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A b s t r a c t  
The local field representations of the ehiral U(1) conformal current algebra on 

the circle are classified. A homogeneous space SO(2n)/SO(n) construction of the 
resulting lowest weight modules is given, which uses level 1 representations of ~ ( 2 n )  
and level 2 representations of the SO(n) gauge Lie algebra. The modular invariant 
partition function of these models are, essentially, those listed in [Di 1], [Ge 2]. The 
"squared Ising model", the level 1.41-theory and the N = 2 extended superconformal 
model (for c = 1) appear as special cases. 

1 I n t r o d u c t i o n  

We are concerned in this paper with 2-dimensional quantum field theory (QFT) models 
of the chiral U(1) conformal current algebra. It is another step towards the classification 
of modular and conformal invariant theories, following recent work in Saclay, Princeton, 
Nordita etc. -see, e.g., [Ca 1,21, [Di 1], [Ge 1,2], [Ri 1]. It is based on a study of finite 
temperature conformal QFT [Bu 11 which we proceed to summarize. 

The algebra of observables ,4 is assumed to be generated by the right and left U(1) 
current algebra. The compact picture right movers* current 

j(~) = ~ ( j o  + j~) -_ 
n (1.1) 
O (x 0 - x  1 -- 2 t a n ~ )  

commutes with the left current J ( ~ )  (where 2 tan-~ = ~o + xl). The modes l,n of the 
right movers' stress energy tensor 

7(0) : 1(~o + ~2) : Z/ ,ne-~n~,~ : ~ c~_~. 
2 . 24 (1 .2)  
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and the current modes Jn satisfy the commutation relations (CR) of the (chiral) VU(1) 
conformal current algebra, the senfidirect product of the canonical Heisenberg algebra 

[J~, J~] -- n~+m (1.3) 

and the Virasoro algebra Vir  

c 3 (1.4) 

the mixed CR are determined from the requirement, that. the current is a primary field of 
weighl ] with respect to Vi r  [Be 1]: 

• d i ,~0 
II,,~, J(v~)] = - zd~(e  J(vg)) or [J,~, [,,] = mJm+n. (1.5) 

(The term ~ in (1.2) comes from the Schwarz derivative, ~{2tan~,~9};  the cocycle 
~n3~,~+,~ differs from the conventional SU(1,  1)-invariant choice ~ 2 ~i~n(n - 1)~n+m by 
(linear in n) coboundary, the transition between the corresponding generators L,~ and L,  
being displayed in (1.2). 

Along with the real (0-) picture, we shall also use the analytic (z-) picture in which 
the current and the stress energy tensor have the form 

d(z )  = ~ J z -n-~ (1.1.a) A.~ n 
n 

T(~) : ~ L .~ -~ -~  (1.2.a) 
r~  

J and T are related to J and T by 

J( tg)  = ei~J(e ~°) 
C 

7"(~) : ~ T ( ~  ~°) + i5{~ '~, i~}. 
The Schwarz derivative { f ( t ) ,  t}, given by 

f'" 3 f " 2  
{ f , t }  f,  ~(~7)  (so that {e'~,iv q} = - . ) ,  

is characterized by the invariance of the quadratic differential {f, t}dt  2 under fractional 
,~:b ( a d -  bc ~ O) and f ( t )  = F(;t( t))  then linear transformation: if x = ~i¥~ 

{ f ,  t }dt  2 : { r ,  x } d z  ~. 

We are concerned in [Bu 1] with a family of local field algebras 5rig 2] 3 .A labelled by 
integer "charge squares" 

gZ = 1 , 2 , . . . .  (1.6) 

The right moving part of.T[g21 is generated by a pair of charged fields ~b(z, i g )  characte" 
rized by the property of being VU(1)-primary ([Kn 1] [To 1]) 

[J,~, ¢(z ,g)]  = gz '~¢(z ,g)  (1.7.a) 

[t~,¢(~,g)] : .  "Oz ÷ ('~ -~ 1)A)¢(z,g). (1.7.b) 
We are dealing with representations of .T'[g 2] in a (positive metric) Hilbert space ~/ 

with the following properties. 
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(A) The generators of the conformal current algebra satisfy the hermiticity condition 

g~* = J_,~ I,~ = L_ .  (L:  = L_,~) (1.7) 

(and a sinfilar relation for the left movers' modes Jn  and Ln ). 

