MYSTERY OF THE DUALITY ROTATION*

Maciej Przanowski
Institute of Physics, Technical University of £.6dZ
Wolczaniska 219, 93-005 £6dZ, Poland

" Duality rotation group in the linear or nonlinear electrodynamics is con-
sidered. Conservation law generated by the symmetry under the duality
rotation is found from the Noether theorem.

Then, using the Noether theorem, we get the infinite number of conser-
vation laws in the Maxwell electrodynamics. They involve the mysterious
conservation laws of Lipkin.

*This modest work is dedicated to Professor
Jerzy F. Plebairiski, my Teacher and Friend,
who showed me the dual world.
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I. INTRODUCTION

Heaviside (1893) was perhaps the first who observed that the source-free
Maxwell equations were invariant under the transformation: E — H H -
—E where F and H stand for the vectors of electric and magnetic fields,
respectlvely Then, Larmor (1928) and Rainich (1925) extended this trans-
formation to the one-parameter duality rotation group

E' = Ecosp + Hsing, H = —Esinp + Hcosp, peR. (1.1)

In terms of the electromagnetic tensor f;;, 4,7 = 1,...,4, the duality rotation
group is defined by

fij = fiscosp +ix fijsing, peR, (1.2)

where *f;; = —% —g €iuf™, and it has been shown (Rainich (1925), Mis-
ner and Wheeler (1957), Ibragimov (1967), Plebarski and Przanowski (to
appear)) that the group (1.2) appears to be the maximal group of transfor-
mations of the form

" %

r =, gzl] = %ij, e_y = fz] (l’ f"‘lk) (1‘3)

leaving the Einstein-Maxwell equations invariant.

Mutatis mutandis, this holds true for some models of nonlinear electrodynam-
ics (Salazar, Garcia and Plebarski (1987,1989), Plebariski and Przanowski (to
appear)). But, as it has been shown by Deser and Teitelboim (1976), the
duality rotation is not well defined in non-abelian field theories. Ferrara et al
(1977) have found some generalized duality transformations in the extended
0(2) and 0(3) supergravity theories.

The present work is devoted to the various aspects of the duality rota-
tion in linear or nonlinear electrodynamics. We consider conservation laws
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generated by the symmetry under the duality rotation group and by its gen-
eralization (Secs. 3 and 4). Of course the fundamental problem is whether
or not the symmetry under the duality rotation is broken when the sources
are present. If not, as we expect, then it seems that the Dirac quantization
condition for the electric and magnetic charges should be revised (Schwinger

(1975)).

II. DUALITLY ROTATION IN ELECTRODYNAMICS

We consider a vacuum electromagnetic field in a space-time (My, gi;), %,J, =
1,2,3,4. The electromagnetic field is described by the potential A; and the

antisymetric tensor p;; = —p;;. Lagrangian for the electromagnetic field is
taken to be
1,
L = —5p"fii+ K(PQ) (2.1)
1

fij:= 8iA; - 9;A;, P:= prjpij )
2 K,
1

1 3
Q= 7Pii ¥ ¥, *pij 1= —5V—g kP

K(P,Q) is called the structural function.

For the action of the gravitational and electromagnetic field one has

1
s = / Bovg [ (R+20)+1 2.2)
where R stands for the curvature scalar and A is the cosmological constant.

Then the variation of S with respect to g;;, A; and p;; yields the following
set of equations-
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1 X :
— Rgi; = —8rT;;+ Agi; (Einstein equations) (2.3)

Ry - 3

df =0, d¥p = 0 (Mazwell equations) (2.4)

0K 0K

i = 3p Pii + 55*19,']' (Material equations) (2.5)

with Tj; = pf fik + Lgij, [ 1= Lfijdz’ Adzt, xp:= 1 % pijda’ Adad

(Born and Infeld (1934), Plebasiski (1970), BlaTymckl Blrula and BiaTynicka-
Birula (1975), Salagar et al (1987)). :

It is convenient;to deal with a (34-1)- decomposition of M4, M, = M3 x My,
dim M; = 3,dim M; =1.

We define the following 3- obJects (Landa.u and Lifschitz (1973), M¢ller (1972),
Deser and Teitelboim (1976)) -

1 vo
= V=gp% Hy = 5vV=9 uo p (2.6a)
Te w 1 pro '
Bu=~fus B* =3 fuu; (2.6b)

Greek indices run through 1,2, 3.
Then the Maxwell equations (2.4) take the form

04B* + °9,E, =0, 8,B" =

oD* — e9,H, =0, 8,D*=0 2.7)
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The material equations read

where K : = /—g K.

