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Abstract It is well known that in string compactifications on toric Calabi–Yau
manifolds one can introduce refined BPS invariants that carry information not
only about the charge of the BPS state but also about the spin content. In this
paper we study how these invariants behave under wall crossing. In particular, by
applying a refined wall crossing formula, we obtain the refined BPS degenera-
cies for the conifold in different chambers. The result can be interpreted in terms
of a new statistical model that counts “refined” pyramid partitions; the model pro-
vides a combinatorial realization of wall crossing and clarifies the relation between
refined pyramid partitions and the refined topological vertex. We also compare
the wall crossing behavior of the refined BPS invariants with that of the motivic
Donaldson–Thomas invariants introduced by Kontsevich–Soibelman. In particu-
lar, we argue that, in the context of BPS state counting, the three adjectives in the
title of this paper are essentially synonymous.
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wall-crossing,, three-dimensional partitions.

1 Introduction

This paper is devoted to the study of the space of BPS states, HBPS, in type II
string compactifications on Calabi–Yau threefolds. In general, such compactifi-
cations lead to effective N = 2 theories in four dimensions, and, by definition,
HBPS is the subspace of the Hilbert space of an effective four-dimensional the-
ory that consists of one-particle states transforming in small representations of the
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d = 4, N = 2 supersymmetry algebra. The space HBPS encodes much interest-
ing information about the Calabi–Yau space X as well as about the physics of the
four-dimensional N = 2 theory, in particular providing connections to black hole
physics and topological strings (1).

Let us summarize some of the basic properties of the space HBPS. First, it is
graded by charge sectors,
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HBPS =
⊕
γ∈Γ

HBPS(γ), (1.1)

where Γ denotes the charge lattice. For example, in type IIA string theory1 on
a Calabi–Yau threefold X the BPS states in question are bound states of Dp-branes
with even values of p, so that Γ = Heven(X ;Z) and

γ = ch(E )
√

Â(X) = p0 + P + Q + q0

∈ H0 ⊕ H2 ⊕ H4 ⊕ H6

D6 D4 D2 D0
(1.2)

is the charge vector of a D6/D4/D2/D0 bound state (equivalently, the Mukai
vector of the corresponding coherent sheaf E ). Roughly speaking, in this case
HBPS(γ)∼= H∗(M (γ)), where M (γ) denotes the moduli space of branes of charge
γ . In addition, HBPS is a representation of the rotation group Spin(3) in four
space–time dimensions. This gives HBPS an extra grading, which eventually leads
to the refinement of BPS invariants considered below. Thus, altogether, HBPS
comes equipped with a Γ ⊕Z-grading.

The space of BPS states, HBPS, depends moreover on the asymptotic boundary
conditions in four space–time dimensions. Much of its interest actually comes
from the dependence on this extra data, which includes the moduli of the Calabi–
Yau threefold X (2). Instead of working directly with HBPS, it is often convenient
to consider a simpler object, the index of BPS states2

Ω(γ;u) := TrH (γ;u)(−1)F (1.3)

that “counts” BPS states of given charge γ and is invariant under complex
structure deformations of X . However, as the notation indicates, the index Ω(γ;u)
still depends on the asymptotic value of the complexified Kahler moduli, u = B+
iJ. It is a piecewise constant function of u that can jump across walls of marginal
stability, where the phases of the central charges of the constituents of a bound
state align.

Our main focus in this paper will be the refined BPS index, defined as3

Ω
ref(γ;u;y) = ∑

n
(−y)n

Ω
ref
n (γ;u) := TrH (γ;u)(−y)2J3 , (1.4)

1 As is well known, type IIA string theory on a Calabi–Yau space X is dual to type IIB string
theory on a mirror Calabi–Yau space X̃ . In what follows, we pick a duality frame corresponding
to type IIA theory.

2 More precisely, this index is the second helicity supertrace. Following (2), in our definition
of HBPS we tacitly factored out the contribution of a universal half-hypermultiplet associated
with the position in R3, allowing us to write the index of BPS states in the simple form given
here. In HBPS, a hypermultiplet counts as a state of spin zero (hence Ω = 1) and a vector
multiplet as spin 1/2 (hence Ω =−2).

3 Again we factor out a contribution y−1(1− y)2 from a universal half-hypermultiplet.
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where J3 is a generator of the rotation group Spin(3). In a simplified situa-
tion where HBPS(γ;u) admits a description as the cohomology of the brane mod-
uli space M (γ;u), the BPS index Ω(γ;u) and its refinement Ω ref(γ;u;y) corre-
spond, respectively, to the Euler characteristic and to the Poincaré polynomial of
M (γ;u). In particular, from the definition (1.4) it is clear that at y = 1 we have
Ω ref(γ;u;1) = Ω(γ;u).

While the refinement Ω ref(γ;u;y) captures useful information about the spin
content of BPS states, it is generically not invariant under complex structure defor-
mations of X . However, if X has no complex structure deformations, then the
refined BPS invariants Ω ref(γ;u;y) as well as the space HBPS(γ;u) itself are
expected to be interesting invariants of X . Thus, in certain examples the refined
BPS invariants can be related to equivariant instanton counting (3; 4) or to cate-
gorification of quantum group invariants (5). In fact, in the early days of the refined
BPS invariants, the only practical way to compute them was by using one of these
relations. The situation improved significantly with the advent of the refined topo-
logical vertex (6), which reduced the computation of refined BPS invariants for an
arbitrary non-compact toric Calabi–Yau threefold X to a systematic combinatorial
algorithm based on the counting of 3D partitions. Note that all toric Calabi–Yau
manifolds are automatically rigid and provide an excellent laboratory for studying
refined BPS invariants. They will also be our main examples in the present paper.

In the context of local toric Calabi–Yau manifolds, a natural object to consider
is a generating function

Z(q,Q;u) := ∑
β∈H2(X ;Z)

n∈Z

(−q)nQβ
Ω(γβ ,n;u) (1.5)

that “counts” BPS states of D0 and D2 branes bound to a single D6 brane.
Here, γβ ,n is a shorthand notation for the charge γ = (1,0,−β ,n) of a D6/D2/D0
system with n units of the D0-brane charge and the D2-brane charge correspond-
ing to a curve in homology class β ∈ H2(X ;Z). In one of the chambers, the
D6/D2/D0 partition function (1.5) is the usual generating function of Donaldson–
Thomas/
Gopakumar–Vafa invariants (2; 7). Similarly, the refinement of (1.5),

Zref(q,Q,y;u) := ∑
β∈H2(X ;Z)

n∈Z

(−q)nQβ
Ω

ref(γβ ,n;u;y), (1.6)

carries information not only about the charges of the D6/D2/D0 bound states
but also about the spin content. For u in the DT region of the Kähler moduli space,
it reduces to the generating function of the usual refined BPS invariants computed
by the refined topological vertex. One of our goals will be to study the refined
partition function (1.6) in other chambers and, more generally, to understand how
the refined BPS invariants Ω ref(γ;u;y) change across walls of marginal stability. In
particular, in the Szendröi region we obtain a refinement of the non-commutative
Donaldson–Thomas partition function (8). For example, for the resolved conifold
X = OP1(−1)⊕OP1(−1), it looks like
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Zref
NCDT(q1,q2,Q) = M(q1,q2)2

