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Polarization effects in Compton scattering are considered. Differential as well as

total cross sections of photons by polarized leptons scattering are calculated and dis-

cussed. The formulae are obtained in the Lorentz-invariant form without any approx-

imation. They can be used at any kinematic conditions. The polarized asymmetry

of processes unpolarized photons scattering as well as polarized ones are obtained.

Introduction

The Standard Model provides the possibility for describing all present experimental data.

Nevertheless the linear collider experiments [1]-[2] that run at the center of mass energies up

to 1 TeV [3], may finally reveal the deviations of electroweak interaction from the Standard

Model predictions. At linear lepton colliders eγ and γγ processes will be investigated at the

same energies and luminosity as in e+e− experiments. The intense γ-beams are suggested to be

obtained by Compton scattering of laser light focused on the electron beams of e+e− accelerators

[3].

Processes of γe-collisions

It is expected that some time in the future, International Linear Collider (ILC) will conduct

experiments using both a longitudinally polarized electron and positron beams.

Linear colliders will provide possibility to investigate photon collisions at energies and lumi-

nosities close to those in e+e− collisions. There is a better signal/background ratio in comparison

with hadron colliders. The production cross sections at photon colliders are usually larger than

hadron colliders. The advance of experimental tools such as highly polarized photon beams,
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polarized targets and more powerful accelerators, makes it feasible to study polarized Compton

scattering in detail.

At present it is possible to form beams of polarized initial particles and to determine the

polarization of scattered particles. As it is well known, by evaluating the left-right asymmetry,

for example, Standard Model parameters can be measured with even greater accuracy than

using unpolarized beams [4]. Furthermore, one-loop effects are expected to be observable. In

order to achieve this desired accuracy, a precise measurement of the degree of polarization of

the incoming electron beam is requires. The errors in the asymmetry and in the polarization P

of the electron beam are related as follows, neglecting statistical errors:

∆ALR

ALR

=
∆P

P
, (1)

where

ALR =
σL − σR

σL + σR

. (2)

Here σL and σR denote the cross sections for the process e+e− → ff̄ (f – is a fermion) with left-

and right-hand polarized incoming electrons. P can be measured through Compton scattering.

To this purpose the longitudinally polarized electron beam is scattered by left and right circular

polarized photons and the energy of the scattered electron is measured. From this, one deter-

mines the asymmetry Aexp
LR(e−γ → e−γ) as a function of energy. ALR denotes ALR(e−γ → e−γ)

and L and R stands for left and right circular polarized photons. The relation between Aexp
LR and

Atheor
LR , where Atheor

LR is the value for the asymmetry when the electron beam is 100% polarized, is

Aexp
LR = PAtheor

LR . (3)

Atheor
LR can be theoretically evaluated and thus P can be determined.

Therefore necessity appeared to calculate basic characteristic of polarized particle interac-

tions such as cross sections, decay properties, asymmetries etc. The purpose of this paper is to

obtain and analyze the cross section and asymmetry of the polarized photon-electron scattering.

The calculations are carried out in Lorentz-invariant form without any approximations.

The experimental setup of ILC leads to important consequence for the calculation. Although

the high energy of incoming electron beam at ILC, the electron mass cannot be neglected, since

the energy of the incoming photon beam is in the electronvolts range. This is explain why the

electron scattering angle is close to zero.

The process is defined in Fig.1, p1, n1 and p2, n2 are the momentum four-vectors and polar-

ization four-vectors of the incoming and outgoing electron. k1, e1 and k2, e2 are the momentum

four-vectors and polarization four-vectors of the incoming and outgoing photon.

e−(p1, n1) + γ(k1, e1) → e−(p2, n2) + γ(k2, e2) (4)
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FIG. 1. The lowest-order Feynman diagrams corresponding to photon-electron interaction

The expression of the Compton scattering differential cross section can be written as follows:

dσ = α2 k0
2
2
dΩ

(2p1k1)2
|M |2. (5)

Here α = e2/4π and k0
2 is the energy of scattered photon: k2 = (k0

2,
~k2); p1k1 = p0

1k
0
1 − ~p1

~k1; and

the total cross section considering process

σ =
e2

2(p1k1)

∫
|M |2dΓ. (6)

The phase volume is defined as

dΓ =
d3p2

(2π)32p0
2

d3k2

(2π)32k0
2

(2π)4δ(p1 + k1 − p2 − k2).

