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Abstract

Astronomical observation suggests the existence of near-extreme Kerr black holes

in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon

region of near-extreme Kerr are governed by an infinite-dimensional conformal sym-

metry. This symmetry may be exploited to analytically, rather than numerically,

compute a variety of potentially observable processes. In this thesis we compute the

gravitational radiation emitted by a small compact object that orbits in the near-

horizon region and plunges into the horizon of a large rapidly rotating black hole. We

study the holographically dual processes in the context of the Kerr/CFT correspon-

dence and find our conformal field theory (CFT) computations in perfect agreement

with the gravity results.

We compute the radiation emitted by a particle on the innermost stable circular

orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the

overall scaling of the power radiated, but show that there are also small oscillations all

the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure

in the flux to infinity, with only certain modes having the dominant scaling. The

scaling of each mode is controlled by its conformal weight.

Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr

black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO

plunge trajectory is shown to be related by a conformal map to a circular orbit.
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Chapter 1

Introduction

The holographic principle represents a fundamental paradigm shift in modern the-

oretical physics. Holography introduced a new theoretical framework for addressing

questions of strongly coupled states of matter on the one hand and gravitational

physics on the other. While the first concrete realization of the holographic principle

–the AdS/CFT correspondence– was discovered within string theory, in recent years

holographic dualities have found significant applications that range from pure math-

ematics to condensed matter and nuclear physics to cosmology. The purpose of this

thesis is to put holography on the astronomer’s map too.

The Kerr/CFT correspondence is a much less understood cousin of AdS/CFT

but it is one that pertains to observed regions in the sky. “Strong” Kerr/CFT is the

conjecture that quantum gravity in the near-horizon region of a rapidly rotating Kerr

black hole is equal to a warped two dimensional CFT. This conjecture is relevant

for the study of quantum puzzles surrounding black holes. “Weak” Kerr/CFT is the

fact that gravitational dynamics in the near-horizon region of a near-extreme Kerr

1
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r
=
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r
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r
=

NHEK near-NHEK

Figure 1.1: Penrose diagrams of the throat geometry. The large shaded wedge on the

left diagram (bounded by R = 0 and R = ∞) is NHEK. The small shaded wedge on

the right diagram (bounded by r = 0 and r = ∞) is near-NHEK.

to the full asymptotically flat Kerr geometry. Then they are approximate metrics in

the appropriate regions of the throat that leads to the Kerr horizon as shown in

Fig 1.2. The advantage of this way of thinking is that we can then use the method

of matched asymptotic expansions to extend NHEK or near-NHEK solutions outside

the throat all the way to asymptotically flat infinity.
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Chapter 2

Gravity Waves from Kerr/CFT

2.1 Introduction

Astronomical observation suggests the existence of near-extreme Kerr black holes

whose horizons spin at nearly the speed of light. Examples include the nearby stellar

mass black holes GRS 1915+105 [5] and Cygnus X-1 [6], and the supermassive black

hole at the center of the Seyfert-1.2 galaxy MCG-6-30-15 [7]. Indeed, measurements

of black hole spin with X-ray reflection spectroscopy data from XMM-Newton and

Suzaku suggest that a large fraction of supermassive black holes in active galactic

nuclei are rapidly spinning [8, 9]. General relativity implies [10, 11] that the dy-

namics of the high-redshift near-horizon region of extreme Kerr, which includes the

innermost-stable-circular-orbit (ISCO), is governed by an infinite-dimensional emer-

gent conformal symmetry. Symmetries of physical systems in general may both use-

fully characterize and have striking consequences for observational data.

Precision black hole spectroscopy has advanced to the stage where we are be-

14
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Chapter 3

Particle on the ISCO of

near-extreme Kerr black holes

3.1 Introduction

Unlike its simple Newtonian counter-part, the general relativistic two-body prob-

lem is a sprawling collection of different regimes, each with its own special techniques,

where it becomes possible to precisely define and solve the problem. In recent years

this two-body landscape has been explored in impressive detail, driven primarily by

the need for accurate theoretical models of gravitational-wave sources. Well-separated

masses are treated with high-order post-Newtonian expansions, large mass-ratio cases

are treated with point particle perturbation theory, and close orbits of comparable

mass systems are handled with numerical simulations. Non-trivial checks in overlap-

ping domains of validity [67] give confidence that these diverse efforts are converging

towards what could be called a complete solution of the relativistic two-body problem.
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Chapter 4

Slow Plunges into near-extreme

Kerr black holes

4.1 Introduction

General relativity implies that the high-redshift region very near the horizon of a

near maximally-spinning Kerr black hole is governed by an infinite-dimensional con-

formal symmetry [10, 11]. X-rays [5] and iron lines [7] from such regions have already

been observed, and the future may hold yet higher precision observations. It is of

interest to explore any potential observational consequences of the conformal symme-

try. In Chapters 2 and 3, the conformal symmetry was exploited to compute gravity

wave emission for an extreme-mass-ratio-inspiral within this near-horizon region. This

approximates the signal from a stellar mass object orbiting near an extreme super-

massive Kerr black hole and is potentially observable at eLISA [12, 13, 14]. Once

such an object passes the innermost stable circular orbit (ISCO), it plunges into the
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Chapter 5

Fast plunges into Kerr black holes

5.1 Introduction

Properties of diffeomorphisms in general relativity imply that gravitational dy-

namics near the horizons of rapidly-rotating Kerr black holes (BHs) are constrained

by an infinite-dimensional conformal symmetry [10, 11]. We refer to this as the ‘weak’

Kerr/CFT correspondence. It enables powerful analytic techniques developed in the

study of two-dimensional conformal field theory (CFT) to be employed in the anal-

ysis of the near-horizon gravitational dynamics. The conjectured ‘strong’ Kerr/CFT

correspondence (see [33, 34] for reviews) is that quantum gravity in the near-horizon

region of such BHs is dual to a (warped) two-dimensional conformal field theory. This

conjecture is relevant for the study of the quantum puzzles surrounding black holes.

However, for some interesting questions strong Kerr/CFT is not needed. In particu-

lar weak Kerr/CFT is sufficient for questions which arise in observational astronomy

[5, 7, 6].
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Appendix A

Near-Horizon Limits and

Symmetries

In this appendix we review the NHEK limits and how their enhanced symmetry

naturally assigns a conformal weight h to certain solutions of the wave equation.

While all of this material has appeared in some form in the literature, the references

vary in their choices of notation, coordinate patch, and symmetry algebra basis. We

present the relevant results here with choices suited to our calculation.

A.1 Far limit

A convenient form for the Kerr exterior metric in BL coordinates is

ds2 = −∆
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Appendix B

Equatorial geodesic equations in

NHEK-like metric

Consider a NHEK-like metric:

ds2 = 2M2Γ(θ)

[

−N2dt2 +
dr2
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