∞

∏
i, j=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)(
1−Q−1q

i− 1
2

1 q
j− 1

2
2

)
,(1.7)

where instead of q and y we use the variables q1 and q2, standard in the litera-
ture on the refined BPS invariants, cf. (3; 4; 6; 9):

q1 = qy, q2 =
q
y
. (1.8)

For toric Calabi–Yau threefolds in the Szendröi region of moduli space, the
generating functions of BPS states can be computed via statistical crystal melting
models (8; 10; 11) that are seemingly distinct from the topological vertex for-
malism (12; 13). Such models can be derived from quivers and brane tilings (14;
15; 16). In the case of the conifold, the statistical models take the form of “pyra-
mid partitions,” and it was shown (17) that they can be generalized to describe
many chambers in the resolved conifold moduli space outside the Donaldson–
Thomas region. In analogy with the refinement of the topological vertex, there
exists a refinement of pyramid partitions that computes (for example) the generat-
ing function (1.7). A combinatorial shuffling operation on pyramid partitions cor-
responds to refined wall crossing between chambers of moduli space, and, as one
approaches the
Donaldson–Thomas region, the refined pyramid partitions actually resolve into
refined topological vertices. We expect this behavior to be quite general for toric
Calabi–Yau manifolds.

We observe that the wall crossing behavior of the refined BPS invariants is very
close to that of the motivic Donaldson–Thomas invariants defined by Kontsevich
and Soibelman (18). In fact, the motivic Donaldson–Thomas invariants can also
be viewed as a “refinement” of the numerical Donaldson–Thomas invariants that
depends on the extra variable L (the motive of the affine line). Equivalently, this
variable can be interpreted as a “quantum” deformation parameter4 q in quantiza-
tion of the complex torus TΓ = Γ ∨⊗C∗, a fact that was extensively used in (18).
We claim that this is not an accident and the refined BPS invariants are actually
the same as the motivic BPS invariants of Kontsevich and Soibelman, provided we
identify L (resp. q) with the extra variable y2 that appears in the definition (1.4) of
the refined BPS invariants:5

Refined Motivic Quantum
y ←→ L1/2 ←→ −q1/2 (1.9)

Further evidence for this identification comes from the connection with homo-
logical invariants of knots and 3-manifolds that will be discussed elsewhere (work

4 Not to be confused with the formal variable in the generating function Z(q,Q;u).
5 We are intentionally a little imprecise here. We intend to say that the deformation by y on

the “refined” side corresponds to the deformation by −q1/2 on the “motivic” side. While in
general there may be a non-trivial map between these two deformations, as we explain below in
Section 3 these deformations actually agree to the leading order.
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in progress). Note that the semi-classical limit corresponds to q1/2 → −1 (resp.
y→ 1).

As is well know, in string compactification on a Calabi–Yau threefold, the vari-
able y can be interpreted as a graviphoton background in four space–time dimen-
sions. Therefore, we propose the following
CONJECTURE In string theory on a Calabi–Yau space X, the q-deformation of
(18) corresponds to turning on a graviphoton background (a.k.a. Ω -background)
on R4. In particular, we have

Ω
ref(γ;u;y) = Ω

mot(γ;u)
(1.10)

with the appropriate identification of variables (1.9).
Although in practice it is easier to work with numerical invariants such as

Ω(γ;u) or Ω ref(γ;u;y), we should emphasize that the ultimate goal is to “cate-
gorify” the wall crossing formulae for the numerical BPS invariants and to explore
the properties of the space HBPS itself. We believe this should lead to a rich math-
ematical structure. (See (19; 20) for earlier work where the homological algebra of
BPS states played an important role.) In fact, it seems that the homological algebra
of HBPS is unavoidable if one tries to study the refined BPS invariants. For exam-
ple, there can be walls—we call them “invisible walls”—where the ordinary index
Ω(γ;u) doesn’t change, but Ω ref(γ;u;y) jumps. The basic mechanism for how this
happens can be understood in a simple situation where HBPS admits a description
as cohomology of the brane moduli space M . Then, as u crosses an invisible wall,
M can develop a singularity and undergo a topology-changing transition, so that
the Poincaré polynomial of M changes while the Euler characteristic does not.

These invisible walls have been observed in (20) in certain instances of BPS
state counting and will be discussed further (work in progress). One of their most
interesting properties is that the best way to describe the change in the spectrum
of refined BPS invariants across them is by observing that in Kähler moduli space
these walls are located where two BPS states in short multiplets can combine into
a long multiplet. Therefore, the states that disappear from the spectrum are trivial
in cohomology of the BRST differential

Q : H n
BPS→H n+1

BPS , (1.11)

where n = 2J3 denotes the Z-grading of HBPS by spin. (Note that Q changes
spin by 1

2 .) At the level of the generating function (1.6), it means that across each
invisible wall the change in Zref(q,Q,y;u) includes an elementary factor (1− y).

1.1 ORGANIZATION OF THE PAPER

In Section 2, following (2; 7) (see also (17; 21; 22)), we briefly review some rel-
evant facts about the wall crossing behavior of the BPS index Ω(γ;u) and how
it can be used to compute the D6/D2/D0 partition function in concrete examples,
such as the resolved conifold. We then generalize this discussion to refined BPS
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invariants and compute Zref(q,Q,y;u) for the conifold in different chambers, the
refined non-commutative Donaldson–Thomas partition function (1.7) being a spe-
cial case. In Section 3, we compare the wall crossing behavior of the refined BPS
invariants with that of the motivic Donaldson–Thomas invariants introduced by
Kontsevich and Soibelman (18). In particular, one way to see the proposed iden-
tification (1.10) is to deduce the primitive (or semi-primitive) wall crossing for-
mula for the refined BPS invariants from the motivic wall crossing formula of
Kontsevich and Soibelman. As we shall see in Section 3, in this derivation, one is
naturally led to the identification of the “deformation” parameters in
Equation (1.9). Finally, in Section 4, we interpret the results of Section 2 in terms
of the new statistical model that counts refined pyramid partitions. In both refined
and unrefined cases, we explain how a shuffling operation on pyramid partitions
provides a combinatorial realization of wall crossing, and we clarify the relation
between pyramid partitions and the refined and unrefined topological vertices.

2 Refined Wall Crossing

The main goal of this section is to study the wall crossing behavior of the refined
BPS invariants Ω ref(γ;u;y) and, in particular, to compute the refined D6/D2/D0
partition functions Zref(q,Q,y;u) in different chambers.

2.1 WALLS AND CHAMBERS

We are interested in walls of marginal stability for decays

γ → γ1 + γ2.

