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Abstract of the Dissertation

Generalized isometries in superspace

by

Itai Ryb

Doctor of Philosophy

in

Physics

Stony Brook University

2010

N = (2, 2) supersymmetric models are of interest for mathemati-

cians and physicists and have been used extensively as a tool for the

investigation of generalized Kähler geometry. In the sigma-model

approach, it is convenient to formulate and manipulate sigma-

models in superspace where essential geometric properties are cap-

tured by the generalized Kähler potential which gives rise to biher-

mitian geometry description. Recent developments in differential

geometry show that one can also characterize these targets using

structures that interpolate between complex and symplectic geom-

etry and are defined on the sum T ⊕ T ∗.
The research work that will be presented here extends the set of

known superspace tools for the manipulation of bihermitian / gen-

eralized Kähler geometries, namely, the gauging of isometries along

directions that mix chiral and twisted chiral or semichiral multi-

plets.

Other results that will be presented relate to possible N = (4, 4)
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supersymmetry in semichiral models and sigma models formulation

on the sum T ⊕ T ∗.
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Chapter 1

Introduction

1.1 Motivation: The string action

String theory [1–3] is a compelling framework for the quantization of gravity on

the same footing as all other forces of nature, that is, as a microscopic theory

of spin 2 particles. It overcomes the hurdles of nonrenormalizability in four di-

mensions by promoting point particles propagating along a timeline to strings

which are maps from a two-dimensional worldsheet, Σ, to D-dimensional target

space MD

σ

τ

Σ

Xρ

Xν

Xµ

Σ

Xµ(σ, τ)

Figure 1.1: The worldsheet embedded in D dimensional target

The string action is a generalization of that of the particle, namely, the
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Nambu-Goto action which minimizes this surface in MD reads

S = −T
∫

Σ

d2σ

√
(X ′ · Ẋ)2 − Ẋ2(X ′)2 , (1.1)

where we introduce the string tension T = 1
2πα′ . This action is, classically,

equivalent to the Polyakov action where a worldsheet metric hαβ is introduced

S = −T
2

∫

Σ

√
−hhαβηµν∂αXµ∂βX

ν , (1.2)

.

In the conformal gauge h = diag(−1, 1) this gives a sigma-model

S = −T
2

∫
d2σ ηµν∂X

µ∂̄Xν , (1.3)

where ∂ = ∂σ + ∂τ .

The two dimensional string is therefore embedded in the D-dimensional

target space through nonlinear sigma-model ; which is a field theory whose

fields are the coordinates of a Riemannian manifold.

Strings need not propagate on flat targets only. An interesting class of

backgrounds that will be considered here are due to NS-NS sector and admit a

metric Gµν(X), an antisymmetric tensor which is a torsion potential Bµν(X)

and a dilaton coupling the Ricci scalar which gives an expansion parameter.

These modes are matched with the massless spectrum of the closed string. A

string propagating in such a background is therefore subject to the action

S = −T
2

∫

Σ

d2σ
√
−h
(
hαβGµν(X) + εαβBµν(X)

)
∂αX

µ∂βX
ν + α′ΦR(2) . (1.4)

Nonlinear sigma-models also appear in other branches of physics such as

statistical physics where they appear as continuum limits with the for a spin

system which preserves the target metric.
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1.2 Supersymmetric sigma-models

To obtain a realistic spectrum which allows also fermionic modes one must also

include worldsheet fermions ψµ 1. Adding fermions to the Polyakov action we

find

S = −T
2

∫
d2σ ∂αXµ∂αXµ + ψ̄µρα∂αψµ . (1.5)

This model exhibits a symmetry with fermionic parameter mixing bosons

and fermions, known as supersymmetry (e. g. [17]) that acts as follows

δXµ = εψµ , δψµ = ρα∂αX
µε , (1.6)

and closes on-shell to give translations:

[δε1 , δε2 ] = 2ε̄1ρ
αε2∂α . (1.7)

Since there are two generators for this symmetry of opposite chiralities this

symmetry is N = (1, 1) supersymmetry.

1.3 N = (1, 1) supersymmetry in superspace

A convenient way to write down manifestly N = (1, 1) supersymmetric ac-

tions is to endow space with anticommuting directions θα, α = ± such that

supersymmetry transformations are translations. In two dimensions, one can

introduce real spinors

Cαβ = −Cβα = −Cαβ , C+− = i , θα = θβCβα , θ
α = Cαβθβ . (1.8)

The supersymmetry transformations δε = [−iεαQα, ·] shifts the worldsheet

coordinates

Qα = i ∂
∂θα

+ θβ∂βα , δεσ
++
= = −iε±θ± , δεθ± = ε± (1.9)

1This also mends the inconsistency due to tachyonic mode in the bosonic model

3



so that two consecutive transformations are a translation Q2
± = i∂++

=
. Note

that unlike d = 4 superspace there are no ∂+− derivatives.

A superfield has a finite expansion in θ

Φµ = Xµ + θαψµα − i
2
θαθαF

µ (1.10)

where we use θαθα = 2iθ−θ+. The highest term F µ is an auxiliary as we shall

soon see. Defining the supercovariant derivatives

D± = −i(Q± − 2θ±∂++
=
) , (1.11)

and ·| as the truncation to θ = 0 we write the expansion as

Φµ| = Xµ , D±Φµ| = ψµ± , D+D−Φµ| = F µ (1.12)

A superfield transforms under supersymmetry δεΦ = −iεQΦ as

δεX
µ = εψ

δεψ
µ
α = i(εβ∂βαX

µ − εαF µ)

δεF
µ = εα∂αβψ

β (1.13)

which satisfy the supersymmetry algebra, e. g.

[δ(ε1), δ(ε2)]Xµ = δ(ε1)(ε2ψ
µ)− (1↔ 2) = −2iεα1 ε

β
2∂αβX

µ (1.14)

Using Berezin integration we write an action in superspace as

S =

∫

Σ

∫
d2θL =

∫

Σ

D+D−L| (1.15)

for example the action L = D+ΦµD−Φµ gives

S =

∫

Σ

∂++X
µ∂=Xµ + iψµα∂αβψ

β
µ − F µFµ (1.16)

which, after elimination of the auxiliary fields F µ is the string in flat back-

ground.

Superpotential terms, that contain no derivatives are also possible. These
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terms are reduced to components as follows

S =

∫

Σ

∫
d2θ D+ΦµD−Φµ +W (Φ)

=

∫

Σ

∂++X
µ∂=Xµ + iψµα∂αβψ

β
µ − F µFµ +WµF

µ +Wµνψ
µ
+ψ

ν
− (1.17)

and, as their name suggest, contribute after elimination of the auxiliaries by

their equation of motion a potential for the dynamic degrees of freedom

S =

∫

Σ

∂++X
µ∂=Xµ + iψµα∂αβψ

β
µ + 1

4
W µ(Φ)Wµ(Φ) +Wµν(Φ)ψµ+ψ

ν
− (1.18)

Another important extension is the nonlinear sigma-model

S =

∫

Σ

∫
d2θ D+Φµ(g + b)µνD−Φν . (1.19)

The component reduction of this model interact, after elimination of the aux-

iliaries, with geometric features of the manifold with the metric g and the

torsion potential b

S =

∫

Σ

∂++X
µ∂=X

ν(g+b)µν+igµνψ
µ
+∇(+)

= ψν++igµνψ
µ
−∇(−)

++ ψν−+1
2
R+
µνρσψ

µ
+ψ

ν
+ψ

ρ
−ψ

σ
−

(1.20)

where the covariant derivatives have torsional connections that are defined

when we discuss N = (2, 2) supersymmetric backgrounds.

1.4 Complex Geometry

Enhancing nonlinear sigma-models with supersymmetry leads to a profound

interplay between physics and geometry; in particular, targets with N = (2, 2)

worldsheet supersymmetry are described by a pair of complex structures obey-

ing torsionful flatness condition. In this section, we establish the mathematical

preliminaries that will soon emerge out of physical constructions. A more rig-

orous introduction can be find in, e. g. [4].

A 2d-dimensional manifold M covered by the atlas {Ui} is locally similar

to Cd if transition functions on the overlap Ui

⋂
Uj are analytic. To formulate

these conditions in terms of structures, we define almost complex structure as

5



an globally defined endomorphism on the tangent space TM satisfying

J ij : TM → TM , J2 = −1 . (1.21)

This is just a generalization of i =
√
−1 so that the projectors

P± = 1
2
(1± iJ) , P 2

± = P± , P+P− = P−P+ = 0 . (1.22)

project to (anti)holomorphic directions. The consistency of these structures

(and their promotion to complex structures) is equivalent to the integrability

of the almost complex structures

(1∓ iJ)[(1± iJ)X, (1± iJ)Y ] , ∀X, Y ∈ TM . (1.23)

The real part of this expression is the Nijenhuis tensor

N(J)µλνX
νY λ∂µ = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

=
(
Jσ [λJ

µ
ν],σ + JµσJ

σ
[λ,ν]

)
XνY λ∂µ . (1.24)

A manifold admitting a complex structure, that is, an integrable almost

complex structure is called complex manifold. Given such a structure, it is pos-

sible to consistently split many key geometrical notions into (anti)holomorphic

ones. In particular, coordinates are split into (anti)holomorphic directions

(µ̄), µ and the differential operator is split d = ∂ + ∂̄, resulting in further

classification of the de Rahm cohomology

H(r) =
⊕

p+q=r

H(p,q) , (1.25)

and the notion of Dolbeault cohomology which is with respect to the (anti)holomorphic

differential.

Given an almost complex structure, one can write an hermitian metric g

satisfying gJ + JTg = 0 starting from any metric g̃

g = 1
2
(g̃ + JT g̃J) (1.26)

This metric is a (1, 1)-symmetric tensor, since for two (anti)holomorphic sec-
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tion the hermiticity condition gives, e. g.

gµν = g
(

∂
∂zµ

, ∂
∂zν

)
= g

(
Jρµ

∂
∂zρ
, Jσν

∂
∂zσ

)
= g

(
i ∂
∂zµ

, i ∂
∂zν

)
= −gµν (1.27)

using this metric we define the fundamental 2-form ω

ω = gµρJ
ρ
νdx

µ ∧ dxν ∈ Ω(1,1)T ∗M . (1.28)

When this form is closed, dω = 0, the manifold is symplectic and is called

a Kähler manifold. This statement is equivalent to covariant constancy of

the complex structure due to the symmetry of the metric connection and the

covariant constancy of the metric

dω = ∂µωνρ dx
µ ∧ dxν ∧ dxρ

= ∇µωνρ dx
µ ∧ dxν ∧ dxρ

= gνλ∇µJ
λ
ρ dx

µ ∧ dxν ∧ dxρ . (1.29)

Writing the closure of the Kähler form in an explicit manner we have

− idω = (∂ + ∂̄)gµν̄dz
µ ∧ dz̄ν̄

= gµν̄,ρdz
ρ ∧ dzµ ∧ dz̄ν̄ + gµν̄,ρ̄dz̄

ρ̄ ∧ dzµ ∧ dz̄ν̄

= 1
2

(gµν̄,ρ − gρν̄,µ) dzρ ∧ dzµ ∧ dz̄ν̄ + 1
2

(gµν̄,ρ̄ − gµρ̄,ν̄) dz̄ρ̄ ∧ dzµ ∧ dz̄ν̄

= 0 (1.30)

An immediate consequence of this condition is that locally, on the patch Ui,

the metric could be captured by a function Ki(z, z̄):

gµν̄ = ∂µ∂̄ν̄Ki , (1.31)

which, in turn implies that the only connection pieces are

Γµνρ = gµλ̄gνλ̄,ρ , Γµ̄ν̄ρ̄ = gµ̄λgν̄λ,ρ̄ , (1.32)

and the manifold is thus torsion-free and has a U(N) holonomy. A Ricci-flat

Kähler manifold is a Calabi-Yau manifold and the holonomy group is further

reduced to SU(N).
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For future purposes, we generalize this notion of integrability with respect

to a single structure to mutual integrability of two structures. Future results

will be expressed using the the Magri-Morosi concomitant [50–52] which is de-

fined for two endomorphisms I and J of the tangent bundle TM of a manifold

M as

M(I, J)ijk := −M(J, I)ikj = I ljJ
i
k,l − J lkI ij,l − I ilJ lk,j + J ilI

l
j,k . (1.33)

This concomitant has previously been used when discussing supersymmetry

algebra, e. g. in discussing (1, 0) and (1, 1) formulations of certain (p, q) sigma

models in [52] and discussing generalized complex geometry for (2, 2) models

in [42].

The Magri-Morosi concomitant relates to the simultaneous integrability

of two structures and is a tensor only when [I, J ] = 0. More precisely, two

commuting complex structures are simultaneously integrable if and only if

their Magri-Morosi concomitant vanishes. The part antisymmetric in j, k is

the Nijenhuis concomitant N(I, J); when I = J this becomes the Nijenhuis

tensor N(I). If N(I) = 0, then I is integrable.

Assuming that we have one I-connection ∇(I) and one J-connection ∇(J)

differing only in the sign of the torsion Γ(I/J) = Γ(0)± T , we can rewrite M as

M(I, J)ijk = I lj∇(J)
l J ik − J lk∇(I)

l I ij − I il∇(J)
j J lk + J il∇(I)

k I lj − [I, J ]imΓ
(J) m
jk

:= M̂(I, J)ijk − [I, J ]imΓ
(J) m
jk . (1.34)

Finally, we note that in the special case when I ij and J ij are curl-free in

the lower indices, the concomitant simplifies to

M(I, J)ijk = (JI)ij,k − (IJ)ik,j . (1.35)

1.5 N = (2, 2) supersymmetry

So far, we have written N = (1, 1) nonlinear sigma models whose target space

was unrestricted and characterized by the metric gµν and the 2-form bµν . In

the following, we study the consequences of extending the supersymmetry to

N = (2, 2).
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Working in N = (1, 1) superspace, an Ansatz for the extra supersymmetry

reads [20]

δ′(η)φµ = η+Jµ+νD+φ
ν + η−Jµ−νD−φ

ν , (1.36)

(note that the ± indices on the transformation matrices Jµ±ν are not Lorentz

indices.) To have this as an extra supersymmetry, we require both invariance

of the model and the supersymmetry algebra to hold.

Requiring that these transformations are a symmetry of the action implies

that J± are covariantly constant with the appropriate torsionfull connections

and are hermitian with respect to the metric piece; e. g. for J+

δ′+(D+ΦµEµνD−Φν) = −η+D+ΦµD+D−Φν(Jρ+µgρν + gµρJ
ρ
+ν) (1.37)

− η+D+ΦµD+ΦνD−Φρgµσ(Jσ+ν,ρ + gστJη+τEηρ,ν + gστEτρ,ηJ
η
+ν)

Using the hermiticity condition

gµρJ
ρ
+ν + Jρ+µgρν = 0 , (1.38)

which is required to eliminate the first we find the second line vanishes if

∇(±)
ρ Jµ±ν = Jµ±ν,ρ + Γ±µρσ J

σ
±ν − Γ±σρν J

µ
±σ = 0 (1.39)

where we use the torsionful (Bismut) connections

Γ±µνρ = Γµνρ ± gµσHσνρ (1.40)

and the torsion 3-form is the field strength for the Kalb-Ramond 2-form

H = db , Hµνρ = 1
2
(bµν,ρ + bνρ,µ + bρµ,ν) (1.41)

Assuming such invariance of the model, we require that these transforma-

tions are indeed supersymmetry transformations. For the same-index commu-

tators we finds

[δ′(η±1 ), δ′(η±2 )]Φµ = 2iη±1 η
±
2 J

µ
±νJ

ν
±ρ∂++

=
Φρ − η±1 η±2 N(J±)µνρD±φ

νD±Φρ (1.42)

implying that J± are complex structures (that is integrable structures satisfy-

9



ing J2
± + 1 = 0). The opposite sign commutator gives

[δ′+, δ
′
−]Φµ = ε+ε−[J+, J−]µνD+D−Φν + ε+ε−M(J−, J+)µρνD+ΦνD−Φρ (1.43)

Using the covariant flatness condition (1.39) this expression could be simplified:

[δ′+, δ
′
−]Φµ = ε+ε−[J+, J−]µν

(
D+D−Φν + Γ(−)ν

νρ D+ΦνD−Φρ
)
, (1.44)

which vanishes if the equation of motion is satisfied or when the complex

structures commute.

1.5.1 N = (2, 2) supersymmetry in superspace

Models quadratic in derivatives can be written in N = (2, 2) superspace when

the integrand is derivative-free. This makes the model manifestly N = (2, 2)

supersymmetric (higher supersymmetry in superspace requires projective /

harmonic superspace formulations (e. g. [60] and [61] respectively for review.)

which are not as straightforward). We shall follow closely the notation of [18].

Extending N = (1, 1) superspace with two extra Grassmann directions

(σ++
= , θ±, θ̄±) we define the supercovariant derivatives

D± = ∂± + i
2
θ̄±∂++

=
, D̄± = ∂̄± + i

2
θ±∂++

=
(1.45)

satisfying

{D±, D̄±} = i∂++
=

(1.46)

with all other commutators vanishing.

In a similar manner we define the supersymmetry generators

Q± = iD± + θ±∂++
=
, Q̄± = iD̄± + θ̄±∂++

=
(1.47)

such that all Q and D anticommutators vanish. Supersymmetry transforma-

tion on a superfield reads

δΦ = i(εαQα + ε̄αQ̄α)Φ . (1.48)

Since the target geometry is obvious in N = (1, 1) superspace, we introduce
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a standard convention for this reduction, where

Dα = D̄α + Dα , Qα = i(Dα − D̄α) . (1.49)

A superspace measure using this convention reads

∫
d2θd2θ̄L = D+D−D̄+D̄−L

∣∣ = −1
4
D+D−Q+Q−L

∣∣ . (1.50)

Having described the basic features of N = (2, 2) superspace, we next

turn to describe irreducible representation of N = (2, 2) supersymmetry and

N = (2, 2) supersymmetric actions.

1.5.2 Constrained Superfields

Unlike N = (1, 1) superspace, in N = (2, 2) superspace one can find constraints

consistent with the algebra (1.45). Historically [20], these constraints were

obtained by analyzing properties of gauge multiplets, and we indeed follow

this line of thought later on. We summarize these constraints in the following

table which also defines conventions to be used throughout this manuscript

Table 1.1: Constrained N = (2, 2) superfields

Superfield Constraint Superfield Constraint

Chiral D̄±φ = 0 Left semichiral D̄+XL = 0

Antichiral D±φ̄ = 0 Anti-Left semichiral D+X̄L = 0

Twistedchiral D̄+χ = D−χ = 0 Right semichiral D̄−XR = 0

Anti twistedchiral D+χ̄ = D̄−χ̄ = 0 Anti-Right semichiral D−X̄R = 0

Such superfields have simple expansion in superspace, e. g.

φ| = X , D±φ| = ψ± , D+D−φ| = F . (1.51)

This defines two complex structures on the target through the reduction (1.49),

namely,

QαΦµ = JµανDαΦν . (1.52)
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For (anti)(twisted)chiral superfields (satisfying two constraints) it is easy

to see that the complex structures are diagonal

Q±(φ, φ̄, χ, χ̄) = iD±(φ,−φ̄,±χ,±χ̄) (1.53)

and thus are an off-shell representation, ( since [J+, J−] = 0 is equivalent,

through (1.44), to [δ+, δ−] = 0). Decomposing

Ker[J+, J−] = Ker(J+ + J−)⊕Ker(J+ − J−) (1.54)

we identify that these superfields parametrize the first two kernels, namely

(J+ + J−)χ = (J+ − J−)φ = 0 . (1.55)

Semichiral superfields [19] satisfy less constraints:

Q+XL = iD+XL , Q−XR = iD−XR . (1.56)

That is, left(right)-semichirals diagonalize J+(J−). In the next section, we

show that these superfields chart sectors where the complex structures do not

commute [J+, J−] 6= 0. These superfields thus contain auxiliaries, e. g.

XL| ≡ XL , Q−XL ≡ ΨL− ,

XR| ≡ XR , Q+XR ≡ ΨR+ . (1.57)

The supersymmetry algebra implies that

Q+ΨL− = iD+ΨL− , Q−ΨL− = i∂=XL

Q−ΨR+ = iD−ΨR+ , Q+ΨR+ = i∂++XR (1.58)

Which allow the closure of the algebra off-shell. In [18] it was shown that these

multiplets are sufficient to chart all bihermitian manifolds.
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1.5.3 Matter Actions

Lagrange densities for nonlinear sigma-models in N = (2, 2) superspace are

just real functions, the generalized Kähler potential :

S =

∫

Σ

∫
d4θ K(φα, φ̄ᾱ, χα

′
, χ̄ᾱ

′
,Xa

L, X̄ā
L,Xa′

R , X̄ā′
R) . (1.59)

Superpotential terms are also possible and are consistent with chirality

properties and reality; that is

Ssp =

∫

Σ

∫
D+D− W (φ) +

∫

Σ

∫
D+D̄− W̃ (χ) + c.c . (1.60)

but are not relevant for our investigation of the sigma-model.

In the following, we describe the target space geometry encoded by the

generalized Kähler potential. As mentioned, this is most conveniently done in

N = (1, 1) superspace, where the metric and b-field are present explicitly.

Kähler Submanifolds

To explain the etymology, let us first look at a potential with chiral superfield:

K = K(φa, φ̄ā) . (1.61)

The reduction of such a N = (2, 2) model to N = (1, 1) superspace is achieved

by pushing theQ-derivatives through. Defining a collective notation ϕi = (φa, φ̄ā)

and noting that for chirals J+ = J− ≡ J we find

Q+Q−K = Q+(KiJ
i
jD−ϕ

j) = Kij(δ
i
kδ
j
l + J ikJ

j
l)D+ϕ

kD−ϕ
l . (1.62)

That is, the Hermitian piece of the Hessian Kij is the metric for the lowest

bosonic components, and K is thus the Kähler potential for that manifold.

Similar consideration applies for a potential depending on twistedchiral

superfields, where there is an additional overall sign since for such model

J+ = −J− ≡ J so that in the collective notation ϕ̃i = (χa
′
, χ̄ā

′
) one finds

Q+Q−K = −Q+(KiJ
i
jD−ϕ̃

j) = −Kij(δ
i
kδ
j
l + J ijJ

j
l)D+ϕ̃

kD−ϕ̃
l . (1.63)
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1.5.4 Gates-Hull-Roček, Take One [J+, J−] = 0

A first example for non-Kähler geometry was worked out in a seminal paper

by Gates, Hull and Roček [20]. After introducing twistedchiral superfields, one

immediately finds that for a model containing both types one may find nonva-

nishing b-field. Working out explicitly the reduction to N = (1, 1) superspace

with the collective notation ϕi = (φa, φ̄ā, χa
′
, χ̄ā

′
) we find

Q+Q−K(φa, φ̄ā, χa
′
, χ̄ā

′
) = Kij(J

i
+kJ

j
−l − Πi

kδ
j
l)D+ϕ

kD−ϕ
l (1.64)

where Π = J+J− = J−J+ is the local product. This gives rise to b-field when

twistedchirals are coupled to chirals, namely

Kij(J
i
+kJ

j
−l − Πi

kδ
j
l) = 2




0 Kaā Kaa′ 0

Kaā 0 0 Kāā′

−Kaā 0 0 −Ka′ā′

0 −Kāā′ −Ka′ā′ 0




. (1.65)

1.5.5 Gates-Hull-Roček, Take two: [J+, J−] 6= 0

To chart sectors where [J+, J−] 6= 0, it is required to use semichiral multiplets.

In the reduction of generalized Kähler potential in semichirals to N = (1, 1)

one finds auxiliary superfields, which are to be eliminated by their equation of

motion.

Starting from the generalized Kähler potential

Q+Q−K(XA
L , X̄Ā

L ,XA′
R , X̄Ā′

R ) , (1.66)

we use the indices L = (A, Ā) , R = (A′, Ā′) and the canonical complex

structure J = diag(i,−i) to find

Q+Q−K = Q+(D−X
RJKR +KLΨL

−)

= −D−ΨR
+JKR + ΨR

+KRRJD−X
R +D+X

LJKLRJD−X
R

+D+X
LJKLLΨL

− + ΨR
+KRLΨL

− +KLJD+ΨL
− (1.67)

Introducing the commutators CLL = [J,KLL] and CRR this expression simpli-

fies, after integration by parts and extraction of the equations of motion for
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the auxiliaries to

=
(
ΨR

+ + (D+X
LCLL −D+X

RKRLJ)KLR
)

KRL

(
ΨL −KLR(CRRD−X

R + JKRLD−X
L)
)

+D+X
L(JKLRJ + CLLK

LRCRR)D−X
R −D+X

RKRLJK
LRJKRLD−X

L

−D+X
RKRLJK

LRCRRD−X
R +D+X

LCLLK
LRJKRLD−X

L (1.68)

where KRLK
LR = δRR and thus KLR is assumed to be invertible. Complex

structures are found by putting the auxiliaries on-shell, and are, indeed, non-

commuting:

J+ =

(
J 0

KRLCLL KRLJKLR

)
, J− =

(
KLRJKRL KLRCRR

0 J

)
.(1.69)

Torsion arises quite naturally in these models; for example, starting from

the quadratic generalized Kähler potential XLXR+c.c we find the pure (though

trivial) b-field

D+

(
XL, X̄L, XR, X̄R

)




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



D−




XL

X̄L

XR

X̄R




. (1.70)

With all multiplets present, we add the (c)hiral and the (t)wistedchiral

sectors to g + b and find [18]

ELL = CLLK
LRJsKRL

ELR = JsKLRJs + CLLK
LRCRR

ELc = KLc + JsKLcJc + CLLK
LRCRc

ELt = −KLt − JsKLtJt + CLLK
LRARt

ERL = −KRLJsK
LRJsKRL

ERR = −KRLJsK
LRCRR

ERc = KRc −KRLJsK
LRCRc

ERt = −KRt −KRLJsK
LRARt

EcL = CcLK
LRJsKRL

EcR = JcKcRJs + CcLK
LRCRR
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Ecc = Kcc + JcKccJc + CcLK
LRCRc

Ect = −Kct − JcKctJt + CcLK
LRARt

EtL = CtLK
LRJsKRL

EtR = JtKtRJs + CtLK
LRCRR

Etc = Ktc + JtKtcJc + CtLK
LRCRc

Ett = −Ktt − JtKttJt + CtLK
LRARt (1.71)

where A = {K, J} and the commutators CXY generalize as expected. The

complex structures for this model reads [18]

J+ =




Js 0 0 0

KRLCLL KRLJsKLR KRLCLc KRLCLt

0 0 Jc 0

0 0 0 Jt




(1.72)

and

J− =




KLRJsKRL KLRCRR KLRCRc KLRARt

0 Js 0 0

0 0 Jc 0

0 0 0 −Jt




(1.73)

1.6 Gauging Isometries

1.6.1 Bosonic model

Isometries occur when one can identify a transformation leaving the geometric

data invariant; that is, given a coordinate transformation

δφi = λki such that gij(φ
′) = gij(φ) , (1.74)

which implies

kk,igkj + kk,jgik + kkgij,k = Lkg = ∇(ikj) = 0 . (1.75)
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In the presence of torsion, this requirement generalizes to an exact shift of the

torsion potential

Lkb = dα , LkH = 0 . (1.76)

The isometry could be gauged, that is, the model is invariant after pro-

moting the rigid parameter λ→ λ(φ). This requires the covariantization of

the derivatives

∂αφ
iEij∂

αφj → (∂αφ
i + Aαk

i)Eij(∂
αφj + Aαkj) (1.77)

with a connection transforming as δAα = −∂αλ. This discussion is generalized

to the nonabelian case when the parameter λ and the connection A are group-

valued.

