore

generate the exact same term, but now, the order of the gamma matrices is flipped and a −p is

contracted: ∼ /qγµ(−/p). We anticommute /q and γµ, (discarding the qµ term that is generated)

thereby picking up an additional minus sign for the γµ/q coefficient. It should now be clear that any

three γ contribution from the first muon line is reproduced by the second one, as the minus sign on

p is cancelled by exchanging γµ and /q. Similar reasoning can be applied to the four and five γ parts

of the muon lines, where now some combination of metrics and p contractions contribute to the γµ/q

coefficient. The minus sign from the flipped order is always cancelled out, allowing us to conclude

that diagrams (a) and (b) contribute equally to the magnetic moment. More generally, any pair of

graphs which have the same left-right mirror symmetry with respect to the muon line will give equal

contributions to aµ.

4.3 Leading order calculation

The symmetries discussed in the previous section greatly reduce the number of diagrams which must

be considered in the LO aLBL
µ calculation. These graphs (and appropriate symmetry factors) are

shown in Fig 4.3. In order to demonstrate our specific implementation of the general formalism

discussed earlier, we present, in detail, our calculation of the magnetic moment contribution from

graph 4.3(a).

We begin by choosing the loop momenta and routing the external momenta through the diagram;

our labeling is shown in Fig 4.4. We make similar choices for all the diagrams in Fig 4.3 - the pion

loop is assigned clockwise momenta l, the left-most photon loop is assigned clockwise momenta k2,
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p p− k2 p + k3 + q p + q

q

k3k2

l l + q

Figure 4.4: Momentum labeling for graph 4.3(a)

l + k3
l − k2

l

−k2 − k3

k3k2

p− k2 p + k3

x1

x2 x3

x4 x5

x6

x7 x8

Figure 4.5: Feynman parameter assignment for the graphs of Fig 4.3

and the right-most one is chosen anti-clockwise with loop momenta k3.

Next, we write down just the LBL amplitude (including the symmetry factor here):

Πµνσρ
a =

∫
d4l

(2π)4

2e4(2lµ + qµ)(2lν − kν2 )(2lσ + kσ3 + 2qσ)(2lρ − kρ2 + kρ3 + qρ)

(l2 −m2
π)((l + q)2 −m2

π)((l + k3 + q)2 −m2
π)((l − k2)2 −m2

π)
. (4.25)

Eq (4.16) is then used to isolate the linear q dependence:

Πµνσρ
a ∼

∫
d4l

(2π)4

2e42ql(2lν − kν2 )

(l2 −m2
π)2((l + k3)2 −m2

π)((l − k2)2 −m2
π)

{
− 2gµσ(2lρ − kρ2 + kρ3)− gµρ(2lσ + kσ3 )

+ (2lσ + kσ3 )(2lρ − kρ2 + kρ3)

(
2lµ

l2 −m2
π

+
2(lµ + kµ3 )

(l + k3)2 −m2
π

)}
. (4.26)

As discussed earlier, we have dropped a term proportional to qµ from our result. Although the

numerator is now more complicated, the denominator is simpler, involving only three distinct prop-

agators which no longer depend on q.

We now assign a Feynman parameter to each propagator; this is shown schematically in Fig 4.5.

Combining the propagators into a common denominator and comparing with Eq (4.2) gives (using

the basis li = (l, k2, k3)):
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U(x) =


x1 + x4 + x5 −x4 x5

−x4 x2 + x4 + x6 + x7 x6

x5 x6 x3 + x5 + x6 + x8

 , (4.27)

Aµ(x) ≡ Aij(x)kµj =


x1q

µ
1

x2q
µ
2 − x7p

µ

x3q
µ
3 + x8p

µ

 , (4.28)

f = m2
1x1 +m2

2x2 +m2
3x3 +m2

π(x4 + x5) , (4.29)

where source momenta and masses have been introduced for the three loop momenta. The parametric

function V can now be directly calculated using Eq (4.6). For convenience, we parameterize V as:

V =
[

1
U

(
c1x

2
1q

2
1 + c2x

2
2q

2
2 + c3x

2
3q

2
3 + 2c4x1x2q1q2 + 2c5x1x3q1q3 + 2c6x2x3q2q3

)
(4.30)

+ 2c7x1pq1 + 2c8x2pq2 + 2c9x3pq3 + c10m
2
µ + f

]
. (4.31)

In a slight abuse of notation we use U here to refer to detU of the matrix in Eq (4.27). It should be

clear from the context which one is meant. This factor is generated from the inverse matrix in Eq

(4.6); we include it explicitly in the first six coefficients so that the overall exponent of U in the final

answer is directly correlated with the number of momentum contractions. The ten c’s are functions

of the Feynman parameters and their values can be found in the Appendix.

Turning back to the numerator, we find it separates into two parts, one where the total number

of propagators n = 9, and one with n = 10:

Numµ
9 = MLnumνσρ

[
x1e

44ql(2lν − kν2 )(−2gµσ(2lρ − kρ2 + kρ3)− gµρ(2lσ + kσ3 ))
]
, (4.32)

Numµ
10 = MLnumνσρ

[
e48ql(2lν − kν2 )(2lσ + kσ3 )(2lρ − kρ2 + kρ3)( 1

2x
2
1l
µ + x1x5(lµ + kµ3 ))

]
. (4.33)

MLnumνσρ is, of course, the numerator of the muon line, given by:

MLnumνσρ = e3γσ(/p+ /k3 +mµ)γρ(/p− /k2 +mµ)γν . (4.34)

The Feynman parameters in the LBL numerator account for the different multiplicities of the prop-

agators in Eq (4.26).

As we have shown previously, we can replace numerator loop momenta with derivatives with
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respect to source momenta, finally allowing us to write:

Mµ
a =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
i

(4π)3d/2Ud/2

{
Numµ

9 (pα, Dα
i )

(
1

V

)9−3d/2

Γ(9− 3d/2)

−Numµ
10(pα, Dα

i )

(
1

V

)10−3d/2

Γ(10− 3d/2)

}∣∣∣∣∣ qi→0
m1→mπ
m2,m3→0

. (4.35)

The loop momentum integrals have been replaced with integrals over Feynman parameters. The only

remaining hurdles are performing the source momentum derivatives, extracting the γµ/q coefficient,

and numerically integrating the result.

With Eq (4.35) as the starting point, the remaining processing can be accomplished by computer

programs. We have written one which evaluates the source momentum derivatives, then simplifies

the ensuing contractions into gamma matrices. As was mentioned previously, in order to survive the

qi → 0 limit, each loop momentum in the numerator must either pull out a factor of p from V , or

contract with another loop momentum. As an example, we consider one of the many terms in Eq

(4.32):

−16e7x1mµγ
σ
/pγ

ργνql lνkρ3g
µσ . (4.36)

The loop momenta become source momenta derivatives which act on V :

qD1D
ν
1D

ρ
3

(
1

V

)9−3d/2

Γ(9− 3d/2)
∣∣∣ qi→0
m1→mπ
m2,m3→0

. (4.37)

Using the parameterization of V from Eq (4.31), this is easily evaluated:

= qp pνpρ(−c27c9)

(
1

V

)9−3d/2

Γ(9− 3d/2)+

[
qp gνρ

c5c7
2U

+ qνpρ
c1c9
2U

+ qρpν
c5c7
2U

]( 1

V

)8−3d/2

Γ(8− 3d/2) . (4.38)

Of course, half the terms here would be immediately discarded since qp is O(q2). The remaining

terms are contracted into the gamma matrices, /p are transformed into mµ, and the coefficient of

γµ/q is extracted. This process is repeated for each term in the numerator. We arrive at last, at an

expression for the magnetic moment contribution due to diagram (a):

aµ =
2e6

(4π)3d/2

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
{

num7 U
−3−d/2

(
1

V

)7−3d/2

Γ(7− 3d/2)+

num8 U
−2−d/2

(
1

V

)8−3d/2

Γ(8− 3d/2)
}
, (4.39)
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where num7 and num8 are complicated functions of ci, U , and d; they are given explicitly in the

appendix. The parametric function V in this expression is now the physical one with qi → 0,

m1 → mπ, and m2,m3 → 0. We have also rescaled by m2
µ to make it a dimensionless quantity:

V ≡ m2
π

m2
µ

(x1 + x4 + x5) + c10 . (4.40)

As we will demonstrate in Section 5.1, this integral is finite, therefore we can take the d → 4 limit

and evaluate numerically.

The remaining diagrams in Fig 4.3 can be evaluated the same way. Note that our convention

of routing momentum q through the middle photon line implies that the LBL amplitude of graphs

4.3(d) and 4.3(g) does not depend on q, and accordingly gives no contribution to aµ. For the

remaining graphs, we impose the same denominator structure displayed in Fig 4.5. This ensures

that each diagram has the same parametric functions U and V , differing only in the numerator

functions. This will prove useful during the numeric integration. Some graphs intially lack all

eight propagators; we ‘fix’ these by multiplying both numerator and denominator by the missing

propagator. For example, graph 4.3(h), which consists of only seven propagators, contributes the

following numerator to Eq (4.35):

Numµ
9 = MLnumνσρ

[
8e4qνgσρ((l + k3)2 −m2

π)x4(−lµ + kµ2 )
]
. (4.41)

The final and complete expression for the LO aπ
+π−

µ can be written as in Eq (4.39), but with num7

and num8 which contain contributions from all the graphs in Fig 4.3.

