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Abstract

The local field representations of the chiral U(1) conformal current algebra on
the circle are classified. A homogeneous space SO(2n}/SO(n) consiruction of the
resulting lowest weight modules is given, which uses level 1 representations of 3'6(271)
and level 2 representations of the §5(n) gauge Lie algebra. The modular invariant
partition function of these models are, essentially, those listed in {Di 1], [Ge 2]. The
“squared Ising model”, the level 1 A,-theory and the N = 2 extended superconformal
model (for ¢ = 1) appear as special cases.

1 Introduction

We are concerned in this paper with 2-dimensional quantum field theory (QFT) models
of the chiral U(1) conformal current algebra. It is another step towards the classification
of modular and conformal invariant theories, following recent work in Saclay, Princeton,
Nordita etc. -see, e.g., [Ca 1,2}, [Di 1], [Ge 1,2], [Ri 1]. It is based on a study of finite
temperature conformal QFT [Bu 1] which we proceed to summarize.

The algebra of observables .4 is assumed to be generated by the right and left U(1)
current algebra. The compact picture right movers’ current

T(B) =5(7°+ T = ¥ Jue?
n (1.1)

(2 -2 = 2tang)

commutes with the left current (1) (where 2tan~;2’: = 2% 4+ z!). The modes L, of the
right movers’ stress energy tensor
1 = N cb
’1'19:—70 le L—tnﬂLn:L__v_l
( ) 2( o t O) g n€ 3 n 2 (1‘2)
571 = én,l}
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and the current modes J, satisfy the commutation relations (CR) of the (chiral) VU(1)
conformal current algebra, the semidirect product of the canonical Heisenberg algebra

['}ns Jm} = n5n+m (1'3)
and the Virasoro algebra Vir

Loy L] = (n ~ m)Lpym 4 %n:‘éMm (1.4)
the mixed CR are determined from the requirement that the current is a primary field of

weight 1 with respect to Vir [Be 1:

. d . -
(Lo, J(9)] = —id—@(e’"ﬂj(ﬂ)) of [Jomy Ln] = mJmin. (1.5)
(The term £ in (1.2) comes from the Schwarz derivative, 5{2 tan$,9}; the cocycle

£n%8,,m differs from the conventional SU(1,1)-invariant choice Gn(n? — 1)8,1m by 3

(linear in n) coboundary, the transition between the corresponding generators L, and Ln
being displayed in (1.2).

Along with the real (¥-) picture, we shall also use the analytic (z-) picture in which
the current and the stress energy tensor have the form

J{z) = Z.Liz_"‘} (1.1.2)

T(z) =) Lp2"7% (1.2.0)
J and T are related to 7 and 7 by "
J(9) = I ()
T(9) = ePIT () + 1%{61'0’1-19}_
The Schwarz derivative {f(2),t}, given by

flll 3 fll ; ) 1
{[,t} = 7 5(71—)2 (so that {¢'?,i9} = «-2—),
is characterized by the invariance of the quadratic differential {f,¢}dt? under fractional
linear transformation: if z = é‘-:fg (ad — be # 0) and f(t) = F(z(t)) then
{f,t}dt? = {F,z}dz’.

We are concerned in [Bu 1] with a family of local field algebras F[g?] D A labelled bY
integer “charge squares”

gt=12,.... (1.6)

The right moving part of F[g?] is generated by a pair of charged fields ¥(z, 1 ¢) charact®
rized by the property of being VU{1)-primary ([Kn 1] [To 1})

[Jna¢’(zsg)] = gz"#-‘(z,g) (1.7-‘1)
d
[Lns(2,9)) = 2" (25~ + (n+ DA)(2, g). (1.7.5)

We are dealing with representations of F[g?] in a (positive metric) Hilbert space H
with the following properties.
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{A) The generators of the conformal current algebra satisfy the hermiticity condition
Jr=J., =L, (LL=1L_,) (1.7)
{and a similar relation for the left movers’ modes J,, and L,).
(B) There is a unique vacuum state | 0) € H ({0 | 0) = 1) satisfying
J.10)=0(=J,|0)) for n=0,1,2,.... (1.8)
If we identify the energy with the conformal Hamiltonian
H=ILo+Io(= Lo+fo~l%) (1.9)
then the vacuum, defined by (1.8}, is the lowest energy state in M.