In the reminder of this section we shall first gauge isometries for Kähler

sumbanifolds in N = (2, 2) superspace and introduce the appropriate gauge

multiplets and their field strengths before going to N = (1, 1) and components.

1.6.2 Gauging in N = (2, 2) superspace

As in many cases, manipulations in N = (2, 2) superspace are simpler than

those performed at the sigma model level. Derivative terms arise from the

generalized Kähler potential and we therefore need to add degrees of freedom,

the gauge multiplet, that mend the transformations of those terms. We now

work out (non)abelian examples and discuss N = (2, 2) gauge multiplets [23] .

A Kähler submanifold parametrized, e. g. by the lowest components of

(anti)chiral multiplets with indices separated in accordance (so that (anti)

holomorphicity translates to (anti)chirality). Starting from a potentialK(Φa, Φ̄ā),

An isometry is manifest if there is a vector (with separated (anti)holomorphic

components)

ki∂i = ka∂a + k̄ā∂ā , (1.78)

which leaves the action is invariant, that is

λLkK = λ(ka∂a + k̄ā∂ā)K = f(Φ) + f̄(Φ̄) . (1.79)

Gauging the isometry in a holomorphic manner means promoting λ to
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(anti) holomorphic components and, in the case f(Φ) = 0 requiring

(Λka∂a + Λ̄k̄ā∂ā)K
(g) = 0 . (1.80)

Using the rigid isometry we write

(Λka∂a + Λ̄k̄ā∂ā)K = i
2
(Λ̄− Λ)LJkK , Jk = i(ka∂a − k̄ā∂ā) . (1.81)

Thus, adding a gauge field transforming as δV = i(Λ̄−Λ) the gauged potential

K(g)(Φa, Φ̄ā, V ) = exp
(
− 1

2
V LJk

)
K(Φa, Φ̄ā) (1.82)

satisfies (1.80).

Abelian

A Kähler potential with an obvious abelian isometry is independent of one of

the direction, e. g. for a Kähler potential in (anti)chirals we write

K(φ, φ̄) = K(φ+ φ̄) , (∂ − ∂̄)K = 0. (1.83)

This potential is invariant under δφ = iλ.

Gauging this symmetry means promoting λ to (anti)chiral superfields

δφ = iΛ , D̄±Λ = 0 ; δφ̄ = −iΛ̄ , D±Λ̄ = 0 . (1.84)

To ensure the invariance of the Kähler potential, we introduce a gauge multi-

plet such that δV = i(Λ̄− Λ) and therefore

δΛ,Λ̄K(Φ + Φ̄ + V ) = 0 . (1.85)

Writing gauge invariant field-strengths is immediate given the transforma-

tion properties of the gauge multiplet V . As no single derivative can knock

out both Λ and Λ̄, we write the Lorentz-neutral field-strengths

F̃ = D̄+D−V , ¯̃F = D+D̄−V . (1.86)
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These field-strengths are thus (anti)twistedchiral; historically, this is how twist-

edchiral constraints were identified.

An identical discussion follows for isometries in a Kähler manifold parametrized

by the lowest components of (anti)twistedchiral superfields.

K(g) = K(χ̄+ χ+ Ṽ ) , δχ = Λ̃ , δχ̄ = ¯̃Λ , δṼ = i( ¯̃Λ− Λ̃) . (1.87)

The field-strengths for the semichiral gauge multiplet are thus (anti)chirals

F = D̄+D̄−Ṽ , F̄ = D+D−Ṽ . (1.88)

Nonabelian

Starting from a system with nonabelian gauge invariance; e. g. an U(N) in-

variant model with fundamental matter K(Φ̄iΦi), i = 1, · · · , N is invariant

under rigid transformations

g(Φ)i = exp(iλaT
a)i

jΦj , g(Φ̄)i = Φ̄j exp(−iλaT a)j i . (1.89)

with T a are the U(N) generators. Gauging is achieved using algebra valued

gauge multiplet K(g) = K(Φ̄eV Φ) with the transformation properties (with all

indices suppressed)

g(Φ) = eiΛΦ , g(Φ̄) = Φ̄je−iΛ̄ , g(eV ) = eiΛ̄eV e−iΛ . (1.90)

In a chiral representation the bared derivatives D̄± are covariant ∇̄± = D̄±
given the chirality of the parameter Λ

g(∇̄±Φ) = g(D̄±Φ) = D̄±eiΛΦ = eiΛD̄±Φ = eiΛ∇̄Φ , (1.91)

whereas D± are not. The latter are covariantized using the gauge multiplet

∇± = e−VD±eV :

g(∇±Φ) = g(e−VD±eV Φ) = eiΛe−V e−iΛ̄D±eiΛ̄eV e−iΛeiΛΦ = eiΛ∇±Φ . (1.92)

The field-strengths are (anti)twistedchiral and are obtained as anticommu-
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tators of covariant derivatives

F̃ = i{∇̄+,∇−} , ¯̃F = −i{∇̄−,∇+} . (1.93)

These field-strengths are covariant, e. g. g(F̃ ) = eiΛF̃ e−iΛ.

Likewise, the twistedchiral gauge multiplet enters as

K(g) = K(χ̄eṼ χ) , g(eṼ ) = ei
¯̃ΛeṼ e−iΛ̃ . (1.94)

In the twistedchiral representation, the covariantized derivatives read

∇̄+ = D̄+ , ∇+ = e−ṼD+e
Ṽ , ∇− = D− , ∇̄− = e−Ṽ D̄−eṼ , (1.95)

and the (anti)chiral field-strengths are

F = i{∇̄+, ∇̄−} , F̄ = −i{∇+,∇−} . (1.96)

Actions in N = (2, 2) superspace are extended to include the field strengths

in the Kähler potential and (for the chiral gauge multiplet) twistedchiral su-

perpotential terms (called D-terms for reasons that will be obvious as we go

to components)

S =

∫

Σ

{∫
d4θK(F̃ , ¯̃F, φ, φ̄) +

∫
d2θW (φ) +

∫
d2θ̃W̃ (F̃ ) + c.c

}
. (1.97)

1.6.3 N = (1, 1) superspace and components

The gauge multiplet is unconstrained and is thus has a full 16 components

expansion. Given its transformation properties it is convenient to gauge away

many, removing a chiral and an antichiral multiplets from the expansion.

To discuss gauge-invariant only degrees of freedom, it is convenient to go to

N = (1, 1) superspace in the Wess-Zumino gauge

V |θ̄ = 0 , Q±V |θ̄ = 2A± , Q+Q−V |θ̄ = 2d . (1.98)

Using the definitions of field-strengths F̃ and ¯̃F and identifying the field-

strength for theN = (1, 1) multiplet containing the connections f = D+A− +D−A+.
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we find:

F̃ | = 1
4
(D+ + iQ+)(D− − iQ−)V | = 1

2
(d− if)

¯̃F | = 1
4
(D+ − iQ+)(D− + iQ−)V | = 1

2
(d+ if) . (1.99)

The reduction to components thus agrees with the number of degrees of free-

dom expected for V after gauge fixing where d is an N = (1, 1) scalar multiplet

and f contains the gauge fields.

d| = σ , D±d| = ψ± , D+D−d| = d

f | = σ′ , D±f | = λ± , D+D−f | = ∂=A++ − ∂++A= = f . (1.100)

Reducing the model with gauged abelian (anti)chiral isometry toN = (1, 1)

superspace we find

Q+Q−K(φ̄i + φi + V i) = D+φ
iEijD−φ

j + 2diKi , (1.101)

where the N = (1, 1) covariantized superderivatives acts as

D±φ
i = D±φ

i − iAi± , D±φ̄i = D±φ̄
i + iAi± . (1.102)

and the last term is a moment map that are important when when gauged

models are dualized and quotiented

In the nonabelian case, the covariantization of derivatives is achieved by

covariantizing the N = (1, 1) derivatives only:

∇̄± = 1
2
(D± + iQ±) (1.103)

since the N = (2, 2) derivatives still anticommute {Q+, Q−} = 0, we decom-

pose the field-strengths

F̃ = 1
4

({D+, Q−}+ {D−, Q+}) + i
4
{D+,D−}

¯̃F = 1
4

({D+, Q−}+ {D−, Q+})− i
4
{D+,D−} (1.104)

so that the field strength (the imaginary piece) is a commutator of N = (1, 1)

covariant derivatives as expected.
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When taken to components, gauge actions are consisted of a usualN = (1, 1)

scalar action and the gauge action

S = −
∫

Σ

∫
d4θ F̃ ¯̃F

=

∫

Σ

(
∂++σ∂=σ + i∂=ψ+ψ+ + i∂++ψ−ψ− −D2

)
(1.105)

+
(
∂++σ

′∂=σ
′ + i∂=λ+λ+ + i∂++λ−λ− − (∂++A= − ∂=A++)2

)
.

Superpotential terms are also called D-terms since they contribute a potential

for σ and ψ± through the auxiliary D:

∫
d2θ̃ W̃ (F̃ ) + c.c. = 2W ′(σ)D + 2W ′′(σ)ψ+ψ− . (1.106)

1.6.4 T-duality and Buscher rules

Dualities are a key feature of string theory [1–3] and relate spectra and target

geometries of seemingly different theories. One celebrated duality is T(oroidal)-

duality [16, 24] relating closed strings propagating in a target with one direc-

tion compactified on a circle of radius R.

The compactified direction Xc(σ, τ) must satisfy

Xc(τ, σ + π) = Xc(τ, σ) + 2πRω (1.107)

where ω is the winding number. Separating modes to Left (Right) movers we

therefore find the contribution to the energy from momenta in the direction

Xc in appropriate units

M2 =
( n
R

)2

+ (ωR)2 + {other terms} (1.108)

where n is the mode excited in the Xc direction excitation. It is therefore clear

that this spectrum matches that of a string propagating in a background com-

pactified on a circle with inverse radius R→ 1/R where winding / momentum

modes exchanged. Writing the momenta modes as

1
2
(pcL + pcR) = n

R
, 1

2
(pcL − pcR) = ωR (1.109)
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we find that the duality takes XR → −XR.

An alternative derivation of this this duality is achieved through a mother

action [16, 24] that gives the two models when certain degrees of freedom

are removed using their equation of motion. After gauging an isometry, the

original model could be restored by constraining the field-strength to vanish. In

N = (1, 1) superspace, we write a nonlinear sigma-model with a single gauged

isometry along the 0-direction and such a constraint

S =

∫

Σ

∫
d2θ g00A+A− + A+E0jD−Φj +D+ΦiEi0A− +D+ΦiEijD−Φj

+Θ(D+A− +D−A+) , (1.110)

where the indices were spit µ = (0, i). On a topologically trivial target, elimi-

nating the multiplier Θ by its equation of motion restores the original model

as it implies A± = D±Φ0.

This construction, however, allows another manipulation; namely, the elim-

ination of the fields A± rather than Θ. Substituting the equations of motion

0 = A+ + Ei0
g00
D+Φi − 1

g00
D+Θ

0 = A− +
E0j

g00
D−Φj + 1

g00
D−Θ , (1.111)

we find a dual model in the coordinates Φ̃ = (Θ,Φi)

S̃ =

∫

Σ

∫
d2θ D+Φ̃µẼµνD−Φ̃ν (1.112)

with the dual geometry

Ẽ00 =
1

g00

, Ẽ0j =
E0j

g00

, Ẽi0 = −Ei0

g00

, Ẽij = Eij −
Ei0E0j

g00

, (1.113)

or more explicitly,

g̃00 =
1

g00

, g̃0j =
b0j

g00

, b̃0j =
g0j

g00

g̃ij = gij −
gi0g0j + bi0b0j

g00

, b̃ij = bij −
gi0b0j + bi0g0j

g00

. (1.114)

The geometry of the dual model exchanges the roles of metric and the
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torsion potential mixing the direction of isometry with other directions and

exchange the compactification radius for the isometry in the well known man-

ner R → 1/R. This is the celebrated duality exchanging momentum and

winding modes for a closed string compactified on a circle.

In N = (2, 2) superspace, the constraints on the field-strengths for a chiral

isometry could be integrated by parts to give (anti)twistedchiral constraints

on the the Lagrange multipliers for the gauge multiplet V :

i(λF̃ − λ̄ ¯̃F ) = i(λD̄+D−V − λ̄D+D̄−V ) = (χ+ χ̄)V . (1.115)

The duality is therefore just a Legendre transformation in N = (2, 2) su-

perspace; starting from the mother action for, e. g. the nonlinear sigma-model

with an abelian isometry

SM =

∫

Σ

∫
d4θ K(φ̄+ φ+ V, x)− (χ+ χ̄)V , (1.116)

and the dual action is obtained by substituting the equation of motion for V

∂

∂V
K(φ̄+ φ+ V, x) = χ+ χ̄ . (1.117)

Flat space: an example

The Kähler potential for C parametrized by chirals is K = φ̄φ. Up to Kähler

transformations we can write this potential as K = 1
2
(φ̄ + φ)2 so that there

is an obvious rigid isometry δφ = iλ. The gauged models with a constrained

field-strengths is therefore

S =

∫

Σ

∫
d4θ 1

2
(φ̄+ φ+ V )2 − (χ+ χ̄)V . (1.118)

In N = (2, 2) superspace, the equation of motion for the gauge multiplet

V reads

χ+ χ̄ = φ+ φ̄+ V , (1.119)

and the dual action is therefore

S̃ = −
∫

Σ

∫
d4σ 1

2
(χ̄+ χ)2 ∼ −

∫

Σ

∫
d4σ χ̄χ (1.120)
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which is an alternative description of C.

Likewise, since the constraints on the field-strengths for a gauge multiplet

for twistedchiral isometry are (anti)chiral, the duality exchanges chirals and

twistedchirals parameterizing the direction of isometry.

1.7 d-isometries and the O(d, d,Z) group

When combined with transformations that preserve the target, the dualities

due to gauged d commuting isometries give models related by elements of

O(d, d,Z). The element acts through an embedding in O(D,D,Z) as described

in [56].

Starting from the O(D,D) metric η̂

η̂ =

(
0̂ 1̂

1̂ 0̂

)
, (1.121)

where all blocks are D × D, an element Ŷ ∈ O(D,D) which preserves this

metric satisfies

Ŷ =

(
â b̂

ĉ d̂

)
, Ŷ η̂Ŷ T = η̂ , â, b̂, ĉ, d̂ ∈ RD×D .

⇒ âT ĉ+ ĉT â = b̂T d̂+ d̂T b̂ = 1 , âT d̂+ ĉT b̂ = 0 . (1.122)

The element Ŷ ∈ O(D,D) is therefore generated by:

• b-shifts

B̂ =

(
1 b̂

0 1

)
, b̂ = −b̂T , (1.123)

• Gl(D) transformations

Ĝ =

(
â 0

0 (â−1)T

)
, âi

j ∈ Gl(D) , (1.124)

• Factorized dualities transformations which are written using a set of
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projectors P

T̂ =

(
1− P P

P 1− P

)
, P 2 = P . (1.125)

In what follows, we shall construct general elements of O(d, d,Z) using these

operations; one convenient factorization for elements of O(d, d,Z) is given by

(
0 1

1 0

)(
1 γ

0 1

)(
0 1

1 0

)(
αT 0

0 α−1

)(
1 β

0 1

)
=

(
αT αTβ

γαT α−1 + γαTβ

)

(1.126)

where (β, γ) = −(β, γ)T ∈ Zd×d and α ∈ Gl(d,Z). One can, in fact, relax the

condition α ∈ Gl(d,Z) to α ∈ Gl(d) as long as α−1 + γαTβ ∈ Zd×d.
A subgroup O(d, d,Z) ∈ O(D,D) acts on nonlinear sigma model in D di-

mensions with d < D commuting isometries along a d-torus T d in the following

way:

1. Constant b-field shifts in T d acting as

E′ = E + b . (1.127)

These are allowed as the contribution to the torsion db = 0 is trivial. b

is restricted to integer entries to respect the cycles of T d.

2. Gl(d,Z) transformations in T d acting as

E′ = âEâT , (1.128)

which are harmless field-redefinitions, provided that they are inverted

over the integers.

3. Dualities on T d. These transformations actually restrict to the nontrivial

subgroup to O(d, d,Z) ∈ O(D,D).

The action of this element on E could be conveniently expressed using an

embedding of O(d, d,Z) in O(D,D,Z)

â = diag(a, 1) , b̂ = diag(b, 0) , ĉ = diag(c, 0) , d̂ = diag(d, 1) . (1.129)

26



where the extra blocks are (D − d)× (D − d). We can write the action of an

element of O(d, d,Z) as a fractional linear transformation on E

E′ = (âE + b̂)(ĉE + d̂)−1 . (1.130)

1.8 Generalized Complex Geometry

An alternative discussion of the geometry of N = (2, 2) supersymmetric tar-

gets is carried out within the framework of generalized complex geometry

[6, 40] which is an interpolation between symplectic and complex geometry

best described by maps and operations on the direct sum T ⊕ T ∗. In what

follows we introduce some key notions of this contemporary topic and present

a manifestly O(d, d,Z) covariant description of the nonlinear sigma-model.

1.8.1 Operations on T ⊕ T ∗

An element A ∈ T ⊕ T ∗ of a D-dimensional manifold M consists of a vector

a ∈ T and a 1-form α ∈ T ∗:
A = a⊕ α (1.131)

which we frequently write simply as

A = a+ α . (1.132)

For two elements, A,B ∈ T ⊕ T ∗, there is a natural symmetric pairing

〈A,B〉 = 1
2

(iaβ + ibα) (1.133)

which is preserved by the group O(D,D), and a natural product (the Dorfman

bracket / product):

A ◦B = [a, b]⊕ (Laβ − ibdα) . (1.134)

satisfying the Leibnitz rule

A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C) (1.135)
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which is easily verified using

La = iad+dia , L[a,b] = [La,Lb]↔ i[a,b] = iadib−ibdia+diaib+iaibd . (1.136)

The antisymmetrized brackets (Courant brackets) are defined using the

Dorfman product

[A,B] = 1
2
(A ◦B −B ◦ A)

= [a, b] + Laβ − Lbα− 1
2
d(iaβ − ibα)

= A ◦B − d 〈A,B〉 . (1.137)

and satisfy the following identity

Jac(A,B,C) = dNij(A,B,C) (1.138)

where

Jac(A,B,C) = [[A,B], C] + c.p.

Nij(A,B,C) = 1
3
〈[A,B], C〉+ c.p. . (1.139)

These operations establish a Courant Algebroid which is a generalization

of a tangent bundle. First, we define a Lie Algebroid as a vector bundle L

on a manifold M with a Lie bracket [, ] : L × L → L and a map a : L → T

satisfying

a([X, Y ]) = [a(X), a(Y )] , ∀X, Y ∈ C∞(L) , f ∈ C∞(M)

[X, fY ] = f [X, Y ] + (a(X)f)Y . (1.140)

The last condition is a Leibniz condition. The tangent bundle T is thus a Lie

algebroid.

A Courant algebroid is A bundle E equipped with the following operations

1. An anchor map π : E → T .

2. A Lie bracket [, ] : E × E → E.

3. A pairing (symmetric bilinear form) 〈, 〉 : E ×E → R inducing a differ-
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ential map D : 〈Df, A〉 = π(A)f , ∀f ∈ C∞(M) , A ∈ C∞(E).

Satisfying the following conditions

1. π[A,B] = [πA, πB].

2. Jac(A,B,C) = D(Nij(A,B,C)).

3. [A, fB] = f [A,B] + (π(A)f)B − 〈A,B〉Df .

4. π ◦D = 0 that is 〈Df,Dg〉 = 0.

5. π(A) 〈B,C〉 = 〈[A,B] + D 〈A,B〉 , C〉+ 〈B, [A,C] + D 〈A,C〉〉.

where A,B,C ∈ C∞(E), f, g ∈ C∞(M) and Jac(A,B,C),Nij(A,B,C) are

defined in (1.139).

As we have already mentioned, the natural product 〈, 〉 is O(D,D) in-

variant; it is therefore interesting to investigate how the brackets transform

under (some) group elements. We follow [6] and address this using the twisted

brackets.

Elements previously identified with b-shift elements act on sections of T⊕T ∗
by twisting with a 2-form B

eBA = eB(a+ α) = a+ α + iaB . (1.141)

Note that there is a sign difference between this convention and the one em-

ployed previously as iaB = aµbµνdx
ν .

The twisted Dorfman bracket is defined by

ebA ◦ ebB = eb(A ◦H B) ⇒ A ◦H B = A ◦B + ibiaH , (1.142)

where H = db is a closed three form; the (twisted) Dorfman bracket may be

antisymmetrized to give the (twisted) Courant bracket

[A,B]H ≡ 1
2
(A◦HB−B◦HA) = [a, b]⊕

(
Laβ − Lbα− 1

2
d (iaβ − ibα) + ibiaH

)
.

(1.143)

We note

[A,B]H = A ◦H B − d 〈A,B〉 . (1.144)
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We may also introduce a metric G on T ⊕ T ∗ that is positive definite and

satisfies G2 = 1; this metric can be expressed in terms of the ordinary metric

g on T and the 2-form potential b by

〈A,GB〉 = 〈GA,B〉 ≡
〈
g−1(α + iab)⊕ ga, ebB

〉
. (1.145)

Equivalently, if we write A ∈ T ⊕ T ∗ as a column vector, then

ebA =

(
1 0

−b 1

)(
a

α

)
, (1.146)

and

G =

(
−g−1b g−1

g − bg−1b bg−1

)
=

(
1 0

b 1

)(
0 g−1

g 0

)(
1 0

−b 1

)
. (1.147)

A metric reduces the structure group O(D,D) → O(D) × O(D) which is its

maximal compact subgroup.

Ordinary complex structures reduce the structure group of a Riemann man-

ifold O(D,R)→ U(D/2,C). In a similar fashion to the treatment of complex

structures in (1.4), we define a Generalized almost complex structure as an en-

domorphism on J : T ⊕ T ∗ → T ⊕ T ∗ which is both complex and symplectic;

that is:

J2 = −1 , J∗ = −J . (1.148)

This structure is promoted to Generalized complex structure if it is Courant

integrable.

Complex and symplectic manifolds therefore admit generalized complex

structures:

Jc =

(
−J 0

0 J∗

)
, Js =

(
0 −ω−1

ω 0

)
. (1.149)

For a Kähler manifold, both Jc,s are compatible choices as it is both complex

and symplectic.

The last structure to be introduced within the context of generalized com-

plex geometry is that of a Generalized Kähler structure. As we have already

argued, the Courant algebroid supports the presence of a 2-form torsion po-

tential just as the bihermitian structure (g, b, J+, J−) arising in N = (2, 2) su-
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persymmetric sigma-models. The analogue of this is the generalized Kähler

structure (J1, J2) which are two commuting generalized complex structures

factorizing the generalized metric J1J2 = −G. Bihermitian and generalized

Kähler structures are related in [6]. We introduce modified generalized Kähler

structure which transforms covariantly under elements of O(D,D) 2.

J1,2 = 1
2

(
1

b 1

)(
J− ± J+ (J− ∓ J+)g−1

g(J− ∓ J+) g(J− ± J+)g−1

)(
1

−b 1

)
. (1.150)

Generalized Kähler geometry and the bihermitian geometry are therefore equiv-

alent.

2Note that these structure are different than those introduced in [6].
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Chapter 2

Some new results towards

O(d, d,Z) covariant formalism

The machinery of genarelized complex geometry suggests that sections of

T⊕T ∗ are O(d, d,Z) covariant. This is supported in the sigma-model approach

in the doubled formalism [62–64] and by considering hamiltonian formalism

[5, 42] where momenta are explicit. In the following, we describe unpublished

work to formulate nonlinear sigma-models in a manifestly O(d, d,Z) covari-

ant formalism using the fundamental building blocks of generalized complex

geometry.

The proposed formulation resembles known structures such as Chern Si-

mons theory, String-field theory and WZW models, and is of potential inter-

est as it may relate generalized complex geometry to representation theory
1. Another advantage of this formalism is that the symplectic structure is

not introduced by hand as in the Hamiltonian formalism but rather emerge

naturally.

An O(d, d,Z) covariant formalism may also simplify the worldsheet inves-

tigation of nongeometric backgrounds [35, 63, 65] and has also a potential to

simplify ideas such as local O(d, d,Z) transformations (e. g. [66, 67]).

1I thank J. Alm for clarifying this point and wish him well.
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2.1 O(d, d,Z) transformations of Complex Struc-

tures

The transformation properties of complex structures under T-duality have

been worked out in [57]; in this section, we generalize these results to the full

O(d, d,Z) group and express these as a fractional-linear transformation. We

first find a fractional-linear formulation for the transformation law of complex

structures under factorized duality (section 2.1.1) which allows us to act with

a general element of the group O(d, d,Z) (section 2.1.2). Starting form a

nonlinear σ-model in N = (1, 1) superspace with a D dimensional target space

S =

∫

Σ

D+D− D+φ
i(g + b)ijD−φ

j , i, j = 1, · · · , D , (2.1)

we separate d isometries and write the Lagrange-density as [56]

D+φ
µEµνD−φ

ν +D+φ
aF 1

aνD−φ
ν +D+φ

µF 2
µbD−φ

b +D+φ
aFabD−φ

b (2.2)

where µ, ν = 1, · · · , d and a, b = d+ 1, · · · , D.

Requiring that the model (2.2) admits anN = (2, 2) supersymmetry amounts

to the existence of two integrable complex structures, J±, on the target mani-

fold M that are flat with respect to the torsionfull connections Γ±± 1
2
db. The

two extra supersymmetries act as:

δεφ
i = εJ i+jD+φ

j , δηφ
i = ηJ i−jD−φ

j . (2.3)

The N = (2, 2) superspace ingredients of such model could be easily read,

given these complex structures [18–20]. Namely, we identify chiral components

with the kernel ker(J+ − J−), twisted chiral components with ker(J+ + J−),

and semichiral components from the complement to ker[J+, J−]. These three

types of multiplets are sufficient to describe any model with N = (2, 2) super-

symmetry [18].

The extra supersymmetry transformations (2.3) dictates transformation
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under two of the generators of O(d, d,Z), namely:

(
1 β

0 1

)
◦ J± = J± ,

(
αT 0

0 α−1

)
◦ J± = α−1J±α (2.4)

To find the action of an O(d, d,Z) element on J± we, therefore, need to

find only the action a factorized duality generator (1.125) and compose it to

a general element of O(d, d,Z).

2.1.1 The transformation a complex structure under

factorized duality

We pick, without loss of generality, the factorized duality with P = 1, and

generalize the results of [57] to dualization of tori rather than circles.

To dualize (2.2) we gauge (some of) its d isometries [16]D±φi → D±φi + V i
±

and choose the gauge D±φ = 0.

V µ
+EµνV

ν
− +D+φ

aF 1
aνV

ν
− + V µ

+F
2
µjD−φ

j +D+φ
aFabD−φ

b− φ̃µ(D+V
µ
− +D−V

µ
+ )

(2.5)

eliminating all the Lagrange multipliers φ̃i by their equation of motion restores

(2.2) while eliminating V i
± gives an action dualized on the corresponding circle.