4.4 VMD corrected result

In the full VMD model, each photon is supplemented by the form factor (1− k2

k2−M2
V

). Including the

k−2 from the photon propagator, the photon denominator structure which includes VMD corrections

takes the form:

(
1

k2
2

− 1

k2
2 −M2

V

)(
1

k2
3

− 1

k2
3 −M2

V

)(
1

(k2 + k3)2
− 1

(k2 + k3)2 −M2
V

)
. (4.42)

Incorporating VMD corrections is apparently quite simple! The original LO denominator of 1
k22k

2
3(k2+k3)2

is expanded into permutations of massless and massive photon lines, resulting in an alteration of V

by
M2
V

m2
µ
xi terms. Because only the denominator is affected, the full VMD result is a simple extension
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of the LO calculation, found by replacing
(

1
V

)n−3d/2
in Eq (4.39) with:

{( 1

V

)n−3d/2

−
(

1

V2

)n−3d/2

−
(

1

V3

)n−3d/2

−
(

1

V6

)n−3d/2

+(
1

V23

)n−3d/2

+

(
1

V26

)n−3d/2

+

(
1

V36

)n−3d/2

−
(

1

V236

)n−3d/2 }
, (4.43)

where V2 = V +
M2
V

m2
µ
x2 , V23 = V +

M2
V

m2
µ

(x2 + x3), etc.

For the partial VMD corrections suggested by the HLS and AT models, the two photon vertex

is treated differently than the one photon vertex with form factor
(

1− k21
k21−M2

V
− k22

k22−M2
V

)
. This

results in a slightly different prescription for some graphs: (a)-(c) remain unchanged from the full

VMD result, but for graph (e), the V26 and V236 terms are removed, for graph (f), V23 and V236 are

removed, and for graph (h), V36 and V236 are removed.

4.5 a1 corrections

Unlike the VMD corrections, contributions from a1 exchange cannot be written as simple modifi-

cations of the LO diagrams and must be calculated separately. The necessary graphs are shown in

Figs 4.6 and 4.7 for Model I and II respectively. We have again included symmetry factors from

charge conjugation and mirror symmetry.

In Fig 4.7 the cross symbol denotes an insertion of the interaction vertex from Eq (3.30). These

Model II graphs differ from the LO ones only in the numerator structure and are therefore evaluated

in the same way. For Model I, however, some slight complications arise, falling into two different

categories. For diagrams such as 4.6(a), the usual denominator structure can be used, slightly

modified to include mass MA for the a1 propagator. This results in magnetic moment contributions

as in Eq (4.39), but now with V which depends on MA. For diagram 4.6(a), for example:

V → VA4 =
m2
π

m2
µ

(x1 + x5) +
M2
A

m2
µ
x4 + c10 . (4.44)

The other class of diagrams appear more challenging as the same propagator can occur with

different masses. This arises whenever q flows into an a1γπ vertex. Diagram 4.6(i), for example,

contains the two propagators (l2 −m2
π)−1 and (l2 −M2

A)−1. Rather than adding another Feynman

parameter to account for this extra propagator, we use the identity:

1

(l2 −m2
π)(l2 −M2

A)
=

1

m2
π −M2

A

[
1

l2 −m2
π

− 1

l2 −M2
A

]
. (4.45)

The standard U and V functions can once again be used, but now the number of propagators has
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Figure 4.6: Model I a1 exchange diagrams which contribute to the muon magnetic moment



39

(×4)

(a)

(×2)

(b)

(×4)

(c)

(×2)

(d)

(×2)

(e)

(×2)

(f)

(×1)

(g)

(×1)

(h)

Figure 4.7: Model II a1 exchange diagrams which contribute to the muon magnetic moment

been reduced by one. Contributions from these graphs accordingly occur in the form:

aµ =
2e6

(4π)3d/2

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
m2
µ

m2
π −M2

A

{

num6 U
−2−d/2

[(
1

V

)6−3d/2

−
(

1

VA

)6−3d/2
]

Γ(6− 3d/2)+

num7 U
−1−d/2

[(
1

V

)7−3d/2

−
(

1

VA

)7−3d/2
]

Γ(7− 3d/2)
}
, (4.46)

where, of course, VA is the modified form factor which accounts for the a1 mass; for graph 4.6(i)

VA → VA1 = V +
(
M2
A

m2
µ
− m2

π

m2
µ

)
x1. Note that despite the ominous gamma function, the num6

contribution is still finite - the V functions combine with Γ(6 − 3d/2) in the d → 4 limit to give

− 3
2 log

(
V
VA

)
.

Finally, we point out that the diagrams in Fig 4.6 have intentionally been grouped in pairs. For

this particular model of a1 exchange, graphs (a) and (b), (c) and (d), etc. share the same numerator

structure, differing only in the mass assignments which show up in V . Only graphs (w) and (z)

remain unpaired as their partner is related by the mirror symmetry which we have encoded in the

symmetry factor.

The full aπ
+π−

µ is given by adding the contribution from the ρ corrected LO graphs of Fig 4.3

to one of the sets of a1 graphs in Fig 4.6 or Fig 4.7. As per the discussion in Section 3.2.1, the ρ

prescription must be matched to the correct a1 model in order to satisfy all the constraints on the

pion form factors. Furthermore, a consistent calculation should also include ρ corrections for the LO

γππ and γγππ vertices which appear in the a1 diagrams. Just as in the LO case, these additional

effects can be easily incorporated as a modification of the V functions.
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Chapter 5

Numeric integration

We have seen that the various charged pion magnetic moment contributions can be put into the

form of either Eq (4.39) or (4.46). We evaluate these integrals numerically, setting d → 4 and

using a MISER Monte Carlo algorithm. A number of improvements are discussed, most notably a

partitioning of the overall integral into various subregions which, under a set of variable changes,

allow for square convergent integrals, resulting in speedy evaluation with small errors.

5.1 Taking d→ 4

Using the parametric formulation, the amplitude for any diagram can be written in the form:

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
num

Ua+d/2V b−md/2(4π)md/2
Γ(b−md/2) . (5.1)

Before evaluating numerically, the physical limit d→ 4 must be taken. For diagrams which contain

UV or IR divergences, this is not a simple task. These divergences manifest as zeroes in the U and

V functions respectively - naively setting d→ 4 results in divergent integrals.

As a simple example, consider the two dimensional integral I =
∫ 1

0
dx
∫ 1

0
dy (x+y)−2+ε. This can

be easily evaluated for positive ε as I = 2ε−2
ε(ε−1) , which has an ε−1 pole as ε approaches zero. However,

this pole can be overlooked by attempting to take the ε→ 0 limit before integrating, resulting in the

divergent integral
∫ 1

0
dx
∫ 1

0
dy (x + y)−2. Evidently the divergences must be extracted analytically

before the result can be numerically integrated. This process is described in Ref [42].

To decide whether a graph contains divergences, one can examine the amplitude in momentum

space or in parametric space. In parametric space, the analysis is straightforward: we set d = 4

everywhere then check if the resulting integral is finite. As we will discuss in more detail later,

divergences only occur when subsets of Feynman parameters become small. For a subset containing

s Feynman parameters xi, the integral of f(xi) in a region where xi ∼ ε can be approximated as

f(ε)εs. For convergent integrals, this quantity must vanish in the limit ε→ 0, otherwise the integral
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Figure 5.1: Scalar vacuum bubble diagram

diverges.

As a concrete example, consider the bubble diagram in Fig 5.1 which arises in a scalar field

theory with a φ3 coupling. The amplitude is given, in our formalism, by:

M = i
g2M2

(4π)d

(
M2

µ2

)d−4 1∫∫∫
0

dx1dx2dx3δ(1−x1−x2−x3)(x1x2 +x1x3 +x2x3)−d/2Γ(3−d) . (5.2)

Ignoring the overall divergence from the gamma function, we find additional logarithmic subdiver-

gences associated with the sets (x1x2) , (x1x3) and (x2x3) approaching zero. For instance, with

d = 4 and x1, x2 → ε, we get an ε2 from the measure which cancels with an ε−2 from the integrand.

This implies that the integral will be logarithmically divergent as x1 and x2 approach zero. Setting

d = 4 was a mistake and additional processing is necessary before this integral can be evaluated

numerically.

We apply this analysis to the diagrams which contribute to aπ
+π−

µ and find that they are all

finite. As mentioned previously, this depends crucially on using the Ward identity to rewrite the

LBL amplitude (Eq (4.16)). Without it, individual diagrams are divergent, making the calculation

far more difficult. In our case, however, analysis of the numerators generated by each diagram

suggest that we can safely take the d → 4 limit before integrating. The various contributions can

then all be placed into one integral:

aµ =
1

32

(α
π

)3
1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
1

U5

∑
numiFi(V ) , (5.3)

where Fi(V ) depends on the graph and particular choice of VMD prescription. From Eqs. (4.39)

and (4.46), we see that Fi(V ) will either be a sum of log(V ) , V −1, or V −2 terms. We have also

absorbed factors of U into the numi terms.

