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Duality rotation group in the linear or nonlinear electrodynamics is con
sidered. Conservation law generated by the symmetry under the duality 
rotation is found from the N oet.her theorem. 

Then, using the Noether theorem, we get the infinite number of conser
vation laws in the Maxwell electrodynamics. They involve the mysterious 
conservation laws of Lipkin. 

*This modest work is dedicated to Professor 
Jerzy F. Plebanski, my Teacher and Friend, 
who showed me the dual world. 
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I. INTRODUCTION 

Heaviside (1893) was perhaps the first who observed that the source-free 
Maxwell equations were invariant under the transformation: E ~ .ii, .ii ~ 
-E, where E and H stand for the vectors of electric and magnetic fields, 
respectively. Then, Larmor (1928) and Rainich (1925) extended this trans
formation to the one-parameter duality rotation group 

-+/ _,, -+ -+/ -+ _,, ( ) 
E = E cos <p + H sin<p, H :=: -Esin<p + H cos<p, cpdR. 1.1 

In terms of the e]ectromagnetic tensor fij, i, j = 1, ... , 4, the duality rotation 
group is defined by 

J:i = fii cos <p + i * fij sin c.p, c.pdR, (1.2) 

where *fii = -h/=9 tiikdk1
, and it has been shown (Rainich (1925), Mis

ner and Wheeler (1957), lbragimov (1967), Plebanski and Przanowski (to 
appear)) that the group (1.2) appears to be the maximal group of transfor
mations of the form 

I 
9;j = 9ij, (1.3) 

leaving the Einstein-Maxwell equations invariant. 

Mutatis mutandis, this holds true for some models of nonlinear electrodynam
ics (Salazar, Garcia and Plebanski (1987,1989), Plebanski and Przanowski (to 
appear)). But, as it has been shown by Deser and Teitelboim (1976), the 
duality rotation is not well defined in non-abelian field theories. Ferrara et al 
(1977) have found some generalized duality transformations in the extended 
0(2) and 0(3) supergravity theories. 

The present work is devoted to the various aspects of the duality rota
tion in linear or nonlinear electrodynamics. We consider conservation laws 
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generated by the symmetry under the duality rotation group and by its gen
eralization (Secs. 3 and 4). Of course the fundamental problem is whether 
or not the symmetry under the duality rotation is broken when the sources 
are present. If not, as we expect, then it seems that the Dirac quantization 
condition for the electric and magnetic charges should be revised (Schwinger 
(1975)) . 

II. DUALITLY ROTATION IN ELECTRODYNAMICS 

We consider a vacuum electromagnetic field in a space-time ( M4 , 9ii), i, j, = 
1, 2, 3, 4. The electromagnetic field is described by the potential Ai and the 
antisymetric tensor Pii = -Pii· Lagrangian for the electromagnetic field is 
taken to be 

(2.1) 

1 .. 
p ·- -p· ·p'' .- 4 '3 , 

. 1 . . i kl 
Q ·- -p .. * p'3 *P' · ·- -- J:::::;:g € · 'klP • ,- 4 IJ l lJ .- 2 y-y IJ ) 

K(P, Q) is called the structural function. 

For the action of the gravitational and electromagnetic field one has 

(2.2) 

where R stands for the curvature scalar and A is the cosmological constant. 

Then the variation of S with respect to 9ij, Ai and Pii yields the. following 
set of equations · 
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1 . 
Ri; - 2 Rgi; - -87rT;; + Agi; (Einstein equations) (2.3) 

df = O, d * p = 0 (Maxwell equations) (2.4) 

8K 8K 
f;; = ap Pii + oQ * p;; (Material equations) (2.5) 

with T;; = p~ /;k + Lg;;, f := lf;;dxi /\ dxi, *P := l * p;;dxi /\ dxi 

(Born and lnfeld (1934), Pleb!Uiski (1970), BiaTynicki-Birula and ~iafynicka-
Birula (1975), 'sala~ar et al (1987)) ... ' '! ' , ; ' ·, 

It is convenient:t~.deal with a (3+1).:. decomposition of M4, M4 = M3 x Mi, 
dim M3 = 3, dim Mi = 1. 

We define the following 3-objects (Landau and Lifschitz (1973), M</>ller (1972), 
Deser and Teitelboim (1976)) " · 

(2.6a) 

1 . 
Bµ, - - f.µ,IJU Ii . - 2 IJU) (2.6b) 

Greek indices run through 1, 2, 3. 