Dividing the complex structures J± into blocks as we do for E in (2.2)

J± =


 Jµ±ν j2µ

±b

j1a
±ν ja±b


 (2.6)

we write the transformation properties For the first order gauged action

(2.5) under the symmetry δε:

δεφ
a = ε

(
j1a

+νV
ν

+ + ja+bD+φ
b
)

(2.7)

δεV
µ

+ = D+ε
(
Jµ+νV

ν
+ + j2µ

+bD+φ
b
)

(2.8)

δεφ̃ν = −ε
[(
Jµ+ρV

ρ
+ + j2µ

+bD+φ
b
)
Eµν +

(
j1a

+ρV
ρ

+ + ja+bD+φ
b
)
F 1
aν

]
. (2.9)
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Substituting the equation of motion for V−

V ν
+ = −

(
D+φ

aF 1
aρ +D+φ̃ρ

)
Eρν (2.10)

we write the transformation laws for φ, φ̃

δεφ = ε
(
j+D+φ− j1

+(ET )−1
(

(F 1)TD+φ+D+φ̃
))

(2.11)

δεφ̃ = −ε
[
ET
(
−J+(ET )−1

(
(F 1)TD+φ+D+φ̃

)
+ j2

+D+φ
)

(2.12)

+ (F 1)T
(
−j1

+(ET )−1
(

(F 1)TD+φ+D+φ̃
)

+ j+D+φ
)]

(2.13)

and obtain the dualized complex structure

J̃+ =

(
J̃+ J̃+(F 1)T − (ET j2

+ + (F 1)T j+)

−j1
+(ET )−1 j+ − j1

+(ET )−1(F 1)T

)
(2.14)

where J̃+ = (ETJ+ + (F 1)T j1
+)(ET )−1.

To relate the complex structure J̃+ of (2.14) to the original complex struc-

ture J+ through a fractional linear transformation we introduce the matrices

Ξ̂D×D =

(
1d×d 0

0 0

)
, Ψ̂D×D =

(
0d×d 0

0 1

)
, (2.15)

and write the fractional linear transformation:

J̃+ = (Ξ̂ET − Ψ̂)J+(Ξ̂ET − Ψ̂)−1 . (2.16)

A similar treatment of the complex structure J− gives the transformation
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laws for the first-order action (2.5) under δη:

δηφ
a = η

(
j1a
−νV

ν
− + ja−bD−φ

b
)

(2.17)

δηV
µ
− = D−η

(
Jµ−νV

ν
− + j2µ

−bD−φ
b
)

(2.18)

δηφ̃µ = η
[
Eµν

(
Jν−ρV

ρ
− + j2ν

−bD−φ
b
)

+ F 2
νa

(
j1a
−ρV

ρ
− + ja−bD−φ

b
)]

.(2.19)

Using the equations of motion for V− we find the transformed complex struc-

ture J̃−:

J̃− =

(
J̃− (Ej2

− + F 2j−)− J̃−F 2

j1
−E
−1 j− − j1

−E
−1F 2

)
, (2.20)

where J̃− = (EJ− + F 2j1
−)E−1. As in (2.16) we can write

J̃− = (Ξ̂E + Ψ̂)J−(Ξ̂E + Ψ̂)−1 (2.21)

2.1.2 The transformation of a complex structure under

an element of O(d, d,Z)

Having described the action of a factorized duality on the complex structures,

we follow that construction of an O(d, d,Z) element (1.126) to identify the

action of such an element on J±.

Starting from E, J+, and J−, we first shift with β using its embedding in

ZD×D:

E1 = E + β̂ , J1
± = J± , β̂ =

(
β 0

0 0

)
. (2.22)

where

{E1, J1
±} =

(
1 β

0 1

)
◦ {E, J±} (2.23)

etc next, we act with a Gl(d) element

E2 = α̂T (E0 + β̂)α̂ , J2
± = α̂−1J0

±α̂ , α̂ =

(
α 0

0 1

)
. (2.24)
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The first duality gives

E3 = (Ψ̂α̂T (E + β̂)α̂ + Ξ̂)(Ξ̂α̂T (E + β̂)α̂ + Ψ̂)−1

(2.25)

J3
+ = (Ξ̂α̂T (E + β̂)T α̂− Ψ̂)α̂−1

︸ ︷︷ ︸
λ3

+

J+(λ3
+)−1

(2.26)

J3
− = (Ξ̂α̂T (E + β̂) α̂ + Ψ̂)α̂−1

︸ ︷︷ ︸
λ3
−

J−(λ3
−)−1 (2.27)

acting with a another shift, where γ̂ is embedded just as β̂:

E4 = (Ψ̂α̂T (E + β̂)α̂ + Ξ̂)(Ξ̂α̂T (E + β̂)α̂ + Ψ̂)−1 + γ̂ , J4
± = J3

± . (2.28)

Another T-duality gives the final expressions for J±:

J5
+ =

[
Ξ̂
(

(Ψ̂α̂T (E + β̂)α̂ + Ξ̂)(Ξ̂α̂T (E + β̂)α̂ + Ψ̂)−1 + γ̂
)T
− Ψ̂

]
λ3

+

︸ ︷︷ ︸
λ5

+

J+(λ5
+)−1 ,

(2.29)

J5
− =

[
Ξ̂
(

(Ψ̂α̂T (E + β̂)α̂ + Ξ̂)(Ξ̂α̂T (E + β̂)α̂ + Ψ̂)−1 + γ̂
)

+ Ψ̂
]
λ3
−

︸ ︷︷ ︸
λ5
−

J−(λ5
−)−1 ,(2.30)

Simplifying λ5
±, we write the action of a general O(d, d,Z) element on the

complex structures as a fractional linear transformation

J̃+ = (ĉET − d̂)J+(ĉET − d̂)−1 ,

(2.31)

J̃− = (ĉE + d̂)J−(ĉE + d̂)−1 . (2.32)

This implies that EJ− (ETJ+) transforms as E (ET ), where the later follows
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from the constraints (1.122) on g ∈ O(d, d,Z):

ẼT = (ET ĉT + d̂T )−1(ET âT + d̂T )(ĉET − d̂)(ĉET − d̂)−1 = −(âET − b̂)(ĉET − d̂)−1 .

(2.33)

2.2 Nonlinear sigma-models on T ⊕ T ∗

Consider a nonlinear sigma-model for maps φ(σ, σ̄) from a (compact) world-

sheet Σ with complex coordinates σ to some target space M with a metric g

and a local two-form potential b:

Sφ =

∫

Σ

∂φi Eij ∂̄φ
j =

∫

Σ

∂φi (gij + bij) ∂̄φ
j , E ≡ g + b , (2.34)

where g,b are pulled back from M to Σ with the map φ. As shown in [20]

(up to trivial changes of notation), this can be written in a more global way

in terms of a closed three-form H = db (locally the exterior derivative of b)

by extending the map φ to a map φ̂ : Σ × [0, 1] → M such that for t = 0, φ̂

maps to a single point on Σ, and for t = 1, φ̂(σ, σ̄, 1) = φ(σ, σ̄). Then

Sφ =

∫

Σ

∂φi gij ∂̄φ
j +

∫ 1

0

dt

∫

Σ

Hijk ∂φ̂
i∂̄φ̂j

˙̂
φk , (2.35)

where S depends in the usual way on the choice of the extension φ̂: the differ-

ence of two extensions φ̂1,2 gives a compact three-fold, namely the suspension

of Σ, and S1 − S2 is just the integral of the pullback of H to this 3-fold. We

call the first term in (2.35) the kinetic term and the second term the WZ-term.

We can write this in terms of the natural objects of generalized geometry

as follows: we introduce

ξ = ∂φi∂i ⊕ Sidφi , ξ̄ = ∂̄φi∂i ⊕ S̄idφi , ξt =
˙̂
φi∂i ⊕ Ŝtidφi , (2.36)

where Si, S̄i are maps from Σ to T ∗ at the point φ(σ, σ̄).
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2.2.1 The generalized kinetic term

Consider the natural object

SG =

∫

Σ

〈
ξ,Gξ̄

〉
≡ 1

2

∫

Σ

∂φi[(g−bg−1b)ij ∂̄φ
j+(bg−1)i

jS̄j]+Si[g
ijS̄j−(g−1b)ij ∂̄φ

j] ,

(2.37)

where as usual gij are the components of g−1. This can be simplified:

SG = 1
2

∫

Σ

∂φi gij ∂̄φ
j + (Si + ∂φmbmi)g

ij(S̄j − bjk∂̄φ
k) (2.38)

2.2.2 The generalized WZ-term

The tangent space component of the sections ξ, ξ̄, and ξt are, by chain rule,

pulled back derivatives; e. g.

π(ξ)A = ∂φi∂iA = ∂A . (2.39)

This allows us to calculate the Lie derivatives:

[∂φi∂i, ∂̄φ
j∂j] = [∂, ∂̄]φi∂i = 0

(2.40)

L∂φi∂iS̄jdφ
j =

(
∂S̄j + (∂j∂φ

i)S̄i
)
dφj

(2.41)

L∂̄φi∂iSjdφ
j =

(
∂̄Sj + (∂j ∂̄φ

i)Si
)
dφj (2.42)

and the Courant bracket

[ξ, ξ̄] =
(
∂S̄j + (∂j∂φ

i)S̄i − ∂̄Sj − (∂j ∂̄φ
i)Si − 1

2
∂j(∂φ

iS̄i − ∂̄φiSi)
)
dφj ∈ T ∗ .

(2.43)

Pairing the bracket [ξ, ξ̄] with the section ξt
2 gives, using the pullback

2It is important to note that hitherto, the maps Ŝti have played no role in the generalized
WZ-term (2.45) since the Courant bracket (2.43) has no tangent space component.
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˙̂
φi∂i = d

dt
, total ∂, ∂̄ and d

dt
derivatives:

SWZ = −2

∫ 1

0

dt

∫

Σ

〈
ξt, [ξ, ξ̄]

〉

(2.44)

= −
∫ 1

0

dt

∫

Σ

(
∂(

˙̂
φiS̄i)− ∂̄(

˙̂
φiSi)− 1

2
d
dt

(∂φ̂iS̄i − ∂̄φ̂iSi)
)
. (2.45)

Combining the kinetic and the WZ-terms we write the generalized nonlin-

ear sigma-model

SG + SWZ =

∫

Σ

〈
ξ,Gξ̄

〉
− 2

∫ 1

0

dt
〈
ξt, [ξ, ξ̄]

〉
(2.46)

=

∫

Σ

∂φiEij ∂̄φ
j + 1

2
(Si + ∂φkEki)g

ij(S̄j − Ejl∂̄φ
l) .

Integrating out the fields S and S̄ we recover the original nonlinear sigma-

model (2.34).

2.2.3 Field-redefinitions and frames for the action

In the WZW-like formulation (2.46) the WZ term introduces a Liouville-like

piece (2.45) while all the geometric data is encoded in the kinetic term (2.37)

through the generalized metric G.

It could be seen from (2.46) that any field-redefinition of the auxiliaries Si

or S̄i would preserve the on-shell action (2.34). As we now show, some of these

redefinitions modify the form of (2.46) so that it is still expressible in terms

of familiar operations in T ⊕ T ∗ and reshuffle the geometric data of the target

space (g, b) between the kinetic and the WZ-terms.

2.2.4 The 0-frame

The natural pairing on T ⊕ T ∗ is invariant under b-transformations generated

by a 2-form ebA = a+ α + iab

〈
ebA, ebC

〉
= 〈A,B〉+ 1

2
(iaicb + iciab) = 〈A,B〉 , ∀b ∈ ∧2T ∗ . (2.47)
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Under this transformation the Courant bracket undergoes a twisting with the

3-form db:

[ebA, ebC] = eb[A,C]db . (2.48)

closed 2-forms therefore generate a symmetry of the off-shell action provided

that the generalized metric transforms by conjugation G → ebGe−b. This is

the obvious symmetry of the on shell action

δb = λ , λ ∈ ∧2T ∗, dλ = 0 . (2.49)

Starting from the original WZW formulation (2.46), that will henceforth

referred to as the Courant frame, we define the 0-frame for the sections

ξ0 = ebξ , ξ̄0 = ebξ̄ (2.50)

and the b-conjugated metric

G0 =

(
0 g−1

g 0

)
= ebGe−b . (2.51)

Writing the Lagrange density in terms of the sections ξ0 we find

L =
〈
ξ0, G0ξ̄0

〉
− 2

∫ 1

0

dt
〈
ξt, [ξ

0, ξ̄0]−db
〉
, (2.52)

where the torsion potential is due to the WZ-term. This field redefinition

symmetrizes the equations of motion for Si; whereas previously involved both

E and ET ,

Si + ETij∂φ
j = S̄i − Eij ∂̄φ

j = 0 (2.53)

now the equations of motion for S0
i and S̄0

i depend only on the metric g:

S0
i + gij∂φ

j = S̄0
i − gij ∂̄φj = 0 . (2.54)

41



2.2.5 The g-frame

Another interesting symmetry of the natural pairing involves a symmetric

map:

egA = a+ α + g(a)→
〈
egA, e−gC

〉
= 〈A,C〉 , g : T → T ∗ . (2.55)

To find its effect on the WZ-term we pull ∂, ∂̄ and d
dt

back to the worldsheet

and calculate

2
〈
ξt, [g(∂φ), ξ̄]

〉
= −∂̄(gµν∂φ

µφ̇ν) + 1
2
d
dt

(∂φµgµν ∂̄φ
ν)

(2.56)

−2
〈
ξt, [ξ, g(∂̄φ)]

〉
= −∂(gµν ∂̄φ

µφ̇ν) + 1
2
d
dt

(∂φµgµν ∂̄φ
ν) , (2.57)

so up to total worldsheet derivatives

〈
ξt, [e

gξ, e−gξ̄]
〉

=
〈
ξt, [ξ, ξ̄]

〉
+
〈
ξt, [g(∂φ), ξ̄]

〉
−
〈
ξt, [ξ, g(∂̄φ)]

〉

(2.58)

=
〈
ξt, [ξ, ξ̄]

〉
+ 1

2
d
dt

(∂φµgµν ∂̄φ
ν) . (2.59)

This symmetry does not result in a simple transformation of the Courant

brackets as we find for the b-transform, but gives a tractable shift for the

whole WZ term.

Introducing the g-frame sections

ξg = egξ0 , ξ̄g = e−g ξ̄0 (2.60)

and the conjugated generalized metric Gg = e−gG0eg we write

L =
〈
ξg, Gg ξ̄g

〉
− 2

∫ 1

0

dt
〈
ξt, [ξ

g, ξ̄g]−db − d(∂φg∂̄φ)
〉

= ∂φE∂̄φ+ 1
2
Sgg−1S̄g .

(2.61)

Writing the kinetic term explicitly

〈
ξg, Gg ξ̄g

〉
= 1

2

(
Sgg−1S̄g − ∂φS̄g + ∂̄φSg

)
, (2.62)

we find that now the Liouville term cancels between the the kinetic and the
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WZ-terms and all the geometric data for the on-shell action lies in the WZ-

term.

2.2.6 Σ-frames

So far, only symmetries of the natural pairing were considered as operations

relating different frames. It is easy to see that under sign change for the

cotangent piece

ξ → Σξ , Σ =

(
1 0

0 −1

)
(2.63)

the basic operations transform as

〈ΣA,ΣB〉 = −〈A,B〉 , [ΣA,ΣB]H = Σ[A,B]−H . (2.64)

We can therefore define the CourantΣ, 0Σ, and gΣ-frames by acting with Σ

on the corresponding sections and changing the overall sign of the action, the

twisting and the shift.

We conclude with table (2.1) that summarizes all frames that were intro-

duced:

2.2.7 O(d, d,Z) transformations

In the previous section b(g)-transformations were reciprocated by twisting

(shift) of the Courant brackets and conjugation of the generalized metric so

that the transformed action in T ⊕ T ∗ differed by field-redefinitions. A key

insight in writing these field-redefinitions in the WZW-like formulation is ap-

plying symmetries of the natural pairing to the sections (ξ, ξ̄) and tracking

down their action on the Courant brackets in the WZ-term.

In this section we study O(D,D) transformations, which are the full struc-

ture group of T ⊕ T ∗. We find that, given an invariant d-torus T d ⊆ M in

the target space, we may choose the auxiliaries Ŝt such that the WZ-term is

invariant under the subgroup O(d, d,Z). We then go to the generalized sigma-

model where the action of these generators could be associated with standard

operations in target space, namely, change of coordinates, constant shifts of

the torsion potential and T-dualities along isometries.
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Table 2.1: Frames for the off shell sigma-model on T ⊕ T ∗

Frame Sections Generalized Metric

Action

Courant ξC ξ̄C GC = e−bG0eb

L =
〈
ξC , GC ξ̄C

〉
− 2

∫ 1

0
dt
〈
ξt, [ξ

C , ξ̄C ]
〉

CourantΣ ξCΣ = ΣξC ξ̄CΣ = Σξ̄C GC = Σe−bG0ebΣ

L = −
〈
ξCΣ , GCΣ ξ̄CΣ

〉
+ 2

∫ 1

0
dt
〈
ξt, [ξ

CΣ , ξ̄CΣ ]
〉

0-frame ξ0 = ebξC ξ̄0 = ebξ̄C G0

L =
〈
ξ0, G0ξ̄0

〉
− 2

∫ 1

0
dt
〈
ξt, [ξ

0, ξ̄0]−db
〉

0Σ-frame ξ0Σ = Σξ0 = e−bξCΣ ξ̄0Σ = Σξ̄0 = e−bξ̄CΣ G0Σ = ΣG0Σ = −G0

L = −
〈
ξ0Σ , G0Σ ξ̄0Σ

〉
+ 2

∫ 1

0
dt
〈
ξt, [ξ

0Σ , ξ̄0Σ ]db
〉

g-frame ξg = egξ0 ξ̄g = e−g ξ̄0 Gg = e−gG0eg

L =
〈
ξg, Gg ξ̄g

〉
− 2

∫ 1

0
dt
〈
ξt, [ξ

g, ξ̄g]−db − d(∂φg∂̄φ)
〉

gΣ-frame ξgΣ = Σξg = e−gξ0Σ ξ̄gΣ = Σξ̄g = eg ξ̄0Σ GgΣ = ΣGgΣ

L = −
〈
ξgΣ , GgΣ ξ̄gΣ

〉
+ 2

∫ 1

0
dt
〈
ξt, [ξ

gΣ , ξ̄gΣ ]db + d(∂φg∂̄φ)
〉
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Lastly, we match elements of O(d, d,Z) which act by conjugation on the

generalized metric with elements of O(d, d,Z) that act on E with a fractional-

linear transformation.

2.2.8 (Partial) Invariance of the WZ-term in the Courant

frame

Both b-shifts and Gl(D) transformations do not introduce contributions to

tangent piece of the Courant bracket so invariance of the WZ-term with respect

to these requires

[B̂ξ, B̂ξ̄] = B̂[ξ, ξ̄] , [Ĝξ, Ĝξ̄] = Ĝ[ξ, ξ̄] , (2.65)

which is compensated for by ξt transformation. This is shown in propositions

3.23 (b-shifts) and 3.24 (Gl(D) transformations) in [6].

For the factorized duality, e. g. T1, given an isometry along the φ1 direction,

∂1∂φ
i = ∂1Si = 0, we calculate, using the pullback of ∂ to the worldsheet

[T̂1ξ, T̂1ξ̄] = [S1∂1 + ∂φa∂a + ∂φ1dφ1 + Sadφ
a, S̄1∂1 + ∂̄φa∂a + ∂̄φ1dφ1 + S̄adφ

a]

(2.66)

= (∂S̄1 − ∂̄S1)∂1 − 1
2
∂i(∂φ

jS̄j − ∂̄φjSj) (2.67)

which differs from the bracket [ξ, ξ̄] by a tangent piece. Setting Ŝti = 0 for all

isometric directions cancels this contribution

〈
ξt, [T̂1ξ, T̂1ξ̄]

〉
=
〈
ξt, [ξ, ξ̄]

〉
=
〈
T̂1ξt, T̂1[ξ, ξ̄]

〉
. (2.68)

At first glance it appears as if the factorized duality transformations along

an isometry are on different footing than B and G as they do not transform

ξt, however, since [ξ, ξ̄] has no tangent space component B transformations on

ξt are only formal.

The invariance with respect to d of the factorized duality generators and

the periods of T d restricts the nontrivial subgroup to O(d, d,Z).
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2.2.9 The transformed generalized sigma-model

The action of O(d, d,Z) elements in T⊕T ∗ changes the geometry of the sigma-

model obtained after integrating out the auxiliaries Si and S̄i. We study the

geometry of the new sigma-models, again, in the Courant frame where due

to the O(d, d,Z) invariance of the WZ-term all transformations are due to

conjugation of the generalized metric G.

A related result was given in [58], where it was argued, though not within

the context and framework of generalized complex geometry, that G+1 trans-

form linearly under those O(d, d,Z) transformations.

• b-transformations: Starting from the generalized metric (1.147) we con-

jugate G

B̂GB̂−1 =

(
1

b + b̂ 1

)(
g−1

g

)(
1

−(b + b̂) 1

)
(2.69)

B̂ therefore shifts the torsion potential by constant δb = b̂.

• Gl(D) transformations: These transformations do not mix tangent and

cotangent pieces and we can, therefore, study their action after integrat-

ing out the auxiliaries. The appropriate conjugation acts as

E→ âEâT (2.70)

which rotates the fields φi.

• Factorized dualities: In the kinetic term, the factorized duality T̂1 swaps

∂φ1 ↔ S1. We can therefore write, using the invariance of the WZ-

term in the Courant frame and after integrating out the 2(D− 1) of the
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auxiliaries Sa and S̄a

(〈
ξ, T̂1GT̂1ξ̄

〉
− 2

∫ 1

0

dt
〈
ξt, [ξ, ξ̄]

〉)∣∣∣∣
Sa,S̄a

=

(2.71)

S1g11S̄1 + S1E1b∂̄φ
b + ∂φaEa1S̄1 + ∂φaEab∂̄φ

b

(2.72)

1
2
(∂φ1 + S1g11 + ∂φaEa1)g11(∂̄φ1 − g11S̄1 − E1b∂̄φ

b)

(2.73)

+∂φ1S̄1 − ∂̄φ1S1 . (2.74)

This expression differs from the ordinary mother action for gauged isome-

try along φ1 [16, 19] by a term proportional to the equations of motion for

S1. Integrating the pair S1 and S̄1 therefore gives a sigma-model whose

target space geometry relates to the original geometry by T-duality along

the φ1 direction.

2.2.10 Linear and fractional-linear transformations

In [56] it was shown that elements of the subgroup O(d, d,Z) act on the metric

and the torsion potential through fractional linear transformations

Ŷ ◦ E = (âE + b̂)(ĉE + d̂)−1 = Ẽ . (2.75)

We now identify these transformations with similarity transformations of

the generalized metric using the results of the previous section. An alternative

derivation of these results is given in appendix A.

• b-shifts: An elements that shifts the torsion potential through fractional

linear transformations is of the form

(
1 b̂

0 1

)
◦ E = E + b̂ . (2.76)

To act linearly on the generalized metric generating the same shift we

identify this element with η̂B̂η̂.
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• Gl(D) transformations: An element that rotates E through fractional

linear transformations has the form

(
â 0

0 (â−1)T

)
◦ E = âEâT . (2.77)

To obtain this transformation though similarity of G we identify, just as

for B̂, this element with η̂Ĝη̂.

• Factorized duality: The element T̂1 gives a T-dual action when acting on

E (as a fractional linear) or the generalized metric G (through similarity

transformation).

We therefore identify the action of an O(d, d,Z) element (2.75) on G

Ŷ ◦G = η̂Ŷ η̂GŶ T (2.78)

2.2.11 Lift to N = (1, 1) superspace

Insofar, our discussion was limited to Bosonic nonlinear sigma-models; it is,

however, straightforward to endow these models with N = (1, 1) supersymme-

try by formulating them in N = (1, 1) superspace. This requires the promotion

of all fields to N = (1, 1) superfields, all derivatives to superderivatives D±,

and the grading of the algebraic operations on T ⊕ T ∗.
We formulate our model in N = (1, 1) superspace in terms of Fermionic

sections ξ± = D±φi∂i ⊕ S±idφi ∈ T ⊕ T ∗ and the Bosonic section ξt

SN=(1,1) =

∫

Σ

∫
D+D−

(
〈ξ+, Gξ−〉 − 2

∫ 1

0

dt 〈ξt, [ξ+, ξ−]〉
)
, (2.79)

where the operations are graded

〈A,B〉 = 1
2

(
iaβ + (−)F (A)F (B)ibα

)

(2.80)

[A,B] = [a, b}+ Laβ − (−)F (A)F (B)Lbα− 1
2
d
(
iaβ − (−)F (A)F (B)ibα

)
.(2.81)

A lift to N = (2, 2) is a more involved and gives rise to a generalized Kähler

structure.
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Chapter 3

Gauging and dualities along

generalized isometries

In a discussion limited to Kähler submanifolds, we encountered a consistent

picture where isometries that mix (anti)chirals are gauged using gauge field

with (anti)twistedchiral field-strengths and is therefore dualized to (anti) twist-

edchirals. Investigation of dualities on Kähler manifolds were carried out using

these methods, e. g. to derive the physics proof for mirror symmetry [32, 36].

This picture is, however, incomplete as bihermitian targets are potentially

torsional and should therefore allow also semichiral superfields and isometries

mixing chirals and twistedchiral superfields. Analyzing the constraints on

these superfields immediately leads to the postulate [14] that these are T-

dual, as the constraint on, e. g. a left semichiral is the sum of a chiral and a

twistedchiral

D̄+XL = D̄+(φ+ χ) = 0 . (3.1)

In [26] and [27] we have demonstrated that this is indeed the case by con-

structing new gauge multiplets that are suited to gauging such isometries and

carrying out the duality transformation. Similar work was introduced simul-

taneously in [28] where features of the multiplet gauging semichiral isometries

were studied using a constraint-based approach.

The new multiplets are larger than those used to gauge (twisted)chiral

isometries and contain two more N = (1, 1) scalar multiplets; this is to provide

enough (3) diffeomorphisms which are required as the smallest number of

semichirals charting a patch is 4 [18].
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The set of field-strengths for the new multiplets is therefore significantly

larger than that previously encountered and consistes, in N = (2, 2) super-

space, of an (anti)chiral and an (anti)twistedchiral field-strengths (for the mul-

tiplet guging semichiral isometries) and a set of fermionic semichirals for the

multiplet gauging an isometry mixing (twisted)chirals. The latter is therefore

dubbed the Large Vector Multiplet (LVM) as it contains auxiliary superfields.

After introducing the multiplets in N = (2, 2) superspace we study their

reduction to N = (1, 1) superspace, matter couplings and the action for the

semichiral multiplet.
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We introduce two new N = (2, 2) vector multiplets that couple naturally to

generalized Kähler geometries. We describe their kinetic actions as well as

their matter couplings both in N=(2, 2) and N=(1, 1) superspace.
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1 Introduction

Generalized Kähler geometry has aroused considerable interest both among

string theorists and mathematicians [1, 2, 55]. Recently, a number of groups

have tried to construct quotients [3, 4, 5, 6]; however, it is unclear how general

or useful the various proposals are. Experience has shown that supersymmet-

ric σ-models are often a very helpful guide to finding the correct geometric

concepts and framework for quotient constructions [7, 8]. In this paper, we

take the first step in this direction; further results will be presented in [9].