5.2 Monte Carlo integration

The integral in Eq.(5.3) contains eight Feynman parameters and therefore, upon eliminating the

delta function, is a seven dimensional integral. Multi-dimensional integrals such as this one can

often be simply and quickly evaluated numerically using Monte Carlo (MC) integration. The basic
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idea is that to calculate the integral I =
∫ b
a
dx f(x), one can randomly generate a set of N points xi

using a uniform distribution between a and b. The integral is then estimated as:

I ∼ (b− a)

∑
f(xi)

N
= (b− a)〈f〉 . (5.4)

As N → ∞ the relationship becomes exact; for finite N , the variance of the integrand evaluations

f(xi) provides a good estimate of the error:

σI =

√
(b− a)2

N2

∑
i

σ2
f =

b− a√
N
σf , (5.5)

where σ2
f = 〈f2〉 − 〈f〉2 for large values of N . The generalization to multidimensional integrals is

simple - in the formulas above, b− a is replaced by V , the volume of the region.

This basic method can be improved upon by algorithms which essentially assign more points

in regions with larger variances. For our calculation, we have chosen to implement the MISER

algorithm. This is a recursive technique which calculates the integral and error estimates for a given

region. If the error is larger than the goal error, the region is bisected and the process is repeated

for the two subregions. This continues until the goal error is met in all regions.

In more detail, N random integrand evaluations are allotted for a given region. A fraction of

these (in our case 10%) are calculated, and the integrand variance is estimated using these points.

Eq. (5.5) predicts the total integral error which will be obtained using the full N points. If this

is acceptable, the remaining evaluations are taken and the integral value and error estimate are

returned. If not, the region is bisected along one of the dimensions. The preliminary data set

will contain roughly the same number of points in each subregion; these are used to calculate the

variances σ1 and σ2 for the two subregions. With N total points to distribute throughout both

regions, the overall error is minimized by allotting N1 = Nσ1/(σ1 + σ2) and N2 = Nσ2/(σ1 + σ2).

As expected, regions with higher variance receive more points. With this partitioning, the total error

can again be estimated by combining errors from each subregion. Each dimension is bisected in this

way, and the bisection which produces the smallest total error is chosen. Again, if this error is less

than the goal error, the remaining evaluations are taken (but now partitioned accordingly) and the

results are returned. Otherwise, the entire process is repeated for the two subregions, but now with

an error goal reduced by
√

2 to account for the splitting. Since the integral error is proportional to

the volume which is reduced by a factor of two for every bisection, it is clear that the goal error will

eventually be obtained for all regions.
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5.3 Difficult features of parametric integrals

The MISER algorithm described in the previous section can be found in standard numeric integra-

tion packages such as CUBA [43]. However, parametric integrals like Eq (5.1) share a number of

features which make general purpose integrators slow and inefficient. Most importantly, the inte-

grand divergences which appear in regions where U or V go to zero can result in unreliable error

estimates and values for the integral, which, though convergent, require vast numbers of points with

convergence slower than N−1/2. We discuss this problem in more detail in Section 5.5.

Parametric integrals also have to eliminate the delta function before numerically integrating. This

leaves integration limits which are functions of the remaining Feynman parameters. MC integration

requires fixed limits, therefore a variable redefinition is required. The simplest one involves rescaling

each Feynman parameter as in the example below:

1∫∫∫
0

dx1dx2dx3dx4δ(1− x1 − x2 − x3 − x4)f(x1, x2, x3, x4) =

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3 f(x1, x2, x3, 1− x1 − x2 − x3) =

1∫∫∫
0

dy1dy2dy3 (1− y1)2(1− y2)f(y1, (1− y1)y2, (1− y1)(1− y2)y3, (1− y1)(1− y2)(1− y3)) .

(5.6)

Because this integral will be randomly sampled in y-space, we see that the distribution won’t be

uniform in the original Feynman parameters. Obviously this is accounted for by the Jacobian, but if,

for example, the integral is dominated by the region where x4 is close to one, then many points will

need to be sampled in y-space before adequately covering this region. This problem only becomes

worse as the number of Feynman parameters is increased. To address thise issues, we decided to

create our own integrator to evaluate the parametric integral in Eq. (5.3). Our solutions to the

problems presented here are given in the next few sections. They allow us to achieve a typical

accuracy of O(10−3) in less than 1 minute run time using a standard laptop.

5.4 Generating random numbers with a fixed sum

Rather than redefining variables as in Eq. (5.6), we seek a distribution which is uniform in the space

of the original Feynman parameters. This is equivalent to generating points which are uniformly

spread over the surface
n∑
i=1

xi = 1. We use geometrical arguments to find the correct distribution

for the first few cases, then generalize to any n.

For n = 2, we seek a distribution of points which is uniformly distributed along the line x1 +x2 =



44

(a) n = 2 (b) n = 3

Figure 5.2: A uniform distribution of points on the surfaces shown can be generated by first picking
points uniformly on the surfaces below, then projecting onto the surface

1. It is clear from Fig 5.2(a) that this can be obtained by first choosing x1 from a uniform distribution

then lifting the result up to find x2.

Similarly, for n = 3, points distributed uniformly throughout the triangular region in the x1−x2

plane will give a uniform distribution on the surface x1 +x2 +x3 = 1. x1 and x2 can be generated by

considering their sum x1 + x2 = r, where 0 ≤ r ≤ 1. For fixed r, x1 and x2 can be chosen as before,

by picking x1 randomly between 0 and r. The probability distribution for r is not flat, however,

from the geometry of Fig 5.2(b) it should be clear that P (r) ∼ r. Requiring r to be between 0 and

1 gives P (r) = 2r. This can be generated from the uniformly distributed variable y as r =
√
y. To

summarize, the n = 3 case is handled by generating two random numbers y1 and y2 between 0 and

1 using a uniform distribution and then assigning:

x1 = r2r1

x2 = r2(1− r1)

x3 = 1− r2

,
r2 =

√
y2

r1 = y1

. (5.7)

Generalizing is not too difficult, as each case builds on the previous ones. For n = 4, we first

consider the sum x1 + x2 + x3 = r3 with P (r3) = 3r2
3. r3 can be generated using y1/3, and with r3

fixed, this devolves to a rescaled n = 3 case, where now x1 + x2 = r3r2. The correct prescripton for

n = 4 is given by:
x1 = r3r2r1

x2 = r3r2(1− r1)

x3 = r3(1− r2)

x4 = (1− r3)

, ri = (yi)
1/i . (5.8)

The generalization to n Feynman parameters should now be clear, and can be succinctly represented
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by the formulas:

m∑
i=1

xi =

n−m∏
i=0

rn−i ,

ri = (yi)
1/i ,

yn = 1 , (5.9)

where y1 − yn−1 are chosen randomly using a uniform distribution from 0 to 1. The probability

distribution for each xi is identical, depending only on n:

P (x) = (n− 1)(1− x)n−2 . (5.10)

For general f(xi), MC integration using this democratic distribution should converge faster than

the equivalent hypercube-transformed version in Eq (5.6). To numerically integrate, we must know

the volume of the region enclosed. In the Feynman parameter space, this is easily found by setting

f(xi) = 1:

Vn =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi) =
1

(n− 1)!
. (5.11)

It is instructive to write this volume integral in terms of the other variables which we have created:

Vn =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi) ,

=

1∫∫∫
0

drn−1drn−2 . . . dr1(rn−1)n−2(rn−2)n−3 . . . r2 ,

=

1∫∫∫
0

dyn−1dyn−2 . . . dy1
1

(n− 1)!
. (5.12)

The last equation involves integration over a hypercube, but now with overall volume factor 1/(n−1)!

instead of the more complicated Jacobian of Eq. (5.6). By using the variable transformations in

Eq. (5.9), points can be uniformly distributed in both y and x space. In this form, the bisections

used by the MISER algorithm can be easily created by halving the range of one of the randomly

generated y’s.



46

5.5 MC errors for singular integrands

The standard MC error estimation uses the variance:

σ2
I =

V 2

N

(
〈f2〉 − 〈f〉2

)
. (5.13)

This method only works for functions with well defined 〈f〉 and 〈f2〉. Consider a MC integration

of f(x) = 1/
√
x from 0 to 1. The exact averages can be calculated explicitly: 〈f〉 = 2, but

〈f2〉 =
∫ 1

0
x−1 dx which diverges. As it involves a finite sum of random integrand evaluations, the

calculated σI will obviously be finite, but its value will be unstable and does not converge as more

points are included. More generally, for any function f where
∫
f2 diverges, the variance σI is an

unreliable estimate of the numeric integration error. The mean integral value still converges, but a

different measure of error must be used such as δI ∼ 〈|f − 〈f〉|〉. However, these integrals tend to

converge more slowly than their better behaved counterparts. Our initial attempts to integrate the

singular integrand of Eq. (5.3) in this way showed no signs of convergence over timescales as long

as 10 minutes.

Alternatively, one can often change variables in the singular region and tame the divergence. As

a simple example, consider:

I =

∫ 1

0

dx

∫ 1

0

dy
1

(x+ y)3/2
. (5.14)

Using the analysis from Section 5.1, near x, y → ε, the contribution to the integral scales as ε1/2, and

I is therefore convergent. The squared integral
∫ 1

0
dx
∫ 1

0
dy (x + y)−3 , on the other hand, scales as

ε−1 and therefore diverges. To numerically integrate, we split into two regions, one of which contains

x = y = 0. The other is well-behaved and can be integrated in the usual manner. To integrate the

singular region, we change variables: x = r2t , y = (1− t)r2:

I =

∫∫
2r3drdt

r3
. (5.15)

The Jacobian associated with the transformation cancels the singularity, and now the integral is

easy to evaluate.