(B) There is a unique vacuum state ] 0) E 7-( ((0 I 0} = 1) satisfying 

J ,  1 0 ) : 0 ( = J , - - ~ ] 0 ) )  for n = 0 , 1 , 2 , . . . .  (1.8) 

If we identify the energy with the conformal Hamiltonian 

c (1.9) H = L 0 + ~ 0 { =  L 0 + L 0 -  ~ )  

then the vacuum, defined by (1.8), is the lowest energy state in 7-/. 

(C) The expectation value of a field variable F in a mixed state of complexified inverse 
finite temperature (, 

( = ~ + i ~ ,  ~ > 0  (1.10) 

is given by 

where the partition function 

for 

(F}< : tr(e -(L°-iZ° F ) /Z  

Z = Z ( ' r )  = t r  e - ( L ° - ( L °  

(q -=) e 2~ir = e - (  

is invarianl under PSL(2, Z)-nmdular transformations 

(1.11) 

(1.12) 

(1.13) 

ff'(~l ),.7(v~2) = - ( 2  sin 
- 1 01~ 

Oa~2 i ¢ ) _ ~ + 2 ( T (  v~)+ ~ ) + O ( s i n 2 - 2 )  

Which says, in particular, that the ViT~soro central charge is c = 1. 

Proof. We define the laormal product expressions 

L,J, : 1 

l >  - n  

(1.16) 

P r o p o s i t i o n  1.1 Conditwn (B) implies that the stress tensor is expressed in terms of 
the current by the Sugawara formula, incorporated in the small distance operator product 
ezpansion (OPE). 

(For a discussion of the meaning of this requirement in various contexts -see [Ca 2], 
[Se 1], [Ge 3].) 

a +b (a b) 
r d" E PSL(2, Z) = SL(2, Z)/Z2, (1.14) cr + c d 
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which, as a consequence of (1.3), satisfy (1.5). It follows that l,~ = L,~ - L~ commute 
with Jm and hence with L~,  and therefore satisfy the CR of V i r  with central charge 
c[l] = c -  1 (cf. [Go 1-3]). I f l_~  I 0) # 0 (for some n > 0) then the uniqueness of the 
vacuum condition (B) would be violated (since Jml-,~ J O) = l_,~J,~ J 0) = 0 for m > 0). 
Therefore, l_,~ I 0) = 0 = e -  1(= 2 Ii l-2 I 0) ti2); since the only (hermitian) positive energy 
representation of Vi r  with a zero central charge is the trivial one [Go 4] we conclude that 
l,, --- 0. 

We quote without proof the following result of [To 1] [Bu 1]. 

P r o p o s i t i o n  1.2 The CR (1.7) and the Sugawara formula (1.16) are only compatible 
among themselves if the conformal weight of tb is given by 

1 ~ (1.17) a = ~ g  

and ~ satisfies the differential equation 

¢(z ,g )  = g:  J(z )¢(z ,g) := g~i~(J (  + ~- + ~) - )¢( + -~ - ~,g). (1.18) 

The solution of this equation, normalized by 

is expressed in terms of an unitary charge shift operator Uo, such that 

[J,, U~] = g~.U,, U; = U_~ : U~ ~ (1.20) 

and of the current J as follows: 

¢(z,  g) = eig¢c+)(z)Ugz gd° e ig¢(-)(~) (1.22.a) 

where 

Lz ~ zn 
i¢(+)(z) : J(+)(i)d( = d - . - -  

n n--1 

i¢ (_) (z)  = - J ( - t ( ~ ) <  = - J . - - ( i ¢ ~ ) ( ~ )  = J(~)(z)) .  
"rt:l n 