(C) The expectation value of a field variable F in a mixed state of complexified inverse
finite temperature (,

(=B+1y, B>0 (1.10)
is given by N
(Fy¢ = tr{e” oo py /7 (1.11)
where the partition function
Z=2Z(t)y=1tr e'czra:" (1.12)
for .
(q E) €2m'r — F—C (1.13)

is invariant under P$L(2, Z)-modular transformations

ar + b (a b

T — rid e d ) € PSL(2,Z)= SL{2,2}/Z,. (1.14)

(For a discussion of the meaning of this requirement in various contexts -see [Ca 2],

[Se 1], |Ge 3].)

PTOposition 1.1 Condition (B) implies that the stress tensor is expressed in terms of
the current by the Sugawara formula, incorporated in the small distance operator product
€zpansion (OPE).

T(9:)T(92) = —(2 sin 12 = 1¢

, ¥
— ) 4 2(T(9) + w)+0( sin -;—2) (1.15)
which says, in particular, that the Virasoro central charge is ¢ = 1.

Proof. We define the normal product expressions

= —(Z+ N dign (1.16)

i>1 I>-n
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which, as a consequence of (1.3), satisfy (1.5). It follows that I, = L, — L] commute
with J,, and hence with L7, and therefore satisfy the CR of Vir with central charge

el =c—1(ef. [Go1-3]). If I_, | 0) # O (for some n > 0) then the uniqueness of the
vacuum condition (B) would be violated (since J,I_,, | 0) = I_,Jn | 0) = 0 for m > 0).
Therefore, I_, | 0) = 0 = ¢~1(= 2 || I_3 | 0) ||?); since the only (hermitian) positive energy
representation of Vir with a zero central charge is the trivial one {Go 4] we conclude that
{, = 0.

We gquote without proof the following result of [To 1] [Bu 1].

Proposition 1.2 The CR (1.7) and the Sugawara formula (1.16) are only compatible
among themselves if the conformal weight of v is given by

1y

1.17
A= 39 ( )

and ) satisfies the differential equation

d 2 1 2
g, 0(20) = 91 J()(z,0) = glim(I (/2 + 5+ 2) = Dy 2 + 5 - 2.0) (118)

The solution of this equation, normalized by
2129%($(21,9)9"(22,9)) = 1, $7(2,9) = ¥(2,~9), 22 =2 - 2 (1.19)
1s ezpressed tn terms of an unilary charge shift operator Uy, such that
(InsUgl = g6aUq, Uy =U_g = U,;? (1.20)
and of the current J as follows:
P(2,9) = €94, 2070 ¢i0¢(-)(2) (1.22.0)

where

ig(4)(2 /J(+)(C yd¢ = ZJ—H

(1.22.5)
/ Ji-)(€)d¢ = Z Jni— z%) z) = Jig)(2)).
Corollary 1.1 The fields y(z, t+g) satisfy the OPE [De 1] (see also [Fu 1])
(21, 0)0" (22, 9) = :eXp{—-g/:2 J(2)d2} : (1.21)
= 1+ gz2J(z) + g%25,T(2) + O(23y) (1.22)

where the normal product is defined with respect to the (free) current modes (and J, T are
qiven by (1.1.a), (1.2.a)).
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The cyclic lowest weight (LW) representations of F[g?] are realized in a Hilbert space
M, characterized by a LW vector | v) satisfying

Jolvy=g. vl Jnivy=0 for n>1 {1.23)
and minimizing Lo:
1
Lo> 390 in Hy(=Mlg") (1.24)

Since Uy, | g.) =] g, +g) are also vectors in H, and correspond to Lo eigenvalue (g, +¢)%,
it follows from (1.24) that

1.25
gz < 49 (1.25)

We demand, following [Bu 1], that the representations of F|g?] are at most double valued.
For the univalence automorphism

agnP(z, 9) = 2™ E0gp( 2, g 2™ o = eigzxw(ez’{z, g) (1.28.a)

or, using (1.22), .
aze(z,9) = P(z,g)e ™8 +2o9) (1.28b)

this gives 2gg, € Z; taking into account (1.25) we end up with the following allowed

Spectrum of LW charges:
v

L= — < g% 1.26
g =5o =4 Nv<g (1.26)
(The value » = —g? is excluded by the convention that the LW vectors of F[g?] are
annihilated by the zero mode vy(g) of (2, g) defined by the expansion
29l = Y Yoyt,o10(9)27 " FHg] (1.27)
neZ

for integer v—14%)

We have demonstrated in {Pa 1] that for each positive integer g? there is a finite
Bumber of modular invariant 2-dimensional models which give rise to positive energy QF T
Tepresentations or F[g?] with partition functions classified, essentialy, in [Di 1]. Here we
shall give another realization of these models following a suggestion by V. Kac.

