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Starting from the binding energies of finite or isolated nuclei, to investigate ways to study inho-
mogeneous nuclear matter, i.e., nuclei with a free gas of neutrons, we review and discuss a general
method to solve the nuclear equation of state for neutron stars by finding the solution for uniform
nuclear matter. We also discuss a way to develop the nuclear equation of state in the presence of
hyperons. The mass-radius relations of neutron stars are compared with the results of X-ray burst
analyses to probe the validities of various models for the nuclear equation of state in neutron star
physics.
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I. INTRODUCTION

Neutron star is one of the most interesting objects in
nuclear astrophysics for it gives a test ground for dense
nuclear matter and, besides, it is one of the final stages of
stellar evolution. The existence of neutron stars was first
expected by W. Baade and F. Zwicky [1] two years after
the discovery of the neutron in 1932 by J. Chadwick1.
After more than 30 years of its hiding, it was discovered
by A. Hewish and J. Bell in 1967 as a form of radio
pulsating object, a pulsar, because of its strong magnetic
field and rapid spin. (See, for example, Ref. 3.) The
typical radius of neutron stars is around 10 km and the
mass goes up to 2.0 M⊙, with M⊙ being the solar mass.

∗E-mail: ylim@tamu.edu
†E-mail: yohphy@knu.ac.kr
1 However, it is also argued that L. Landau suggested the presence

of dense matter object in the universe during the discussion with
N. Bohr and L. Rosendfeld in 1931 even before the discovery of
the neutron. See Ref. 2 for details on this story.

Fig. 1. (Color online) Standard schematic cross sectional
picture of a neutron star.

As its name indicates, a neutron star is a highly
neutron-rich object. The amount of proton in neutron
stars is estimated to be only up to 10% although the
fraction depends on the specific nuclear model. Fig. 1
shows the standard picture of the cross sectional struc-
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ture of a neutron star. From the outside, there exists
envelope on top of the neutron star surface. The enve-
lope is composed of hydrogen or helium depending on the
chemical evolution of neutron stars or accreting material
from the companion star. Inside the envelope, there is
the outer crust where the ionized nuclei have the lat-
tice structure. The ionized nuclei become neutron-rich
to minimize the total energy of the nuclear system and
neutrons drip out of nuclei. Thus heavy nuclei exist with
a free gas of neutrons and they make the inner crust of
a neutron star. As the baryon number density increases,
heavy nuclei are dissolved to make uniform nuclear mat-
ter. The transition density from inhomogeneous nuclear
matter to uniform nuclear matter is around 0.5n0, where
n0 is the normal nuclear density, n0 = 0.16 fm−3. In the
outer core of neutron stars, neutrons, protons, electrons,
and muons coexist to maintain chemical equilibrium. In
the inner core, as baryon number density increases, the
distance between nucleons becomes comparable with its
size, and then new degrees of freedom come out. As
a result, hyperons or quark matter might exist in the
core of neutron stars. However, it is still unknown what
kinds of particles exist or what kinds of exotic condensa-
tions might happen. In other words, there still are many
puzzles to be explored to understand the structure of
neutron stars, which should be closely related to our un-
derstanding of nuclear matter under various conditions.

Recent discoveries of neutron stars with a mass of
2.0 M⊙ [4, 5] require construction of new equation of
states (EOS) as the existence of such heavy neutron stars
rules out soft EOS. Thus these observations require the
modification of the current models for EOS and/or nu-
clear force models. Together with 2.0 M⊙ neutron stars,
the analyses of X-ray burst data [6,7] also provide a clue
of how to modify the nuclear EOS. Namely, the accret-
ing materials from the companion star on the surface of
a neutron star are burned out and emit X-rays if the
amount of material exceeds the critical mass for hydro-
gen burning on the surface of the neutron star. The X-
ray patterns then specify the allowed region of neutron
star radius for a given value of mass.