C o r o l l a r y  1.1 The fields ¢(z,  5:9) satisfy the OPE [De 1] (see also [Fu 1]) 

(1.22.b) 

where the normal product is defined with respect to the (free) current modes (and J, T are 
given by (1.1.a), (1.e.a)), 

2 , f z  ~2 z f 2 ¢ ( z l , g ) ¢  (z2,g) : : e x p { - g  J ( ~ ) ~ z } :  (1.21} 
1 

= 1 -4- gz12J(z) + g2z~2T(z ) + O(z~2 ) (I.22) 
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The cyclic lowest weight (LW) representations of 5rig 2] are realized in a Hilbert space 
?f, characterized by a LW vector I t/) satisfying 

J o l r , ) = g , ~ [ u ) ,  J,~ v ) = O  for n > l  ( 1 . 2 3 )  

and minimizing Lo: 
1 2 

Lo _> ~g~ in T/~(= 7~,[g2]). (1.24) 

Since U:t=g I g,,) =l gv::t=g) are also vectors in ~fv and correspond to L0 eigenvalue ½(gv:J=g) ~, 
it follows from (1.24) that 

1 2 ( 1 . 2 5 )  < • 

We demand, following [Bu 1], that the representations of ~'lg 2] are at most double valued. 
For the univalence automorphism 

ct2~¢( z, g) = e 2~'~L° ~( z, g )e -2~L° = e ig~ ~ ( e  2'~ z, g) (1.28.a) 

or, using (1.22), 
a2,¢(z,  g) = ¢(z, g)e ~(g2+2Jog) (1.28b) 

this gives 2gg~ E Z; taking into account (1.25) we end up with the following allowed 
Spectrum of LW charges: 

v _ g~ (1.26) g ~ = - -  -g~(v< 
2g 

(The value v = -g2 is excluded by the convention that the LW vectors of 5rig ~] axe 
annihilated by the zero mode ¢0(g) of ~(z, g) defined by the expansion 

--t t~E 
( 1 . 2 7 )  

nEZ 

for integer ½v-  ~lg~') 
We have demonstrated in [Pa 1] that for each positive integer g2 there is a finite 

number of modular invaxiant 2-dimensional models which give rise to positive energy QFT 
representations or ~[g2] with partition functions classified, essentialy, in [Di 1]. Here we 
Shall give another realization of these models following a suggestion by V. Kac. 

2 A n  S O ( 2 g  2) H o m o g e n e o u s  S p a c e ,  R e a l i z a t i o n  o f  t h e  L W  R e p r e s e n -  
t a t i o n s  o f  Y-[g~] 

~Ve shall write down a Kac-Moody type construction of the .T[g 2] representation following 
the pattern, introduced by Goddard, Kent and Olive fGo 1]. 

Let J,~ be the current modes for the Kac-Moody algebra dG associated with a simple 
Lie algebra dG. Denote by VG the semidirect sum of d'G with Vir.  We shall normalize 
J~ in such a way that the structure constants [a~¢ appearing in the CR 

k l I Jr', = i/o cJf+ . +  ob6+m (2.1) 
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where k = 0, a, 2 . . . .  is the Kac-Moody central charge or level, satisfy 

dG 

Yo,,h,,(=- ~ .  fo,,h,,) = h*o~. (2.2) 
a , t = l  

Here h is the dual Coxeter number of dG (see, e.g., sec.6.l of [Ka 1] or [Go 3i); in the 
special case of the unitary and orthogonal groups it takes the values 

h [ S V ( ~ ) l  : n (for ,~ > 2) ,  ~[SO(n)] := ~ - 2 (for ,~ > 5).  (2.3) 

Under these conditions the counterpart  of the Sugawara formula (1.16) takes the form 
([Kn l] IGo 2] {To 1]) 