In the Kähler moduli space, such decays take place at the points u where the
central charges Z (γ1;u) and Z (γ2;u) of the constituents align; the corresponding
walls will be denoted as W (γ1,γ2):

W (γ1,γ2) = {u | Z (γ1;u) = λZ (γ2;u) for some λ ∈ R+}. (2.1)

Note, in particular, that all walls W (N1γ1,N2γ2) coincide,

W (γ1,γ2) = W (N1γ1,N2γ2), N1,N2 ∈ Z+.

The bound state with charge γ = γ1 + γ2 is stable on the side of the wall
W (γ1,γ2) where

〈γ1,γ2〉 ImZ (γ1;u)Z (γ2;u) > 0. (2.2)

This condition, as well as the position of the wall (2.1), has an elegant interpre-
tation in supergravity, if all the charges γi are large (2). For example, in the case of
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a 2-center bound state, the separation of the two constituents in R3 is determined
by their charges,

R12 =
1
2
〈γ1,γ2〉

|Z1 +Z2|∞
Im(Z1Z 2)∞

,

where Z (γ) is the central charge function. In particular, we see that the con-
dition (2.2) is necessary for the distance R12 to be positive, and R12 diverges when
u approaches a wall of marginal stability W (γ1,γ2). For future reference, we also
note that the 2-center bound state carries angular momentum (2):

J12 =
1
2

(|〈γ1,γ2〉|−1) . (2.3)

In the context of counting BPS states of D0 and D2 branes bound to a single D6
brane on a toric Calabi–Yau manifold X , one encounters walls of marginal stability
with γ1 = (1,0,−m′,n′) and a “halo” of particles or “fragments” of charge γ2 =
(0,0,−mh,nh). Following (7; 17), we denote such walls as W mh

nh . For example, for
the resolved conifold X = OP1(−1)⊕OP1(−1), the non-vanishing Gopakumar–
Vafa invariants (23),

Ω(γ = (0,0,±1,n)) = 1, n ∈ Z,

Ω(γ = (0,0,0,n)) =−2, n 6= 0,
(2.4)

imply that the only walls are

W 1
n : D2/D0 fragments,

W −1
n : D2/D0 fragments, (2.5)

W 0
n : D0 fragments.

This leads to the picture of walls and chambers drawn schematically in Fig. 1
(in the one-dimensional space parametrized by ϕ) (7). We follow the conventions
of (7; 17), and denote the resulting chambers for the resolved conifold as

Cn = [W −1
n W −1

n−1],

C̃n = [W 1
n−1W

1
n ].

(2.6)

2.2 WALL CROSSING FORMULAE AND REFINEMENTS

If both γ1 and γ2 are primitive, the states lost from HBPS(γ;u) are (2)

∆HBPS = (J12)⊗H (γ1;ums)⊗H (γ2;ums), (2.7)
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where J12 is the spin of the bound state (2.3). The corresponding change of the
BPS index (1.3) is given by

∆Ω(γ;u) = (−1)〈γ1,γ2〉−1|〈γ1,γ2〉|Ω(γ1;ums)Ω(γ2;ums). (2.8)

This is the so-called primitive wall crossing formula. It has a very explicit, but
lengthier, generalization in the case when one of the charges is not primitive. It is
then convenient to arrange the answer in a generating function that allows one to
describe the change of the spectrum of BPS states as a sum over Fock spaces (2):

⊕
N2

xN2∆H |γ→γ1+N2γ2 = H (γ1)
⊗

k

F
(

xk(Jγ1,kγ2)⊗H (kγ2)
)

, (2.9)

so that

Ω(γ1)+ ∑
N≥1

∆Ω(γ1 +Nγ2)xN = Ω(γ1)∏
k≥1

(1− (−1)k〈γ1,γ2〉xk)k|〈γ1,γ2〉|Ω(kγ2).(2.10)

This is the semi-primitive wall crossing formula. Note that ∂

∂x (· · ·)|x=0 gives
the primitive wall crossing formula (2.8).

In general, if neither γ1 nor γ2 is primitive, the change of the BPS index across
a wall of marginal stability is given by the Kontsevich–Soibelman wall crossing
formula (18; 24) that will be discussed in Section 3. We note in passing that if one
is interested only in counting D6/D2/D0 bound states on toric Calabi–Yau man-
ifolds, then the primitive (2.8) and semi-primitive (2.10) wall crossing formulae
and their refinements (which we discuss momentarily) are sufficient to determine
the D6/D2/D0 partition functions.

Now, let us generalize this discussion to the refined BPS invariants that, along
with the charges of BPS states, also carry information about the spin content.
Again, starting with the simplest case when both charges γ1 and γ2 are primitive,
the change of Ω ref(γ;u;y) defined in (1.4) is given by

∆Ω
ref(γ;u;y) =

(−y)〈γ1,γ2〉− (−y)−〈γ1,γ2〉

(−y)− (−y)−1 Ω
ref(γ1;u;y)Ω ref(γ2;u;y) =

=
(
(−y)−〈γ1,γ2〉+1 +(−y)−〈γ1,γ2〉+3 + · · ·+

+ (−y)〈γ1,γ2〉−1
)

Ω
ref(γ1;u;y)Ω ref(γ2;u;y). (2.11)

This is the refined version of the primitive wall crossing formula (2.8), whose
explicit form appeared in (21). Indeed, note that setting y = 1 gives the primitive
wall crossing formula (2.8).

For our purposes, we need a refinement of the semi-primitive wall crossing
formula (2.10). It takes the form



10 TUDOR DIMOFTE, SERGEI GUKOV

Fig. 1 The picture of walls and chambers for the resolved conifold proposed in (7).

Ω
ref(γ1)+ ∑

N≥1
∆Ω

ref(γ1 +Nγ2)xN =

= Ω
ref(γ1)∏

k≥1

k|〈γ1,γ2〉|

∏
j=1

∏
n

(1+ xkyn(−y)2 j−k|〈γ1,γ2〉|−1)(−1)nΩ ref
n (kγ2),(2.12)

where Ω ref
n (γ) are the coefficients of the refined BPS index (1.4). This refine-

ment of (2.10) describes the change of the spectrum (2.9) while keeping track of
the spin of BPS states, and satisfies two obvious requirements:

(i) at y = 1 it reduces to the ordinary semi-primitive wall crossing formula
(2.10);

(ii) ∂

∂x (· · ·)|x=0 gives the refined primitive wall crossing formula (2.11).

In addition, the refinement (2.12) leads to the expected results in simple special
examples.

