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We present the main results of [6] on the construction of spectral triples using the algebra gener-
ated by Toeplitz operators acting on Fock spaces and Hardy and Bergman spaces over a strictly
pseudoconvex domain of Cn. Different Dirac operators are proposed and we compare their in-
fluence on the dimension of the corresponding spectral triple. Since Toeplitz operators play an
important role in deformation quantization, we also study how Berezin–Toeplitz quantization can
be incorporated in the framework of noncommutative geometry.
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1. A quick overview of noncommutative geometry

The field of noncommutative geometry (NCG) gives a mathematical framework to describe
geometric entities with algebraic tools. The starting result of NCG is the Gelfand–Naimark theorem
[8], which stays a commutative C∗–algebra, unital or not, is isometrically *–isomorphic to C0(X),
the set of continuous functions vanishing at infinity on some locally compact Hausdorff space
X. Conversely, given X, then C0(X) is trivially commutative. Roughly speaking, it means that
geometric spaces can be entirely characterized as a commutative algebras.
Connes’ idea [4] was to consider not commutative algebras anymore but rather noncommutative
ones, and study the corresponding “noncommutative space”. From a physicist’s standpoint, NCG
has natural applications in quantum mechanics, in which observables do not commute.
The main geometric information are encoded in the principal object of NCG, a spectral triple
(A ,H ,D), consisting in

• an involutive algebra A ,
• a faithful representation π of A by bounded operators on a Hilbert space H ,
• a selfadjoint operator D acting on H such that for any a ∈ A , the extended operator of
[D , π(a)] is bounded, and π(a)(1+D2)−1/2 is compact.

Also, the notion of dimension is given by the quantity inf{s ∈ R,Tr(|D |−s)<+∞}.
We are interested in our case in algebras related to the so-called Toeplitz operators acting on Hilbert
spaces of holomorphic functions over strictly pseudoconvex manifolds in Cn or C itself.

2. Deformation quantization and Toeplitz operators

Geometric quantization [5] describes relations between classical and quantum mechanics by
studying geometric aspects of a dynamical system. In this context, symplectic manifolds play
the role of phase spaces of the system and holomorphic sections represent classic observables.
Later on, deformation quantization (DQ) [1] emerged to avoid some technical drawbacks of the
geometric quantization. Mimicking the Weyl quantization [7] on flat phase spaces, DQ constructs
a formal associative noncommutative star product ?h on the Poisson algebra (C∞(Ω),{., .}) of
classical observables over some symplectic phase space Ω, such that, in a suitable sense

f ?h g = ∑
j∈N

h jC j( f ,g) , as h→ 0 ,

where the bilinear operators C j verify

C0( f ,g) = f g , C1( f ,g)−C1(g, f ) =− i
2π
{ f , g} , C j( f ,1) =C j(1, f ) = 0∀ j ∈ N.

In this context, Toeplitz operators allow to construct the so-called Berezin–Toeplitz star product [3]
for phase spaces modeled by pseudoconvex domains.
We consider an open smoothly bounded strictly pseudoconvex manifold Ω⊂Cn and fix a defining
function r, i.e. verifying r|Ω > 0, r|∂Ω = 0 and ∂ r|∂Ω 6= 0. Three Hilbert spaces will be used:

• Hardy space H2: the set of boundary values of holomorphic functions on Ω.
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• Bergman space A2
m: holomorphic functions in L2(Ω,w(z)dz), with a weight of the form

w = rmg, 0 < g ∈C∞(Ω), m >−1.
• Fock space Fρ : holomorphic functions in L2(Cn,ρ(z)e−|z|

2
dz), with 0 < ρ ∈C∞(Cn).

An interesting property we will use later on is that there are unitaries between L2(Rn) and all these
Hilbert spaces (moreover we have explicit formulas when Ω = Bn is the unit ball of Cn).
A usual Toeplitz operator on H2 is of the form Tu : v ∈ H2 7→ Π(uv) ∈ H2, with u ∈ C∞(∂Ω)

(Toeplitz on the Bergman and Fock spaces are defined similarly). Toeplitz have properties (u 7→ Tu

is linear, T ∗u = Tū, ‖Tu‖ ≤ ‖u‖∞, etc.) that are interesting in both NGC and DQ, but one of the main
difficulty is that they do not form an algebra since in general TuTv 6= Tw.
Boutet de Monvel and Guillemin extended Toeplitz operators to Generalized Toeplitz operators
(GTOs) [2], that is, operators of the form TQ : u ∈ H2 7→ Π(Qu) ∈ H2, where Q is a pseudodiffer-
ential operator (ΨDO) on ∂Ω. The GTOs enjoy useful properties which allow us to build spectral
triples. The following table gives the principal ones

Properties Interests for NCG

The set of all GTOs form a filtered algebra Good candidate for A

Locally, GTO(∂Ω)≈ΨDO(Rn) mod smoothings Links with known spectral triples

∀TQ,∃P s.t. ord(Q)=ord(P), TQ = TP and [Π, P] = 0 Control the axioms of a spectral triple

Existence of a principal symbol: σ(TQ) := σ(Q)|Σ (∗) Allows a symbolic calculus

Dixmier trace: TrωTQ = 1
n!(2π)n

∫
∂Ω

σ(TQ)(x,ηx) Computation of the dimension

( (∗) given a contact form η on ∂Ω, Σ := {(x, tηx) ∈ T ∗∂Ω, t > 0}).