Lm - 1 _ ( ~  + ~ )J-~d:+, ([J£, L~I = m j : ,+ . ) .  (2.4) 
k + h  t>l ~>-,~ 

The Virasoro central charge is then 

2 ( J N ~ ) =  kdc; (2.5) 

(da being the dimension of G) 
For a simply laced Lie algebra dG (like D ,  SO(2n ) )  the central charge corresponding 

to level 1 representations is equal to the rank (in our case 92 __ n) of G: 

1 
c[SO(2,~); k = 1] -- ~ , ~ - ~ n ( 2 n  - 1) -- n. (2 .6)  

It  is equal to the level 1 central charge of the senfisimple Lie algebra S O ( n )  ~ S O ( n )  C 
S O ( 2 n )  

~ ( n -  1) (2 .7)  c ISO(n  ) q) SO(n);  k = 1] = 2c[SO(n); k = t] - - n. 
n - 1  

The difference between c[SO(n);  k = 1] and the central charge of the diagonal SO(n)  
(corresponding to level 2) is just 1: 

c = c[SO(2n);  k = 1 ] -  c[SO(n);  k = 2] ...... n - (n - 1) = 1. (2.8) 

We shall now look in more detail into the current algebra corresponding to the homoge" 
n e o u s  s p a c e  

so(2,~)I SO(,~)d,o, (2.0) 
and shall construct,  in part icular,  the U(1) current of Section 1 which conunutes with the 
"gauge subgroup" SO(n)a,~g. 

In the conventionally used basis of the rotat ion group the CR (2.1) assume the form 

[7 ~ A  l . u v ]  
a t  , a m  J i(~J~y,~ ~ J ~  

+Ik(~'~u6 )'~" _ 6'*~bxv)bl4,.,, 

~ , A , p , v  = a , 2 , . . . , 2 n ,  J,~"~' = _j,~u 

(2.ao)  
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the normalized (according to (2.2)) generators being )~=Jm"- We shall also need a Caftan-  
-,/2 

Weyl basis for D . .  To this end we introduce an or thonormal  set {el} in Rn: 

e i . e  5 = 6ij 

The 2n(n  - 1) roots of D ,  are [Go 5] 

cqj = e; - ej (i # j )  and 

the simple roots being 

i , j  = 1 , . . . , n .  (2.11) 

=i= t3ij = ::t=(el + ej) (i < j )  (z12. ) 

c[ i=  o i i+l  = el - ei+a i = 1 , . . . ,  n - 1 an = en-1 + e,~ (2.12.b) 

(while the positive roots are oij with i < j and/31j ). The current modes H~ related to the 
Caf tan  basis in Dn (associated with the above ordered roots) will be identified with 

We shall also single out the Weyl type generators ST" which are obtained as multiple 
Conmmtators of 

1 (j2i-1,2j-a j?j, , j+2 i(jTj,2j+l " " E 7' = -2 t + + - J3 : - " :J+ ' ) ) ;  (2.14.a) 

we have, for positive roots 

, ] ° ' . ,  ( z 1 4 . b )  = t~i2)1 El+m - ~itj~El+m • 

The gauge S O ( n )  will be defined as the subalgebra generated by 

gJ;J : - i ( E T "  - ET"  ). (2.13) 

It is easily verified (using (2.14.b)) that  gJ~J satisfy the CR of SO(n) .  Moreover, if j u~ 

Span a level 1 representation o f / )n  then odt ~J give rise to a level 2 representation of S~"O(n). 
Purthermore,  the U(1)-current 

J ( z )  = Z J t z - ' - '  j ,  = I ~ Hi  g = v/n (2.14) 
t 9 i=~ 

¢ornmul.es with S O ( n )  and we can write the stress-energy tensor of the constained theory 
(on the homogeneous space (2.9) as 

1 
T ( z )  = r U O { 2 , ) ( z ) -  T~5(,~)(z ) = ~ : d2(z) : .  (2.15) 

A straightforward way to exploit the fact tha t  we are only interested in level 1 re- 
Presentations is the use of the Frenkel-Kac vertex operator  construction. We shall write, 
in particular~ the current E ~ ( z )  corresponding 1o an arbi t rary  root ~ of D,~ in the form 