2 An S0(2¢?) Homogeneous Space, Realization of the LW Represen-
tations of Flg¢?%

We shall write down a Kac-Moody type construction of the F|g?] representation following
the pattern, introduced by Goddard, Kent and Olive [Go 1].

Let J2 be the current modes for the Kac-Moody algebra dG associated with a simple
Lie algebra dG. Denote by VG the semidirect sum of dG with Vir. We shall normalize
I3 in such a way that the structure constants fg,, appearing in the CR

. . k
(I8, I = i fabeSfom + 5 18ab1m (2.1)
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where k£ = 0,1,2,...is the Kac-Moody central charge or level, satisfy

fascfbst Z faatfbat = héab (2-2)

s,t=1

Here h is the dual Coxeter number of dG (see, e.g., sec.6.1 of [Ka 1] or [Go 3]); in the
special case of the unitary and orthogonal groups it takes the values

R[SU(n) = n (for n > 2),  R[SO(n)] = n — 2 (for n > 5). (2.3)

Under these conditions the counterpart of the Sugawara formula (1.16) takes the form
([Kn 1] [Go 2] [To 1]}

L + Y W (5 La) = mIg ). (2.4)
k+ h l‘; 1> ~m

The Virasoro central charge is then

2 kdg
- 2<L3--1—;J?1) = (R = (2.5)
k+h kE+h k+h
{dc being the dimension of G)
For a simply laced Lie algebra dG (like D, = SO(2n)) the central charge corresponding

to level 1 representations is equal to the rank (in our case g = n) of G:

1
c[SO(2n)k=1]= -——n(2n - 1) = n. (2.6)
2n -1
It is equal to the level 1 central charge of the semisimple Lie algebra SO(n) & SO(n) C
50(2n)
nn-1)
n—-1

[SO(n)® 50(n)i k = 1] = 2¢[SO(n);k = 1] = (2.7)

The difference between ¢[SO(n);k = 1] and the central charge of the diagonal 50(n)
(corresponding to level 2) is just 1:

= ¢[§0(2n);k = 1] - [SO(n);k=2]=n—(n-1) = 1. (28)

We shall now look in more detail into the current algebra corresponding to the homoge
neous space

50(2n)/S0(n) diag (2.9)

and shall construct, in particular, the (1) current of Section 1 which commutes with the
“gauge subgroup” SO(n)giay-
In the conventionally used basis of the rotation group the CR (2.1) assume the form

(JPA T = (8T, — BRI+ 8T - eI )

F (86 — 56 )b) 4 m (2.10)
KAy =1,2,...,2n, J¥ = —J*
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the normalized (according to {2.2)) generators being ;%J,*;. We shall also need a Cartan-
Weyl basis for D,. To this end we introduce an orthonormal set {e;} in R™:

eice; =685 4Li=1,...,n {2.11)
The 2n(n ~ 1) roots of D, are |Go 5]
a;; =€ —€; (i#£7) and £ 5;; = +(ei +€;) (i < j) (2.12.a)
the simple roots being
a;, = ;i1 =€ —€4; t=1,...,n~-1 a,=¢€,1+e, (2.12.5)

(while the positive roots are a;; with ¢ < j and f3;;). The current modes Hj related to the
Cartan basis in D,, (associated with the above ordered roots) will be identified with

V= JPPHE = IR, HP = g (2.12)

We shall also single out the Weyl type generators E'” which are obtained as multiple
commutators of

EY = 2(le1 1,2j-1 le;‘,2;‘+2 +z-(lej,2j+1 _ J12j~1,2j+1)); (2.14.a)

we have, for positive roots

(B2 Exl ) = 8y, EpD? — 85 Ef (2.14.b)

The gauge SO(n) will be defined as the subalgebra generated by
957 = ~i(E - E). (2.13)

It is easily verified (using (2.14. b)) that 9J satisfy the CR of SO(n). Moreover, if if JB
Span a level 1 representation of D, then ng give rise to a level 2 representation of $O(n).
Furthermore, the U(1)-current

1 n R
J) =Y Jnz g= ;Z H g=+n (2.14)
i i=1

tommutes with SO(n) and we can write the stress-energy tensor of the constained theory
(on the homogeneous space (2.9) as

T(2) = Tggn(2) = Tipms) = 3 1 922 5 (2.15)