Now from the second set of equations (2.8) we find H, = H,(g:;,D

and then we define M = M(g;;, D", B?) to be

M.:=B*H, - K,
oM oM
By = 3pe H=3m

(the Legendre transformaﬁign).

Finally, for the Maxwell éqilations we get “

oM

8B + 0,252 =0, 9,B* =0,
von OM
34DM sl 6” 8.,5B—a = O, 3uD“ = 0

(2.8)

V,Bd);

(2.9)

(2.10)

(2.11)

It is natural to assume that the electrodynamics considered corresponds to

the linear Maxwell electrodynamics for weak fields i.e.

K=P+0 (P%,Q"

Moreover, as K(P, Q) is a scalar function

K(P,Q) = K(P,—-Q).
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Then one shows that the dominant energy condition is satisfied iff

0K oK 0K
—— — i NEPRS >
5P >0 and PaP +Q6Q K>0 (2.14)

(Plebadski (1970)).
Now we state the following problem:

Find the maximal (connected) local group of transformations G of the form

-

t it ' N4 T DB
z =magij=gijaD =D(:L‘,D,B;T1,...,T,-),

B =P (xi,ﬁ,é; PiarwryTe)y TilyssssTe 60 (2.15)

leaving the Einstein-Maxwell equations, (2.3) and (2.11), invariant for every
decomposition My = M3 x M, and every coordinate system.

Under the assumption (2.12) one finds the solution of the problem to be
Theorem 2.1

G is of the form

no_ i ‘o
T =T, ;=i

D' =D cosp+ Bsing, B' = —Dsinp+ Bcosp,p e R (2.16)
It is admitted iff

0K, 0K, 0K 0K , _
(Gp) + (5g)" —1 Q+255 35 F=0 (2.17)

or equivalently, iff
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fNf = pAp. (2.18)

[Plebariski and Przanowski (té aplpea,rr) See é,ls;) Salazar et al (1987),
Ibragimov (1967), Ovsmnmkov ( 1982), BlaTynlckl-Blrula (1983)]

The group G is called the dualzty rotatzon group (DR group)

Using the trick given by Salazar, Garcia and Plebanskl (1987) we can find
the general solution of (2.18) («=> (2.17)).

This trick consist in choosirié the Lorentzian coordinate system at some
point geMy so that

D=(0,00D) and H=(0,0,H) at ¢ (2.19)

and consequentetly

_—
4 Ly

~(0.0,F) and B=(0.0,B) at q. (2.20)
Then

P=-.(H*-D%, @Q=iDH. (2.21)
Equation (2.18) reads

L OM: M .
BE = DH = = Bap — Do =0 (2.22)

and the latter equation has the general solutiort
M=M (-2— . (D* + BY)), (2.23)

where M(}-(D?+ B?)) is an arbitrary function of the variable 1-(D?+ B?).
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From the relation H = %% we get B = B(D, H); and then using the relation

K=H.B(D,H)- MG - (D? + (B(D, H))2) (2.24)

and (2.21) one finds the general solution K = K (P, Q) of (2.17)

To ensure (2.12) we assume that

M(0)=0 and 9,M(0) =1, (2.25)

1
i = 3 (D? + B?).
Moreover, the dominant energy condition holds iff

M>yd,M>0 for y>0. (2.26)

Example:

M=0[\/14+b2(D*+B?) —1], 0#beR (2.27)

Then

K =b—\/(0®+ D?).(b> — H?) =0b®—+/b*—202P + Q2. (2.28)
This K generates the Born-Infield nonlinear electrodynamics.

Finally one can easily show that in terms of the 2-forms f and p the
duality rotation takes the form

f' = fcosp+1i#*psing,
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p' = pcosp+1ix* fsine. (2.29)

III. CONSERVATION LAW

From the preceding section one infers that an electrodynamics admits the
duality rotation grup iff the condition (2.18) holds.

Now as

PAP = *pA*p, (3.1)

(2.18) is equivalent to

fAS = xpAxp. (3.2)

From the second set of the Maxwell equations (2.4) it follows that (at least
locally) '

«p = —i da, (3.3)

where a is some 1-form. Them the Chern-Simons formula gives

fAf = d(ANdA) and xp Axp = —d(a A da). (3.4)

Substituting (3.4) into (3.2) one gets

d(ANdA+aAda)=0 (3.5)
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or the following conservation law

—i*xd(AANdA+aAda)=0

(3.6)

[In the present work we define the Hodge star * to be (Plebanski (1974),

Plebanski and Przanowski (1989))

oA*w = —iexp [%L r.(4 - r)].(al;u).ﬂ
1 %1 3 1 i1
o=- Oy i8N Ko s A", W= - Wi, B A
r! r!