The basic inspiration for our work is the interesting duality found in [10, 11].

As was shown in [8, 12], T-dualities arise when one gauges an isometry, and

then constrains the field-strength of the corresponding gauge multiplet to van-

ish. Here we address the question: what are the gauge multiplets correspond-

ing to the duality introduced in [10, 11]?

In section 2, we analyze the types of isometries that arise on generalized

Kähler geometries which are suitable for gauging, and describe the correspond-

ing multiplets in N = (2, 2) superspace. In addition to the usual multiplets

with chiral or twisted chiral gauge parameters, we find two new multiplets: one

with semichiral gauge parameters, which we call the semichiral gauge multi-

plet, and one with a pair of gauge parameters, one chiral and one twisted

chiral; the last has more gauge-invariant components than other multiplets,

and hence we call it the large vector multiplet.

In section 3, we describe the N =(1, 1) superspace content of these mulit-

plets; this exposes their physical content. We describe both multiplets and

their couplings to matter, and discuss possible gauge actions for them. The

component content of the various N=(1, 1) multiplets that arise is well known

and can be found in [13].

Throughout this paper we follow the conventions of [14].

2 Generalized Kähler geometry: N = (2, 2) su-

perspace

Generalized Kähler geometry (GKG) arises naturally as the target space of

N =(2, 2) supersymmetric σ-models. As shown in [14], such σ-models always

admit a local description in N = (2, 2) superspace in terms of complex chiral
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superfields φ, twisted chiral superfields χ and semichiral superfields XL,XR

[15]. These models have also been considered in N=(1, 1) superspace [16, 17].

These geometries may admit a variety of holomorphic isometries that can

be gauged by different kinds of vector multiplets. We now itemize the basic

types of isometries.

2.1 Isometries

The simplest isometries act on purely Kähler submanifolds of the generalized

Kähler geometry, that is only on the chiral superfields φ or the twisted chiral

superfields χ; for a single U(1) isometry away from a fixed point, we may

choose coordinates so that the Killing vectors take the form:

kφ = i(∂φ − ∂φ̄) , kχ = i(∂χ − ∂χ̄) . (2.1)

In [10, 11], new isometries that mix chiral and twisted chiral superfields or

act on semichiral superfields were discovered; we may take them to act as

kφχ = i(∂φ − ∂φ̄ − ∂χ + ∂χ̄) , (2.2)

kLR = i(∂L − ∂L̄ − ∂R + ∂R̄) , (2.3)

where ∂L = ∂
∂XL

, etc. One might imagine more general isometries that act

along an arbitrary vector field; however, compatibility with the constraints on

the superfields (chiral and twisted chiral superfields are automatically semichi-

ral but not vice-versa) allows us to restrict to the cases above; in particular, if

the vector field has a component along kφ, kχ or kφχ, we can (locally) redefine

X to eliminate any component along kLR.

A general Lagrange density in N=(2, 2) superspace has the form:

K = K(φ, φ̄, χ, χ̄,XL, X̄L,XR, X̄R) (2.4)

For the four isometries listed above the corresponding invariant Lagrange den-
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sities are1:

kφK(φ+ φ̄, χ, χ̄,XL, X̄L,XR, X̄R) = 0 (2.5)

kχK(φ, φ̄, χ+ χ̄,XL, X̄L,XR, X̄R) = 0 (2.6)

kφχK(φ+ φ̄, χ+ χ̄, i(φ− φ̄+ χ− χ̄),XL, X̄L,XR, X̄R) = 0 (2.7)

kLRK(φ, φ̄, χ, χ̄,XL + X̄L,XR + X̄R, i(XL − X̄L + XR − X̄R)) = 0(2.8)

In general, the isometries act on the coordinates with some constant pa-

rameter λ:

δz = [λk, z] , (2.9)

where z is any of the coordinates φ, χ,XL,XR, etc.

2.2 Gauging and Vector Multiplets

We now promote the isometries to local gauge symmetries: the constant trans-

formation parameter λ of (2.9) becomes a local parameter Λ that obeys the

appropriate constraints.

δgφ = iΛ ⇒ D̄±Λ = 0

δgφ̄ = −iΛ̄ ⇒ D±Λ̄ = 0

δgχ = iΛ̃ ⇒ D̄+Λ̃ = D−Λ̃ = 0

δgχ̄ = −i ¯̃Λ ⇒ D+
¯̃Λ = D̄− ¯̃Λ = 0

δgXL = iΛL ⇒ D̄+ΛL = 0

δgXR = iΛR ⇒ D̄−ΛR = 0

δgX̄L = −iΛ̄L ⇒ D+Λ̄L = 0

δgX̄R = −iΛR ⇒ D−Λ̄R = 0 . (2.10)

To ensure the invariance of the Lagrange densities (2.5-2.8) under the local

transformations (2.10), we introduce the appropriate vector multiplets. For

the isometries (2.5,2.6) these give the well known transformation properties

1Generally, isometries may leave the Lagrange density invariant only up to a (general-
ized) Kähler transformation [19, 14], but as our interest here is the structure of the vector
multiplet, we are free to choose the simplest situation.
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for the usual (un)twisted vector multiplets:

δgV
φ = i(Λ̄− Λ) ⇒ δg(φ+ φ̄+ V φ) = 0

δgV
χ = i( ¯̃Λ− Λ̃) ⇒ δg(χ+ χ̄+ V χ) = 0 , (2.11)

whereas for generalized Kähler transformations we need to add triplets of

vector multiplets.

For the the semichiral isometry kLR, we introduce the vector multiplets:

δgVL = i(Λ̄L − ΛL) ⇒ δg(XL + X̄L + VL) = 0

δgVR = i(Λ̄R − ΛR) ⇒ δg(XR + X̄R + VR) = 0

δgV′ = ΛL + Λ̄L + ΛR + Λ̄R ⇒ δg(i(XL − X̄L + XR − X̄R) + V′) = 0 .(2.12)

We refer to this multiplet as the semichiral vector multiplet.

For the kφχ isometry we introduce the vector multiplets

δgV
φ = i(Λ̄− Λ) ⇒ δg(φ+ φ̄+ V φ) = 0

δgV
χ = i( ¯̃Λ− Λ̃) ⇒ δg(χ+ χ̄+ V χ) = 0

δgV
′ = Λ + Λ̄ + Λ̃ + ¯̃Λ ⇒ δg(i(φ− φ̄+ χ− χ̄) + V ′) = 0 , (2.13)

and refer to this multiplet as the large vector multiplet due to the large number

of gauge-invariant components that comprise it.

2.3 N=(2, 2) field-strengths

We now construct the N=(2, 2) gauge invariant field-strengths for the various

multiplets introduced above.

2.3.1 The known field-strengths

The field-strengths for the usual vector multiplets are well known:

W̃ = iD−D̄+V
φ , ¯̃W = i D̄−D+V

φ ,

W = i D̄−D̄+V
χ , W̄ = iD−D+V

χ . (2.14)

Note that W̃ , the field-strength for the chiral isometry is twisted chiral whereas

W , the field-strength for the twisted chiral isometry, is chiral.
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2.3.2 Semichiral field-strengths

To find the gauge-invariant field-strengths for the vector multiplet that gauges

the semichiral isometry it is useful to introduce the complex combinations:

V =
1

2
(V′ + i(VL + VR)) ⇒ δgV = ΛL + ΛR ,

Ṽ =
1

2
(V′ + i(VL − VR)) ⇒ δgṼ = ΛL + Λ̄R . (2.15)

Then the following complex field-strengths are gauge invariant:

F = D̄+D̄−V , F̄ = −D+D−V̄ ,

F̃ = D̄+D−Ṽ , ¯̃F = −D+D̄− ¯̃V , (2.16)

where F is chiral and F̃ is twisted chiral.

2.3.3 Large Vector Multiplet field-strengths

As above it is useful to introduce the complex potentials:

V =
1

2
[V ′ + i(V φ + V χ)] ⇒ δgV = Λ + Λ̃ ,

Ṽ =
1

2
[V ′ + i(V φ − V χ)] ⇒ δgṼ = Λ + ¯̃Λ . (2.17)

Because (Λ̃)Λ are (twisted)chiral respectively, the following complex spinor

field-strengths are gauge invariant:

G+ = D̄+V , Ḡ+ = D+V̄ ,

G− = D̄−Ṽ , Ḡ− = D− ¯̃V . (2.18)

The higher dimension field-strengths can all be constructed from these

spinor field-strengths:

W = −iD̄+D̄−V χ = D̄+G− + D̄−G+

W̄ = −iD+D−V χ = −(D+Ḡ− + D−Ḡ+)

W̃ = −iD+D̄−V φ = D̄+Ḡ− + D−G+

¯̃W = −iD̄+D−V χ = −(D+G− + D̄−Ḡ+)

B = −D̄+D̄−(V ′ + iV φ) = D̄−G+ − D̄+G−
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B̄ = D+D−(V ′ − iV φ) = −(D−Ḡ+ − D+Ḡ−)

B̃ = −D+D̄−(V ′ − iV χ) = D−G+ − D̄+Ḡ−
¯̃B = D̄+D−(V ′ + iV χ) = −(D̄−Ḡ+ − D+G−) ; (2.19)

the chirality properties of these field-strengths are summarized below:

Field-strength Property

W,B chiral

W̄ , B̄ anti-chiral

W̃ , B̃ twisted chiral
¯̃W, ¯̃B anti-twisted chiral

(2.20)

3 Gauge multiplets in N=(1, 1) superspace

To reveal the physical content of the gauge multiplets, we could go to compo-

nents, but it is simpler and more informative to go to N = (1, 1) superspace.

We expect to find spinor gauge connections and unconstrained superfields. As

mentioned in the introduction, the component content of various N = (1, 1)

multiplets can be found in [13].

The procedure for going to N = (1, 1) components is well-known; for a

convenient review, see [14]. We write the N = (2, 2) derivatives D± and their

complex conjugates D̄± in terms of real N = (1, 1) derivatives D± and the

generators Q± of the nonmanifest supersymmetries,

D± =
1

2
(D± − iQ±) , D̄± =

1

2
(D± + iQ±) , (3.1)

andN=(1, 1) components of an unconstrained superfield Ψ as Ψ| = φ, Q±Ψ| =
ψ±, and Q+Q−Ψ| = F .

3.1 The semichiral vector multiplet

We first identify the N=(1, 1) components of the semichiral vector multiplet,

and then describe various couplings to matter.
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3.1.1 N=(1, 1) components of the gauge multiplet

We can find all the N = (1, 1) components of the semichiral gauge multiplet

from the field strengths (2.16) except for the spinor connections Γ±. The

only linear combination of the gauge parameters ΛR,ΛL that does not enter

algebraically in (2.12) is (ΛL+Λ̄L−ΛR− Λ̄R), and hence the connections must

transform as:

δgΓ± =
1

4
D±(ΛL + Λ̄L − ΛR − Λ̄R)

∣∣∣∣ . (3.2)

This allows us to determine the connections as:

Γ+ =

(
1

2
Q+VL − 1

4
D+V′

)∣∣∣∣ , Γ− = −
(

1

2
Q−VR − 1

4
D−V′

)∣∣∣∣ , (3.3)

where the D± terms vanish in Wess-Zumino gauge. The gauge-invariant com-

ponent fields are just the projections of the N = (2, 2) field-strengths (2.16)

and the field-strength of the connection Γ±:

f = i(D+Γ− +D−Γ+) . (3.4)

These are not all independent–they obey the Bianchi identity:

f = i
(
F− F̄ + F̃− ¯̃F

)∣∣∣ . (3.5)

Thus this gauge multiplet is described by an N = (1, 1) gauge multiplet and

three real unconstrained N=(1, 1) scalar superfields:

d̂1 =
(
F + F̄

)∣∣ , d̂2 =
(
F̃ + ¯̃F

)∣∣∣ , d̂3 = i
(
F− F̄− F̃ + ¯̃F

)∣∣∣ . (3.6)

Though not essential, the simplest way to find the N = (1, 1) reduction of

various N=(2, 2) quantities is to go to a Wess-Zumino gauge, that is reducing

the N = (2, 2) gauge parameters to a single N = (1, 1) gauge parameter by

gauging away all N=(1, 1) components with algebraic gauge transformations.

Here this means imposing

VL| = 0 , (Q+VL)| = 2Γ+ , (Q−VL)| = 0 ,

VR| = 0 , (Q+VR)| = 0 , (Q−VR)| = −2Γ− ,

V′| = 0 , (Q+V′)| = 0 , (Q−V′)| = 0 ,

(3.7)
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on the gauge multiplet and

ΛL| = Λ̄L| = −ΛR| = −Λ̄R| , (Q−ΛL)| = (Q−Λ̄L)| = (Q+ΛR)| = (Q+Λ̄R)| = 0

(3.8)

on the gauge parameters. This leads directly to:

(Q+Q−VL)| = 2i(d̂1−d̂2) , (Q+Q−VR)| = 2i(d̂1+d̂2) , (Q+Q−V′)| = 2id̂3 .

(3.9)

3.1.2 Coupling to matter

We start from the gauged N=(2, 2) Lagrange density:

KX = KX
(
XL + X̄L + VL,XR + X̄R + VR, i(XL − X̄L + XR − X̄R) + V′

)
.

(3.10)

In the Wess-Zumino gauge defined above, we have

XL(R) = XL(R)| , (3.11)

and N=(1, 1) spinor components:

(Q+XL)| = iD+XL + Γ+ , (Q−XL)| = ψ− ,

(Q−XR)| = iD−XR − Γ− , (Q+XR)| = ψ+ . (3.12)

Then for the tuple X i and the isometry vector ki defined as

ki ≡ kφχ = kLR = (i,−i,−i, i) ,
X i = (XL, X̄L, XR, X̄R) , (3.13)

we write the gauge covariant derivative as it appears in [8]

∇±X i = D±X
i − Γ±k

i. (3.14)

We can compute

(Q+Q−XL)| = iD+ψ− + i(d̂1 − d̂2) + d̂3

(Q+Q−XR)| = −iD+ψ− + i(d̂1 + d̂2) + d̂3 . (3.15)
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Using

∂2K

∂X i∂Xj
ki = 0 ⇒ ∂2K

∂X i∂Xj
D±X

i =
∂2K

∂X i∂Xj
∇±X i , (3.16)

we obtain the gauged N=(1, 1) Lagrange density

Eij∇+X
i∇−Xj +KiL

i
αd̂

α , (3.17)

with:

L =




i −i 1

−i i 1

i i 1

−i −i 1


 . (3.18)

Here E = 1
2
(g + B) in the reduced Lagrange density is that same as for the

ungauged σ-model [14, 18].

3.1.3 The vector multiplet action

Introducing the notation

Fi ≡ (F, F̄, F̃, ¯̃F) , di ≡ (f, d̂1, d̂2, d̂3) , (3.19)

and using the (twisted)chirality properties

D̄±F = D±F̄ = D̄+F̃ = D−F̃ = D+
¯̃F = D̄− ¯̃F = 0 , (3.20)

we find

(Q±Fi)| = J±
i
jM

j
k(D±d̂

k) , (3.21)

with

M =
1

4




−i 2 0 −i
i 2 0 i

−i 0 2 i

i 0 2 −i


 , J± ≡ diag(i,−i,±i,∓i) . (3.22)
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Starting from an N=(2, 2) action:

SX =

∫
d2ξ D+D−Q+Q−

(
aFF̄− b F̃¯̃F

)
(3.23)

we write the reduction to N=(1, 1) in terms of the gauge-invariant N=(1, 1)

components d̂i:

SX =
1

2

∫
d2ξ D+D−

(
D+d̂

iD−d̂
j gij

)
, (3.24)

where

g =
1

8




a+ b 0 0 a− b
0 4a 0 0

0 0 4b 0

a− b 0 0 a+ b


 . (3.25)

To obtain real and positive definite g we require ab > 0 which yields one

N = (1, 1) gauge multiplet and three scalar multiplets. In particular, when

a = b, we find the usual diagonal action.

Other gauge-invariant terms are possible; these are general superpotentials

and have the form

SP =

∫
iD+D− P1(F) +

∫
iD̄+D̄− P̄1(F̄) +

∫
iD+D̄− P2(F̃) +

∫
iD̄+D− P̄2(¯̃F) ,

(3.26)

where P are holomorphic functions. These terms reduce trivially to give:

SP = 2

∫
iD+D− Re

(
P1(1

2
d̂1 − i

4
(f + d̂3)) + P2(1

2
d̂2 − i

4
(f − d̂3))

)
. (3.27)

Particular examples of such superpotentials include mass and Fayet-Iliopoulos

terms.

3.1.4 Linear terms

To perform T-duality transformations, one gauges an isometry, and then con-

strains the field-strength to vanish [8, 12]. We will discuss T-duality for gen-

eralized Kähler geometry in detail in [9]; it was introduced (without exploring

the gauge aspects) in [10, 11]. Here we describe the N = (2, 2) superspace

coupling and its reduction to N = (1, 1). We constrain the field-strengths to
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vanish using unconstrained complex Lagrange multiplier superfields Ψ, Ψ̃

Llinear = ΨF + Ψ̄F̄ + Ψ̃F̃ + ¯̃Ψ¯̃F ; (3.28)

integrating by parts, we can re-express this in terms of chiral and twisted chiral

Lagrange multipliers φ = D̄+D̄−Ψ, χ = D̄+D−Ψ̃ to obtain

Llinear = φV + φ̄V̄ + χṼ + χ̄ ¯̃V . (3.29)

This reduces to an N=(1, 1) superspace Lagrange density (up to total deriva-

tive terms)

Llinear = φ(id̂3 − 2d̂1 + if) + φ̄(id̂3 + 2d̂1 + if)

+ χ(id̂3 + 2d̂2 − if) + χ̄(id̂3 − 2d̂2 − if) , (3.30)

where φ, φ̄, χ, χ̄ are the obvious N = (1, 1) projections of the corresponding

N=(2, 2) Lagrange multipliers. When we perform a T-duality transformation,

we add this to the Lagrange density (3.17).

3.2 The Large Vector Multiplet

We now study the N=(1, 1) components of the large vector multiplet.

3.2.1 N=(1, 1) gauge invariants

Starting with the eight N = (2, 2) second-order gauge invariants (2.19), we

descend to N = (1, 1) superspace and identify the N = (1, 1) gauge field-

strength.

Imposing the condition that the N=(1, 1) gauge connection transforms as

δgA± =
1

4
D±( ¯̃Λ + Λ̃− Λ̄− Λ) , (3.31)

we find the quantities

A+ = −
(

1

4
Q+(V φ − V χ)

)∣∣∣∣ =

(
i

4
Q+(Ṽ − ¯̃V )

)∣∣∣∣ ,

A− = −
(

1

4
Q−(V φ + V χ)

)∣∣∣∣ =

(
i

4
Q−(V − V̄ )

)∣∣∣∣ ; (3.32)
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of course, any gauge-invariant spinor may be added to A±. It is useful to

introduce the real and imaginary parts of G±:

ΞA
± = ( Re(G±)| , Im(G±)| ) . (3.33)

These form a basis for the N = (1, 1) gauge-invariant spinors. The field-

strength of the connection A±

f = i(D+A− +D−A+) = i(Q+Ξ2
− +Q−Ξ2

+) (3.34)

is manifestly gauge invariant. The remaining N=(1, 1) gauge-invariant scalars

are:

q̂1 = i(Q−Ξ1
+ −Q+Ξ1

−) ,

q̂2 = i(Q−Ξ1
+ +Q+Ξ1

−) ,

q̂3 = i(Q−Ξ2
+ −Q+Ξ2

−) . (3.35)

The decomposition of the N=(2, 2) invariants W,B is

F i =




W

B

W̄

B̄

W̃

B̃
¯̃W
¯̃B




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2




−i −i 1 1 0 1 0 i

i −i −1 1 1 0 i 0

i i 1 1 0 1 0 −i
−i i −1 1 1 0 −i 0

−i −i −1 1 −1 0 0 −i
i −i 1 1 0 −1 −i 0

i i −1 1 −1 0 0 i

−i i 1 1 0 −1 i 0







iD+Ξ1
−

iD−Ξ1
+

iD+Ξ2
−

iD−Ξ2
+

q̂1

q̂2

q̂3

f




.

(3.36)

3.2.2 Matter couplings in N=(1, 1) superspace

We start from the gauged N=(2, 2) Lagrange density:

Kφ

(
φ+ φ̄+ V φ, χ+ χ̄+ V χ, i(φ− φ̄+ χ− χ̄) + V ′

)
. (3.37)

We reduce to N=(1, 1) superfields, which in the Wess-Zumino gauge

V φ| = 0 , V χ| = 0 , V ′| = 0 , (3.38)
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are simply

φ| = φ ,

χ| = χ ,

(Q+φ)| = +iD+φ− (Ξ1
+ + iΞ2

+)− A+ ,

(Q+χ)| = +iD+χ− (Ξ1
+ + iΞ2

+) + A+ ,

(Q−φ)| = +iD−φ− (Ξ1
− + iΞ2

−)− A− ,
(Q−χ)| = −iD−χ+ (Ξ1

− − iΞ2
−)− A− . (3.39)

It is useful to introduce the notation

ϕi = (φ, φ̄, χ, χ̄) (3.40)

and the covariant derivatives

∇±ϕi = D±ϕ
i + A±k

i . (3.41)

This gives

Q±ϕ
i = J±

i
j∇±ϕj + Ξ1

±J∓
i
jk
j + Ξ2

±Πi
jk
j (3.42)

and

2Q+Q−ϕ
i = D+(Πi

j∇−ϕj − Ξ1
−k

i − 2Ξ2
−J−

i
jk
j)

−D−(Πi
j∇+ϕ

j − Ξ1
+k

i − 2Ξ2
+J+

i
jk
j) + 2L̃iαq̂

α (3.43)

where α = 1, 2, 3 and

L̃ = − i
2




2 0 i

2 0 −i
0 2 i

0 2 −i


 (3.44)

The N=(1, 1) superspace Lagrange density is (after integrating by parts and

using the isometry)

L = Kij

[
−1

2

(
∇+ϕ

i
(
Πj

l∇−ϕl − 2Ξ2
−J−

j
lk
l
)

+
(
Πi

k∇+ϕ
k − 2Ξ2

+J+
i
kk

k
)
∇−ϕj

)

+
(
J+

i
k∇+ϕ

k + Ξ1
+J−

i
kk

k + Ξ2
+Πi

kk
k
)(
J−j l∇−ϕl + Ξ1

−J+
j
lk
l + Ξ2

−Πj
lk
l
)
]

+ KiL̃
i
αq̂

α . (3.45)
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The large vector multiplet has the gauge-invariant spinors ΞA
±; it is useful to

isolate their contribution to expose the underlying N=(1, 1) gauged nonlinear

σ-model. We define the matrices:

Ekl = 1
2
Kij

(
2J+

i
kJ−

j
l − Πi

kδ
j
l − Πj

lδ
i
k

)
(3.46)

EAl =

(
KijJ−ikkkJ−j l

Kij

(
J+

i
kk

kδj l + Πi
kk

kJ−j l
)
)

(3.47)

EkA =
(
KijJ+

i
kJ+

j
lk
l , Kij

(
J−

j
lk
lδik + J+

i
kΠ

j
lk
l
) )

(3.48)

EAB =

(
KijJ−ikkkJ+

j
lk
l KijΠ

i
kk

kJ+
j
lk
l

KijJ−ikkkΠj
lk
l KijΠ

i
kk

kΠj
lk
l

)
(3.49)

We find

L =
(
ΞA

+ +∇+ϕ
iEiCE

CA
)
EAB

(
ΞB
− + EBDEDj∇−ϕj

)

+∇+ϕ
i
(
Eij − EiAEABEBj

)
∇−ϕj +KiL̃

i
αq̂

α (3.50)

with EAB the inverse of EAB.

3.2.3 The vector multiplet action

A general N=(2, 2) action for the large multiplet can be written as

Sa =

∫
d2ξD+D−Q+Q−

(
F iF jgij + GA

+GB
−mAB

)
, (3.51)

where the ranges for indices are i, j = 1, · · · , 8 ; AB = 1, 2, and the spinor

invariants were arranged into tuples

GA
± = (G±, Ḡ±) . (3.52)

Other terms of the type (D±, D̄±)(G±, Ḡ±) could be integrated by parts to

give the W and B invariants. One could also add superpotential terms.

This action can be reduced to N=(1, 1) using the block-(twisted)chirality

of F and the semichirality of G. In general, one finds terms with higher

derivatives; it does not seem possible to find a sensible kinetic action, but we

leave a complete analysis for future work.
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3.2.4 Linear terms

As discussed above for the semichiral vector multiplet, linear couplings of

unconstrained Lagrange multiplier fields multiplying the field-strengths are

needed to discuss T-duality. In N = (2, 2) superspace, we constrain the field-

strengths G± to vanish with unconstrained complex spinor Lagrange multiplier

superfields Ψ∓:

Llinear = i
(
Ψ+G− + Ψ−G+ + Ψ̄+Ḡ− + Ψ̄−Ḡ−

)
. (3.53)

When we integrate by parts and define semichiral Lagrange multpliers XL,R =

−iD̄±Ψ∓, we find

Llinear = XLV + X̄LV̄ + XRṼ + X̄R
¯̃V . (3.54)

Reducing to N = (1, 1) supperspace, and defining N = (1, 1)-components for

the Lagrange multipliers as in (3.11,3.1.2) we find

Llinear = ψ−
(
iΞ1

+ − Ξ2
+

)
+ 1

2
XL

(
(q̂2 + q̂1) + i(f + q̂3)

)

+ ψ̄−
(
−iΞ1

+ − Ξ2
+

)
+ 1

2
X̄L

(
−(q̂2 + q̂1) + i(f + q̂3)

)

+ ψ+

(
−iΞ1

− + Ξ2
−
)

+ 1
2
XR

(
−(q̂2 − q̂1)− i(f − q̂1)

)

+ ψ̄+

(
iΞ1

+ − iΞ2
+

)
+ 1

2
X̄R

(
(q̂2 − q̂1)− i(f − q̂1)

)
. (3.55)

We can easily integrate out ψ± and their complex conjugates; this ΞA
± from

the action. We are then left with the usual T-duality transformation as we

shall discuss in [9].

Note:

As we were completing our work, we became aware of related work by S.J. Gates

and W. Merrell; we thank them for agreeing to delay their work and post si-

multaneously.
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Abstract

We use the new N = (2, 2) vector multiplets to clarify T-dualities for generalized

Kähler geometries. Following the usual procedure, we gauge isometries of nonlinear

σ-models and introduce Lagrange multipliers that constrain the field-strengths of

the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the

original action, whereas integrating out the vector multiplets gives the dual action.

The description is given both in N=(2, 2) and N=(1, 1) superspace.
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1 Introduction

The basic inspiration for our work is the interesting duality found in [10, 11] for

two dimensional nonlinear σ-models with N=(2, 2) supersymmetry and target

space geometries that are not Kähler. As was shown in [8, 12], T-dualities

arise when one gauges an isometry, and then constrains the field-strength

of the corresponding gauge field to vanish. In this paper, we use the new

vector multiplets introduced in [22, 24] to describe T-duality for generalized

Kähler geometries (for a sampling of articles in the field, see [55]). We first

work in N = (2, 2) superspace, and then reduce to N = (1, 1) superspace and

find the usual T-duality of Buscher [20].