A straightforward way to exploit the fact that we are only interested in level 1 re-
Pfesentations is the use of the Frenkel-Kac vertex operator construction. We shall write,
In particular, the current E%(z) corresponding to an arbitrary root & of D, in the form

([Fr 1))

ES(z) = ¢S An(2)y, GHoiddio (1) (2.16)
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where 25;(2) = Hi(z) (¢f.(1.22), while the constant unitary operators Uz satisfy
HiUz = Uz(H} + o 6,) (2.17)

UsUs = €™ PU5Us. (2.18)

(In other words, Uz contain the Klein factors necessary to restore the correct CR between
current components.) We shall also use the charge fields construction (1.22) with J (2)
given by (2.14) and an §O(n) invariant charge shift operator

Ug=Ueyt. ten (9= V7). (2.19)

We now define the physical subspace LW vectors | ¢} by the conditions

EgW|¢y=0 fori<j, En’|¢)=0 form>1 (i#j) (2.22.0)
Jn|d)=0 form>1, (Hi- X)) =0, i=1,...,9%=n) (2.22.b)
BEYE f:hz‘ > 1y (2.22.)

2 = T2

Eq.(2.22.a) guarantees that the matrix elements of the §5(n) gauge current 9J%(z) (see
(2.13)) between physical states vanish. Condition (2.22.b) ensures that | ) is a LW vectof
for the U(1) current algebra and is an weight vector for D, (i.e. an eigenvector of Hy)-
Finally, Eq.(2.22.c) is just a translation of the condition {1.26) (that | ¢) is a LW state of
Flg?)) in the D, language.

Eq.(2.22.a) for | ¢) =| Al,..., A"} also reduces to a set of inequalities for A7:

0<A-M<1 for 1<i<j<n(=g?). (2.20)
The determinant of the transformation from the fundemental weights of D,

Ai=e;, Ap=e1+eg..., A= €1+t en
(2.21)

. 1 1
Ap-1 = E(el + vt €noy —€n)y Ap = 5(31 +ereten)

(characterized by A;-a; = §;; for a; given by (2.12.b)) to the basic weights of SO(n)+ U

ilzal,..., 3\,,-1 = Qn-1, Xn:el+-..+en (222}
is
2 -1 0 0 00
-1 2 -1 0 00
0 -1 2 .. 0 00
det . . . Cl=2n=124° (2-23)
0 -+« 0 ... =1 20
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(see, e.g., Sec.5.5.4 of [Go 5]). Consequently the factor A/A of the weight lattice A =
A(D,) by its sublattice A generated by (2.22) is a finite abelian group with 2g* elements.
It can be represented by the following two sets of weights, satisfying (2.22) and (2.20)

er,e1t ey er e ten,0,—en, —€n —€n_yy.iiymEn = e = €2 (2.27.a)
Ans A1y Ane2 = Anye e AQ1 — A, (2.27.b)

The set (2.27.a) reproduces the Neveu-Schwarz charges g2, = ¥ of Eq.(1.26) for which

azx¥(z,9) = (—1)7"¥(z,¢) (see Eq.(1.28)). For even g? the weights {2.27.b) give rise to
the same set of charges; thus for integer spins we only obtain single valued fields by the
above construction. For odd g? the set (2.27.b) gives rise to the Ramond sector charges
J2041-

We note that although the D,, series is defined conventionally for n > 4 and part of our
derivation is only legitimate for such n’s the final result is also applicable to n(= g*) = 2
and 3 (and even to n = 1, if we identify the set (2.27.a) with the zero vector and the set
(2.27.b) with {1/2¢;}).

3 Modular Invariant Partition Functions

The (reducible) VU(1)-affine characters of the above described LW representations of
Flg?),

Ku(7:6, %) = trm,gboy™, g = €27,y = ¥ (Im 7 > 0) (3.1)
are evaluated by means of the Sugawara formula (1.16):
1
AT 698 = — 3.2.
K (T;C g ) n(‘r)ev,gz (T, <! 0) ( G’)
Where O, 2 (7, (,u) is the classical @-function (see, e.g., [Ka 2] and references therein)
0, 2(7:¢yu) = 2rigtu ) q‘;(ng+§':;)zy(ng+ﬁ) (3.2.5)
neZ

and the Dedekind 5-function can be written in either of the two forms (c¢f. the Euler
identity (1.7.4) of [Ka 2])