(ow) 1=.%o,..i,w', ¥ is the volume 4-form.

Thus
*k = 1,
AR = wAxe = (=1 xo Aw,

*1 = —d, *J =1

Integrating (3.5) or (3.6) over a 4-dimensional domain

one obtains the conserved quantity

Cim—s [ dze™.(4,8,4,+a,0,a,)

2 Jy,
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= —% /—« daweﬂup-(Ap,al/Ap + aﬂa"ag) (39)

(42

In the Minkowski space-time, neglecting some 3-divergences, we can write
Cc = %/ #z [=A-(V x A)+ B - (V?V x D)
RS
1 [ BolB. (VU x B)+ D - (VY x D) (3.10)

2 Jrs

[For the Maxwell electrodynamics the constant C has been found by Deser
and Teitelboim (1976). In nonlinear electrodynamics it has been given by
Bialynicki-Birula (1983)].

We intend to show that the conservation law (3.6) is generated by DR-group
according to the famous Noether construction.

To this end we write down the general duality rotation in terms of the La-
grange variables A; and p;;

Al = Ajcosp + a; sin ¢,
P;j = pijcosp + i* fi;sing, @eR (3.11)

f,'j = aiA,- — BjA,-, ) * Dij = &'aj = Bja,-.

[Notice that the first formula of (3.11) should be considered mod d;k; k is an
arbitrary function).

The infinitesimal operador X of (3.11) reads

0 . 0
X = o _3—:4: -+ z*f,-j a—p; (3.12)
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As a; are nonlocal “function” of p;; our infinitesimal operator X is not the
standard one. [The standard infinitesimal operator appears to be the field
on a relevant jet bundle (Trautman (1972), Kuperschmidt (1980), Ibragimov
(1985)]. Nevertheless, in our case one can also find the Noether - Ibraginov
identity and consequently the Noether constuction can be applied (Noether
(1918), Trautman (1972), Kuperschmidt (1980), Ibragimov (1985), Olver
(1986)).

First, we present X in a concise form

X = 9" — (3.14)

where (ul,"',ule) = (Ala"'ap43)s(nla'";7716) = (al,"‘,i*f43)-

Then the Noether-Ibragimov identity reads

)

Sum’

X = d;N' + g™ (3.14)

where d; stands for the total derivative with respect to the variable ' and

0 i}
prX ="t dieedi, (07) 7 (3.15a)
Ou ; 1 3'“,'1...,',
(the Lie-Bdcklund operator);
: a 0
o g o IV ds svods
N n [au:n - ; ( 1) dJl Js 6“?}1...‘7'3]
+ ) diyedi, (07)] n?
T_>_1 auikl"'kr
+ Y (<1)’dsy..q, 5—;—(2——] - (3.150)
a>1 Yiky ookr s oedo
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(the Noether-Ibragimov operator);

) 0 B,
T Pam E ~1)* di,..di, T=—— 15
6um (’)uTﬂ + 8>1( 1) d’l] d 8 ()u:-?_“‘-& (3 c)
(the Euler-Lagrange operator);
Ujy gy 2 = 0i0yy -+ B, u™, - ete. (3.15d)

From (3.14) one gets

prX(L) =d;N(L) + ™ %% (3.16)
L:=+/—gL
Assuming that u™ satisfy the field equations (2.4) and (2.5), i.e.,
6L
T = 0 (3.17)
we have
prX(L) = d;N(L) (3.18)

Then performing simple calculations, using also Theorem 2.1 one arrives at
the formula

—iy/—g * d(ANdA+aAda) = 0 (3.19)

Concluding, we have shown that the conservation law (3.6) is in fact gener-
ated by the DR-group according to the Noether theorem.
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IV. NEW CONSERVATION LAWS IN THE MAXWELL ELEC-
TRODYNAMICS

In this section we deal with the Maxwell electrodynamics in the Min-
skowski space-time.