The plan of the paper is as follows: In the next section we briefly review

T-duality in the pure Kähler case [20]. We then review the classes of isome-

tries that generalized Kähler geometries admit. Next, we consider T-dualities

along isometries in the kernel of the commutator of the left and right complex

structures that mix chiral and twisted chiral multiplets [16]. Finally we de-

scribe T-dualities along isometries in the cokernel of the commutator, which

act only on the semichiral multiplets[15].

We end with a brief conclusion.

2 Kähler geometry and T-duality

In this section, we briefly review isometries, gauging, and T-duality in N =

(2, 2) and N=(1, 1) superspace for a system with chiral superfields φa and an

N=(2, 2) superspace Lagrange density given by a Kähler potential K(φa, φ̄a)

[19, 12, 20]. For simplicity, we consider an isometry generated by a holomorphic

Killing vector k that leaves the Kähler potential invariant1

k ≡ ki∂i = ka∂a + k̄a∂̄a , LkK = 0 , (2.1)

where ϕi = {φa, φ̄a}. The isometry is gauged using a multiplet V φ to promote

the constant (real) transformation parameter λ to a complex chiral superfields

1The general case when K is invariant only up to a Kähler transformation is discussed
in detail in [19], and in the generalized Kähler case in [9].
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Λ:

λ(ka∂a+k̄
a∂̄a)K(φa, φ̄a) = 0 →

(
Λka∂a + Λ̄k̄a∂̄a + δV φ∂V φ

)
K(g)(φa, φ̄a, V φ) = 0 .

(2.2)

From (2.1), it follows that2

(
Λka∂a + Λ̄k̄a∂̄a

)
K(φa, φ̄a) = i

2
(Λ̄−Λ)LJkK , Jk = i(ka∂a− k̄a∂̄a) . (2.3)

Using the usual gauge transformation δV φ = i(Λ̄ − Λ), we find the gauged

action [19]:

K(g)(φa, φ̄a, V φ) = exp
(
−1

2
V LJk

)
K(φa, φ̄a) . (2.4)

To find the T-dual model [12], we constrain the twisted chiral field-strength

D̄+D−V φ to vanish. We impose this with a Legandre transformation of the

density with a twisted chiral Lagrange multiplier χ:

K(g)(φa, φ̄a, V φ)− (χ+ χ̄)V φ . (2.5)

In N=(2, 2) superspace, we find the T-dual Lagrange densities by integrating

out either χ + χ̄, which gives the original Kähler potential, or V φ, which

gives the T-dual potential K̃(χ + χ̄, xA) where xA are “spectator” fields, i.e.,

combinations of the ϕi that are inert under the action of the isometry (2.1).

The geometric nature of the duality is made manifest when we descend to

N = (1, 1) superspace. In Wess-Zumino gauge, the N = (1, 1) components of

the multiplet V φ and the covariant derivatives are

V φ| = 0 , Q±V
φ| = A± , i Q+Q−V

φ| = d , ∇±ϕi = D±ϕ
i−A±ki (2.6)

the constrained Lagrange density (2.5) becomes:

gij∇+ϕ
i∇−ϕj − i d(KiJ

i
jk
j + (χ+ χ̄)) + f(χ− χ̄) (2.7)

where f = i(D+A− + D−A+) is the N = (1, 1) field-strength for the gauge

fields, gij is the Kähler metric, and KiJ
i
jk
j ≡ LJkK is proportional to the

moment map when the Kähler potential is invariant (as discussed above, in

general LJkK → −µ). Integrating out the N=(1, 1) auxiliary superfield d sets

2When K is not invariant, LJkK becomes the moment map of the isometry: LJkK →
−µ.
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χ+ χ̄ equal to the moment map. This can be solved either by expressing χ+ χ̄

as a function of ϕi, or by changing coordinates to χ + χ̄ and a combination

of ϕi algebraically independent of the moment map; the two procedures are

related simply by a diffeomorphism. This gives the N=(1, 1) gauged Lagrange

density with Lagrange multiplier (χ− χ̄) constraining the field-strength f :

L1 = gij∇+ϕ
i∇−ϕj + f(χ− χ̄) . (2.8)

Thus N=(2, 2) T-duality is the same as N=(1, 1) T-duality up to an accom-

panying diffeomorphism; this was originally proven by Buscher [20], but not

explicitly spelled out.

3 T-duality for the generalized Kähler geom-

etry

In a recent paper [22] we discussed gauge multiplets suitable for gauging isome-

tries of generalized Kähler geometries. We found three distinct vector multi-

plets, corresponding to three distinct types of isometries: those along the kernel

of either J+− J− or (equivalently) J+ + J−, those acting on both kernels, and

those along the cokernel of the commutator [J+, J−]. The isometries can be

expressed, following [10], in adapted coordinates:

kφ = i(∂φ − ∂φ̄) , (3.1)

kφχ = i(∂φ − ∂φ̄ − ∂χ + ∂χ̄) , (3.2)

kLR = i(∂L − ∂L̄ − ∂R + ∂R̄) . (3.3)

If we assume that the generalized Kähler potential is invariant, the correspond-

ing gauged actions are:

Kφ = Kφ

(
φ+ φ̄+ V φ, x

)
, (3.4)

Kφχ = Kφχ

(
φ+ φ̄+ V φ, χ+ χ̄− V χ, i(φ− φ̄+ χ− χ̄) + V ′, x

)
, (3.5)

KX = KX
(
XL + X̄L + VL,XR + X̄R + VR, i(XL − X̄L + XR − X̄R) + V′, x

)
,(3.6)

where x represents all possible spectator fields. The case (3.4) is essentially

identical to the Kähler case above; aside from subtleties pertaining to the
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interpretation of the moment map, which will be discussed in [9], there are no

new features. We now consider (3.5,3.6) in detail, and show that they again

reduce to standard Buscher duality in N=(1, 1) superspace, along with some

natural diffeomorphisms inherited from N=(2, 2) superspace. A more general

discussion of isometries and moment maps will be given in [9].

3.1 T-duality for an isometry kφχ

For an invariant generalized Kähler potential K in adapted coordinates, the

gauged action is (3.5). In the special circumstance when all the spectators

are (twisted) chiral, we can give a nice geometric interpretation of the gauging

analogous to the Kähler case above. In this case both complex structures are

simultaneously diagonalizable; and the manifold has the Bihermitian Local

Product (BiLP) geometry defined in [18]. Using the invariance of K under

kφχ, and using the complex structures J± and their product Π = J+J−

[i(Λ∂φ − Λ̃∂χ) + c.c.]K (3.7)

= i
4
[(Λ̄− Λ)L(J++J−)k + (¯̃Λ− Λ̃)L(J+−J−)k + i(Λ + Λ̄− Λ̃− ¯̃Λ)LΠk]K

To gauge the isometry, we require

0 = δV α∂V αK(g) (3.8)

+ i
4
[(Λ̄− Λ)L(J++J−)k + (¯̃Λ− Λ̃)L(J+−J−)k + i(Λ + Λ̄− Λ̃− ¯̃Λ)LΠk]K

(g)

The three superfields of the large vector multiplet [22] have the right gauge

transformations to gauge this symmetry:3

δV φ = i(Λ̄− Λ) , δV χ = i( ¯̃Λ− Λ̃) , δV ′ = (−Λ− Λ̄ + Λ̃ + ¯̃Λ)

⇒ K(g) = exp
(
−1

4
V φL(J++J−)k − 1

4
V χL(J+−J−)k − 1

4
V ′LΠk

)
K . (3.9)

To find the T-dual, we introduce Lagrange multipliers that constrain the

field strengths of the large vector multiplet to vanish. As discussed in [22], it

3Our conventions here, which are compatible with the inherent geometric objects J±, k,
are slightly different than those introduced in [22]; see Appendix B for the relation between
the conventions.
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is useful to introduce complex potentials for the field-strengths:

VL =
1

2
[−V ′ + i(V φ − V χ)] ⇒ δgVL = Λ− Λ̃ ,

VR =
1

2
[−V ′ + i(V φ + V χ)] ⇒ δgVR = Λ− ¯̃Λ . (3.10)

Since (Λ̃)Λ are respectively (twisted)chiral, these give the following gauge in-

variant complex spinor, semichiral, field-strengths:

G+ = D̄+VL , Ḡ+ = D+V̄L ,

G− = D̄−VR , Ḡ− = D−V̄R . (3.11)

Using the chirality properties of the field-strengths we obtain the constrained

N=(2, 2) generalized Kähler potential, as in (2.5), using semichiral Lagrange

multipliers X̃:

K(g) − Lconst. = K(g) − 1
2
X̃LVL − 1

2

¯̃XLV̄L − 1
2
X̃RVR − 1

2

¯̃XRV̄R . (3.12)

This applies to the general case, not just BiLP geometries, though in general,

we do not have a nice geometric form of K(g) (this will be discussed in [9]).

3.1.1 Reduction to N=(1, 1) superspace

Using the results of [22] (as summarized and clarified in Appendix A), we

obtain the N = (1, 1) reduction of this action in the Wess-Zumino gauge; the

part from K(g) is

L =
(
ΞA

+ +∇+ϕ
iEiCE

CA
)
EAB

(
ΞB
− + EBDEDj∇−ϕj

)

+∇+ϕ
i
(
Eij − EiAEABEBj

)
∇−ϕj

+iKik
j
(
q̂φ(J i+j + J i−j) + q̂χ(J i+j − J i−j) + q̂′Πi

j

)
(3.13)

where we introduce the matrices:

Ekl = Kij

(
J i+kJ

j
−l − 1

2
Πi

kδ
j
l − 1

2
Πj

lδ
i
k

)
(3.14)

EAl = Kijk
k

(
J i−kJ

j
−l

Πi
kJ

j
−l

)
(3.15)
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EkA = Kijk
l
(
J i+kJ

j
+l , J

i
+kΠ

j
l

)
(3.16)

EAB = Kijk
kkl

(
J i−kJ

j
+l J i−kΠ

j
l

Πi
kJ

j
+l Πi

kΠ
j
l

)
(3.17)

where the normalizations of the auxiliary fields Ξ±, q̂ as well as the field-

strength f are given in Appendix A.

The constraint reduces to

Lconst. = X̃L(iq̂′ − i
2
f + q̂φ − q̂χ − iD+Ξ2

−) + ψ̃−(+iΞ1
+ − Ξ2

+)

+ ¯̃XL(iq̂′ − i
2
f − q̂φ + q̂χ + iD+Ξ2

−) + ¯̃ψ−(−iΞ1
+ − Ξ2

+)

+ X̃R(iq̂′ + i
2
f + q̂φ + q̂χ + iD−Ξ2

+) + ψ̃+(−iΞ1
− + Ξ2

−)

+ ¯̃XR(iq̂′ + i
2
f − q̂φ − q̂χ − iD−Ξ2

+) + ¯̃ψ+(+iΞ1
− + Ξ2

−) , (3.18)

where X̃ = X̃|, ψ̃+ = Q+X̃L| and ψ̃− = Q−X̃R| are the N =(1, 1) components

of the Lagrange multipliers X̃.

3.1.2 T-duality for the large vector multiplet in N = (1, 1) super-

space

Integrating out the auxiliaries ψ̃± simply constrains ΞA
± to vanish, and we

obtain the gauged Lagrange density:

L = Kij(J
i
+kJ

j
−l − 1

2
Πi

kδ
j
l − 1

2
δikΠj

l)∇+ϕ
k∇−ϕl

+ iq̂φ(Ki(J
i
+j + J i−j)k

j + i(X̃L − ¯̃XL + X̃R − ¯̃XR))

+ iq̂χ(Ki(J
i
+j − J i−j)kj − i(X̃L − ¯̃XL − X̃R + ¯̃XR))

+ iq̂′(KiΠ
i
jk
j − (X̃L + ¯̃XL + X̃R + ¯̃XR))

+ i
2
f(X̃L + ¯̃XL − X̃R − ¯̃XR)) (3.19)

Imposing the equations of motion for q̂α, which again just give diffeomor-

phisms, we obtain a gauged nonlinear σ-model with constrained field strength

which proves that the dual geometries are indeed related by a Buscher duality.
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3.2 T-duality along semichiral isometries kLR

In the presence of semichiral superfields we can no longer decompose the action

of the gauged isometry as in the BiLP case (3.7) and separate the rigid piece

which acts on the Kähler potential with Lk. An extensive treatment of non

BiLP geometries is left for [9]. Making the notation of [22] compatible with

the previous section we redefine the complex potentials4 and reduce in the

Wess-Zumino gauge:

VL| = 0 , (Q+VL)| = 2Γ+ (Q−VL)| = 0 , Q+Q−VL = −2i(d̂2 − d̂1)

VR| = 0 , (Q+VR)| = 0 (Q−VR)| = 2Γ− , Q+Q−VR = −2i(d̂2 + d̂1)

V′ | = 0 , (Q+V′ )| = 0 (Q−V′ )| = 0 , Q+Q−V′ = −2id̂3 .

(3.20)

The N = (1, 1) gauge field-strength f = i(D+Γ− + D−Γ+) obeys the Bianchi

identity

i(F− F̄ + F̃− ¯̃F)
∣∣∣ = f (3.21)

(the N = (2, 2) field-strengths F, F̃ are given in Appendix B). Following [22]

we write the constrained Lagrange density

KX
(
XL + X̄L + VL,XR + X̄R + VR, i(XL − X̄L + XR − X̄R) + V′

)
−φ̃V−¯̃φV̄−χ̃Ṽ−¯̃χ ¯̃V

(3.22)

which reduces to N=(1, 1):

L = Eij∇+Xi∇−Xj +d̂1[(−i∂L − i∂L̄ + i∂R + i∂R̄)K + 2(φ̃− ¯̃φ)]

+d̂2[(i∂L + i∂L̄ + i∂R + i∂R̄)K − 2(χ̃− ¯̃χ)]

+d̂3[1
2
(∂L − ∂L̄ − ∂R + ∂R̄)K − i(φ̃+ ¯̃φ+ χ̃+ ¯̃χ)]

+f [−iφ̂− i¯̃φ+ iχ̃+ i¯̃χ] , (3.23)

where Eij = (gij+Bij) is the metric andB-field of the generalized Kähler geom-

etry as given in, e.g., [14]. As in the previous section, we impose the equations

of motion for d̂α to obtain the gauged nonlinear σ-model with the constraint

on the field-strength f that we recognize as the hallmark of T-duality. Again,

the d̂α equations of motion just give diffeomorphisms.

4See Appendix B for full details
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4 Conclusions

We have used the gauge multiplets constructed in [22, 24] to investigate the

duality between semichiral and (twisted) chiral superfields discovered in [10],

and found that the dual geometries are related by Buscher duality. We demon-

strated this in N=(2, 2) superspace where we gave the generalized Kähler po-

tentials with gauged isometries. When we descended to N=(1, 1) superspace,

the nature of the T-duality was clarified: we found a gauged nonlinear σ-model

with a Lagrange multiplier constraining the field-strength of the gauge field as

well as diffeomorphisms relating the generalized moment maps in the original

geometry to natural coordinates in the dual geometry.

This work is part of an ongoing exploration of generalized complex geom-

etry, using nonlinear σ models, and is therefore complimentary to the math-

ematical aspects of T-duality considered in [21]. The full construction of the

moment maps and a geometric discussion of these results is left for future work

[9].

Note:

After completing our work, we became aware of related results obtained by

W. Merrell and D. Vaman.
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A Reduction to N=(1, 1) superspace for gauged

BiLP geometries

In this appendix we review some of the results of [22] as they emerge from

inherent geometric objects for BiLP geometries. The N = (1, 1) invariants

76



system of [22] is slightly modified so that the reduction of the gauged Lagrange

density (3.12) to N=(1, 1) is simpler in this context; namely, carrying out the

reduction for the matter couplings piece will give convenient redefinitions for

N = (1, 1) gauge invariants. Acting with Q± on the gauged action we can

identify the connections A± that enter with J±k respectively:

Q±K
(g) =K

(g)
i

(
J i±jD±ϕ

j − 1
4
Q±(V φ + V χ)J i+jk

j

−1
4
Q±(V φ − V χ)J i−jk

j − 1
4
Q±V

′Πi
jk
j
)

=K
(g)
i

(
J i±j∇±ϕj + Ξ1

±J
i
∓jk

j + Ξ2
±Πi

jk
j
)
. (A.1)

We find it useful to modify the N=(1, 1) notation of [22], introducing:

q̂φ = −i1
2
(Q[+Ξ1

−]−D[+Ξ2
−]) , q̂χ = −i1

2
(Q(−Ξ1

+)+D(+Ξ2
−)) , q̂′ = −i1

2
Q[+Ξ2

−]

(A.2)

and the field-strength for the connections A±

f = −iQ(+Ξ2
−) = i(D+A− +D−A+) (A.3)

which allows us to write the reduction for Q+Q−K(g) in terms of the geometric

objects:

Q+Q−K
(g) =

K
(g)
ij [(J i+k∇+ϕ

k + J i−kk
kΞ1

+ + Πi
kk

kΞ2
+)(J j−l∇−ϕk + J j+lk

lΞ1
− + Πj

lk
lΞ2
−)

− 1
2
(δikΠ

j
l + Πi

kδ
j
l)∇+ϕ

k∇−ϕl]
+iK

(g)
i kk(q̂φ(J+ + J−)ik + q̂χ(J+ − J−)ik + q̂′Πi

k) (A.4)

B Conventions and notation

The conversion between the notation of [22] and the current notation can be

derived from changing some signs:

{
V′,VR, V ′, V R

}
→ −

{
V′,VR, V ′, V R

}
(B.1)

as well as

{Λ̃,ΛR} → −{Λ̃,ΛR} . (B.2)
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These changes correct some unnatural conventions for the definitions of isome-

tries.

We summarize the essential consequences here for both the large vector

multiplet and the semichiral vector multiplet in the tables below.
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Object Old New

δV φ i(Λ̄− Λ)

δV χ i( ¯̃Λ− Λ̃)

δV ′ Λ + Λ̄ + Λ̃ + ¯̃Λ −Λ− Λ̄ + Λ̃ + ¯̃Λ

Complex potential V = 1
2
(V ′ + i(V φ + V χ)) VL = 1

2
(−V ′ + i(V φ − V χ))

and variation (1) δV = Λ + Λ̃ δVL = Λ− Λ̃

Complex potential Ṽ = 1
2
(V ′ + i(V φ − V χ)) VR = 1

2
(−V ′ + i(V φ + V χ))

and variation (2) δV = Λ + ¯̃Λ δVL = Λ− ¯̃Λ

N=(2, 2) G+ = D̄+V G+ = D̄+VL

Gauge invariants G− = D̄−Ṽ G− = D̄−VR
Ḡ+ = D+V̄ Ḡ+ = D+V̄L

Ḡ− = D− ¯̃V Ḡ− = D−V̄R

Decomposition ΞA
± = ( Re(G±)| , Im(G±)| )

to N=(1, 1) D±ΞA
∓

q̂1 = i(Q−Ξ1
+ −Q+Ξ1

−) q̂φ = −i1
2
(Q[+Ξ1

−] −D[+Ξ2
−])

q-invariants: q̂2 = i(Q−Ξ1
+ +Q+Ξ1

−) q̂χ = −i1
2
(Q(−Ξ1

+) +D(+Ξ2
−))

q̂3 = i(Q−Ξ2
+ −Q+Ξ2

−) q̂′ = −i1
2
(Q+Ξ2

− −Q−Ξ2
+)

The field-strength f i(Q+Ξ2
− +Q−Ξ2

+) −i(Q+Ξ2
− +Q−Ξ2

+)

Table 1: Large vector multiplet conventions and definitions
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Object Old New

δVL i(Λ̄L − ΛL)

δVR i(Λ̄R − ΛR)

δV′ ΛL + Λ̄L + ΛR + Λ̄R −ΛL − Λ̄L + ΛR + Λ̄R

Complex potential V = 1
2
(V′ + i(VL + VR)) V = 1

2
(−V′ + i(VL − VR))

and variation (1) δV = ΛL + ΛR δV = ΛL − ΛR

Complex potential Ṽ = 1
2
(V′ + i(VL − VR)) Ṽ = 1

2
(−V′ + i(VL + VR))

and variation (2) δV = ΛL + Λ̄R δV = ΛL − Λ̄R

N=(2, 2) F = D̄+D̄−V , F̄ = −D+D−V̄

Gauge invariants F̃ = D̄+D−Ṽ , ¯̃F = −D+D̄− ¯̃V

d̂-invariants d̂1 =
(
F + F̄

)∣∣ , d̂2 =
(
F̃ + ¯̃F

)∣∣∣ , d̂3 = i
(
F− F̄− F̃ + ¯̃F

)∣∣∣

Gauge fields Γ+ = 1
2

(
Q+VL − 1

2
D+V′

)∣∣ Γ+ = 1
2

(
Q+VL + 1

2
D+V′

)∣∣

Γ− = −1
2

(
Q−VR − 1

2
D−V′

)∣∣ Γ− = 1
2

(
Q−VR − 1

2
D−V′

)∣∣

Bianchi identity i(F− F̄ + F̃− ¯̃F)
∣∣∣ = f = i(D+Γ− +D−Γ+)

Table 2: Semichiral vector multiplet conventions and definitions
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Chapter 4

Nonabelian multiplets

The new gauge multiplets can be used to covariantize N = (2, 2) derivatives

as in (1.5). This gives a nonabelian extension of previous results where field-

strengths are proper anticommutators of covariant derivatives.

Inspecting the transformation properties of the new gauge multiplets, it is

clear how their peculiar field-strengths arise. First, for the semichiral vector

multiplet we find no pair of commuting covariant derivatives as in (1.5) and

thus there are four field-strengths, an (anti)chiral and an (anti)twistedchiral

while for the LVM we actually find two sets of covariant derivatives which

differs by fermionic gauge covariant field-strengths.

Gauge actions are essential for the investigation of dualities. A far shot

attempting to study mirrors for generalized Kähler manifold will require the

consideration of quantum effects from such terms. We identify the N = (1, 1)

reduction of these field-strengths and overcome the risk of higher derivative

on fermions in the LVM action by restricting to either of the sets.

While for the nonabelian case we have seen that consistent actions for

the LVM must not mix the two sets of gauge invariants, this is not hold in

the abelian case since we need not concern with anticommutators of the form

{G,G}. we explore gauge actions that are not permitted for the large vector

multiplet; namely, action where both types of field-strengths are present (that

is, (un)hatted in the notation of [30]).

Other interesting terms are mass-like terms in G’s which give superpoten-

tials for the N = (1, 1) scalar and field-strengths as well as possible kinetic

terms for ΞA
± and topologicl terms.
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Abstract

We give the nonabelian extension of the newly discovered N = (2, 2) two-

dimensional vector multiplets. These can be used to gauge symmetries of sigma

models on generalized Kähler geometries. Starting from the transformation

rule for the nonabelian case we find covariant derivatives and gauge covariant

field-strengths and write their actions in N=(2, 2) and N=(1, 1) superspace.
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1 Introduction

Studying nonlinear sigma models whose target spaces are generalized Kähler ge-

ometries in N=(2, 2) superspace, we found new vector multiplets [22, 24, 23,

30] that can be used to gauge isometries which mix different types of super-

fields [10]. In this note, we extend these results to the nonabelian case; in

particular we find the algebra of the gauge-covariant superspace derivatives.

The plan of the paper is as follows: In the next section, we review the

abelian multiplets [22, 24]. In section 3, we discuss the nonabelian extensions

of the large vector multiplet, which couples chiral and twisted chiral gauge

symmetries [16]; we give the fundamental superfield gauge potentials, con-

struct covariant derivatives as well as field strengths in N=(2, 2) superspace,

reduce to N = (1, 1) superspace and discuss actions (cf. [30] for the abelian

case). In section 4, we repeat this discussion for the semichiral vector multiplet

[15]. We end with a few remarks. We follow the notation of [23].

2 Abelian vector multiplets

Until recently, two N = (2, 2) vector multiplets were known. Both are de-

scribed by a single unconstrained scalar superfield V and differ by their gauge

transformations: The chiral gauge multiplet transforms with a chiral gauge

parameter (D̄±Λ = 0)

δV φ = i(Λ̄− Λ) , (2.1)

whereas the twisted chiral gauge multiplet transforms with a twisted chiral

gauge parameter (D̄+Λ̃ = D−Λ̃ = 0)

δV χ = i( ¯̃Λ− Λ̃) . (2.2)

These multiplets have gauge invariant twisted chiral and chiral field strengths,

respectively:

W̃ = D̄+D−V φ , W = D̄+D̄−V χ . (2.3)

In [22], we introduced two new multiplets: the large vector multiplet

(rewritten here in the conventions of [23])

δV φ = i(Λ̄− Λ) , δV χ = i( ¯̃Λ− Λ̃) , δV ′ = (−Λ− Λ̄ + Λ̃ + ¯̃Λ) , (2.4)
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which transforms with chiral and twisted chiral parameters, and the semichiral

vector multiplet (see also [24])

δVL = i(Λ̄L−ΛL) , δVR = i(Λ̄R−ΛR) , δV′ = (−ΛL−Λ̄L+ΛR+Λ̄R) , (2.5)

whose gauge parameters are semichiral: D̄+ΛL = D̄−ΛR = 0. In both cases it is

useful to introduce complex linear combinations with simple transformations.

For the large vector multiplet, one finds the combinations

VL = 1
2
(−V ′ + i(V φ − V χ)) ⇒ δVL = Λ− Λ̃ ,

VR = 1
2
(−V ′ + i(V φ + V χ)) ⇒ δVR = Λ− ¯̃Λ . (2.6)

Note that VL,R are constrained, as they have the same real part

VL + V̄L = VR + V̄R , (2.7)

or equivalently,

VL = VR − iV χ (2.8)

This constraint is preserved by the gauge transformations. The field-strengths

of the large vector multiplet are semichiral spinors:

G+ = D̄+VL , G− = D̄−VR , Ḡ+ = D+V̄L , Ḡ− = D−V̄R . (2.9)

For the semichiral vector multiplet, we find similar combinations:

V = 1
2
(−V′ + i(VL − VR)) ⇒ δV = ΛL − ΛR , (2.10)

Ṽ = 1
2
(−V′ + i(VL + VR)) ⇒ δṼ = ΛL − Λ̄R . (2.11)

As for the large vector multiplet, these combinations are constrained to have

the same real part. The field-strengths of the semichiral vector multiplet are

chiral and twisted chiral scalars:

F = D̄+D̄−V , F̄ = −D+D−V̄ , F̃ = D̄+D−Ṽ , ¯̃F = −D+D̄− ¯̃V . (2.12)
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3 Nonabelian Large Vector Multiplet

3.1 Covariant derivatives and field-strengths

The nonabelian generalizations of (2.1) and (2.2) are well known; for finite

gauge transformations they are

g(Λ)eV
φ

= eiΛ̄eV
φ

e−iΛ , g(Λ̃)eV
χ

= ei
¯̃ΛeV

χ

e−iΛ̃ . (3.1)

These clearly carry over for (2.4), except for the transformation of V ′, which

cannot easily be generalized in a way compatible with the group property.

Instead, we use the complex potential VR, and postulate

g(Λ, Λ̃)e−iVR = ei
¯̃Λe−iVRe−iΛ ⇒ g(Λ, Λ̃)eiV̄R = eiΛ̄eiV̄Re−iΛ̃ . (3.2)

This choice is arbitrary, as we could have formulated (3.2) using the complex

potential VL; we define it by e−iVL = e−V
χ
e−iVR (cf. eq. (2.8)).