Then the. Maxwell equations (2.4) take the form 

{) D µ, µ,IJU !l H -..· 0 . 
4 - f UIJ u - , (2.7) 
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The material equations read 

' 8K, '· 
Eµ = - 8Dµ' 

where K. : = ~ K. 

(2.8) 

Now from the second set of equations (2.8) we find Hµ - Hµ(9ih D11
, Bu); 

and then we define M = 1\1 (gij, .0~, Bu) to be 

M.:= Bµ Hµ - K., (2.9) 

8M 
Eµ = 8Dµ' 

(the Legendre ttansformatibn); 
' 'i '. ' ,. 

8M 
Hµ = 8Bµ 

: .1·,j 

Finally, for . the Maxwe11 equations we get 

!l
4
Bµ + Eµ 11u8 BM = 0 8 Bµ. 0 U. II{) nu l µ = l 

(2.10) 

(2.11) 

It is natural to assume that the electrodynamics considered corresponds to 
the linear Maxwell electrodynamics for weak fields i.e. 

(2:12) 

Moreover, as K ( P, Q) is a scalar function 

K(P, Q) = K(P, -Q). (2.13) 
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Th~n one shows that the dominant energy condition is satisfied iff 

88KP > 0 and poK +Qol( -K > 0 
{)P 8Q - (2.14) 

(Plebanski (1970)). 

Now we state the following problem: 

Find the maximal (connected) local group of transformations G of' the form 

Ii i I -+I ... , i _. -+ 
x =x,g1;=9iJiD =D(x,D,B;ri, ... ,rr), 

(2.15) 

leaving the Einstein-Maxwell equations, (2.3) and (2.11), invariant for every 
decomposition M4 = M 3 x M 1 and every coordinate system. 

Under the assumption (2.12) one finds the solution of the problem to be 

Theorem 2.1 

G is of the form 

I 
9ij = 9ij, 

... , .... , ... ...., .... ... 
D = D cos'{> + B sin'{>, B = -D sin'{> + B cos'{>,'{> t: ~ (2.16) 

It is admitted iff 

(2.17) 

or equivalently, iff 
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f /\ f = p /\ p. (2.18) 

, I 

[Plebanski and Przanowski (to appear). See also Salazar et al (1987), 
Ibragimov (1967), Ovsiannikov (1982), Bia!ynicki-Birula (1983)]. . . 

The group a' is called 'the d~~lity r~tatio~ group (DR-group). 

Using the trick given by Salazar, Garcia and Pleb~ski (1987) we ca~ find 
the general solution of (2.18) (-{::::::::> (2.17)). 

I :. 

This trick consist in choosing .the Lorentzian coordinate system at some 
point qtM4 so that 

·•. 

D = (0, 0, D) and H = (0, 0, H) at q (2.19) 

and consequentetly 

(2.20) 

Then 

'I 
P = 2 (H2 

- D2
), Q = iDH. (2.21) 

Equation (2.18) reads 

,; , ··. oM·· 8M 
BE= DH~ B- - D- = 0 

{)D oB 

and the latter equation has the general sol~tion 

M = M (~ · (D2 + B2
)),' 

where M(t·(D2+B2
)) is an arbitrary function of the variable t·(D2 +B2

). 
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From the relation H = ~~ we get B:;:: B(D, H); and t}\en using the relation 

K = H · B(D,H)-M(~. (D2 + (B(D,H)) 2
) (2.24) 

and (2.21) one fiuds the general solution J( = K (P, Q) of (2.17) 

To ensure (2.12) we assume that 

M(O) = 0 and 

1 
y := - (D2 + B2). 

2 

Moreover, the domjnant energy condition holds iff 

M ~ y~oyM > 0 for y > 0. 

Example: 

Then 

(2.25) 

(2.26) 

]{ = b2 - J(b2 + n2).(b2 - fl2) = b2 -Vb"- 2b2 P + Q2 • (2.28) 

This K generates the Born-Infield nonlinear electrodynamics. 

Finally one can easily show that in terms of the 2-forms f and p the 
duality rotation takes the form 

J' :::;:: f cos <p + i * p sin c.p, 
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• 

p' = p cos cp + i * f sin cp. (2.29) 

III. CONSERVATION LAW 

From the preceding section one infers that an electrodynamics admits the 
duality rotation grup iff the condition (2.18) holds. 