= g H(1 - g") = 0,4(r,0,0) (3.2.c)
8 being the indefinite ©-function
= Ling+ 2 X -
B,42(7,¢,0) = S (~1)ngs ot K’y i) (= p(r)K,). (3.2)
nel

The indefinite affine characters K, (defined by (3.2) also appear in the modular transfor-
Mation law of K, (for odd g2 + v?):

Ko(r+1,(,9}) = (3.3)

_l_t_g___.l,f....,](:,,[’!’, ¢ 92) + ‘l_—(l;‘li‘“ﬁu(fs ¢ 92)}‘

wv

expl (57 - '*}]{
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K, satisfies a similar transformation law (obtained from {3.3) through the interchange
Ky - K,,) under 7-translation. In most of what follows we shall be only interested in the

reducible Virasoro characters (,’C),,(r, g?) = }C A7, 0,¢%)

The set {IC,,,}E,, 1 - g% < v < ¢?} is also closed under the second generator of the
modular group, the involution 7 — —1/1'. Indeed, using the celebrated Poisson formula
and the identity n(-1/7) = z/~i7n(7), we find

T o 1 s u(7, %) for even v
Kv(vr’g ) - g2 ) 2<Z< { ﬂ(T 92) fOr Odd v (3.5.“)
Legc'ng
¢ (.1 1 mize | K,(r,g?) for even v
Kl=20d")= 5 3 e { e (7. q° (3.5.b)
T g R Ko{7.¢%) for odd v
uoodd

Instead of the characters K, and I&V we can use their sum and their difference,

1 _
K = S(Ku(r,9%) £ Kal7,6%)) (3-4)
which can be expanded into series in powers of g with positive integer coefficients. We are
looking for modular invariant partition functions of the form

21, g5 {NY) = Y N 7, gD (7, 67) (3:5)
Vo
*e
where the N’s are nonnegative integers, Nj,;* = 1(and the bar stands for complex conju-
gation).
A complete classification of the Neveu-Schwarz (NS) partitlon functlons for even g
(and v, V) is presented in [Di 1] and [Ge 2). To every sphttmg of } 397 into a product p- 4
of positive integers there correspond a partition function ?

Z(Pp )(‘r,g 2 Kauosver )(759 Koo~ vp) 7 92) (3'6}

#EZ
VEZQ,

One can use this result to evaluate all modular invariant partition functions for odd g2 and
the partition functions involving the “twisted sector” for even g%. This is achieved through
the following relation between ICE,i)(T, g%) and the NS characters for a double charge, 2¢
defining the field algebra:

KV(r,9%) = Kau(7,4%), K{TH(7,9%) = Kavaaga(7,49)- (3.7)
In allowing for both signs of 42 in the index of X we are using the periodicity conditio?

Kysan(min) = Ku(7,n) (Rusan(ryn) = —Ko(rn)). (3.8)

YA sum over Zz,, means summation over any 2p consecutive integers, e.g. Emlnp
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We also note the symmetry property
K (r,n) = KE(r,n) (K (7,n) = K (). (3.9)

For g% = 4 we thus obtain the partition function for the “complex Ising model”, -i.e.,
for the theory of a free complex Weyl field ¢{*) (of charge +1), which mixes together
the Ramond and the NS sectors. Both the current and the stress energy tensor can be
expressed in terms of ¥(z) = ¥(z,-1) and ¥*(z) = ¥(2,1) according to the OPE (1.22)
for ¢ = 1. Thus we have two equivalent expressions for L,: the Sugawara formula (1.16)
and

L, =

(= — k)26, + Z(gn +1- ’i)W’Lm;M-M&;] + zp,wmgw,;_xﬂ,,_;_,z} (3.12.a)

=1

B | bt

1
2

where 2¢,, = [2$2] - [2] = {1 = (~1)") k = 0 in the Ramond sector and x = 1/2 in the
NS sector: .
KM, (1] = - 5
and we are using the ¥ mode expansion (1.27). The equivalence of the two realizations of
Vir is a consequence of the equality of central charges, ¢ = 1. The latter is verified by using
the infinitesimal conformal law {d»f,'), L)) =(p+ %)w,&'jﬂ, We shall now demonstrate that
Eq.(3.12) allows to obtain a new expression for K, (7, {,1), thus reproducing a nontrivial
Jacobi triple product identily.
We observe, first of all, that

H, i1l for v = 0,1 (3.12.5)

FryPppg Ty = eyl (3.13.0)
qz°y"°w,‘,q‘z°y“'° =q Py, (3.13.3)
This allows to compute the 2-point correlation functions
(Mg = otr (MFNgPo) v = 0,1 (3.10)
(£)

where X, is given by (3.24) and II;"’ are the orthogonal projection operators
o = ¢y, T =gy (G2 = i) = mide. (3.11)
Indeed, using the KMS condition (cf. [Bu 1])
(Agroy? Bg~Loy=Joy, .~ (BA),,. (3.12)
along with (3.13) and the canonical anticommutation relations for g[«*f,') we find

yg¢°
14 yg?