In the lowest order there are two diagrams (see Fig.1). The amplitude M is given by the

following expressions

M1 = −ie2 · ū(p2) ê2
1

p̂1 + k̂1 −m
ê1 u(p1) = −ie2 · ū(p2) ê2

p̂1 + k̂1 + m

(p1 + k1)2 −m2
ê1 u(p1) ,

M2 = −ie2 · ū(p2) ê1
1

p̂2 − k̂1 −m
ê2 u(p1) = −ie2 · ū(p2) ê1

p̂2 − k̂1 + m

(p2 − k1)2 −m2
ê2 u(p1) ,

(7)

where amplitude M1(2) corresponds to the first (second) Feynman diagram of the photon-electron

interaction.

Using standard QED equation the final amplitude formulae can be written as

M = ie2

{ [
(p2e1)

(p2k1)
− (p1e1)

(p1k1)

]
· ū(p2) ê2 u(p1)− 1

2
· ū(p2)

[
ê2k̂1ê1

(p1k1)
+

ê1k̂1ê2

(p2k1)

]
u(p1)

}
. (8)
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This amplitude is gauge invariant.

To calculate and analyse amplitude in case of polarized interaction particles the method

proposed in refs. [5], [6] was used. We present calculated amplitude in following form

ūfQui =
(Q uiūi P uf ūf )√
(P uiūi)(P uf ūf )

, (9)

where

P =
1

2
(1± γ5)q̂ , (10)

q is an arbitrary massless vector.

Polarization vectors of initial (final) photons can be written as

e±µ (k1) =

[
(1± γ5)γµk̂1q̂k̂2

]

8
√

(k1k2)(k1q)(k2q)
=

[
(1∓ γ5)γµk̂2q̂k̂1

]

8
√

(k1k2)(k1q)(k2q)
= e∓µ (k2) ; (11)

ê±(k1) =
(1± γ5)k̂2q̂k̂1 + (1∓ γ5)k̂1q̂k̂2

4
√

(k1k2)(k1q)(k2q)
= ê∓(k2) . (12)

As a result squared module of obtained matrix element

|M(τ1 = ±1, τ2 = ±1; λ1, λ2)|2 = e4 · m2(k1k2)
2

2(p1k1)2(p1k2)2
·

·[(p1p2)± λ1m(p2n1)∓ λ2m(p1n2)− λ1λ2m
2(n1n2)] ;

|M(τ1 = ±1, τ2 = ∓1; λ1, λ2)|2 = e4 · 2(p1k1)(p1k2)−m2(k1k2)

2(p1k1)2(p1k2)2
·

·
{

[(p1k1)
2 + (p1k2)

2 −m2(k1k2)]∓ λ1m(k1k2) · [(n1k1) + (n1k2)]∓

λ2m(k1k2) · [(n2k1) + (n2k2)]− λ1λ2 ·
〈

[2(p1k1)(p1k2)−m2(k1k2)] (n1n2)+

+2(p1k1)(n1k2)(n2k1)− 2(p1k2)(n1k1)(n2k2)
〉}

,

(13)

corresponds to scattering of polarized photons and leptons. Here τ1, τ2 – circular polarizations

of initial and final photons and λ1 and λ2 – helicities of initial and final leptons correspondingly.

Total cross section of eγ-interaction for different spin configuration are expressed by a set

of formulae:

σ(±,±;±,±) = r2
0

π

2

1

γ5

{
γ

[
2γ − 1

2
− 5γ + 2

2(2γ + 1)2
+

2

γ + 2

]

+

(
γ2 +

2γ + 1

4

)
ln(2γ + 1)− γ

(
γ + 2 +

1

γ + 2

) √
γ

γ + 2
· ln[γ +

√
γ(γ + 2) + 1]

}
,

(14)
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σ(±,±;±,∓) = r2
0

π

2

1

γ5
·
{
− γ

[
5γ − 3

2
+

2

γ + 2

]
− 2γ + 1

4
ln(2γ + 1)

+γ

(
γ + 2 +

1

γ + 2

) √
γ

γ + 2
· ln[γ +

√
γ(γ + 2) + 1]

}
,

(15)