For all but the simplest of singularities, this method requires partitioning the integral into several

regions, and making the appropriate variable changes, but the end result is usually worth the extra

effort, converging much faster with reliable error estimate σI . In the next section, we discuss the

singularity structure of our parametric integral and propose a series of variable changes to improve

the behavior in the singular region.
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x1

x2 x3

x4 x5

x6

x7 x8

(a) S = {}

x3x2

x6

x7 x8

(b) S = {x1x4x5}

x6

(c) S = {x1x4x5x2x3x7x8}

Figure 5.3: Diagrams for calculating UG/S in UV limit when parameters belonging to S approach
zero

5.6 Singularities of parametric integrals

In general, both functions U and V can appear with a negative coefficient. The zeroes of these

functions result in singular regions, which, for large enough coefficients can represent actual diver-

gences. Although this does not happen in our case, it is clear that the zeroes must be in a direct

correspondence with potential UV and IR divergences. Subdiagram UV divergences are contained

in the function U , which vanishes whenever the subdiagram Feynamn parameters go to zero. This

is evident for the loop subdiagrams parameterized in the matrix U - since each row contains only

Feynman parameters from a given loop, the determinant will vanish as one of these sets approaches

zero. The authors of Ref [42] show that this holds for any subdiagram, and that in fact, as the

Feynman parameters of subdiagram S of graph G approach zero, U factorizes into the product:

U → USUG/S . (5.16)

US is the determinant of the subdiagram only, and UG/S comes from the graph formed by shrinking

subdiagram S to zero size in graph G. In this way, the singularity structure of U can be obtained

graphically. We present a few examples using our graph and parameterization.

In the region where only x1 , x4 and x5 are small, U is approximately linear in these variables:

U ∼ (x1 + x4 + x5)Ub , (5.17)

where Ub involves the other Feynman parameters and can be derived from the graph in Fig 5.3(b).

If x2 , x3 , x7 and x8 are also allowed to be small, U is quadratic in the small variables:

U ∼
[
(x1 + x4 + x5)(x2 + x3 + x7 + x8 + x1)− x2

1

]
Uc , (5.18)

where Uc, derived from the graph in Fig 5.3(c), is equal to x6. The prefactor is now more complicated,

but its zeroes simply correspond to loops of subdiagram S: (145) , (12378), and (237845). We can

use this graphical method to determine the leading behavior of U in any region where a set of

Feynamn parameters are small.
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IR divergences are encoded in the function V . In our case, the analysis of the zeroes is simple.

Because they contribute a m2
πxi to V , the Feynman parameters which correspond to massive pion

propagators must vanish. The mass in the muon propagators cancels for p on shell, but reappears

in V due to the loop-external momenta couplings. These are proportional to x7 and x8, therefore

V vanishes as x1 , x4 , x5 , x
2
7 , and x2

8 go to zero. The zeroes in U are more numerous, but the

nonlinear behavior of V is ultimately more challenging, as we will discuss in the next few sections.

There we present a series of partitions and variable changes which give square integrable parametric

integrals, allowing for a speedy and reliable MC calculation of gµ − 2.

5.7 Variable changes for U singularities

We begin by considering a stripped down version of our parametric integral:

I =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)U
−2 . (5.19)

From Fig 5.3(a), the smallest loop contains 3 Feynman parameters, therefore this integral is finite.

However, it is not square integrable - as x1 , x4 , x5 → ε, for example, the square integral scales

as ε−1. In this region, where only those three parameters are allowed to be small, we can change

variables:

1∫∫∫
0

dx1dx4dx5δ(1−Σxi) =

∫ 1

0

dr

1∫∫∫
0

dx1dx4dx5δ(1− r − x2 − x3 − x6 − x7 − x8)δ(r − x1 − x4 − x5) =

∫ 1

0

r2dr

1∫∫∫
0

dx1dx4dx5δ(1− r − x2 − x3 − x6 − x7 − x8)δ(1− x1 − x4 − x5) . (5.20)

The behavior of U near the singular point is given by Eq. (5.17). The r2 from the Jacobian now

exactly cancels the r−2 which appears in U−2. In these variables, both the integral and squared

integral are convergent. Generating random sets of Feynman parameters is now slightly more com-

plicated. Because of the two delta functions, we must apply our method of generating fixed sum

random numbers twice, once with n = 6 and once with n = 3. This changes the volume from 1/7! to

1/5! 2!. If this was the only zero in U , we could use this form for the entire integral, but other zeroes

exist. Indeed, the singularity structure becomes more complicated as more Feynman parameters

approach zero.

We turn next to the region where x1 , x4 , x5 , x2 , x6 , x7 are all allowed to be small. The overall
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divergence is isolated by rescaling these parameters by r:

δ(1−Σxi)→ r5δ(1− r − x3 − x8)δ(1− x1 − x4 − x5 − x2 − x6 − x7) . (5.21)

Because it involves two loops, near r = 0, U−2 scales as r−4. Again the singularity is removed

by the Jacobian. In this form, though, the integrand still diverges when one of the sets (x1x4x5),

(x2x4x6x7), and (x1x2x5x6x7) go to zero. These correspond graphically to loops in the subdiagram.

For our simple U−2 integral, the last set is not actually a problem since the square integral ∼ ε5/ε4

and is finite. This will not be the case for our real integral, therefore we will treat it here as if it

were divergent.

The solution, of course, is to make another transformation. Note that the x delta function

does not allow for simulataneous divergences. We can therefore transform each set individually

as it approaches zero. The diffferent regions must be carefully segregated; we accomplish this by

appending step functions to the integrand. For this particular example, we are considering a region

where x3 and x8 cannot simultaneously be zero (otherwise more singularities would be present than

the ones discussed above). Therefore, the integral we wish to calculate is given by:

I1−3 =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)U
−2Θ(x3 + x8 > δ) . (5.22)

As suggested by the subscript, in order to make it square integrable, we split it into 3 pieces:

I1 =

∫ 1

0

r5
1dr1

∫ 1

0

r2
2dr2

∫ 1

0

dx1 . . .

∫ 1

0

dx2 . . .

∫ 1

0

dx3 . . .

δ(1− r1 − x3 − x8)δ(1− r2 − x2 − x6 − x7)δ(1− x1 − x4 − x5)U−2

Θ(x3 + x8 > δ)Θ(x1 + x5 + x2 + x6 + x7 > δ)Θ(x2 + x4 + x6 + x7 > δ) , (5.23)

I2 =

∫ 1

0

r5
1dr1

∫ δ

0

r3
2dr2

∫ 1

0

dx2 . . .

∫ 1

0

dx1 . . .

∫ 1

0

dx3 . . .

δ(1− r1 − x3 − x8)δ(1− r2 − x1 − x5)δ(1− x2 − x4 − x6 − x7)U−2

Θ(x3 + x8 > δ)Θ(x1 + x5 + x2 + x6 + x7 > δ) , (5.24)

I3 =

∫ 1

0

r5
1dr1

∫ δ

0

r4
2dr2

∫ 1

0

dx1 . . .

∫ 1

0

dx4

∫ 1

0

dx3 . . .

δ(1− r1 − x3 − x8)δ(1− r2 − x4)δ(1− x1 − x5 − x2 − x6 − x7)U−2

Θ(x3 + x8 > δ) , (5.25)
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where x1 = r1x1 = r1r2x1 etc. The delta functions are of the usual form, except for the ones

involving r2 in the last two integrals, which is only integrated from 0 to δ. This is put into the usual

form by rescaling by 1− r2:

∫ δ

0

dr2δ(1− r2 − x1 − x5) =

∫ δ

0

dr2(1− r2)δ(1− x̂1 − x̂5) . (5.26)

We represent this partitioning symbolically as:

I1−3 = (145267)
(145)

(2467)

(15267)

∣∣∣
x3+x8>δ

. (5.27)

To calculate the full integral, we must also include the region where x3+x8 < δ. The singularities

are too numerous in this region, and we are forced to proceed in a piecewise manner. If we introduce

the additional constraint x2 + x7 < δ, this smaller region can be partitioned just like the last one:

I4−6 = (145368)
(145)

(3568)

(14368)

∣∣∣x3+x8<δ
x2+x7>δ

. (5.28)

We continue this process, isolating two loop subdiagrams one-by-one:

I7−9 = (2345678)
(2467)

(3568)

(234578)

∣∣∣x3+x8<δ
x2+x7<δ
x1>δ/3

,

I10−12 = (1235678)
(3568)

(15267)

(12378)

∣∣∣x3+x8<δ
x2+x7<δ
x1<δ/3
x4>δ/3

,

I13−15 = (1234678)
(2467)

(14368)

(12378)

∣∣∣ x3+x8<δ
x2+x7<δ
x1,x4<δ/3
x5>δ/3

. (5.29)

With an appropriately chosen δ, our last set of integrals can finally be done with no further restric-

tions. For δ < 1/3, x6 is now forced to be non-zero by the delta function, rather than an imposed

constraint:

I16−18 = (1234578)
(145)

(12378)

(452378)

∣∣∣ x3+x8<δ
x2+x7<δ

x1,x4,x5<δ/3

(5.30)

By partitioning the integral into regions associated with the graph subdiagrams, we have managed

to control the singularities, producing square integrable contributions from each region. For the

3-loop graphs which contribute to gµ− 2, this results in 18 distinct integrals, but now standard MC

techniques can be applied to each one.
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5.8 Variable changes for V singularities

Finally we consider the full integral in Eq. (5.3). U−5 is more singular than our simple example,

but the numerator also contains factors of Feynman parameters - enough to render the integral

convergent. One might expect that by partitioning it as before, the squared integrals could also

be made convergent. However, additional complications arise due to the presence of V . In regions

where both U and V contain zeroes, the overall singularity is enhanced and our previous prescription

fails.