The central area of neutron stars is estimated to have a
density at the order of a few times the nuclear saturation
density and it is highly neutron-rich. Such high neutron-
rich matter has not been accessible in the laboratory so

far. However, the recent construction of rare isotope
accelerators will enable us to explore neutron-rich nuclei.
In the present article, we discuss a simple but effective
numerical method to compute nuclear EOS. The EOS,
of course, should explain the allowed mass-radius region
for neutron stars. For this purpose, we work with several
nuclear models and confirm the validity of EOS in the
mass-radius relations of neutron stars.

This paper is organized as follows. In Sec. II, we in-
troduce the general liquid drop model (LDM) and see
the validity of using LDM to calculate binding energies
of finite nuclei. In Sec. III, we discuss how to implement
LDM to make neutron star crust equation of state. Then,
in Sec. IV, the particle components in the core of neu-
tron star are investigated and a new degree of freedom,
i.e., strangeness, is studied. To find a new parameter set
for the relativistic mean field model, we use the recent
calculation of pure neutron matter properties. The ob-
tained mass-radius relation of neutron stars is presented
in Sec. V. Finally, we summarize nuclear EOS for dense
matter in Sec. VI.

II. NUCLEAR BINDING ENERGY

The binding energy of a nucleus can be obtained using
LDM with relatively high accuracy. In LDM, the total
binding energy consists of bulk, surface, Coulomb, pair-
ing, and shell energy terms. In the algebraic form, the
total binding energy for a nucleus with proton number
Z and neutron number N , so that A = N + Z, can be
written as [8]

E(Z,A) = fBA+ 4πR2σ +
3Z2e2

5R
+Epair +Eshell , (1)

where fB is the bulk energy contribution, which can be
expressed as Taylor expansion [9] of u and x (u = n/n0,
x = Z/A). The radius of a nucleus is represented by R

and σ is the surface tension. More precisely, we have

σ(x) = σ0 − (1− 2x)2σδ ,

fB(u, x) = −B + Sv(1− 2x)2 +
K

18
(1− u)2 ,

Epair = −1

2

[
(−1)N + (−1)Z

] ∆√
A

,

Eshell = a1S2 + a2S
2
2 + a3S3 + anpSnp. (2)
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Table 1. Binding energy in MeV for selected nuclei.

Nucleus LDM Expt. [10,11]
O16 7.806 7.976
Ca40 8.625 8.551
Ca48 8.715 8.667
Fe56 8.780 8.790
Ni62 8.785 8.795
Zr90 8.697 8.710
Sn132 8.348 8.355
Pb208 7.878 7.867

We refer to Refs. [8,9] for details.
For the contribution from shell effects, we follow the

prescription given by Duflo and Zuker [12], in which the
shell energy contribution is written as a function of va-
lence nucleons from the magic nuclei. Then S2, S3, and
Snp are given by

S2 =
nvn̄v

Dn
+

pvp̄v
Dp

,

S3 =
nvn̄v(nv − n̄v)

Dn
+

pv p̄v(pv − p̄v)

Dp
,

Snp =
nvn̄vpv p̄v
DnDp

, (3)

where nv (pv) is neutron (proton) valence number, which
is the minimum difference with the magic numbers: 2,
8, 20, 28, 50, 82, 126, and 184. For example, for the
nucleus of A = 50, Z = 23, N = 27, nv = |27− 28| = 1,
pv = |23 − 20| = 3. Dn and Dp are the degeneracy of
neutrons and protons, respectively, in the shell. Thus
Dn=27 = 28 − 20 = 8 in the above example. n̄v is the
complementary valence number for neutron: n̄v ≡ Dn −
nv.

Using the measured masses of 2336 nuclei [10,11], we
determine the parameter values (σ0, σδ, B, Sv, K, ∆,
a1, . . . , anp) by minimizing the root-mean-square devia-
tion. Table 1 shows a few examples for nuclear masses
obtained by the LDM in the present work. Compared to
other nuclear models such as Thomas-Fermi or Hartree-
Fock calculations, LDM is fast for calculation and is
quite successful to explain the experimental data. In
addition, it can be further improved by adding other ef-
fects such as deformation effect, nuclear rotation, finite
range surface term, and so on.

