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Characterizing The Anisotropic Quark Gluon Plasma

Abstract

Formation and observation of a quark gluon plasma (QGP) in relativistic collisions

between heavy nuclei is a primary goal of modern nuclear physics. In this thesis, we study

the behavior the QGP which is anisotropy in momentum space. We investigate how big of a

role plasma instability can play in the wake behavior and collective modes of a QGP. In the

first work, we investigate the wake in charge density as well as the wake potential induced

by a fast parton propagating through the anisotropic QGP. We find that the oscillatory

behavior of the wake is amplified with the strength of the anisotropy when the parton

moves parallel to the anisotropy direction whereas it diminishes for the perpendicular case.

The investigation of the wake potential is extended to include a Bhatnagar-Gross-Krook

(BGK) collisional kernel. In a collisional anisotropic QGP, the oscillatory behavior of the

wake potential is smeared out. In anisotropic media, the effect of the jet of particles on the

collective modes of a QCD plasma is studied.

To study the early time momentum space anisotropy, we need some observables, which

are sensitive to the anisotropy in the quark and gluon distribution functions. The effect

of time dependent momentum space anisotropy on the nuclear modification factor (RAA)

is discussed. In the subsequent work, we have investigated the thermally averaged gluon-

J/ψ dissociation cross section in the anisotropic system. We also calculate the survival

probability of J/ψ by taking into account the initial state momentum space anisotropy.

Finally, we study the space-time structure of the anisotropic QGP formed in heavy-ion

collision by studying the two photon momentum correlation.
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Notation and Conventions

Throughout this thesis we shall use the following conventions.. The matric tensor used is

gµν = diag(1,−1,−1,−1). Most of the notation is introduced during the discussion and

the frequently used notations are enlisted below:

N −N Nucleon-Nucleon

p− p proton-proton

p− A proton-Nucleus with mass number A

A− A Nucleus-Nucleus with mass number A

y Particle rapidity (= 1
2
ln
[
E+pz
E−pz

]
)

η Space-time rapidity (= tan−1(t/z)), thus t = τ cosh η and z = τ sinh η

pT transverse momentum

ξ anisotropic parameter

phard average momentum in the partonic distribution function

n̂ direction of the anisotropy

τi formation time

τiso isotropization/thermalization time

Ti initial temperature

Tc Transition temperature

Tf Thermal freeze-out temperature

ν collisional rate

Γ growth rate

mD Debye mass

d4x four-volume
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Chapter 1

Introduction

The interaction between quarks (anti-quarks) is described by Quantum Chromodynamics

(QCD) which is a non-abelian gauge theory. Quark (anti-quarks) are the elementary par-

ticles in the theory and interact with each other through the exchange of colored gluon.

In QCD vacuum, the effective coupling constant decreases logarithmically as the momen-

tum transfer increases as shown in Fig. 1.1. For large distance and small value of the

four momentum, the interaction becomes strong between quarks, and hence, they remain

confined within the hadron. This is known as quark confinement according to which the

color charged particles cannot be found in free state. On the other hand, the small value of

the coupling constant implies ’weak’ interaction and quarks behave like free particles. This

phenomena is known as ”asymptotic freedom” [1, 2]. In this regime, the perturbative QCD

(pQCD) approach can be applied to make predictions for observables expressed in terms

of power of the coupling constant. According to lattice QCD (lQCD) at high temperature

and/ or density QCD matter undergoes a phase transition that restores the broken sym-

metries and quarks and gluons can traverse freely over the dimension larger than 1 fm,

typical size of hadrons. Therefore, a new state of matter composed of quarks and gluons in

a deconfined state [3, 4, 5, 6, 7] is then possible. This new phase is known as quark gluon

plasma (QGP).

Ultra-Relativistic heavy-ion collisions offer the unique opportunity to probe highly ex-
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Figure 1.1: The summery of αs measurements as a function of respective energy scale Q.

ited hot and dense nuclear matter under controlled laboratory conditions [8]. Over the

past three decades, the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National

Laboratory (BNL) and the Large Hadron Collider (LHC) at European Center for Particle

Physics (CERN) have succeeded to measure a wide spectrum of observables with heavy-ion

beam. These observations suggest that a novel form of matter has been created in such

experiments. The new state of partonic matter called QGP, is believed to exist in the early

universe just micro-second after the Big-Bang [9] with zero baryon density. It is possible

that neutron stars, in which the net baryon density exceeds the critical value of the phase

transition [10], might contain a QGP at their core.

To estimate when the restoration of chiral symmetry breaking and a transition from

hadronic matter to a Quark Gluon Plasma takes place, one can calculate the pressure and

energy density in the vacuum that confines quarks and gluons which are weekly interacting

inside the hadron and in the QGP. According to MIT bag model [11, 12, 13], when the

pressure in the QGP and in a hadron gas becomes equal, a phase transition occurs. The

sharp rise of energy density occurs at critical temperature Tc ≈ 170 MeV for two active



3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/Tc 

ε/T4 εSB/T4

3 flavour
2+1 flavour

2 flavour

Figure 1.2: Left: The energy density as a function of temperature from lattice QCD [17].
Right: A schematic phase diagram of QCD matter.

light flavors (u and d) [14, 15]. At zero quark chemical potential or equivalently if the

energy density of nuclear matter is raised above 1 GeV/fm3 [16]. To obtain more accurate

knowledge, this requires lQCD calculation [17]. Lattice QCD results, clearly shows a rapid

rise of the energy density of the strongly interacting matter when the temperature T ≃ Tc =

160 MeV, as shown in the left panel of Fig. 1.2. Such rapid rise at that temperature can be

understood as a change in the degrees of freedom between confined matter and deconfined

matter. However, such studies are performed for zero baryon-chemical potential (µB), i.e.,

for equal number of baryon and anti-baryon. The complete description of the QCD phase

diagram is still unknown. A schematic view of the QCD phase diagram in the (T, µB)

plane is shown in the right panel of Fig. 1.2. At low temperature and small value of the

baryon-chemical potential (µB) the system is in hadronic phase. At low temperature and

high µB, a phase transition occurs to color-superconducting phase. On the other scenario,

i.e., for high temperature and low µB, the quark and gluon are deconfined and the chiral

symmetry is restored [18].
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Figure 1.3: Space-time diagram in heavy-ion collisions.

1.1 QCD matter in Heavy Ion Collisions

In a heavy-ion collider, two beams of heavy ion are collided with velocity closer to the

speed of light and create a ”Little Bang” in the laboratory. In the center of mass frame of

colliding nuclei, nuclei are contracted in the beam direction like pancakes due to Lorentz

contraction. In the very early stage of the heavy-ion collision, high energetic particles are

produced by initial hard scatterings which can be calculated by pQCD model. Initially the

system is in pre-equilibrium phase. After the pre-equilibrium stage, the system comes into

thermal equilibrium at initial time τi = 0.1− 1.0 fm/c [19] due to the multiple scatterings

among the initial partons. However, it is difficult to determine the value of τi. At the

RHIC and LHC energies, the thermalized medium is expected to be at sufficiently high

temperature. This medium would be in quark gluon plasma phase. Afterwards, the system

start to expand due to huge pressure gradients and consequently it cools. If the first order

phase transition is assumed, a mixed phase is expected to exist in which quarks and gluons

begin to confine into the hadronic matter at the critical temperature Tc. When the system
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cools further, all the quark matter are transformed into hadronic phase. After some time,

when the mean free path of the hadrons exceeds the dimension of the system the hadrons

freeze out and reach to the detector. The space-time evolution of heavy-ion collision is

depicted in Fig 1.3.

1.2 Signature of QGP

In order to detect and studying such exotic state of matter, one needs some clear experi-

mental signatures of its formation and/ or decays. One serious problem in detection of the

QGP is its small size and very short life time. Therefore, direct detection of such state of

matter is not possible. Furthermore, each stage of space-time evolution has specific char-

acteristics regarding the particle production and lifetime. Therefore, the challenge both

for theoretically and experimentally is to study of the signatures that are sensitive to the

collision dynamics. During the last few decades, detection of QGP in heavy-ion collision

has received significant attention and numerous signals have been proposed to probe the

properties of such novel state of matter. Few such successful attempts have been discussed

below.

1.2.1 Jet Quenching

High-energy partons behave as hard probes which are produced in the early stage of the

collision due to hard scattering. In the heavy-ion collision experiments, the jets are created

in pairs and propagate in opposite direction. If a pair of jets is created at the edge of the

fireball, one of the jets will travel to the detector without interaction with the medium

whereas the other jet will travel through the medium. While propagating through the

QGP, the high energetic jet loses energy by collisional (interacting with the thermal quark

and gluon) and radiative processes (bremsstrahlung). As a consequence, in the direction

of propagation of the jet one observes a decrease of high energy hadrons. This phenomena

is well known as jet quenching [20, 21, 22, 23, 24, 25, 26, 27]. The suppression of particles
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with high pT in the QGP is measured through the nuclear modification factor RAA, the

ratio of the measured jet yield in A + A collision relative to the expected yield from the

binary scaled hadron-hadron collision. The reduction of the nuclear modification factor

is seen in RHIC [28, 29] and LHC [30, 31] experiments and indicates the presence of the

medium effect.

1.2.2 J/ψ Suppression

Suppression of J/ψ in A+A collision relative to p + p or p + A collision is considered as

a signature of chiral symmetry restoration [32, 33]. J/ψ particles are the bound state of

cc̄ pair dominantly produced by the fusion of gluons, Due to the heavy mass of the charm

quark (mc ∼ 1.5 GeV), they are likely to be produced in the initial stage of the heavy-ion

collision mainly from the hard scattering. In the QGP environment, binding of cc̄ into a

J/ψ is suppressed due to the Debye screening of color charges. The inclusive production of

J/ψ is suppressed by a factor of 3− 5 at Super Proton Synchrotron (SPS) [34], RHIC [35]

and LHC [36]. Thus, J/ψ suppression is a very powerful signature of the QGP formation.

1.2.3 Strangeness Enhancement

First, Rafelski and Hagedorn [37, 38] proposed that strangeness could be a useful signal for

QGP formation in the heavy-ion collision experiments. Strange quarks are produced in the

collision by interaction of two gluons (gg → ss̄) and annihilation of quark and anti-quark

(qq̄ → ss̄). At high temperature, T ≥ 160 MeV, the strangeness abundance saturates in

the plasma in a very short time ∼ 10−23 sec and will lead to an enhanced production of

strange and multi-strange particles. This kind of enhancement was observed for strange

hyperons like Λ,Σ,Ω in nucleus- nucleus collisions compared to small interacting systems

like proton-nucleus collisions [39].
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1.2.4 Electromagnetic Probes

The advantage of photons, as well as dileptons is that these, once produced, can leave the

interaction zone without much distortion in their energy and momentum. They carry the

information of the collision dynamics very effectively which makes them a valuable tool of

the early stage of the heavy-ion collision. Photons and dileptons are produced throughout

the entire stages of the evolution of the collisions and their production cross-section depends

on temperature.

Photons [4, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52] are produced in the early

stage of the collision through the Compton (q(q̄)g → q(q̄)γ) and annihilation (qq̄ → gγ)

processes. These are called prompt photons. This contribution can be accurately estimated

by pQCD calculation. There are also photons from thermalized QGP, hadronic reaction

and hadronic decays. To extract the thermal photons from QGP prompt photons, decay

photons and photons from hadronic reaction have to be subtracted. Note that, the hard

photon is dominated by the high pT part of the momentum spectra, and decay photons

populate to the low pT part and intermediate domain of pT spectra ∼ 1 − 3 GeV are

dominated by thermal photons. So, there is a small pT window, i.e., pT ∼ 2 − 5 GeV [53],

which may help in learning the properties of QGP.