1]) 
E a ( z )  = eia ¢(+)(')U,~zan°eia'¢(-)(z) (2.16) 
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where i¢~(z) = / ~ ( z )  (ef.(1.22), while the constant unitary operators U~ satisfy 

HJua : U~(H~ + aJ&~) (2.17) 

v ~ v  z : e,.~ ~vzu ~. (2.18) 

(In other words, Ua contain the Klein factors necessary to restore the correct CR between 
current components.) We shall also use the charge fields construction (1.22) with J(z) 
given by (2.14) and an SO(n) invariant charge shift operator 

U a = U~a+..+~. (g = v/n). (2.19) 

We now define the physical subspace LW vectors I ¢) by the conditions 

E o " r ¢ ) = 0  f o r i < j ,  E ~ " J ¢ ) = 0  f o r m > l  { i # j )  (2.22.a) 

Jr, re)----0 f o r m >  1, (H 6 - A ' ) 1 ¢  ) = 0 ,  i =  1 , . . . , g 2 ( = n )  (2.22.b) 
g~ 

1 2 hi 1 2 (2.22.c) -~g < ~  ~ g .  
i=l 

Eq.(2.22.a) guarantees that the matrix elements of the S'O(n) gauge current gJiJ(z) (see 
(2.13)) between physical states vanish. Condition (2.22.b) ensures that I ¢) is a LW vector 
for the U(1) current algebra and is an weight vector for D,~ (i.e. an eigenvector of H~). 
Finally, Eq.(2.22.c) is just a translation of the condition (1.26) (that I ~b) is a LW state of 
~-[g2]) in the Dn language. 

Eq.(2.22.a) for I ¢) =1 ~1, . . . ,  ,Xn) also reduces to a set of inequalities for )tJ: 

O< ~ - M _ <  1 for l _ < i < j < n ( = g 2 ) .  (2.20) 

The determinant of the transformation from the fundamental weights of D,~ 

)q = e l ,  )~2 = e l + e 2 , . . . ,  ~ n _ 2 = e l + ' " + e n - ~  
(2.21) 

~ _ i  = ~(e l  + . . .  + e . -1  - e . ) ,  ~ .  : ~(e l  + . . . +  e~) 

(characterized by Ai.oj = ~ij for ~j given by (2.12.b)) to the basic weights of SO(n)+ U(1) 

~,~ = ~ ,  . . . . .  ~ . - 1  = ~ - ~ ,  ~,~ = e~ + - . .  + e~ (2.22) 

is  

det 

2 - 1  0 . . -  0 0 0 
-1  2 -1  . . .  0 0 0 

0 - 1  2 . . .  0 0 0 

0 " ' "  0 . . . .  1 2 0 

0 . . .  0 . . . .  1 0 2 

= 2n : 2g 2 (2.23) 



563 

(see, e.g., Sec.5.5.4 of [Go 5]). Consequently the factor A/A of the weight lattice A = 
A(Dn) by its sublattice A generated by (2.22) is a finite abelian group with 2g ~ elements. 
It can be represented by the following two sets of weights, satisfying (2,22) and (2.20) 

e l , e  1 + e ~ , . . . , e l  + - ' .  + e[~] ,0 , -en ,  -e,~ - e , ~ - l , . . . , - e n  . . . . .  e[~+~] (2.27.a) 

A,~, An-l, An-2 - A . . . . .  , A1 - An. (2.27.b) 

The set (2.27.a)reproduces the Neveu-Schwarz charges g2, = ~ of Eq.(1.26)for which 
a2,Ab(z, 9) = ( -1 )g2¢(z ,g )  (see Eq.(1.28)). For even 92 the weights (2.27.b) give rise to 
the same set of charges; thus for integer spins we only obtain single valued fields by the 
above construction. For odd g2 the set (2.27.b) gives rise to the Ramond sector charges 
g2u+l • 

We note that  although the D,~ series is defined conventionally for n > 4 and part of our 
derivation is ortly legitimate for such n's the final result is also applicable to n(= gZ) = 2 
and 3 (and even to n = 1, if we identify the set (2.27.a) with the zero vector and the set 
(2.27.5) with {1/2e~}). 