We illustrate these issues with the following integral:

I =

1∫∫∫
0

dx1dx2 . . . δ(1−Σxi)
x1x2x

2
3x4

U4

1

(x1 + x4 + x5 + x2
7 + x2

8)
. (5.31)

Here V has been replaced with a simpler function which shares the same singularity structure.

Consider the first partitioning which groups the variables (145267) into common scale r. As r

approaches zero, the integrand roughly scales as:

∼ r3r5

r8

1

(r + x2
8)
. (5.32)

For r → ε , x8 →
√
ε, the squared integral scales as ε−1/2 and is therefore divergent. The extra

singularity which appears in V has ruined the convergence of the squared integral. This problem

also occurs when the variables (145) are grouped together. The integrand is proportional to:

r4

r4

1

(r + x2
7 + x2

8)
, (5.33)

which, for r → ε , x7 , x8 →
√
ε, results in a non-convergent square integral ∼ ε0.

Unlike the UV singularities which appear in U, these additional V singularities are not generic,

depending both on the numerator and the form of V . Many diagrams in this calculation produce

numerators which contain enough Feynman parameters to cancel the V singularity. However, not

all do. We suspect that a completely general formalism for producing square integrable regions may

not exist, and instead, due to V , must be considered on a case by case basis.

For our gµ − 2 integral, the two examples given happen to represent the most singular behavior.

Fortunately, these extra divergences can be tamed through a slight modification of our previous

prescription. For the first case, instead of defining r = x1 + x4 + x2 + x6 + x7, we choose r3 =

x1 + x4 + x5 + x2 + x6 + x7. After changing variables, the integrand now behaves as:

∼ r9r17

r24

1

(r3 + x2
8)
, (5.34)
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which results in a convergent square integral scaling as ε1/6. Similarly, by grouping x1 , x4 , x5 as

r2 = x1 + x4 + x5, this too, can be made square integrable.

5.9 Final prescription for g − 2 integrals

In the end, the LBL g− 2 contributions of Eq. (5.3) can be made square integrable by the following

partitioning:

I1−3 = (145267)3

(145)2
(2467)

(15267)

∣∣∣
x3+x8>δ

,

I4−6 = (145368)3

(145)2
(3568)

(14368)

∣∣∣x3+x8<δ
x2+x7>δ

,

I7−9 = (2345678)
(2467)

(3568)

(234578)

∣∣∣x3+x8<δ
x2+x7<δ
x1>δ/3

,

I10−12 = (1235678)
(3568)

(15267)

(12378)

∣∣∣x3+x8<δ
x2+x7<δ
x1<δ/3
x4>δ/3

,

I13−15 = (1234678)
(2467)

(14368)

(12378)

∣∣∣ x3+x8<δ
x2+x7<δ
x1,x4<δ/3
x5>δ/3

,

I16−18 = (1234578)
(145)2
(12378)

(452378)

∣∣∣ x3+x8<δ
x2+x7<δ

x1,x4,x5<δ/3

. (5.35)

Here (123)m represents the grouping rm = x1+x2+x3, with default value m = 1. All delta functions

which appear are manipulated into the usual form of 1 minus a sum of integration variables with

range 0 to 1. In particular, for m 6= 1, this means rescaling by (1 − rm). The final result can

be integrated using the MC techniques previously described. We now have a mix of integration

variables - some appear inside delta functions and are generated according to our general formula,

others have been factored out of the delta function and are generated using a uniform distribution.

Despite the extra complications introduced by V , we have ultimately managed to partition our

result into square integrable regions. We have done this along lines suggested by the UV singularities

contained in U . This partitioning is general and can be used for any diagram (although the number

of partitions does increase rapidly with the number of loops). Depending on the numerator, V , and

its coefficient, this may not be enough to create a square integrable result, but often, as in our case,

the variable changes can be tweaked to account for the additional singularities. The end result is

a set of parametric integrals which can be numerically evaluated quickly and stably with reliable

estimates for their value and error.



53

Chapter 6

Results

We begin by reproducing the results of previous calculations. For the various mass scales, we use

the PDG values:

mπ = mπ± = 139.57018 MeV , (6.1)

mµ = 105.6583715 MeV , (6.2)

MV = mρ = 775.49 MeV , (6.3)

and later, for the a1 models, we set the axial vector mass MA =
√

2MV .

The LO and ρ-corrected results for the diagrams of Fig 4.3 are shown in Table 6.1. Here HLS

refers to the partial VMD prescription of Eq (3.13) and (3.14), while VMD corresponds to the form

factors of Eq (3.13) and (3.31) (leaving out the a1 contribution). The quoted errors refer only

to the uncertainty due to the numeric integration. The values we obtain agree with the previous

calculations discussed in Section 1.2.

Table 6.1: Charged pion contribution to aµ for two different models of ρ exchange

LO HLS VMD

aπ
+π−

µ × 1010 −4.385(3) −.434(2) −1.644(2)

The HLS and VMD results incorporate both LO and ρ exchange diagrams. To these, we must

add the a1 contribution from Model I or Model II. As previously noted, the a1 exchange diagrams

in Figs 4.6 and 4.7 contain γππ and γγππ vertices which will be modified by ρ exchange. Therefore,

for each a1 model, we present three different results, one with LO photon-pion vertices, one with

HLS corrections, and one with VMD corrections. Of course, only one of these will be appropriate

for each model; we include the other values in an attempt to compare the two and gauge the model

dependence of the a1 contribution. These results are shown below:

Unlike Model I, our second model does not enhance the convergence of the pion loop integral,

and as a result, some of the graphs in Fig 4.7 must be paired to produce a finite result. This pairing
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Table 6.2: a1 exchange contribution to aπ
+π−

µ (×1010)

LO HLS VMD
Model I −7.069(3) −1.345(3) −5.473(3)
Model II −6.349(3) − −3.248(2)

is maintained by the LO and VMD prescriptions, but is broken by HLS, leading to a divergent result.

We discard this and consider only the finite predictions from each model.

For both models we find a relatively large LO a1 contribution. This gets supressed by the inclusion

of the VMD form factors, in accord with the similar effects demonstrated in Table 6.1. However, we

see that for both models, the a1 contribution opposes the ρ contribution, pushing the overall magnetic

moment toward larger values. Furthermore, Table 6.2 shows a general agreement between the two

different models, suggesting, perhaps, a relative model independence in the a1 contribution, at least

compared to the larger differences between HLS and VMD. Finally, we combine the appropriate a1

value with its counterpart from Table 6.1 to find the full charged pion loop contribution, aπ
+π−

µ :

aI ,HLS
µ = −1.779(4)× 10−10 , (6.4)

aII ,VMD
µ = −4.892(3)× 10−10 . (6.5)
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Chapter 7

Conclusion

The theoretical estimation of the hadronic light-by-light contribution to aµ is, at least at present,

unavoidably model dependent. In situations like this, it is only in the concurrence between the

results of various valid models that some degree of certainty can be found. Through much effort,

this has been achieved for the pseudoscalar exchange contribution. The same can not be said for

the less studied charged pion loop contribution, for which only a few results exist. In this thesis, we

have re-examined those results, focusing on the models used in the calculation of aπ
+π−

µ .

We began with a consistency check at low energies, calculating the charged pion contribution

to light-by-light scattering to two loops in χPT. Matching our results onto a four photon effective

Lagrangian, we found that the NLO corrections were dominated by the pion charge radius and the

pion polarizability. The two occurred with roughly the same magnitude, but because of a numerical

supression at LO, these providedO(10%) corrections to the LBL amplitude, rather than the expected

1%. More significantly, we found that in this low energy regime, the existing models capture only

the charge radius corrections, missing out on potentially significant polarizability corrections.

Next, we considered alternative models which give the correct pion form factors at low energies,

reproducing both the charge radius and polarizability corrections through exchange of the ρ and a1

mesons. The a1 form factors are poorly behaved at high energies, however, leading to divergences

when inserted into the LBL and aµ calculations. Abandoning these models, we decided on the

simpler approach of modifying the necessary χPT counterterms to give appropriate form factors.

We then developed two a1 models with improved UV behavior, which, when paired with the correct

model of ρ exchange, satisfy all the known constraints from χPT and QCD.