To avoid introducing extra degrees of freedom, we impose a gauge covariant

reality condition:

eiV̄R = eV
φ

eiVReV
χ

, (3.3)

which is compatible with (2.6), as it reduces to i(V̄R − VR) = V φ + V χ in the

Abelian limit.

Covariant derivatives can be constructed in different representations ap-

propriate to the matter fields they act on. Here we start with the chiral rep-

resentation, which acts naturally on chiral superfields. In this representation,

the covariant derivatives ∇ transform as

g(Λ)∇ = eiΛ∇e−iΛ . (3.4)

Other representations can be found by conjugating with the appropriate com-

binations of eV
φ
, eV

χ
and eiVR . Because the gauge parameter Λ is chiral,

D̄±Λ = 0, D̄± are already covariant

∇̄± = D̄± , (3.5)
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that is, they transform as (3.4). Likewise, the usual expressions

∇± = e−V
φD±eV

φ

(3.6)

are covariant. However, because D̄+Λ̃ = D−Λ̃ = 0, there are more covariantly

transforming derivatives; a quick calculation shows that

∇̂+ = eiVRD+e
−iVR

ˆ̄∇− = eiVRD̄−e−iVR
ˆ̄∇+ = eiVReV

χD̄+e
−V χe−iVR

∇̂− = eiVReV
χD−e−V

χ

e−iVR (3.7)

are also good covariant derivatives. The derivatives (3.5) and (3.6) are sim-

ple in chiral or antichiral representation. A twisted chiral representation is

obtained after a similarity transformation with e−iVL = e−V
χ
e−iVR ; then the

supercovariant derivatives ∇̂ become simple:

e−iVL∇̂+e
iVL = e−V

χD+e
V χ

e−iVL ˆ̄∇−eiVL = e−V
χD̄−eV

χ

e−iVL ˆ̄∇+e
iVL = D̄+

e−iVL∇̂−eiVL = D− . (3.8)

In this representation, the derivatives ∇ are complicated.

The difference of two covariant derivatives is a covariant tensor, and thus is

a field-strength. We write four spinor field-strengths that are the nonabelian

generalizations of (2.9)1:

G+ = i( ˆ̄∇+ − ∇̄+) , G− = i( ˆ̄∇− − ∇̄−) ,

Ḡ+ = i(∇̂+ −∇+) , Ḡ− = i(∇̂− −∇−) . (3.9)

We may shift the spinor covariant derivatives by these spinor field-strengths

as we wish; indeed, such shifts play a crucial role in understanding the kinetic

1The signs in (3.9) may seem inconsistent with hermitian conjugation; however, hermi-
tian conjugation also changes the representation these Lie algebra-valued quantities act on,
whereas in (3.9) both G and Ḡ act on the same representation. This results in an extra (−)
sign.
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terms of the large vector multiplet.

These spinor field-strengths obey (nonlinear) semichiral constraints. Using

the identity

{ ˆ̄∇± + ∇̄± , ˆ̄∇± − ∇̄±} = {∇̂± +∇± , ∇̂± −∇±} = 0 , (3.10)

we find

( ˆ̄∇± + ∇̄±)G± = 0 ⇔ ∇̄±G± − i
2
{G±,G±} = 0 ,

(∇̂± +∇±)Ḡ± = 0 ⇔ ∇±Ḡ± − i
2
{Ḡ±, Ḡ±} = 0 . (3.11)

Higher dimension field-strengths may be found by taking anticommutators

of covariant derivatives (3.4). In general, each chirality choice ((twisted)(anti)chiral)

has three possible field-strengths and one trivial anticommutator. For example

{∇+,∇−} = 0 , (3.12)

whereas

{∇̂+,∇−} , {∇+, ∇̂−} , {∇̂+, ∇̂−} (3.13)

are nonvanishing. Using (3.9) and (3.12), we have:

{Ḡ+, Ḡ−} = {∇̂+,∇−}+ {∇+, ∇̂−} − {∇̂+, ∇̂−} . (3.14)

We thus find the independent field-strengths:

chiral: F = { ˆ̄∇+, ∇̄−} = −i∇̄−G+ , F̂ = {∇̄+,
ˆ̄∇−} = −i∇̄+G−

antichiral: F̄ = {∇̂+,∇−} = −i∇−Ḡ+ , ˆ̄F = {∇+, ∇̂−} = −i∇+Ḡ−
twisted chiral: F̃ = { ˆ̄∇+,∇−} = i ˆ̄∇+Ḡ− , ˆ̃F = {∇̄+, ∇̂−} = i∇̂−G+

twisted antichiral: ¯̃F = {∇̂+, ∇̄−} = i∇̂+G− ,
ˆ̃̄
F = {∇+,

ˆ̄∇−} = i ˆ̄∇−Ḡ+

(3.15)

The nonabelian field-strengths (3.15) match, in the abelian case [23], with

combinations of the form

2F = W + iB , 2F̂ = W − iB , etc. (3.16)

Each field-strength has specific chirality properties that follow from its defini-
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tion, e.g.,
ˆ̄∇+F = ∇̄−F = 0 , ∇̄+F̂ = ˆ̄∇−F̂ = 0 , etc. (3.17)

3.2 Reduction to N=(1, 1) superspace

As in the abelian case, we decompose

D± = 1
2
(D± − iQ±) , (3.18)

as well as

Re G±|N=(1,1) = Ξ1
± , Im G±|N=(1,1) = Ξ2

± . (3.19)

The two sets of N=(1, 1) supercovariant derivatives decompose as2:

∇± = 1
2
(D± − iQ±) , ∇̂± = 1

2
(D̂± − iQ̂±) ,

D̂± = D± − 2iΞ1
± , Q̂± = Q± − 2iΞ2

± . (3.20)

The hatted set differs from the unhatted set by covariant field redefinitions;

note that the redefinition exchanging D and D̂ is a shift of the N = (1, 1)

connections for D± = D± + iA± by 2iΞ1
±.

The field-strengths F, F̃ can be expressed N = (1, 1) superspace by acting

with D̂+, Q̂+, D− and Q− on Ξ1,2
± (cf. eq. (3.15)). We therefore define:

Ď+ = D̂+ , Q̌+ = Q̂+ , Ď− = D− , Q̌− = Q− . (3.21)

From the spinor derivatives (3.21), we construct real N=(1, 1) scalars

qχ = {Ď+, Q̌−} = −iQ̌(+Ξ1
−) + iĎ[+Ξ2

−]

qφ = {Ď−, Q̌+} = iQ̌[+Ξ1
−] − iĎ(+Ξ2

−)

q′ = {Q̌+, Q̌−} = iQ̌[+Ξ2
−] + iĎ(+Ξ1

−)

as well as the field-strength

f ≡ {Ď+, Ď−} = iQ̌(+Ξ2
−) + iĎ[+Ξ1

−] (3.22)

2As is standard, in descending to N =(1, 1) superspace, we reduce the gauge parameter to
a single N =(1, 1) superfield; this means we perform a partial (Wess-Zumino) gauge-fixing.
As a result, Q± has no N =(1, 1) connection.
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These conventions simplify the N = (1, 1) reduction of all unhatted field-

strengths by eliminating both iDΞ and {Ξ,Ξ} terms:

4F| = f − q′ + i(qχ + qφ) (3.23)

4F̄| = f − q′ − i(qχ + qφ)

4F̃| = f + q′ − i(qχ − qφ)

4¯̃F| = f + q′ + i(qχ − qφ)

F̂| = ¯̃F− iĎ+Ξ1
− + {Ξ1

+,Ξ
1
−} − {Ξ2

+,Ξ
2
−} − i(iĎ+Ξ2

− − {Ξ(1
+ ,Ξ

2)
−})

ˆ̄F| = F̃− iĎ+Ξ1
− + {Ξ1

+,Ξ
1
−} − {Ξ2

+,Ξ
2
−}+ i(iĎ+Ξ2

− − {Ξ(1
+ ,Ξ

2)
−})

ˆ̃F| = F + iĎ−Ξ1
+ + {Ξ1

+,Ξ
1
−}+ {Ξ2

+,Ξ
2
−}+ i(iĎ−Ξ2

+ − {Ξ[1
+,Ξ

2]
−})

ˆ̃̄
F| = F̄ + iĎ−Ξ1

+ + {Ξ1
+,Ξ

1
−}+ {Ξ2

+,Ξ
2
−} − i(iĎ−Ξ2

+ − {Ξ[1
+,Ξ

2]
−})

(3.24)

The N=(1, 1) fields (3.21) and (3.22) could be redefined [30] by real shifts

of qi and the connections A±. The redefinitions

q̂χ = {D+, Q̂−} , q̂φ = {D̂−, Q+} , q̂′ = {Q+, Q̂−} and f̂ = {D+, D̂−}
(3.25)

simplify the reduction to N=(1, 1) for the field-strengths F̂, ˆ̃F and introduces

extra iDΞ and {Ξ,Ξ} terms into the reduction for the field-strengths F, F̃.

An immediate consequence of the structure of these definitions is that we

are able to remove both iDΞ and {Ξ,Ξ} terms from either the hatted set or the

unhatted set of N = (2, 2) field-strengths, but not both simultaneously. This

result greatly simplifies our discussion of actions for the large vector multiplet.

3.3 The action in N=(1, 1) superspace

3.3.1 Generalities

We descend to N = (1, 1) superspace by rewriting the measure in terms of

D±, Q± and explicitly evaluating the Q derivatives (see, e.g., [23]). Starting

with the N=(2, 2) superspace measure and an N=(2, 2) Lagrange density K,

we write an action

S =

∫
d2ξD+D−Q+Q− K . (3.26)
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Since K is a gauge scalar, we are free to choose whether Q(D)-derivatives acts

on K as Q(D) or Q̂(D̂).

This leads to a subtlety in descending to N=(1, 1) superspace. Unlike the

abelian case, where one can simply exchange Q and D-derivatives using the

complex structure

Q±ϕ
i = J±

i
jD±ϕ

j , (3.27)

the natural nonabelian field-strengths (3.15) have chirality properties with

respect to different N = (2, 2) supercovariant derivatives. This results in a

possible shift of the relation (3.27) with a spinor multiplet G. For example,

the action of Q̌± on the (anti)chiral field-strengths reads

Q̌+ Q̌−

F iĎ+F| iĎ−F|
F̄ −iĎ+F̄| −iĎ−F̄|
F̂ iĎ+F̂| − 2[G+, F̂]| iĎ−F̂|+ 2[G−, F̂]|
ˆ̄F −iĎ+

ˆ̄F|+ 2[Ḡ+,
ˆ̄F]| −iĎ− ˆ̄F| − 2[Ḡ−, ˆ̄F]|

(3.28)

For the action of Q̌+Q̌− we find:

Q̌+Q̌−

F Ď−Ď+F|+ i[qφ,F]|
F̄ Ď−Ď+F̄| − i[qφ, F̄]|
F̂ −{iĎ− + 2G−, [iĎ+ − 2G+, F̂]}+ [f + q′ + iqχ − 2iĎ+G−, F̂]|
ˆ̄F −{iĎ− + 2Ḡ−, [iĎ+ − 2Ḡ+,

ˆ̄F]} − [f + q′ − iqχ − 2iĎ+Ḡ−, ˆ̄F]|

(3.29)

where we used the anticommutators

{Q̌+, iĎ− + 2G−} = f + q′ + iqχ − 2iĎ+G−
−{Q̌+, iĎ− + 2Ḡ−} = f + q′ − iqχ − 2iĎ+Ḡ− (3.30)

3.3.2 Evaluating the actions

Physically sensible actions cannot have terms with higher derivatives on fermions.

We now generalize the results presented in [30], where field redefinitions were

found that allowed us to write down actions for (anti)chiral field-strengths and

twisted (anti)chiral field-strengths.
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Näıvely, quadratic terms in (anti)chiral field-strengths may appear in three

flavors: FF̄, F̂ˆ̄F, and Fˆ̄F + c.c. Using the results of the previous section, one

can show that there exist field redefinitions that eliminate higher derivative

terms for either of the first two but not the last N =(2, 2) action. Extending

these results to the twisted (anti)chirals we find that sensible gauge actions

in N = (2, 2) are either combinations of only hatted field-strengths or only

unhatted ones.

From (3.15) and (3.17), we see that e.g., the action3 K = Tr(FF̄− F̃¯̃F) is

conveniently reduced to N=(1, 1) superspace by acting with Q-derivatives as

Q− and Q̂+:

∫
D+D−Q+Q− Tr(FF̄− F̃¯̃F) (3.31)

=
1

4

∫
D+D− Tr(Ď+(f − q′)Ď−(f − q′) + Ď+(qχ + qφ)Ď−(qχ + qφ) +

Ď+(f + q′)Ď−(f + q′) + Ď+(qχ − qφ)Ď−(qχ − qφ)− 2[q′, qχ]qφ)

=
1

2

∫
D+D− Tr(Ď+fĎ−f + Ď+q

χĎ−qχ + Ď+q
′Ď−q′ + Ď+q

φĎ−qφ − [q′, qχ]qφ) .

It is interesting to notice that the action (3.31), and in particular the scalar

commutator term, is reminiscent of the action for N = 2 d = 4 super Yang-

Mills theory. This suggests that the large vector multiplet action has N =

(4, 4) supersymmetry. We leave this for future work.

Other possible contributions to the nonabelian large vector multiplet action

originate from superpotentials which are encoded in four complex functions.

Their reduction to N=(1, 1) superspace reads:

Ssp = 2 Re

∫
D+D−

(
P (F) + P̃ (F̃) + P̂ (F̂) + ˆ̃P (ˆ̃F)

)∣∣∣∣ . (3.32)

The criterion for consistent superpotential terms, which is the absence of terms

of the form D+Ξ−D−Ξ+, is automatically met for any of the field redefinition

required to make the kinetic terms consistent. In the abelian limit, terms

involving FF̂ are also chiral, but were excluded by a consistency condition

found in [30]; here, these terms are not chiral and hence are automatically

3It is essential to have both FF̄ and F̃¯̃F terms in the N =(2, 2) Lagrange-density to give
dynamics all N = (1, 1) multiplets. In the abelian case, where terms of the form {Ξ,Ξ}
vanish, actions that contain only chiral or only twisted chiral multiplets are also possible.
These actions are discussed in [30].
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excluded.

The superpotential terms (3.32) give mass terms for the scalar multiplets

as well actions for the spinor multiplets Ξ1,2
± (as in the abelian case [30]).

4 Nonabelian Semichiral Vector Multiplet

The strategy we follow for the semichiral vector multiplet is very similar to the

one we use for the large vector multiplet. However, since the gauge parameters

are semichiral, we find unique gauge covariant spinor derivatives and all the

field-strengths arise in the usual way as (anti)commutators.

We take the nonabelian generalization of (2.5 , 2.10 , 2.11) to be:

g(ΛL,ΛR)eiV = eiΛLeiVe−iΛR

g(ΛL, Λ̄R)eiṼ = eiΛLeiṼe−iΛ̄R

g(ΛL)eV
L

= eiΛ̄LeV
L

e−iΛL

g(ΛR)eV
R

= eiΛ̄ReV
R

e−iΛR . (4.1)

As for the large vector multiplet, not all of these potentials are independent.

We impose the gauge covariant constraint

eiV = e−V
L

ei
¯̃V (4.2)

as well as the gauge covariant reality constraint

eiV = e−V
L

eiV̄eV
R

. (4.3)

The covariant derivatives read (in the left semichiral representation):

∇̄+ = D̄+

∇̄− = eiVD̄−e−iV

∇+ = eiVei
¯̃VD+e

−i ¯̃Ve−iV = eiṼe−iV̄D+e
iV̄e−iṼ = e−V

L

D+e
VL

∇− = eiṼD−e−iṼ (4.4)

The nonabelian generalization of the field-strengths (2.12) is

F = i{∇̄+, ∇̄−} F̄ = −i{∇+,∇−}
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F̃ = i{∇̄+,∇−} ¯̃F = −i{∇+, ∇̄−} , (4.5)

which are covariantly chiral and twisted chiral scalars.

4.1 Reduction to N=(1, 1) superspace

Having a single set of N = (2, 2) supercovariant derivatives, we introduce the

N=(1, 1) derivatives

∇± = 1
2
(D± − iQ±) , (4.6)

that give the N=(1, 1) field-strength for the connections

f = {D+,D−} = {∇+ + ∇̄+,∇− + ∇̄−} = −i
(
F + F̃− F̄− ¯̃F

)∣∣∣ , (4.7)

and three scalars that follow the notation of [22]

d̂1 =
(
F + F̄

)∣∣ , d̂2 =
(
F̃ + ¯̃F

)∣∣∣ , d̂3 = i
(
F− F̄− F̃ + ¯̃F

)∣∣∣ . (4.8)

In [22] we have obtained the D-term action, which is a simple sum of kinetic

terms for the (twisted) chiral field-strengths. Using the chirality properties of

the field-strengths

Q±(F, F̄, F̃, ¯̃F) = D±(iF,−iF̄,±iF̃,∓i¯̃F) , (4.9)

the nonabelian action

SX =

∫
d2ξ D+D−Q+Q−Tr

(
FF̄− F̃¯̃F

)
(4.10)

reduces to the N=(1, 1) action

SX =

∫
d2ξD+D− Tr

(
1
2
D+fD−f + 1

2
D+d̂

3D−d̂3

+D+d̂
1D−d̂1 +D+d̂

2D−d̂2 − [d̂1, d̂2]d̂3
)
. (4.11)

In a similar fashion, we write the superpotential terms in N=(1, 1) super-

space:

SP = 2 Re

∫
D+D−

(
P1(F) + P2(F̃)

)∣∣∣∣ . (4.12)

These terms include mass and Fayet-Illiopoulos terms.
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5 Conclusion

In this paper we have extended the results of [22, 24, 30] to the nonabelian

case. While the semichiral vector multiplet generalizes straightforwardly, the

extension for the large vector multiplet gave rise to subtleties and ambiguities

that were not present in the abelian case, namely, the different chirality con-

ditions (3.15) that follow from the doubled set of supercovariant derivatives

∇, ∇̂.

The nonabelian extension sheds light on the origins of some of the con-

straints on actions for the large vector multiplet [30]. In particular, in the

nonabelian case, D-terms are further restricted to four possible kinetic terms

and the restrictions on superpotential terms found in [30] are an immediate

consequence of the incompatibility in chirality properties for N = (2, 2) field-

strengths.

Our results should make it possible to give a complete description of the

gauging of isometries of generalized Kähler geometries (cf., [8]).
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Chapter 5

Abelian LVM action

While for the nonabelian case we have seen that consistent actions for the

LVM must not mix the two sets of gauge invariants, this does not hold in

the abelian case since we need not concern with anticommutators of the form

{G,G}. we explore gauge actions that are not permitted for the abelian large

vector multiplet; namely, action where both types of field-strengths are present

(that is, (un)hatted in the notation of [30]).

Other interesting terms are mass-like terms in G’s which give superpoten-

tials for the N = (1, 1) scalar and field-strengths as well as possible kinetic

terms for ΞA
± and topologicl terms.
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Abstract

In this short note we discuss possible actions for the d = 2, N = (2, 2) large
vector multiplet of [22, 23]. We explore two scenarios that allow us to write
kinetic and superpotential terms for the scalar field-strengths, and write kinetic
terms for the spinor invariants that can introduce topological terms for the
connections.
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1 Introduction

Generalized Kähler manifolds, which are torsionful manifolds equipped with
two complex structures [2], arise as target space for d = 2, N=(2, 2) σ-models
with both twisted chiral and chiral superfields [16], or semichiral superfields
[15]. These manifolds and their world-sheet origins are subject to growing
interest for both mathematicians and string theorists [2, 55].

Recently, new N=(2, 2) multiplets were introduced [22, 24] to gauge isome-
tries in generalized Kähler manifolds [6] and to show that the duality intro-
duced in [10] is, in fact, T-duality [23, 25]; in particular it was shown that
this T-duality relates (twisted) chiral multiplets (χ)φ to semichiral multiplets
XL,R,

K(φ, φ̄, χ, χ̄, x)
T-duality←→ K̃(XL,XR, X̄L, X̄R, x) , (1.1)

where x are arbitrary spectator fields. In [22] it was shown that the action for
the semichiral vector multiplet (gauging the RHS of eq. 1.1) corresponds to
that of one ordinary vector multiplet field-strength and three scalar multiplets.
However, the large vector multiplet (gauging the LHS of eq. 1.1) has four
extra spinor multiplets that can complicate the construction of kinetic terms
by introducing higher derivative actions.

In this note we address this problem. We find two possible types of actions,
one consisting of chiral field-strengths and the other consisting of twisted chiral
field-strengths where higher derivative terms are explicitly eliminated using
particular field redefinitions. We then discuss possible superpotentials that
can accompany those kinetic terms, as well as actions for the spinor invariants,
which are found to be field theories with first derivatives for both bosons and
fermions. Finally, we give the modified matter couplings due to the field
redefinitions.

Throughout this paper we follow the notation of [23].

2 Review: The large vector multiplet in N =

(2, 2) and N=(1, 1) superspace

We start our discussion with a Kähler potential for (twisted) chiral superfields
with a gauged isometry

K(i(φ− φ̄) + V φ , i(χ− χ̄) + V χ , φ+ φ̄− χ− χ̄+ V ′) ; (2.2)

we use the notation of [23] where the transformation properties for the three
(real) superfields are

δV ′ = −Λ− Λ̄ + Λ̃ + ¯̃Λ , δV φ = i(Λ̄− Λ) , δV χ = i( ¯̃Λ− Λ̃) . (2.3)
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These combine to give the complex potentials:

V L = 1
2
(−V ′ + iV φ − iV χ) → δV L = Λ− Λ̃ ,

V R = 1
2
(−V ′ + iV φ + iV χ) → δV R = Λ− ¯̃Λ , (2.4)

along with their complex conjugates, which are potentials for the semichiral
gauge-invariant field-strengths

G+ = D̄+V
L , G− = D̄−V R , Ḡ+ = D+V̄

L , Ḡ− = D−V̄ R , (2.5)

and eight chiral and twisted chiral field-strengths:

W = iD̄+D̄−V χ , B = iD̄+D̄−(−V ′ + iV φ) ,

W̄ = iD+D−V χ , B̄ = iD+D−(−V ′ − iV φ) ,

W̃ = iD̄+D−V φ , B̃ = iD̄+D−(−V ′ − iV χ) ,
¯̃W = iD+D̄−V φ , ¯̃B = iD+D̄−(−V ′ + iV χ) . (2.6)

These can be expressed asN=(2, 2) supercovariant derivatives on the invariant
spinors:

W = +(D̄+G− + D̄−G+) , B = i(D̄+G− − D̄−G+) ,

W̄ = −(D+Ḡ− + D−Ḡ+) , B̄ = i(D+Ḡ− − D−Ḡ+) ,

W̃ = −(D̄+Ḡ− + D−G+) , B̃ = i(D̄+Ḡ− − D−G+) ,
¯̃W = +(D+G− + D̄−Ḡ+) , ¯̃B = i(D+G− − D̄−Ḡ+) . (2.7)

The descent to N=(1, 1) uses the decompositions of the N=(2, 2) derivatives
and fields:

D± = 1
2
(D± − iQ±) and G±| = Ξ1

± + iΞ2
± (2.8)

where | indicates projection to N = (1, 1). We use a real basis of N = (1, 1)
gauge-invariant fields [23]:

q̂φ = −i1
2
(Q[+Ξ1

−] −D[+Ξ2
−]) , iD±Ξ1,2

∓ ,

q̂χ = −i1
2
(Q(−Ξ1

+) +D(+Ξ2
−)) , q̂′ = −i1

2
Q[+Ξ2

−] , (2.9)

as well as the field-strength for the N=(1, 1) connections A± = 1
4
Q±(V φ±V χ):

f = −i(Q+Ξ2
− +Q−Ξ2

+) = i(D+A− +D−A+) . (2.10)
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The linear relations between the N =(2, 2) and N =(1, 1) invariants could be
summarized in the matrix equation:

L =




W
B
W̄
B̄

W̃

B̃
¯̃W
¯̃B




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2




−i −i 0 0 0 −1 0 −i
1 −1 i −i −i 0 1 0
i i 0 0 0 −1 0 i
1 −1 −i i i 0 1 0
i i 0 0 1 0 0 −i
1 −1 −i −i 0 −i −1 0
−i −i 0 0 1 0 0 i

1 −1 i i 0 i −1 0







iD+Ξ1
−

iD−Ξ1
+

2iD+Ξ2
−

2iD−Ξ2
+

2q̂φ

2q̂χ

2q̂′

f




= UL′

(2.11)

3 Possible candidates for large multiplet ac-

tion

3.1 Näıve kinetic terms for q̂′, q̂φ,χ and f

A generic, Lagrange density in the (twisted) chiral invariants has eight free
parameters1. These correspond to two 2× 2 Hermitian matrices sc,t = s†c,t:

Lkin = (W,B)sc

(
W̄
B̄

)
+ (W̃ , B̃)st

(
¯̃W
¯̃B

)
= LiLjSij (3.12)

Reduction of such a density to N=(1, 1) is straightforward using the matrices
S (eq. 3.12), U (eq. 2.11), and the complex structures J± = diag(i,−i,±i,∓i);
after integration by parts we find:
∫
D+D−Q+Q−Lkin = 2

∫
D+D−(UT (J+SJ− − J+J−S)U)ijD+L

′iD−L
′j

=

∫
D+D−S

′
ijD+L

′iD−L
′j . (3.13)

Terms of the form D[±]D±ΞA
∓ lead to second derivatives on spinors and are,

therefore, to be avoided. An Ansatz that leads to this desired result involves
a particular choice of linear field redefinitions:

L′′ = U ′L , U ′ =

(
1 0
α 1

)
U , L′′1,2,3,4 = 0

A± → A± + α
(±)
B ΞB

± , q̂i → q̂i + β
i(±)
B D±ΞB

∓ , B = 1, 2 (3.14)

1Terms mixing chiral and twisted chiral fields lead to total derivatives and could be
interesting for global considerations.
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and parameters sc,t
2 Where all blocks of are 4× 4.

The matrix U ′ is invertible and we therefore require, to propagate all field-
strengths, that J+SJ−− J+J−S has four vanishing eigenvalues. Diagonalizing
S we find four pair of eigenvalues, two pairs due to sc and two pairs due to st
that brings us to the following classes of consistent kinetic terms:

• Chiral: st = 0 , sc is arbitrary hermitian.

• Twisted chiral: sc = 0 , st is arbitrary hermitian.

• Mixed: det sc = det st = 0

One can verify by explicit substitution of the blocks of S ′

S ′ =

(
A B
BT C

)
(3.15)

that these choices indeed satisfy the condition for consistent field redefinition
(

1 αT

0 1

)(
A B
BT C

)(
1 0
α 1

)
=

(
0 0
0 C

)
→ A−BC−1BT = 0 .

(3.16)
Analysis of the nonabelian extension to the large vector multiplet intro-

duces further restrictions on the large vector multiplet action [26], allowing
only the mixed solution and restricting to (twisted) chiral combinations of the
form W ± iB etc. We now present in detail the classes unique to the abelian
case: the chiral and the twisted chiral solutions. The field redefinitions are
listed in table 1.