The main source of thermal dileptons [54, 55, 56, 57, 58, 59, 60] from the QGP and

hadronic sector are qq̄ and π+π− annihilation processes respectively. Also in the high mass

region, there is the contribution from Drell-Yan (DY) process which can be calculated

from pQCD. One can expect that thermal lepton pair production from QGP dominates

in the mass range of ∼ 2 − 4 GeV. It is important to mention that the window in the

low-mass region will get populated by the other sources of dilepton production, mainly

from the bremsstrahlung. This, among other reasons, makes the task extremely difficult

for using it as a signature of QGP in this range. Thus the choice of high mass region is more

suitable for QGP detection. Therefore, once we know their contribution we can subtract

DY contribution from the total yield to get the thermal production yield.
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1.3 Thermalization and Plasma Instability

In relativistic heavy-ion collision at RHIC one of the most breathtaking observation was

the strong collective behavior of the matter which is evident from the elliptic flow measure-

ments [61]. When two heavy nuclei collide, the center of the two nuclei are at a distance b,

where b is the impact parameter. Due to non-central heavy-ion collision, the initial energy

density is not azimuthally isotropic. As flow follows from the energy density gradient, it

will be stronger along the short overlap direction (in-plane) than along the long overlap

direction (out-of-plane), which leads to an azimuthal momentum space anisotropy of the

particle emission in the plane transverse to the beam direction. The azimuthal anisotropy

is quantified by defining the elliptic flow parameter, v2 as [62]

v2 =<
p2X − p2Y
p2X + p2Y

> . (1.1)

In ideal hydrodynamics model, the stress energy tensor (T µν) is isotropic in momentum

space, i.e., the components Tij = pδij , T
00 = ǫ and T 0i = 0, where p is the pressure and ǫ

is the energy density of the matter. Ideal hydrodynamical models have been able to fit the

low pT dependence of the elliptical flow v2, which leads to strong evidence that the matter

created in the heavy-ion collision becomes isotropic and thermalized and the thermalized

time approximately is τiso(τtherm) = 0.5 − 1.0 fm/c after the collision [63, 64]. On the

contrary, pQCD calculation shows slower thermalization [65]. Such a fast thermalization

can be possible for strongly coupled QGP [66]. However, recent hydrodynamical studies [67]

that include the effect of shear and bulk viscosities have shown that RHIC data does

not require a short thermalization time. The non-zero viscosities modifies stress energy

tensor. As a result, RHIC data shows that even thermalization time τiso ∼ 2 fm/c can

reproduce the elliptical flow data quite well [31]. Moreover, recent transport theory assumes

parton interaction to be responsible for the thermalization of ’weakly’ coupled plasma and

leads to the longer thermalization time. In the ”bottom-up” scenario, for binary collision

processes (2 → 2), a relatively long time is required for the approach to kinetic equilibrium,
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whereas inclusion of 2 → 3 pQCD bremsstrahlung process speeds up the equilibration

significantly [65].

Due to the poor knowledge of the initial conditions of the plasma there is sizable amount

of uncertainty in the estimate of thermalization time. Non-equilibrium gauge field dynamics

plays an important role in the equilibration process of the plasma [68, 69, 70, 71, 72, 73]. In

these approaches the QGP is assumed to be homogeneous and stationary but anisotropic

in momentum space. Kinetic instability can occur due to the interaction of the plasma and

the jet parton which leads to electric or magnetic instabilities. Plasma instability could be

an explanation of the fast isotropization predicted by the study of elliptic flow at RHIC

data [74, 75].

At the early stage, of the heavy-ion collision, the system expands along the beam

direction. If the matter expands along the beam direction too quickly, there will not

be enough time for the constituents to interact and therefore the system will not reach

thermal equilibrium. Longitudinal expansion of the matter causes the system to quickly

become much colder in the longitudinal direction than in the transverse direction. As

a result, initially the longitudinal expansion rate is larger than the parton interaction

rate which leads to momentum space anisotropy in the pT − pL plane, corresponding to

< p2L ><<< p2T > in the local rest frame. One can then ask how long it would take for

interaction to restore isotropy in the pT − pL plane. In the ”bottom-up” scenario [65], it

addresses the dynamics of hard modes (particles) coupled to the soft modes (field) which

causes the system to become isotropic.

The plasma instability plays an important role in the thermalization process of the QGP.

In presence of the pre-equilibrium momentum space anisotropy, one can find that soft modes

with momentum k << gT , where g is the coupling constant and T is the temperature of

the system, is initially unstable. The characteristic inverse time of instability development

is roughly of the order of gT , whereas the inverse equilibration time is of order g4 ln(g)T

for binary collisions. As a result, in the weak coupling limit, the dynamics of an anisotropic
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QGP is dominated by the growth rate of the unstable modes. These unstable modes grow

exponentially with time which leads to a more rapid thermalization and isotropization of

the soft modes in QGP. Such processes may play an active role in the dynamical properties

of the QGP.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we shall discuss the kinetic theory for QCD

plasma and present a formalism of the non-Abelian Vlasov equations for QCD constituents.

There is a possibility that the QGP may be anisotropic in momentum space after the

formation. In this chapter we briefly review the phenomenological models of anisotropic

plasma and discuss the collective modes of an anisotropic QGP.

In Chapter 3, we investigate the impact of the pre-equilibrium momentum anisotropy

on the wake in QCD plasma. The experimental azimuthal dihadron distribution at RHIC

shows a double peak structure in the away side [76, 77] for the intermediate pT particles.

Such peak were predicted as a signature of Mach shocks developed by the passage of

jets propagating through the plasma. Moreover, the partonic jets propagating through

the QGP created in the heavy-ion collision leads to the formation of the wakes. These

wakes are proposed as possible explanation for the double peak structure in the away

side for the intermediate pT particles. The wake behavior is concerned with the screening

behavior of the moving parton. We extend this study to a pre-equilibrium momentum space

anisotropic plasma and discuss, in detail, the induced charge density and wake potential in

an anisotropic QGP. In addition, we calculate wake potential within the framework of the

Boltzmann transport equation with a Bhatnagar-Gross-Krook (BGK) collisional kernel.

In chapter 4, we investigate the characteristics of collective modes induced by relativistic

jet in a collisionless anisotropic QGP. When stream of particles interact with the plasma,

plasma instabilities develope, leading to initial stage of fast growth of the gauge field. In

studying the evolution of such system, we use the method of the plasma physics within
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the framework of the quark-gluon transport theory in the weak coupling region, g << 1.

We have neglected hard mode interaction and they are treated as (quasi-) particles which

propagate in the background of the soft modes, acting as classical gauge field.

The impact of pre-equilibrium momentum anisotropy on various observables which are

sensitive to the collision dynamics in the early stage of the heavy-ion collisions is discussed

in Chapter 5. Chapter 6 contains the summery and outlook.

• ◦ •



Chapter 2

KINETIC THEORY OF
QUARK-GLUON PLASMA

Kinetic theory is introduced as the guiding principles with which to build the effective

theory for the soft modes of hot/dense matter produced in the heavy-ion collisions. At the

early stage of the collision, the temperature T of the system is high enough such that the

plasma is rather weakly coupled i.e. running coupling g(T ) << 1. In this weak coupling

regime, the plasma particle, i.e., the quarks and gluons have momentum scale k ∼ T and

typical thermal wavelength λT = 1/k [78, 79]. The effect of the interaction on the particle

motion depends both on the gauge field and the wavelength of the modes under study. In

the hard degrees of freedom, the gauge field fluctuations produce a small perturbation on

the particle motion unless the field is very large, i.e., unless A ∼ T/g. But for the case of

plasma particles with momentum k ∼ T , it is found that A ∼ T [80].

The collective motion of individual particles appears on a space-time scale λ ∼ 1/(gT ).

This scale appears as the energy of the quasi-particles. The thermal fluctuations at the scale

gT << T is known as the soft scale. At this scale the magnitude of the field fluctuations

is A ∼ √
gT and derivatives are of the order ∂x ∼ gT . In case of soft modes, the field

fluctuation is much higher than the kinetic term. So, at the momentum scale k ∼ gT

the soft modes are still perturbative. The fact that the characteristic wavelength of the

collective excitation is larger than the thermal wavelength suggests that these collective

12
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effects can be described by Vlasov type Kinetic equation [80, 81]. Using the semi-classical

kinetic equations one can derive the hard loop induced current paying much attention to

the gauge aspects of the procedure. In this way, we explicitly demonstrate how the gluon

polarization tensor can be obtained and how and it can naturally be extended to study the

collective modes of the QGP.

In this chapter we will derive the color current and gluon self-energy using non-Abelian

Vlasov equations. This leads to an effective theory for the collective modes at the scale gT

for the isotropic plasma. We also derive both stable and unstable collective modes for the

anisotropic system.

2.1 Classical Transport Theory for a Non-Abelian Plasma

The distribution functions of quantum colored particles are Hermitian Nc × Nc matrices

whose dimensionality depends on the color representation of the particles. Quarks and

antiquarks belong to the fundamental representation of SU(3)c. The quark (antiquark)

distribution function Q(P,X) (Q̄(P,X)) is a 3× 3 matrix in color space. Here X denotes

the space-time quark coordinate and P is its momentum. The distribution functions are

not gauge invariant, but transforms under local gauge transformations as [80]

Q(P,X) → U(X)Q(P,X)U †(X), (2.1)

where U(X) is the transformation operator in the fundamental representation.

The distribution function of gluons is a Hermitian (N2
c − 1) × (N2

c − 1) matrix in the

adjoint representation of SU(3)c. The gluon distribution function G(P,X) transforms under

a local gauge transformation as

G(P,X) = M(X)G(P,X)M†(X) (2.2)

where Mab(X) = Tr[τaU(X)τbU
†(X)] with τa, (a = 1, 2, ..., N2

c − 1) being the SU(3) group

generators in the fundamental representation.
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The distribution functions of quarks, antiquarks and gluons satisfy the following kinetic

equations [82, 83]:

PµD
µQ(P,X) +

g

2
P µ ∂

∂Pν
{Fµν(X), Q(P,X)} = C[f ],

PµD
µQ̄(P,X)− g

2
P µ ∂

∂Pν
{Fµν(X), Q̄(P,X)} = C̄[f ],

PµDµG(P,X) +
g

2
P µ ∂

∂Pν
{Fµν(X),G(P,X)} = Cg[f ]. (2.3)

where {..., ...} denotes the anticommutator, Dµ = ∂µ+ ig[Aµ, ...] is the covariant derivative

in the adjoint representation of the color group. Aµ and Fµν(= [Dµ, Dν ]/(ig)) are the

chromodynamic mean-field or background four potential and stress tensor respectively,

where Aµ(X) = Aaµ(X)τa, Fµν(X) = F a
µν(X)τa. The covariant derivative is Dµ = ∂µ −

ig[Aµ, ...] with Aµ and Fµν are defined asAµ
ab(X) = ifabcA

µ
c (X) and Fµν

ab (X) = ifabcF
µν
c (X)

respectively, where fabc is the SU(Nc) group structure constant. In Eqs.(2.3) C and C̄

represent the collision terms. For time scales shorter than the mean free path time the

collision terms can be neglected, as typically done in the so-called Vlasov approximation [68,

69, 84, 85, 86, 87, 88, 89, 90, 91].