3 M o d u l a r  I n v a r i a n t  P a r t i t i o n  F u n c t i o n s  

The (reducible) VU(1)-affine characters of the above described LW representations of 

K:~(r,C',g 2) = t r ~ q L ° y  J°, q : e2"~i~,y : e 2'ri¢ (Im r > 0) (3.1) 

axe evaluated by means of the Sugawara formula (1.16): 

]C,,(r,(~,g 2) = ~(--~O,,.g2(r,~,O) (3.2.a) 

Where O~,u~ (r, ~, u ) i s  the classical O-function (see, e.g., [Ka 2] and references therein) 

Ou,g2(7.,~,u ) e2~ ia~u~  q½(n0+~ "2 'n + ~ '  = 2g) y~ u 2, J (3.2.b) 
neZ 

and the Dedekind o-function can be written in either of  the two forms (cL the Euler 
identity (1.7.4) of [Ka 2]) 

n = l  

being the indefinite O.funct ion 

6)~,~,(~,¢,0) = ~ ( - 1 ) " q ~ ( " ~ + ~ ) ~ y  c"~+~'~ (= ~(r)K~). (3.2) 
nEZ 

The indefinite affine characters/~.  (defined by (3.2) also appear in the modular transfor- 
~a~ation law of g~ (for odd g2 + v2): 

K~(r + 1, ~, g~) = (3.3) 

i~" .v ~ 1 1 + ( - 1 )  a2÷~ 1 - ( 1 - )  a~+" - 2 
exp[-~{~-/ - 3)1{ 2 K~vtr'( 'g2) + 2 lCv(r , ( ,g  )}. 
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K .  satisfies a similar transformation law (obtained from (3.3) through the interchange 
• K~, ~ / ~ , )  under r-translation. In most of what follows we shall be only interested in the 

(~) (~) 2 reducible Virasoro characters K ~(v, g 2) =: K v(r, O, g ). 
The set {Kv, K~ 1 - g2 < u < g2} is also closed under the second generator of the 

modular group, the involution r ~ - 1 / r .  Indeed, using the celebrated Poisson formula 
and the identity r / ( -1 / r )  = z x / Z ~ ( r ) ,  we find 

.,2~-~ { K.(r,g 2) for even v 
K,,(- ,g2) =_ ;2 ~ c /~,(T,g 2) for odd t, (3.5.a) 

-aP<~<g 2 
p odd 

e'~;2-~ t K.(r,g 2 ) _  for even v 
[ K . ( r , g  ~) for odd v 

Instead of the characters K:~ and ~ .  we can use their sum and their difference, 

(3.~.b) 

K(±) 1 = ~(x:~(~, g 2) ± £~(r, g2)) (3.4) 

which can be expanded into series in powers of q with positive integer coefficients. We are 
looking for modular invariant partition Junctions of the form 

Z(r, g2;{N}) ~ ~ (~) ~ (~) 2 : N ; , ~ : ~  (~,g)~ (,,g) (3.5) 
v~ 

where the N's are nonnegative integers, N0+0 + = l(and the bar stands for complex conju" 
gation). 