Now as 

P /\ P - *P /\ *P, (3.1) 

(2.18) is equivalent to 

f /\ f = *P /\ *P· (3.2) 

From the second set of the Maxwell equations (2.4) it follows that (at least 
locally) 

*P = -i da, (3.3) 

where a is some I-form. Them the Chern-Simons formula gives 

f /\ f = d(A /\ dA) and * p /\ ~p = -d(a /\ da). (3.4) 

Substituting (3.4) into (3.2) one gets 

d( A /\ dA + a /\ da) = 0 (3.5) 
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or the following conservation law 

(3.6) 

[In the present work we define the Hodge star *·to be (Plebanski (1974), 
Plebanski and Przanowski (1989)) 

u /\ *W - -i exp [!f r.(4- r)].(ulw).fJ 

1 . . 
,.. - - ,.., · dx'1 /\ /\ dx'r 

1 . . 
W ::::; - W' ' dX 11 

/\ ' ' ' /\ dx'r v - I vl] ... lr •'' l r. I 11 ·"tr ' r. 

(ulw) :==. l.u· · w•i ... ir fJ is the volume 4-form. r! tJ ... lr ' 

** = 1, 

u A *W - "°' /\ *u = (-1r<4-r> * u /\ w, 

*1 = -ifJ, *f) = i). 

Integrating (3.5) or (3.6) over a 4-dimensional domain n 

,---_-...... ___ Z_i_ 
l 
f 
I 

f 

' 'CXJ .i.--.------.._ ________ .' 

one obtains the conserved quantity 
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(3.8a) 

(3.8b) 

(3.8c) 
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(3.9) 

In the Minkowski space-time, neglecting some 3-divergences, we can write 

= - d3x[B · ('\7-2'\7 x B) + D · ('V7-2'\7 x D)] 11 .... .... .... ... 
2 R3 

(3.10) 

[For the Maxwell electrodynamics the constant C has been found by Deser 
and Teitelhoim (1976). In nonlinear electrodynamics it has been given by 
Bia1'ynicki-Birula (1983)]. 

We intend to show that the conservation law (3.6) is generated by DR-group 
according to the famous Noether construction. 

To this end we write down the general duality rotation in terms of the La
grange variables Ai and Pii 

A~ = Ai cos <.p + ai sin <.p, 

P~j = Pij cos <.p + i * fij sin <.p, <.pE~ (3.11) 

(Notice that the first formula of (3.11) should be considered mod 8ih; his an 
arbitrary function). 

The infinitesimal operador X of (3.11) reads 

X 8 . + 8 
- ai 8 Ai + z * J ii 8p1j . (3.12) 
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As ai a.re nonlocaJ "function" of Pi; our infinitesimal operator X is not the 
standard one. [The standard infinitesimal operator appears to be the field 
on a relevant jet bundle (Trautman (1972), Kuperschmidt (1980), Ibragimov 
(1985)]. Nevertheless, in our case one can also find the Noether - lbraginov 
identity and consequently the Noether constuction can be applied (Noether 
(1918), Trautman (1972), Kuperschmidt (1980), lbragimov (1985), Olver 
(1986)). 

First, we present X in a concise form 

X 
m {) 

= TJ -[)um 

wherc(u\···,u16
) = (A1,···,p43),(rJ\···,rJ16

) 

Then the Noether-Ibragimov identity reads 

X di.Ni m 8 
Pr = +n ., Sum' 

(3.14) 

(3.14) 

where di stands for the total derivative with respect to the variable xi and 

prX = T/m [j~m + L di1 ···di. (TJm) · 
s~l 

{) 
(3.15a) 

(the Lie-Backlund operator); 

+ L: (-l)"dh ···d;. [) {) J 
u~k k · · s;?:l 'l"'rJl'"J• 

(3.15b) 
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(the Noether-Ibragirnov operator); 

(3.15c) 

(the Euler-Lagrange opemt01'); 

u~ · - 8·8· ···8· um·· ·etc ljt "'j• ' - I Jl J& I ' (3.15d) 

From (3.14) one gets 

(3.16) 

£:= r-9L 

Assuming that um satisfy the field equations (2.4) and (2.5), i.e., 

8£ 
- 0 (3.17) 

we have 

(3.18) 

Then performing simple calculations, using also Theorem 2.1 one arrives at 
the formula 

-i~ * d(A /\ dA +a/\ da) = 0 (3.19) 

Concluding, we have shown that the conservation law (3.6) is in fact gener
ated by the DR-group according to the Noether theorem. 
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IV. NEW CONSERVATION LAWS IN THE'MAXWELL ELEC
TRODYNAMICS 

In this section we deal with the Maxwell electrodynamics in the Min
skowski space-time. 