A complete, self-consistent set of non-Abelian Vlasov equations for the distribution

function and the mean color field is obtained by augmenting the Vlasov equation with the

Yang-Mills equations

DµF
µν(X) = Jν(X) = Jνg (X) + Jνq (X) (2.4)

The total current Jν(X) is given by the sum of contributions of gluon(Jνg (X)), quarks and

antiquarks(Jνq (X)). It can easily be seen that the transport Eqs. (2.3) and Eq.(2.4) is gauge

invariant. The color current is expressed in the fundamental representation as [71, 88]

Jµ(X) = −g
∫

d3p

(2π)32E
P µ
[
Q(P,X)− Q̄(P,X)

− 1

Nc

Tr[Q(P,X)− Q̄(P,X)] + 2iτafabcGbc(P,X)
]
. (2.5)
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2.1.1 Linearized Transport Theory

We assume that the distribution functions which enter in the set of transport equations can

be decomposed into regular and fluctuating components. Thus, the distribution functions

of the plasma particles can be expressed as

Qij(P,X) = n(p)δij + δQij(P,X),

Q̄ij(P,X) = n̄(p)δij + δQ̄ij(P,X),

Gab(P,X) = ng(p)δab + δGab(P,X). (2.6)

The quark(antiquark) and gluon distribution functions n(p)(n̄(p)) and ng(p) are Fermi-

Dirac and Bose-Einstein distributions respectively. We also assume that

|n| >> |δQ| and | ▽p n| >> | ▽p δQ|. (2.7)

Substituting Eqs.(2.6) in Eq.(2.5) we find the color current induced by the fluctuations

as follows,

Jµ(X) = −g
∫ d3p

(2π)32E
P µ
[
δQ(P,X)− δQ̄(P,X)

− 1

Nc
Tr[δQ(P,X)− δQ̄(P,X)] + 2iτafabcδGbc(P,X)

]
. (2.8)

By substituting Eqs.(2.6) into the transport Eqs.(2.3), one can deduce the following

expression of the linearized transport equations [88]:

PµD
µδQ(P,X) = −gP µFµν(X)

∂n(p)

∂Pν
,

PµD
µδQ̄(P,X) = gP µFµν(X)

∂n̄(p)

∂Pν
,

PµDµδG(P,X) = −gP µFµν(X)
∂ng(p)

∂Pν
. (2.9)

Here, the stress tensor and δQ, δQ̄ or δG are assumed to be of the same order.

To solve Eqs.(2.9) one can use the non-abelian parallel transporter or Wilson line

U(X, Y ) = P exp [−ig
∫ Y

X
dZµA

µ(Z)], (2.10)
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where P denotes the path ordering of the color matrices from X to Y . Using the parallel

transporter one finds the solutions of Eqs.(2.9) as

δQ(P,X) = −g
∫
d4Y Gp(X − Y )U(X, Y )P µFµνU(Y,X)

∂n(p)

∂Pν
,

δQ̄(P,X) = −g
∫
d4Y Gp(X − Y )U(X, Y )P µFµνU(Y,X)

∂n̄(p)

∂Pν
,

δG(P,X) = −g
∫
d4Y Gp(X − Y )U(X, Y )P µFµνU(Y,X)

∂ng(p)

∂Pν
,

(2.11)

where Gp(X) is the Green’s function of the kinetic operator which satisfies

Pµ∂
µGp(X) = δ(4)(X) (2.12)

and

Gp(X) = E−1Θ(t)δ3(x− vt) (2.13)

where v = p/E is the parton velocity.

Combining Eqs.(2.11) and (2.8), the color current can be written as:

Jµ(X) = g2
∫

d3p

(2π)32E
P µP ν

∫
d4Y Gp(X − Y )U(X, Y )FµνU(Y,X)

∂f(p)

∂Pν
, (2.14)

where f(p) = Nf (n(p) + n̄(p)) + 2Ncng(p), Nf being the number of flavors. This equation

can be solved using the Fourier transform. As we mentioned earlier, scales of interests are

A ∼ √
gT and ∂ ∼ gT , we neglect the terms which are not leading order in g and the

theory becomes effectively Abelian as D → ∂ and stress tensor F µν → ∂µAν − ∂νAµ. Also,

the parallel transporter U becomes unity. Within such an approximation one can perform

a Fourier transform of the induced current in Eq.(2.8) to the momentum space to obtain

Jµ(K) = g2
∫

d3p

(2π)32E
P µ∂f(p)

∂Pβ

[
gβν − KβP ν

K.P + iǫ

]
Aν(K). (2.15)

For sufficiently weak gauge field Aµ, the induced current Jµ(K) can be expressed as

Jµa (K) = Πµν
ab (K)Abν(K). (2.16)
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By functional differentiation one gets the polarization tensor as [88]

Πµν(K) = g2
∫

d3p

(2π)32E
P µ∂f(p)

∂Pβ

[
gβν − KβP ν

K.P + iǫ

]
(2.17)

In color space, the polarization tensor is proportional to a unit matrix. The only tensors

that can appear in Πµν(K) are gµν and KµKν . The same result can be obtained in the

diagrammatic approach using the HTL approximation with the assumption that the distri-

bution function is symmetric under p → −p [88]. It is seen that this tensor is symmetric,

Πµν(K) = Πνµ(K) and transverse, KµΠµν(K) = 0.

The effective theory for the soft modes can be expressed as covariant form of Maxwell

equation

∂µF
µν = Jµind + Jµext, (2.18)

with the external current Jµext. By combining Eq.(2.16) and Eq.(2.18), it can be shown that

the external current is related to the gauge field as

[K2gµν −KµKν +Πµν(K)]Aν(K) = −Jµext(K). (2.19)

Due to the gauge invariance of the self-energy we can write the above equation in terms of

a physical electric field by specifying a certain gauge. In the temporal axial gauge, where

A0 = 0, we obtain,

[(k2 − ω2)δij − kikj +Πij(K)]Ej = [∆−1(K)]ijEj(K) = iωJ iext(K), (2.20)

with

[∆−1(K)]ij = (k2 − ω2)δij − kikj +Πij(K). (2.21)

The poles of the effective propagator ∆ij(K) gives the dispersion relation for the waves in

the medium. The above expression can also be written in terms of chromo-dielectric tensor

ǫij(K) as

[k2δij − kikj − ω2ǫij(K)]Ej = iωJ iext(K). (2.22)
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The dielectric tensor and the polarization tensor are related by the following relation [83,

91]:

ǫij = δij −
Πij

ω2
. (2.23)

2.1.2 Collective modes in the isotropic plasma

As we have already seen, polarization tensor satisfies the transversality condition, which

implies that only two components are independent and the general form can be written as

Πµν(K) = PµνΠT (K) +QµνΠL(K) (2.24)

where the transverse and longitudinal projection tensors have the following forms:

Pµν = g̃µν −
K̃µK̃ν

K̃2

Qµν =
k2

K̃2
ūµūν (2.25)

Here,

g̃µν = gµν − uµuν ,

K̃µ = Kµ − ωuµ,

ūµ = uµ −
ω

K2
Kµ,

and K̃2 = K2 − ω2 = −k2 < 0. (2.26)

in which uµ is the four velocity of the fluid with uµuµ = 1. The tensor g̃µν and the four

vector K̃µ are orthogonal to uµ. In the rest frame of the plasma, i.e., for uµ = (1, 0, 0, 0),

using the properties of the projection operators, one can obtain the scalar functions in

Eq.(2.24) as

ΠL(K) = −K
2

k2
Πµν(K),

ΠT (K) =
1

2
[gµνΠµν(K)− ΠL(K)]

=
1

2
(δij −

kikj
k2

)Πij(K). (2.27)
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which, for gluon, leads to

ΠT (K) =
m2
D

2

ω2

k2

[
1− ω2 − k2

2ωk
log

ω + k

ω − k

]
, (2.28)

and

ΠL(K) = m2
D

[ ω
2k

log
ω + k

ω − k
− 1

]
(2.29)

where mD is the Debye mass and is given by

m2
D = − g2

2π2

∫ ∞

0
dp p2

df(p)

df
. (2.30)

In case of isotropic QCD plasma

m2
D = g2T 2(

2Nc +Nf

6
) (2.31)

for zero quark chemical potential. At finite chemical potential (µ),m2
D = g2

π2 (µ
2+ π2T 2

6
(2Nc+

Nf)). We can determine the dispersion relation of the isotropic system with the help of

the effective propagator. Using the relation (2.21) we calculate the dispersion relation of

transverse and longitudinal modes separately. The transverse dispersion relation is,

k2 − ω2
T +ΠT = 0, (2.32)

whereas for the longitudinal mode we have,

ω2
L − ΠL = 0. (2.33)

The transverse and the longitudinal modes are designated by ωT and ωL respectively. For

k → 0 we find ωL(0) = ωT (0) =
√

1
3
m2
D = mg. The thermal gluon mass mg is identical to

the plasma frequency. For high momentum k → ∞ we get ωL,T (k → ∞) = k, obtaining the

free dispersion relation. However for general k the Eqs.(2.32) and (2.33) have to be solved

numerically and the solutions of the dispersion relation for the propagating transverse

and longitudinal modes are displayed in Fig. 2.1. These propagating modes exist above
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Figure 2.1: Dispersion relation for transverse and longitudinal gluons modes.

a common plasma frequency ω > ωpl =
√
m2
D/3, which are always above the light cone

(ω > k) and are called normal modes. For 0 < ω < ωpl, k becomes imaginary and there

are no stable modes. However, there is a collective behavior which leads to the screening

both in the magnetic and electric field as long as ω > 0, which is known as the dynamical

screening phenomenon [79].

2.2 The anisotropic Quark-Gluon Plasma

As mentioned earlier, shortly after the collision, the rapid expansion of the matter along

the beam direction causes faster cooling in the longitudinal direction than the transverse

direction, leading to the phase space distributions of plasma particles to be anisotropic in

momentum space [67, 68, 71, 72, 74, 75, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100].

At some later time, the system returns to an isotropic state due to the effect of the parton

interactions which overcome the plasma expansion rate. Therefore, it is interesting to

investigate what effect the presence of momentum anisotropy has on the dynamics of the

system and what differences one can expect when comparing to the usually studied isotropic
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case.

In this section we will investigate the collective modes of QGP with momentum space

anisotropy. In an isotropic system all the particles moves in all directions with equal

probability. However, in a system with momentum anisotropy, there will be a preferred

direction. The anisotropic distribution function can be obtained by stretching or squeezing

an isotropic distribution function along a certain direction, thereby preserving a cylindrical

symmetry in momentum space. We shall use the following ansatz [71, 95]:

f(p) = fξ(p) = N (ξ)fiso(
√
p2 + ξ(p.n̂)2, phard), (2.34)

for an arbitrary isotropic distribution function fiso(|p|) and n̂ is the direction of anisotropy.

The parameter ξ is the degree of anisotropy (−1 < ξ < ∞) and is given by ξ = 1
2

〈p2
T
〉

〈p2z〉
− 1.

It is important to notice that ξ > 0 corresponds to a contraction of the distribution in

the n̂ direction, whereas −1 < ξ < 0 corresponds to a stretching of the distribution in

the anisotropic direction. The factor N (ξ) is the normalization factor. To fix N (ξ) we

ensure that the overall particle number is same both for isotropic and arbitrary anisotropic

systems and it is given by N (ξ) =
√
1 + ξ. Fig. 2.2 shows the Fermi-Dirac distribution in

the presence of anisotropy. In this context, we assume that n̂ is in the direction of beam

axis along which the system expands initially. phard is related to the average momentum

in the partonic distribution function. In case of isotropic plasma, phard is related to the

plasma temperature T .

