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The isoscalar giant monopole resonances (ISGMR) in 90,92,94Zr and 92,96Mo have been studied with 
inelastic scattering of 240 MeV α particles at small angles including 0o. Strength corresponding to 
approximately 100% of the ISGMR (E0) energy-weighted sum rule was identified in each nucleus. In all 
cases the strength consisted of two components separated by 7-9 MeV. Except for the mass 92 nuclei, the 
upper component contained 14-22% of the E0 energy weighted sum rule (EWSR), however 38% and 
65% of the E0 EWSR was located in the upper components in 92Zr and 92Mo respectively. The energies 
of the ISGMR for 92Zr and 92Mo are higher than for 90Zr, suggesting a significant nuclear structure 
contribution to the energy of the ISGMR in these nuclei. This has a large effect on the compression 
modulus of the nucleus. 

 
1. Introduction 
 

The giant resonances are small amplitude 
collective modes of excitations of nuclei and 
have been extensively studied since the 
discovery of the isovector giant dipole resonance 
(IVGDR) by Baldwin and Klaiber [1]. The study 
of the isoscalar giant monopole resonance 
(ISGMR), identified in 1977 [2], in which 
protons and neutrons in a nucleus move in-phase 
and oscillate with spherical symmetry, is 
important as it provides information about the 
incompressibility of finite nuclei, KA, from 
which the incompressibility of infinite nuclear 
matter incompressibility, KNM, can be obtained 
[3,4]. The incompressibility of finite nucleus is 
related to the GMR energy by  

 
KA = [M/ћ2]<r2>EGMR

2  (1) 
        
where in the scaling model EGMR = (m3/m1)

1/2 
and mk = Σ(En –E0)k|<0|r2|n>|2 is the kth moment 
of the strength distribution. There are, in general, 
two approaches to relate finite nucleus 
incompressibility, KA, to the incompressibility of 
nuclear matter, KNM. In the semi-empirical 
(macroscopic) approach, which is similar to the 
semi-empirical mass formula, KA is expressed as 
a Leptodermous (A-1/3) expansion to 

parameterize KA into volume, surface, symmetry, 
and Coulomb terms [5,6]. KNM is identified with 
the volume term as  

volA
A

NM KKK 


lim
   (2) 

(valid in scaling model only). In the microscopic 
approach, the strength function of the ISGMR is 
calculated using fully self consistent mean-field 
based random-phase approximation (RPA), with 
specific interactions [7] and compare with the 
experimental data. The values of KNM are then 
deduced from the interaction that best 
reproduced the experimental data. In 1999, 
measurements of the ISGMR for 40Ca, 90Zr, 
116Sn, and 208Pb [8] were compared to HF-RPA 
calculations which used Gogny interaction [3] 
and took into account pairing and anharmonicity 
corrections, and a value for KNM = 231 ± 5 MeV 
was obtained. These data were of considerably 
higher quality than the data from the 70’s and 
80’s (see Ref. [6] for detail). With the 
availability of a large amount of giant resonance 
data from 240-MeV α inelastic scattering using 
TAMU K500 cyclotron facility , Texas A&M 
group has studied the ISGMR in large number of 
nuclei in mass region 12 ≤ A ≤ 208. In heavy 
nuclei ( A ≥ 110) [9,10], the shape of ISGMR 
strength distribution is typically symmetric (with 
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Gaussian-like shape) whereas in light and 
medium-light mass nuclei the ISGMR strength is 
clearly broader and often split into more than one 
components [11-13] (see Fig. 1). As is seen in 
Fig. 1, in 208Pb, 144Sm, and 116Sn, ISGMR 
strength distribution is concentrated in what 
appears to be one symmetric peak (with 
Gaussian-like shape). In 60Ni, the ISGMR is 
asymmetric with a slower slope on the high 
excitation side of the peak whereas the structure 
of ISGMR is fragmented and complex in 48Ca. In 
90Zr, the shape changes to mostly symmetric 
with a tail on the high excitation side of the 
ISGMR, as seen in Fig. 1. As we have seen from 
our data, the transition from mostly symmetric to 
asymmetric shape occurs at 90Zr region [14]. 

Fig.1 E0 strength distribution for nuclei in 
different mass region. Data taken from Refs. [9, 
12-14]. 
 