A complete classification of the Neveu-Schwarz (NS) partition functions for even g~ 
(and u, V) is presented in [Di 11 and [Ge 2]. To every splitting of ½g2 into a product p .  P' 
of positive integers there correspond a partition function I 

Z ( p , P ' ) ,  2. 1 
NS Lr, g ) = ~ ~., 

~EZ2p~ 
vEZ2r 

2 - -  

K:2(.p+~,)(T, g )X:2(.p_.p,)(r, g2). (3.6) 

One can use this result to evaluate all modular invariant partition functions for odd g2 mad 
the partition functions involving the "twisted sector" for even g2. This is achieved through 
the following relation between K:(~:I:)(r, g2) and the NS characters for a double charge, 2g, 
defining the field algebra: 

K~+)(r, g 2) = /C2~.(r, 4g2), K(-)(T, 9 2) = K2~,=~4g~ (v , 4g2). (3.~) 

In allowing for both signs of 4g 2 in the index of K we are using the periodicity conditiota 

~:~+2n(T,n) = ~:~(r,,~) (£~+2,(, , ,~)= -£~(~,n)).  (3.8) 
P ~A sum over Z~p means summation over any 2p consecutive integers, e.g. ~ w l - p  
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We also note the symmetry property 

K(,=~)(~ ", n) = K(~)(r ,n)  (K(,+)(r, n) = K(,-)(r, n)). (3.9) 

For g2 = 4 we thus obtain the partition function for the "complex ]sing model", -i.e., 
for the theory of a free coraplex Weyl field ~/,(*) (of charge =t=1), which nfixes together 
the Ramond and the NS sectors. Both the current and the stress energy tensor can be 
expressed in terms of ¢(z)  = ¢ ( z , - 1 )  and ¢*(z) = ¢(z, 1) according to the OPE (1.22) 
for g = 1. Thus we have two equivalent expressions for L , :  the Sugawara formula (1.16) 
and 

L .  = ~(~ - ~)26. + ~-~(E,~ + I - g) lg ' : - l+ I~]¢ t - .+ [~]  + ¢~-t+I~lCt-~+I~l]  (3.12.a) 
l = l  

~:LIt - I~] -- - ( - 1 ) " )  n 0 in the Ramond sector and K = where 2~, = 2 ½(1 = 1/2 in the 
NS sector: 

1 - u  
t¢7/~.I1 ] = - - - T { , i l  ] for u :: 0, 1 (3.12.b) 

2 
and we are using the ¢ mode expansion (1.27). The equivalence of the two realizations of 
Vi r  is a consequence of the equality of central charges, c = 1. The latter is verified by using 

'~,/~(*) We shall now demonstrate that the infinitesimal conformal law [~/,(*), Ln] = (p + ~j~,+p. 
Eq.(3.12) allows to obtain a new expression for K,(v,  4, 1), thus reproducing a nontrivial 
Jacobi triple product identity. 

We observe, first of all, that 

qZOyaO~pq--Loy-Jo = q-py-l~/,p (3.13.a) 

qZOyJO~/,,pq--Loy-JO = q-py¢; (3.13.b) 

This allows to compute the 2-point correlation flmctions 

1 tr~t~(ii(p=~)qZOyjO ) u = 0,1 (3.10) 

Where K:. is given by (3.24) and II~ ±) are the orthogonal projection operators 

: r t ( r ) :  ,_ , l , ;  nT : . ( / ) ' ) .  (3.11) 

Indeed, using the KMS condition (of. [Bu i]) 

(AqL°y J° Sq-  L0 y-Jo }q,y;t~ : (BAiq,~;,~ (3.12) 

along with (3.13) and the canonical anticommutation relations for ~/,(p*) we find 

YqP - (¢_p¢*p}q.y_~ ~,. (3.13) 
(~/':p~"p}q,~;v - 1 + yqP 

Inserting (3.13) into the expectation value of (3.12) for n = 0 we obtain 

0 
(]~0}q..~;, = qbq In K, ( r ,  4, 1) (3.14) 
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with 
i ~ 1) 

~C~(T,(', 1) =q~(V - '  l ' I (a  + y q l - ~ ) ( i  + y - l ( - ' ~ )  
~=1 (3.15) 

1 - v  
~v - , v =  0,1. 