Here one has 

n = E, .B = ff. (4.1) 

To s1mplyfy the considerations we use the gauge 

A4 = 0, v . A = O;. (4.2) 

and we choose E and A to be the field variables (the first-order formalism). 
Then the Maxwell equations read 

( 4.3a) 

v . E = o, v . A' = o (4.3b) 

Equations (4.3 a) can be obtained from the Euler-Lagrange equations for the 
Lagrangian 

' (4.4) 

As it has been shown by Fushchich and Nikitin (1983) (see also Przanowski 
and MacioTek-Niedzwiecki (1992)) it is very convenient to employ here the 
Fourier representation. 
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Let E and A denote the Fourier transforms or ft and X, respectively, i.e. 

A(k, t) = (2?r )-~ j <PxA(x, t). e-ik·x (4.5) 

As if a.nd A are real vectors 

e·("k, t) = E(-k, t), A*(k, t) = A(-k, t); (4.6) 

(the star "*" stands for the complex conjugation) 

Tl1c Maxwell equations in the Fourier representation takes the form 

.... 2 .... 
Dt£- k ·A = 0, ( 4.7a) 

k ...... ~ - 0 v - ' f . .A= o (4.7b) 

It is an easy matter to show that Eqs. ( 4. 7 a) and their complex conjugate 
can be obtained from the following Lagrangian 

Notice that by the Pa.rseval-Plancheler formula, 

(4.9) 

Now as in terms of E and A the general duality rotation reads (Deser 
and Teitelboim (1976), Przanowski and Macio'l'ek-Nied:lwiecki (1992)). 
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J~' R · cos c.p + V x A· sin c.p, 

A' = v-2v x f'; . sin c.p + A . cos c.p, c.pdR, ( 4.10) 

(compare also with (3.11)), in terms of£ and A one has 

£1 = £. cos c.p + ik x A· sin c.p, 

( 4.11) 

an<l we arrive at the conclusion that in terms of the Fourier transform £and 
Au)(~ DR-group appears to be the grmtp of point transforrnations. 

Then the Noether - lbragin~ov identity leads to the conservation law 

l ..... ..... -+ ..... ..... _, 

dt{ 2' · [ik: ·(Ax A*)+ ik- 2 k · (£ x £*)]} = o ( 4.12) 

(Fushchich and Nikitin (1983), Przanowski and MacioTek-NiedZ'wiecki (1992)) . 

By the Parseval-Plancheler formula one has 

~ j d3 k. [ik. (Ax A*)+ ik- 2k. (l x l*)J 

1 J ... ... ... .... 
= 2 d3 x [-A. (V x A)+ E. (v-2v x E)] = c (4.13) 

Note that. if we use the second order formalism, i.e. we deal with Ai a.s the 
field variables, then in the Fourier representation the infinitesimal operator 
of the DR-group reads (see (4.11) and (4.7 a)) 

(4.14) 
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To find the DR-group as expressed in terms of A one should solve the Lie 
equations 

a as A' ---
8<.p {)t• 

( 4. 15) 

s = 0, 1,· ... 

The solutions of the set ( 4.15) constitutes a general Lie-Backlund one-parameter 
transformation group as a formal one-parameter group (Ibragimov (1985), 
Przanowski and MacioTek-NiedZ'wiecki (1992)). 

Now we intend to consider some simple generalization of ( 4.11). 

To this end we assume the infinitesimal operator to be of the form 

y 

(4.16) 

where aµ. 11 , bµ. 11 , Cµ. 11 and dµ. 11 are functions of k. Then one shows that the 
Maxwell equations ( 4. 7 a, b) are invariant under the one-parameter group of 
transformations generated by Y iff 

and 

where wµ., -Xµ, a and {3 are functions of k. 
constraint equations ( 4. 7 b) we can put 
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(4.18) 

It is evident that by the 

aµ11 (4.19) 



Denoting the matrices ( aµ 11 ) and ( cµ 11 ) by a and c, respectively, we denote 
also the relevant infinitesimal operator ( 4.16) by Yac· Then one finds the 
commutators [Ya.:, Ya'c'] to be [Ya.:, Ya1 61] = Ya.uc11 

A I/ - [A f A] k2 [A/ A] Al/ _ [A/ A] + [A/ A] a - a,a - · c,c, c - a,c c,a. ( 4.20) 

Therefore the operators Yaa constitute an infinite - dimensional Lie al
gebra of some symmetry group of the point transfomations for the Maxwell 
equations ( 4. 7 a, b) 

Then the straightforward calculations show that the Noether-Ibragimov iden
tity taken for Yaa + (Yaa)* and for £ 1 given by ( 4.8) leads to the following 
conservation laws 

(4.21) 

0 ( 4.22) 

(Przanowski, Rajca and Tosiek (to appear)). 