In this article we report on measurements of the 
ISGMR in the A ~ 90 transition region, 
particularly, 90,92,94Zr and 92,96Mo where the 
GMR energies in the A=92 nuclei yield 
substantially higher nuclear compressibility than 
the other nuclei in this region (~27 MeV higher 
for 92Zr and ~56 MeV higher for 92Mo). These 
differences are not predicted with HF-RPA 
calculations that reproduce the ISGMR energies 
in the other isotopes and that are generally used 
to relate KNM to KA. The origin of this 
discrepancy is unknown and raises the question 

of what is left out of such calculations, and how 
do these omissions affect KNM. 
 
2. Experimental technique 
 

The experimental technique and detailed 
method of the analysis have been discussed 
thoroughly in Refs. [15-17] and are summarized 
briefly below. A beam of 240-MeV α particles 
from Texas A&M K500 superconducting 
cyclotron, after passing through a beam analysis 
system, bombarded self-supporting target foils 
(5-8 mg/cm2 thick Zr and Mo foils each enriched 
to more than 96% in the desired isotope) located 
in the scattering chamber of the multipole-
dipole-multipole (MDM) spectrometer. The 
horizontal acceptance of the spectrometer was 4º 
and the vertical acceptance was set at ±2º. Ray 
tracing was used to reconstruct the scattering 
angle. Scattered particles entering the MDM 
spectrometer were momentum-analyzed and 
measured by a 60 cm long focal plane detector, 
which consisted of four resistive wire 
proportional counters to measure position, as 
well as an ionization chamber to provide ΔE and 
a plastic scintillator behind the ionization 
chamber to measure the energy deposited and 
provided a fast timing signal for each event. A 
position resolution of ~ 0.9 mm and scattering 
angle resolution of ~ 0.09º were obtained. The 
out–of-plane scattering angle was not measured. 
At θspec = 0o, runs with an empty target frame had 
an α-particle rate approximately 1/2000th of that 
with a target in place, and α particles were 
uniformly distributed in the spectrum. The target 
thicknesses were measured by weighing and 
checked by measuring the energy loss of the 
240-MeV α beam in each target. The data for 
each run were binned into ten angle bins by the 
horizontal angle. The scattering angle for each 
angle bin was obtained by integrating over the 
vertical opening of the slit. The differential cross 
section was extracted from the number of beam 
particles collected, the target thickness, the solid 
angle, the yields measured, and the dead time. 
The number of beam particles was monitored 
with a monitor detector at a fixed scattering 
angle in the scattering chamber. Dead time of the 
data taking system was measured by comparing 
the number of pulses sent to the system to those 
accepted. The cumulative uncertainties in the 
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above parameters result in an approximately 
±10% uncertainty in absolute cross sections. 
24Mg spectra were taken before and after each 
run, and the 13.85 ± 0.02 MeV L = 0 state [18] 
was used as a check on the calibration in the 
giant resonance region. Initially data were taken 
for 90,92Zr and 92Mo and analysis revealed the 
behaviour in the A = 92 nuclei reported here. In 
an additional experimental run, data were taken 
for 92Mo, 94Zr, and 96Mo. The 92Mo strength 
distributions obtained in the two experiments are 
in excellent agreement. 

Sample spectra obtained are shown on Fig. 
2. The spectrum was divided into a peak and a 
continuum where the continuum was assumed to 
have the shape of a straight line at high 
excitation joining onto a Fermi shape at low 
excitation to model particle threshold effects 
[19]. Samples of the continua used are also 
shown in Fig. 2. The giant resonance peak can be 
seen extending up to Ex ~ 35 MeV. 

 

Fig. 2 Inelastic  spectra obtained with the 
spectrometer at 0o for 90Zr, 92Mo (offset 10 
units), 92Zr (offset 20 units) and 96Mo (offset 30 
units). The thick lines show continua chosen for 
the analysis.  

 
3. Data analysis and results  
 

The mulitpole components of the giant 
resonance peak were obtained [15-17] by 
dividing the peak into multiple regions (bins) by 
excitation energy and then comparing the 
angular distributions obtained for each of these 
bins to distorted wave Born approximation 
(DWBA) calculations. The uncertainty from the 
multipole fits was determined for each multipole 

by incrementing (or decrementing) that strength, 
then adjusting the strengths of the multipoles to 
minimize total χ2. This continued until the new χ2 
was one unit larger than the total χ2 obtained for 
the best fit. Optical parameters for the 
calculations were determined from elastic 
scattering for 90Zr [20] and are given in Table 1 
along with Fermi parameters used for the density 
distribution of the nuclear ground state.  