An explicit form for these kinetic terms after field redefinition in N=(1, 1)
superspace is obtained by reduction:

• Chiral:
Writing the entries of sc explicitly

sc = s =

(
a b+ ic

b− ic d

)
(3.17)

we push Q± through and find:
∫
Q+Q−

[
(W,B)sc

(
W̄
B̄

)]
= (3.18)

1
2

∫
D+(2q̂φc , 2q̂

χ
c , 2q̂

′
c, fc)




d c 0 b
c a −b 0
0 −b d c
b 0 c a


D−




2q̂φc
2q̂χc
2q̂′c
fc


 .(3.19)

where
∫

is the N=(1, 1) measure
∫
d2zD+D−.

2It is impossible to cancel all higher derivative terms solely by adjusting the parameters
sc,t.
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Table 1: Field redefinitions for kinetic terms

Chiral Twisted chiral

st = 0 sc = 0

A± → A
(c)
± = A± + Ξ1

± A
(t)
± = A± − Ξ1

±

f → fc = f + iD(+Ξ1
−) ft = f − iD(+Ξ1

−)

q̂′ → q̂′c = q̂′ + 1
2
iD[+Ξ1

−] q̂′t = q̂′ − 1
2
iD[+Ξ1

−]

q̂χ → q̂χc = q̂χ q̂χt = q̂χ + iD(+Ξ2
−)

q̂φ → q̂φc = q̂φ − iD[+Ξ2
−] q̂φt = q̂φ

• Twisted chiral:
In a similar fashion, we set the entries st = s and reduce the twisted
chiral action to N=(1, 1):

∫
Q+Q−

[
(W̃ , B̃)st

(
¯̃W
¯̃B

)]
= (3.20)

1
2

∫
D+(2q̂φt , 2q̂

χ
t , 2q̂

′
t, ft)




−a c b 0
c −d 0 −b
b 0 −d c
0 −b c −a


D−




2q̂φt
2q̂χt
2q̂′t
ft


 .

3.2 Mass-like terms

We now investigate terms of the form

∫
iD̄+D̄−Pc(W,B)+

∫
iD̄+D−Pt(W̃ , B̃)+

∫
iD+D−P̄c(W̄ , B̄)+

∫
iD+D̄−P̄t( ¯̃W, ¯̃B)

(3.21)
that arise naturally from a näıve mass term for the invariant semichiral spinors
G±, e.g.,

∫
D+D−D̄+D̄− (G+G−) =

∫
D+D−

(
D̄−G+D̄+G−

)
= 1

4

∫
D+D−

(
W 2 +B2

)
,

(3.22)
and reduce to N = (1, 1) superspace in a straightforward manner due to the
(twisted) chirality of the field-strengths [22].

We construct sensible candidates by taking into account the field redefini-
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tions of section 3.1, and requiring the absence of terms of the form

∫
D+D−

(
D+ΞA

−mABD−ΞB
+

)
, (3.23)

which give, when reduced to components, higher derivatives on spinors. As
we now see, these terms can give:

• Superpotentials for q̂′c,t, q̂
φ,χ
c,t and fc,t.

• Kinetic terms for ΞA
± which are first order in derivatives.

• Topological terms.

3.2.1 Superpotentials for q̂′, q̂φ,χ and f

After carrying out the field redefinitions of sec. 3.1 we have, in each scenario,
four field-strengths that contain only the redefined q̂′c,t, q̂

φ,χ
c,t and fc,t. We can,

therefore, write in the chiral scenario any function for Pc(W,B) (c.f., eq. 3.21)
which reduces to N=(1, 1) superspace as:

2

∫
iD+D−Re

(
Pc(2q̂

χ
c + ifc, q̂

′
c − iq̂φc )

)
. (3.24)

In a similar fashion we write in the twisted chiral scenario a superpotential
Pt(W̃ , B̃) (c.f., eq. 3.21) that reduces to N=(1, 1) superspace as:

2

∫
iD+D−Re

(
Pt(2q̂

φ
t − ift, q̂′t + iq̂χt )

)
. (3.25)

Particular examples of such superpotentials include mass and Fayet-Illiopoulos
terms.

3.2.2 Kinetic and topological terms for ΞA
±

After chiral field redefinition, we can write combinations of the twisted chiral
field strengths:

W̃ + iB̃ = 2iD+(iΞ1
− + Ξ2

−) + q̂φc + q̂χc − iq̂′c − i
2
fc ,

W̃ − iB̃ = 2iD−(iΞ1
+ − Ξ2

+) + q̂φc − q̂χc + iq̂′c − i
2
fc , (3.26)

that separate left and right spinors, and introduce a generic, “harmolomor-
phic”3, function for the twisted chirals:

Pt(W̃ , B̃) = Pt+(W̃ + iB̃) + Pt−(W̃ − iB̃) , (3.27)

3Since it obeys ∂ ¯̃W
Pt = ∂ ¯̃B

Pt = ∂W̃+iB̃∂W̃−iB̃Pt = 0.
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that contains no bad terms.
A quadratic function in W̃±iB̃ generates kinetic terms for the components

of the spinors ΞA
±:

ΞA
±
∣∣ = ΞA

± , D±ΞA
±
∣∣ = V A

++
=

,
D−ΞA

+

∣∣ = bA

D+ΞA
−
∣∣ = b′A

, D+D−ΞA
±
∣∣ = ξA± . (3.28)

When reducing a term of the form, e.g., D−ΞA
+D−ΞB

+ appearing in (W̃ − iB̃)2

we find4

D+D−(D−ΞA
+D−ΞB

+) = ∂=V
(A
++ b

B) + ξ
(A
+ ∂=Ξ

B)
+ . (3.29)

Note that (W̃±iB̃)2 also introduce terms of the form D±ΞA
∓f , which, when

reduced to components using

f | = f , D±f | = λ± , D+D−f | = F = ∂++A= − ∂=A++ , (3.30)

gives terms such as bF which are topological.
In the twisted chiral scenario we write the combinations

W + iB = 2iD−(Ξ2
+ − iΞ1

+) + q̂φt − q̂χt + iq̂′t − i
2
ft ,

W − iB = 2iD+(Ξ2
− − iΞ1

−)− q̂φt − q̂χt − iq̂′t − i
2
ft , (3.31)

for the chiral field-strengths which allows us to write kinetic terms for the
spinor invariants such as

Pc(W,B) = Pc+(W + iB) + Pc−(W − iB) . (3.32)

4 Matter couplings revised

In [22, 23] we discussed the reduction of the invariant Kähler potential (2.2)
and wrote down the couplings of the large vector multiplet to (twisted) chiral
matter. In particular, we wrote the gauge covariant derivative

∇±ϕi = D±ϕ
i − A±ki , ϕi = (φ, φ̄, χ, χ̄) , LkK = 0 (4.33)

which couples ϕi minimally to the connections. When including the action
terms, the field redefinitions of section 3.1 modify the matter couplings. In
the chiral scenario, we change

∇±ϕi − Ξ1
±k

i = ∇c
±ϕ

i (4.34)

4These terms can be interpreted as a twist of known ghost actions with −3/2 the ghost
number [27]. I thank Martin Roček and Cumrum Vafa for pointing this out.
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and keep the form of the reduced Lagrange density5

Lm(c) =
(
ΞA
+ +∇c

+ϕ
iEiCE

CA
)
EAB

(
ΞB
− + EBDEDj∇c

−ϕ
j
)

+∇c
+ϕ

i
(
Eij − EiAEABEBj

)
∇c
−ϕ

j

+iKik
k
(
q̂φc (J i+k + J i−k) + q̂χc (J i+k − J i−k) + q̂′cΠ

i
k

)
, (4.35)

where we introduce the matrices

Ekl = Kij

(
J i+kJ

j
−l − 1

2
Πi

kδ
j
l − 1

2
δikΠ

j
l

)
(4.36)

EAl = Kij

(
(J i+k + J i−k)J

j
−l − Πi

kδ
j
l

Πi
kJ

j
−l + (J i+k + J i−k)δ

j
l

)
kk (4.37)

EkB = Kij

(
J i+k(J

j
+l + J j−l)− δikΠj

l , J
i
+kΠ

j
l + δik(J

j
+l + J j−l)

)
kl (4.38)

EAB = Kij

(
(J i+k + J i−k)(J

j
+l + J j−l) (J i+k + J i−k)Π

j
l

Πi
k(J

j
+l + J j−l) Πi

kΠ
j
l

)
kkkl (4.39)

and EAB is the inverse of EAB.
In the twisted chiral scenario we change (A

(c)
± , q̂

′
c, q̂

φ,χ
c )→ (A

(t)
± , q̂

′
t, q̂

φ,χ
t ) and

modify the matrices

EAl = Kij

(
−(J i+k − J i−k)J j−l + Πi

kδ
j
l

Πi
kJ

j
−l + (J i+k − J i−k)δj l

)
kk (4.40)

EkA = Kij

(
J i+k(J

j
+l − J j−l) + δikΠ

j
l , J

i
+kΠ

j
l − δik(J j+l − J j−l)

)
kl (4.41)

EAB = Kij

(
−(J i+k − J i−k)(J j+l − J j−l) −(J i+k − J i−k)Πj

l

Πi
k(J

j
+l − J j−l) Πi

kΠ
j
l

)
kkkl .(4.42)

It is useful to investigate the low-energy properties of such σ-models when
the kinetic terms for q̂φ,χ, q̂′ and f flow to zero (e.g., [28]). We now show two
simple cases where the Lagrange-densities due to the same Kähler potential
(2.2) in the (twisted)chiral scenario are compatible:

• Quotient action: If there are no kinetic terms for Ξ1,2
± the two Lagrange-

densities are related by field redefinitions:

q̂φc = q̂φt −iD[+Ξ2
−] , q̂χc = q̂χt −iD(+Ξ2

−) , q̂′c = q̂′t+iD[+Ξ1
−] , Ac± = At±+2Ξ1

± .
(4.43)

When integrating both ΞA
± and A± we therefore obtain the same quo-

tients.
5If the density is invariant only up to generalized Kähler transformations we replace the

Lie derivatives (KiJ
i
±jk

j , KiΠ
i
jk

j) with the moment maps (−µ± , − µ
Π

) [9].

104



• T-duality: When adding a linear term that constrains the field-strengths
to vanish

K → K − 1
2
(X̂LVL + ˆ̄XLV̄L + X̂RVR + ˆ̄XRV̄R) . (4.44)

we find [23] that Ξ1,2
± are also constrained to vanish, which, in both cases,

gives the action:

L = Kij(J
i
+kJ

j
−l − 1

2
Πi

kδ
j
l − 1

2
δikΠj

l)∇+ϕ
k∇−ϕl

+ iq̂φ(Ki(J
i
+j + J i−j)k

j + i(X̃L − ¯̃XL + X̃R − ¯̃XR))

+ iq̂χ(Ki(J
i
+j − J i−j)kj − i(X̃L − ¯̃XL − X̃R + ¯̃XR))

+ iq̂′(KiΠ
i
jk
j − (X̃L + ¯̃XL + X̃R + ¯̃XR))

+ i
2
f(X̃L + ¯̃XL − X̃R − ¯̃XR)) (4.45)

5 Conclusion

In this paper we presented two possible candidates, which are unique to the
abelian case, for Kähler and superpotential terms for the large vector mul-
tiplet action where undesired higher derivative terms are removed by field
redefinitions and choice of gauge invariants present in the Kähler potential.
We then write possible kinetic terms for the spinor invariants which include
twisted conformal field theories and topological terms. This work concludes
our presentation of the N = (2, 2) multiplets [22, 23, 26] which is a step to-
wards treating generalized Kähler geometry on similar footing as torsion-free
complex manifolds that arise naturally as target spaces for supersymmetric
σ-models. Future work along this avenue may include a full treatment of the
moment maps and generalized Kähler quotients [9].

Another possible generalization resulting from these new gauge multiplets
is the formulation of new gauge linear σ-models (GLSMs) with H-fluxes which
can generalize results such as [29, 31] or mirror symmetry (e.g., [28, 32]). It is
important, however, to note that the IR flow for the spinor invariants action
of sec. 3.1 must be studied first as it may lead to new physical degrees of
freedom in the effective theory.
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Chapter 6

N = (4, 4) Supersymmetry for

semichirals

N = (4, 4) supersymmetry requires further restrictions on the target geometry

imposing quaternionic algebra on triplets of complex structures. As N = (2, 2)

already exhausted all possibilities of derivatives appearing in the integrand,

there is no straightforward superspace description giving N = (4, 4) super-

symmetric models, though projective and harmonic superspace exist (e. g. [60]

and [61] respectively for review.)

For Kähler submanifolds, N = (4, 4) supersymmetry restricts the struc-

ture to hyperkähler manifolds which is of great interest in both physics and

mathematics [12]. In this paper, we studied the conditions for N = (4, 4) su-

persymmetry for a model with semichiral fields only. We write down an Ansatz

that respects the semichirality condition and investigate the constraints on the

structures due to extension to N = (4, 4) supersymmetry.
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Abstract

We describe the conditions for extra supersymmetry in N = (2, 2) supersym-

metric nonlinear sigma models written in terms of semichiral superfields. We

find that some of these models have additional off-shell supersymmetry. The

(4, 4) supersymmetry introduces geometrical structures on the target-space

which are conveniently described in terms of Yano f -structures and Magri-

Morosi concomitants. On-shell, we relate the new structures to the known

bi-hypercomplex structures.
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1 Introduction

The target-space geometry of two-dimensional supersymmetric nonlinear sigma

models has been extensively discussed in the literature. In [16], and partly in

[33], the general case including a B-field was described in (1, 1) superspace.

For (2, 2) supersymmetry the target-space geometry was shown to be biher-

mitean, i.e., the metric is hermitean with respect to two complex structures

J(±). Off-shell, a manifest (2, 2) formulation was only found when the complex

structures commute1. Similar results hold for (4, 4) supersymmetry: A mani-

1Some other models with off-shell (2,2) supersymmetry were found in [15]–[11].

108



fest (2, 2) formulation was only found when (some of) the complex structures

commute.

More recently the bihermitean geometry of [16] has been described as gen-

eralized Kähler geometry [2], a subclass of generalized complex geometry [36].

The intimate relation of this description to sigma models is elucidated in,

e.g., [37]–[18]. In particular, as shown in [14], a complete (2, 2) superspace de-

scription of generalized Kähler geometry, including the case when the complex

structures do not commute, requires semichiral fields [15] in addition to the

chiral and twisted chiral fields; this had been conjectured but not proven by

Sevrin and Troost [34]. The superspace lagrangian K is further shown to be

a potential for the metric and B-field [40];

The bi-hypercomplex geometry of [16] has likewise been described as gen-

eralized hyperkähler geometry in [41] and [42].

In the present paper, we discuss models written in terms of semichiral

fields only. We ask under which conditions such a model can carry (4, 4)

supersymmetry. A limited class of such models was recently discussed in [43].

There the extra transformations were taken to be linear in the derivatives of the

fields, and the target-space was restricted to be four-dimensional. It was found

that no interesting solution for N = (4, 4) supersymmetry exists, but instead

one can find an interesting solution for N = (4, 4) twisted supersymmetry.

This implied that the target-space must have pseudo-hypercomplex geometry.

Some models including semichiral but no chiral or twisted chiral fields had

been treated previously in [44]; they include additional auxiliary (4, 4) fields,

and only become purely semichiral models on-shell.

Models with commuting complex structures, described by n chiral and m

twisted chiral fields, have off-shell (4, 4) supersymmetry when n = m and the

Lagrangian K satisfies certain differential constraints [16]. Purely semichiral

models have to have an equal number of left and right semichiral fields [15].

Here we find that for some such models whose Lagrangian again satisfies cer-

tain differential constraints, there is an off-shell algebra. This algebra has an

interpretation in terms of an integrable Yano f -structure on TM ⊕ TM , the

sum of two copies of the tangent bundle of the target-space. We already know

from [16] that a sigma model with (4, 4) supersymmetry has two quaternion-

worth of complex structures, JA
(±), living on TM and we find that all of these

structures fit together nicely. In particular we resolve the interplay between the
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various integrability conditions involving Nijenhuis tensors and Magri-Morosi

concomitants.

The generalized Kähler potential for those semichiral models that are in-

variant under the off-shell algebra satisfy a constraint. This is analogous to

the (4, 4) conditions in [16] which are realized for commuting complex struc-

tures by the N = 4 twisted chiral multiplet. For a subclass of our models, we

can give a geometric interpretation of the condition as a kind of hermiticity

condition: a certain tensor is preserved by the f -structures.

We follow the method used in previous discussions of additional nonman-

ifest supersymmetries, e.g., in [16] and [19]. To study the additional symme-

tries, we make the most general ansatz compatible with the properties of the

superfields, and then read off the constraints that follow from closure of the

supersymmetry algebra and invariance of the action. The constraints from the

algebra are discussed in section 3, the invariance of the action is presented in

section 5. Often in these investigations field-equations arise and the algebra

only closes on-shell. In section 4 we analyze off-shell closure while postponing

the on-shell discussion to section 6.

2 Preliminaries

This section contains background material needed for the discussions in later

sections.

The (2, 2) supersymmetry algebra for the covariant derivatives is given by

{D±, D̄±} = i∂
++
=

, (2.1)

and the left and right semichiral fields Xa,a′ , and left and right anti-semichiral

fields X̄ā,ā′ [15] satisfy

D̄+Xa = 0 , D̄−Xa′ = 0, D+X̄ā = 0 , D−X̄ā′ = 0 . (2.2)

A useful collective notation, often used in previous papers, is XL = (Xa, X̄ā)

and

XR = (Xa′ , X̄ā′). When we need a notation for all of the fields we write Xi

with i = (L,R).

We shall consider the generalized Kähler potential K and the sigma model
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it defines through the action

S =

∫
d2ξD2D̄2K(Xi) . (2.3)

The target-space manifoldM4d coordinatized by the d left and d right semichi-

ral fields (and their conjugates) carries bihermitean geometry. This means that

there are two complex structures J(±), a metric g hermitean with respect to

both of these and a closed three form H such that [16]

J2
(±) = −11

∇(±)J(±) = 0, Γ(±) = Γ0 ± 1

2
g−1H

J t
(±)gJ(±) = g

dc+ω+ + dc−ω− = 0, H = dc+ω+ = −dc−ω− , (2.4)

where Γ0 is the Levi-Civita connection for the metric g and dc(±) := J(±)(d) .

The expression for dc becomes most simple in complex coordinates: dc =

i(∂̄ − ∂).

In later sections we shall also need the explicit form of the complex struc-

tures: They are defined in terms of the matrices [14]

KLR :=

(
Kaa′ Kaā′

Kāa′ Kāā′

)
, (2.5)

and with C := [j,K], they read

J(+) =

(
j 0

K−1
RLCLL K−1

RLjKLR

)

J(−) =

(
K−1

LRjKRL K−1
RLCRR

0 j

)
(2.6)

with j denoting a canonical 2d× 2d complex structure

j :=

(
i 0

0 −i

)
. (2.7)
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The description (2.4) applies to bihermitean geometry in general, which

may be described using chiral, twisted chiral and semichiral fields [14]. A

special feature of the case we are interested in here is that, although locally

we may always write H = dB, for the model with only semichiral fields B

is globally defined (away from type change loci [2]). For more aspects of the

global structure of bihermitean geometry, see [45].

The data (g,B, J(±)) in (2.4) may be packaged as structures on TM⊕T ∗M
in the form of generalized Kähler geometry [2].

3 Nonmanifest supersymmetries

3.1 Ansatz for non-manifest supersymmetries

Requiring that the derivatives are covariant with respect to the additional

supersymmetries, e.g., D̄+(δXa) = δ(D̄+Xa) = 0, leads to the following general

ansatz for N = (4, 4) supersymmetry:

δXa = ε̄+D̄+f
a(XL,R, X̄L,R) + gab (Xc)ε̄−D̄−Xb + hab (Xc)ε−D−Xb ,

δX̄ā = ε+D+f̄
ā(XL,R, X̄L,R) + ḡāb̄ (X̄c̄)ε−D−X̄b̄ + h̄āb̄ (X̄

c̄)ε̄−D̄−X̄b̄ ,

δXa′ = ε̄−D̄−f̃a′(XL,R, X̄L,R) + g̃a
′

b′ (Xc′)ε̄+D̄+Xb′ + h̃a
′

b′ (Xc′)ε+D+Xb′ ,

δX̄ā′ = ε−D− ¯̃f ā′(XL,R, X̄L,R) + ˜̄gā
′

b̄′ (X̄
c̄′)ε+D+X̄b̄′ + ¯̃hā

′
b̄′ (X̄

c̄′)ε̄+D̄+X̄b̄′ ,(3.1)

where ε± are the transformation parameters. This ansatz is covariant under

left and right holomorphic transformations, i.e., coordinate transformations of

the form2

Xa → X′a(Xb) , Xā → X′ā(Xb̄) ,

Xa′ → X′a′(Xb′) , Xā′ → X′ā′(Xb̄′) . (3.2)

2Strictly speaking, these are not the most general left and right holomorphic transfor-
mations, as they also preserve the choice of polarization, i.e., the separation into left and
right coordinates.
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A useful way of rewriting these nonmanifest transformations introduces the

matrices U (±) and V (±) defined as

δ̄±X := δ̄±




Xa

X̄ā

Xa′

X̄ā′


 = δ̄±

(
XL

XR

)
= U (±)ε̄±D̄±X , δ±X = V (±)ε±D±X(3.3)

where3

U (+) =




∗ fa
b̄

fa
b′ fa

b̄′

∗ 0 0 0

∗ 0 g̃a
′

b′ 0

∗ 0 0 ¯̃hā
′

b̄′



, U (−) =




gab 0 ∗ 0

0 h̄ā
b̄
∗ 0

f̃a′
b f̃a′

b̄
∗ f̃a′

b̄′

0 0 ∗ 0


 (3.4)

and

V (±) =

(
σ1 0

0 σ1

)
Ū (±)

(
σ1 0

0 σ1

)
. (3.5)

Here

σ1 =

(
0 1

1 0

)
. (3.6)

Note that one column in each of the transformation matrices U (±) and V (±) is

arbitrary. For the remainder of the paper, we set the arbitrary entries to zero.

Doing so provides us with full integrability of the transformation matrices and

an interpretation of the off-shell algebra in terms of Yano f -structures. The

consequences of keeping the arbitrariness is discussed briefly in section 7.

3The fundamental tensorial objects are defined in (3.1). Additional covariant indices
denote partial derivatives, e.g., fa

i := ∂if
a, etc.
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For later use, we introduce the projection operators P±, P̂±:

P+ =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 , P̂+ =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 ,

P− =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , P̂− =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


 . (3.7)

3.2 Magri-Morosi concomitant

To interpret the expressions we find below, we use the Magri-Morosi concomi-

tant [46, 47] defined for two endomorphisms I and J of the tangent bundle

TM of a manifold M as

M(I, J)ijk := −M(J, I)ikj = I ljJ
i
k,l − J l

kI
i
j,l − I ilJ l

k,j + J i
lI

l
j,k . (3.8)

This concomitant has previously been used when discussing supersymmetry

algebra, e.g., in discussing (1, 0) and (1, 1) formulations of certain (p, q) sigma

models in [48] and discussing generalized complex geometry for (2, 2) models

in [38].

The Magri-Morosi concomitant relates to the simultaneous integrability

of two structures and is a tensor only when [I, J ] = 0. More precisely, two

commuting complex structures are simultaneously integrable if and only if

their Magri-Morosi concomitant vanishes. The part antisymmetric in j, k is

the Nijenhuis concomitant N (I, J); when I = J this becomes the Nijenhuis

tensor N (I). If N (I) = 0, then I is integrable.

Assuming that we have one I-connection ∇(I) and one J-connection ∇(J)

differing only in the sign of the torsion Γ(I/J) = Γ(0)±T , we can rewriteM as

M(I, J)ijk = I lj∇(J)
l J i

k − J l
k∇(I)

l I ij − I il∇(J)
j J l

k + J i
l∇(I)

k I lj − [I, J ]imΓ
(J) m
jk

:= M̂(I, J)ijk − [I, J ]imΓ
(J) m
jk . (3.9)

We shall need this version in section 6.4 below.

114



Finally, we note that in the special case when I ij and J i
j are curl-free in

the lower indices, the concomitant simplifies to

M(I, J)ijk = (JI)ij,k − (IJ)ik,j . (3.10)

3.3 Constraints from the supersymmetry algebra

Imposing the left-with-right commutator algebra for the ansatz (3.3) relates

the Magri-Morosi concomitant of transformation matrices to the commutator

of the same matrices as follows

[δ̄±, δ̄∓]Xi = 0 ⇐⇒ M(U (±), U (∓))ijkD̄±XjD̄∓Xk = [U (±), U (∓)]imD̄±D̄∓Xm ,

[δ̄±, δ∓]Xi = 0 ⇐⇒ M(U (±), V (∓))ijkD̄±XjD∓Xk = [U (±), V (∓)]imD̄±D∓Xm .(3.11)

These relations can be rewritten covariantly using M̂ defined in (3.9) as

M̂(U (±), U (∓))ijkD̄±XjD̄∓Xk = [U (±), U (∓)]im

(
D̄±D̄∓Xm + Γ

(∓) m
jk D̄±XjD̄∓Xk

)

= [U (±), U (∓)]im∇̄∇(∓)
± D̄∓Xm ,

M̂(U (±), V (∓))ijkD̄±XjD∓Xk = [U (±), V (∓)]im

(
D̄±D∓Xm + Γ

(∓) m
jk D̄±XjD∓Xk

)

= [U (±), V (∓)]im∇̄∇(∓)
± D∓Xm . (3.12)

In the last equalities we have identified the pullback of the covariant derivative,

for use in the on-shell section. Note that constraints on the semichiral fields

imply that some of the equations vanish trivially.

The constraints from the left-with-left and right-with-right part of the al-

gebra involve the Nijenhuis tensor:

[δ̄±, δ̄±]Xi = 0 ⇐⇒ N (U (±))ijkD̄±XjD̄±Xk = 0 . (3.13)

Finally, using the algebra (2.1), the commutator [δ±, δ̄±]Xi = iε̄±ε±∂
++
=

Xi yields

M(U (±), V (±))ijkD̄±XjD±Xk =
[
(UV )(±)i

j + δij

]
D̄±D±Xj

+
[
(V U)(±)i

j + δij

]
D±D̄±Xj . (3.14)
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4 Off-shell interpretation of the algebra con-

straints

In this section we analyze the constraints found in section 3.3, separating the

conditions into algebraically independent parts.