2.2.1 Tensor Decomposition and Self-Energy Structure

We have already mentioned earlier that initially plasma expands only in one preferred

direction and we can no longer decompose the self-energy into transverse and longitudinal

parts. We therefore, need to construct a tensorial basis to represent the self-energy which

depends not only on the momentum ki but also depends on a fixed anisotropy vector ni,

with n2 = 1. Using the proper tensorial basis[71] one can decompose the self-energy in
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Figure 2.2: Contour plot of a squeezed Fermi-Dirac distribution with anisotropy parameter
ξ = 10. [101]

terms of four structure functions as:

Πij(k) = αAij + βBij + γC ij + δDij , (2.35)

where

Aij = δij − kikj/k2,

Bij = kikj/k2,

C ij = ñiñj/ñ2,

Dij = kiñj + kjñi, (2.36)

with ñi = Aijnj and it obeys ñ.k = 0 and n2 = 1. We can determine the four structure

functions by taking the following contraction:

kiΠijkj = k2β,

ñiΠijkj = ñ2k2δ,

ñiΠijñj = ñ2(α + γ),

TrΠij = 2α+ β + γ. (2.37)

All the four structure functions depend on the Debye mass (mD), the frequency (ω), the

momentum (k), the anisotropic parameter (ξ) and k̂.n̂ = cos θn. In the isotropic limit, ξ →
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0, the structure functions γ and δ vanish and α and β are directly related to the transverse

and longitudinal components of the polarization tensor of the plasma respectively:

α(K, 0) = ΠT (K),

β(K, 0) =
ω2

k2
ΠL(K),

γ(K, 0) = 0,

δ(K, 0) = 0. (2.38)

where ΠT and ΠL are given by Eqs.(2.28) and (2.24). For finite ξ, analytic structure of the

functions is the same as for ΠT and ΠL as in the isotropic case, namely there is a cut in the

complex ω plane which can be chosen to run along the real ω axis from −k < ω < k. For

real valued ω the structure functions are real for ω > k which leads to Landau damping

and imaginary for all ω < k. For imaginary value of ω all four structure functions have

real values.

Now we construct the effective propagator ∆ij with the help of the structure functions.

Inverse of the propagator, in terms of tensor basis is obtained using Eq.(2.21)

∆−1
ij (K) = (k2 − ω2 + α)Aij + (β − ω2)Bij + γCij + δDij (2.39)

and the propagator becomes:

∆(K) = ∆AA+ (k2 − ω2 + α + γ)∆GB+ [(β − ω2)∆G −∆A]C− δ∆GD (2.40)

with

∆−1
A (K) = k2 − ω2 + α, (2.41)

∆−1
G (K) = (k2 − ω2 + α + γ)(β − ω2)− k2ñ2δ2 (2.42)

These two equations give the dispersion relations for the gluonic modes in an anisotropic

quark-gluon plasma.
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In anisotropic plasma, the spacelike component of the self-energy tensor (in Eq.2.17)

can be written as [71]

Πij
p (K) = −g2

∫
d3p

(2π)3
vi∂lf(p)

(
δjl +

vjkl

K.V + iǫ

)
(2.43)

where f(p) is anisotropic distribution function. Using Eq.(2.34), one can simplify Eq.(2.43)

to

Πij(K) = m2
D

√
1 + ξ

∫
dΩ

(4π)
vi
vl + ξ(v.n̂)nl

(1 + ξ(v.n̂)2)2

(
δjl +

vjkl

K.V + iǫ

)
(2.44)

where mD is the Debye mass, represented by

m2
D = − g2

2π2

∫ ∞

0
dpp2

dfiso(p
2)

dp
. (2.45)

Stable Mode

First, we discuss the stable collective modes which have poles at real-valued ω > |k|. ∆−1
G

can be factorized to obtain

∆−1
G = (ω2 − Ω2

+)(ω
2 − Ω2

−), (2.46)

where

Ω2
± =

1

2
[Ω2 ±

√
Ω4 − 4[(α + γ + k2)β − k2ñ2δ2]]

=
1

2
[Ω2 ±

√
(α− β + γ + k2)2 + 4k2ñ2δ2] (2.47)

and

Ω2 = α + β + γ + k2 (2.48)

The square root in equation (2.47) is always positive for real ω > k. This leads to at most

two stable modes coming from ∆G. Another stable mode comes from the zero of ∆−1
A .

All the collective modes can be compactly written as [71]

ω2
± = Ω2

±(ω±), (2.49)

ω2
α = k2 + α(ωα). (2.50)
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Figure 2.3: Dispersion relation for the stable mode in anisotropic system. [71]

For ξ = 0, ω+ = ωα = ωT and ω− = ωL. The resulting dispersion relations for all three

modes for the case ξ = 10 and θn = {0, π/4, π/2} are shown in Fig. 2.3. We see that

the stable modes depend on the angle of the propagation with respect to the anisotropy

direction. It is clearly seen that all the three modes are shifted toward the light cone when

the wave vector is orthogonal to the anisotropy direction.

Unstable Mode

In an anisotropic quark-gluon plasma, the propagator also has poles along the imaginary

axis which indicates that the system possesses a magnetic instability [72, 102]. This can

be identified as the so called filamentation or Weibel instability [103]. The instability is

driven by the energy transferred from the particles to the field, which leads to a more rapid

thermalization and equilibration of QGP.

For the unstable modes of the system we can write ω → iΓ with Γ real valued and the

solutions are written as

∆−1
G = (Γ2 + Ω+)(Γ

2 + Ω−) = 0,

∆−1
A = Γ2 + k2 + α = 0 (2.51)

where Ω± are evaluated at ω = iΓ. However, in contrast to the stable modes there is at

most one solution in this case since numerically we find that Ω2
+ > 0 for all Γ > 0. For
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Figure 2.4: Dispersion relation for the unstable mode in anisotropic system with (a) ξ = 10,
θn = π/8 and (b) ξ = 0.9, θn = π/2.

ξ > 0 there are two unstable modes in the system which can be found by solving

Γ2
− = −Ω2

−(iΓ−), (2.52)

Γ2
α = −k2 − α(iΓα) (2.53)

We found that for ξ > 0, there were two unstable modes shown in Fig. 2.4(a), whereas

ξ < 0, we find one unstable collective mode coming from Γ−. Fig. 2.4(b) shows the unstable

mode Γ−(k) with ξ = −0.9 and θn = π/2.

• ◦ •



Chapter 5

Probes of Anisotropy Quark-Gluon
Plasma

As discussed earlier, there are various indirect probes to identify QGP which is usually

assumed to be isotropic. However, to characterize the anisotropic QGP we have to look for

signals which are sensitive to the momentum distribution (anisotropic) of the plasma parti-

cles. The effect of pre-equilibrium momentum anisotropy on various observables have been

studied quite extensively over the past few years. For examples, electromagnetic probes

(photons, dileptons) [99, 100, 131, 134, 135, 136, 137, 138, 139, 140], nuclear modification

factor vis−a− vis energy loss [132, 141, 142, 143, 144], gluon dissociation of J/ψ [33, 145]

etc. have been suggested for the characterization of the AQGP. In Refs. [99] the direct

photon yield has been calculated and contrasted with the RHIC data. For the fixed initial

condition, the pre-equilibrium momentum anisotropy enhances high-energy photon by an

order of magnitude [100]. Similar observations has been reported for the dilepton rate [134].

The authors of Ref. [134] have shown that the isotropization time τiso can be extracted by

comparing with the experimental data. It is found that the extracted value of τiso lies

within 1 < τiso < 1.5 fm/c. In case of heavy quark, energy loss and momentum broadening

in anisotropic QGP have also been investigated [146, 147, 148].

Another important observables to characterize the anisotropic plasma is the two-particle

correlation. Size of the system during freeze-out is determined by two hadron correla-

64
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tion [149]. We devoted our analysis for the full evolution of the fireball to observe the

anisotropic effect on the size of the emission zone. Such analysis helps in understanding

the effect of the anisotropy on the space-time dynamics of the evolving source.

However, photons and dileptons have the advantages of determining the dimension of

the collision zone from very beginning as these probes leaves the plasma as soon as they

are produced.

In the following section we briefly discuss the space-time evaluation of the matter in

AQGP. In section 5.2, we investigate the impact of the early momentum space anisotropy

on the nuclear modification factor of light hardons. In section 5.3, we calculate the gluon

dissociation cross section of J/ψ in an anisotropic QGP. We extended our studies on two

photon correlation coming from the isotropic and anisotropic QGP in section 5.4. The

conclusions of this chapter are presented in section 5.5.

5.1 Space-time evaluation

For a dynamically evolving plasma the anisotropy parameter ξ and the hard momentum

scale phard are time dependent. To construct this, two new parameter has been introduced:

(1) τiso which is the proper time at which the system begins behaving hydro-dynamically

and (2) γ, which sets the sharpness of the transition from the early-time pre-equilibrium

dynamics to late -time equilibrated dynamics. There are three possible scenarios of the

space-time evaluation which are likely: (i) τiso = τi, the system evolves hydro-dynamically

so that ξ = 0 and phard can be identified with the temperature (T ) of the system (ii)

τiso → ∞, the system never comes to equilibrium, (iii) τiso > τi and τiso is finite, one should

devise a time evolution model for ξ and phard which smoothly interpolates between pre-

equilibrium anisotropy and hydrodynamics. This model can be executed mathematically

by generalizing the anisotropic parameter ξ(τ) as follows;

ξ(τ) =
(
τ

τi

)δ
− 1. (5.1)
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The limit δ = 0 correspond to scenario (i) where expansion is hydrodynamical . On the

other hand, the limits δ 6= 0 and ξ 6= 0 correspond to scenario (ii) where the system is highly

anisotropic. For the present work we shall be following scenario (iii) which interpolates

between hydrodynamic evolution and the anisotropic evolution. The time dependences of

various parameters are obtained in terms of a smeared step function as follows[67, 131]:

Λ(τ, τiso, γ) =
1

2
(tanh[γ(τ − τiso)/τiso] + 1). (5.2)

It is clear from the above equation that for τ ≪ τiso, λ→ 0 (anisotropic evolution) and for

τ ≫ τiso, λ → 1 (hydrodynamic evolution).Thus, the time dependences of ξ and phard are

as follows [131, 143]:

ξ(τ) = aδ[1−λ(τ)] − 1,

phard(τ) = Ti [U(τ)/U(τi)]1/3 , (5.3)

where

U(τ) ≡
[
R
(
aδiso − 1

)]3λ(τ)/4
(aiso/a)

1−δ[1−λ(τ)]/2 ,

R(x) ≡ 1

2

[
1

1 + x
+

arctan
√
x√

x

]
, (5.4)

with a ≡ τ/τi and aiso ≡ τiso/τi. The power of R in U keeps energy density continuous at

τ = τiso for all γ. For isotropic case, we have phard = T , τiso = τi so that Λ = 1, U(τ) = τi/τ ,

and U(τi) = 1. By using c2s = 1/3 we recover the Bjorken cooling law [19]. In the present

work it is assumed that an isotropic QGP is formed at an initial temperature Ti and initial

time τi. In case of isotropic expansion the experimentally measured hadron multiplicity can

be related to the initial temperature and thermalization time by the following equation [43]:

T 3
i (bm)τi =

2π4

180ζ(3)πR2
Tak

〈dN
dy

(bm)
〉

(5.5)

where
〈
dN/dy(bm)

〉
is the hadron (predominantly pions) multiplicity for a given centrality

class with maximum impact parameter bm. RT is the transverse dimension of the system,

τi is the formation time, ζ(3) is the Riemann zeta function.
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The parton energy density in an anisotropic plasma can be factorized in the following

manner:

E(τ) = E0 [U(τ)/U(τi)]4/3, (5.6)

where E0 is the parton energy density in an isotropic plasma.