2.3 EXAMPLE: RESOLVED CONIFOLD

Now, with the simple example of the resolved conifold, X = OP1(−1)⊕OP1(−1),
let us illustrate how one can use these wall crossing formulae to obtain the (refined)
D6/D2/D0 partition functions in different chambers (2.6). This discussion will
be mirrored by the pyramid partition approach of Section 4. Before we present
refined BPS invariants, let us briefly review the results of (7; 8) for the ordinary
partition functions Z(q,Q;u). Starting in the core region (see Figure 1) where
Z(q,Q;Ccore) = 1 and applying the wall crossing formulae, we obtain (7)

Z(q,Q;C̃n+1) =
n

∏
j=1

(1−q jQ) j, (2.13)

so that in the limit n→∞ we recover the reduced Donaldson–Thomas partition
function

lim
n→∞

Z(q,Q;C̃n) = ∏
j>0

(1−q jQ) j = Z′DT (q,Q). (2.14)

Similarly, in the chamber Cn+1 = [W −1
n+1W

−1
n ],

Z(q,Q;Cn+1) = M(q)2
∏
j>0

(1−q jQ) j
∏
k>n

(1−qkQ−1)k. (2.15)
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The factor of M(q)2 = ∏
∞
j=1(1−q j)−2 j comes from crossing the D6/D0 wall W 0

n .
In the limit n→∞, we now recover the full Donaldson–Thomas partition function,

lim
n→∞

Z(q,Q;Cn) = M(q)2
∏
j>0

(1−q jQ) j = ZDT (q,Q). (2.16)

Now, starting with Zref(q1,q2,Q;C̃core) = 1 and applying the refined semi-
primitive wall crossing formula (2.12) we obtain the refined D6/D2/D0 partition
functions in all chambers C̃n,

Zref(q1,q2,Q;C̃n+1) =
n

∏
j=1

n− j+1

∏
i=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)
, (2.17)

so that in the limit we recover a refinement of the reduced Donaldson–Thomas
partition function:

lim
n→∞

Zref(q1,q2,Q;C̃n) =
∞

∏
i, j=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)
. (2.18)

In the chamber Cn+1 = [W −1
n+1W

−1
n ], we find

Zref(q1,q2,Q;Cn+1) = M(q1,q2)2
∞

∏
i, j=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)
∞

∏
k+l>n

(
1−Q−1q

k− 1
2

1 q
l− 1

2
2

)
.

(2.19)

As in the unrefined case, the factor of M(q1,q2)2 comes from crossing the D6/D0
wall. In general, when studying refined BPS invariants one encounters a family of

refinements Mδ (q1,q2) = ∏
∞
i, j=1(1−q

i− 1
2 + δ

2
1 q

j− 1
2−

δ
2

2 )−1 of the MacMahon func-
tion M(q), with different values of δ . For example, the refinement used in (6) cor-
responds to δ = −1. In the classical limit y→ 1 (corresponding to q1 = q2 = q)
all of these refinements reduce to the ordinary MacMahon function M(q), while in
the “opposite” limit y→−1 they specialize to M(−q), which describes the con-
tribution of the 0-dimensional subschemes to the D̂T-invariants of (25). For our
purposes in the present paper, it is convenient to choose a symmetric normalization
in (2.19), so that M(q1,q2) = Mδ (q1,q2) with δ = 0.

In the limit n→∞ we obtain a refinement of the ordinary Donaldson–Thomas
partition function (2.16),

lim
n→∞

Zref(q1,q2,Q;Cn) = M(q1,q2)2
∞

∏
i, j=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)
, (2.20)

and
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Zref(q1,q2,Q;C1) = M(q1,q2)2
∞

∏
i, j=1

(
1−Qq

i− 1
2

1 q
j− 1

2
2

)(
1−Q−1q

i− 1
2

1 q
j− 1

2
2

)
(2.21)

is a refinement of the non-commutative Donaldson–Thomas partition function
Z(q,Q;C1).

3 Refined = Motivic

The unrefined wall crossing formula of Kontsevich and Soibelman (18) general-
izes the primitive (2.8) and semiprimitive (2.10) cases discussed above. It encodes
the degeneracies of BPS states in a given chamber in terms of a non-commuting
product of symplectomorphisms acting on the complexified charge lattice. Specif-
ically, let

TΓ = Γ
∨⊗C∗ (3.1)

be an r-dimensional complex torus, where r is the rank of Γ , and define func-
tions Xγ corresponding to any γ ∈ Γ , such that Xγ Xγ ′ = Xγ+γ ′ . Given a basis {γi}
of Γ and corresponding coordinates Xi on TΓ , one endows TΓ with a symplectic
structure ω = 1

2 〈γi,γ j〉−1d logXi∧d logX j and defines symplectomorphisms6

Uγ : Xγ ′ → Xγ ′(1±Xγ)〈γ
′,γ〉. (3.2)

The statement of wall crossing is that the product over all states that become
aligned at a wall of marginal stability

A =
y

∏
γ

Aγ(u) :=
y

∏
γ

UΩ(γ;u)
γ , (3.3)

taken in order of increasing phase of the central charge, Z (γ), is the same on
both sides of the wall. In other words, going from u = u+ on one side of the wall
to u = u− on the other, both the BPS indices and the ordering will change but the
overall product will remain the same:

y

∏
γ

UΩ(γ,u+)
γ =

y

∏
γ

UΩ(γ,u−)
γ . (3.4)

Geometrically, this formula arises as a specialization (namely, by taking the
Euler characteristic) of a much more general, “motivic” wall crossing formula
(18) that is reminiscent of the wall crossing formulae for the refined BPS invariants

6 See (18) and also (24) (which we follow here in the unrefined case) for a more precise
description of these symplectomorphisms.
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discussed in the previous section. Just as refined BPS invariants depend on an extra
variable y, motivic BPS invariants involve a formal variable L1/2 (where L is the
motive of the affine line). Both refinements reduce to the ordinary BPS invariants
in the corresponding limits y→ 1 and L1/2 → 1. One may therefore hope that
motivic BPS invariants are precisely the refined BPS invariants of physics.

There are several ways to approach such a conjecture. First, one can attempt
to make a direct comparison of refined and motivic BPS invariants in concrete
examples, several of which are attainable and will be discussed (work in progress).
Second, the behavior of BPS invariants can be investigated indirectly by means of
wall crossing formulae. This is our goal in the present paper. Using the Serre
functor as in (18), we pass to a “quantum” version of motivic BPS invariants
and the wall crossing formula, and show that it agrees with (2.11). Finally, and
more physically, one can try to derive the motivic wall crossing formula via three-
dimensional gauge in the presence of a graviphoton background, along the lines
of (24).

The motivic DT invariants defined by Kontsevich and Soibelman are elements
of quantum tori over a version of the Grothendieck ring of varieties (18). The
quantum torus in question is simply the quantization of (3.1). It comprises an
associative algebra generated by êγ , γ ∈ Γ , such that7

êγ1 êγ2 = q
1
2 〈γ1,γ2〉 êγ1+γ2 (3.5)

and ê0 = 1. In particular, the generators obey the following commutation rela-
tions:

[êγ1 , êγ2 ] =
(

q
1
2 〈γ1,γ2〉−q−

1
2 〈γ1,γ2〉

)
êγ1+γ2 .

In the classical limit, as q1/2→−1, one finds

lim
q1/2→−1

(q−1)−1
(

q
1
2 〈γ1,γ2〉−q−

1
2 〈γ1,γ2〉

)
= (−1)〈γ1,γ2〉〈γ1,γ2〉,

so that

[eγ1 ,eγ2 ] = (−1)〈γ1,γ2〉〈γ1,γ2〉eγ1+γ2 , (3.6)

where

eγ := lim
q1/2→−1

êγ

q−1
.