3. Examples of spectral triples

Let us describe now different spectral triples involving algebras generated by the Toeplitz
operators of different kinds. The principal example of spectral triple over ∂Ω is the following:

• A : the set of GTOs of order ≤ 0,
• H = H2(∂Ω),
• D : an elliptic selfadjoint GTO of order 1,

form a spectral triple of dimension n = dimCΩ. The main steps to prove this are the following: A

is trivially an involutive algebra with representation the identity on H , D is elliptic with D−1 ∈
GTO−1 hence has compact resolvent, for any TP ∈A , [D , TP] ∈ GTO0 so is bounded, and finally
the Weyl formula for GTOs leads us to the dimension.
To take an example of Dirac operator in the case Ω = Bn, we can use the usual Dirac on Rn

( /D= γµ∂µ ) transported on H2 via the known unitaries. We then obtain a spectral triple of dimension
2n = dimRΩ. This difference in the dimension comes from the fact that a ΨDO of order k on Rn is
transformed to a GTO of order k/2.
The next spectral triple concerns the domain Ω itself:

• A : the algebra generated by Toeplitz operators Tf , f ∈C∞(Ω),
• H : the weighted Bergman space A2

m,
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• D =V TV−1, where T is a selfadjoint elliptic GTO of order 1, and V : A2
m→ H2 is a unitary,

form a spectral triple of dimension n. The key point of the proof is to express the objects in terms
of GTOs on H2 via the unitaries. As before, in the case Ω = Bn, w = 1, the usual Dirac /D to the
Bergman space via unitaries induces a spectral triple of dimension 2n.
Another example of (positive) Dirac is simply D = T−1

r . Some extensions with non positive D are
possible by adding some unitary operators to the Dirac and by Hilbert doubling.

On the Fock space on C, we have the spectral triple of dimension 2dimRC, formed by
• A = {Tf , f ∈∪s≤0Es}, Es be the set of functions on C verifying f (z)∼ |z|s ∑

∞
k=0 fk(

z
|z|)|z|

−k

as |z| → ∞, with s ∈ R and fk smooth on S1,
• H = Fρ ,
• D = Tg, g ∈ E1 and measurable,

The proof uses some relations between Toeplitz on Fock spaces and Weyl operators on R2 (which
enjoys properties similar to ΨDOs).

Finally, let us describe a spectral triple obtained from the Berezin–Toeplitz quantization. It
can be shown that GTOs can also be defined on the Hardy space H̃2 over ∂ Ω̃, where Ω̃ is a disk
bundle of Ω. It happens that Λ = K∗K is an elliptic selfadjoint pseudodifferential operator on
L2(∂ Ω̃) of order -1, where K is the Poisson extension operator. From the fact that the spaces H̃2

and
⊕

m∈N A2
m(Ω) are unitarily equivalent, we get the following result:

• A : the algebra generated by the Toeplitz of the form T⊕f =
⊕

m∈N(Tf on A2
m(Ω)),

• H =
⊕

m∈N A2
m(Ω),

• D , the operator on H corresponding to T−1
Λ

via the mentioned unitary,
form a spectral triple of dimension n+ 1. To prove this, we use the result of Berezin–Toeplitz
quantization about the existence of a start product ? such that T⊕f T⊕g ∼

m→∞
T⊕f?g.

References

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and
quantization, Ann. Phys. 111 (2), 6–110 (part I), 111-151 (part II), 1978

[2] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Princeton University
Press, Princeton, N.J., 1981.

[3] M. Bordemann, E. Meinrenken and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and
gl(N), N→ ∞ limits, Comm. Math. Phys., 165, 281–296, 1994.

[4] A. Connes, Noncommutative geometry, Academic Press, 1994.

[5] A. Echeverría–Enriquez, M. C. Muñoz–Lecanda, N. Román–Roy, C. Victoria–Monge, Mathematical
foundations of geometric quantization, Extracta Mathematicae, 13, 235–238, 1998.

[6] M. Engliš, K. Falk, B. Iochum, Spectral triples and Toeplitz operators, arXiv:1402.3061.

[7] H. J. Groenewold, On the Principles of Elementary Quantum Mechanics, Physica, 12, 405-460, 1946.

[8] I. M. Gelfand, M. A. Naimark, On the imbedding of normed rings into the ring of operators on a
Hilbert space, Math. Sbornik, 12 (2), 197–217, 1943.

4