In the following section we assume that the plasma expands longitudinally and the effect

of transverse expansion at the early stage might be neglected [150]. Since the momentum

space anisotropy is an early stage phenomenon, this assumption is justified. Even if the

transverse expansion is important in the very early stage, it will have two effects so far as

the parton energy loss is concerned : (i) The expanding geometry will increase the duration

of propagation, and (ii) the same expansion will cause the parton density to fall along its

path. These two effects partially compensate each other and the energy loss is almost the

same as in the case without the transverse expansion [151]. As the colliding nuclei do have

a transverse density profile, we assume that the initial temperature profile is given by [152]

Ti(r) = Ti
[
2
(
1− r2/R2

T

)]1/4
. (5.7)

Using Eqs. (5.3) and (5.7) we obtain the profile of the hard momentum scale as

phard(τ, r) = Ti
[
2
(
1− r2/R2

T

)]1/4
[U(τ)/U(τi)]1/3 . (5.8)

5.2 Nuclear modification factor in an anisotropic quark-

gluon plasma

It is well-known that the energy loss of the partons in QCD plasma can proceed in two

ways, namely collisional process and radiative process via gluon radiation. At the early

stage of momentum anisotropy, any calculation of energy loss should, in principle, include

this aspect. The collisional energy loss for heavy fermion has been calculated in anisotropic

media in Ref. [153, 26] and it is found that the deviations from the isotropic result are of

the order of 10% for ξ = 1. and it also increases with the increase of anisotropy parameter
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ξ. Radiative energy loss in anisotropic QGP has been calculated in Ref. [143] in the first

order opacity expansion where the scatterers are static. It is observed that the energy loss

of a parton in an anisotropic media depends both on the anisotropy parameter and the

direction of propagation with respect to the anisotropy axis. In this section we calculate

the fractional energy loss due to the gluon radiation in an infinite size anisotropic media

treating the scatters as providing a screened Coulomb-like potential. The results will then

be applied to calculate hadronic pT -spectrum and nuclear modification factor (RAA).

5.2.1 Radiative energy loss

We consider scatterings from static charge in which case only longitudinal gauge bosons

are exchanged. Contribution of the Feynman diagrams to the soft-gluon radiation in a

static medium at first order in opacity is shown in Fig. 5.1. We also assume that an on-

Figure 5.1: Feynman diagrams contributing to the soft gluon radiation in a static medium
to first order in opacity.

shell quark produced in the remote past is propagating through an infinite QCD medium

that consists of randomly distributed static scattering centers [154]. In the Gyulassy-

Wang formalism [155] static interaction is modeled using a color-screened Yukawa potential

originally developed for the isotropic QCD medium and is given by

Vn = V (qn) exp[i~qn.~xn]

= 2πδ(q0)
4παs

(~q2n +m2
D)

exp[i~qn.~xn]Tan(R)⊗ Tan(n), (5.9)
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The quantity xn is the location of the nth scattering center, T (summed over an) denotes

the colour matrices of the parton and the scattering center. It is to be noted that the poten-

tial has been derived by Hard Thermal Loop (HTL) perturbation theory. The momentum

space anisotropy affects the two-body interaction and it becomes direction dependent. The

radiative energy loss, will also depend on the direction of momentum of the quarks emit-

ting Bremsstrahlung gluons. This necessitates the introduction of anisotropy dependent

potential to estimate the radiative energy loss in a plasma having anisotropic momentum

distribution. To calculate the heavy-quark potential in anisotropic medium one starts with

the retarded gluon self-energy expressed as [80]

Πµν(P ) = g2
∫

d3k

(2π)3
vµ
∂f(~k)

∂Kβ

(
gνβ − vνP β

P · v + iǫ

)
(5.10)

We have adopted the following notation for four vectors: P µ = (p0, ~p) = (p0,p, pz), i. e. ~p

describes a three-vector while p denotes the two-vector transverse to the z-direction.

With the structure function in Eqs.(2.36) we can construct the effective gluon propa-

gator in an anisotropic media and it can be expressed as [156, 157]:

∆µν =
1

(P 2 − α)
[Aµν − Cµν ]

+ ∆G

[
(P 2 − α− γ)

ω4

P 4
Bµν + (ω2 − β)Cµν + δ

ω2

P 2
Dµν

]
− λ

P 4
P µP ν , (5.11)

where

∆−1
G = (P 2 − α− γ)(ω2 − β)− δ2[P 2 − (n · P )2]. (5.12)

Now we can easily calculate the anisotropy dependent momentum space potential. It can

be obtained from the static gluon propagator in the following way [143]:

v(q, qz, ξ) = g2∆00(ω = 0,q, qz, ξ)

= g2
~q2 +m2

α +m2
γ

(~q2 +m2
α +m2

γ)(~q
2 +m2

β)−m2
δ

, (5.13)
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where the expression for m2
α, m

2
β, m

2
γ and m2

δ are given in the Appendix B. For qz = 0, the

two-body potential in an anisotropic medium simplifies to

v(q, ξ) =
4παs

q2 +R(ξ)m2
D

, (5.14)

with

R(ξ) =
1

2

[ 1

1 + ξ
+

tan−1
√
ξ√

ξ

]
(5.15)

and mD is given by m2
D = g2 p2hard (1 +NF/6), where NF is the number of flavors.

Now the parton scatters with one of the colour center with the momentum Q = (0,q, qz)

and subsequently radiates a gluon with momentum K = (ω,k, kz). The quark energy loss is

calculated by folding the rate of gluon radiation (Γ(E)) with the gluon energy by assuming

ω + q0 ≈ ω. In the soft scattering approximation one finds the quark radiative energy loss

per unit length as [154],

dE

dL
=

E

DR

∫
x
dΓ

dx
dx (5.16)

Here DR is defined as [ta, tc][tc, ta] = C2(G)CRDR, where C2(G) = 3, DR = 3 and [ta, tc] is

a color commutator. x is the longitudinal momentum fraction of the quark carried away

by the emitted gluon. Now in anisotropic media we find [143],

x
dΓ

dx
=

CRαs
π

L

λ

∫
d2k

π

d2q

π
|v(q, ξ)|2 m2

D

16π2α2
s

[
k + q

(k + q)2 + χ2
− k

k2 + χ

]2
, (5.17)

where χ == m2
qx

2 +m2
g with m2

g = m2
D/2 and m2

q = m2
D/6. λ denotes the average mean

free path of the quark given by
1

λ
=

1

λg
+

1

λq
, (5.18)

which depends on the strength of the anisotropy. It is to be noted that λg and λq correspond

to the contributions to the mean free path of the propagating quark coming from q-g and q-

q scatterings, respectively. The mean free path can be expressed with the help of Eq.(5.14)

and we have

λ−1
i =

CRC2(i)ρ(i)

N2
c − 1

∫ d2q

(2π)2
|v(q, ξ)|2, (5.19)
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where CR = 4/3, C2(i) is the Casimir for di-dimensional representation and C2(i) = (N2
c −

1)/(2Nc) for quark and C2(i) = Nc for gluon scatterers and ρi is the density of the scatterers.

Using ρi = ρisoi /
√
1 + ξ we obtain

1

λ
=

18αsphardζ(3)

π2
√
1 + ξ

1

R(ξ)

1 +NF/6

1 +NF/4
. (5.20)

In the present scenario, we assume that the parton is propagating along the z di-

rection and makes an angle θn with the anisotropy direction. In such case, we replace

q and qz in Eq.(5.13) by q →
√
q2 − q2 sin2 θn cos2 φ and qz → |q| cosφ sin θn, where

q = (|q| cosφ, |q| sinφ). For arbitrary ξ the radiative energy loss can be written as [143, 144]

∆E

E
=

CRαs
π2

L

λ

∫
dxd2q| m2

D

(q2 +R(ξ)m2
D)

2

[
− 1

2
− k2m
k2m + χ

+
q2 − k2m + χ

2
√
q4 + 2q2(χ− k2m) + (k2m + χ)2

+
q2 + 2χ

q2
√
1 + 4χ

q2

× ln

(
[k2m/χ+ 1](q2 + 3χ) +

√
1 + 4χ

q2 (q
2 + χ)

(q2 − k2m + 3χ) +
√
1 + 4χ

q2

√
q4 + 2q2(χ− k2m) + (k2m + χ)2

)]
. (5.21)

The fractional energy loss in anisotropy medium for the light quark is shown in Fig. 5.2.

We consider a plasma at a temperature T = 200 MeV with the effective number of degrees

of freedom NF = 2.5 The value of the strong coupling constant is taken as αs = 0.3 and

the length of the medium is L = 5 fm. The energy loss in the anisotropic medium depends

on the angle of propagation of the fast parton with respect to the anisotropy axis [143].

It is clearly seen that as the anisotropic parameter increases, the fractional energy loss

increases when the quark propagates along the direction of anisotropy. It is observed that

at low momentum the enhancement is more and after that it almost saturates for all the

values of ξ considered here. The enhancement factor can be better understood by looking

at the right panel of Fig. 5.2 where we have plotted the ratio of the fractional energy loss in

anisotropic media to that in isotropic case. For large value of ξ, the ratio is seen to increase

reaching a maximum value of the order of 1.5 corresponding to ξ = 5. This is because the

energy loss is proportional to the square of the two-body potential v(q, ξ) which increases

with ξ and hence the fractional energy loss increases with ξ.
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Figure 5.2: Fractional energy loss for light quark for ξ = (0, 0.5, 1, 3, 5) (left panel). The
ratio of the fractional energy loss of anisotropic media to that in isotropic media is also
presented (right panel).

5.2.2 Hadronic pT spectrum

Now we calculate the nuclear modification factor of light hadrons incorporating the light

quark energy loss in AQGP. Starting with two-body scattering at the parton level, the

differential cross-section for the jet production can be calculated using the following rela-

tion [158]:

E
dσ

d3p
(AB → jet +X) = K

∑

abcd

∫
dxadxbGa/hA(xa, Q

2)Gb/hB(xb, Q
2)

× ŝ

π

dσ

dt̂
(ab → cd)δ(ŝ+ t̂+ û), (5.22)

where the factorK is introduced to take into account the higher-order effects andGa/hA(Gb/hB)

is the parton distribution function (PDF) of the incoming parton a(b) in the incident hadron

A(B), which depends on the momentum fraction xa(xb). The argument of the δ function

can be expressed in terms of xa and xb and doing the xb integration we arrive at the final

expression given by,

E
dσ

d3p
(AB → jet +X) = K

∑

abcd

∫ 1

xamin

dxaGa/hA(xa, Q
2)Gb/hB(xb, Q

2)
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× 2

π

xaxb
2xa − xT ey

dσ

dt̂
(ab→ cd), (5.23)

where xb = (xaxT e
−y)/(2xa − xT e

y), xT = 2pT/
√
s and xamin = (xT e

y)/(2 − xT e
−y). It

should be noted that to obtain single particle inclusive invariant cross-section for hadron

production in hadron-hadron collisions, the fragmentation function Dh/c(z, Q
2) must be

introduced. To obtain the hadronic pT spectra in A-A collisions, we multiply the result by

the nuclear overlap function for a given centrality. However, the inclusion of jet-quenching

as a final state effect in nucleus-nucleus collisions, can be implemented in two ways: (i)

modifying the fragmentation function [159] and (ii) modifying the partonic pT spectra [160]

but keeping the fragmentation function unchanged. In this calculation we intend to modify

the fragmentation function. The effective fragmentation function can be written as

Dh/c(z, Q
2) =

z∗

z
Dh/c(z

∗, Q2) (5.24)

where, z∗ = z/(1 − ∆E/E) is the modified momentum fraction. We use the energy loss

expression given by Eq.(5.21) which is derived to first order in opacity. Now we take into

account the jet production geometry. We assume that all the jets are not produced at the

same point and the path length traversed by these partons before fragmentation are not

the same. We consider a jet initially produced at (r, φ) leaves the plasma after a proper

time or equivalently after traversing a distance L where

L(r, φ) =
√
R2
T − r2 sinφ2 − RT cosφ, (5.25)

where RT is the transverse dimension of the system. Now the hadron pT spectra depends

on the path length the initial parton must travel and the temperature profile along that

path. Since the number of jets produced at ~r is proportional to the number of binary

collisions, the probability is proportional to the product of thickness functions:

P(~r) ∝ TA(~r) TB(~r) (5.26)

For a hard sphere P(r) is given by

P(r) =
2

πR2
T

(
1− r2

R2
T

)
θ(RT − r) (5.27)
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where
∫
d2rP(r) = 1. To obtain the hadron pT spectra, we have to convolute the resulting

expression over all the transverse positions and it becomes

dNπ0(η)

d2pTdy
=

∑

f

∫
d2rP(r)

∫ tL

ti

dt

tL − ti

∫
dz

z2

×Dπ0(η)/f (z, Q
2)|z=pT /pfT E

dN

d3pf
, (5.28)

Here, the initial momentum distribution of jets is E dN
d3pf

and can be computed using LO-

pQCD as mentioned earlier. The average value of distance traversed by the partons, 〈L〉
can be calculated as

〈L〉 =
∫RT

0 rdr
∫ 2π
0 L(φ, r)TAA(r, b = 0)dφ

∫ RT

0 rdr
∫ 2π
0 TAA(r, b = 0)dφ

, (5.29)

where 〈L〉 ∼ 5.8(6.2)fm for RHIC (LHC). Finally, the nuclear modification factor, RAA is

defined as

RAA(pT ) =

dN
π0(η)
AA

d2pT dy[
dN

π0(η)
AA

d2pT dy

]

0

(5.30)

where

[
dN

π0(η)
AA

d2pT dy

]

0

corresponds to the hadron pT distribution without energy loss.