Finally, we come to the main result of this thesis - the magnetic moment. In the previous

calculations of aπ
+π−

µ , inclusion of the ρ VMD form factors strongly modified the LO result, and

therefore it seemed reasonable to suspect that including a1 contributions in the form factors could

also have a large impact. After a lengthy calculation, we have found that this is indeed the case. In
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the absence of a1 contributions, we reproduce the old results

aHLS
µ = −.434(2)× 10−10 , (7.1)

aVMD
µ = −1.644(2)× 10−10 , (7.2)

for two different models of ρ exchange. However, when contributions from our two a1 models are

included, these values shift dramatically:

aI ,HLS
µ = −1.779(4)× 10−10 , (7.3)

aII ,VMD
µ = −4.892(3)× 10−10 . (7.4)

Ours is the first full calculation of the charged pion loop contribution to aµ which includes

corrections from both ρ and a1 exchanges. Spurred by [44], a recent attempt was made by Bijnens and

Abyaneh to estimate the effect of including the a1 exchanges[45]. By adding the pion polarizability

interaction from Eq (3.15), along with an energy cutoff of 500 MeV, they found an enhancement

to aπ
+π−

µ of 10%. However, this result has a strong dependence on the energy cutoff as the full

contribution is divergent. We avoid this issue with our form factor approach by selecting models

with improved UV behavior. In addition, unlike those used in previous calculations, our models

are the first which give the proper 1/q2 behavior for the γγππ vertex. Admittedly, it is unclear

how important this behavior is in the magnetic moment calculation. Presumably heavier resonances

could be added which have marginal impact on g − 2, but alter the higher energy behavior of the

form factors. If the QCD constraint is dismissed, then our Model I could also be paired with the

full VMD ρ prescription, giving:

aI ,VMD
µ = −7.117(4)× 10−10 . (7.5)

From this work it is clear that inclusion of the a1 in the pion loop calculation can have a large

effect on aπ
+π−

µ . For the two models presented here, we have found that the contributions from

the a1 tend to oppose those from the ρ, resulting in a larger aπ
+π−

µ ; aLO
µ may be lesss supressed

than previously believed. Along with the increase in size comes an increase in modeling uncertainty.

Although our two models of a1 exchange were quite different, we found decent agreement in Table

6.2. However, the differences between the HLS and VMD prescriptions, already present without the

a1, become magnified with it. Although they satisfy all known constraints, our HLS model and our

VMD model produce aµ contributions which differ by more than 3 × 10−10. If the result from Eq

(7.5) is included, the discrepancy is even larger.

These results lead us to believe that the charged pion loop contribution to aµ is far from settled,

and that the current uncertainty may be underestimated. In addition, we have found that including
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the a1 tends to push aµ to more negative values, thereby increasing the discrepancy between theory

and experiment. Further work will be necessary to resolve these issues.
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Chapter 8

Appendix

8.1 LBL Feynman integrals

The four Feynman integrals needed for the LBL amplitude are presented below. For convenience,

we use a modified Gamma function defined as: Γ(n) ≡ 1
(4π)d/2

µ4−dΓ(n− d/2).

Hµνσρ(k1, k2, k3, k4) ≡
∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

{
4 (gµνgσρ + gµσgνρ + gµρgνσ) Γ(2)

(
1
D1

)2−d/2

− 2 (gµνCσDρ + gµσBνDρ + gµρBνCσ + gνσAµDρ + gνρAµCσ + gσρAµBν) Γ(3)
(

1
D1

)3−d/2

+AµBνCσDρΓ(4)
(

1
D1

)4−d/2
}
,

where

D1 = (x2 − x)k2
1 + (y2 − y)k2

2 + (z2 − z)(k2 + k3)2 − 2xyk1k2 − 2xzk1(k2 + k3) + 2yzk2(k2 + k3) +m2
π ,

Aµ = (2x− 1)kµ1 − 2(y + z)kµ2 − 2zkµ3 ,

Bν = 2xkν1 + (1− 2y − 2z)kν2 − 2zkν3 ,

Cσ = 2xkσ1 + 2(1− y − z)kσ2 + (1− 2z)kσ3 ,

Dρ = (2x− 1)kρ1 + (1− 2y − 2z)kρ2 + (1− 2z)kρ3 .

Iµν(k1, k2) ≡
∫ 1

0

dx

∫ 1−x

0

dy
{
− 2gµνΓ(2)

(
1
D1

)2−d/2
+AµBνΓ(3)

(
1
D1

)3−d/2 }
,
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where

D1 = (x2 − x)k2
1 + (y2 − y)k2

2 − 2xyk1k2 +m2
π ,

Aµ = (2x− 1)kµ1 − 2ykµ2 ,

Bν = 2xkν1 + (1− 2y)kν2 .

Jµν(k1) ≡
∫ 1

0

dx
{
− 2gµνΓ(1)

(
1
D1

)1−d/2
+ 2x(2x− 1)kµ1 k

ν
1 Γ(2)

(
1
D1

)2−d/2 }
,

where

D1 = (x2 − x)k2
1 +m2

π .

K(k1, k2) ≡
∫ 1

0

dxΓ(2)
(

1
D1

)2−d/2
,

where

D1 = (x2 − x)(k1 + k2)2 +m2
π .

8.2 Ward identity

Two amplitudes are needed to demonstrate the Ward identity in Eq (2.17). For the γγππ vertex with

incoming photon momenta k1 and k2, incoming pion momentum p1, and outgoing pion momentum

p2, we have:

Mµν(k1, k2, p1, p2) =

−ie2

(p2
1 −m2

π)(p2
2 −m2

π)

[
2gµν

(
1− 2c1 +

c2m
2
π

p21−m2
π

+
c2m

2
π

p22−m2
π

)
+ V µν1 (k1, k2) + (p2

1 + p2
2 − 2m2

π)V µν2

]
+

ie2(2pα1 + kα1 )(2pβ2 − kβ2 )

(p2
1 −m2

π)((p1 + k1)2 −m2
π)(p2

2 −m2
π)

[
δµαδ

ν
β

(
1− 3c1 +

c2m
2
π

p21−m2
π

+
c2m

2
π

(p1+k1)2−m2
π

+
c2m

2
π

p22−m2
π

)
+ Vα

µ(k1)δνβ + δµαVβ
ν(k2)

]
+

ie2(2pα2 − kα1 )(2pβ1 + kβ2 )

(p2
1 −m2

π)((p2 − k1)2 −m2
π)(p2

2 −m2
π)

[
δµαδ

ν
β

(
1− 3c1 +

c2m
2
π

p21−m2
π

+
c2m

2
π

(p2−k1)2−m2
π

+
c2m

2
π

p22−m2
π

)
+ Vα

µ(k1)δνβ + δµαVβ
ν(k2)

]
.

For the γππ vertex, with incoming photon momentum k, incoming pion momentum p1, and outgoing

pion momentum p2, we have:

Mµ(k, p1, p2) =
−ie(pα1 + pα2 )

(p2
1 −m2

π)(p2
2 −m2

π)

[
δµα

(
1− 2c1 +

c2m
2
π

p21−m2
π

+
c2m

2
π

p22−m2
π

)
+ Vα

µ(k)
]
.

The only non-trivial part in the proof of the Ward identity comes from the Feynman integrals found

in the form factors. We have managed to show, using integration by parts, that kµ1 Iµν(k1, k2) =
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−kν1K(k1, k2) and kµ1 Jµ
ν(k1) = −2kν1 Γ(1)

(
1
m2
π

)1−d/2
. Using these two relationships, it is simple,

although tedious, to show that the Ward identity does indeed hold.

8.3 LBL effective Lagrangian

In this section we construct a complete basis of gauge invariant four photon operators up to mass

dimension 10. At low energies, these operators give the dominant contributions to the LBL scattering

amplitude. Throughout, we ignore operators which may be constructed with Levi-Civita tensors, as

these do not appear in our result.

Due to gauge invariance, the first four photon operators appear at mass dimension 8, coupling

four field strength operators. There are two ways to contract indices:

G1 = FµνF
µνFαβF

αβ ,

G2 = FαβF
βγFγδF

δα .

The next set of operators have mass dimension 10 and are constructed from four field strengths

and two additional derivatives. Extracting a set of independent operators is challenging as many

operators are related through integration by parts, as well as derivative swapping using the anti-

symmetry of the field strengths. To ensure a complete set, we explicitly write down all possible

operators, then list the relationships which allow us to eliminate redundant operators.

We begin with the operators where the additional derivatives are contracted into each other.

These modify the G1 and G2 operators above:

F1 = ∂2FµνF
µνFαβF

αβ ,

F2 = ∂ρFµν∂
ρFµνFαβF

αβ ,

F3 = ∂ρFµνF
µν∂ρFαβF

αβ ,

F4 = ∂2FαβF
βγFγδF

δα ,

F5 = ∂ρFαβ∂
ρF βγFγδF

δα ,

F6 = ∂ρFαβF
βγ∂ρFγδF

δα .
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Two of these operators can be eliminated using integration by parts:

∂ρ
(
∂ρFµνF

µνFαβF
αβ
)

= 0 ,

F1 + F2 + 2F3 = 0 ,

∂ρ
(
∂ρFαβF

βγFγδF
δα
)

= 0 ,

F4 + 2F5 + F6 = 0 .

We arbitrarily choose to eliminate F1 and F4, leaving four independent operators: F2 , F3 , F5 , F6.