 
Table 1: Optical and Fermi parameters used 

in DWBA calculations 
 

 
 The DWBA calculations were performed, 

as prescribed in Refs. [21, 22], using the density-
dependent single-folding model for the real part, 
obtained with a Gaussian α-nucleon potential, 
and a phenomenological Woods-Saxon potential 
for the imaginary term. The α-nucleus interaction 
is given by given by 

 
U(r)=VF(r)+iW/{1+exp[(r-Ri)/ai]},   (3) 

   
where VF(r) is the real single-folding potential 
obtained by folding the ground-state density with 
the density-dependent α-nucleon interaction, 
 
vDDG(s,ρ) = -v[1- αρ(r’)β] exp[-s2/t2],      (4) 
 
where s = |r-r’| is the distance between the center 
of mass of the alpha particle and a target 
nucleon, ρ(r’) = ρ0(1+e[(r’-c)/a])-1 is the ground-
state density of the target nucleus at the position 
r’ of the target nucleon, α = 1.9 fm2, β = 2/3, and 
t (range) = 1.88 fm. W, Ri, and ai are WS 
parameters for the imaginary potential. These 
calculations were carried out with the code 
PTOLEMY [23]. Since PTOLEMY calculates all 
kinematics non-relativistically, corrections to the 
projectile mass and lab energy were made to 
achieve a proper relativistic calculation [24]. The 
shape of the real part of the potential and the 
form factor for PTOLEMY were obtained using 
the codes SDOLFIN and DOLFIN [25]. The 
transition densities and sum rules for various 

V 

(MeV) 

Wi 

(MeV) 

ri 

(fm) 

ai 

(fm) 

c 

(fm) 

a 

(fm) 

40.2 40.9 0.786 1.242 4.901 0.515 
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Fig.3 The black histograms show the fraction of the r2Y00 sum rule obtained for Mo and Zr isotopes 
plotted as a function of excitation energy. Superimposed are Gaussian fits to the two components of 
the distributions as well as the sum of the fits. On the left side are the strengths of the lower energy 
peak while on the right side the strengths of the higher energy peaks are listed, all given as a 
percentage of the r2Y00 sum rule.
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Fig.3 The black histograms show the fraction of the r2Y00 sum rule obtained for Mo and Zr isotopes 
plotted as a function of excitation energy. Superimposed are Gaussian fits to the two components of 
the distributions as well as the sum of the fits. On the left side are the strengths of the lower energy 
peak while on the right side the strengths of the higher energy peaks are listed, all given as a 
percentage of the r2Y00 sum rule.

multipolarities are discussed thoroughly in Ref. 
[15] and, except for the ISGDR, the same 
expressions and techniques were used in this 
work. The transition density for inelastic alpha-
particle excitation of the ISGDR given by 
Harakeh and Dieperink [26] (and described in 
Ref. [15]) is for only one magnetic substate, so 
that the transition density given in Ref. [15] must 
be multiplied by √3 in the DWBA calculations. 
The isoscalar E0 multipole distributions obtained 
for Zr and Mo isotopes are shown in Fig. 3. 
Several analyses were carried out to access the 

effects of different choices of the continuum on 
the multipole distributions as described in Ref. 
[19]. The errors shown on the strength 
distributions were calculated by adding the errors 
obtained from the multipole fits in quadrature to 
the standard deviations between the different 
analyses. Energies and sum rule strengths 
obtained are summarized in Table 2. E0 strength 
identified in each nucleus corresponded within 
errors to 100% of the E0 EWSR. The results 
obtained for 90Zr are in excellent agreement with 
our previous results [8,19]. While EGMR 
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generally decreases as A increases (this is small 
in adjacent nuclei), EGMR for 92Zr and 92Mo are 
1.22 MeV and 2.80 MeV, respectively, higher 
than for 90Zr, a surprising result. In all of these 
nuclei, the E0 strength consists of a relatively 
narrow peak, with significant tailing at higher 
excitation.  In order to provide a consistent 