σ(±,±;∓,±) = r2
0

π

2

1

γ5
·
{

γ

[
−3γ +

γ + 1

2(2γ + 1)
+

γ

γ + 2

]

−
[
γ2(6γ + 5) +

1

4

]
ln(2γ + 1) + γ

(
6γ2 + 11γ + 2 +

1

γ + 2

)
·

√
γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(16)

σ(±,±;∓,∓) = r2
0

π

2

1

γ5
·
{

γ

[
4γ3 + 9γ2 +

7γ − 1

2
− γ

γ + 2

]
+

1

4
ln(2γ + 1)

−γ

(
6γ2 + 11γ + 2 +

1

γ + 2

)
·
√

γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(17)

σ(±,∓;±,±) = r2
0

π

2

1

γ5
·
{

γ

[
5γ2 + γ

15γ + 12

2(γ + 2)
− 1

2

]
+

(
4γ4 − 2γ2 +

1

4

)
ln(2γ + 1)

−γ

(
4γ3 + 2γ2 + 7γ − 2γ − 5

γ + 2

)
·
√

γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(18)

σ(±,∓;±,∓) = r2
0

π

2

1

γ5
·
{

γ

[
−4γ3 + γ2 8γ + 5

2γ + 1
− γ

15γ + 12

2(γ + 2)
+

1

2

]

−
(

2γ3 + 3γ2 +
1

4

)
ln(2γ + 1) + γ

(
4γ3 + 2γ2 + 7γ − 2γ − 5

γ + 2

)
·

√
γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(19)

σ(±,∓;∓,±) = r2
0

π

2

1

γ5
·
{

γ

[
2γ3 − 1

2
(γ + 1)

γ − 2

γ + 2

]
− (2γ + 1)3

4
ln(2γ + 1)

+γ

(
5γ + 2 +

1

γ + 2

)
·
√

γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(20)
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σ(±,∓;∓,∓) = r2
0

π

2

1

γ5
·
{

γ

[
−2γ2 +

1

2
(γ + 1)

γ − 2

γ + 2

]
+

[
(2γ + 1)3

4
+ γ2

]
ln(2γ + 1)

−γ

(
5γ + 2 +

1

γ + 2

)
·
√

γ

γ + 2
ln[γ +

√
γ(γ + 2) + 1]

}
,

(21)

where γ =
(p1k1)

m2
=

k0
1

m
.

Conclusion

Detailed numerical analysis of the eγ cross section and polarized asymmetry demonstrates

the contribution of polarization term decreases with increase of initial electron energy. The value

of the cross section for extremely high energies (
√

s ≥ 200 GeV) proves to be negligible. The

cross section is almost completely determined by unpolarized part and therefore it is clear that

the high-energy experiments with polarized particles are excellent instrument to investigate of

electromagnetic interaction in Compton process.

It is convenient to analyze polarization effects using polarized left-right asymmetry:

ALR =
σ+ − σ−
σ+ + σ−

. (22)

Here σ+ and σ− is the total cross sections for left and right polarized scattered photons.

The polarized asymmetry (22) as a function of initial electron energy is given in Fig.2.

Since the cross sections and polarized asymmetry have significant value (see Fig.2) it is

evident it is important to include in consideration the higher order effects (radiative effects). We

calculate them using Helicity Amplitudes Method. The corresponding corrections are evaluated

for two different values of the central mass energy interacting particles (
√

s = 500 GeV and

1000 GeV). The correction to the unpolarized differential cross section is very small and varies

between 0.5% and 1%. The correction is totally negligible at the lower end of the spectrum. At

the other end of the spectrum it seems that the correction becomes quite large, around 10%.

The reason for this is that the lowest-order value is already small.

The considered polarized asymmetry is significant (≥ 90%) when the energies of initial

particles occupy the same diapason and it gradually decline with the growth of electron energy

compared to the energy of a photon (Fig.2). The radiative correction would not very meaningful

in the largest part of the kinematic region.

Thus, high polarized eγ processes are good instrument for calibration of high energy accel-

erators and preparation of polarized electron beams with significant degree of polarization.
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FIG. 2. Polarized asymmetry as a function of initial central mass energy (a) and as a function of

scaling variable y (b) at the energy of interacting particles
√

s = 120 GeV.
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