Next, we turn to the set of operators where the extra derivatives are contracted into different field

strengths. Using derivative indices µ , ν, two field strength structures are possible: FµγF νγFαβF
αβ ,

and FµαF νβFαγF
γ
β . Applying the derivatives to the first structure, we find:

F7 = ∂µ∂νF
µγF νγFαβF

αβ ,

F8 = ∂µF
µγ∂νF

ν
γFαβF

αβ ,

F9 = ∂νF
µγ∂µF

ν
γFαβF

αβ ,

F10 = FµγF νγ∂µ∂νFαβF
αβ ,

F11 = FµγF νγ∂µFαβ∂νF
αβ ,

F12 = ∂µF
µγF νγ∂νFαβF

αβ ,

F13 = Fµγ∂µF
ν
γ∂νFαβF

αβ .

As mentioned previously, we can use the antisymmetry of the field strength tensor to eliminate some

of these operators:

F7 = ∂µ∂ν(∂µAγ − ∂γAµ)F νγFαβF
αβ ,

= ∂2∂νA
γF νγFαβF

αβ ,

= 1
2F1 .

Relationships like this exist whenever a derivative and one of the indices from the field strength on

which it acts are contracted into another field strength. From the list above, we find the additional

relationships:

F9 = 1
2F2 ,

F13 = 1
2F3 .

Accordingly, we choose to eliminate F7 , F9 and F13 from the list of independent operators. Integra-
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tion by parts allows for a further reduction:

∂µ
(
∂νF

µγF νγFαβF
αβ
)

= 0 ,

F7 + F9 + 2F13 = 0 ,

∂µ
(
Fµγ∂νF

ν
γFαβF

αβ
)

= 0 ,

F8 + F7 + 2F12 = 0 ,

∂µ
(
FµγF νγ∂νFαβF

αβ
)

= 0 ,

F12 + F13 + F10 + F11 = 0 .

The first equation is of no use, but the next two allow us to eliminate F8 and F10, leaving only two

independent operators: F11 and F12.

We continue with the second tensor structure:

F14 = ∂µ∂νF
µαF νβFαγF

γ
β ,

F15 = ∂µF
µα∂νF

νβFαγF
γ
β ,

F16 = ∂νF
µα∂µF

νβFαγF
γ
β ,

F17 = FµαF νβ∂µ∂νFαγF
γ
β ,

F18 = FµαF νβ∂µFαγ∂νF
γ
β ,

F19 = FµαF νβ∂νFαγ∂µF
γ
β ,

F20 = ∂µF
µαF νβ∂νFαγF

γ
β ,

F21 = ∂µF
µαF νβFαγ∂νF

γ
β ,

F22 = Fµα∂µF
νβ∂νFαγF

γ
β ,

F23 = Fµα∂µF
νβFαγ∂νF

γ
β .

Again, we use antisymmetry and integration by parts to reduce the list:

F17 = FµαF νβ∂µ∂ν (∂αAγ − ∂γAα)F γβ ,

= −FµαF νβ∂ν∂γ (∂µAα)F γβ ,

= − 1
2F10 ,

F18 = − 1
2F13 ,

F21 = − 1
2F12 ,

F23 = − 1
2F11 .
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∂µ
(
∂νF

µαF νβFαγF
γ
β

)
= 0 ,

F14 + F16 + F22 + F23 = 0 ,

∂µ
(
Fµα∂νF

νβFαγF
γ
β

)
= 0 ,

F15 + F14 + F20 + F21 = 0 ,

∂µ
(
FµαF νβ∂νFαγF

γ
β

)
= 0 ,

F20 + F22 + F17 + F19 = 0 ,

∂µ
(
FµαF νβFαγ∂νF

γ
β

)
= 0 ,

F21 + F23 + F18 + F17 = 0 .

We eliminate the redundant operators F17 , F18 , F21 , F23 , F14 , F15 and F20, leaving three indepen-

dent operators: F16 , F19 and F22.

Finally we turn to the operators where both derivatives are contracted into the same field

strength. These are highly constrained by the antisymmetry of the field strength, and only one

operator is non-vanishing:

F24 = Fµν∂µFαβ∂νF
βγFγ

α .

This completes our exhaustive list of mass dimension 10 operators. We have found 24 distinct

operators, from which 10 nominally independent ones have been chosen. However, closer study of

these remaining operators uncovers three more subtle relationships:

F16 = ∂νF
µα∂µF

νβFαγF
γ
β ,

= ∂νF
µα
(
∂µ∂

νAβ − ∂µ∂βAν
)
FαγF

γ
β ,

= ∂νF
µα
(
∂νFµ

β − ∂βFµν
)
FαγF

γ
β ,

= −∂ρFαβ∂ρF βγFγδF δα − Fµα∂µF νβFαγ∂νF γβ ,

F16 = −F5 − F23 .

F19 = FµαF νβ∂νFαγ∂µF
γ
β ,

= FµαF νβ (∂ν∂αAγ − ∂ν∂γAα) ∂µF
γ
β ,

= FµαF νβ (∂αFνγ − ∂γFνα) ∂µF
γ
β ,

= Fµν∂µFαβ∂νF
βγFγ

α + Fµα∂µF
νβ∂νFαγF

γ
β ,

F19 = F24 + F22 .
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F22 = Fµα∂µF
νβ∂νFαγF

γ
β ,

= Fµα
(
∂µ∂

νAβ − ∂µ∂βAν
)
∂νFαγF

γ
β ,

= Fµα
(
∂νFµ

β − ∂βFµν
)
∂νFαγF

γ
β ,

= −∂ρFαβF βγ∂ρFγδF δα − Fµα∂µF νβ∂νFαγF γβ ,

= −F6 − F22 ,

F22 = − 1
2F6 .

Eliminating these three operators leaves seven independent operators which form a complete

basis for the mass dimension 10 operators:

F2 = ∂ρFµν∂
ρFµνFαβF

αβ ,

F3 = ∂ρFµνF
µν∂ρFαβF

αβ ,

F5 = ∂ρFαβ∂
ρF βγFγδF

δα ,

F6 = ∂ρFαβF
βγ∂ρFγδF

δα ,

F11 = FµγF νγ∂µFαβ∂νF
αβ ,

F12 = ∂µF
µγF νγ∂νFαβF

αβ ,

F24 = Fµν∂µFαβ∂νF
βγFγ

α .

Clearly our particular choice of basis is not unique and different combinations of operators can be

used. The equations listed in this section can be used to convert between the various other possible

parameterizatons.

8.4 Removal of ∂µA
µ terms

In this section, we show that gauge invariance permits us to remove ∂µA
µ terms from a Lagrangian

to leading order in α. We begin by considering the following Lagrangian:

L = − 1
4FµνF

µν + e∂µA
µJ + . . . (8.1)

Obviously to preserve gauge invariance, other interactions are necessary. These are signified by the

ellipsis and are irrelevant to our purpose. We can remove the unwanted interaction by modifying

the usual gauge fixing term:

− 1
2ξ (∂µA

µ)2 → − 1
2ξ (∂µA

µ + ξeJ)2. (8.2)
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This results in the gauge fixed Lagrangian:

L = − 1
4FµνF

µν − 1
2ξ (∂µA

µ)2 − ξe2

2 J2 + . . . (8.3)

The original ∂µA
µJ term has been eliminated at the cost of a J2 term. However, this interaction is

suppressed by a factor of α and can be ignored in a leading order calculation such as aHLBL
µ . The

only caveat to this approach is that additional ghost interactions are introduced when using the

gauge fixing term in Eq. (8.2). For most J , the same reasoning applies, and the new interactions

are suppressed by a factor of α. Because Aµ transforms as Aµ → Aµ − 1
e∂µΛ, though, for a J such

as ∂µ(π+π−Aµ), this can result in a ghost interaction term that is not suppressed by α. In our case,

though, these complications do not arise, and we make use of this freedom for the pion form factors,

dropping all terms proportional to kµ and kµ1 ,kν2 respectively.

8.5 Feynman rules for the form factor a1 model

We derive the relevant Feynman rules for the form factor interaction of Eq (3.19), reproduced below

for convenience.

La1 = −e
2

4
Fµνπ

+

(
1

D2 +M2
A

)(
Fµνπ−

)
+ h.c.

= − e2

4M2
A

Fµνπ
+
∞∑
n=0

(
− D

2

M2
A

)n (
Fµνπ−

)
+ h.c. (8.4)

In addition to the desired γγππ coupling, we find that gauge invariance, through the covariant deriva-

tive, enforces an infinite series of photon-pion couplings. For the purposes of this LBL calculation,

we need only consider interactions with four or fewer photons. The γγππ vertex is trivial:

Lγγππ = − e24 Fµνπ+
(

1
∂2+M2

A

)
(Fµνπ−) + h.c. (8.5)

This results in the Feynman rule:

V µν =
−ie2(k1k2g

µν − kµ2 kν1 )

(p1 + k1)2 −M2
A

+ photon perms , (8.6)

where p1 is the incoming pion momentum, and the two photon momenta are chosen to be incoming

as well.