III. NEUTRON STAR CRUST

In the crust of neutron stars, nuclear matter is formed
within the lattice structure. The BCC (Body-Centered-
Cubic) is believed to be energetically the most favored
form. In the outer core, nuclei are expected to exist with
a free gas of electrons. As we go deeper into the crust of
a neutron star, baryon number density increases and so
does the mass number. Neutrons then drip out of heavy
nuclei and start to form a free gas. As more and more
free neutrons are accumulated, the inhomogeneity fades
away and uniform nuclear matter is formed at the final
stage. And, between the inner crust and outer core, nu-
clear pasta phase is expected to arise. The true ground
state of nuclear matter highly depends on the shape.
With increasing baryon number density, the distance be-
tween heavy nuclei decreases so that the nuclei undergo
shape transitions. The first shape transition is into the
cylindrical phase. The prolate nuclei are very close to-
gether and merged into a cylindrical shape. When the
density increases more, the constituents of the cylindri-
cal nuclear matter stick together to form a slab phase.
Slab phase makes cylindrical holes (or bubble) as den-
sity increases, and cylindrical holes become bubble nu-
clei (spherical hole) and finally uniform nuclear matter
is formed.

The numerical results of nuclear pasta phase can be
found, for example, in Ref. 13. This pasta phase can be
treated analytically in LDM. The energy density which
is to be minimized using LDM is written as [14]

F = unifi +
3σ(xi)s(u)

rN
+

4π

5
(rNxie)

2c(u)

+ (1− u)nno fo , (4)

where i (o) represents nuclear matter of dense (dilute)
phase. Then fi is the energy density of nuclei and fo

is that of free neutron gas in this case. Here, u is the
volume fraction of nucleus to the Wigner-Seitz cell, while
s(u) and c(u) are shape functions corresponding to the
surface and Coulomb energy, respectively. The details
can be found in Ref. 14. The total energy density of
Eq. (4) is now minimized by varying u, ni, xi, nno, and
rN with baryon number and charge neutrality conditions,

n = uni + (1− u)nno , nYp = unixi . (5)
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Fig. 2. (Color online) Atomic number of heavy nuclei in
the crust of neutron stars.

The derivative of the energy density with respect to rN

gives the nuclear viral theorem which leads to ES = 2EC .
This also allows the combination of shape functions, s(u)
and c(u), to lead a smooth transition of each nuclear
pasta phase [14] and we have

rN =

[
15σs(u)

8πe2x2
in

2
i c(u)

]1/3
≡ 9σ

2β

[
s(u)

c(u)

]1/3
, (6)

ES + EC = β[s2(u)c(u)]1/3 = βD(u) . (7)

Nuclear pasta phase has discrete dimensions but the
shape function D(u) allows continuous dimension for a
given volume fraction u. This is justified because the
energy difference among different pasta phase is small
and quantum fluctuations between difference phases may
happen.

Fig. 2 shows atomic number in the whole density range
of a neutron star crust. Baym et al. [15] (BBP) utilized
LDM to study the equation of state in the crust of neu-
tron stars, while a more sophisticated calculation within
Hartree-Fock (HF) approach was tried by Negele and
Vautherin (NV) in Ref. 16. The differences in atomic
number is caused by the numerical method used in nu-
merical calculations. For example, BBP only deals with
spherical nucleus in the Wiger-Seitz cell, while, within
our approach, the nuclear pasta phase is considered sys-
tematically in the shape function D(u). The nuclei con-
sidered by NV also are restricted to spherical nuclei only.
Because of HF properties, each nucleon wave function is
to be calculated with proper boundary conditions.

IV. NEUTRON STAR CORE

In the core of neutron stars, all nuclei dissolve into
uniform nuclear matter and the proton fraction is deter-
mined by giving the ground state energy. Mathemati-
cally, it can be written as

µn = µp + µe , µe = µµ . (8)

The above equation gives the proton fraction for a given
baryon number density.