The Lie algebra Lie acts on the classical torus (3.1), and generates symplecto-
morphisms via Uγ = exp∑

∞
n=1

1
n2 enγ .

7 In the case of the motivic quantum torus this relation looks like êγ1 êγ2 = L 1
2 〈γ1,γ2〉 êγ1+γ2 .
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Following Kontsevich and Soibelman (18), let us introduce the “quantum dilog-
arithm” function

E(x) :=
∞

∑
n=0

qn2/2

(qn−1) · · ·(qn−qn−1)
xn. (3.7)

It is easy to verify that in the classical limit q1/2 →−1 this function has the
asymptotic expansion

E(x) = exp
(
− 1

2h̄
Li2(x)+

xh̄
12(1− x)

+ · · ·
)

,

where q1/2 = −eh̄ and Li2(x) = ∑
∞
n=1

xn

n2 is the Euler dilogarithm. Moreover,
the function E(x) obeys the “pentagon” identity

E(x1)E(x2) = E(x2)E(x12)E(x1), (3.8)

where x1x2 = qx2x1 and x12 = q−1/2x1x2 = q1/2x2x1. This pentagon identity
is the basic example of the motivic wall crossing formula in a simple case of two
primitive charges, γ1 and γ2, which obey 〈γ1,γ2〉= 1,

Amot
1,0 ·Amot

0,1 = Amot
0,1 ·Amot

1,1 ·Amot
1,0 . (3.9)

Here, Amot
m,n :=E(ênγ1+mγ2) are quantum analogs of the classical symplectomorphisms

UΩ(γ)
γ . Acting by conjugation, these operators generate “symplectomorphisms” of

the quantum torus (resp. motivic quantum torus).
In general, the Kontsevich–Soibelman wall crossing formula for motivic DT

invariants Ω mot(γ;u) says that the product of the quantum symplectomorphisms
in a given sector does not change under wall crossing (as long as no BPS rays
leave the sector):

y

∏
γ

Amot
γ (u+) =

y

∏
γ

Amot
γ (u−). (3.10)

For simplicity, we assume here that each ray in this sector is generated by a
single BPS charge γ . In this case, we have (cf. (3.3) above and sec. 6.2 of (18))

Amot
γ (u) = 1+

q1/2Ω mot(γ;u)
q−1

êγ + · · · . (3.11)

In particular, suppose γ1 and γ2 are primitive and consider a narrow sector
containing Z (γ1 + γ2). Then the motivic wall crossing formula (3.10) looks like

Amot
γ1

(u+)Amot
γ1+γ2

(u+)Amot
γ2

(u+) = Amot
γ2

(u−)Amot
γ1+γ2

(u−)Amot
γ1

(u−). (3.12)
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To use this formula in practice, notice that the algebra generated by ênγ1+mγ2
is filtered, cf. (24). The lowest degree of filtration contains the Heisenberg subal-
gebra

[êγ1 , êγ2 ] =
(

q
1
2 〈γ1,γ2〉−q−

1
2 〈γ1,γ2〉

)
êγ1+γ2 (3.13)

with a central element êγ1+γ2 . Then, assuming that Ω mot(γi,u+) = Ω mot(γi,u−)
for i = 1,2 and keeping track of the coefficients of êγ1+γ2 in (3.12), we can derive

∆Ω
mot(γ1 + γ2) = 〈γ1,γ2〉q ·Ω mot(γ1)Ω mot(γ2),

where

〈γ1,γ2〉q =
q

1
2 〈γ1,γ2〉−q−

1
2 〈γ1,γ2〉

q
1
2 −q−

1
2

.

This is equivalent to the refined version (2.11) of the primitive wall crossing
formula, provided that we identify y↔−q1/2.

4 Refined Pyramid Partitions and the Topological Vertex

In this final section, we interpret refined BPS invariants in terms of statistical mod-
els of melting crystals. In the case of Donaldson–Thomas theory for non-compact
toric Calabi–Yau threefolds, this was done in (13) (unrefined) and (6) (refined)
using the topological vertex formalism. For other chambers of moduli space, how-
ever, rather different models are needed. These models are built from Calabi–Yau
quivers with superpotentials; crystal partitions encode information about the rep-
resentations of the quivers, which in turn are related to configurations of BPS
branes. (See, for example, (8; 10; 11) for explicit examples of this relation in the
Szendröi region of moduli space.) Both representations of the quivers and BPS
branes depend on a stability condition (a choice of Kähler moduli), which corre-
sponds to a boundary condition for the crystal model.

In the case of the conifold, which shall be our main example, the crystal
models that arise are called “pyramid partitions.” They essentially describe repre-
sentations of the Klebanov–Witten quiver. By changing the boundary conditions
for these crystals, unrefined invariants in all the chambers Cn and C̃n that were
described in Section 2 can be obtained (17). It turns out that by modifying the
weights atoms in the crystals—more or less splitting weights q1 and q2 across a
diagonal—it is also possible to obtain refined invariants in all chambers. Part of
our goal in this section is to describe how this is achieved.

More interestingly, we find that a combinatorial transformation between par-
titions with different boundary conditions called dimer shuffling (26) corresponds
very naturally to (refined or unrefined) wall crossing. Moreover, in the limit n→∞

the boundary conditions for pyramid partitions in chambers Cn become such that
the model resolves into a pair of (refined or unrefined) topological vertices. This
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Fig. 2 The “empty room configurations” for the crystals that count BPS states in chambers Cn

and C̃n.

is exactly what one should expect after crossing the infinite number of walls to the
Donaldson–Thomas chamber of moduli space for the resolved conifold. As the
topological vertex provides a universal construction for the BPS partition func-
tion of toric Calabi–Yau threefolds, we believe that this behavior should be quite
general: a quiver-related crystal model should always resolve into a network of
topological vertices as one approaches the DT chamber.

We first review the pyramid partition models for the unrefined BPS invariants,
and then proceed to refined invariants. In each case, we relate the pyramid parti-
tions to states in a dimer model, in terms of which the shuffling operation (wall
crossing) is most easily described. We then explain how both refined and unrefined
models are related to the topological vertex, which consists not of pyramids but of
three-dimensional cubic “plane partitions,” or three-dimensional Young diagrams.