2 

The above mentioned Jacobi type identity is obtained by equating (3.2) (for g = 1) with 
(3.15). The (unique) modular invariant partition function for the g2 = 1 model 

1 

Z(T, 1) = ~{1K~(+)( r,  1) 12 + t K:(-)( r,  1) t 2 } (3.16) 
~mO 

involves the NS (v = 0) and Ramond (v = 1) sectors, as stated. 
For any even g2 = 2M there exists a diagonal NS invariant 

M 

zdi"g(r, 2M) = Z [ K2.(r,  2M) 12 • (3.17) 
v---1 - M  

If we apply Eq.(3.7) to the invariant (3.17) for/14"=4 (g2=8) we obtain a partition function 
for the g2 = 2 model that  includes a twisted sector: 

2 

2) = Z I 2) ? .  (3.1s) 
v = - I  e----± 

The minimal charge ga and Virasoro LW A1 of (the right moving projection of) the twisted 
sector are gl = ~ and A 1 -- a 2 igl = ~ .  The NS partition function for this model (given 

by Eq.(3.17) for M = 1) corresponds to the k = 1 level of VSU(2) (eL [To 2] where this 
model has been analysed by the methods of Sec.2). 

For 92 = 3 we obtain the N = 2 extended super Virasoro model, corresponding to 
central chage c = 1 (see [Wa 1], IRa 1 t and references to earlier work cited there). There 
are two modular invariant partit ion functions in this case, obtained from (3.6) for 92 = 12 
(and p,p' = 2,3 and 1,6) with a subsequent application of (3.7). The twisted sector of 
the N = 2, c = 1 -model can also be obtained as follows. If we split the free Weyl charged 
field ¢(z) = ¢(z,  - 1 )  into a real and imaginary part, 

1 
¢(z) = ---~(¢1(z)+ i¢2(z)) (¢a = ¢~* a = 1,2) 

Vz 
(3.19) 

then the current J can be written in the form 

i 
J(z) : i¢l(z)¢2(z) ( :  ~(¢l(z),¢2(z)]).  (3.20) 

The twisted sector is then obtained by using the NS representation for ¢1 and the Ra- 
mond representation for ~b2(I¢1, ¢2]+ -- 0). It turns out to be isomorphic to the twisted 
sector of the VSU(2) model discussed above. This is a manifestation of a generally valid 
isomorphism between the twisted sectors of the two models -see IRi 11. 
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4 S u m m a r y  a n d  D i s c u s s i o n  

Using the result of Di F~'ancesco, Saleur and Zuber [Di 1] and of Gepner and Qiu [Ge 2] 
we have classified the modular invariant 2-dimensional QFT models of the chiral U(]) 
conformal current algebra which involve single or double valued relalizations of the field 
algebra 5r[g 2] generated by a pair of conjugate charged fields ¢(z, :i:g) (g2 = 1, 2,. . .) .  The 
first three of the infinite family of models thus classified are the free Weyl charged field 
(equivalent to a pair of "coupled" lsing models), the level 1 realization of the -4z (= S"U(2)) 
Kac-Moody algebra, and the c = 1 level of the N = 2 extended super Virasoro algebra. 

It turns out that the family of models, considered here, is also distinguished from 
a purely mathematical point of view. The ®-functions (3.2.b) exhaust, according to a 
deep result of Serre and Stark [Se 2], the most general modular forms of weight 1/2 
(corresponding to c = 1 - for a review, see [Ka 2]). 

The case g = 0 also corresponds to a modular invariant partition function 

o)  - 1 L_ 2 x/2x/2x/2x/2x/2x/2x   ,- t ,7(,') (4.1) 

which can be written as a continuous superposition of VU(1) characters corresponding to 
charge g (see [Ge 3]): 

(qq)~-g~ }-2 z(..0) = / d g l  =1 , ( . ) f d g e  
} , 7 ( r ) j - 2  

- ~ r  

(4.2) 

We would like to thank V. G. Kac for suggesting to us the homogeneous space construction 
of Sec.2 and both him and 3.-B. Zuber for useful comments. 
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