Since the density of the core in neutron stars can reach
up to several nuclear saturation density, the chemical po-
tential of neutrons and protons can exceed the rest mass
of hyperons. Then the outcome of hyperons in the core
results in a state whose energy is lower than the matter
only with nucleons. For a unified description of neu-
tron stars with hyperons, we first employ the relativistic
mean field model (RMFM) to calculate nuclear EOS. In
an RMFM, the nuclear force arises from the exchange of
mesons such as σ, ω, and ρ mesons. We start with the
effective Lagrangian for an RMFM which reads [8]

L =Ψ̄

[
i/∂ − gω /ω − 1

2
/⃗ρ · τ⃗ −M + gσσ − 1

2
e(1 + τ3) /A

]
Ψ

+
1

2
(∂µσ)

2 − V (σ)− 1

4
ΩµνΩ

µν +
1

2
m2

ωω
µωµ

− 1

4
B⃗µνB⃗

µν +
1

2
m2

ρρ⃗
µ · ρ⃗µ − 1

4
FµνF

µν

+
ζ

24
g4ω(ω

µωµ)
2 +

ξ

24
g4ρ(ρ⃗

µ · ρ⃗µ)2

+ g2ρf(σ, ωµω
µ)ρ⃗µ · ρ⃗µ ,

(9)
where Ωµν and B⃗µν are meson field strength tensors de-
fined as Ωµν = ∂µων − ∂νωµ and B⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ,
while V (σ) is a scalar meson potential including the mass
term:

V (σ) =
1

2
m2

σσ
2 +

κ

6
(gσσ)

3 +
λ

24
(gσσ)

4 . (10)

The meson-meson interaction f -term is included to give
a freedom to match asymmetric nuclear matter, which
reads

f(σ, ωµω
µ) =

6∑
i

aiσ
i +

3∑
j=1

bj(ωµω
µ)j . (11)

Various relativistic models in the literature could explain
the properties of finite nuclei quite successfully and we



Nuclear Equation of State and the Structure of Neutron Stars – Yeunhwan Lim et al. 1575

Fig. 3. (Color online) Energy per baryon from chiral
effective field theory and from relativistic mean field
model.

Fig. 4. (Color online) Particle fraction calculated from
RMFM with the parameters fitted by P414 calculation
and SU(6) meson-hyperon coupling constants.

can calculate density profiles, total binding energies, and
spectrum of excited states, and so on. When we apply
RMFMs to dense nuclear matter, however, we find that
some of models cannot describe bulk nuclear matter cor-
rectly. This is because most of RMFM parameters were
obtained by reproducing the properties of finite nuclei.
Thus RMFMs are expected to be modified before being
applied to neutron-rich nuclei. The neutron-rich nuclei,
which normally have short lifetimes, are hard to synthe-
size but the construction of new facilities will shed light
on our understanding of the structure and properties of
such nuclei.

In this work, since we will use RMFM to investigate
neutron star core, we first construct an RMFM whose

Table 2. Nuclear matter properties to fit the RMFM
parameters. ζ is set to 0 to get the algebraic equations
for symmetric nuclear matter. Sv and L are obtained
after fitting the parameters. The normal nuclear density
n0 is in a unit of fm−3, while the unit of B, K, Sv, and
L is MeV.

Model n0 B K M∗/MN Sv L

N3LO P414 fit 0.16 16.0 235 0.75 31.64 47.78
N3LO P450 fit 0.16 16.0 235 0.75 31.43 47.37
N3LO P500 fit 0.16 16.0 235 0.75 28.06 33.07

parameters are fitted by pure neutron matter calcula-
tions. Recently, the pure neutron matter was studied
using chiral effective field theory and quantum Monte
Carlo simulations. In the present work, we adopt the
N3LO (next-next-next leading order) chiral effective field
theory (EFT) calculation of Ref. 17 to fit the RMFM
parameters. Fig. 3 shows energy per baryon in neu-
tron matter and the corresponding RMFM results. The
notation in the model represents the cutoff momentum
used in the EFT calculation. For example, P414 means
that the cutoff momentum used in the calculation is
Λcutoff = 414 MeV. Table 2 shows the nuclear mat-
ter properties calculated in this work. We set ζ = 0

to get the algebraic equations for nuclear parameters re-
lated with symmetric nuclear matter properties such as
n0, B, K, and M∗. The values of Sv and L are ob-
tained from after the fitting procedure. Constructing an
RMFM that explains both neutron matter and finite nu-
clei is very challenging and is beyond the scope of this
work.