Here one has

2 ]. i3 1 i
(9i;) = diag(1,1,1,-1), p=f, L= —EPJ -(0:Aj — 0;A;) + ZPJPij,

-

D =E B =8H. (4.1)

To simplyfy the considerations we use the gauge

Ay=0, V-4 = 0; ! - (4.2)

and we choose F and A to be the field variables (the first-order formalism).
Then the Maxwell equations read

HE+V?A =0, BA+E =0, (t=z?) (4.3a)

V-E=0, V-A=0 (4.3b)

Equations (4.3 a) can be obtained from the Euler-Lagrange equations for the
Lagrangian

Ly =~{B-0,4+ 3 (B + @A),  (44)

As it has been shown by Fushchich and Nikitin (1983) (see also Przanowski

and Maciolek-Niedzwiecki (1992)) it is very convenient to employ here the
Fourier representation.
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— — ~* g . .
Let € and A denote the Fourier transforms of E and A, respectively, i.e.

E(Z, t) = (27")_% / dacvlb:"(:z_:', t) - ik

-

Ak, 1) = (2m)3 / PoA(F 1) - e (4.5)
As I and A are real vectors

& (k,t) = E(=k,1), A(E,t) = A(-F,1); (4.6)

(the star “*” stands for the complex conjugation)

The Maxwell equations in the Fourier representation takes the form
-k - A =0 8A+E=0 (4.7a)

E-€ =0, k-A=0 (4.70)

It is an easy matter to show that Eqs. (4.7 a) and their complex conjugate
can be obtained from the following Lagrangian

l — - — - - = - -
£1=—5-{5-6¢A*+S*-3¢A+8-8*+k2-A-A*} (4.8)
Notice that by the Parseval-Plancheler formula,
/ dzdtly = / d*kdtL, (4.9)

Now as in terms of E and A the general duality rotation reads (Deser
and Teitelboim (1976), Przanowski and Macidlek-NiedZwiecki (1992)).
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i = [ -cosp+V x A-sing,

A = VIV x E-singo-l—A-cosw,goéR, (4.10)
(compare also with (3.11)), in terms of € and A one has
E = € cosp+ikx A-sinep,
A = —%fc‘ x & - sin +A-cosp, peR (4.11)
and we arrive at the conclusion that in terms of the Fourier transform € and

A the DR-group appears to be the group of point transformations.

Then the Noether - Ibragimov identity leads to the conservation law

-

dt{%-[u:?-(;{x A+ kK- (Ex ) = 0 (4.12)

(Fushchich and Nikitin (1983), Przanowski and Maciolek-NiedZwiecki (1992)).

By the Parseval-Plancheler formula one has

% /d3k B - (A x A%) + k2 - (€ x &%)

l — -, - -

=5 [Eal-A- (T x D+ B (VB = ¢ @1y
Note that if we use the second order formalism, i.e. we deal with A; as the
field variables, then in the Fourier representation the infinitesimal operator
of the DR-group reads (see (4.11) and (4.7 a))

il

X = ik~ 2. (kx 0,4) —.
2 (Xt)aA

(4.14)
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To find the DR-group as expressed in terms of A one should solve the Lie
equations

T T S Y

— -2 (7 . —
= ik (kx5 ) g le=o = 55 (4.15)

s = 0,1,--.

The solutions of the set (4.15) constitutes a general Lie-Bicklund one-parameter

transformation group as a formal one-parameter group (Ibragimov (1985),
Przanowski and Maciolek-NiedZwiecki (1992)).

Now we intend to consider some simple generalization of (4.11).

To this end we assume the infinitesimal operator to be of the form

~ 0 ' 0
Y=§/L'BZ+C;L'BI’

€u = a;.wgu +b;wAu’ Cp. = cﬂ,ugy +d,w.A,,, (416)
where a,,, b,,, c, and d,, are functions of k. Then one shows that the

Maxwell equations (4.7 a, b) are invariant under the one-parameter group of
transformations generated by Y iff

buw = —Kepy —wuky, di =+ Ak (4.17)
and

G by = a6+ by,  Cwrky = Bk (4.18)

where w,, Ay, and B are functions of k. It is evident that by the
constraint equations (4.7 b) we can put

by = —kcpyy, duw = aw (4.19)
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Denoting the matrices (a,,) and (c,,) by @ and ¢, respectively, we denote
also the relevant infinitesimal operator (4.16) by Vie.  Then one finds the
commutators [Yac, Y #] to be [Y;c, Ya o] = Yo

= (@] - K- [8,8, &=1[a,d+[¢a). (4.20)

Therefore the operators Yis constitute an infinite - dimensional Lic al-
gebra of some symmetry group of the point transfomations for the Maxwell
equations (4.7a,b)

Then the straightforward calculations show that the Noether-Ibragimov iden-
tity taken for Yis + (Yas)* and for £, given by (4.8) leads to the following

conservation laws

|
dt{§ ) [§ “(Cu +€5,) (A A+ EEN]} = 0 (4.21)

1 .1 "
dt{§ : [5 (@ — a:#) (AL - ELA)Y = 0 (4.22)

(Przanowski, Rajca and Tosiek (to appear)).