4.1 UNREFINED INVARIANTS

In the chamber Cn, the unrefined generating function of BPS states is obtained by
counting the melting configurations of an infinite pyramid-shaped crystal whose
top row of atoms has length n (sometimes also called an empty room config-
uration, or ERC, of length n) (8; 17). As shown in Figure 2, this crystal has
two different types of atoms, corresponding to the two vertices of the Klebanov–
Witten quiver. The top edge of the pyramid always consists of n white atoms. The
remainder of the pyramid is then constructed by placing two black atoms under-
neath each white atom, oriented vertically, and two white atoms underneath each
black one, oriented horizontally.8 In order for an atom to be removed during crys-
tal melting, all atoms lying above it must be removed as well. The partition func-
tion is defined as a sum over all melting configurations (i.e. pyramid partitions)
π ,

Z(qw,qb;Cn) = ∑
π

qww(π)
w qwb(π)

b , (4.1)

where ww(π) and wb(π), respectively, are the numbers of white and black
atoms removed. It was proven in (26) that this agrees with the partition function
(2.15),

Z(qw,qb;Cn) = Z(q,Q;Cn) = M(q)2
∞

∏
j=1

(1−q jQ) j
∞

∏
k=n

(1−qkQ−1)k, (4.2)

provided that one makes an n-dependent identification as in (17),

8 In nature, such a crystal structure, very similar to that of diamond, occurs in the minerals
zincblende (zinc sulfide) and moissanite (silicon carbide).
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Fig. 3 The relation between pyramid partitions and dimer states, illustrated for n = 2.

Fig. 4 Even and odd boxes of dimers.

Cn : qw =−qnQ−1, qb =−q−(n−1)Q. (4.3)

Similarly, it was argued in (17) that to obtain the unrefined partition function
in the chamber C̃n one must sum over the melting configurations of a finite crystal
configuration of length n, also shown in Figure 2. Then

Z(q,Q;C̃n+1) =
n

∏
j=1

(1−q jQ) j = ∑
π

qww(π)
w qwb(π)

b (4.4)

if one identifies

C̃n+1 : qw =−qnQ, qb =−q−(n+1)Q−1. (4.5)

To proceed further, let us translate the above partition functions into the lan-
guage of dimers. The partitions of a length-n pyramid correspond bijectively to the
states of a dimer model on a square lattice with prescribed asymptotic boundary
conditions. (We will refer to these states as partitions as well.) An intuitive way
to visualize the correspondence (see also (26)) is to actually draw dimers on the
black and white atoms, as in Figure 3. Then the dimer state corresponding to a
given crystal automatically appears when viewing the crystal from above.

As in (26), we have included an extra decoration on the lattices in these figures:
lattice points are colored with alternating black and white dots. This canonical dec-
oration carries no extra information, but is very useful in describing weights and
wall crossing. We will also call squares in the dimer lattice even or odd depending
on their vertex decorations. As shown in Figure 4, we call two dimers lying on the
edges of an even (resp. odd) square an even (resp. odd) box; an even (resp. odd)
box with two horizontal (resp. vertial) dimers corresponds to a fully uncovered
black (resp. white) atom in the crystal.

One can assign weights to each edge in the dimer lattice so that the total weight
of a dimer partition π , defined as9

w(π) =
productofweightsofdimerizededges inπ

productofweightsofdimerizededges in thegroundstateof the lattice
,

agrees with the pyramid partition weight qww(π)
w qwb(π)

b . To implement such a
weighting, it is sufficient to ensure that the ratio of horizontal to vertical edges

9 Technically, both the numerator and denominator in this definition must be “regularized.”
For a given state π , one fixes a large box in the dimer lattice so that all dimers outside the
box match the ground state (corresponding to an unmelted pyramid of length n); then one only
multiplies together the weights of dimers inside this box.
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Fig. 5 The weights assigned to edges of the dimer lattice of “length n,” for n = 2. (The n = 2
ground state has been shaded in.) All vertical edges have weight 1 and all horizontal edges have
an additional factor of (−Q)−1/2.

Fig. 6 The directions in which dimers move under the shuffle S̃, and an example of shuffling a
partition of length n = 2 with odd boxes deleted.

in every odd and even square, respectively, equals qw and q−1
b —corresponding to

white atoms being removed and black atoms being replaced.
Here, it is most convenient to use a weighting that is n-dependent. Vertical

edges are always assigned weight 1. For the horizontal edges, we draw two diag-
onals on the dimer lattice, which pass through the lowermost and uppermost odd
blocks in the ground state dimer (i.e. the lowermost and uppermost uncovered
white atoms in the unmelted pyramid). For positive integers a, the horizontal edges
2a− 1 units above and 2a units below the lower diagonal are assigned weights
q(2a−1)/2(−Q)−1/2 and q−(2a−1)/2(−Q)−1/2, respectively, where a = 0 means that
an edge is touching the diagonal. Likewise the horizontal edges 2a−1 units below
and 2a units above the upper diagonal are assigned weights q(2a−1)/2(−Q)−1/2

and q−(2a−1)/2(−Q)−1/2, respectively. An example is shown in Figure 5. For a
dimer model corresponding to a length-n crystal, one can check that the ratios of
horizontal to vertical edges in every odd block is indeed −qnQ−1 = qw, and in
every even block the ratio is −qn−1Q−1 = q−1

b . Since the resulting weight func-
tion itself is n-dependent in terms of variables q and Q, let us call it wn rather than
w.

We let the weight wn be a function acting linearly on formal sums of partitions,
and define Θ (n) to be the formal sum of all possible partitions of a dimer lattice
with asymptotic boundary conditions corresponding to the length-n crystal. Then

Z(qa,qb;Cn) = ∑
π

qww(π)
w qwb(π)

b = wn(Θ (n)).

The operation that we claim is the combinatorial equivalent of wall crossing
is described in (26) as dimer shuffling. It maps partitions of length n to partitions
of length n + 1. To define it, first consider an operation S̃, which maps a dimer
state π̃(n), all of whose odd blocks have been deleted, to a dimer state π̃(n+1), all
of whose even blocks are deleted. By “deleted” we mean that any dimers forming
odd (resp. even) blocks are removed. The operation S̃ simply moves every non-
deleted dimer one unit to the left, right, up, or down, according to the rules on
the left side of Figure 6. We show an example of such a shuffling in Figure 6 as
well; note that dimers carry their vertex decorations with them when they move.
As a function from the set of {dimer partitions with odd blocks deleted} to the set
of {dimer partitions with even blocks deleted}, S̃ is bijective (26; 27). The actual
dimer shuffling operation S can then be defined to act on finite “subsums” in Θ (n).
It maps each formal sum10 of 2m dimer states with a fixed set of m odd blocks (for

10 We could also define shuffling, as in (26), to act on individual π’s, but this is unnecessary.
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Fig. 7 The brick-like lattices around the upper and lower vertices as n→ ∞. The ground state
of the dimer is shaded in. As before, each horizontal edge also carries a weight of (−Q)−1/2.

any m) to the finite formal sum of all dimer states with a fixed set of even blocks
in the obvious way: by deleting odd blocks, applying S̃, and filling in the missing
even blocks in all possible combinations. Letting S act linearly on all such formal
sub-sums of Θ (n), it must, because S̃ is bijective, send Θ (n) precisely to Θ (n+1).