In the present work, we have used a free streaming interpolating model that interpolates

between early-time longitudinal free streaming and late-time ideal hydrodynamic expansion

by choosing δ = 2. we use two sets of initial condition for RHIC energies. The initial

condition are taken as Ti = 440MeV (Ti = 350MeV) and τi = 0.147 fm/c (τi = 0.24 fm/c)

in the left (right) panel of Fig. 5.3 which describes the nuclear modification factor for

various values of isotropization time, τiso along with the PHENIX data [161]. It is observed

that as τiso increases, the value of RAA decreases compared to its isotropic value. This is

because the hard scale phard decreases slowly as compared to the isotropic case, i.e. the

cooling is slow. For reasonable choices of τiso, the experimental data is well described. It is

quite clear from left panel of Fig. 5.3 that the extracted value of isotropization time lies in
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the range 0.5 ≤ τiso ≤ 1.5 fm/c. This is in agreement with the earlier finding of τiso using

PHENIX photon data [100]. In the right panel of Fig. 5.3 we observe that to reproduce the

data, larger value of τiso is needed as compared to the case of higher initial temperature.

We extract an upper limit of τiso = 2 fm/c in this case. Further increase of τiso leads to

more suppression thereby under-predicting the data. However, unlike the RHIC data, our

present model is unable to explain the LHC data [144].
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Figure 5.3: Nuclear modification factor at RHIC energies. The initial condition are taken
as Ti = 440MeV (Ti = 350MeV) and τi = 0.147 fm/c (τi = 0.24 fm/c) in the left (right)
panel.

So far we have used the interpolating model which assumes fixed initial conditions. But,

most of the experimental results correspond to fixed final multiplicity (FFM). Thus, we

should device a mechanism which enforces FFM. To do this the initial condition will have

to be varied as a function of assumed isotropization time, i.e., one must lower the initial

”temperature” for finite τiso. To accomplish this model one has to redefine U(τ)/U(τi) in
Eq.(5.3) as [134]:

U(τ)/U(τi) = U(τ)
[
R((τiso/τi)

δ − 1)
]−3/4

(τi/τiso) (5.31)

As a consequence of this modification the initial ”temperature” will depend on the assumed

value of τiso.
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The result for the FFM condition at RHIC energies has been displayed in Fig. 5.4. In

this case the value of RAA increases with τiso compared to the isotropic case. The reason for

this is that in FFM the larger the value of τiso is, the lower is the initial hard momentum

scale resulting less energy loss. This gives rise to higher value of RAA as compared to

the fixed initial condition case as well as the isotropic case. It is also seen that for FFM

isotropic value of the nuclear modification factor is closer to the data. Thus, it is quite

clear that the use of FFM does not lead to any firm conclusion about the extraction of τiso.
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Figure 5.4: Same as Fig. 5.3 for fixed final multiplicity.

5.3 Gluon dissociation of J/ψ in an anisotropic quark-

gluon plasma

Charm quark can be produced during the early stages of heavy-ion collisions, when partonic

degrees of freedom are relevant. The production of charm quark bound state (J/ψ mesons)
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is suppressed due to color screening [32]. J/ψ suppression can be used to obtain the

convincing evidence of the existence of the QGP in heavy-ion collisions. The interaction of

J/ψ with deconfined partons and hadrons are different. In a QGP the much harder gluons

can easily break up a J/ψ contrary to the case of hadronic system. The dissociation of J/ψ

will continue during the whole equilibration process until the beginning of hadronization

or effective temperature drops below a certain value.

In the following we will discuss the effect of the initial state momentum anisotropy on

the survival probability of J/ψ due to the gluon dissociation.

5.3.1 The thermal-averaged Gluon-J/ψ dissociation cross section

Peskin and Bhanot first calculated the quarkonium-hadron interaction cross section using

operator product expansion [162]. This formalism allows to express the hadron-J/ψ inelas-

tic cross section in terms of the convolution of the inelastic gluon-J/ψ dissociation cross

section with the gluon distribution inside the hadron. The gluon-J/ψ dissociation cross

section is given by[163]

σ(q0) =
2π

3

(
32

3

)2
(
16π

3g2s

)
1

m2
Q

(q0/ǫ0 − 1)3/2

(q0/ǫ0)5
, (5.32)

where q0 is the energy of the gluon in the stationary J/ψ frame and its value must be

greater than the J/ψ binding energy ǫ0. gs is the coupling constant and mQ is charm

quark mass. The maximum value of the gluon J/ψ dissociation cross section [163] is about

3 mb in the range 0.7≤ q0 ≤1.7 GeV. Therefore low-momentum gluons do not have the

resolution to distinguish the heavy constituent quarks or the energy to excite them to the

continuum. On the other hand, the high-momentum gluons do not see the large object and

simply passes through it. In the present work, we assume that the binding energy of J/ψ

is constant in AQGP at finite temperature. However, using the real and imaginary part of

heavy quark potential in Schrodinger equation the authors of Ref. [164] have shown that

the binding energy of quarkonium states strongly depends on the anisotropy parameter as

well as on the hard momentum scale.
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We assume that the J/ψ moves with four-momentum P given by

P = (MT cosh y, 0, PT ,MT sinh y) (5.33)

where MT =
√
M2

J/ψ + P 2
T is the J/ψ transverse mass and y is the rapidity of the J/ψ. A

gluon with a four-momentum K = (k0,k) in the rest frame of the parton gas has energy

q0 = K.u in the rest frame of the J/ψ. The thermal gluon-J/ψ dissociation cross section

is defined as [33]

〈σ(K.u)vrel〉k =
∫
d3kσ(K.u)vrelf(k

0, ξ, phard)∫
d3kf(k0, ξ, phard)

(5.34)

where vrel is the relative velocity between the J/ψ and a gluon

vrel =
P ·K
EJ/ψk0

= 1− k ·P
k0MT cosh y

, (5.35)

To calculate the velocity-averaged cross section in anisotropic media we note that the

anisotropy enters through the distribution function [131, 145],

f(k0, ξ, phard) =
1

ek
0
√

1+ξ(k̂.n̂)2/phard − 1
. (5.36)

A change of variables (K ↔ Q) can be obtained by using Lorentz transformations:

k0 =
1

MJ/ψ

[
q0E + pq(sin θp sin θq sinφq + cos θp cos θq)

]
,

k = q +
qE

|p|MJψ

[
(MT cosh y −MJψ)(sin θp sin θq sinφq + cos θp cos θq) + |p|vJ/ψ

]
,

where vJ/ψ = p/E, P = (E, 0, |p| sin θp, |p| cos θp) and q = (q sin θq cosφq, q sin θq sin φq, q cos θq)

In the rest frame of J/ψ, the numerator of Eq.(5.34) can be written as

∫
d3q

MJ/ψ

E
σ(q0)f(k0, ξ, phard), (5.37)

while the denominators of Eq.(5.34) can be written as [141]

∫
d3kf(k0, ξ, phard) =

1√
1 + ξ

8πζ(3)p3hard, (5.38)

where ζ(3) is the Riemann zeta function.
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5.3.2 Survival probability of J/ψ in an anisotropic media

To calculate the survival probability of J/ψ in an anisotropic plasma, we will neglect

the transverse expansion and consider only longitudinal expansion of the matter. A J/ψ

produced at point r will travel a distance in the transverse direction with velocity vJ/ψ

given by

d = −r cos φ+
√
R2
T − r2(1− cos2φ) (5.39)

where cosφ = v̂J/ψ · r̂. The time interval τψ = MTd/PT is the time before J/ψ escapes

from a gluon gas of transverse extension RT . With the thermal cross section, the survival

probability of the J/ψ in the deconfined quark-gluon plasma is of the following form [33],

S(PT ) =

∫
d2r(R2

T − r2) exp[− ∫ τmax
τi

dτng(τ) < σ(K.u)vrel >k]∫
d2r(R2

T − r2)
, (5.40)

where τi is the QGP formation time and τmax = min(τψ, τc). In the case of anisotropic QGP

τc is determined by the condition phard(τ = τc) = Tc [67], where Tc ∼ 170−200 MeV. ng(τ)

is the gluon density at a given time τ . For an expanding plasma the anisotropy parameter

ξ and the hard momentum scale phard are time dependent and governed by the Eqs.(5.3)

and (5.8).

5.3.3 Results

Let us first discuss the numerical result of the thermally average gluon dissociation cross-

section in the anisotropic system. In Fig. 5.5 we plot the thermally averaged gluon-J/ψ

dissociation cross section as a function of phard at central rapidity region for PT = 0 and

PT = 8 GeV for a set of values of the anisotropy parameter. It is seen that the cross section

decreases with ξ for phard up to ∼ 500 MeV and then increases as compared to the isotropic

case (ξ = 0)(see in Fig. 5.5a). Similar feature has been observed in Fig. 5.5b for higher PT

where the cross section starts to increase beyond phard ∼ 200 MeV. The dissociation cross

section depends on the direction of propagation (θp) of the quarkonium with respect to the
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Figure 5.5: The thermal-averaged gluon-J/ψ dissociation cross section as function of the
hard momentum scale at central rapidity (θp = π/2) for ξ = {0, 1, 3, 5}. (a) corresponds to
PT = 0 and (b) is for PT = 8 GeV.

anisotropy axis as shown in Fig. 5.6. These observations will have important consequences

while calculating the survival probability of J/ψ.
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Figure 5.6: Direction dependence of thermal averaged gluon-J/ψ dissociation cross section
for two values of PT and at two different rapidities.

In Fig. 5.7 we display the dissociation cross section as a function of PT of the J/ψ for
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Figure 5.7: The thermal-averaged gluon-J/ψ dissociation cross section as a function of the
transverse momentum PT for phard at (a) central and (b) forward rapidity regions.
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Figure 5.8: The survival probability of J/ψ in an anisotropic plasma at RHIC (Left panel)
and LHC (right panel) energies with various value of the isotropization time τiso at central
rapidity.

phard = 300 MeV and for two different direction of propagation (θp) of the quarkonium

with respect to the anisotropy axis. Again it is seen that the cross section first decreases

with the anisotropy parameter upto PT ∼ 5(3) GeV for θp = π/2(π/3) and we find larger
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increase away from the central rapidity region.

Eq.(5.40) has been used to calculate the survival probability. Fig. 5.8 describes the

survival probability of J/ψ for various values of the isotropization time τiso at central

rapidity region. Left (Right) panel corresponds to RHIC (LHC) energy. It is observed

that the survival probability remains the same as in the isotropic case up to PT = 4 GeV.

Beyond that a marginal increase is observe with the increase of τiso.

5.4 Two-photon correlation in an anisotropic quark-

gluon plasma

The method of two particle intensity interferometry, commonly known as Hanbury-Brown

and Twiss (HBT) interferometry [165], is one of the effective technique to know the spatial

and temporal information of particle emission zone created in high energy nucleus-nucleus

collisions [166, 167, 168, 169, 170, 171]. It was first introduced in heavy ion collision in

the hadronic sector through the study of quantum statistical correlation between identical

pions which provided valuable information about the space-time description of the system

at the freeze out surface [167]. In contrast to hadrons, the study of two-particle intensity

interferometry of photons and dileptons [172, 173, 174, 175, 176, 177, 179, 180] which are

produced throughout the space-time evolution of the reaction zone and which suffer almost

no interactions with the surrounding medium can provide information of the history of the

evolution of the hot matter created in heavy-ion collision.