One can easily check that the conservation lews (4.21) and (4.22) hold for
arbitrary c,, and a,, and not only for ones satisfying the conditions (4.18). It
means that (4.21) and (4.22) are, in fact, the consequences of the symmetry
of the set of equations (4.7a ) only.

It may seem that (4.21) and (4.22) are defined for our specific gauge kA =
and they are not the gauge invariant relations.

However, it is not so. Using the formula

A, = ik~ e,p0k,Hy (4.23)

where H, stands for the Fourier transformation of H,, one can write (4.21)
and (4.22) in the gauge invariant form
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i x *
dt{-2- ] [-2_ (ew + ) (€upo€nsk~*koky Ho M5 + E,E7)]} = O (4.24)

1 1 . " .
dt{§ ' [5 (ap —a},)ik k- (Cupo Ho&) + €0pa €M)} (4.25)

Ezamples:
() aw = 0, cu =ih(k)k 2kutru
Then by (4.24) we get

%/d*‘x‘-[ﬁ.-_(h(—z-wv—zvxﬁ)+E-(h(_iV)V'-”VxE')1 = const. (4.26)

for h(k) =1 the constant (4.26) is exactly C given by (3.10), For h(E) = k?
ones has ‘

% / o [H (VB +B-(VxB)= comst.  (4.27)

(compare with Deser and Teitelboim (1976)).
({).  eu=tkleyw, =0

Here, (4.25) yields

—_%/daw : (ﬁ x OH + E X 8E), = const. (4.28)
(111) Qyy = 0, Cup = _'ik'yemw
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Then from (4.24) one gets

] ~ — - —
—3 /d?’w -(H x 0,H + E x 0,F), = const. (4.29)

Now we can write the constant (4.27), (4.28) and (4.29) in a compact form

Zi=5- [ a0ty - 1100x fi) (4.30)

and this, mutatis mutandis, corresponds to the “zilch” of Lipkin (1964). (see
also Morgan (1964), Kibble (1965), Fradkin (1965), O’Connell and Tompkins
(1965), Deser and Nicolai (1981)).

It is supposed that the conservation laws (4.24) and (4.25) (eventually com-
bined with the conservation law for the energy-momentum tensor) involve
all conservation laws given by Morgan (1964). Of course our formulas (4.24)
and (4.25) yield the infinite number of nonlocal conserved quantities.

It is of some interest to write down the infinitesimal operator f/&& in the “

coordinate representation”. Denoting this operator by Y;: we get

: , 0
Yiz = [aw(——zV)E,, + c,w(—zV)V2A,,] 9E,
. . 0
Hew(—tV) B, + ap(—iV)A) 5 (4.31)
0A,

Observe that if Y;: is a local operator (for example, it is the case for the
Lipkin conservation law) then it gives rise to a (general) Lie-Backlund trans-
formation group.

Consider now the zilch in a nonlinear electrodynamics. By analogy to the
Maxwell case (see (4.30)) we put

it g i
'z, = 3 (xf10% fis — P Ok * pij) (4.32)
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(compare with Lipkin (1964), Morgan (1964), Kibble (1965)). Note that 'Z},
is invariant under the duality rotation group given by (2.29).

Then using the Maxwell equations (2.4) one gets

0 Z3 = '-_:i(*filajakfil — p"0;0k * pa) (4.33)

Thus, in contrary to the Maxwell electrodynamics, we don’t have the con-
scrvation low for 'Z}, within a nonlinear electrodynamics, even when this
electrodynamics admits the duality rotation.

[In the latter case, by (2.18), we can write 'Z}, in the following form

17t ?

e == (<O fi + pjOkp" (4.34)

Do

where A0yB := ;- [A- OB — (04A) - B]
(compare with Kibble (1965), Deser and Nicolai (1981)).

We end this section with some remarks on the duality rotation and the
zilch in non-abelian field theories. It has been shown by Deser and Teitelboim
(1976) that the duality rotation is not well defined for the non-abelian field.
Then [rom the work by Deser and Nicolai (1981) we acknowledge that the
non-abelian zilch fails to be conserved. This is also the case in the Finstein
gravitation.
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