For the γγγππ vertex, we use the series representation of Eq (8.4) and extract the terms linear
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in A:

D2n = D2D2(n−1) ,

D2n
(1) = ∂2D

2(n−1)
(1) − ie(∂αAα +Aα∂α)∂2(n−1) ,

D2
(1) = −ie(∂αAα +Aα∂α) ,

D2n
(1) = −ie

n−1∑
a=0

∂2a(∂αA
α +Aα∂α)∂2(n−1−a) , (8.7)

where the derivatives are understood to act on everything to the right. The three photon coupling

can now be written as:

Lγγγππ = − e2

4M2
A

Fµνπ
+
∞∑
n=0

(−)n
D2n

(1)

M2n
A

(
Fµνπ−

)
+ h.c.

=
ie3

4M4
A

Fµνπ
+
∞∑
n=0

n−1∑
a=0

(−)n
(
∂2

M2
A

)a
(∂αA

α +Aα∂α)
(
∂2

M2
A

)n−1−a
(Fµνπ−) + h.c.

= − ie
3

4
Fµνπ

+ 1
∂2+M2

A
(∂αA

α +Aα∂α) 1
∂2+M2

A
(Fµνπ−) + h.c. (8.8)

The series resums nicely and the corresponding Feynman rule is given by:

V µνσ =
ie3(k1k2g

µν − kµ2 kν1 )(2pσ1 + 2kσ1 + kσ3 )

((p1 + k1)2 −M2
A) ((p1 + k1 + k3)2 −M2

A)
+ photon perms . (8.9)

Finally for the γγγγππ vertex, we extract terms quadratic in A:

D2n = D2D2(n−1) ,

D2n
(2) = ∂2D

2(n−1)
(2) − ie(∂αAα +Aα∂α)D

2(n−1)
(1) − e2AαAα∂

2(n−1) ,

D2
(2) = −e2AαAα ,

D2n
(2) = −e2

n−1∑
a=0

∂2a(AαAα)∂2(n−1−a)

− e2
n−2∑
b=0

∂2(n−2−b)(∂αA
α +Aα∂α)

b∑
a=0

∂2a(∂βA
β +Aβ∂β)∂2(b−a) . (8.10)

We plug this result back into Eq (8.4):

Lγγγγππ = − e2

4M2
A

Fµνπ
+
∞∑
n=0

(−)n
D2n

(2)

M2n
A

(
Fµνπ−

)
+ h.c.

= −e
4

4
Fµνπ

+ 1
∂2+M2

A
AαAα

1
∂2+M2

A
(Fµνπ−)

+
e4

4
Fµνπ

+ 1
∂2+M2

A
(∂αA

α +Aα∂α) 1
∂2+M2

A
(∂βA

β +Aβ∂β) 1
∂2+M2

A
(Fµνπ−) + h.c. (8.11)
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Again, the series resums to give the Feynman rule:

V µνσρ =
ie4(k1k2g

µν − kµ2 kν1 )gσρ

((p1 + k1)2 −M2
A) ((p1 + k1 + k3 + k4)2 −M2

A)

− ie4(k1k2g
µν − kµ2 kν1 )(2pσ1 + 2kσ1 + kσ3 )(2pρ1 + 2kρ1 + 2kρ3 + kρ4)

((p1 + k1)2 −M2
A) ((p1 + k1 + k3)2 −M2

A) ((p1 + k1 + k3 + k4)2 −M2
A)

+ photon perms . (8.12)

Although there is no dynamical a1 in this form factor approach, the denominator structure in

our results above suggests the exchange of multiple a1 mesons. We have found that a small set of

Feynman rules for a ficticious a1 can indeed reproduce the interactions above. These are given in

Fig 3.3.
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8.6 Example of magnetic moment calculation using the para-

metric formalism

The functions defined in Eq (4.31) are given here in terms of the Feynman parameters:

U = x1x2x3 + x1x3x4 + x2x3x4 + x1x2x5 + x2x3x5 + x1x4x5 + x2x4x5 + x3x4x5 + x1x2x6+

x1x3x6 + x1x4x6 + x2x4x6 + x3x4x6 + x1x5x6 + x2x5x6 + x3x5x6 + x1x3x7 + x3x4x7+

x1x5x7 + x3x5x7 + x4x5x7 + x1x6x7 + x4x6x7 + x5x6x7 + x1x2x8 + x1x4x8 + x2x4x8+

x2x5x8 + x4x5x8 + x1x6x8 + x4x6x8 + x5x6x8 + x1x7x8 + x4x7x8 + x5x7x8 ,

c1 = x2x3 + x3x4 + x2x5 + x4x5 + x2x6 + x3x6 + x4x6 + x5x6 + x3x7 + x5x7 + x6x7 + x2x8+

x4x8 + x6x8 + x7x8 ,

c2 = x1x3 + x3x4 + x1x5 + x3x5 + x4x5 + x1x6 + x4x6 + x5x6 + x1x8 + x4x8 + x5x8 ,

c3 = x1x2 + x1x4 + x2x4 + x2x5 + x4x5 + x1x6 + x4x6 + x5x6 + x1x7 + x4x7 + x5x7 ,

c4 = x3x4 + x4x5 + x4x6 + x5x6 + x4x8 ,

c5 = −(x2x5 + x4x5 + x4x6 + x5x6 + x5x7) ,

c6 = −(x4x5 + x1x6 + x4x6 + x5x6) ,

c7 = −(x3x4x7 + x4x5x7 + x4x6x7 + x5x6x7 + x2x5x8 + x4x5x8 + x4x6x8 + x5x6x8 + x4x7x8+

x5x7x8)/U ,

c8 = −(x1x3x7 + x3x4x7 + x1x5x7 + x3x5x7 + x4x5x7 + x1x6x7 + x4x6x7 + x5x6x7 + x4x5x8+

x1x6x8 + x4x6x8 + x5x6x8 + x1x7x8 + x4x7x8 + x5x7x8)/U ,

c9 = (x4x5x7 + x1x6x7 + x4x6x7 + x5x6x7 + x1x2x8 + x1x4x8 + x2x4x8 + x2x5x8 + x4x5x8+

x1x6x8 + x4x6x8 + x5x6x8 + x1x7x8 + x4x7x8 + x5x7x8)/U ,

c10 = (x1x3x
2
7 + x3x4x

2
7 + x1x5x

2
7 + x3x5x

2
7 + x4x5x

2
7 + x1x6x

2
7 + x4x6x

2
7 + x5x6x

2
7 + 2x4x5x7x8+

2x1x6x7x8 + 2x4x6x7x8 + 2x5x6x7x8 + x1x
2
7x8 + x4x

2
7x8 + x5x

2
7x8 + x1x2x

2
8 + x1x4x

2
8+

x2x4x
2
8 + x2x5x

2
8 + x4x5x

2
8 + x1x6x

2
8 + x4x6x

2
8 + x5x6x

2
8 + x1x7x

2
8 + x4x7x

2
8 + x5x7x

2
8)/U .

For diagram 4.3(a), its contribution to the magnetic moment is given in Eq (4.39) with the two

numerator functions defined below:
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num7 = 2x1(− 2c2c5U − 2c8c2c5U + 4c4c5U − 16c7c4c5U + 6c8c4c5U + 6c8c
2
5U + 2c4c6U+

6c7c4c6U − 6c7c5c6U − 3c7c3c4dU + 3c7c2c5dU − c8c2c5dU − 8c7c4c5dU+

2c7c2c3c4x5 + 2c7c
2
3c4x5 + 2c3c

2
4x5 + 2c2c

2
5x5 + 2c8c2c

2
5x5 + 2c8c3c

2
5x5−

2c7c2c5c6x5 − 2c7c3c5c6x5 − 4c4c5c6x5 + c7c2c3c4dx5 + c7c
2
3c4dx5 + c8c2c

2
5dx5+

c8c3c
2
5dx5 − c7c2c5c6dx5 − c7c3c5c6dx5 + 4c21(c8c3 − c9c6)(2 + d)x5−

c9c4(6c4U − c2(2 + d)(U − c5x5) + c5(6U + c3(2 + d)x5)) + c1(−4c6U − 2c2c3x5−

8c7c3c4x5 + 8c7c5c6x5 + 2c26x5 − 4c7c3c4dx5 + 4c7c5c6dx5 + c9(−3c2dU+

2c4(2 + d)(U + 2c5x5) + c6(6U + (c2 + c3)(2 + d)x5))− c8(6c6U − 6c5(2 + d)U+

4c25(2 + d)x5 + c3(2(c2 + c3)x5 + d(−3U + (c2 + c3)x5))))) ,

num8 = 4x1(4c37(c3c4 − c5c6)x5 + (c9c4 − c8c5)((−2 + c9)c9c5x5 − 2c8(U − c5x5) + c28(−U + c5x5))+

2c27(c4((−2 + 3c9)U + 4c3x5 − 2c9c5x5) + c5((2 + c8)U + 2(c8c5 − 2c6)x5))+

c1(c38c3x5 − (−2 + c9)c29c6x5 + c8c9((4− 3c9)U + ((−2 + c9)c3 − 2c6)x5)+

c28(3c9U + 2c3x5 − c9c6x5) + c27(−4c8c3x5 + 4c9c6x5)− 4c7(c8((−1 + 2c9)U + 2c3x5)+

c9(U − 2c6x5))) + c7(c29(3c4U − c3c4x5 + c5c6x5) + 2c9(−c5c6x5+

c4(U + c3x5 − 4c5x5)) + c8(−(2 + c8)c3c4x5 + 8c25x5 − (2 + c8)c5(3U − c6x5)))) .
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