What happens to weights under dimer shuffling? We defined our weight func-
tion above so that the dimers in a partition π̃ of a length-n model with odd boxes
deleted do not change weight at all under the action of S̃. In other words, wn(π̃) =
wn+1(S̃(π̃)). The only change in weights of a genuine dimer state π under the
action of S arises from the deletion of odd blocks and the subsequent creation
of new even blocks after shuffling. An important lemma in (26) (which we will
refine later in this section) is that the difference between the number of deleted
odd blocks in π̃ and the missing even blocks in S̃(π̃) is always exactly n. Then a
quick exercise shows that for a fixed π̃ with m deleted odd blocks,

wn(sumofπ s.t.π agreeswith π̃) = (1−qnQ−1)m ·wn(π̃),

wn+1(sumofπ s.t.π agreeswith S̃(π̃)) = (1−qnQ−1)m−n ·wn+1(S̃(π̃)).

(By “agrees with,” we mean aside from deleted blocks.) The ratio of these
quantities is independent of m, immediately proving that

wn(Θ (n)) = (1−qnQ−1)nwn+1(Θ (n+1)). (4.6)

This is precisely the wall crossing formula between chambers Cn for the coni-
fold.

Formula (4.6) suggests (correctly) that we can write the crystal or dimer parti-
tion function for a model of length n as

wn(Θ (n)) =
∞

∏
j=n

(1−q jQ−1) j ·w∞(Θ (∞)).

Of course, the quantity w∞(Θ (∞)) must be the Donaldson–Thomas partition
function of the conifold, and this relation holds because pyramid partitions of
length n→ ∞ effectively reduce to the topological vertex formalism of (12; 13)
(see also (28; 29)).

To understand this relation, consider the n-dependent weighting system of
Figure 5. In the limit n→∞, the weights of half the edges around the lower vertex
(of the pyramid, or of the dimer model) acquire infinitely large, positive powers
of q and cease to contribute to the partition function. Likewise for half the edges
around the upper vertex. Therefore, the only dimer partitions around these ver-
tices that can contribute to the length-infinity partition function involve dimers on
edges of the brick-like lattices of Figure 7. These brick-like lattices, however, are
equivalent to hexagonal dimer lattices, which correspond to the three-dimensional
cubic partitions that arise in the topological vertex.
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Fig. 8 The map between the length-infinity dimer model and a pair of topological vertices. (The
extra q1 and q2 notations are for the refined case further below).

As argued more carefully in (26), any (nontrivial) configuration of the length-
infinity dimer model can be constructed via a series of moves that amount to (1)
cutting out a Young diagram λ simultaneously from the upper and lower vertices,
(2) stacking up individual boxes to form a cubic partition π

−
λ

around the lower
vertex, and (3) stacking up boxes to form a partition π

+
λ

around the upper vertex.
An example of such a dimer configuration and its corresponding topological vertex
partitions is shown in Figure 8. By observing how dimers shift in these three steps
and using our n→ ∞ weighting, it is not too hard to see that the contributions to
the partition function are (−Q)|λ |q

1
2 ||λ ||

2
q

1
2 ||λ

t ||2 from step (1), q|π
−
λ
| from step (2),

and q|π
+
λ t | from step (3).11 Therefore, the total partition function is

w∞(Θ (∞)) = ∑
λ

∑
π

+
λ t ,π

−
λ

(−Q)|λ |q
1
2 ||λ ||

2+ 1
2 ||λ

t ||2q|π
+
λ t |+|π−λ |,

which is precisely the topological vertex expression for the (unreduced) parti-
tion function of the conifold (12; 13). In terms of Schur functions, the generating
function for three-dimensional cubic partitions with a single nontrivial asymptotic
boundary condition λ is ∑πλ

q|πλ |= M(q)q−
1
2 ||λ ||

2
sλ t (q−ρ)= M(q)q−

1
2 ||λ ||

2
sλ t (q1/2,

q3/2,q5/2, . . .). Thus, as expected,

w∞(Θ (∞)) = Z(q,Q;C∞) =

= M(q)2
∑
λ

(−Q)λ sλ (q−ρ)sλ t (q−ρ) =

= M(q)2
∞

∏
j,k=1

(1−q j−1/2qk−1/2Q) =

= M(q)2
∞

∏
j=1

(1−q jQ) j. (4.7)

4.2 REFINED INVARIANTS

We now come to the crystal melting models for refined invariants. For the conifold,
we describe models to compute the refined partition functions in all chambers
Cn and C̃n. We will first present the formulae in terms of melting crystals, and
then prove them while discussing their relation to dimer shuffling, refined wall
crossing, and the refined topological vertex.

11 We use conventional notation for Young diagrams and three-dimensional cubic partitions;
λ t is the transpose of the diagram λ , the rows of λ have lengths λi, |λ |= ∑λi is the number of
boxes in λ , ||λ ||2 = ∑λ 2

i , and |π| is the number of boxes in a three-dimensional partition.
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Fig. 9 Weights of atoms for the refined partition function in chamber C1.

Fig. 10 Refined weights of atoms for chambers Cn and C̃n+1, with n = 3.

At the level of crystal models, one must draw a series of diagonals on the
pyramid partition, and interpolate weights between the variable q1 on one side of
the diagonals and q2 on the other. To be more specific, consider the pyramid of
length n = 1, corresponding to the Szendröi chamber C1. On this crystal model,
we draw a single diagonal as shown in Figure 9; we assign white atoms above
the diagonal a weight q+

w , white atoms below the diagonal a weight q−w , and white
atoms on the diagonal itself a weight (q+

w q−w )1/2. All black atoms are assigned
weight qb. Letting w+

w (π), w−w (π), and w0
w(π) be the numbers of white atoms

above, below, and on the diagonal, respectively, in the partition π , and identifying
q+

w =−q1Q−1, q−w =−q2Q−1, and qb =−Q, we find

Z(q+
w ,q−w ,qb;C1) = ∑

π

(q+
w )w+

w (π)(q−w )w−w (π)(q+
w q−w )

1
2 w0

w(π)qwb(π)
b =

= Zref(q1,q2,Q;C1) =

= M(q1,q2)2
∞

∏
i, j=1

(1−q
i− 1

2
1 q

j− 1
2

2 Q)(1−q
i− 1

2
1 q

j− 1
2

2 Q−1).(4.8)

To generalize to the length-n pyramid, we draw n diagonals, as in the left
half of Figure 10. It is more natural to work directly in terms of the variables
q1, q2, and Q. We assign weights −qn

1Q−1 (resp. −q−(n−1)
1 Q) to the white (resp.

black) atoms above all the diagonals and weights −qn
2Q−1 (resp. −q−(n−1)

2 Q) to
the white (resp. black) atoms below all the diagonals. The diagonals themselves
intersect white atoms; we assign the same weight to all the white atoms on a

single diagonal, interpolating between −q
n− 1

2
1 q

1
2
2 Q−1 on the uppermost diagonal

and −q
1
2
1 q

n− 1
2

2 Q−1 on the lowermost (multiplying by q1
1q−1

2 in each intermediate
step). Similarly, black atoms lie between diagonals, and we assign them weights

ranging from −q
−n+ 3

2
1 q

− 1
2

2 Q directly below the upper diagonal to −q
−1
2

1 q
−n+ 3

2
2 Q

directly above the lower diagonal. Multiplying together the weights of all atoms
removed in a given partition π and summing these quantities over partitions, we
obtain the expected

Zref(q1,q2,Q;Cn) = M(q1,q2)2
∞

∏
i, j=1

(
1−q

i− 1
2

1 q
j− 1

2
2 Q

)
∏

i≥1, j≥1
i+ j>n

(
1−q

i− 1
2

1 q
j− 1

2
2 Q−1

)
.