The HBT effect differs from ordinary amplitude interferometry. The HBT effect is a

consequence of quantum statistical effects resulting from the symmetrization of the wave

function of bosons, or anti-symmetrization for fermions. In quantum mechanics, the in-

terchange of two out of N indistinguishable bosons does not change the wave function.

This feature of the Bose-Einstein correlation for the identical boson pairs results in the

enhancement of the two-particle coincidence rate at small relative momentum of the pair.

The measurement of the Bose-Einstein correlation is that it could provide not only the
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extent of the source but also the emission duration of particle emission.

In this section, we present intensity interferometry with photon pair at most central

RHIC initial conditions at
√
sNN = 200 GeV including momentum anisotropy in the pre-

equilibrium QGP phase. For the evolution in AQGP, the free streaming interpolating

model with fixed initial condition has been used and relativistic (1+2)d hydrodynamical

model with cylindrical symmetry and longitudinal boost invariance has been used for both

isotropic QGP and hadronic phases. The thermalized isotropic QGP is assumed with

sufficiently high energy densities at τ = τiso. Afterwards, with expansion, the energy

density reduces, hadronization begins at τq (pure QGP phase ends here). The system then

undergoes a phase transition at transition temperature (Tc) and transforms to a hadronic

gas phase at τh. With further expansion, the energy density reduces further and finally

reaches freeze-out at Tf , called freeze-out temperature at freeze-out time (τf ).

5.4.1 Two particle correlation function

The two-particle correlation function is defined by the ratio of the two particle coincidence

probability density over the product of the two single particle probabilities as

C2 =
P (p1,p2)

P (p1)P (p2)
, (5.41)

where

P1(~k) =
∫
d4x ω(x, k); ω(x, k) = E

dR

d3k
(5.42)

and

P2(~k1, ~k2) = P1(~k1)P1(~k2)

+
1

2

∫
d4x1d

4x2 ω(x1, K)ω(x2, K) cos(∆xµ∆kµ),

(5.43)

where ω(x, k) is the source function related to the thermal emission rate of the photon

per unit volume and ~ki = (kiT cosψi, kiT sinψi, kiT sinh yi) is the three momentum of the
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two identical photons with i = 1, 2, K = (k1 + k2)/2 is the average momentum, ∆kµ =

k1µ − k2µ = qµ, xi and ki are the four co-ordinates for position and momentum variables

respectively and ψi’s are the angles made by kiT with the x-axis of each photon. The

inclusion of the spin of the real photon will reduce the value of C2 − 1 by 1/2. The source

dimensions can be obtained by parameterizing the calculated correlation function with the

empirical Gaussian form [166]:

C2(q,K) = 1 + λ exp(−R2q2) (5.44)

where λ is commonly referred as chaotic parameter, which varies from 0 to 1. Using the

Bertsch-Patt parameterization, the correlation function can be written as a function of

multi-dimensional HBT radii

C2(q,K) = 1 + λ exp(−R2
sideq

2
side − R2

outq
2
out − R2

longq
2
long). (5.45)

The quantities Rside, Rout and Rlong are commonly known as HBT radii, which are the

measures of Gaussian widths of the source size in qside, qout and qlong direction. qside, qout

and qlong can be expressed in terms of individual particle momenta as:

qside =

∣∣∣∣∣∣
~qT − qout

~KT

KT

∣∣∣∣∣∣

=
2k1Tk2T

√
1− cos2(ψ1 − ψ2)

√
k21T + k22T + 2k1Tk2T cos(ψ1 − ψ2)

(5.46)

qout =
~qT . ~KT

|KT |

=
(k21T − k22T )√

k21T + k22T + 2k1Tk2T cos(ψ1 − ψ2)

(5.47)

qlong = k1z − k2z = k1T sinh y1 − k2T sinh y2 (5.48)
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where kiT is the individual transverse momentum and yi is the rapidity. The radius, Rside,

corresponding to qside is closely related to the transverse size of the system. The radius,

Rout corresponding to qout measures both the transverse size and the duration of particle

emission and Rlong corresponding to qlong is the measure of longitudinal dimension of the

system [167, 168, 169, 170, 171, 181, 182, 183].

5.4.2 Photon emission rate

A. Photon emission rate from AQGP

The lowest order processes for photon emission from QGP are the annihilation (qq̄ → gγ)

and Compton (q(q̄)g → q(q̄)γ) processes. The total cross-section diverges in the limit t/u→
0 which has been calculated considering the intermediate quarks acquires a thermal mass

in the medium [184] to avoid the infrared divergence. The differential photon production

rate for 1 + 2 → 3 + γ processes in an anisotropic medium is given by [99, 100, 124]

E
dR

d3k
=

N
2(2π)3

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
(2π)4δ(4)(p1 + p2 − p3 − k)|M|2

×f1(p1, phard, ξ)f2(p2, phard, ξ)[1± f3(p3, phard, ξ)] (5.49)

where N is the overall degeneracy of the corresponding process, |M|2 is the square of

the invariant amplitude for the processes [185] under consideration (here qq̄ → gγ and

qg → qγ), fi’s are the anisotropic distribution functions of the constituent partons in the

medium. As the radial flow is not developed properly in the initial stage of the collision,

its effect is neglected in the anisotropic phase. For τi ≤ τ ≤ τiso, the system evolves

anisotropically and it is described by free streaming interpolating model [131].

B. Photon emission rate from thermal medium

When τiso ≤ τ ≤ τf , the system becomes thermalized and evolves hydrodynamically with

energy density (E) and velocity as a function of space and time. Hence, τiso is treated as

free parameter in the calculation which controls the transition to the hydrodynamic sce-

nario. Beyond τ ≥ τiso, the system is described by ideal (1+2)d relativistic hydrodynamics
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with longitudinal boost invariant and cylindrical symmetry. The rate of thermal photon

production per unit space-time volume is given by [54, 186, 187, 188]:

E
dR

d3k
=

gµν

(2π)3
ImΠR

µνf(E, T ) (5.50)

where ImΠµ
µ is the imaginary part of the retarded photon self energy and f(E, T ) is the ther-

mal phase space distribution. For an expanding system, the energy E should be replaced

by uµk
µ, where kµ and uµ are the four momentum and the fluid four velocity respectively.

The initial condition are given through the energy density and the velocity profile,

E(τi, r) =
E0 (ξ = 0, T hydro

i )

1 + exp( r−RT

σ
)

vr(τi, r) = v0

(
1− E0 (ξ = 0, T hydro

i )

1 + exp( r−RT

σ
)

)
(5.51)

where E0 (ξ = 0, T hydro
i ) is the initial energy density which is related to initial temperature

T hydro
i and it can be obtained by the relation T hydro

i = phard(τiso) [99]. RA is the nuclear

radius and σ is the diffusion parameter and taken as 0.5 fm. For the QGP and the hadronic

phases lattice QCD EoS [189] (for T > Tc) and hadronic resonance gas EoS [190] (for

T < Tc) have been used respectively. For the transition region we have used the following

parameterization [191];

s(T ) = sq(T )fq(T ) + [1− fq(T )]sh(T ),

fq(T ) =
1

2
(1 + tanh

T − Tc
Γ

) (5.52)

where Γ is the width parameter and assumes a finite value for the crossover transition and

for the first order transition this value can be tuned to zero. Here the width parameter is

taken to be Γ=25 MeV.

Therefore, the one- and two- particle inclusive spectra can be presented as follows,

P1(k) = P aniso
1 (k) + P hydro

1 (k)

P2(k1, k2) = P aniso
2 (k1, k2) + P hydro

2 (k1, k2)

(5.53)
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P aniso
i and P hydro

i can be evaluated using Eqs. (5.42) and (5.43) with the help of space-time

prescription for anisotropic and hydrodynamic scenario discussed earlier. Finally using

Eq. (5.41) we obtain C2 for the full evolution as well as for the individual phases.

5.4.3 Results

Now, we evaluate the correlation function, C2 as a function of qout, qside and qlong for two

sets of RHIC initial conditions. For central Au + Au collisions at RHIC we take initial

temperature Ti = 446 MeV and initial time τi = 0.147 fm/c for SET-I and Ti = 350

and τi = 0.24 fm/c for SET-II. We fix the transition temperature Tc = 175 MeV and

the freeze-out temperature Tf = 120 MeV. We choose τiso in such a way that one of

the values corresponds to the isotropic situation (τiso = τi) and others corresponds to

anisotropic scenario (τiso > τi). So basically we have attempted to examine the sensitivity

of momentum anisotropy on C2 by controlling the variable, τiso.
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Figure 5.9: Correlation function for photon pairs as a function of qout for SET-I (left)
and SET-II (right) are plotted with different τiso and the inset figure is same for QGP
(aQGP+iQGP) phase only.

C2 as function of qout is calculated by taking ψ1 = ψ2=0, y1 = y2=0 and fixing transverse

momentum of one photon (k1T = 2 GeV) and varying the other (k2T ). In Fig. 5.9, we have

plotted the variation of C2 as a function of qout in full evolution scenario for two set of RHIC
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initial conditions. From both the figures, we infer that varying τiso, a considerable shift

is observed in C2. By increasing τiso, the value of Rout (see table 5.1) which corresponds

to qout increases. This happens because by increasing τiso, the system expands slower to

achieve thermalization and isotropization. Whereas C2 for the QGP (aQGP+isotropic

QGP) phase depicted in the insets of Fig. 5.9, substantial change is not observed, unlike

the case for Ctot
2 . This happens because the flow is not developed in early QGP phase

and with the progress of time the thermal energy is transformed into flow energy in later

stage of the collision, so flow is fully developed in the hadronic stage [178, 179] resulting in

reduction of Rout by increasing τiso. The reduction is mostly affected due to the radial flow

as well as the τiso dependent initial conditions for hydrodynamic evolution which is due to

the inclusion of momentum space anisotropy.
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Figure 5.10: Correlation function for photon pairs as a function of qside for SET-I (left)
and SET-II (right) are plotted with different τiso and the inset figure is same for QGP
(aQGP+iQGP) phase only.

By taking k1T = k2T = 2 GeV, y1 = y2=0 and fixing ψ2=0 and varying ψ1, we obtain C2

as a function of qside. In Fig. 5.10 we display the variation of C2 as a function of qside for the

full evolution scenario for two set of RHIC initial conditions. With increasing τiso, the value

of Rside (see table 5.1) which corresponds to qside is also enhanced. This happens because by
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increasing τiso, the system expands slower to achieve thermalization and isotropization. By

increasing τiso the values of Rside increase in full evolution scenario whereas it decrease in

the QGP phase. It can be shown that Rside ∼ 1/(1+Ecollective/Ethermal) [166], where Ethermal

depends inversely on τiso . In addition to it, the flow is not developed properly in the QGP

phase, so Ecollective ≪ Ethermal. Thus, with the increase of τiso the ratio Ecollective/Ethermal

increases. As a result the value of Rside decreases. Whereas in the hadronic phase, the flow

is fully developed resulting in Ecollective ≫ Ethermal. The thermal energy is reduced even

more by increasing τiso. So due to the radial flow effect the values of Rside increase with

the increase in the values of τiso in the full evolution scenario.
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Figure 5.11: Correlation function for photon pairs as a function of qlong for SET-I (left)
and SET-II (right) are plotted with different τiso and the inset figure is same for QGP
(aQGP+iQGP) phase only.