As explained before, the existence of hyperons in the
core of neutron stars is expected as the chemical po-
tential of the nucleon becomes larger than the effective
mass of hyperons. The presence of hyperons in the core
of neutron star can be considered within non-relativistic
potential model or an extended RMFM. In RMFM, the
introduction of hyperons can be done by extending the
effective Lagrangian to include the hyperon interactions
as

LNN → LNN + LY Y . (12)

In the present work, we consider the SU(6) model for
meson-hyperon interactions as described in Refs. [18,
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19]. The relations between meson-hyperon and meson-
nucleon coupling constant are given by

1

3
gωN =

1

2
gωΛ =

1

2
gωΣ = gωΞ,

gρN =
1

2
gρΣ = gρΞ, gρΛ = 0 ,

2gϕΛ = 2gϕΣ = gϕΞ = −2
√
2

3
gωN . (13)

The σ-Y coupling constant are obtained from potential
depth felt by hyperons in the bath of nucleons at the
saturation as described in Ref. 20.

Fig. 4 shows the lepton and baryon fractions in the
beta equilibrium nuclear matter. The Λ0 is found to
appear first because of its low mass, while leptons (e−,
µ−) play a minor role as soon as Λ0 and Ξ− appear.

V. MASS AND RADIUS OF NEUTRON
STARS

The macroscopic structure of neutron star can be ob-
tained by solving general relativistic hydrostatic equa-
tion, which leads to the Tolman-Oppenhimer-Volkov
equations:

dp

dr
= −G(M(r) + 4πr3p/c2)(ϵ+ p)

r(r − 2GM(r)/c2)c2
,

dM

dr
= 4π

ϵ

c2
r2, (14)

where G is the Newton’s gravitational constant and ϵ and
p denote the energy density and pressure, respectively.
The nuclear EOS provides energy density and pressure
for a given baryon number density.

As can be seen in Fig. 5, the presence of hyperons
in the core of neutron stars reduces the maximum mass
of neutron stars. This is so-called “the hyperon puzzle”
and there have been suggested many ideas to tackle this
puzzle. This issue attracts recent research interests and
new insights are called for to fully understand the role of
hyperons in neutron stars.

VI. SUMMARY AND OUTLOOK

In the present work, we explained how to construct
neutron star EOSs both in the crust and core of neutron

Fig. 5. (Color online) Mass and radius relation for several
relativistic mean field models.

stars. We only consider zero temperature and ground
state for nuclear matter. The generalization of neutron
star EOS to finite temperature and arbitrary proton frac-
tion will become supernovae EOS. The EOS for neutron
star crust can be constructed using LDM, which is simple
but powerful enough to explain binding energies of finite
nuclei. The free gas of neutrons is consistently treated
within the LDM formalism. The core of neutron stars
consists of neutrons, protons, and electrons in the form
of uniform matter. The derivative of total energy density
with respect to proton fraction gives chemical equations.
To understand the neutron star structure, we need more
information on neutron-rich nuclei and the facilities un-
der construction are expected to enlarge our knowledge
for neutron-rich matter.

Despite the efforts to resolve the hyperon puzzle, the
role of hyperons in neutron star is not fully understood.
Widely used RMFM should be modified to include hy-
peron degrees of freedom and to explain the properties
of finite nuclei and bulk properties of nuclear matter
with isospin asymmetry. New ideas and approaches are,
therefore, strongly called for to develop more realistic
theory for neutron stars as well as precise new measure-
ments on various properties of exotic nuclei in experi-
ments.
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