(4.9)

For chambers C̃n+1, the finite pyramid of length n can also be split by n diag-
onals, as shown in the right half of Figure 10. If one assigns weights such that (1)
when q1 → q and q2 → q white atoms have weight −qnQ and black atoms have
weight −q−(n+1)Q−1; (2) when moving up one step, either on or in between diag-
onals, the absolute value of the power of q2 (resp. q1) decreases (resp. increases)
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Fig. 11 Refined weighting of the length-n dimer, for n = 2. (The color coding here differs from
that in Figure 5, to emphasize the difference between q1 and q2).

Fig. 12 Neighborhoods of the refined upper and lower vertices as n→ ∞.

by 1; and (3) the assignment is symmetric about the middle diagonal(s) of the
crystal, the resulting partition function is precisely

Zref(q1,q2,Q;C̃n+1) = M(q1,q2)2
∏

i≥1, j≥1
i+ j≤n+1

(1−q
i− 1

2
1 q

j− 1
2

2 Q).

For the remainder of the section we return to the infinite pyramid of length n,
generalizing the previous unrefined discussion to refine the connection between
shuffling, wall crossing, and the refined topological vertex (and to prove formula
(4.9)). We first observe that in order to equate refined pyramid partitions and their
weights with states (configurations) of a dimer lattice, we can use almost the
same n-dependent weighting described in Figure 5. Now, for positive integers a,
the horizontal edges 2a− 1 units above and 2a units below the lower diagonal
are assigned weights q(2a−1)/2

1 (−Q)−1/2 and q−(2a−1)/2
2 (−Q)−1/2, respectively.

Likewise the horizontal edges 2a− 1 units below and 2a units above the upper
diagonal are assigned weights q(2a−1)/2

2 (−Q)−1/2 and q−(2a−1)/2
1 (−Q)−1/2. See

the example in Figure 11.
As in the unrefined case, the weights of dimers which are not part of deleted

odd or even blocks do not change during dimer shuffling S̃, due to our n-dependent
weighting. In order to understand the behavior of the deleted blocks, we observe
that the shuffling S̃ removes exactly one (deleted) odd block from each of the n
diagonals of a dimer configuration of length n. Moreover, the remaining (deleted)
odd blocks are mapped to deleted even blocks with exactly the same weights—
if (for instance) they were above all the diagonals, then they remain above all
the diagonals. These statements can be proved with careful counting arguments,
considering the number of dimers on and around each diagonal in an arbitrary
configuration before and after shuffling. The result is that when the actual shuffling
S maps a formal sum of states π agreeing with a fixed odd-deleted state π̃ on all
but their odd blocks to a formal sum of states agreeing on all but their even blocks,

the weight of this formal sum changes by exactly ∏i+ j=n+1(1− q
i− 1

2
1 q

j− 1
2

2 Q−1);
therefore,

wn(Θ (n)) = ∏
i≥1, j≥1
i+ j=n+1

(1−q
i− 1

2
1 q

j− 1
2

2 Q−1) ·wn+1(Θ (n+1)).

This, of course, is the refined wall crossing formula for chambers Cn.
The crystal-melting or dimer partition function of length n can now be written

as
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wn(Θ (n)) =
∞

∏
i, j=1

(1−q
i− 1

2
1 q

j− 1
2

2 Q−1) ·w∞(Θ (∞)).

The last term, w∞(Θ (∞)), is obtained from a slightly modified version of the
refined topological vertex of (6). To see this, observe that as n→ ∞ the neighbor-
hoods of the upper and lower vertices of the dimer lattice still reduce to effective
brick-like lattices, now shown in Figure 12. In terms of three-dimensional cubic
partitions, states of the length-infinity dimer are again created by (1) cutting out a
Young diagram λ simultaneously from the upper and lower vertices, (2) stacking
up individual boxes to form a cubic partition π

−
λ

around the lower vertex, and (3)
stacking up boxes to form a partition π

+
λ

around the upper vertex. The creation of

the Young diagram λ comes with a fairly simple weight (−Q)|λ |q
1
2 ||λ ||

2

1 q
1
2 ||λ

t ||2
2 .

However, both the upper and lower “room corners” are now split along a diago-
nal, as shown in Figure 8. In the case of the lower corner, boxes stacked below the
diagonal come with weight q2, those above the diagonal with weight q1, and those
that the diagonal intersects have weight (q1q2)

1
2 . The situation is reversed for the

upper vertex. The generating function for such three-dimensional cubic partitions
with one asymptotic boundary condition λ is (for example, at the lower vertex)

∑
πλ

q|πλ |(q1)

1 q|πλ |(q2)

2 (q1q2)
1
2 |πλ |(0)

= M(q1,q2)q
− 1

2 ||λ
t ||2

2 sλ (q−ρ

2 ), (4.10)

with M(q1,q2) = ∏
∞
i, j=1(1−q

i− 1
2

1 q
j− 1

2
2 )−1. Therefore, the length-infinity pyra-

mid partition function is
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w∞(Θ (∞)) = ∑
λ

∑
π

+
λ t ,π

−
λ

(−Q)|λ | q
1
2 ||λ ||

2

1 q
1
2 ||λ

t ||2
2 ×

×q
|π−

λ
|(q1)

1 q
|π−

λ
|(q2)

2 (q1q2)
1
2 |π
−
λ
|(0)

q
|π+

λ t |(q2)

2 q
|π+

λ t |(q1)

1 (q1q2)
1
2 |π

+
λ t |(0)

=

= M(q1,q2)2
∑
λ

(−Q)|λ |sλ (q−ρ

2 )sλ t (q−ρ

1 ) =

= M(q1,q2)2
∞

∏
i, j=1

(1−q
i− 1

2
1 q

j− 1
2

2 Q).

Note that expression (4.10) differs only slightly from the refined topological
vertex used in (6) (with the boundary condition λ placed along an “unpreferred”
direction). The difference comes from our symmetric choice of normalization, as
discussed in Section 2. In (6) the diagonal is assigned to q2 rather than (q1q2)

1
2 ,

resulting in the fact that the refined MacMahon function appearing in the analog

of (4.10) is not M(q1,q2) = ∏
∞
i, j=1(1−q

i− 1
2

1 q
j− 1

2
2 )−1, but rather ∏(1−qi−1

1 q j
2)
−1.

The refined A-model (Gromov–Witten) partition functions calculated with the
refined vertex are always normalized by the prefactor M(q1,q2)χ , so in many pre-
vious calculations this has made no difference.
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