framework to compare the results for the 
different nuclei, the E0 distributions were fit 
with two Gaussians.  For the nuclei with A ≠ 92, 
80-90% of the strength is in the lower energy 
peak located at 15.7 to 17.2 MeV, with the 
remaining 10 to 20% located in a broad peak 
centered at Ex ~ 25 MeV. It is clear that the 
distribution of the E0 strength in 92Mo is 
dramatically different from the others, with only 
40% of the observed strength in the lower peak 
and 60% in the upper peak. In 92Zr, the lower 
peak contains 65% and the upper peak 35% of 
the observed E0 strength. While the overall E0 
strength could be affected somewhat by raising 
or lowering the assumed continuum, the 
dramatic difference in strength distributions 
between 90Zr and 92Mo could be reduced 
significantly only by assuming that the shape and 
strength of the continuum changes radically 
relative to the strength above the resonance 
region as a function of angle, and changes very 
differently for different nuclei. The isoscalar 
giant quadrupole resonance(GQR) is located just 
below the ISGMR and the GQR strength 
extracted for all the nuclei is concentrated in 
symmetrical peaks containing 80~ 95% of the E2 
EWSR. In 90Zr, 92Zr, and 92Mo, EGQR = 

14.30±0.15, 14.02±0.15 and 14.53±0.15 MeV 
respectively, having RMS widths of 4.8, 5.5 and 
6.3 MeV. There is no tailing of the quadrupole 
strength in any of the nuclei studied and EGQR for 
the mass 92 nuclei are within errors the same as 
90Zr.  Prior to our 240 MeV α work reported in 
1999 [8], the strength in 90Zr at ~ 23-25 MeV 

had not been seen due in part to the much higher 
continuum/background present in the earlier 
(lower energy) studies [27,28] and in part to the 
assumption that any strength above the 
unresolved GQR-ISGMR peak was part of the 
continuum/background. In these earlier works it 
was also assumed that the strength in each giant 
resonance was concentrated in a single Gaussian 
peak. 
A study of 90Zr at Osaka with 400 MeV α 
particles [29] showed the E0 strength with a peak 
at Ex = 16.6 MeV and continuous E0 strength 
through 32 MeV, the highest energy reported, 
which would mask the strength we see. Most of 
the multipole distributions in most of the nuclei 
reported by the Osaka group [29,30] show 
continuous strength above the giant resonance 
peak to the highest energy studied, and they 
argue that this continuous strength must be 
spurious. In most cases, if this strength were real, 
they would identify significantly more than 
100% of the EWSR for each multipole. 
The ISGMR’s in 92Mo and 96Mo were studied 
with 3He inelastic scattering [27] in 1983 where 
they located 24% and 19% of the E0 EWSR 
respectively, in Gaussian peaks at  Ex =16.35 
MeV and 16.40 MeV, respectively.  The same 

Table 2. Parameters obtained for the E0 (in % EWSR) distributions shown in Fig. 3.  Uncertainties 
include systematic errors. EGMR   is given by the ratio of energy moments (m3/m1)

1/2 for the scaling 
model. 
    Gaussian Peak 

  EGMR Centroid Low Peak High Peak 

Nucleus % E0 (m3/m1)
1/2 

(MeV) 
m1/m0 

(MeV) 

Ex 

Me
V 

Γ 
MeV 

% E0 Ex 

MeV 

Γ 
MeV 

% 
E0 

90Zr 106±12 18.86+.23-.14 17.88+.13-.11 17.1 4.4 84 24.9 7.6 22 
92Zr 103±12 20.09+.31-.22 18.23+.15-.13 16.6 4.4 62 25.5 12.0 38 
94Zr 106±12 17.52+.18-.14 16.16+.12-.11 15.8 5.9 83 24.2 5.6 21 
92Mo 107±13 21.68+.53-.33 19.62+.28-.19 16.8 4 42 23.9 14.7 65 
96Mo 105±12 18.18+.20-.13 16.95+.12-.10 16.4 5.7 83 23.8 5.7 20 
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group later used 152 MeV α inelastic scattering 
[31] to study 92Mo where they reported 84% ± 
17% of the strength in a peak at Ex = 16.2 MeV 
with a width = 4.8 MeV. Though both 3He and 
α result are listed in the table in Ref. [31], the 
authors do not comment on the reason for the 
discrepancy between them. In both these works, 
the authors assumed that the E0 strength was 
located in a single Gaussian peak and all cross 
section at energies above Ex ~ 21 MeV was 
attributed to the continuum/background. We now 
know that giant resonance strength extends up to 
Ex ~ 35 MeV in most nuclei [8,9,13,19]. Their 
continuum/background assumptions precluded 
identification of any strength above Ex ~21 MeV. 
The calculations used to normalize the strength 
were carried out with the deformed potential 
model, and it has been shown [32] that reliable 
strengths can be obtained only with folding 
calculations, so that the uncertainties would be 
larger if the uncertainties in the calculations were 
included.     
   Within the scaling model [33], the ISGMR 
energy is given by EGMR =(m3/m1)