One can easily check that the conservation lews ( 4.21) and ( 4.22) hold for 
arbitrary cµ 11 and aµ 11 and not only for ones satisfying the conditions ( 4.18). It 
means that (4.21) and (4.22) are, in fact, the consequences of the symmetry 
of the set of equations ( 4. 7 a ) only. 

It may seem that (4.21) and (4.22) are defined for our specific gauge k·A = 0 
and they are not the gauge invariant relations. 

However, it is not so. Using the formula 

(4.23) 

where 1-lu stands for the Fourier transformation of Hu, one can write (4.21) 
and ( 4.22) in the gauge invariant form 
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Examples: 

(i) aµv = . .... . -2 
0, Cµv = ih(k)k k~fKµV 

Then by ( 4.24) we get 

for h(k) = .l the cGnstant (4.26) is exactly C given by (3.10), For h(k) = k2 

ones has 

1 J 3 .... .... .... .... 2 . d x · [H · (V x H) + E · (V x E)]:;::: 

(compare with Deser and Teitelbohn (1976)). 

(ii). aµv = +k2t')'µv, Cµv = 0 

Here, ( 4.25) yields 

(iii). aµv = 0, Cµv = -ik'i't.~µv 
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Then from ( 4.24) one gets 

1 J 3 .... .... .... .... -2 d x. (H x o'YH +Ex o'YE)K = const. ( 4.29) 

Now we can write the constant ( 4.27), ( 4.28) and ( 4.29) in a compact form 

( 4.30) 

and this, mutatis mutandis, corresponds to the "zilch" of Lipkin (1964). (see 
also Morgan (1964), Kibble (1965), Fradkin (1965), O'Connell and Tompkins 
(1965), Deser and Nicolai (1981)). 

It is supposed that the conservation laws (4.24) and (4.25) (eventually com
bined with the conservation law for the energy-momentum tensor) involve 
all conservation laws given by Morgan (1964). Of course our formulas (4.24) 
and ( 4.25) yield the infinite number of nonlocal conserved quantities. 

It is of some interest to write down the infinitesimal operator Ya.c in the " 
coor<linat.e representation". Denoting this operator by Ya.c we get 

Ya.a= [aµ.v(-iV)Ev + cµ.v{-iV')\7 2 Av] 0~ µ. 

+[cµ.v(-i\7) Ev+ aµ.v(-iV)AvJ 0~ µ. 
( 4.31) 

Observe that if Ya.a is a local operator (for example, it is the case for the 
Lipkin conservation law) then it gives rise to a (general) Lie-Backlund trans
formation group. 

Consider now the zilch in a nonlinear electrodynamics. By analogy to the 
Maxwell case (see ( 4. 30)) we put 

'zi ·e ( 1i1a + i1 8 ) 
i'k = 2 * kJ Ii - P k * Pli ( 4.32) 
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(compare with Lipkin (1964), Morgan (1964), Kibble (1965)). Note that 'ZJk 
is i11variant under the duality rotation group given by (2.29). 

Then using the Maxwell equations (2.4) one gets 

~1,zi z ( fi1 ~ ~ 1 ii~ ~ ) 
vi jk = ~4 *. VjUk ii - P VjUk * Pil ( 4.33) 

Thus, in contrary to the Maxwell electrodynamics, we don't have the con
servation low for 1 ZJk within a nonlinear electrodynamics, even when this 
electrodynamics admits the duality rotation. 

[In the latter case, by (2.18), we can write' Z)k in the following form 

1zi i ( jil ~ -r + [) Ii 
jk = 2 . * UkJ/j Pil kP ( 4.34) 

where AokB :=~·[A· okB - (okA) · B] 

(compare with Kibble (1965), Deser and Nicolai (1981)). 

We end this section with some remarks on the duality rotation and the 
zilch in non-abelian field theories. It has been shown by Deser and Teitelboim 
(1976) that the duality rotation is not well defined for the non-abelian field. 
Then from the work by Deser and Nicolai (1981) we acknowledge that the 
non-abelian zilch fails to be conserved. This is also the case in the Einstein 
gravitation. 
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