By taking ψ1 = ψ2=0, k1T = k2T=2 GeV and taking one of the photons at mid-rapidity

(y1 = 0) and varying the other (y2), we obtain C2 as a function of qlong. The variation

of C2 as a function of qlong with SET-I and SET-II initial conditions for RHIC energy is

shown in Fig. 5.11. It is clear from both the figures that there is a considerable difference

for isotropic (when τiso = τi) and anisotropic (for τiso= 2, 3 fm/c) scenarios. It is argued

previously that the anisotropy in momentum space arises due to < p2L >≪< p2T >. Thus

we can argue here that the difference arises in size in the longitudinal direction because of
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the above said asymmetry in momentum space. Hence Rlong increases (see Table 5.1) with

the increase of τiso.

The HBT radii obtained from C2 using Eq. 5.45 is tabulated in Table. 5.1. It is clear

that the HBT radii increase with the inclusion of anisotropy, i.e., with increasing τiso. Also

a remarkable change in HBT radii is observed in the QGP phase (for both Rside and Rlong)

with the inclusion of momentum space anisotropy except the outward direction.

Table 5.1: The values of Rout, Rside and Rlong obtained from C2 (using Eq. 5.45) is tabulated
below.

Ti (MeV) τiso(fm/c) Rout (fm) Rside (fm) Rlong (fm)

446 0.147 4.5 1.95 2.6

2.0 5.5 3.13 6.6

3.0 5.6 3.34 6.8

350 0.24 4.69 1.77 2.9

2 6.08 2.83 6.3

3 6.09 2.96 6.7

5.5 Conclusion

In presence of the initial state of anisotropy, the radiative energy loss increases by a factor

1.2−2.0 depending upon the value of anisotropy parameter ξ and direction of the propaga-

tion of the parton with respect to the anisotropy axis. It affects the hadron pT spectrum.

The result of the nuclear modification factor for two different values of τiso are compared

with the PHEHIX data. It is found that for FIC, the data is well reproduced if τiso lies

between 0.5−1.5 fm/c. We also observed that for lower initial temperature the upper limit

of the extracted value of τiso is slightly higher as compared to the case where the large value

of initial temperature is used.
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It is to be noted that we have not incorporated the collisional energy loss assuming that

the contribution will be subleading. However, a complete calculation must include both

the energy loss mechanisms in order to extract τiso.

We have calculated the gluon J/ψ dissociation cross section in an anisotropic QGP

expected to be formed in relativistic nucleus-nucleus collision. It is shown that the thermally

weighted cross section is modified substantially in anisotropic plasma. It is seen that the

cross section first decreases with ξ and then increases as compared to the isotropic case. It is

also seen that depending upon the initial conditions, the survival probability in anisotropic

QGP marginally differs from that in the isotropic QGP for both central as well as forward

rapidity region.

We have studied the intensity correlation for the photons at most central collision at

RHIC energies to obtain the space-time structure of heavy-ion collision. In this work, we

have evaluated the correlation function C2 for two real photons as functions of qout, qside

and qlong with the initial state momentum space anisotropy. Hence, Rout, Rside and Rlong

extracted from Bose-Einstein correlation function, C2 in such a scenario provide us with

the special information of the evolving system. For the entire evaluation, we do observe

that the value of C2 as function of the q’s is reduced for the anisotropic case compared

to that of isotropic case in all the direction. The large variation of C2 is obtained along

the longitudinal direction because of the asymmetry in the pT − pL plane. Therefore, the

maximum effect of momentum anisotropy is observed in Rlong and the corresponding values

change quite substantially with τiso for both sets of initial conditions.

• ◦ •



Chapter 6

Conclusions and Outlook

The cardinal focus of this work is to explore the characteristic of the pre-equilibrium quark-

gluon plasma, as created in heavy-ion collision. We started with an introduction to the

field of research relevant to this thesis. At first, we have introduced the kinetic theory for

non-Abelian plasmas, which is an ideal tool to investigate plasma instability. Within the

framework of kinetic theory, we have investigated the wake in charge density and the wake

potential due to a passage of fast partons traveling through the high temperature QCD

plasma which is anisotropic in momentum space. It has been shown that in an anisotropic

plasma, the wake in induced charge density indicates a little oscillatory behavior when the

parton moves along the anisotropy direction (n̂) and the parton velocity remains below the

phase velocity (v < vp), contrary to the isotropic case. With the jet velocity greater than

the phase velocity, the oscillatory behavior increases with ξ. The wake potential shows

a decrease of negative minimum in presence of anisotropy. On the other hand, when the

velocity of jet is perpendicular to the anisotropy direction, the oscillatory nature of the color

charge wake is reduced at v > vp. As a consequence, we do not observe any oscillatory

nature of the wake potential in the backward direction at large value of ξ. Further, we

extended our calculation to include the collision term in the Boltzmann transport equation.

Collisions, being responsible for the fast thermalization are needed to reach the equilibrium

state of maximum entropy. We investigated the effect of collisions on the wake potential in
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an anisotropic plasma. It was shown that in a collisional anisotropic plasma, the oscillatory

behavior of the wake potential is smeared out and also if we increase the collision frequency,

the depth of the potential becomes highest when the parton moves along the parallel

direction. When r ⊥ v, the wake potential turns into a modified Coulomb-like potential

for collisional plasma.

In the early stage of the non-central heavy-ion collision, a very strong magnetic field is

generated due to the presence of charge species. Therefore, it is important to understand

the properties of the QCD plasma under strong magnetic field. The effect of the magnetic

field on the collective modes of QGP has been investigated [192] recently and there exist an

unstable mode, signaling the presence of plasma instability. The effect of strong magnetic

field on the wake is an important problem to be addressed.

The characteristic behavior of collective modes of a system composed by relativistic jets

in a collisionless anisotropic quark gluon plasma has been examined in detail. At very short

time scales after the interaction between the jet and the anisotropic plasma sets in we find

that the growth of the unstable mode very much depends on the strength of the jet (η)

and anisotropy parameter ξ. In the weak coupling regime, we found the plasma instability

was fully developed on time scale of the order of t ∼ 1 − 3 fm/c at plasma temperature

T ∼ 350 MeV.

In our calculation, we have assumed that the jet of particles can be represented as a

delta-like distribution function. In the most realistic situation in heavy-ion collision, the

distribution function of jet is more complicated. We have also neglected the effect of col-

lision. Indeed if the instability is not saturated due to non-Abelian effect, the collision

term will probably stop their growth anyway. Furthermore, in heavy-ion collision, two

jets of particles propagate in opposite direction in an anisotropic plasma, which however

relevant to calculate the plasma instability. Thus, the consideration of all the above men-

tioned effects is required to compute the complete scenario of the jet medium interaction

mechanism.
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In the investigation of the probes of pre-equilibrium situation, we studied the effect of

plasma anisotropy on the nuclear modification factor (RAA) of light hadron, gluon dissocia-

tion of J/ψ and two photon interferometry. We have shown in the text that the presence of

pre-equilibrium anisotropy increases the radiative energy loss by a factor 1.2 -2 depending

upon the propagation of parton along the direction of anisotropy and anisotropy parameter

ξ. It has also been argued in the text that for FIC, the PHENIX data are well reproduce

if isotropization time lies in the range 0.5 ≤ τiso ≤ 1.5 fm/c. But, the present model is

unable to predict the isotropization time at LHC energies. We have also shown in the text

that the thermally weighted cross section is modified substantially in anisotropic plasma

whereas effect on the survival probability of J/ψ is negligible. Furthermore, we have at-

tempted to estimate the correlation function, C2 for two identical photons as a functions

of qout, qside and qlong for RHIC energies. One of the interesting finding of the present work

has been the variation of C2 along the longitudinal direction because of the asymmetry in

the momentum space and correspondingly Rlong changes quite substantially with τiso.

An alternative framework for describing dissipative dynamics is needed to describe the

dynamics of highly momentum space anisotropy. Anisotropic hydrodynamics (aHYDRO)

is quite successful in the recent years [193], which is based on the reorganization of the

hydrodynamics expansion around the anisotropic background. The necessary aHYDRO

dynamical equations are derived by taking moments of the Boltzmann equation using a

momentum space anisotropy one particle distribution function which can be expressed in

the form

f(x, p) = fiso

(√
pµΣµν(x)pν

Λ(x)
,
µ(x)

Λ(x)

)
(6.1)

where Σµν(x) is a symmetric tensor that measures the momentum space anisotropy, fiso is an

arbitrary isotropic distribution function and Λ(x) is the momentum scale. The aHYDRO

framework is more accurately describes the early time dynamics of the QGP created in

heavy-ion collision and temperature dependent η/S. In the future, the aHYDRO will be

used to understand the properties of the QGP and study the signature of the QGP.
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Appendix A

Relation between the dielectric tensor and the

self-energy in anisotropic QGP

The spatial component of induced current density is given by (see Eq. (3.27)),

J iind(K) = g2
∫

p
V i∂l(p)f(p)Mjl(K, V )D

−1(K,v, ν)Aj(K) + 2NcgνSg(K, ν)

+ g2(iν)
∫
dΩ

4π
V iD−1(K,v, ν)

∫

p′

∂lp′f(p
′)Mjl(K, V

′)D−1(K,v′, ν)W−1(K, ν)Aj(K)

+ 2Ncg
2(iν2)

∫
dΩ

4π
V iD−1(K,v, ν)Sg(K, ν)W(K, ν). (A.1)

The spatial component of the polarization tensor can be written from Eq. (3.29) as:

Πij(K) = g2
∫

p
V i∂l(p)f(p)Mjl(K, V )D

−1(K,v, ν)

+ g2(iν)
∫ dΩ

4π
V iD−1(K,v, ν)

×
∫

p′

∂lp′f(p
′)Mjl(K, V

′)D−1(K,v′, ν)W−1(K, ν) (A.2)

We also note that the thermal conductivity and the dielectric tensor is related by [125]

ǫij(K) = δij +
i

ω
σij(K) (A.3)

where σij(K) =
δJi

ind
(K)

δEj(K)
Using Eq. A.1 we derive

σij(K) =
ig2

ω

[ ∫

p
V i∂l(p)f(p)Mjl(K, V )D

−1(K,v, ν) + iν
∫
dΩ

4π
V iD−1(K,v, ν)

×
∫

p′

∂lp′f(p
′)Mjl(K, V

′)D−1(K,v′, ν)W−1(K, ν)

]
(A.4)
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Here we have use the following relations in temporal axial gauge:

Ei = F0i = ∂0Ai − ∂iA0 = −iωAi. (A.5)

Using the above relations it is straightforward to show that

ǫij(K) = δij − Πij(K)

ω2
. (A.6)

• ◦ •



Appendix B

Analytic expression for structure functions in

static limit

In the limit ω → 0, all four structure functions can be done analytically. We can define

four mass scales

m2
α = lim

ω→0
α,

m2
β = lim

ω→0
− q2

ω2
β,

m2
γ = lim

ω→0
γ,

m2
δ = lim

ω→0

ñq2

ω
Im δ (B.1)

The results for

m2
α = − m2

D

2q2x
√
ξ

(
q2z arctan

√
ξ − qzq

2

√
q2 + ξq2z

arctan(

√
ξqz√

q2 + ξq2z
)

)

m2
β = m2

D

(
√
ξ(1 + ξ) arctan

√
ξ)(q2 + ξq2x) + ξqz(qz

√
ξ + q2(1+ξ)

q2+ξq2x
arctan ξqz√

q2+ξq2x
)

2
√
ξ(1 + ξ)(q2 + ξq2x)

m2
γ = −m

2
D

2

(
q2

q2 + ξq2x
− 1 + 2q2z/q

2
x√

ξ
arctan

√
ξ

+
q2qz(2q

2 + 3ξq2x)√
ξ(q2 + ξq2x)

3/2q2x
arctan

√
ξqz√

q2 + ξq2x

)

m2
δ = − πm2

Dξqxqzq

4(q2 + ξq2x)
3/2

(B.2)
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