4.1 The conditions for off-shell invariance

Off-shell, DXDX and DDX are independent structures and hence both sides

in equation (3.11) and (3.14) must vanish independently. This gives the con-

ditions

M(U (+), U (−))ijk = 0 , j 6= a, k 6= a′

M(U (+), V (−))ijk = 0 , j 6= a, k 6= ā′

M(U (+), V (+))ijk = 0 , j 6= a, k 6= ā , (4.1)

and

[U (+), U (−)]ij = 0 , j 6= a, a′

[U (+), V (−)]ij = 0 , j 6= a, ā′ , (4.2)

and finally

(UV )(+)i
j = −δij , j 6= ā , (V U)(+)i

j = −δij , j 6= a , (4.3)

together with their complex conjugate equations. Setting the arbitrary entries

in the transformation matrices to zero sets the undetermined columns in (4.3)

to zero,

(UV )(+)i
ā = (V U)(+)i

a = (UV )
(−)i
ā′ = (V U)

(−)i
a′ = 0 . (4.4)

The constraint (3.13) implies that U (±) and V (±) are integrable on some

subspace. When we impose (4.4), the integrability extends to the full space:

N (U (±))ijk = 0 . (4.5)

The conditions in (4.1) may be written as in (3.10) plus curl terms;

M(U (±), V (±))ikj = (V U)
(±)i
j,k − (UV )

(±)i
k,j +U

(±)l
j V

(±)i
[k,l] −V

(±)l
k U

(±)j
[j,l] = 0 . (4.6)
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The first two terms vanish due to (4.3). The form of the ansatz (3.4) reveals

that most of the third and fourth terms also vanish identically. The remaining

ones may be shown to be zero due to (4.3) and the integrability (4.5). As an

example of the last statement consider

U
(+)l
j V

(+)a′

[k,l] − V
(+)l
k U

(+)a′

[j,l] (4.7)

which is nonvanishing for j, k = b′, d′ when it becomes

h̃a
′

[b′,c′]g̃
c′
d′ − g̃a

′
[d′,c′]h̃

c′
b′ . (4.8)

A short calculation then shows that this combination is zero due to (4.3)

h̃a
′

c′ g̃
c′
d′ = g̃a

′
c′ h̃

c′
d′ = −δa′d′ , (4.9)

and (4.5)

g̃c
′

[d′ g̃
a′
b′],c′ − g̃a

′
c′ g̃

c′
[b′,d′] = 0 . (4.10)

In summary, off-shell we find the following algebraic constraints in all sec-

tors not projected out by the semi-chiral constraints:

• The transformation matrices U (±), V (±) all commute.

• The products U (±)V (±) and V (±)U (±) equal minus one.

• The transformation matrices are all separately integrable.

• The Magri-Morosi concomitant vanishes for all two pairs of the transfor-

mation matrices. We showed that some of these, namely the last one in

(4.1) relating U (±) with V (±), follow from the above three constraints.

The zeros in the arbitrary columns of the transformation matrices gives full

integrability as in (4.5) and the relations (4.4). This makes the products

U (±)V (±) and V (±)U (±) act as projection operators and we find a nice geometric

interpretation in terms of f -structures.
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4.2 A Yano f-structure

The fact that the matrices U (±) (and V (±)) are degenerate and satisfy (4.3)

and (4.4),

U (+)V (+) = −diag(1, 0, 1, 1), V (+)U (+) = −diag(0, 1, 1, 1),

U (−)V (−) = −diag(1, 1, 1, 0), V (−)U (−) = −diag(1, 1, 0, 1) (4.11)

prevents a direct interpretation in terms of complex structures on the tangent

space TM . We are led to consider endomorphisms on TM ⊕ TM and the

weaker f -structures instead. The following 8d × 8d matrices are f -structures

in the sense of Yano [49]:

F(±) :=

(
0 U (±)

V (±) 0

)
=⇒ F3

(±) + F(±) = 0 . (4.12)

This follows directly from conditions in (4.3). Moreover, −F2
(±) and 1 + F2

(±)

define integrable distributions, as can be shown using (4.3) and (4.5). More

explicitly: Using the projectors (3.7), the conditions (4.11) may be written as

P̂± = 1 + V (±)U (±) , P± = 1 + U (±)V (±) . (4.13)

Then we may define

m(±) := 1 + F2
(±) =

(
P± 0

0 P̂±

)
, l(±) := −F2

(±) =

(
1− P± 0

0 1− P̂±

)
.

(4.14)

These fulfill

l(±) +m(±) = 1, l2(±) = l(±), m2
(±) = m(±) , l(±)m(±) = 0 (4.15)

and

F(±)l(±) = l(±)F(±) = F(±), m(±)F(±) = F(±)m(±) = 0. (4.16)

The operators l(±) and m(±) applied to the tangent space at each point of the

manifold are complementary projection operators and define complementary

distributions in the sense of Yano: Λ±, the first fundamental distribution,

118



and Σ±, the second fundametal distribution, corresponding to l± and m±, of

dimensions 6d and 2d, respectively.

Let NF(±)
denote the Nijenhuis tensor for the f -structures F(±). By a

theorem of Ishihara and Yano [50] we have that

i. Λ± is integrable iff mi
(±)lN l

F(±)jk
= 0,

ii. Σ± is integrable iff N i
F(±)jk

mj
(±)lm

k
(±)m = 0.

From the definition of the f -structures in (4.12), one can derive that these two

conditions are fulfilled. Hence, the distributions Λ± and Σ± are integrable.

4.3 Additional twisted supersymmetry

In a previous paper [43] we investigated the special case of four-dimensional

target space and required the transformations (3.1) to be linear. There, it was

found that no solution with interesting geometry exists which possesses addi-

tional supersymmetry. On the other hand, one could impose additional twisted

linear supersymmetry [δ, δ] = −∂ for a solution with interesting geometrical

properties.

In the general case treated in this paper, we have found that additional

supersymmetry can indeed be imposed. But also additional twisted super-

symmetry could be considered. The difference would be that contraint (3.14)

would receive a minus sign,

M(U (±), V (±))ijkD̄±XjD±Xk =
[
(UV )(±)i

j − δij
]
D̄±D±Xj

+
[
(V U)(±)i

j − δij
]
D±D̄±Xj . (4.17)

with the effect that the structure defined in (4.12) would be a f -structure of

hyperbolic type,

F(±)(F2
(±) − 1) = 0, (4.18)

that is, generalizations of product structures instead of complex structures.

5 Invariance of the action

The bihermitean geometry of [16] is derived from the (1, 1) sigma model via

two requirements: closure of the algebra and invariance of the action. More
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precisely, the supersymmetry algebra implies the existence of the complex

structures, whereas invariance the action implies the bihermiticity of the metric

and the covariant constancy of the complex structures. Similarly, for (4, 4)

supersymmetry, the algebra implies that the transformations are given in terms

of left and right hypercomplex structures whereas invariance of the action

implies the metric is hermitean with respect to all of these structures and the

left and right connections preserve the the left and right structures respectively.

When, in later sections, we use the knowledge from [16] in understanding our

algebra conditions on-shell we can thus use the existence of a hypercomplex

structures freely, but only require them to be covariantly constant if we assume

that the action is invariant.

At the manifest (2, 2) level the discussion of additional supersymmetries in

the model with (anti)chiral fields (the hyperkähler case) follows similar lines

[19]. Extra supersymmetries lead to new complex structures as part of the

conditions for closure of the algebra and invariance of the (2, 2) action leads

to to the requirement that they are covariantly constant and that the metric

is bihermitean.

When the complex structures commute and the sigma model is describable

in (2, 2) superspace using (an equal number of) chiral and twisted chiral su-

perfields, (4, 4) supersymmetry comes at the price of extra conditions on the

potential K [16]. This is also true for the linear-transformation model in [43].

We expect the same to be true here.

The action (2.3) is invariant under the supersymmetry transformations

(3.3) provided that (
KiU

(+)i
[j

)
k] = 0, j, k 6= a, (5.1)

and analogously for U (−) and V (±). We can write this out as (3.1) a system of

equations for K: (
Kaf

i
[j +Ka′ g̃

a′
[j +Kā′

¯̃hā
′

[j

)
k] = 0 (5.2)

plus analogous relations from U (−) and V (±).

The conditions (5.2) (or (5.1)) have to be satisfied for the generalized

Kähler potential K to allow (4, 4) supersymmetry in a model with noncom-

muting complex structures whose commutator has empty kernel. In this sense

it plays a similar role to the Monge-Ampère equation for models with vanishing

torsion.
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In the four-dimensional case with linear twisted supersymmetry transfor-

mations, it turned out to be possible to solve (5.2), (see [43]) but this is much

harder in general. However, when the curl of g̃ and h̃ vanish, the condition

has an interpretation on TM ⊕ TM much like a hermiticity condition, which

we now turn to.

We combine the Hessian Kij of the Kähler potential into an antisymmetric

tensor on B on TM ⊕ TM as

B =

(
0 K

−Kt 0

)
. (5.3)

The relation (5.1) can be used to show that off-shell the f -structures (4.12)

preserve B on a subspace projected out by the second fundamental projection

operators l(±) defined in (4.16),

l(±)F t
(±)BF(±) l(±) = l(±) B l(±). (5.4)

This may be easily verified using (4.3), which implies V tKtU = −K (except

for one column and one row).

6 On-shell interpretation of the algebra con-

straints

In this section we discuss two main issues: How the conditions derived in

section 3.3 have a larger set of solutions on-shell, and the relation to the un-

derlying (hermitean) bi-hypercomplex geometry derived in [16]. In spirit the

treatment is similar to both the (1, 1) discussion in [16] of extended super-

symmetry and to the hyperkähler derivation in [19]: In [16] it was found that

the left and right complex structures had to commute to get off-shell clo-

sure since the algebra gives a term proportional to this commutator times the

field-equations. In [19] it was found that field equations as well as conditions

from the invariance of the action were needed for closure of the algebra of

non-manifest additional supersymmetries.

Below we separate the conclusions we may draw from closure of the algebra

only and those where in addition we need invariance of the action.
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6.1 On-shell algebra

In this subsection we use a coordinate transformation to derive an explicit

relation between the components of the transformation matrices and the un-

derlying hypercomplex structure. The field equations that follow from the

action (2.3) are

D̄+Ka = 0 , D+Kā = 0 , D̄−Ka′ = 0 , D−Kā′ = 0 . (6.1)

These imply that on-shell, Ka is a semichiral superfield on equal footing with

Xa; we may change coordinates to a left-holomorphic or right-holomorphic

basis with coordinates ZA = {Xa, Ya := Ka} or ZA′ = {Xa′ , Ya′ := Ka′},
respectively [11]. In the left basis, the δ+, δ̄+ transformations become very

simple, whereas in the right basis, the δ−, δ̄− transformations become simple.

Since K(Xa,Xa′) is the generating function for the transformation between the

bases, on-shell it is sufficient to study the transformations that are simple in

one particular basis.

The ansatz for the δ+, δ̄+ transformations is simple in the left basis:

δ+ZA = 0 , δ+Z̄Ā = ε+D+f̄
Ā
, δ̄+ZA = ε̄+D̄+fA , δ̄+Z̄Ā = 0 . (6.2)

Closure of this part of the algebra is very simple; it implies

fAB̄ f̄ B̄C = −δAC , (6.3)

and

fAC[B̄fCD̄] = 0 , (6.4)

where fAB̄ again denotes derivation with respect to Z̄B̄. These are precisely

the conditions found in section 10 of [19], and imply that

J
(1)
(+) =

(
0 fAB̄

f̄ ĀB 0

)
, J

(2)
(+) =

(
0 ifAB̄

−īf ĀB 0

)
, J

(3)
(+) =

(
iI 0

0 −iI

)
(6.5)

generate an integrable hypercomplex structure. Similarly, in the right basis,

the δ− transformations generate a second integrable hypercomplex structure
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so that in total we get a bi-hypercomplex structure,

J
(A)
(±)J

(B)
(±) = −δAB + εABCJ

(C)
(±) . (6.6)

We still need to impose the [δ+, δ−] part of the algebra and want to compare

to the off-shell transformations (3.1). For both of these tasks, we need to go

back to the Xa,Xa′ coordinate basis. For illustrative purposes, we focus on δ̄+.

Comparing (3.1) and (6.2), we immediately find that on-shell

fa(Xi) = fa(Xa, X̄ā, Ka(Xi), Kā(Xi)) . (6.7)

Off-shell, fa may differ from fa by a factor ∆fa, which satisfies D̄+(∆fa(Xa, Ka(Xi))) =

0 on-shell. This gives an off-shell ambiguity in fa. We also have (trivially)

that δ̄+X̄ā = 0. Next we have

δ̄+Ȳā = Kābδ̄
+Xb +KāRδ̄

+XR = 0 (6.8)

and

δ̄+Ya := Kabδ̄
+Xb +KaRδ̄

+XR = ε̄+D̄+fa = ε̄+(fab̄D̄+X̄b̄ + faRD̄+XR) , (6.9)

where fa(Xi) := fa(Xa, X̄ā, Ka(Xi), Kā(Xi)). We can rewrite these equations

as

KLRδ̄
+XR = ε̄+

(
fab̄D̄+X̄b̄ + faRD̄+XR −KabD̄+f

b

−KābD̄+f
b

)
, (6.10)

where the matrix KLR is defined as in (2.5). Since KLR is invertible, we can

find the on-shell transformations δ̄+XR. To find the corresponding functions

g̃a
′

b′ and ¯̃hā
′

b̄′ in (3.1), since we are on-shell, we need to eliminate one type of

term, e.g., D̄+X̄b̄, using the field equations.4 Then (6.10) becomes

KLRδ̄
+XR = ε̄+

(
−(fac̄ −Kabf

b
c̄ )(K−1)c̄dKdR + faR −Kabf

b
R

Kābf
b
c̄ (K−1)c̄dKdR −Kābf

b
R

)
D̄+XR .

(6.11)

4We assume that Kab̄ is invertible, otherwise, we would need to eliminate another type
of term, but the net effect would be the same.
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and we find

g̃e
′

f ′ = (K−1)e
′a[faf ′ −Kabf

b
f ′ − (fac̄ −Kabf

b
c̄ )(K−1)c̄dKdf ′ ]

−(K−1)e
′ā[Kābf

b
f ′ −Kābf

b
c̄ (K−1)c̄dKdf ′ ] ,

¯̃hē
′
f̄ ′ = (K−1)ē

′a[faf̄ ′ −Kabf
b
f̄ ′ − (fac̄ −Kabf

b
c̄ )(K−1)c̄dKdf̄ ′ ]

−(K−1)ē
′ā[Kābf

b
f̄ ′ −Kābf

b
c̄ (K−1)c̄dKdf̄ ′ ] , (6.12)

as well as the constraints

0 = (K−1)e
′a[faf̄ ′ −Kabf

b
f̄ ′ − (fac̄ −Kabf

b
c̄ )(K−1)c̄dKdf̄ ′ ]

−(K−1)e
′ā[Kābf

b
f̄ ′ −Kābf

b
c̄ (K−1)c̄dKdf̄ ′ ] ,

0 = (K−1)ē
′a[faf ′ −Kabf

b
f ′ − (fac̄ −Kabf

b
c̄ )(K−1)c̄dKdf ′ ]

−(K−1)ē
′ā[Kābf

b
f ′ −Kābf

b
c̄ (K−1)c̄dKdf ′ ] . (6.13)

In a similar way, we can find gab , h
a
b as well as their complex conjugates. The

full set of relations will now be discussed in the original coordinates Xi.

6.2 Closure modulo field-equations and relations from

invariance of the action

Though conceptually simple, the final expressions that we found (6.12)–(6.13)

are rather involved and complicate the discussion on the on-shell [δ+, δ−] alge-

bra. Here we present an alternative description that uses only Xi coordinates

and relates directly to the bi-hypercomplex geometry of [16]. We start from

the ansatz (3.1) and only use the field equations to show that the conditions

from closure of the algebra have more solutions on-shell. Whereas in the pre-

vious subsection discussing the on-shell algebra, it was convenient to change

coordinates, here it turns out to be convenient to change the basis for the

covariant derivatives.

Recall the field equations (6.1)

KaiD̄+Xi = 0 , Ka′iD̄−Xī = 0,

KāiD+Xi = 0 , Kā′iD−Xi = 0 . (6.14)

These equations are first order in spinorial derivatives. To be able to use

them to understand the conditions (3.12) (3.14), which contain second order
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spinorial deivatives, we must differentiate (6.14). We are then faced with the

task of relating the plus/minus connections to second and third derivatives of

the generalized Kähler potential K. Since the metric is a nonlinear function

of the Hessian of K, this is not easy. Instead we choose to express the on-

shell condition in terms of the complex structures J(±) defined in (2.6) and use

∇(±)J(±) = 0 to relate them to the connections (assuming invariance of the

action).

We introduce a real basis for the spinor derivatives:

D± :=
1

2
(D± − iQ±) , (6.15)

then (6.14) becomes5

Q+XR = JR
(+)kD+Xk

Q−XL = JL
(−)kD−Xk (6.16)

where we have introduced (components of) the complex structures J(±) as

defined in section 2.

The semichiral conditions rewritten in terms of the real operators (6.15)

and (2.7) read

Q+XL = jD+XL

Q−XR = jD−XR . (6.17)

Combining this with (6.16) and (2.6) we find that on-shell

Q±X := Q±

(
XL

XR

)
= J(±)D±

(
XL

XR

)
= J(±)D±X , (6.18)

which using (6.15) implies

D±Xi = π̄
(±)i
k D±Xk

D̄±Xi = π
(±)i
k D±Xk (6.19)

5Note however that we use full (2, 2) superfield expressions in, e.g., (6.16); we can re-
duce to (1, 1) superspace by restricting to superfields to depend only on half the spinor
coordinates.
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where we have introduced the projection operator

π :=
1

2
(11 + iJ) , (6.20)

and its complex conjugate.

6.3 Relations to bi-hypercomplex geometry

In subsection 6.1 we constructed the bi-hypercomplex structures directly in

terms of the transformations of the left and right holomorphic coordinates,

and related bi-hypercomplex structures to the f -structures implicitly by con-

structing the tensors in the ansatz (3.1) in terms of the same transformations.

In this subsection we analyze the relation using the real basis; this makes some

aspects clearer while complicating others.

From the N = (1, 1) analysis of [16] we know that when the model has

(4, 4) supersymmetry there exists an SU(2) worth of left and right com-

plex structures (J
(1)
(±), J

(2)
(±), J

(3)
(±)) on the 4d dimensional space, satisfying the

bi-hypercomplex algebra (6.6). We now relate the f -structures to J
(A)
(±) .

The complex structures J(±) are part of the SU(2) worth of complex struc-

tures, and we set J
(3)
(±) := J(±). In the real basis (6.15), the additional super-

symmetries take the form

δsX := δ±X + δ̄±X =
1

2

[(
J

(1)
(±) + iJ

(2)
(±)

)
ε±D±X +

(
J

(1)
(±) − iJ

(2)
(±)

)
ε̄±D±X

]
,

(6.21)

Identifying (6.21) with (3.3) we deduce that

1

2

(
J

(1)
(±) − iJ

(2)
(±)

)
= U (±)π(±) ,

1

2

(
J

(1)
(±) + iJ

(2)
(±)

)
= V (±)π̄(±) . (6.22)

This relation implies

(UV )(±)π̄(±) = −π̄(±)

(V U)(±)π(±) = −π(±) . (6.23)
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A further consequence of the algebra (6.6) is, e.g., that

U (±)π(±) = π̄(±)U (±)π(±) , V (±)π̄(±) = π(±)V (±)π̄(±) . (6.24)

On TM ⊕ TM we have that

1

2

(
0 J

(1)
(±) − iJ

(2)
(±)

J
(1)
(±) + iJ

(2)
(±) 0

)
= F(±)

(
π̄(±) 0

0 π(±)

)
=: F(±)Π(±) ,(6.25)

and the relations (6.24) can be used to show that both sides square to -Π(±).

Finally, assuming that the action is invariant we have ∇(±)J
(A)
(±) = 0, (see

(2.4)) which implies that

∇(±)U (±)π(±) = 0

∇(±)V (±)π̄(±) = 0 , (6.26)

The equations (6.22)–(6.25) expresses the relation between the bi-hypercomplex

geometry and the extra supersymmetries (3.1). The relation does not seem to

be one-to-one since only, e.g., U (+)π(+) enters. However, the particular form

(3.4) of U (±) may be used in combination with the explicit expressions (2.6)

of J(±) to show that all of U (±) is in fact determined by J
(A)
(±) . This is evident

from the explicit expressions for the components of U (+) in section 6.1.

6.4 On-shell interpretation of the constraints.

On-shell, there are more cases when the algebra of the extra supersymmetries

close, in analogy to, e.g., models written in terms of (anti)chiral fields. To

illustrate the line of argument we first discuss (3.14).

Modulo the curl-part,

U
(±)l
j V

(±)i
[k,l] − V

(±)l
k U

(±)j
[j.l] (6.27)

we may use (4.6) to rewrite (3.14) as

−
[
(V U)

(±)i
j,k − (UV )

(±)i
k,j

]
D̄±XjD±Xk (6.28)

+
[
(UV )(±)i

j + δij

]
D̄+D±Xj +

[
(V U)(±)i

j + δij

]
D±D̄+Xj = 0. (6.29)
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Since the LHS is

D̄±
[
(UV )(±)i

j D±Xj
]

+ D±
[
(V U)(±)i

j D̄±Xj
]

+ {D̄±,D±}Xi (6.30)

and we know from (6.19) and (6.23) that on-shell the square brackets become

−D±Xi and −D̄±Xi respectively, we see that the LHS vanishes on-shell. It

remains to consider the terms in (6.27).

Writing the term out in full, including the derivatives, we have

(U
(±)l
j V

(±)i
[k,l] − V

(±)l
k U

(±)i
[j,l] )D̄±XjD±Xk

= (U
(±)l
j V

(±)i
[k,l] − V

(±)l
k U

(±)i
[j,l] )π(±)j

p π̄(±)k
q D±XpD±Xq (6.31)

Using the relations (6.22) and (6.24) it is possible to show that one can re-

place all the U ’s and V ’s by, e.g., combinations of π(±)’s and J
(1)
(±) yielding the

following expression for the curl-terms:

(
J

(1)i
k N (π̄)krqJ

(1)r
j πj

p − J (1)i
k N (π)krpJ

(1)r
j π̄j

q +N (J (1))ijkπ
j
pπ̄

k
q

)
DXpDXq ,

(6.32)

where the (±)-indices were omitted for clarity. The integrability of the J
(A)
(±) ’s

means that all the Nijenhuis-tensors and thus all of terms in (6.32) vanish. We

thus see that on-shell (3.14) implies no new constraints.

Next we consider (3.12). Off-shell we had to set the terms with independent

structures separately to zero (4.2). On-shell we find no conditions on the

tensors if we also assume invariance of the action.

The RHS of (3.12) is

[U (+), U (−)]ij∇̄∇
(−)
+ D̄−Xj , (6.33)

where ∇∇(−)
± is the pull-back of the minus-covariant derivative ∇(−)

i in the D±
basis. We want to avoid the off-shell conclusion that the commutator vanishes

and observe that the commutator multiplies something that looks like a field

equation. However, we have to use (6.18) to see if it actually vanishes on-shell.

In the remainder of this section, we use the conditions that follow from

invariance of the action [16], which imply that the metric is hermitean with

respect to all the complex structures and the connections Γ(±) preserve the
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hypercomplex structures6 J(±): ∇(±)J(±) = 0. A straightforward calculation

shows that7

∇̄∇(−)
+ D̄−Xi = −1

2

{
π(−), π(+)

}i
k
∇(−)

+ D−Xk . (6.34)

To lowest order, the RHS is proportional to the (1, 1) field equation. Since it

is written in manifest (2, 2) form, one may expect that it also vanishes to all

orders. In fact, the (2, 2) relation

{Q+, Q−}Xi = 0 , (6.35)

has the on-shell content

[J(−), J(+)]
i
j∇(−)

+ D−Xj = 0 , (6.36)

where again covariant constancy of the complex structures is used. Since the

commutator is invertible in a model with only semichiral fields,

∇(−)
+ D−Xj = 0 , (6.37)

and that the RHS of (6.34) vanishes.

Using the connections with skew torsion T = ±1
2
dB we have from the

definition (3.9) that the LHS of (3.12) is

M̂(U (+), U (−))ijkD̄+XjD̄−Xk =
(
U

(+)l
j ∇(−)

l U
(−)i
k − U (−)l

k ∇(+)
l U

(+)i
j − U (+)i

l ∇(−)
j U

(−)l
k + U

(−)i
l ∇(+)

k U
(+)l
j

)
D̄+XjD̄−Xk .

(6.38)

Given the results for the RHS, the appropriate projections of M̂(U (+), U (−))

thus have to vanish. However, we know from (6.19) that on-shell

D̄+XjD̄−Xk = π
(+)j
l D+Xlπ(−)k

s D−Xs , (6.39)

and invoking invariance of the action, we may use (6.26) to conclude that then

indeed M̂(U (+), U (−)) = 0.

6This is equivalent to restricting the holonomy of the connections Γ(±) to a symplectic
group.

7Here the operator ∇(−)
± is the pullback in the D±-basis.
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In summary our result is very similar to the hyperkähler discussion in [19],

we need to invoke invariance of the action to show that there are more solutions

on-shell to the conditions from the algebra8.

The only constraints we get on the transformation matrices on-shell for

invariant actions are the integrability condition

N (U (±))ijkπ
(±)j
l π(±)k

m D±XlD±Xm = 0 . (6.40)

together with the identification (6.22).

7 Discussion

Throughout this paper, the arbitrary entries in the transformation matrices

U (±) (and V (±)) were set to zero. Off-shell, this has the advantages of yielding

geometric structures on the full target-space. Keeping the arbitrariness would

restrict the features (e.g., integrability) of these structures to certain subspaces.

We have identified new geometric structures on the target-space of sigma

models written in terms of semichiral fields. These structures arise when we

study additional off-shell supersymmetries. We have discussed the f -structures

as living on the sum of two copies of the tangent bundle TM ⊕ TM . Clearly

one would like to identify the relation to generalized complex geometry on

TM ⊕ T ∗M . Formally, this may be achieved using the existence of a metric

[14]

g = Ω[J(+), J(−)] , (7.1)

where

Ω :=

(
0 2iKLR

−2iKRL 0

)
. (7.2)

We use g to relate TM and T ∗M to write F as an f -structure on TM ⊕ T ∗M :

F̃ :=

(
0 Ug−1

gV 0

)
. (7.3)

We plan to return to the geometry of f -structures in the context of generalized

complex geometry in a later publication.

8In hyperkähler case the the algebra only closes on-shell.
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A related question concerns the condition for invariance of the action. As

we have shown for a subclass of our transformations, this amounts to the

conservation of an antisymmetric tensor B on certain subspaces of TM ⊕TM
by the f -structures. Again, the corresponding object on TM ⊕ T ∗M can be

found using the metric g:

B̃ =

(
0 Kg−1

−gKt 0

)
. (7.4)

It remains to clarify where this object fits into the generalized complex picture.

This also ties in with the question of how the conditions for invariance that we

have described relate to those found in [44], where (4, 4) models with auxiliary

fields are discussed.

In the precursor to this article [43] where the nonmanifest transformations

were linear and the target space was four-dimensional, there was no interesting

solution with additional supersymmetry. Additional twisted supersymmetry

could be imposed, however. The target-space was then seen to carry indefinite

signature metric and vanishing three form H, the geometry being pseudo-

hyperkähler. In the present paper, where the target space is 4d-dimensional,

the transformations close to an ordinary supersymmetry algebra if d > 1, i.e.

the dimension of the target space is larger than four. This stems from the

fact that a complex number a can never fulfill aā = −1, whereas for a matrix

A with complex conjugated components Ā, this could indeed be fulfilled. We

could also have considered a twisted supersymmetry in the general case. The

result would have been hyperbolic f -structures, a generalization of the result

in [43].
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Supersymmetric Nonlinear Sigma Models,” Nucl. Phys. B248 (1984)

157.

[21] A. Kapustin and A. Tomasiello, “The general (2,2) gauged sigma model

with three-form flux,” arXiv:hep-th/0610210.
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