(gb:pwi?}‘?s!l;" = = <¢;~p¢;>q,g";u' (313)

Inserting (3.13) into the expectation value of (3.12) for n = 0 we obtain

&
(Lo)gyw = QEEIU Ku(r, (1) (3.14)
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with -
LA ) o 1w,
Ko () =8 =D T(1 + v ™)1 + 3¢ ™)
{=1 (3.15)

1 -
Ky, = 21/, v=0,1.

The above mentioned Jacobi type identity is obtained by equating (3.2) (for g = 1) with
(3.15). The (unique) modular invariant partition function for the g? = 1 model

Z(r,1) = S { K1) 12+ | K)(n, 1) 12) (3.16)

»=0

involves the N§ (v = 0) and Ramond (v = 1) sectors, as stated.
For any even g? = 2M there exists a diagonal NS invariant

M
zHes(r2M) = > | Ka(r2M) . (3.17)
wvm=l-M

If we apply Eq.(3.7) to the invariant (3.17) for M =4 (¢?=8) we obtain a partition function
for the g? = 2 model that includes a twisted sector:

2
Zrin2)= Y. Y 1KLn2) 1 (3.18)

vz-1e=%

The minimal charge g, and Virasoro LW A; of (the right moving projection of ) the twisted
sector are g; = 5—’75 and A; = %glz = flg. The NS partition function for this model (given
by Eq.(3.17) for M = 1) corresponds to the k = 1 level of V.SU(2) (cf. [To 2] where this
mode] has been analysed by the methods of Sec.2).

For g2 = 3 we obtain the N = 2 extended super Virasoro model, corresponding to
central chage ¢ = 1 (see [Wa 1], [Ra 1] and references to earlier work cited there). There
are two modular invariant partition functions in this case, obtained from (3.6) for g*> = 12
(and p,p’ = 2,3 and 1,6) with a subsequent application of (3.7). The twisted sector of
the N = 2, ¢ = 1 -model can also be obtained as follows. If we split the free Weyl charged
field ¥(z) = ¥(z,—1) into a real and imaginary part,

Vi) = Z5(0(3) + Wala) (e = V3 a = 1,2) (3.19)
then the current J can be written in the form
J) = a2 Walz) (= 5l (2), 9ol (3:20)

The twisted sector is then obtained by using the NS representation for ¢; and the Ra
mond representation for ({41, %]+ = 0). It turns out to be isomorphic to the twisted
sector of the V SU(2) model discussed above. This is a manifestation of a generally valid
isomorphism between the twisted sectors of the two models -see [Ri 1].
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4 Summary and Discussion

Using the result of Di Francesco, Saleur and Zuber [Di 1] and of Gepner and Qiu {Ge 2]
we have classified the modular invariant 2-dimensional QFT models of the chiral U(1)
conformal current algebra which involve single or double valued relalizations of the field
algebra F|g?] generated by a pair of conjugate charged fields ¥/(z, £g) (g2 = 1,2,...). The
first three of the infinite family of models thus classified are the free Weyl charged field
{equivalent to a pair of “coupled” Ising models), the level 1 realization of the 4, (= 850(2))
Kac-Moody algebra, and the ¢ = 1 level of the N = 2 extended super Virasoro algebra.

It turns out that the family of models, considered here, is also distinguished from
a purely mathematical point of view. The ©-functions {3.2.b) exhaust, according to a
deep result of Serre and Stark [Se 2], the most general modular forms of weight 1/2
(corresponding to ¢ = 1 - for a review, see [Ka 2]).

The case ¢ = 0 also corresponds to a modular invariant partition function

Z(r,0) = {4.1)

1 2
Vo

which can be written as a continuous superposition of V(1) characters corresponding to
charge g (see [Ge 3)):

2r0)= [ do I(n(i) 7=l [ dgemie e

_In(n) |72
2imr

(4.2)

We would like to thank V. G. Kac for suggesting to us the homogeneous space construction
of Sec.2 and both him and J.-B. Zuber for useful comments.
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