1/2,where mk is 
the k-th energy moment of the strength 
distribution. Using for EGMR the experimental 
energies corresponding to the scaling model 
{(m3/m1)

1/2} shown in Table 1 and radii obtained 
from Hartree-Fock calculations [34] with the 
KDE0v1 interaction [35] having KNM = 227.5 
MeV, the experimental scaling model values of 
KA for the Zr and Mo isotopes were obtained 
from Eq. (1). For 92Zr and 92Mo, KA values 
obtained from the experimental energies are 27 
MeV and 56 MeV higher than the values 
predicted with HF-RPA.  
To attempt to understand this behavior, we 
calculated microscopic transition densities for 
92Mo using Woods-Saxon based RPA and used 
them to calculate cross sections for E0 excitation 
at Ex =17.5 MeV and 27.5 MeV. Using the 
collective transition density, the cross section for 
excitation of the ISGMR at Ex =27.5 MeV is 
~1/5 that at Ex = 17.5 MeV, whereas with the 
microscopic transition density this ratio is ~ 
1/12.  Thus, using the microscopic transition 
density will enhance the upper peak by more 
than a factor of 2 in 92Mo and result in the upper 
peak alone exhausting more than 100% of the 

EWSR and shifting EGMR to even higher energy, 
further increasing KA for 92Mo. 
We also investigated the possibility that this 
second peak could be the “overtone” ISGMR 
(operator r4Y00) [37]. Using the collective 
transition density and sum rule for the overtone, 
two calculations were done for 92Mo (the results 
based on these calculations are preliminary). The 
first assumed that the second peak was entirely 
due to the overtone.  That would require 228% of 
the sum rule for the overtone and leave only the 
42% of the r2Y00 in the lower peak (lower panel 
Fig. 4). We then placed the overtone at twice the 
energy of the ISGMR with twice the width, with 
100% of the r4Y00 sum rule and subtracted that 
from the 92Mo E0 strength. This is shown in the 
upper panel of Fig. 4 and leaves E0 strength 
corresponding to 91% of the r2Y00 sum rule, 
which is quite plausible. Unfortunately this 
interpretation does not work for 90Zr or 96Mo, 
because the r4Y00 strength would considerably 
exceed the strength seen experimentally in the 
higher energy region.  EGMR for the calculation in 
the bottom panel is 20.15 MeV, resulting in KA 
of 179 MeV, 27 MeV above that expected from 
the HF-RPA calculations. While this reduces the 
discrepancy for 92Mo (and could eliminate it for 
92Zr), there is no obvious reason for the overtone 
to be present in A=92 nuclei, and absent for the 
other nuclei. 
 
Thus we are left with the conclusion that the E0 
strength distributions observed are due to the 
ISGMR and those in the A = 92 nuclei lead to 
much higher nuclear compressibilities 
(particularly for 92Mo) than the other nuclei in 
this region, which raises serious questions about 
the influence of nuclear structure on the energy 
of the ISGMR and hence about nuclear matter 
compressibility extracted from these energies. 
The ISGMR energy is significantly affected by 
the properties of the individual nucleus in a 
manner not accounted for in HF-based RPA 
calculations that relate ISGMR energies to KNM 
and hence is not a good indicator of 
compressibility in these A = 92 nuclei. 
 
We have also taken data for 98,100Mo to further 
explore this behaviour in mass 90 region and the 
data is being analyzed. 
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Fig. 4 (Preliminary results) (a) ISGMR strength 
distributions for 92Mo obtained by assuming that 
the lower peak (diamonds) is due entirely to 
ISGMR excitation and the upper peak (squares) 
is due entirely to overtone excitation are plotted 
versus excitation energy. The percentages of the 
respective sum rules are indicated. The vertical 
scale for the lower peak is relative to the r2Y00 
sum rule, while that for the upper peak is relative 
to the f(r)Y00 sum rule. 
          (b) The strength distribution obtained for 
the overtone in 92Mo located at twice the energy 
of the lower peak with twice the width and 
containing 100% of the f(r)Y00 sum rule is 
shown by the squares plotted versus excitation 
energy. The diamonds show the strength 
remaining after this is subtracted from the 
strength shown in Fig. 3. The vertical scale is 
relative to the r2Y00 sum rule. The error bar 
indicates the experimental error at Ex = 33 MeV. 
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